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Motivating Example: Biological Networks

Scheme of biological database

Huge amounts of
molecular biological
data available

Probabilities of direct
links obtained by
various prediction
techniques

Probability of some
items being in a
specific kind of
possibly complex
relationship?



Simple ProbLog Encoding of Biological Network

0.3779:edge(’EntrezProtein_4885045’,’HGNC_620’).

0.4928:edge(’HGNC_620’,’PubMed_12653567’).

0.6054:edge(’EntrezProtein_4885045’,’HGNC_12850’).

0.9022:edge(’PubMed_2322535’,’HGNC_983’).

0.8750:edge(’HomoloGene_20065’,’HGNC_983’).

...

1.0:path(X,Y):-edge(X,Y).

1.0:path(X,Y):-edge(X,Z),path(Z,Y).

What is the probability of path(’HGNC 620’,’HGNC 983’)?

Of course, more complex encodings and queries possible. . .



ProbLog: Idea

ProbLog = Prolog + Probability Labels

Each clause has a label (value between 0 and 1) indicating the
probability that the clause is in the logic program.

Each clause independent of all other clauses

No other assumptions or restrictions

Inference in ProbLog

Given a ProbLog program T and a query q, what is the
probability that there is some proof of q in T?



Semantics

ProbLog program T = {p1 : c1, . . . , pn : cn},
logical part LT = {c1, . . . , cn}

Sampling logic programs L ⊆ LT :

P(L|T ) =
∏

ci∈L

pi

∏

ci∈LT \L

(1 − pi )

Given T and a query q:

P(q|T ) =
∑

L⊆LT

P(q|L) · P(L|T )

where P(q|L) = 1 if there is a proof of q in L, else P(q|L) = 0



Inference: Calculating P(q|T )

Use monotone DNF formula d describing all proofs of q in LT

Boolean variable bi for each pi : ci ∈ T

Concrete proof: conjunction of clause variables

Some proof: disjunction of formulae for all proofs

d =
∨

b∈proofs(q)

∧

bi∈clauses(b)

bi

Formula constructed using standard SLD-tree

Calculating probability of monotone DNF formula is NP-hard.



Construction of DNF Formula
Example

1.0 : path(X,Y) :- edge(X,Y).

1.0 : path(X,Y) :- edge(X,Z), path(Z,Y).

0.9 : edge(a,c). 0.7 : edge(c,b).

0.6 : edge(d,c). 0.9 : edge(d,b).

?- p(d,b).

:- e(d,b).

2
e4

p1
:- e(d,A),p(A,b).

:- p(c,b)

:- e(c,b).

2
e2

p1
:- e(c,B),p(B,b).

:- p(b,b)

:- e(b,b).
p1

:- e(b,C),p(C,b).
p2

e2

p2

e3
:- p(b,b)

:- e(b,b).
p1

:- e(b,D),p(D,b).
p2

e4

p2

d = (p1 ∧ e4) ∨ (p2 ∧ e3 ∧ p1 ∧ e2)



DNF Formula as Binary Decision Diagram (BDD)
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(p1 ∧ e4) ∨
(p2 ∧ e3 ∧ p1 ∧ e2)

Efficient graphical representation for
Boolean functions [Bryant,1986]

Nodes labeled with Boolean variables

Solid edge: variable assigned 1

Dashed edge: variable assigned 0

Probability of formula starting at node n:

prob(n) = pn · prob(n = 1)

+ (1 − pn) · prob(n = 0)

Experiments show: up to 100.000
conjuncts feasible, depending on formula



Approximate Inference

Incremental, levelwise search for proofs

After each level, construct two DNF formulae:

low : all proofs found up to current level
up: all derivations up to current level that have not yet failed

low |= d |= up

Bounds on probability obtained using BDDs for low and up:

P(low) ≤ P(q|T ) ≤ P(up)

Stop if |P(up) − P(low)| ≤ δ for some small δ

Similar to [Poole,1992]



Approximate Inference
Example revisited

?- p(d,b).

:- e(d,b).

2
e4

p1
:- e(d,A),p(A,b).

:- p(c,b)

:- e(c,b).

2
e2

p1
:- e(c,B),p(B,b).

:- p(b,b)

:- e(b,b).
p1

:- e(b,C),p(C,b).
p2

e2

p2

e3
:- p(b,b)

:- e(b,b).
p1

:- e(b,D),p(D,b).
p2

e4

p2

low = (p1 ∧ e4)
up = (p1 ∧ e4) ∨ (p2 ∧ e3) ∨ (p2 ∧ e4)

d = (p1 ∧ e4) ∨ (p2 ∧ e3 ∧ p1 ∧ e2)



Experiments

Real biological graph G around four random Alzheimer genes
(5220 nodes, 11530 edges)

Example query: connection between two of the genes

10 sequences of subgraphs G1 ⊂ G2 ⊂ . . . of sizes 200, 400, . . .
edges obtained by randomly subsampling edges from G

Each Gi consists of exactly one connected component and
contains both genes used in the query.

Approximate inference using interval width δ = 0.01

First level of search contains proofs with up to 4 clauses, this
bound is incremented by one clause on each level.



Convergence of Probability Interval Width
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Results for 10 graphs with 1400 edges each

6 to 13 levels taking 15 seconds to 4 minutes



Results of Scalability Experiments

Good scalability as often only small fraction of proofs needed
for approximation

Example query solved for graphs with up to 1400 to 4600
edges, depending on the random sample

Runtimes from some seconds
up to four hours for larger
graphs

Runtimes influenced by many
factors, difficult to predict
based on size of graph
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Conclusions

ProbLog: a simple Probabilistic Prolog assuming
independence between clauses

Probability calculation using

Monotone DNF formulae
Binary decision diagrams

Effective and efficient approximation algorithm

Experimental evaluation on real-world problem of mining large
biological networks
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