Q-RIDL

A LANGUAGE AND INTERPRETER FOR ONTOLOGICAL COMMITMENTS

OVERVIEW

- **DOGMA** Foundations
- ** DOGMA Studio and T-Lex
- & Ω-RIDL Ontological Commitment Language
- **Conclusions and Future Work**

DOGMA FOUNDATIONS

Developing Ontology Grounded Methods and Applications

LEXON

- ** Plausible elementary binary fact type
- (context, term) refers to a unique concept

DOGMA LAYERS

Applications Lexon Base Commitment Layer

"Double articulation principle"

COMMITMENT LAYER

Commitments define an interpretation of (a subset of) the Lexon Base by:

- ** selecting lexons
- semantically constraining the use of the selected lexons by imposing constraints

DOGMA STUDIO & T-LEX

DOGMA STUDIO

T-Lex Suite

Dogma Studio

Eclipse Framework

T-Lex Suite

T-Lex Browser

T-Lex Committer

T-Lex Base

Ω-RIDL

Q-RIDL

- **** Language for:**
 - # defining ontological commitments
- **Based on RIDL

Ω-RIDL

Ontological commitments consist of three parts:

- **Contextual declaration**
- ** Lexical interpretation
- **Semantic** rules

AN EXAMPLE

```
define commitment
in context WINEBOOK
with subsumption ISA / SUBSUMES
lexical interpretations
map WINES.WINE_NAME
on WINE HAS NAME
semantic constraints
each WINE HAS exactly one NAME
end
```

CONCLUSIONS & FUTURE WORK

CONCLUSION & FUTURE WORK

- * Ω-RIDL will define ontological commitments and support conceptual querying
- **T-Lex tool will need to be extended to support export to Ω -RIDL
- # Build an **Ω**-RIDL interpreter