
An OWL- Based Approach for Integration in
Collaborative Feature Modelling

Lamia Abo Zaid1, Geert-Jan Houben2, Olga De Troyer1, and Frederic
Kleinermann1

1 Vrije Universiteit Brussel (VUB)

Pleinlaan 2, 1050 Brussel
Belgium

{Lamia.Abo.Zaid, Olga.DeTroyer, Frederic.Kleinermann}@vub.ac.be, http://wise.vub.ac.be/
2 Delft University of Technology (TU Delft)

Mekelweg 4, 2628 CD Delft
the Netherlands

g.j.p.m.houben@tudelft.nl, http://www.wis.ewi.tudelft.nl

Abstract. Feature models are models that are used to capture differences and
commonalities between software features, thus enabling the representation of
variability within software. As the number of features grows, along with the
increasing number of relations between features, the need rises to have
collaboration between designers and have separate feature models together
representing one system. Integration of such distributed models becomes an
error-prone task. The large number of features and the often complex relations
between features calls for the automated support of collaborative feature
modelling. In this paper we present an OWL-based approach for the
representation of feature models, while adding formal semantics to bring
together distributed feature models used in collaborative modelling. We also
provide a framework to detect anomalies and conflicting feature relations in a
resulting integrated model.

Keywords: Feature model, OWL, knowledge representation, interoperability.

1. Introduction

Today there is an urgent need in the software community for developing variable
software. Variable software is known under names as software product line or
software product family [1]. Variability in software is specified by defining a set of
required variant tasks, i.e. functionalities that need to be implemented but can be
implemented through different variants. This is usually done by summing up all the
possible features that products could have. The concept of feature commonly
represents an increment in program functionality. Feature models (also known as
feature diagrams) are used to visually represent features and their relations [2, 3].
Different combinations of features thus make up the variation in products.

Feature models alone are not sufficient for variability. Applying the divide and
conquer strategy, a software product is divided into components and different teams

or persons are involved in the development of the different components. The main
complicating factor is that when dividing a system into a set of components,
dependencies between their features exist due to constraints such as
hardware/software limitations, security policy issues, and others. Typically, there are
many relations between the features of a single software component. This complexity
even rises with the many interactions, dependencies and conflicts that may exist
between the features of different components. Many of these dependencies and
relations are not easily captured by feature models, and with the number of features in
today’s complex systems jumping to a few thousand, feature models become very
difficult to manage. For one system, multiple features models could exist to model the
variability of the different parts of the system. This makes the integration of feature
models in a distributed and collaborative system design process a complicated effort.

At the same time, to complicate practical application even further, there is no real
agreed upon semantics for feature models [4]. Many variations to the original notation
of FODA [2] exist such as FORM [5] and FeatuRSEB [6]; for a detailed study about
these variations we refer the reader to [4]. Moreover, there are a number of extensions
of FODA, such as to include cardinality [7] and feature constraints [8]. This apparent
lack of a common semantics for feature models makes it difficult to exchange and
share feature models in practical applications. As a consequence, tool support for
feature model has become fragile, making transformations between feature models a
problematic issue. We believe that providing a machine-processable feature model
ontology will create a common base for generic feature model tool support.

 In this paper we provide an OWL-based approach to represent and manage feature
models. We have two main contributions. First, we provide an OWL ontology to
represent and define feature models. Secondly, we present the semantics for feature
model integration. We show that employing an ontology-based technique to represent
feature models with well-formed semantics allows for better interoperability between
different feature models. The integration semantics significantly helps the design
process, as it provides the big picture of the overall system which is a vital element in
any realistic design process for variable software.

The rest of this paper is organized as follows. In section 2 we give a brief
introduction of feature model constructs. Section 3 discusses the need for feature
model integration and its semantics. Next, in section 4 we present the semantics of
our feature model ontology and show how to use reasoning to infer the relevant model
consistency.

2. Feature Model Constructs

Feature models describe hierarchical structures of features. The hierarchies have
exactly one root node and the links in the hierarchy show how features are
constructed out of other features as their subfeatures. The feature model does not only
show the feature composition hierarchy but also shows the nature of the compositions
via the relations between features. Commonly, there are five types of relations
possible in a feature model: Alternative, Or, And, Mandatory, and Optional [2, 3]. In

addition, additional dependencies between features may exist, often used as
constraints.

To illustrate this, figure 1 shows the Order Process example, the running example
in this paper. It shows three feature models representing the three segments of the
order process problem: Order Process, Order Fulfilment, and Order Payment. The
feature model shows for each feature its name and type. A feature that contributes to
variability is called a variable feature. Accompanied with additional feature
dependency constraints (see figure 1), a feature model gives information about the
features that should be part of a valid software product. A valid composition of
features is called a configuration [1, 3]: a valid composition of features results in a
valid product, which is a product that meets all the type restrictions and feature
dependencies.

The segmentation of the information about features and their relations could cause
unjustified or contradictory decisions when constructing a product. A feasible feature
model is one that is consistent, i.e. holds no contradictions. A model containing
contradictions makes it difficult to find feasible feature compositions, thus reducing
the number of valid products. Furthermore segmentation of functionality across
different feature models may result in conflicts between the constraints of the
different segments. Thus there is a need for feature model conflict detection in the
integration of segments; we will discuss this in more details in section 3.

Fig. 1. Order Process Problem, modified after [9], with a) Order Process
Segment, b) Order Fulfilment Segment, and c) Order Payment Segment

Current research in feature models is oriented towards finding feasible feature

compositions that adhere to all of the relations and constraints defined. In [3] the
authors attempt to use a Logic based Truth Maintainance System (LTMS) and
Boolean Satisfiability Problem Solver (SAT solver) to propagate constraints. LTMS
also provides automatic selections for a possible configuration, and provides
justification for automatically selected/deselected features. In [10] feature models are

transformed into a Constraint Satisfaction Problem where a constraint solver is used
to determine the feasible configurations of a feature model. In [11], the authors use
Higher Order Logic (HOL) to formulate feature models: Prototype Verification
System (PVS), a HOL solver, is then used to find feasible configurations. Although in
these techniques configurations are automatically found, debugging in case of a
design error is a hard task. Neglecting the fact that a contradiction in the model may
be blocking feasible or expected feature combinations is a major drawback for such
feature analysis techniques [12].

A different approach is presented in [13], where an OWL-based approach was used
to represent and verify feature models. OWL constraints are used to model feature
relations and constraints defined by the feature model. Given a certain feature
configuration their approach can detect whether it is valid or not.

3. Feature Model Integration

Division of (the design of) large systems in terms of functionality comes quite
natural. Often different decentralized teams are involved: this makes agreement on all
features and their relations not an easy task. Thus the need to integrate separated
features models is crucial for obtaining a correct global understanding of the system.

If we see the separate feature models as parts of the global puzzle, then for each
part separately we could (assume to) guarantee the correctness or the consistency of
the model. As an informal example, suppose we have four features A, B, C, D; in
model 1, A is dependent on B, and B is dependent on C. In model 2, C excludes A, and
D requires B. On their own, both model 1 and model 2 are consistent. While
combining them in a global model, the model becomes inconsistent. This interaction
of features in terms of dependencies can influence the selection of other features
within a valid composition. We define these interactions as constraints between
features. We have done a literature study in the field of feature modelling to identify
possible constraints between features. We also investigated the current limitations of
feature models and the current need to define constraints in languages like Object
Constraint Language (OCL) or even simple English sentences. Furthermore we have
looked at work that extends feature models by adding more terms and notations [7,
14]. From these studies, we have composed a list of constraints defining semantic
relations between features. We call these constraints feature to feature constraints
(FTFC): Table 1 gives our feature to feature constraints and their meaning.

Table 1. Feature to Feature Constraints (dependencies)

FTFC name Meaning
Excludes Feature A excludes feature B means that A and B cannot occur together

(XOR). Ex. “Maximum graphics” excludes “Maximum performance”.
Extends Feature B extends feature A if B adds to the functionality of A. Ex. “Full

registration” extends “Simple registration”.
Impacts If feature A has an impact on feature B, it means that the existence of A

affects the existence of B. This is typically used as a less rigid relation than
the Requires relation. Ex. “Air conditioning” impacts “Horse power”.

Implies If feature A implies feature B, it means that the existence of A indicates that
B should also exist due to a functional need (use relation) or a logical need

(ex. auxiliary features). Ex. “Advanced graphics” implies “High memory”
Includes Indicates that feature A has feature B inside of it. Ex. “Add username"

includes "Check user name exists”.
Incompatible If feature A is incompatible with feature B, then A and B are mutual

exclusive due to a conflict. It adds more semantics to the cause of exclusion
than excludes, and is usually used for hardware/software dependencies. Ex.
“Advanced graphics” incompatible with “Basic graphic controller”

Requires Feature A requires feature B if A is functionally dependent on B. Ex.
“Advanced editor” requires “Spelling checker”.

Uses Feature A uses feature B then there is a dependency relation, so logically if A
is required then B should also be required. Ex. “Search” uses “Provide hints”.

Same Constraint used to indicate that two features are the same. Ex. “Advanced
graphics” same “AG”

Back to our order process example of figure 1: on its own, each segment is

consistent, but putting together the three segments there is a clear inconsistency
between the features (marked in red in figure 1). Furthermore, constraints between the
features represent semantic links for the integration, such as the uses relation between
shipping and shipping_cost. Naturally, in connecting the segments there is also a need
to indicate that features are semantically the same. As an example fulfilment in Figure
1.a is semantically the same feature as fulfilment as a root feature in Figure 1.b. By
explicitly defining such links as part of the model it becomes possible to track
features that depend on or influence other features in the overall integrated model.

4. Feature Models Represented in OWL

This section describes our OWL [15] (Web Ontology Language) based ontology
for representing feature models. By definition, an ontology is a conceptualization of
(a part of) the world. In this section we describe our conceptualization of feature
models with extended semantics for integration. We chose OWL to represent our
ontology. First, because it allows exchanging different feature models, driven by the
standardized common, agreed upon semantics of the feature model representation.
Second, OWL has formal semantics making it machine-processable which enhances
feature modelling tool support, as it will remove the ambiguity in representations and
provide a formal understanding of the underlying model. Finally, OWL (DL) was
designed to support DL reasoning on top of the ontology model, which enables using
DL reasoners to infer knowledge. Next, we will discuss the ontology in more details.

4.1 Feature Model Ontology Constructs

An ontology expresses knowledge of the world in terms of classes, properties and
restrictions. Classes represent the real-world concepts or objects. We have chosen the
iterative engineering approach described in [16] to model our Feature Model
Ontology (FMO). In our ontology representation we model the feature model
constructs as classes. Our intension is to express the feature model(s) including
integration support: we represent the information of feature model constructs by

 providing the vocabulary and structure to represent feature
models in a descriptive way. Following a top-down
approach to define the key constructs within the feature
model representation, (figure 2 shows the ontology class
hierarchy):
a) Feature Model Ontology Classes

• Feature: is the main ontology construct. Features
could be of type: external, functional, interface or
parameter.

• Composition: represents Alternative/Or relations in a
feature model. And relations are normalized to
mandatory relations and thus are omitted.

• Feature Attribute: defines a variable associated with
the feature; the value of the variable is specified
during the composition of the product.

• Feature Relation: represents the Mandatory, OR,
Optional, or Alternative types for a feature..

• Inconsistency: is a class that captures inconsistent features: features belonging to
the Inconsistency class will be assigned during the reasoning phase.

b) Feature Model Ontology Properties: We represent the integration semantics
defined in section 3 (Table 1) as sub-properties of the
Feature_to_Feature_Constraint property, which has Feature class as both
domain and range. Furthermore, Incompatible and Excludes are defined as
symmetric properties. Extends, Requires and Includes are defined as transitive
properties. Furthermore, for the sake of logical consistency of the model some
properties are mutual exclusive. In addition, we define properties that help to
model the hierarchal structure of feature models.

4.2 Ontology Implementation Issues

We implemented our Feature Model Ontology using Protégé OWL [17], Pellet [18]
as a DL reasoner, SWRL [19] to represent rules, and Jess [20] as a rule engine.
a) Specifying the Feature Model Ontology Consistency

 Ontology consistency is often used to refer to concept satisfiability. We used
Pellet for checking the ontology consistency. In our case we also seek for Variability
Model Consistency (i.e. logical consistency of the feature model), which can be
enforced by defining rules that capture such inconsistencies (conflicts). When
bringing together (integrating) fragmented feature models the aim is to obtain one
model in which we could easily identify such inconsistencies. To support the
detection of inconsistencies in our ontology, we have defined a class named
Inconsistency; all instances causing a logical inconsistency will be given membership
to this class. The cases which cause a logical inconsistency are represented by a set of
SWRL rules: a rule has an antecedent defining an inconsistent situation and a
consequent that marks the individuals causing this inconsistent situation. Marking is
done by asserting them to have a problem relation between them. Problem is a
property of the Inconsistency class. We specify the set of rules that assign inconsistent

Fig. 2. FM Ontology
Class Hierarchy

individuals to the Inconsistency class via the problem property. We capture two types
of inconsistency problems: first, those that emerge from using two properties that are
mutually exclusive for the same features (ex. b.2, c.1 in figure 1), and second, those
that detect a two-way direction of using a certain property which is defined to be
asymmetric (ex. a.4, b.4 in figure 1).
b) Reasoning on the Integrated Model

Coming back to our running example (figure 1); we populate the Feature Model
Ontology with instances representing the Order Process example. Each feature in the
problem is represented as an instance of the Feature class. Relations are represented
as instances of the Composition class.

We use Jess to run the SWRL rules: the rules are transferred to Jess along with the
ontology and the rule engine evaluates these rules against the ontology population; we
refer the reader to [21] for more information. As a result, Jess will associate the
features that have inconsistencies with the problem property, namely Shipping,
Credit_Card, and Pay_on_Delivery. We then run Pellet to check the ontology
consistency and compute the inferred types (new assertions were made by firing the
rules in Jess). Pellet infers that features having a problem relation are members of the
Inconsistency class. In the example the Inconsistency class has 3 inferred individuals.

This example shows how our approach allows integrating distributed feature
models by means of specifying the points of integration and using rules to check the
variability model consistency. The combination of the rule engine’s ability to run
conflict detection rules with the reasoner’s ability to infer new types enables detecting
inconsistencies that follow from implicit (hidden) relations between the features.

5. Conclusion

Although OWL was initially proposed for the semantic web, its expressive power
and formal semantics made it usable in many other domains. This paper demonstrates
the use of OWL for creating an ontology for feature models, adding feature-based
integration semantics to the integration of segmented feature models.

As opposed to the work in [13], our target was to enable creating one model from
collaboratively obtained segmented feature models. For doing this, there was a need
for introducing an ontology for feature model representation, that will formally
represent feature model semantics. For the purpose of bringing together collaborative
feature models we enriched our ontology with formal semantics to specify the
integration between features. When bringing together fragmented feature models
there is a need for conflict detection between different feature models. We applied a
rule-based approach, to capture conflicts between features of the integrated model.

For our future work towards a complete framework to model and manage feature
models, we aim to further enrich our ontology by considering even more use cases
than the ones done until now. We also need to provide explanations to users on why a
certain inference is made by the reasoner. Currently Pellet provides some support for
such debugging possibilities, but in a very non-user-friendly format. As a second
stage, an innovative user interface to query the features model ontology is required to
allow users to query about features and their relations within the ontology.

References

1. Asikainen, T.: Modelling Methods for Managing Variability of Configurable Software
Product Families. Licentiate thesis. Helsinki University of Technology, Department of
Computer Science and Engineering (2004)

2. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented domain analysis
(FODA) feasibility study. Technical Report CMU/SEI-90-TR-021, Software Engineering
Institute, Carnegie-Mellon University (1990)

3. Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink, H., Pohl,
K. (eds.) SPLC 2005. LNCS, vol. 3714 (2005)

4. Bontemps, Y., Heymans, P., Schobbens, P.-Y., Trigaux, J.-C.: Semantics of Feature
Diagrams. In: Workshop on Software Variability Management for Product Derivation
Towards Tool Support (2004)

5. Kang, K., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A Feature-Oriented Reuse
Method with Domain-Specific Reference Architectures. In: J. Annals of Software
Engineering. vol. 5, pp. 143-168 (1998)

6. Griss, M., Favaro, J., d’Alessandro, M.: Integrating Feature Modeling with the RSEB. In:
Fifth International Conference on Software Reuse, pages 76–85 (1998)

7. Czarnecki, K., Kim, C. H. P.: Cardinality-Based Feature Modeling and Constraints: A
Progress Report. In: OOPSLA’05 International Workshop on Software Factories (2005)

8. Lopez-Herrejon, R.E., Batory, D.: A Standard Problem for Evaluating Product-Line
Methodologies. In: Bosch, J. (ed.) GCSE 2001. LNCS, vol. 2186, pp. 9–13. (2001)

9. Ye, H.; Liu, H.: Approach to modelling feature variability and dependencies in software
product lines. In: Software, IEE Proceedings -Volume 152, Issue 3, Page(s): 101 – 109,
(2005)

10. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated Reasoning on Feature Models.
In: 17th Conference on Advanced Information Systems Engineering (CAiSE'05)

11. Mikoláš, J., Kiniry, J.: Reasoning about Feature Models in Higher-Order Logic. In: 11th
International Software Product Lines Conference (SPLC 2007).

12. Batory, D., Benavides, D. , Ruiz-Cortés, A.: Automated Analyses of Feature Models:
Challenges Ahead. In: Communications of the ACM (Special Section on Software Product
Lines) (2006)

13. Wang, H., Li, Y., Sun, J., Zhang, H., Pan, J.: A semantic web approach to feature
modeling and verification. In: Workshop on Semantic Web Enabled Software Engineering
(SWESE’05) (2005)

14. Sinnema, M., Deelstra, S., Nijhuis, J., Bosch, J.: Managing Variability in Software Product
Families. In: Proceedings of the 2nd Groningen Workshop on Software Variability
Management (SVMG 2004)

15. OWL Web Ontology Language Overview, http://www.w3.org/TR/owl-features/
16. Noy, N. F., McGuinness, D. L.: Ontology Development 101: A Guide to Creating Your

First Ontology. Stanford Knowledge Systems Laboratory Technical Report KSL-01-05
and Stanford Medical Informatics Technical Report SMI-2001-0880 (2001)

17. Stanford Protégé OWL, http://protege.stanford.edu/overview/protege-owl.html
18. Pellet DL Reasoner, http://pellet.owldl.com/
19. Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A

Semantic Web Rule Language Combining OWL and RuleML,
http://www.w3.org/Submission/SWRL

20. Jess Rule Engine, http://herzberg.ca.sandia.gov/
21. O'Connor, M. J., Knublauch, H., Tu, S. W., Musen, M. A.: Writing Rules for the Semantic

Web Using SWRL and Jess. In: 8th International Protege Conference, Protege with Rules
Workshop, Madrid, Spain (2005)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

