
An Adaptive Push/Pull Algorithm for AJAX Applications

Engin Bozdag
Delft University of Technology

The Netherlands
v.e.bozdag@tudelft.nl

Arie van Deursen
Delft Univ. of Technology

The Netherlands
Arie.vanDeursen@tudelft.nl

Abstract

Even though the AJAX paradigm helps web applications
to become more responsive, AJAX alone does not provide
an efficient mechanism for real-time data delivery. Use
cases of applications that need such a service include stock
tickers, auction sites or chat rooms. The user interface
components of these applications must be kept up-to-date
with the latest data from the server, and changes should
be received immediately. There are two different static ap-
proaches used in the industry to provide real-time data de-
livery: Either the client pulls for the latest data, or the
server pushes it to the client. However, such a static ap-
proach is not optimal, since both techniques have their own
advantages and disadvantages. In this paper we present
an adaptive algorithm that combines both solutions in or-
der to increase scalability, network performance and user-
perceived latency.

1 Introduction

Recently, there has been a shift in the direction of web
development. A new breed of web application, dubbed
AJAX (Asynchronous JavaScript and XML) is emerging in
response to the limited degree of interactivity in large-grain
stateless Web interactions. The intent is to make web pages
feel more responsive by exchanging small amounts of data
with the server behind the scenes and making changes to
individual user interface components. This way, the en-
tire web page does not have to be reloaded each time the
user makes a change. AJAX is a serious option not only
for newly developed applications, but also for existing web
sites if their user friendliness is inadequate [14, 13].

The new web applications under the AJAX banner have
redefined end users’ expectations of what is possible within
a Web browser. However, AJAX still suffers from the limita-
tions of the Web’s request/response architecture. The clas-
sical model of the web called REST [10] requires all com-
munication between the browser and the server to be initi-

ated by the client, i.e., the end user clicks on a button or
link and thereby requests a new page from the server. No
‘permanent’ connection is established between client/server
and the server is required to maintain no state information
about the clients. This scheme helps scalability [10], but
precludes servers from sending asynchronous notifications.

Asymmetry can arise in an environment where newly
created items or updates to existing data items must be dis-
seminated to clients. In such cases, there is a natural (asym-
metric) flow of data in the downstream direction [1]. There
are many use cases where it is important to update the client
user interface in response to server-side changes. Examples
for such a real-time event notification include an auction
web site, a stock ticker, a chat application and a news por-
tal.

The coherence requirements associated with a data item
depends on the nature of the item and user tolerances. For
instance, users are generally more tolerant towards latencies
in a sports news application than in a stock ticker applica-
tion. Also, a user who is interested in changes of more than
a dollar for a particular stock price need not be notified of
smaller intermediate changes [3].

Pull and push are two different approaches in data dis-
semination (See Section 2 for a more detailed discussion).
Simply put, in pull the client actively asks for new data con-
tinuously, where in push the server broadcasts the changes
when they are available. Each of these solutions come with
their own tradeoffs. Since the data coherence [5] require-
ments of the users, data publish interval, computation, com-
munication and state-space overheads differ over time, it is
very difficult to statically choose between these two solu-
tions.

Because of this, an adaptive approach might be a suitable
solution for cases where not all key characteristics, such as
the data publish interval, are known in advance. With such
an adaptive approach, the client or server can monitor actual
data delivery, latency, or channel update rates, and based on
this information adjust the data delivery technique. Thus,
a hybrid between pure push and pure pull emerges, capa-
ble of supporting more effective and efficient content deliv-

ery. In particular, we expect an adaptive approach to achieve
higher availability, network performance, user-perceived la-
tency and scalability.

This paper aims at exploring such an adaptive approach
to real time data delivery. The paper reports on our first
results, and is structured as follows. Section 2 summarizes
the pure push and pure pull approaches. Later, in Section 3,
we propose an adaptable solution in which push and pull is
combined. Section 4 presents our plan for the evaluation of
our algorithm and our testing framework. Finally, Section 6
ends this paper with a conclusion and future work.

2 Real time data delivery techniques

2.1 HTTP Pull

Most AJAX applications check with the server at regular
user-definable intervals known as Time to Refresh (TTR).
This check occurs blindly regardless of whether the state of
the applications has changed. The client makes a request
to the server, immediately received a response and waits
according to TTR (See Figure 1a).

In order to achieve high data accuracy and data fresh-
ness, the pulling frequency has to be high. This, in turn,
induces high network traffic and possibly unnecessary mes-
sages. The application also wastes some time querying
for the completion of the event, thereby directly impacting
the responsiveness to the user. Ideally, the pulling interval
should be equal to the Publish Rate (PR), i.e., the rate at
which the state changes. If the frequency is too low, the
client can miss some updates.

This scheme is frequently used in web systems, since it
is robust, simple to implement, allows for offline operation,
and scales well to high number of subscribers [11].

Mechanisms such as Adaptive TTR [16] allow the server
to change the TTR, so that the client can pull on differ-
ent frequencies, depending on the change rate of the data.
Given a user’s coherence requirement, this technique allows
the server to adaptively vary the TTR value based on the rate
of change of the data item. The TTR decreases dynami-
cally when a data item starts changing rapidly and increases
when a hot data item becomes cold. Adaptive TTR takes
into account (a) a max and min TTR value, so that the TTR
value is not set too high or low, (b) the most rapid changes
that have occurred so far, (c) the most recent changes to the
polled data. In the end, the server calculates the new TTR
based on an estimate and the latest TTR values. This dy-
namic TTR approach in turn provides better results than a
static TTR model [16].

2.2 Push

The alternative to pull is push. Figure 1b shows a pure
push scheme. In this approach, when the data is available
the server opens a connection to the client and pushes the
data. This scheme however is not possible to implement in
browsers without the installation of a plug-in, since having
an open socket on a browser is not possible due to many rea-
sons. To overcome this limitation, a technique called long
polling is used in the industry (See Figure 1c). Long polling
acknowledges the fact that in order to have a open connec-
tion, a request must be coming from the client. However,
unlike pull, a response is not immediately returned to the
client after a request. The server holds on to the connection
until data becomes available. When there is an update to
send, it pushes the data to the client, and the client makes
another request.

Long polling follows the ‘topic-based’ [9] publish-
subscribe scheme, which groups events according to their
topic (name) and map individual topics to distinct com-
munication channels. Participants subscribe to individual
topics, which are identified by keywords. Like many mod-
ern topic-based engines, it offers a form of hierarchical ad-
dressing, which permits programmers to organize topics ac-
cording to containment relationships. It also allows topic
names to contain wildcards, which offers the possibility to
subscribe and publish to several topics whose names match
a given set of keywords.

Long polling always guarantees better data coherence
comparing to pull and also generates considerably less net-
work traffic [5]. The major problem with this approach
however is scalability. There is an open request kept for
each client, and this will keep resources busy on the server
side. This leads to higher CPU usage [5], and in some
servers to server saturation even with a couple of hundred
users [4].

Long polling is currently implemented by AJAX libraries
such as Dojo1 and DWR2. Since these libraries use the
JavaScript engine of the browser, no external plugin down-
load is necessary. This technique is supported by all the
major browsers.

3 An adaptive solution

As we discussed in Section 2, both push and pull have
their advantages and disadvantages. Most solutions in the
industry follow a static approach; either a full pull or a full
push mode is used. However, the data coherence require-
ments associated with a data item depends on the nature of
the item and user tolerances. Users will want different data
coherence depending on the application, their preferences,

1 http://dojotoolkit.org/
2 http://getahead.ltd.uk/dwr/

(a) Pull

(b) Pure Push

(c) Long Polling

Figure 1: Data Delivery Techniques for AJAX

bandwidth, etc. Therefore, a hybrid approach will gain the
benets of both techniques.

For our solution, we use a modified and extended ver-
sion of Bhide et al.’s Push or Pull (PoP) algorithm [3]. PoP
is designed to keep proxies up-to-date with the latest data.
It does not consider the limitations of browsers and uses
a pure push technique, which is not available to browsers.
Our algorithm however, is designed for browsers and AJAX
applications. In our algorithm users can specify their data
coherence requirements using the application. This can also
be specified by the application developer, if a single require-
ment is suitable for all the users of the application.

3.1 Terminology

We use the following terminology in our algorithm:

Publish Triptime: We define trip-time as follows:

Trip-time =
| Data Creation Date − Data Receipt Date |

Data Creation Date is the date on the publishing server
the moment it creates a message, and Data Receipt
Date is the date on the client the moment it receives
the message. Trip-time shows how long it takes for a
publish message to reach the client and can be used to
find out how fast the client is notified with the latest
events.

Data Coherence: We define a piece of data as coherent,
if the data on the server and the client is synchronized.
We check the data coherence of each approach by mea-
suring the trip-time. Accordingly, a data item with a
low trip-time leads to a high coherence degree.

3.2 Algorithms

We propose an approach to adaptive push/pull based on
three algorithms. First, the Register algorithm is used when
registering new users that are interested in real time data
delivery. Next, there are two monitoring algorithms, which
keep track of the server and channel performance, and ad-
just the push/pull settings when necessary. The algorithms
themselves are shown in Algorithms 1-3. In the following
subsections we discuss these algorithms in detail.

Algorithm 1 Adaptive User Registration
1: procedure REGISTER (User)
2: if User is already registered then
3: User := Pull;
4: else
5: if Server Load < threshold1 then
6: User :=Push
7: else
8: if Server Load > threshold3 then
9: repeat

10: decreaseServerLoad();
11: until Server Load < threshold2 OR Timeout
12: else
13: if User.Coherence > Default.Coherence then
14: User :=Pull;
15: else
16: switchSomePushUsersToPull();
17: end if
18: end if
19: end if
20: end if
21: end procedure

3.2.1 New User Registration

Procedure register in Algorithm 1 shows how a new client is
registered. In Lines 1-2, it checks if a client has already reg-
istered with the server. This is because having a push user

Algorithm 2 Monitor Pull Latency
1: procedure MONITORPULLLATENCY
2: if User:Pull then
3: if User.Latency < Max Latency then
4: Adapt TTR
5: else
6: User:=Push;
7: end if
8: end if
9: end procedure

Algorithm 3 Monitor the Update Rate in a Channel
1: procedure MONITORCHANNEL
2: if Channel.UpdateRate < Default.UpdateRate then
3: for Each User in the Channel do
4: User:=Pull;
5: end for
6: end if
7: end procedure

means allocating resources, and to treat clients equally, the
same user should not occupy more than one push connec-
tion. Also, the number of open XMLHTTPRequest3 objects
on a browser might be limited (usually to 2). If this limit is
reached because of having open push connections, this will
prevent the browser from making any other requests.

Lines 5-6 check if the server is lightly loaded. It per-
forms this by comparing the current server load by a thresh-
old. If the server is lightly loaded, the new client is auto-
matically registered as a push client. This is because push
always provides better data coherence, and since there are
enough resources on the server, all clients are provided with
high data coherence.

Lines 8-11 check if the server is under maximum load,
where the server is almost saturated. If this is the case, the
server calls the subroutine decreaseServerLoad, which tries
to decrease the load. This might be done by:

• Aggregating push data: The server waits for a while
before pushing messages, instead of pushing each mes-
sage separately.

• Filtering: The server filters certain messages and drops
them if necessary.

• Delaying: If certain data do not have real-time require-
ments, they might be delayed.

• Switching: If a user does not have high data coherence
requirement, it might be switched to a pull mode, mak-
ing some resources free.

3 http://www.w3.org/TR/XMLHttpRequest/

Lines 13-16 denote the case where the load is critical, but
not maximal yet. In this case, if the user’s data coherence
requirement is not that high (Line 13), it is assigned as a
pull client (Line 14). Otherwise (Line 15), the server tries
to find some users with low data coherence requirement and
switch them to pull, so that there are available resources for
this push client. Note that if no resource can be made free,
then the client will simply be rejected.

3.2.2 Monitoring the Latency of Pull Clients

Procedure monitorPullLatency in Algorithm 2 checks the
latency of the pull clients in order to adjust the push/pull
settings when necessary. In each request, the user also sends
the triptime of the previous message. With this information,
the server can check if the experienced latency on the client
is acceptable (Line 3). If this is the case, in Line 4 the client
continues with Adaptive Time To Refresh (TTR) . Other-
wise (Line 6-7), the user is switched to push, in order to
guarantee high data coherence.

3.2.3 Monitoring a Push Channel

It is also quite possible that a push channel is not receiv-
ing updates frequently. If this is the case, then unnecessary
server resources will be allocated for the subscribers of this
channel. In order to optimize the resource usage, channel
subscribers can be switched to a pull mode, which will im-
prove scalability. Procedure monitorChannel in Algorithm
3 checks the channel update rate and compares it with a pre-
defined value (Line 2). If the update rate is smaller than this
value, then all the push users are switched into pull (Line
3-4).

4 Plan for Evaluation

In order to evaluate the efficiency and performance of
our adaptive algorithm, we need to create a distributed test-
ing infrastructure. Unfortunately, distributed systems are
inherently more difficult to design, program, and test than
sequential systems [2]. They consist of a varying number of
processes executing in parallel. A process may also update
its variables independently or in response to the actions of
another process. Testing distributed programs is a challeng-
ing task of great significance. The following problems are
of significance in distributed software testing:

• Controllability: This problem occurs when the tester
does not know when to send a message, so that a se-
quence of consecutive transitions cannot be applied in
testing [8]. Thus, controllability is the testing power or
the capability of the test system to realize input events
in a given order [6].

Figure 2: Design of the Distributed Automated Testing
Framework CHIRON

• Observability: Observability may be defined as the
testing power or the capability of the test system to de-
termine the output events and the order in which they
have taken place [6].

• Reproducibility: We define reproducibility as the abil-
ity of a test or experiment to be accurately reproduced,
or replicated, by someone else working independently.

Our testing infrastructure must make it possible to con-
trol independent variables that are needed in a real-time data
delivery application, such as the number of concurrent users
and total number of messages, publish interval and pull in-
terval. On top of that, the procedures that we have listed in
our adaptive algorithm will create additional variations. The
combination of these independent variables and the usage of
different algorithms make performing the tests manually an
error-prone, and time consuming task.

In order to overcome these challenges, we have created
an integrated performance testing framework called CHI-
RON4 that automates the whole testing process [5]. As de-
picted in Figure 2, the controller has direct access to differ-
ent servers and components (Application server, client sim-
ulation server, the statistic server and the Service Provider).
By automating each test run, the controller coordinates the
whole experiment. This way we can repeat the experi-
ment many times without difficulty and reduce the non-
determinism, which is inherent in distributed systems [2].
Since no user input is needed during a test run, observabil-
ity and controllability problems [8] are minimized.

4In Greek mythology, CHIRON, was the only immortal centaur. He
became the tutor for a number of heroes, including AJAX.

We have implemented CHIRON using a number of open
source packages. In particular we use Grinder5 to simu-
late a big number of virtual users. Grinder seemed to be a
good option, providing an internal TCPProxy, allowing to
record and replay events sent by the browser. It also pro-
vides scripting support, which allows us to create a script
that simulates a browser connecting to the push server, sub-
scribing to a particular stock channel and receiving push
data continuously. In addition, Grinder has a built-in fea-
ture that allows us to create multiple threads of a simulating
script. For the application server, we use open-source Jetty
6’s Cometd module 6, which is extensible and provided the
best results in our previous tests [5]. The statistics server is
using Log4j’s SocketAppender7. For the Service Provider
we implemented our own Java application, which uses the
HTTPClient library8. The controller itself is implemented
in Java and uses an open-source SSH library9 to communi-
cate with different servers. Note that any of these compo-
nents can be replaced with an alternative solution at future
stages.

Our following steps consist of the following:

• Determine the independent variables, such as number
of users, publish interval, pull interval, etc.

• Extend an available push server (Such as Jetty 6) by
implementing the adaptive algorithms mentioned in
this paper

• Develop an application that has both push and pull sup-
port

• Implement a script for the Client Simulator with sup-
port for switching between push and pull

• Using CHIRON, establish the initial values of the pa-
rameters, such as threshold 1-3 and timeout (Algo-
rithms 1-3)

• Run the tests using CHIRON, obtain and evaluate the
performance of the adaptive algorithm by comparing
it with push and pure pull.

• Based on the obtained results, tune the parameters of
Algorithms 1-3, such as threshold 1-3 and timeout.
This will further optimize the results.

5 Related Work

There are a number of papers that discuss a possible
adaptive push/pull algorithm. However, most of them focus

5 http://grinder.sourceforge.net
6 http://www.cometd.com
7 http://logging.apache.org/log4j
8 http://hc.apache.org/httpclient-3.x
9 http://www.trilead.com/Products/Trilead-SSH

on client/server distributed systems and non HTTP multi-
media streaming or multi-casting with a single publisher.

The research of Acharya et al. [1] focuses on finding a
balance between push and pull by investigating techniques
that can enhance the performance and scalability of the
system. According to the research, if the server is lightly
loaded, pull seems to be the best strategy. In this case, all
requests get queued and are serviced much faster than the
average latency of publishing. The study is not focused on
HTTP.

Bhide et al. [3] also try to find a balance between push
and pull, and present two dynamic adaptive algorithms:
Push and Pull (PaP), and Push or Pull (PoP). According
to their results, both algorithms perform better than pure
pull or push approaches. Even though they use HTTP as
messaging protocol, they use custom proxies, clients, and
servers. They do not address the limitations of browsers nor
do they perform load testing with high number of users.

Cao et al. [7] discuss push and pull for mobile agent
(MA) technology, in which autonomous objects or cluster
of objects are able to move between locations. Authors
mention the properties and trade-offs of both approaches for
mobile agents and relay stations. They present an adaptive
pull algorithm to decide the query frequency (Time to Re-
fresh) by considering several factors including the distance
between the agent and the relay station. The paper does not
address browsers, the web and the AJAX technology.

Liu et al. [12] investigate efficient strategies for sup-
porting on-demand information dissemination and gather-
ing in large-scale wireless sensor networks. In the paper,
authors try two combine two techniques in order to balance
push and pull in data gathering and dissemination for large-
scale wireless networks. They show that their comb-needle
scheme performs better than pure push or pure pull. The
study focuses on reliability and query coverage of sensors
in large wireless networks.

Saxena et al. [15] introduce a hybrid scheduling algo-
rithm that probabilistically combines the number of push
and pull operations depending on the number of items
present in the system and their popularity. The access prob-
abilities of the data items are computed dynamically, with-
out any prior knowledge. Authors compare the performance
of various push and pull scheduling algorithms and select
the scheme providing the best performance. They use a cut-
off point to separate the push and the pull sets. The work is
focused on wireless networks.

6 Conclusion

In this paper we pointed out the advantages and disad-
vantages of pull and push solutions for achieving web-based
real time event notification. Starting out from these trade-
offs, we proposed an adaptive algorithm that combines these

two techniques in order to gain the benefits of them both.
Our future work includes possible other optimizations,

the full implementation of the algorithm and testing it
with our Distributed Automated Testing Framework CHI-
RON10.

References

[1] S. Acharya, M. Franklin, and S. Zdonik. Balancing push and
pull for data broadcast. In SIGMOD ’97: Proceedings of the
1997 ACM SIGMOD international conference on Manage-
ment of data, pages 183–194. ACM Press, 1997.

[2] S. Alager and S. Venkatsean. Hierarchy in testing distributed
programs. In AADEBUG ’93: Proceedings of the First Inter-
national Workshop on Automated and Algorithmic Debug-
ging, pages 101–116, London, UK, 1993. Springer-Verlag.

[3] M. Bhide, P. Deolasee, A. Katkar, A. Panchbudhe, K. Ra-
mamritham, and P. Shenoy. Adaptive push-pull: Dissemi-
nating dynamic web data. IEEE Trans. Comput., 51(6):652–
668, 2002.

[4] E. Bozdag, A. Mesbah, and A. van Deursen. A compari-
son of push and pull techniques for Ajax. In S. Uang and
M. D. Penta, editors, Proceedings of the 9th IEEE Interna-
tional Symposium on Web Site Evolution (WSE), pages 15–
22. IEEE Computer Society, 2007.

[5] E. Bozdag, A. Mesbah, and A. van Deursen. Performance
testing of data delivery techniques for Ajax applications.
Technical report, Delft University of Technology, 2008.

[6] L. Cacciari and O. Rafiq. Controllability and observability
in distributed testing. Information & Software Technology,
41(11-12):767–780, 1999.

[7] J. Cao, X. Feng, J. Lu, H. C. B. Chan, and S. K. Das. Re-
liable message delivery for mobile agents: push or pull?
IEEE Transactions on Systems, Man, and Cybernetics, Part
A, 34(5):577–587, 2004.

[8] J. Chen, R. M. Hierons, and H. Ural. Overcoming observ-
ability problems in distributed test architectures. Inf. Pro-
cess. Lett., 98(5):177–182, 2006.

[9] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermar-
rec. The many faces of publish/subscribe. ACM Comput.
Surv., 35(2):114–131, 2003.

[10] R. T. Fielding and R. N. Taylor. Principled design of
the modern web architecture. ACM Trans. Inter. Tech.,
2(2):115–150, 2002.

[11] M. Hauswirth and M. Jazayeri. A component and commu-
nication model for push systems. In ESEC/FSE ’99, pages
20–38. Springer-Verlag, 1999.

[12] X. Liu, Q. Huang, and Y. Zhang. Combs, needles, haystacks:
balancing push and pull for discovery in large-scale sen-
sor networks. In J. A. Stankovic, A. Arora, and R. Govin-
dan, editors, Proceedings of the 2nd International Confer-
ence on Embedded Networked Sensor Systems, SenSys 2004,
Baltimore, MD, USA, November 3-5, 2004, pages 122–133.
ACM, 2004.

10CHIRON is available to download as an open-source project. See
http://spci.st.ewi.tudelft.nl/chiron

[13] A. Mesbah, E. Bozdag, and A. van Deursen. Crawling Ajax
by inferring user interface state changes. In D. Schwabe
and F. Curbera, editors, Proceedings of the 8th International
Conference on Web Engineering (ICWE’08). IEEE Com-
puter Society, July 2008.

[14] A. Mesbah and A. van Deursen. A component- and push-
based architectural style for Ajax applications. Journal of
Systems and Software (JSS), 2008. Accepted for publication.

[15] N. Saxena and M. C. Pinotti. Performance guarantee in a
new hybrid push-pull scheduling algorithm. In Q. H. Mah-
moud and H. Weghorn, editors, Wireless Information Sys-
tems, Proceedings of the 3rd International Workshop on
Wireless Information Systems, WIS 2004, In conjunction
with ICEIS 2004, Porto, Portugal, April 2004, pages 50–62.
INSTICC Press, 2004.

[16] R. Srinivasan, C. Liang, and K. Ramamritham. Maintain-
ing temporal coherency of virtual data warehouses. In IEEE
Real-Time Systems Symposium, page 60, 1998.

