
SpeeG: A Multimodal Speech- and Gesture-based
Text Input Solution

Lode Hoste, Bruno Dumas and Beat Signer
Web & Information Systems Engineering Lab

Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussels, Belgium

{lhoste,bdumas,bsigner}@vub.ac.be

ABSTRACT
We present SpeeG, a multimodal speech- and body gesture-based
text input system targeting media centres, set-top boxes and game
consoles. Our controller-free zoomable user interface combines
speech input with a gesture-based real-time correction of the recog-
nised voice input. While the open source CMU Sphinx voice recog-
niser transforms speech input into written text, Microsoft’s Kinect
sensor is used for the hand gesture tracking. A modified version of
the zoomable Dasher interface combines the input from Sphinx and
the Kinect sensor. In contrast to existing speech error correction so-
lutions with a clear distinction between a detection and correction
phase, our innovative SpeeG text input system enables continuous
real-time error correction. An evaluation of the SpeeG prototype
has revealed that low error rates for a text input speed of about six
words per minute can be achieved after a minimal learning phase.
Moreover, in a user study SpeeG has been perceived as the fastest
of all evaluated user interfaces and therefore represents a promising
candidate for future controller-free text input.

Keywords
Multimodal text input, speech recognition, gesture input, kinect
sensor, speeg

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User Inter-
faces—Input devices and strategies

General Terms
Human Factors, Experimentation

1. INTRODUCTION
Over the last few years, set-top boxes and game consoles have

emerged as “digital life” management centres. For example, Mi-
crosoft’s Xbox 3601 console offers media centre functionality. It

1http://www.xbox.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AVI ’12, May 21-25, 2012, Capri Island, Italy
Copyright 2012 ACM 978-1-4503-1287-5/12/05 ...$10.00.

provides access to movie and television streaming services such
as NetFlix2, enables text and video chat and supports the interac-
tion with Facebook, Twitter and other social networking services.
Some of the tasks offered by these modern media centres, including
text-based chatting, tweeting or the writing of Facebook messages,
demand for efficient text input. Unfortunately, text input for set-top
boxes or game consoles is often implemented as a letter by letter
selection from a virtual keyboard via a game or remote controller.
More recently, controller-free capturing tools such as Microsoft’s
Kinect3 camera-based sensor device offer alternatives for selecting
characters from a virtual on-screen keyboard. However, the overall
text input process remains time consuming and error-prone which
often leads to user frustration when using existing text input inter-
faces.

Currently, the only “solution” by manufacturers of media cen-
tres, set-top boxes and game consoles to efficiently enter text is
to offer dedicated keyboards to be used for text input. For exam-
ple, Microsoft offers the Xbox Chatpad4 for their Xbox 360 and
also Logitech’s Mini Controller5 can be used for inputting text on
set-top boxes. Nevertheless, the state-of-the-art game consoles sup-
port a range of input modalities which can potentially be used for
enhancing text input speed as well as to improve the overall user
experience. Speech recognition seems to be an obvious solution
for text input and an increasing number of consoles are equipped
with one or multiple microphones to record a user’s voice. Exist-
ing speech-based input is often limited to a small number of simple
commands. An extension of the vocabulary to support more natu-
ral user interaction leads to an increase in speech recognition errors
which finally might result in user frustration. The correction of er-
roneous recognition results has been an active research topic in the
speech recognition community, and multimodal systems seem to
represent a promising approach [6].

In this paper we present SpeeG, a new multimodal speech- and
gesture-based text input solution targeting set-top boxes and game
consoles. We start by providing an overview of existing text in-
put interfaces for media centres. We then introduce different solu-
tions for text input that are based on voice recognition and introduce
the zoomable Dasher user interface. After introducing our SpeeG
prototype which is based on Microsoft’s Kinect sensor, the NITE
skeleton tracking system6, the CMU Sphinx speech recogniser [11]
and the Dasher [12] user interface, we describe an exploratory user
study in which SpeeG has been compared to other text input solu-
tions. After a comparison of SpeeG with the Xbox controller-based

2http://www.netflix.com
3http://www.xbox.com/kinect/
4http://tinyurl.com/xbox360chatpad/
5http://www.logitech.com/en-us/smarttv/accessories/devices/7539
6http://www.openni.org

virtual keyboard, the Xbox hand gesture-based text input interface
as well as a speech only interface, we provide some concluding
remarks and discuss potential future directions.

2. BACKGROUND
Most existing game consoles and set-top boxes offer text input

via a controller or a remote control. With these controller-based
interfaces, the user has to select letter by letter from a virtual key-
board as illustrated in Figure 1 for Microsoft’s Xbox 360. Virtual
keyboard interfaces have three main characteristics: First, they re-
quire a directional one- or two-dimensional input device to move
a cursor between the various characters. Second, a confirmation
button is used to select the highlighted character in order to type
it in the entry box. Optionally, additional buttons can be used to
delete the preceding character or to navigate between them. The
third characteristic is that almost no training is required for users to
understand and use these types of interfaces.

Note that the controller-based selection of characters from a vir-
tual keyboard currently represents the de facto standard for text in-
put on game consoles or media centres. However, text input speed
via game controllers is limited to a few words per minute [15] and
therefore users do not tend to write longer texts, including emails
or Facebook messages, on game consoles or media centres without
additional accessories such as dedicated keyboards.

Figure 1: Xbox 360 virtual keyboard

In the same way as virtual keyboards are used for text input,
speech-based text input provides a mean to replace physical key-
boards. Existing speech solutions, for example the CMU Sphinx
speech recogniser [11], Dragon Naturally Speaking from Nuance7

and Microsoft’s Windows Speech Recognition tool8, transform a
user’s voice input into a textual representation. In order to recog-
nise speech, users are required to complete a training phase where
they are asked to read out loud a number of predefined sentences.
This training is quite cumbersome for new users, especially if a
user needs to perform this on multiple devices (e.g. PC, Xbox or
set-top boxes). However, this training is currently absolutely nec-
essary when dealing with non-native speakers or users with strong
accents. An additional difficulty with voice recognisers is that the
voice-based editing of recognition results after recognition errors
requires dedicated correction commands, such as “correct that”,
“undo that”, “delete line” or “press enter”.
7http://nuance.com/dragon/
8http://tinyurl.com/windows-speech

Dasher [12] is an alternative virtual keyboard technique where
users have to zoom and navigate through nested graphical boxes
containing single characters as illustrated in Figure 2. The static
cursor represented by the cross in the centre of the screen is used to
select single characters. While a user navigates in two-dimensional
space, the character boxes move from the right to the left. When-
ever a character box moves past the centred cross, the correspond-
ing character is outputted to the application that has been registered
for processing the text input. Figure 2 shows a screenshot of the
Dasher interface for a user currently selecting the word “Hello”.

Figure 2: Dasher interface

The navigation through the character boxes is typically done via
mouse input. By moving the mouse upwards or downwards, the
users zooms towards the intended character boxes. When mov-
ing the mouse to the right or to the left, the navigation speed is
increased or decreased. As shown in Figure 2, characters are or-
dered alphabetically along the vertical axis. In addition, Dasher
adapts the size of character boxes depending on the probability that
a given character will be the next one based on a language-specific
vocabulary. Dasher has been demonstrated to be an efficient text
input interface, yet needing a relatively important learning phase.

Dasher has also inspired other research projects aiming for al-
ternative text input. In particular, projects have explored gaze di-
rection [13, 8] and brain-computer interfaces [14] as well as two-
dimensional input modes including mouse, touch screen or joy-
stick. All these projects integrated Dasher as a direct text input tool.
In contrast, Speech Dasher [10] uses Dasher as an error correction
component during speech recognition. Speech Dasher first asks a
user to pronounce a sentence and then, in a second step, enables
them to correct the recognised sentence via Dasher.

Instead of only using a single modality for text input, multimodal
user interfaces lead to more robust or more efficient text input. A
potential strength of multimodal interfaces is their ability to cor-
rect recognition errors by either taking advantage of mutual disam-
biguation or by offering real-time error handling through different
modalities [6]. In the context of speech recognition error correc-
tion, Suhm et al. [7] provide an overview of different multimodal
error correction techniques. Novel interactive devices have since
been put to use, such as touch screens [3], stylus on mobile de-
vices [9] as well as exploratory work with virtual reality [5]. How-
ever, all these systems ask the user to review and correct speech
input in a post processing step whereas our multimodal SpeeG in-
terface enables the real-time correction of speech input.

3. SPEEG PROTOTYPE
Our multimodal SpeeG interface combines speech recognition

with a continuous gesture-based real-time correction. In a typical
SpeeG session, a user speaks some words which are recognised by
a speech recogniser and subsequently delegated to our customised
JDasher9 interface as shown in Figure 3. In parallel, the user navi-
gates through the words in the JDasher interface by means of hand
gestures. As speech recognisers are relatively good at finding the
most probable words, it is possible to offer a small list of alternative
words for selection to the user. The goal of SpeeG is to support effi-
cient text input for controller-free set-top boxes and media centres
based on error-prone speech recognition and imprecise selection
methods as offered by camera-based hand tracking.

Figure 3: Speech- and gesture-based Dasher input

Our SpeeG prototype [1] mainly consists of three components
forming part of a modular architecture: a speech recogniser, a hand
tracking module and a modified version of the JDasher interface.
All three components are fully decoupled using a unified network-
based protocol for information exchange. The modularisation al-
lows for a simple replacement of any of the three components for
technical improvements such as an improved hand tracking solu-
tion or alternative speech recognisers. The modular architecture
also supports the reconfiguration of our SpeeG prototype for dif-
ferent scenarios. For example, the visualisation might be adapted
to deal with different speeds of input, screen sizes or colours. An
overview of the overall data flow between the different components
of the SpeeG interface is given in Figure 4.

Since the exchange of information is driven by user interaction,
we will explain both the interaction steps 1 to 5 and the flow of data
in the architecture shown in Figure 4 via a simple scenario. Let us
assume that a user wants to enter the following text: “My watch
fell in the water”. While the user speaks the first few words “My
watch fell”, their words are captured by a microphone and imme-
diately transformed into text by the speech recognition engine (1).
We currently use the open source CMU Sphinx speech recognition
toolkit and we have configured it for continuous speech recogni-
tion. In contrast to many other speech recognisers, Sphinx supports
the output of intermediate results while the user is speaking. How-
ever, recognition rates of intermediate speech recognition results
are considerably lower due to the fact that there is less chance for
grammatical reasoning at the sentence level. We had to modify the
Sphinx engine in order that it returns a list of alternative sound-
alike words instead of a single best guess. This additional informa-
tion about sound-alike words is important for our setting since we
argue that:

1. A single best guess word might be incorrect since, for exam-
ple, phoneme equivalent words require some sentence-level
context in the decision process.

9http://kenai.com/projects/jdasher/

User

1

GUI (JDasher)

Speech Recogniser

(CMU Sphinx 4)

Hand Tracking

(Microsoft Kinect and NITE)

5

4
2

3

Figure 4: SpeeG data flow

2. Non-native English speaking users and users with strong ac-
cents demand for substantial additional training to improve
recognition rates.

3. The recovery from potential speech recognition errors is dif-
ficult, time consuming and requires that users repeat particu-
lar words.

It should be stressed that recovering from errors in current uni-
modal speech recognition interfaces is time consuming and leads
to user frustration. In SpeeG, we try to overcome this problem by
embedding the correction phase as part of the input process. Al-
ternative words provided by the speech recogniser are offered to
the user who selects their intended words via hand gesture naviga-
tion. Our interface does not require any individual training of the
speech recogniser, we support non-native English speaking users
and error correction is performed in a preemptive and continuous
manner. We argue that our SpeeG prototype significantly lowers
the boundary for users to use speech recognition tools. The results
of the speech input modality are sent to the customised JDasher in-
terface (2). JDasher, a Java port of the Dasher interface, waits for
additional user interaction captured by a Microsoft Kinect camera.

The implementation of text input via camera-based hand track-
ing is a challenging research topic due to the imprecise pose track-
ing (compared to directional pads), missing selection commands
(there are no confirmation buttons) and a wide range of novice as
well as expert users that should be supported by the interface. In our
SpeeG prototype, the hand tracking has been implemented based
on Microsoft’s Kinect hardware and the NITE skeleton tracking
software. NITE’s software package for camera-based tracking fol-
lows the body of the user (3) and allows three-dimensional left or
right hand coordinates to be translated into cursor movements. We
further elaborate on this characteristic in the user evaluation when
comparing SpeeG with the state-of-the-art Xbox 360 Kinect text
entry method. The three-dimensional coordinates are sent to our
modified version of the Dasher interface (4) which will handle the
selection and visualisation process.

As mentioned earlier, Dasher is a graphical user interface where
users zoom towards graphical boxes that contain a character. A
character is selected by letting the character box pass by the cursor

positioned at the centre of the screen. Dasher offers a number of
interesting properties for our concrete scenario:

• Zooming: The selection process in Dasher is simple as users
zoom to the correct word(s) at their own pace. Each user is
in control of the zooming speed as well as the direction of
selection via the horizontal and vertical movements of the
mouse.

• Alphabetical order: The Xbox virtual keyboard layout uses
an alphabetically arranged keyboard that is language inde-
pendent. In the same way, Dasher offers the characters to
form words in alphabetical order: The letter “a” is found at
the top, while the letter “z” is located at the bottom of the
screen. This allows the user to make some general assump-
tions in which direction they have to navigate to go for the
start of the next word before the actual words are visible on
the screen.

• The character-level selection significantly reduces the num-
ber of possible items to select from compared to a solution
where we have to select from all potential words. Words
sharing the same characters are compounded and the first
common characters are offered as a single choice. For ex-
ample, the two words “world” and “wound” both start with
the letters “w” and “o” which implies that users only have
distinguish between these words at the third character. This
improves readability and the selection process because it al-
lows for bigger fonts and less cluttered character boxes.

• Probabilities: The size of the character boxes increases while
zooming towards them. Additionally, their initial size is dif-
ferent based on the probability of the preceding and consec-
utive characters for a given vocabulary.

In addition to these graphical interface properties which were rel-
evant for the implementation of the SpeeG interface, more graphi-
cal properties of the Dasher interface can be found in [12, 10]. In
our modified Dasher interface, users navigate through the character
boxes by using their left or right hand. Navigation halts when the
hand is vertically aligned with the left or right hip representing the
midpoint for navigating. Point gestures are used to navigate in the
Dasher interface which means that moving the hand up will navi-
gate towards the boxes at the top containing the first letters of the
alphabet. On the other hand, a downward movement of the hand
will navigate downwards towards the last letters of the alphabet, a
white space character as well as a skip symbol (5). The skip sym-
bol should be used when a word has been returned by the speech
recogniser which should not be part of the text entry. The navi-
gation speed is measured by how much the user moves the hand
away from the centre of the horizontal axis. This means that novice
users can zoom slowly through the boxes and first discover how to
navigate using their hands, while expert users can navigate at high
speed without having to configure the interface. In our scenario, the
user can navigate to the box containing the letter “m” followed by
the letter “y” to start entering the intended sentence “My watch fell
in the water”. Depending on the accuracy of the voice recogniser,
a number of alternative characters will be shown as well, for in-
stance the letters “h” and “i” from the sound-alike word “hi”. For
every uttered word, the user has the ability to navigate between the
most probable words and typically choose between 2 to 20 alterna-
tives depending of the results sent by the speech recogniser. Initial
tests have shown that, due to the size of the speech recognition en-
gine vocabulary as well as the diversity of accents of our users,
the recognition rates dropped frequently. This forced us to offer a

more extensive list of alternative sound-alike words which seam-
lessly maps to the “scalable” and “character-level” Dasher inter-
face. By merging words that start with the same letters, the amount
of choices the user has to make is reduced.

The original JDasher solution uses a static probability dictionary
(provided at startup time) to define the width and height of char-
acter boxes. However, in our scenario we need to recalculate these
probabilities on the fly based on information from the speech recog-
niser. This required a major refactoring of the JDasher implemen-
tation.

Finally, SpeeG is intended to provide an always-on controller-
free interface. This implies that both the activation and deactivation
are controlled through the application context (i.e. when requiring
additional text input) or by the user (i.e. pausing or resuming the
typing). A simple push gesture with the hand allows the user to
explicitly signal the beginning of new input, which helps to avoid
any unintended behaviour.

Figure 5: SpeeG prototype setup

To summarise, SpeeG is a controller-free zoomable user inter-
face that enables the real-time correction of a voice recogniser via
gesture-based navigation through the most probable speech recog-
nition results. Our SpeeG prototype, which is shown in use in
Figure 5, deals with error correction in a preemptive and contin-
uous manner. This real-time error correction represents a major
difference from state-of-the art speech-based text input solutions,
which perform a second correction step. By resizing the charac-
ter boxes based on voice input, we guide the user to select their
intended uttered words. As multiple words per utterance are dis-
played, we overcome the major problem with speech recognition
tools failing to deliver perfectly accurate full vocabulary text in-
put for controller-free interfaces. Due to the fact that the character
boxes get quite big closely before being selected, SpeeG minimises
unintended mis-selections, even when using an imprecise control
mechanism. By offering a zoomable user interface, the user is also
in control of the navigation and interaction speed, which helps to
support both novice and expert users without additional configura-
tion parameters.

4. EXPLORATORY USER STUDY
In order to assess the user interest in our approach compared

to existing text input solutions for consoles and set-top-boxes, an
exploratory user study has been conducted in our laboratory. The
user study was based on the following scenario: the user is in front
of their television set and needs to enter a short sequence of words

(about 30 characters) separated by blank spaces. Typical real-world
examples of this scenario would include the typing of a query for
the Bing search engine on the Xbox 360 console or the writing of a
Twitter message on a television set-top box such as Google TV10.
In such use cases, text is often entered through a virtual on-screen
keyboard shown on a television and characters are selected via the
remote control or a console gamepad. Speech recognition software
represents an alternative to virtual keyboards. However, high error
rates and the low tolerance to changing ambient noise conditions
often lead to a frustrating user experience. Our assumptions are
that our SpeeG solution might provide a less frustrating alternative
to existing solutions, while at least achieving a comparable perfor-
mance. The goal of the study presented in this section was to verify
these two hypotheses. As SpeeG is still a laboratory prototype, the
study took the form of an exploratory user study in order to assess
the weak and strong points of our approach compared to other text
input methods currently used in game consoles and set-top boxes.

In particular, SpeeG was compared to three alternative text input
approaches:

• Text input via controller-based character-by-character selec-
tion on a virtual keyboard as discussed earlier in the back-
ground section when introducing the Xbox 360 virtual key-
board (see Figure 1). This method represents the de facto
standard text input method for game consoles and set-top
boxes. For our study, we used the virtual keyboard interface
offered by the Xbox 360 game console in combination with
the game console controller.

• Gesture-based character-by-character selection. This is a rel-
atively new interaction mode for text input in some commer-
cial products. The Kinect-based interface to perform Bing
searches, which forms part of the latest version of the Mi-
crosoft Xbox 360 operating system11, was used for this study.

• Speech recognition software. The Sphinx speech recogni-
tion software has been used for the speech-only interface in
our exploratory user study, since it is the speech recognition
software that has also been used in SpeeG.

4.1 Methodology
Participating subjects were asked to type a set of six sentences

in these four different setups: 1) using an Xbox 360 controller and
the virtual keyboard of the Xbox 360 “Dashboard” interface, 2) us-
ing the Kinect-based gesture interface, 3) using the Sphinx speech
recogniser and 4) using our SpeeG text input interface. The order in
which the participants used the different text input interfaces was
uniformly distributed. However, the same six sentences S1 to S6
were used in the same order for all setups:

• S1: “This was easy for us.”

• S2: “He will allow a rare lie.”

• S3: “Did you eat yet.”

• S4: “My watch fell in the water.”

• S5: “The world is a stage.”

• S6: “Peek out the window.”

10http://www.google.com/tv/
11Xbox Firmware 2.0.14699.0

Out of these six sentences, the last three originate from the set
proposed by MacKenzie and Soukoreff [4] while the first three sen-
tences were selected from DARPA’s TIMIT [2], which is a com-
mon resource in the speech recognition community. Both sets were
used in order to have representative sentences from the text input
community and the speech recognition community. To compute
the word per minute (WPM) rate, a “word” was considered as a
5-character sequence.

The Xbox 360 Dashboard virtual keyboard takes the form of an
on-screen alpha keyboard, as shown earlier in Figure 1. Letters are
arranged on a 7x4 grid and the currently selectable letter is high-
lighted in green. Users navigate through the letters by using the
controller’s d-pad and select a letter using the controller’s ‘A’ but-
ton. The selected letter is subsequently displayed in the white text
field in the upper part of the window. The ‘X’ button can be used
to correct a wrongly entered letter.

The Kinect-based gesture interface is also part of the operat-
ing system of the Xbox 360 console. As shown in Figure 6, the
screen is divided into different zones. Letters are arranged as a
one-dimensional array in the upper part. To input text, a user has
to make a “push” gesture on each letter with a hand icon towards
the white text field in the upper part of the screen. The hand icon is
controlled by the player’s hand position and detected via the Kinect
infrared camera. When approaching this hand icon to the array of
letters, the array will be zoomed on a set of 10 letters to simplify
the selection of a letter. Users typically need to move the hand
up for about 20-40 cm to bring the chosen letter to the text field.
Note that, similar to the virtual keyboard interface, this text input
interface forms part of the user interface of a commercially widely
available product.

Figure 6: Xbox 360 gesture-based text input interface

The Sphinx speech recogniser setup has been tested by asking
users to read sentences aloud word per word. On the screen, the
users could see which word was recognised by Sphinx and they
were able to correct a wrongly recognised word by repeating the
word. Sphinx was parameterised to recognise an open vocabulary
represented by the Darpa Wall Street Journal (WSJ) Trigram LM
containing twenty thousand words. If the speech recogniser did not
recognise the correct word after five attempts, the user was asked
to move on. For the speech only interface we used a standard om-
nidirectional microphone which was positioned one meter in front
of the user.

In the SpeeG setup, users were presented the SpeeG application
and used the interface as it has been presented in the previous sec-
tion. Note that the Sphinx and SpeeG setups used exactly the same
parameters for the speech recognition engine.

Before inputting the sentences S1 to S6 with each of the four
setups, the study participants were allowed to train with each of the
interfaces until they felt comfortable using it. This training phase
lasted between one and four minutes, depending on the user. Each
setup was tested with the user seated or standing in front of the
image projected on a screen via a beamer, based on the fact whether
the interface required the user to stand in front the system.

After the evaluation with the four setups, participants were given
a questionnaire asking them to rate the “quality” of each of the
four setups on a six-level Likert scale and we asked them which
interface they found

• the easiest to learn,

• the easiest to use,

• the fastest to enter text,

• which interface was their preferred one.

Finally, a text field allowed the participants to enter some general
comments.

4.2 Study Participants
Seven male participants aged 23 to 31 were asked to participate

in the laboratory user study. The participants were computer sci-
ence students or researchers, with two of them being HCI prac-
titioners. Two users had expert knowledge with the Xbox 360
controller while two other users had passing knowledge. Three
users indicated passing knowledge with speech recognition soft-
ware, while the remaining users had no experience at all. No user
had any prior experience with the Dasher interface. All subjects
had vision corrected to normal and were right handed. Even if all
users were fluent in English, there were no native English speakers.
Two users were native French speakers (user 3 and user 5), whereas
the remaining five participants were native Dutch speakers. For a
typical speech recogniser, coping with non-native accent is a chal-
lenging task. Therefore, this user group was very interesting to test
the real-time speech error correction offered by SpeeG. However,
this influenced only two out of the four setups since the controller-
only and Kinect-only input do not make use of any speech.

4.3 Results and Discussion
The mean input speed results of our user study are highlighted

via the graphs shown in Figure 7.

0

5

10

15

20

25

S1 S2 S3 S4 S5 S6

W
P

M

Sentence

Controller

Speech only

Kinect only

SpeeG

Figure 7: Mean WPM per sentence and input device

The results for the Xbox 360 virtual keyboard setup with an av-
erage input speed of 6.32 words per minute (WPM) are slightly
higher than the average 5.79 WPM observed by Wilson et al. [15]
for a similar setup in 2006. Note that four of our users had either
passing or expert knowledge with the Xbox 360 virtual keyboard
interface, which might explain the difference, as the users in the
study by Wilson et al. had no prior experience.

As shown in Figure 8 with the detailed results for the Xbox 360
virtual keyboard setup, five out of seven users finished the evalua-
tion with a similar performance and non-expert users were getting
close to the performance of expert users.

0

1

2

3

4

5

6

7

8

9

10

S1 S2 S3 S4 S5 S6

W
P

M

Sentence

User 1

User 2

User 3

User 4

User 5

User 6

User 7

Figure 8: WPM per user and sentence for the controller and
virtual keyboard setup

Figure 9 shows the results for the Kinect-only setup where there
seems to be less discrepancy between the different users. However,
one has to take into account that two out of five users (user 1 and
user 6) refused to finish the evaluation for the Kinect-only setup
after one or two sentences only, because the interface was too frus-
trating. For the five users who finished the task, the total mean
writing speed of 1.83 WPM as well as the high error rate illustrated
in Figure 11 are a testament to the difficulties encountered by the
study participants. Almost all users reported heavy weariness in
their arms, as well as major frustration with the setup of the inter-
face. In particular, users were puzzled that only one hand was used,
that speech had no influence at all and that no word prediction or
any other kind of help was available. This very low WPM perfor-
mance is even more surprising when taking into account that the
Kinect-only setup represents the latest interface for the commer-
cially widely available Xbox 360.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

S1 S2 S3 S4 S5 S6

W
P

M

Sentence

User 1

User 2

User 3

User 4

User 5

User 6

User 7

Figure 9: WPM per user and sentence for the Kinect-only setup

In the speech-only tests, we achieved strongly varying results
with an overall mean WPM of 10.96. The major differences be-
tween single sentences and users are illustrated in Figure 10. The
different difficulties of the sentences is well reflected in the final
error rate per sentence which is highlighted in Figure 11. For ex-
ample, sentence S3 with its short and well-defined words posed no
major difficulties to the study participants. In contrast, sentences
S2 or S5 lead to more wrongly recognised words. In particular,
words like “rare” and “world” posed major problems to the speech
recogniser, resulting in a high number of false positives as reflected
in Figure 11. Also note that the two native French speakers (user 3
and user 5) achieved a lower performance than the Dutch speakers.
We believe that this might be caused by differences in pronuncia-
tion between people used to a Latin language and the ones using
a West Germanic language which is pronunciation-wise closer to
English.

0

5

10

15

20

25

30

35

40

S1 S2 S3 S4 S5 S6

W
P

M

Sentence

User 1

User 2

User 3

User 4

User 5

User 6

User 7

Figure 10: WPM per user and sentence for the speech-only
setup

In comparison to the speech-only setup, the SpeeG error rate
starts lower for sentence S1 and decreases to zero for all users from
the third sentence onward as illustrated in Figure 11. The average
text input speed for the six sentences with SpeeG is 5.18 WPM as
highlighted in Figure 12. Most users showed a steady improve-
ment of the text input speed throughout the six sentence, with one
user increasing from 2.67 to 7.86 WPM between the second and the
sixth sentence, reflecting a three times improvement within a few
minutes only. This improvement throughout the sessions reflects
the learning curve of SpeeG. First, the learning curve originates
from the Dasher interface, as already observed by Ward et al. [12].
Another relevant factor influencing the learning curve is the multi-
modal aspect of SpeeG, which increases the level of concentration
needed to efficiently use the interface. Nevertheless, a majority
of users quickly achieved text input rates between 7 and 9 WPM.
In parallel to this user study, an expert user reached a mean text
input speed of 11.5 WPM on the same set of sentences by us-
ing the SpeeG interface. As a comparison, the best expert user
for the Xbox virtual keyboard setup managed to reach a mean of
8.38 WPM on the six sentences. There seems to be a great poten-
tial for improvement based on our SpeeG interface.

A very interesting observation lies in the discrepancy between
the participants’ opinion about the fastest interface and the con-
crete measurements. Five out of seven users experienced SpeeG
as the fastest interface, while the two remaining users thought that
the Xbox 360 virtual keyboard was the best performing method.
None of the participants voted for the speech-only interface as the

0

1

2

3

4

5

6

7

8

9

10

S1 S2 S3 S4 S5 S6

M
ea

n
 n

u
m

b
er

 o
f

er
ro

rs

Sentence

Controller

Speech only

Kinect only

SpeeG

Figure 11: Mean number of errors per sentence

fasted input method, while in reality it was the best performing
interface. We assume that the user frustration experienced due to
speech recognition errors had a negative impact on the participants’
assessment of the subjective efficiency. On the other hand, our
SpeeG prototype gave users the feeling that they were in control.
A total of four users also specifically reported the “fun” and game-
like aspect of SpeeG while navigating through partial recognition
results. This is also reflected by the fact that five out of seven users
preferred SpeeG over the three other user interfaces.

0

1

2

3

4

5

6

7

8

9

10

S1 S2 S3 S4 S5 S6

W
P

M

Sentence

User 2

User 1

User 3

User 4

User 5

User 6

User 7

Figure 12: WPM per user and sentence for the SpeeG setup

To conclude, the SpeeG interface is faster than the dedicated
gesture-based interface of the Xbox 360 console and is close to the
performance of the virtual keyboard interface of the same console,
with however greater variability between subjects. Speech recogni-
tion only is the fastest text input interface, but frustration seems to
play a role in a user’s estimation of the best performing interface.

5. FUTURE WORK AND CONCLUSION
In the future, we plan to reduce the physical strain imposed by

the current SpeeG interface since some users reported that they got
tired after waving their hands for a long time. In a next version
of SpeeG, we therefore plan to investigate smaller gestures, such
as using mainly the fingers, to control the interface. It might also
be interesting to evaluate SpeeG with the original Dasher interface
controlled via the same gestures but without any speech recogni-
tion. Such an evaluation could also be used to explore the cognitive
load depending of the involved modalities and the task at hand.

Adding real-time supervised learning capabilities to SpeeG could
also be interesting since all speech input is already annotated and
corrected by the users themselves. This opens the possibility to
greatly improve the speech recognition results by creating a user-
specific acoustic model while the user is interacting. This would
allow for reducing the number of alternative words. An interesting
path to explore is how we could optimise our interface to reduce
the required hand movement in this case. For instance, the inter-
face could give more importance to a highly probable sequence of
characters.

The missing support to enter names via SpeeG is a limitation
which could be overcome by offering a character-level mode where
users can freely select the letters they require. The entering or exit-
ing of the character-level mode can be achieved by adding a special
character box at the bottom of the selection process. Another pos-
sibility to switch between modes would be to make use of symbolic
gestures performed by the second hand. Currently, SpeeG only re-
quires single-hand interaction which allows us to integrate such an
option in the future. Symbolic gestures could invoke special func-
tionality such as “confirm word”, “skip word”, “replace word” or
“enter character-mode”, thus adding an “expert mode” to speed up
the text entry.

In this paper, we have presented SpeeG, a multimodal interface
combining speech recognition with a gesture-based real-time er-
ror correction for text input. SpeeG uses a modified version of the
Dasher interface and presents the user a set of potential words de-
tected by the speech recogniser. A user can navigate through the
different word possibilities to select the right word or just skip a
word and move on to the next one. In an initial laboratory user
study of our innovative SpeeG prototype with seven users, we as-
sessed an average text input rate of 6.52 WPM over a number of
sessions. However, in comparison to the high number of errors for
the speech-only input, the error rates almost dropped to zero in the
SpeeG setup.

Our user study has also revealed a strong potential for improve-
ment due to the learning curve of SpeeG, with one user ultimately
reaching up to 11.5 WPM. An interesting fact of our study was that
users experienced SpeeG as the most efficient interface even if in
reality two other solutions performed better in terms of the entered
words per minute. This very positive feedback might also result
from the fact that users had the feeling of being in control of the
interface as well as the game-like character of SpeeG reported by
several participants. The reduction of user frustration seems to play
a key role in a user’s perception of the user interface efficiency.

The promising results after a minimal learning phase in combina-
tion with the overall user satisfaction confirms that our multimodal
SpeeG solution has a strong potential for future controller-free text
input for set-top boxes, game consoles as well as media centres.

6. ACKNOWLEDGMENTS
We would like to thank all the study participants. Furthermore,

we thank Jorn De Baerdemaeker for implementing major parts of
the SpeeG prototype and Keith Vertanen for his helpful comments.
The work of Lode Hoste is funded by an IWT doctoral scholarship.
Bruno Dumas is supported by MobiCraNT, a project forming part
of the Strategic Platforms programme by the Brussels Institute for
Research and Innovation (Innoviris).

7. REFERENCES
[1] J. D. Baerdemaeker. SpeeG: A Speech- and Gesture-based

Text Input Device. Master’s thesis, Web & Information
Systems Engineering Lab, Vrije Universiteit Brussel,
September 2011.

[2] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S.
Pallett, N. L. Dahlgren, and V. Zue. TIMIT
Acoustic-Phonetic Continuous Speech Corpus. Linguistic
Data Consortium, Philadelphia, 1993.

[3] D. Huggins-Daines and A. I. Rudnicky. Interactive ASR
Error Correction for Touchscreen Devices. In Demo
Proceedings of ACL 2008, Annual Meeting of the
Association for Computational Linguistics, pages 17–19,
Columbus, USA, 2008.

[4] S. I. MacKenzie and W. R. Soukoreff. Phrase Sets for
Evaluating Text Entry Techniques. In Extended Abstracts of
CHI 2003, ACM Conference on Human Factors in
Computing Systems, pages 754–755, Fort Lauderdale, USA,
April 2003.

[5] N. Osawa and Y. Y. Sugimoto. Multimodal Text Input in an
Immersive Environment. In Proceedings of ICAT 2002, 12th
International Conference on Artificial Reality and
Telexistence, pages 85–92, Tokyo, Japan, December 2002.

[6] S. Oviatt. Taming Recognition Errors with a Multimodal
Interface. Communications of the ACM, 43:45–51,
September 2000.

[7] B. Suhm, B. Myers, and A. Waibel. Multimodal Error
Correction for Speech User Interfaces. ACM Transactions on
Computer-Human Interaction (TOCHI), 8:60–98, March
2001.

[8] O. Tuisku, P. Majaranta, P. Isokoski, and K.-J. Räihä. Now
Dasher! Dash Away!: Longitudinal Study of Fast Text Entry
by Eye Gaze. In Proceedings of ETRA 2008, International
Symposium on Eye Tracking Research & Applications, pages
19–26, Savannah, USA, March 2008.

[9] K. Vertanen and P. O. Kristensson. Parakeet: A Continuous
Speech Recognition System for Mobile Touch-Screen
Devices. In Proceedings of IUI 2009, International
Conference on Intelligent User Interfaces, pages 237–246,
Sanibel Island, USA, February 2009.

[10] K. Vertanen and D. J. MacKay. Speech Dasher: Fast Writing
using Speech and Gaze. In Proceedings of CHI 2010, ACM
Conference on Human Factors in Computing Systems, pages
595–598, Atlanta, USA, April 2010.

[11] W. Walker, P. Lamere, P. Kwok, B. Raj, R. Singh, E. Gouvea,
P. Wolf, and J. Woelfel. Sphinx-4: A Flexible Open Source
Framework for Speech Recognition. Technical Report
TR-2004-139, Sun Microsystems Inc., November 2004.

[12] D. J. Ward, A. F. Blackwell, and D. J. C. MacKay. Dasher –
A Data Entry Interface Using Continuous Gestures and
Language Models. In Proceedings of UIST 2000, 13th
Annual ACM Symposium on User Interface Software and
Technology, pages 129–137, San Diego, USA, November
2000.

[13] D. J. Ward and D. J. C. MacKay. Fast Hands-free Writing by
Gaze Direction. Nature, 418(6900):838, August 2002.

[14] S. Wills and D. MacKay. Dasher – An Efficient Writing
System for Brain-Computer Interfaces? IEEE Transactions
on Neural Systems and Rehabilitation Engineering,
14(2):244–246, June 2006.

[15] A. D. Wilson and M. Agrawala. Text Entry Using a Dual
Joystick Game Controller. In Proceedings of CHI 2006,
ACM Conference on Human Factors in Computing Systems,
pages 475–478, Montréal, Canada, April 2006.

	1 Introduction
	2 Background
	3 SpeeG Prototype
	4 Exploratory User Study
	4.1 Methodology
	4.2 Study Participants
	4.3 Results and Discussion

	5 Future Work and Conclusion
	6 Acknowledgments
	7 References

