University of Twente

Ranking database results based on context.

Arthur van Bunningen

Overview

- Motivation
- A model of relevance
- Introduction to preference rules
- Connecting preference rules and relevance
- Implanting the model on top of a DBMS
- Summary and outlook

Motivation

- Many information available in digital form.
- Need for personalization
 - Based on person
 - Based on situation
 - Based on context

A model of relevance

• Traditional: $P(D = d|Q = q \land U = u) = 0$ $P(Q = q|D = d \land U = u)P(D = d|U = u)$ P(Q=q|U=u)

Adding "situatedness" to user:

$$P(D = d|Q = q \land U = u_{sit}) = P(Q = q|D = d \land U = u_{sit})P(D = d|U = u_{sit})$$

$$P(Q = q|U = u_{sit})$$

Influence of context

- Context affects query generation.
- Context affects general relevance of tuple.
- If query has lower probability to follow from situation, resulting documents more likely to be relevant.

$$P(D = d|Q = q \land U = u_{sit}) = P(Q = q|D = d \land U = u_{sit})P(D = d|U = u_{sit})$$

$$P(Q = q|U = u_{sit})$$

Influence of situatedness

- Context affects query generation.
- Context affects general relevance of a document.
- If query has lower probability to follow from situation, resulting documents more likely to be relevant.

$$P(D = d|Q = q \land U = u_{sit}) = P(Q = q|D = d \land U = u_{sit})P(D = d|U = u_{sit})$$

$$P(Q = q|U = u_{sit})$$

Introduction to preference rules

- Relates contextual features to features of documents together with a weight (C, P, σ)
- Examples:
 - (KoffieRoom, Jazz, 0.8)
 - (Cheerful, Eighties, 0.7)
- Semantics:
 - Preferences taken from choices in history.
 - If we pick a random moment in history when a situation had feature C and a user made a choice, the chance that (s)he chose a document with feature P is σ .

Preference rules and relevance

Introducing features in relevance model

$$P(D = d|U = u_{sit}) = P(D = d|F(d) = \underline{f}, G(u_{sit}) = \underline{g})$$

- The most relevant document in a situation:
 - The document for which the chance is highest that we chose before, in the situation with the same features, a document with the same features.
 - Relevance of one document:

$$= \prod_{r_p \mid r_c \in \underline{g}} \left\{ \begin{array}{ll} \sigma & \text{if } r_p \in \underline{f} \\ 1 - \sigma & \text{if } r_p \notin \underline{f} \end{array} \right.$$

Example & assumptions

Situation: KoffieRoom, Cheerful

 \neg Jazz, \neg Eighties: (1-0.8)(1-0.7)= 0.06

- Document features of rules do not depend on document features of other rules.
- Rules define "everything"
 - Information not coded in rules (e.g. music is loud, reading a paper) does not play any role.
- What if situation did not occur before
 - System don't know: Default rules

Uncertainty of features

Conditioning

$$P(D = d|G(u_{sit}) = \underline{g}) = \sum_{F(d) = \underline{f}} P(F(d) = \underline{f}) \cdot P(D = d|F(d) = \underline{f}, G(u_{sit}) = \underline{g})$$

$$P(D=d) = \sum_{G(u_{sit}) = \underline{g}} P(G(u_{sit}) = \underline{g}) \cdot (\sum_{F(d) = \underline{f}} P(F(d) = \underline{f}) \cdot P(D=d|F(d) = \underline{f}, G(u_{sit}) = \underline{g})$$

Leads to probability that document is the ideal document P(D=d) of:

$$= \sum_{G(u_{sit}) = \underline{g}} P(G(u_{sit}) = \underline{g}) \cdot (\sum_{F(d) = \underline{f}} P(F(d) = \underline{f}) \cdot \prod_{r_p \mid r_c \in \underline{g}} \left\{ \begin{array}{l} \sigma & \text{if } r_p \in \underline{f} \\ 1 - \sigma & \text{if } r_p \notin \underline{f} \end{array} \right.)$$

A word about querying (1/2)

Rules coded in Description Logics

 $Context : \{PETER\} \sqcap (\exists hasActivityType.FreeTimeActivity)$

 $Preference : TvProgram \sqcap (\exists hasGenre. \{HUMAN-INTEREST\})$

- DL model, maps to database
 - Concept tables
 - Movie, Person, Genre, ...
 - Role tables
 - hasGenre, hasRoom, hasMood, ...

Another word about querying (2/2)

- Uncertainty addressed with event expressions
 - Special DL operators that include calculation of event expression
 - Construct view
- Preference view is generated from rules
 - Contains view on all preferred documents with relevance score
 - Can be queried
 - Could be domain specific

Wrap-up and outlook

- Wrap-up
 - Relevance
 - Preference rules
 - Querying
- What's next?
 - More implementation
 - Addressing efficiency
 - Explanation of results

Example

- Rules
 - (KoffieRoom, Jazz, 0.8)
 - (Cheerfull, Eighties, 0.7)
- Situation
 - KoffieRoom: 0.5
 - Cheerfull: 0.3
- Document
 - Eighties: 0.9

Example (continued)

- - Doc: Eighties ∧ Jazz
 - 0.8 * 0.7
 - Doc: Eighties ∧ ¬ Jazz
 - 0.8 * (1-0.7)
 - Doc: ¬ Eighties ∧ Jazz
 - (1-0.8) * 0.7
 - Doc: ¬ Eighties ∧ ¬ Jazz
 - (1-0.8) * (1-0.7)
- Sit: CoffeeRoom ∧ ¬ Cheerfull
- Sit: ¬ CoffeeRoom ∧ Cheerfull
- Sit ¬ CoffeeRoom ∧ ¬ Cheerfull