
Producing Interactive Paper Documents based on
Multi-Channel Content Publishing

Michael Grossniklaus, Moira C. Norrie, Beat Signer and Nadir Weibel
Institute for Information Systems

ETH Zurich
8092 Zurich, Switzerland

grossniklaus,norrie,signer,weibel@inf.ethz.ch

ABSTRACT
Digital pen and paper technologies provide the basis for link-
ing digital content and services to printed materials in the
form of interactive paper publications. To realise the po-
tential of these technologies, it is important to develop plat-
forms and tools that can support the large-scale publishing
of interactive paper documents. We show how an extensible
content management system that was developed to support
context-aware publishing was used for the production of in-
teractive paper documents. The publishing process consists
of two phases and requires one channel to support the pro-
duction of the document together with cross-media link def-
initions and a second channel to support interaction with
the document.

1. INTRODUCTION
Nowadays it is common for publishers to produce digi-

tal materials such as a CD-ROM or web site to accompany
books. We have shown previously how emerging technolo-
gies such as Anoto-based digital pens can be used to bridge
the paper-digital divide, enabling users to directly access
digital content and services by interacting with printed ma-
terials [14]. For the publisher, this presents two major chal-
lenges. The first concerns the design of such cross-media
materials since it opens up many new exciting possibilities
in terms of the various forms of interaction that can be sup-
ported and there are currently no conventions or guidelines
for the design of the book as an interface. The second chal-
lenge is how to support the production of interactive paper
documents as it is tedious to perform manual authoring of
the cross-media links for documents of any significant size.

In this paper, we address the second of these challenges by
describing how we used an extensible content publishing sys-
tem (XCM) that we developed previously to support both
the production and use of such documents. XCM supports
multi-channel publishing through an underlying database
system with integrated support for context-aware applica-
tions. Essentially, objects are used to represent all aspects of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

a document—content, structure and presentation—and al-
ternative versions of objects are labelled with the contexts in
which they can be used. We can support multiple channels
through a specific context dimension, adapting the content,
structure and layout to a given channel. To support the
production of interactive paper documents, we had to intro-
duce a two-phase process of first generating the documents
and second supporting interaction with these documents.
The generation of the documents also involves parallel pro-
cesses of publishing a PDF rendering of the document to
be printed and, at the same time, automatically generating
the cross-media link definitions where the link anchors are
defined as physical areas within the printed pages. We have
developed a range of augmented publications which use var-
ious output channels when interacting with the documents,
including speech and HTML browsers.

After discussing background work on interactive paper in
Section 2, we begin in Section 3 with a discussion of our
approach and the underlying technologies for interactive pa-
per and context-aware content management. The publishing
phase of the interactive paper channel is presented in Sec-
tion 4, while the interaction phase is described in Section 5.
Concluding remarks are given in Section 6.

2. BACKGROUND
Anoto digital pen solutions [1] were developed for the cap-

ture of handwritten information and, originally, interactivity
was limited to specific command buttons for actions such as
sending data or changing pen stroke attributes. Recent de-
velopments in the pens and patterns support more general
forms of interactivity based on real-time streaming of data.
For example, the Fly Pentop computer [7] provides a num-
ber of desktop applications where users can, not only inter-
act with the application using the pen, but also sketch their
own interfaces. We have developed a number of applica-
tions that demonstrate the potential of pen-based interfaces
to applications and also the use of Anoto technologies as
a basis for augmenting printed documents with multimedia
materials [14, 12].

Although Anoto provides several software tools to sup-
port the generation of printed documents with Anoto pat-
tern and also application software, these are mainly targeted
at capture-based applications such as forms processing and
they require significant programming effort. The HCI group
at Stanford has developed a simple programming framework
to alleviate some of the programming effort by providing
support for the handling of pen events etc., thereby making
it easier for students to experiment with innovative uses of

the technologies [16]. But it still requires some programming
effort and is intended for the prototyping of small applica-
tions rather than the development and deployment of com-
plex applications or the large-scale publishing of interactive
documents. In contrast, our goal was to develop a frame-
work and tools that, similar to the World Wide Web, turn
application development into an authoring activity rather
than a programming activity. By this, we mean that users
may develop all sorts of paper-based interfaces to applica-
tions and interactive documents by authoring links between
paper and digital content and services. A notion of active
components is used to link to pieces of program code that
may either be applications in their own right or bridges to
existing applications. By providing an extensive library of
generic active components, application developers can sim-
ply define links to a wide range of services without hav-
ing to write any code themselves. Only in the case where
the library has to be extended with new active components
does the application developer have to do any programming
themselves.

Just as the authoring of web documents, and the links
between them, rapidly grew beyond manual authoring tools
and required publishing tools that could generate and main-
tain the documents automatically, the same is true for inter-
active paper documents. Nowadays no one would consider
developing a web site of any scale without the use of a con-
tent management system to support both the authoring and
delivery of content. We therefore decided to investigate how
we could adopt this approach for the production of interac-
tive paper documents.

3. APPROACH
Our solution for producing and implementing interactive

paper documents is based on the coupling of an existing
framework for interactive paper (iPaper) [10] and a context-
aware content management system (XCM) [4]. In this sec-
tion, we will outline the main features of each system, fo-
cussing on the aspects most relevant to the work reported
in this paper. We begin by describing the iPaper framework
which is the component that enables the linking of paper to
digital content and services. We then go on to present XCM
that uses the concept of context-aware versioning to provide
support for multi-channel applications.

The iPaper framework was developed to support the rapid
development and deployment of interactive paper applica-
tions. Active areas can be defined on paper documents and
linked to any kind of digital media and services. The frame-
work supports different types of pen-based interaction such
as the selection of active areas for accessing linked informa-
tion, the execution of digital services based on gesture recog-
nition commands and the capture of handwritten notes. In-
formation delivered by the digital pen can be processed in
real-time or stored for later processing (batch mode). Our
iPaper solution for interactive paper applications supports
different positional input devices including the digital pen
and paper technology offered by Anoto. A wide variety of in-
teractive paper applications have been realised based on the
iPaper framework including a set of augmented paper docu-
ments for visitors to a festival based on an interactive event
brochure, map and bookmark [14]. For the definition and
management of paper-digital links, iPaper uses functional-
ity offered by iServer [12], a general cross-media information
platform.

iServer generalises concepts from hypermedia systems and
enables the definition of links between different kinds of dig-
ital media as well as the integration of digital and physi-
cal content. Any link between two information entities is
based on the abstract concepts of resources and selectors.
The platform was designed to be extensible for new types
of media based on a resource plug-in mechanism. By im-
plementing media-specific instances of the resource and se-
lector concepts, any new type of media can be integrated.
Note that the general link functionality offered by iServer
supports links with multiple sources as well as multiple tar-
gets. Through the generality of the underlying link meta-
model [13], even links with other links as sources or targets
can be defined. A user management component is integrated
into the core of the system. In addition to managing user
access rights, this component can manage information about
user roles and profiles which in turn can be used as the basis
for providing personalised and context-dependent delivery of
links and resources. The delivery of information can further
be controlled through iServer’s layer concept. Links are as-
sociated with specific layers and these layers can be dynam-
ically activated and deactivated as well as re-ordered which
provides a flexible way of resolving the links to be activated
as the result of a specific user action. The rapid prototyping
of applications is supported through the re-use of existing
interaction components based on the concept of active com-
ponents mentioned in the previous section. Since iPaper is
implemented using the resource plug-in mechanism offered
by iServer, active paper areas can be linked to and from
a wide range of physical and digital media including web
pages, images, video, Flash movies, databases and RFID
tags as well as application programs. More detailed infor-
mation about iServer and the interactive paper framework
iPaper can be found in [12].

The XCM extensible content management system was
developed to support applications with the requirement of
context-dependent content delivery [11, 3, 6]. In XCM, dif-
ferent notions of context can be used to achieve different
facets of context-awareness. For example, in order to lo-
calise and internationalise content delivery, an application
might define that the user’s location and language are con-
text. To implement multi-channel applications with XCM,
it suffices to specify what characteristics of a content deliv-
ery channel should be considered in the adaptation process.
By refraining from offering a predefined or in-built context
model, XCM can support any notion of context as required
by an application. A simple context representation based on
sets of 〈name, value〉 tuples serves as an interface between
an application and the content management system. Based
on this context representation, adaptation in XCM is built
on the concept of context-aware versioning. Each object in
the system can have multiple versions, so-called variants,
that represent the object in a defined context. At run-time,
a matching algorithm is responsible for selecting the variant
of the object that matches best to the current context of the
system.

The content delivery process in XCM is defined based on
the separation of content, view, structure and layout. In the
first phase, the content objects referenced by the current re-
quest are gathered from an application database. With each
content object, it is possible to associate a view object in the
database storing the publishing metadata. If such a view ob-
ject exists, XCM applies this view to the content object in

order to select the attributes to be included in the presenta-
tion and aggregate any additional information required from
related objects. After applying the views, XCM consults the
structure metadata that defines a hierarchy over the content
objects in terms of a tree consisting of components and con-
tainers. Finally, this structure is rendered for its delivery to
the client using layout metadata in the form of templates
that are applied to the structure tree. XCM manages both
data and metadata in databases that feature the concept
of context-aware versioning. Thus, all four phases of the
content delivery process can be made context-aware. For
example, multi-lingual content delivery is achieved by stor-
ing language dependent versions of the content in the appli-
cation database. Using the same approach, multi-channel
applications are realised by defining template versions for
each channel that is to be supported.

iPaper Client

Paper Publisher

Web
Server

Desktop Client

Metadata
Server

Application
Data Server

Figure 1: Architecture overview

By combining iPaper with XCM, we have created a plat-
form that supports the production and operation of applica-
tions that use interactive documents as a user interface. An
overview of the resulting architecture is shown in Figure 1.
As can be seen from the figure, our platform is a client-server
architecture with the context-aware content management
system on the right-hand side and the various clients on the
left-hand side. There are two clients and hence two delivery
channels associated with paper. A paper publisher is used
to produce the interactive documents, whereas the iPaper
client is active at run-time when users interact with the sys-
tem using the digital pen and paper. In addition to these
channels, we also show a traditional desktop client with a
web browser interface. While most applications nowadays
offer content through this delivery channel in one way or an-
other, it also illustrates the fact that, from the point of view
of the content management system, the desktop client is no
different from the paper channel. The context-aware content
management system on the server side consists of three com-
ponents. An extended web server handles incoming requests
by generating responses based on the information managed
by the metadata server. During response generation, the ac-
tual content that is delivered to the client is retrieved from
an application database that is independent of the actual
publishing process.

4. PUBLISHING
Having presented an overview of our approach in terms of

an integration of interactive paper and content management
technologies, we now introduce an example application that
will serve as a scenario to explain the publishing process.
Nowadays, television broadcasting companies such as the
BBC often offer various supplementary materials along with
the documentary shows that they produce. As an example,

let us consider the series “The Blue Planet” [5] about ocean
life that was originally transmitted in 2001. The BBC made
the series available on DVDs and video tapes as well as pub-
lshing an accompanying book. In addition, the Blue Planet
web site offered access to various quizzes, games and fact
files. Further, the Open University developed a course on
oceanography based on the series and a special course book
with in-depth information on the topics presented in the doc-
umentaries. At the end of each section, the book indicates
which parts of the documentaries the students should watch
by indicating the relevant programmes and also timing in-
formation for specific topics. Questions are also provided to
enable students to evaluate their learning progress. In this
and the following section, we will show how our platform
could be used to produce cross-media materials that could
link the paper and digital materials in various ways to enrich
the learning experience.

Application
Data

XML

Content XML

Application DB

Metadata DB
iPublish XML

iPaper
Client

SERVERi
Link DB

iPaper Plug-in

Position and
Link Information PDF

iPublish

PDF
Documents

Figure 2: Publishing process

In the publishing phase, the interactive paper documents
would be generated from the content publishing system that
manages both the “The Blue Planet” data and the publish-
ing data that provides access to information via standard
web channels such as web browsers on desktop PCs or PDAs.
Therefore, XCM would be responsible for both the publish-
ing of information as PDF documents with defined active
areas, and the publishing of information in a web channel
in response to requests generated by activating areas within
a printed document using a digital pen. The three main
issues to be addressed in the production of an interactive
paper document are:

• How to map the dynamic digital information to a static
medium such as paper?

• How to connect information in the content manage-
ment system with the printed material?

• How to link the printed information back to the digital
information stored in our system?

Figure 2 shows the interactive paper publication process
outlining our approach. The publishing process is mainly
based on three components: the extensible content man-
agement system XCM, iServer which maps interactions on

paper to requests to XCM and a third component, iPub-
lish, responsible for publishing the paper documents based
on information stored in XCM.

The first step is to structure the “The Blue Planet” data
managed by XCM in a format suitable for publication as a
paper document. We have defined a document model based
on the concept of chapters, sections, sentences, words, ta-
bles and images. This enables us to structure and link the
information at different levels of granularity. The document
content and structure is represented as an iPublish XML
document as shown in Figure 3.

<?xml version="1.0" encoding="UTF-8"?>
<document>
...
<chapter id="c6-fish design">

<body>
...
<section id="s2-fish shape">
<paragraph>
<text id="c6.s2.p3">

The pectoral and pelvic fins are mainly used for
manoeuvring, turning and stopping, while the
...

</text>
<image ilink="true" ac="get info?i=i-23"

id="get info.i-23"src="fishFins.png"/>
</paragraph>
...

</section>
...

</body>
</chapter>
...
</document>

Figure 3: iPublish XML document

The active elements within a document that will be linked
to digital content by iServer via its iPaper plug-in are de-
fined using a tagging mechanism. A tag describes the func-
tionality to be linked and assigns a unique identifier to this
particular piece of information which is then used to create
the necessary active areas for iPaper. An example where
an image has been tagged to provide additional information
when pointed to with the digital pen is shown in Figure 4.

Printing is another critical process as we want to be able to
map a particular position on paper to the right logical active
area. The problem is that the exact position where some-
thing is printed can be affected by several factors such as
the text editor used to write the document, the printer used
and the paper size [8]. To enable us to map positions in a
reliable way, we needed to create the link information based
on the actual format to be printed rather than the logical
format. We do this by first generating the PDF document
based on the iPublish XML data received from XCM. The
PDF file is then analysed to find any metadata tags and, for
each tagged element, data about the corresponding active
area defined by the element’s surrounding shape (position
and dimension) are extracted. Finally, the iPublish plat-
form exports all link data in the iServer-specific XML link
representation format which allows the specification of doc-
uments, pages, layers, various geometrical shapes and links
between these shapes and digital objects. This XML data
is imported by the iServer platform and made persistent in
its link database.

In the printing phase, we also have to choose a specific
Anoto pattern license to make the paper documents inter-
active. While Anoto defines licenses for different page sizes,

ilink="true"
ac="get_info?i=i-23"

Figure 4: Document element tagging

all pages within a segment have the same size. Practically,
this means that in order to have pages of different sizes, dif-
ferent licenses have to be used. As the dimensions of the
pages increase, the number of available pages within a sin-
gle license decreases, limiting the amount of pages which can
be generated with a single license. To become more flexible
in allocation of Anoto pattern space, we have developed a
printer driver which is based on the Anoto PPGM library [2]
and, acting as a virtual printer, enables the printing of doc-
uments of different sizes, the merging of multiple Anoto li-
censes, the definition of printing profiles and the use of black
colour reduction. Together with a document database, it
manages the Anoto pattern space, keeping track of the pat-
tern already used. Furthermore, our printer driver may run
best-coverage algorithms in order to cover, for example, a
single A0 license page with up to 24 A4 pages as defined
in the iPaper framework. The use of our virtual printer re-
duces the printing of interactive documents to a single step
and provides direct access to Anoto-enabled printing func-
tionality from any application.

In the next step, the different document pages have to
be registered with the Anoto pattern in such a way that a
specific global Anoto position can later be assigned to a po-
sition on a single document page. To easily cover successive
pages with parts of the Anoto address space without having
to deal with individual pages, we implemented a document
handler for multiple pages.

Successive pages defined in the augmented paper address
space within the Anoto encoding space are arranged in a grid
of a number of columns and a number of rows as shown in
Figure 5. Only the upper left corner of the first page (porg)
has to be registered with the corresponding global position
in the Anoto space. All the pages of a single document have
the same width (pageWidth) and height (pageHeight). Op-

startPage startPage + page

porg

rowsy

pageHeight

pageWidth x

columns

Figure 5: Page mapping

tionally, a gap can be defined between pages in the grid on
the horizontal as well as on the vertical axis represented
by ∆x and ∆y, respectively. Note that these gaps in the
Anoto address space occur since, for each Anoto-defined
page, there is a reserved area to define special Anoto func-
tionality such as paper-based buttons. Any position p1 ly-
ing somewhere within the space covered by the matrix of
document pages can be mapped automatically to the corre-
sponding documentID, page and position of the interactive
paper framework’s address space. In contrast to our solu-
tion, an application based directly on Anoto technology does
not cover a page with a unique pattern. Instead, for each
paper-based button, a section of the specially reserved pat-
tern is pasted over the base pattern covering the page. The
Anoto solution not only requires additional pattern space
for active areas, but also puts constraints on the minimal
distance between adjacent paper-based buttons.

Based on this document handler, we can register the dif-
ferent documents as shown in Figure 6. In this example,
the Open University course book about life in the oceans
(s180 life in the oceans) is registered with the Anoto posi-
tion (55651363, 2516592) as its origin. We further define the
document size (210 by 263 mm) and the number of pages
(152) that the document contains.

5. INTERACTION
In the interaction phase, users either access the content

of the application through a traditional web browser from
a desktop computer or through the interactive paper client.
Both channels communicate with the server using HTTP re-
quests and responses. In the case of the web interface, these
responses contain (X)HTML documents that can be ren-
dered by the web browser. In contrast, when the digital pen
is used as the input device, some other form of output device
must be used to display the results. This could be some form

<?xml version="1.0" encoding="UTF-8"?>
<documents>
<document>

<identifier>s180 life in the oceans</identifier>
<connectedPages>
<startPage>1</startPage>
<pageOffset>1</pageOffset>
<origin>
<point>
<x>55651363</x><y>2516592</y>

</point>
</origin>
<size>
<width>210</width><height>263</height>

</size>
<columns>152</columns><rows>1</rows>
<spacingX>189</spacingX><spacingY>0</spacingY>

</connectedPages>
</document>
...
</documents>

Figure 6: Anoto pattern registration

of visual display used to present images, video, web pages
etc. or possibly an audio device to deliver speech or sounds.
In the latter case, this could be achieved by the server send-
ing responses to the paper client containing VoiceXML [15]
that is then transformed to speech by the client using text-
to-speech technologies. With the Blue Planet scenario, one
could even consider that visual and audio displays be used
in different contexts. For example, audio might be used to
provide supplementary information when a student is do-
ing general reading, whereas a visual display would be used
when they are working on exercises at their desk. In the var-
ious interactive paper applications that we have developed,
we have used both visual and audio displays, and some-
times a combination of both. To highlight the possibility
of supporting speech as well as the usual HTML browsers
in applications and also the difference between the two in-
teraction channels, we will assume an audio output device
is used in conjunction with the digital pen as input in the
remainder of this section.

While links are activated in the web browser interface by
the user clicking on them with the mouse, this functionality
is provided in the paper client by the digital pen. When
a user touches the paper with the pen, the corresponding
coordinates are sent to our cross-media link server (iServer)
which determines whether the point is contained within an
active area defined on paper. If so, iServer resolves the link
to be activated and returns the target resources. For the
sake of simplicity, we shall assume for the moment that there
is a single target resource, although it is possble to have more
than one. Depending on the resource, a renderer for the link
target is then activated to “display” the content to the user.
iServer imposes no restrictions on the kind of media that
can be used as sources and targets for links, as long as a
corresponding media plug-in is available and registered with
the server. In our scenario, we will use paper as the source
for the links and voice as their targets.

Before going into the details of the information services
provided by the application during the interaction phase,
we will first present the information model used to manage
the information content. Figure 7 gives an overview of this
conceptual model using the graphical notation of the OM
data model [9], an extended entity-relationship model for
object-oriented data management. As can be seen in the

concepts

Concepts

(0,*)
(0,*)

(0,1)

classification

Classifications

classification

Classes

HasClassificationSubClassifications

classification

Divisions

classification

Families

classification

Kingdoms

classification

Orders

classification

Phylums

classification

Subphylums

partition

species

Species
(1,*)

habitat

HabitatsHasHabitats

location

Locations

continent

Continents

country

Countries

city

Cities

region

Regions

HasLocationsLivesIn

LocatedIn

partition

disjoint

(0,*) (0,*)

(0,*)

(0,*)

(0,*)
(0,*)

(0,*)

(0,*)

Figure 7: Conceptual application model

figure, the application domain consists of the information
concepts relevant to the “Blue Planet” application. The
set of Concepts is partitioned into Species, Locations,
Habitats and Classifications. In the graphical notation
of OM, such object collections are represented by rectangu-
lar boxes, whereas the relationships between them are cap-
tured by oval shapes. A relationship associates the members
of a source collection with those of a target collection accord-
ing to the associated cardinality constraints. For example,
the hasClassification association relates species objects
to classifications. The (1:*) cardinality constraint at the
source collection of the association defines that each species
object has to belong to at least one classification. Although
the application database as presented in the figure provides
an even finer classification of the application concepts than
we have discussed here, we will not go into further details of
the application model.

Within the “Blue Planet” application scenario, informa-
tion concepts are stored using a database management sys-
tem that provides context-aware versions as introduced in
Section 3. As an example, we assume that our application
offers a getSpecies information service that would allow ad-
ditional information about a certain species to be retrieved
and delivered to the user. Such an information service could
be linked to any occurrence of the name of a species in the
text or to pictures of the fish and mammals appearing in
figures. Figure 8 shows how objects of type species are
represented with context-aware object versions. As can be
seen in the figure, the type defines three attributes, a name
for identification, a URI pointing to content media and a de-
scription giving background information about the animal.
The object shown in the figure has three context-dependent
versions. As indicated by the context values associated with
each variant, the first version contains English content with
a high level of detail. The second is also in English but the
level of detail is low. Finally, the third variant is in Ger-
man and the level of detail has been specified as high. The
first version is intended for desktop clients and therefore the
media URI will point to a high-resolution video and the de-

scription will offer detailed information. In contrast, the
media URI of the second variant points to a low-resolution
image and the description is a short summary of all available
information. The default version that will be returned if no
context is specified by the client or if the matching process
returns an ambiguous result is the first version as indicated
by the solid line connecting it to the object.

<detail, high>
<lang, en>

species
name: string
media: uri
description: string

version1

<detail, low>
<lang, en>

version2

<detail, high>
<lang, de>

version3

Figure 8: A content object with versions

At runtime, a desktop client would set the context to
C(S) = {〈format, html〉, 〈lang, en〉, 〈detail, high〉}. When
the species object is accessed, the database management sys-
tem uses this context to select the appropriate variant of
the object. This matching is done by comparing the context
specified by each version to the context of the client and as-
signing each version a score. As it is out of the scope of this
paper to discuss how the context matching process works in
detail, we will simply assume here that the version selected
is the one with the most context values in common with the
client’s context. Full details of the process and all cases are
given in [4].

Therefore, in the given example, the first version would be
selected as it matches two out of three context values. How-
ever, a second example illustrates that this simple matching
approach can also produce unsatisfactory results. Assume,
for instance, that the paper client requests the German ver-
sion of the content. To do so, it would specify the context

C(S) = {〈format, vxml〉, 〈lang, de〉, 〈detail, low〉}. When
this context is matched to the variants of the object, both
the second and the third variants will be assigned the same
score and thus the default variant is returned which does
not match at all. To prevent situations such as this, a client
can also declare certain context values as required or illegal.
In the example, we could decide that to obtain the correct
level of detail is more important than the language setting.
This behaviour could be expressed by marking the context
value denoting the level of detail as required. In the syntax
of our approach this would mean to rewrite the correspond-
ing value to 〈detail, +low〉. Prefixing a value with plus (+)
marks it as required, while the minus (−) prefix marks it as
illegal.

Another issue that needs to be addressed in this example
is the fact that content delivery via voice cannot include im-
ages or movies. As all variants of the content object point
to such media, we have to define a view in XCM that re-
moves the corresponding attributes before rendering it for
the client in the case of voice delivery. The resulting view
object with its two versions is shown in Figure 9. The default
version of the object handles the general case and thus does
not define a specific context. The second variant addresses
the case of voice deliveries and its context requires that the
client sets the format context value to vxml. In the case of
the default variant, the query attribute of the view object
is left blank prompting XCM to return the species object as
defined in the database. To remove the media attribute, the
query attribute of the variant for voice delivery would be
set to "project (name, description) of $input". This
query performs a projection of the object given as input to
obtain its name and description value.

view
name: string
query: string

version1

<format, +vxml>

version2

Figure 9: A view object with versions

In the interactive phase, structure is often not as impor-
tant as during the publishing phase because few information
services involve more than one content object. We therefore
omit the description of this stage of the content publish-
ing process and continue with the discussion of the final
step. In XCM, this step involves the rendering of the con-
tent in a mark-up that is acceptable to the client. In the
case of the desktop channel, the mark-up will be HTML,
whereas VoiceXML has to be generated for the interactive
paper client. During the first three steps—content aggre-
gation, application of views and content structuring—of its
content delivery process, XCM builds an XML document
that contains all content data in the desired hierarchical
structure. As each content and structure component can
be associated with a layout object in the database used by
XCM to manage publishing metadata, XCM can also gen-
erate an XSLT stylesheet parallel to the rendering of the
content. In the final phase, the stylesheet is applied to the
XML document and the result of the transformation is sent

back to the client. Figure 10 shows how layout components
are defined in the XCM publishing database. Apart from
a unique name, a layout object has an attribute to hold
a template. In most cases, this template corresponds to
one <xsl:template> element in the final stylesheet. For
each delivery channel supported by the application, a lay-
out variant storing the corresponding template has to be
defined. In the “Blue Planet” application, we have assumed
that we use HTML and VoiceXML and thus the layout for
the getSpecies information service has two versions anno-
tated with the appropriate context values.

layout
name: string
template: string

version1

<format, +vxml>

version2

<format, +html>

Figure 10: A layout object with versions

To conclude the example given in this section, assume
that a user requests information about the species of Sea-
horses from the paper client by clicking on an image of a
seahorse or on the word seahorse in the text. The XML
document representing the content that would result from
such a request is shown in Figure 11. It represents content
information according to the XML schema used by XCM
to process all requests. Each XML response consists of one
<webobject> that contains a set of properties and option-
ally further nested web objects. The <property> elements
correspond to the attributes of the content objects in the
application database. Note how the application of the view
as discussed above results in the omission of the property
that would contain the media URI. XCM inserts a stamp

attribute into every web object that it renders in XML. This
attribute is the basis for the automatic generation of match
clauses in the XSLT stylesheet that is created in parallel.

<webobject stamp="we0" oid="o279"
type="view:getSpecies">

<property name="sys:name">
<string>getSpecies</string>

</property>
<property name="name">

<string>Sea Horse</string>
</property>
<property name="description">

<string>Seahorses are a species of fish belonging
to the fish family Syngnathidae, which also includes
pipefish.</string>

</property>
</webobject>

Figure 11: XML document of getSpecies

The XSLT template that is chosen for the getSpecies

information service in the context of the interactive paper
client is shown in Figure 12. As can be seen in the figure,
the template consists of one <xsl:template> element that
will generate a VoiceXML prompt when applied to the pre-
viously discussed content XML. Note that the developer is
not required to specify a match condition and therefore the
attribute match of the template is set to an empty string.

When including templates in the stylesheet during the pro-
cessing of a request, XCM automatically adds the required
match conditions. In our example, the match condition
webobject[@stamp=’we0’] would be inserted. If one tem-
plate is used to transform multiple web objects, XCM gener-
ates a complex matching condition expressing a conjunction
of such simple conditions.

<xsl:template match="">
<vxml version="2.0" xmlns="http://www.w3.org/2001/vxml">

<form id="xcmprompt">
<block>
<prompt>
<xsl:value-of

select="/property[@name=’description’]/string"/>
</prompt>

</block>
</form>

</vxml>
</xsl:template>

Figure 12: XSL template for getSpecies

As soon as the content XML and the XSLT stylesheet
have been generated, they are passed to the XSLT trans-
former on the web server component of XCM. By applying
the stylesheet to the XML document, the transformer gen-
erates the final content representation that is then sent back
to the client by the web server. On the client, the response
is interpreted and rendered. In our example, the VoiceXML
file is passed to the text-to-speech engine causing it to read
out the content of the description attribute of the original
content object.

6. CONCLUSIONS
We have shown how a content publishing approach can be

used to support both the production and use of interactive
paper documents that rely on emerging digital pen technolo-
gies to link to digital content and services. Specifically, we
have described how paper was introduced as an additional
channel into the XCM multi-channel content management
system by coupling it with the iPaper framework for inter-
active paper applications. In addition, the flexibility of the
XCM system used, enabled us to support the actual pro-
cess of publishing the interactive documents in a first phase
by generating both the PDF files and the cross-media link
definitions automatically.

7. REFERENCES
[1] Anoto AB, http://www.anoto.com.

[2] Anoto AB. Paper SDK Specification and Description.
Technical Report 410 045, 2006.

[3] P. Barna, G.-J. Houben, and F. Frăsincar.
Specification of Adaptive Behavior Using a
General-Purpose Design Methodology for Dynamic
Web Applications. In Proceedings of Adaptive
Hypermedia and Adaptive Web-Based Systems

(AH 2004), Eindhoven, The Netherlands, August
2004.

[4] R. Belotti, C. Decurtins, M. Grossniklaus, M. C.
Norrie, and A. Palinginis. Interplay of Content and
Context. Journal of Web Engineering, 4(1):57–78,
2005.

[5] The Blue Planet,
http://www.bbc.co.uk/nature/blueplanet/.

[6] S. Ceri, F. Daniel, M. Matera, and F. M. Facca.
Model-driven Development of Context-Aware Web
Applications. ACM Transactions on Internet
Technology, 7(2), 2007.

[7] Fly Pentop Computer, LeapFrog Enterprises,
http://www.flypentop.com.

[8] F. Guimbretière. Paper Augmented Digital
Documents. In Proceedings of 16th Annual ACM
Symposium on User Interface Software and Technology
(UIST 2003), Vancouver, Canada, November 2003.

[9] M. C. Norrie. An Extended Entity-Relationship
Approach to Data Management in Object-Oriented
Systems. In Proceedings of 12th International
Conference on the Entity-Relationship Approach
(ER ’93), Arlington, USA, December 1993.

[10] M. C. Norrie, B. Signer, and N. Weibel. General
Framework for the Rapid Development of Interactive
Paper Applications. In Proceedings of
1st International Workshop on Collaborating over
Paper and Digital Documents (CoPADD 2006), Banff,
Canada, November 2006.

[11] J. Pascoe, N. Ryan, and D. Morse. Issues in
Developing Context-Aware Computing. In Proceedings
of International Symposium on Handheld and
Ubiquitous Computing (HUC ’99), Karlsruhe,
Germany, September 1999.

[12] B. Signer. Fundamental Concepts for Interactive Paper
and Cross-Media Information Spaces. PhD thesis,
ETH Zurich, May 2006. Dissertation ETH No. 16218.

[13] B. Signer and M. C. Norrie. As We May Link: A
General Metamodel for Hypermedia Systems. In
Proceedings of 26th International Conference on
Conceptual Modeling (ER 2007), Auckland, New
Zealand, November 2007.

[14] B. Signer, M. C. Norrie, M. Grossniklaus, R. Belotti,
C. Decurtins, and N. Weibel. Paper-Based Mobile
Access to Databases. In Demo Proceedings of ACM
International Conference on Management of Data
(SIGMOD 2006), Chicago, USA, June 2006.

[15] VoiceXML Forum, http://www.voicexml.org/.

[16] R. B. Yeh, S. R. Klemmer, A. Paepcke,
M. Bastéa-Forte, J. Brandt, and J. Boli. Iterative
Design of a Paper + Digital Toolkit: Supporting
Designing, Developing, and Debugging. Technical
report, Stanford University, 2007.

