Mining Frequent Items in a Stream using Flexible Windows

Toon Calders, Eindhoven Technical University TU/e

Nele Dexters, Bart Goethals, University of Antwerp

DBDBD 2006 - Brussels - November 15

- What
- New Frequency
- Properties
- Algorithm
- Worst Case
- Further Work

What...?

Finding frequent items in a continuous stream of items

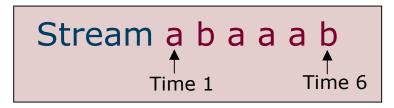
abbaacdeebcdaababaacdbabaacadaa

 \uparrow timestamp t=1

- → New Frequency Measure: Max-Frequency
- → Incremental Algorithm
- \rightarrow Worst-Case Analysis

- What
- New Frequency
- Properties
- Algorithm
- Worst Case
- Further Work

Timestamp 6 Target item a



mfreq(a, abaaab) = max(freq(a, last(k, abaaab)))k=1..6 $= \max(0/1, 1/2, 2/3, 3/4, 3/5, 4/6)$ 4/6 = 3/43/5 3/4 2/3 1/2 ⊢ 0/1 b b a а a a Universiteit Antwerpen 3

- What
- New Frequency
- Properties
- Algorithm
- Worst Case
- Further Work

New Frequency: Definition

For each item, we consider the window in which it has the highest probability:

Max-Frequency:

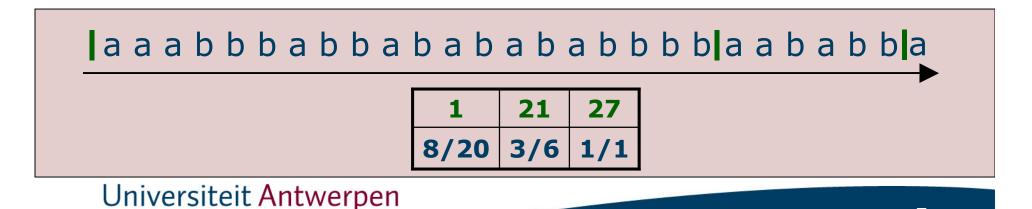
 $mfreq(i, S) := \max_{k=1..|S|} (freq(i, last(k, S)))$

- What
- New Frequency
- Properties
- Algorithm
- Worst Case
- Further Work

Properties

Checking all possible windows to find the maximal one: **infeasible**

BUT: not every point needs to be checked \downarrow Only some special points = the borders



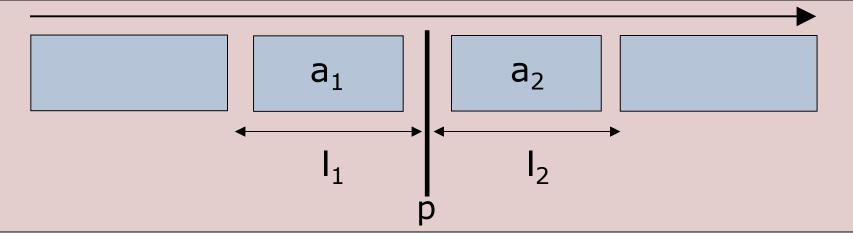
5

- What
- New Frequency
- Properties
- Algorithm
- Worst Case
- Further Work

How to find the borders?

Target item a

a_i = # occurrences of **a** in that block



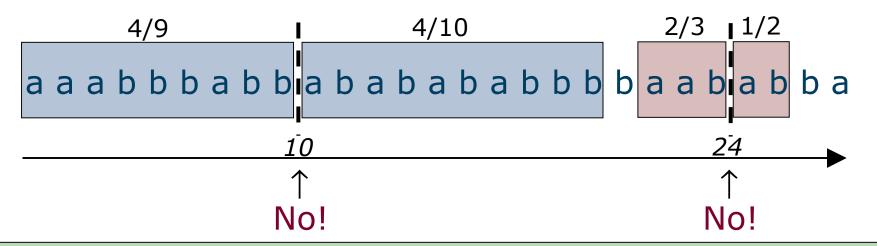
If $a_1/l_1 \ge a_2/l_2$, position p is never the border again! Very powerful pruning criterion!

If a position **p** is **not** a border in *S*, then it neither can be a border in **any extension** from *S*.

- What
- New Frequency
- Properties
- Algorithm
- Worst Case
- Further Work

Example

On timestamp 27, we have S_{27} :



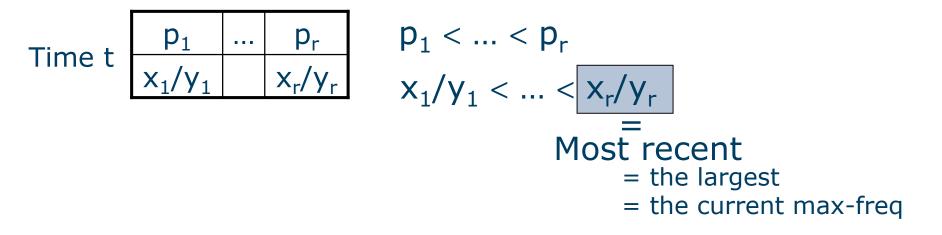
The only borders that need to be remembered:

1	21	27
8/20	3/6	1/1

- What
- New Frequency
- Properties
- Algorithm
- Worst Case
- Further Work

Algorithm

Output: on every timestamp t: Summary(S_t)

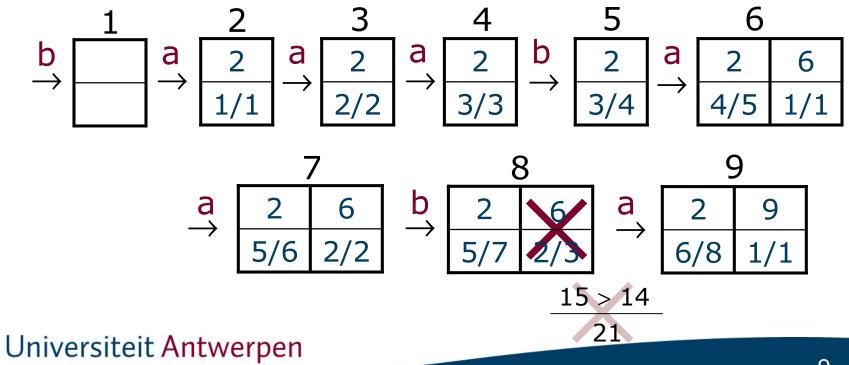


How: on every timestamp, the algo adjusts the stored values based on the newly entered item

- What
- New Frequency
- Properties
- Algorithm
- Worst Case
- Further Work

Example

Target item = a



- What
- New Frequency
- Properties
- Algorithm
- Worst Case
- Further Work

Worst-Case Analysis

For a specific streamlength *I*, we will identify a stream of length *I* that maximizes the number of borders: the Farey stream.

The idea is to have as many blocks as possible, causing as many borders as possible

$$\begin{vmatrix} a_1 & b_1 \\ \bullet \\ I_1 & I_2 \\ \bullet \\ a_1/I_1 & I_2 \\ a_2/I_2 & I_r \\ \bullet \\ a_r/I_r \\ \bullet \\ a_r/I_r \end{vmatrix}$$

- What
- New Frequency
- Properties
- Algorithm
- Worst Case
- Further Work

What Farey has to do with it

$$a_1/l_1 < a_2/l_2 < ... < a_r/l_r$$

The challenge is for each streamlength $k = I_1 + I_2 + ... + I_r$ to find such an increasing array of fractions

Solution: Farey sequences

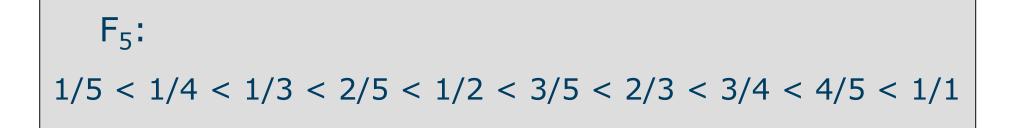
$$F_1 = 1/1$$

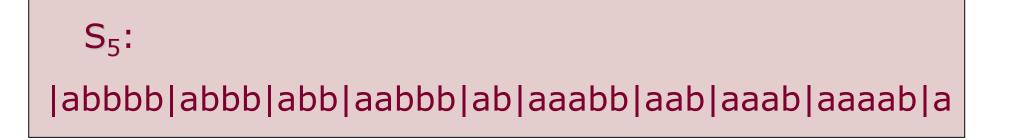
 $F_2 = 1/2, 1/1$
 $F_3 = 1/3, 1/2, 2/3, 1/1$
 $F_4 = 1/4, 1/3, 1/2, 2/3, 3/4, 1/1$

- What
- New Frequency
- Properties
- Algorithm
- Worst Case
- Further Work

Farey Streams

The Farey Sequence F_n introduces the Farey Stream S_n .





- What
- New Frequency
- Properties
- Algorithm
- Worst Case
- Further Work

Most Important Result

Theorem: For streams of length L, the maximal number of borders is given by N:

$$N = \left(\frac{\pi^2 L}{2}\right)^{2/3} \frac{3}{\pi^2}$$

Remark: Experiments show that the worst case never happens!

- What
- New Frequency
- Properties
- Algorithm
- Worst Case
- Further Work

Further Work

- Minimum Window Length
- Focus on multiple targets in the stream
- Make the extension to itemset mining