
Codeschool in a Box:
A Low-barrier Approach to Packaging Programming Curricula

Yoshi Malaise a, Evan Cole b and Beat Signer c

Web & Information Systems Engineering Lab, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
{ymalaise, evan.cole, bsigner}@vub.be

Keywords: Curriculum Packaging, Programming Education, Exercise Generation, Smart Learning

Abstract: The tech industry is a fast-growing field, with many companies facing issues in finding skilled workers to fill
their open vacancies. At the same time, many people have limited access to the quality education necessary to
enter this job market. To address this issue, various small and often volunteer-run non-profit organisations have
emerged to up-skill capable learners. However, these organisations face tight constraints and many challenges
while trying to design and deliver high-quality education to their learners. In this position paper, we discuss
some of these challenges and present a preliminary version of a curriculum packager addressing some of these
issues. Our proposed solution, inspired by first-hand experience in these organisations as well as computing
education research (CER), is based on a combination of micromaterials, study lenses and a companion mobile
application. While our solution is designed for the specific context of small organisations providing vocational
ICT training, it can also be applied to the broader domain of learning environments facing similar constraints.

1 Introduction

The tech industry is a fast-growing field and accord-
ing to Voka, the Flemish Network of Enterprises,
Belgium is facing a severe shortage of technically
schooled people (Voka, 2019). Belgium is hardly the
only country facing these issues since according to
Statista, the worldwide full-time employment in the
ICT sector is projected to reach 62 million in 2023.4

At the same time, many countries are dealing with
large groups of socially vulnerable people with lim-
ited access to the job market. For example, the Bel-
gium federal agency for the reception of asylum seek-
ers (Fedasil) accommodated a total of 31 808 asy-
lum seekers5 in January 2023. These conditions
gave rise to multiple initiatives all over the world,
trying to provide up-skilling opportunities to people
with limited access to the labour market by training
them in specific highly demanded skills in their local
ICT industries. A few examples of such organisations
are HackYourFuture (Denmark, The Netherlands and
Belgium), MigraCode or Girls Who Code.

a https://orcid.org/0000-0002-3228-6790
b https://orcid.org/0000-0001-8190-0446
c https://orcid.org/0000-0001-9916-0837
4https://www.statista.com/statistics/1126677/it-

employment-worldwide/
5https://www.fedasil.be/en/statistics

Unfortunately, due to the shortage of ICT-skilled
people, there also exists a shortage of career and tech-
nical education teachers capable of teaching these
courses (Devier, 2019). This implies that these or-
ganisations are often run by people with little to no
technical experience, and courses are taught on a vol-
unteer basis by tech professionals who do not neces-
sarily have any pedagogical experience. Furthermore,
these organisations cannot even fall back on open uni-
versity courses as research indicates that universities
are often not addressing all the industry’s specific
needs (Akdur, 2022) and mainly offering long-form
programmes, making the material a less than ideal fit
for our target audience.

In order for a curriculum packaging solution to
best serve learners, it is vital that the management
is not distracted from operations and the progress of
their learners, and that volunteer mentors can focus on
what they know best; working one-to-one with learn-
ers and preparing examples of well-written code. We
set out to create a solution that makes it easy for vol-
unteers to create materials following educational best
practices. It should further be easy for educational
directors to remix and reuse existing online materi-
als. In this paper, we outline a low-barrier approach to
packaging programming curricula based on our own
experience and inspired by computing education re-
search (CER).



2 Context

In order to highlight the novelty and importance of
the work presented in this paper, it is important to
introduce the specific context in which we want the
proposed tools to operate, how this context might
differ from the traditional university-level courses or
k-12 education that are typically studied by comput-
ing education research, and how existing freely avail-
able resources do not address the needs of vocational
ICT training. Let us start by formulating some key
characteristics of the stakeholders in this context.

The learners in our target audience are typically
people who do not have access to full-time contin-
ued education. They are typically following these up-
skilling classes in combination with a full-time job
and are often also taking care of a family. There-
fore, the presented content should be flexible for asyn-
chronous consumption when it fits within their sched-
ule and they cannot always have the guidance of a
teacher in the room. Having content accessible in
multiple forms that can be accessed in different con-
texts is a major benefit for these learners.

In our context, content creators are well-meaning
software developers who want to contribute to educa-
tion as volunteers by making content in the domain of
their expertise available to the previously-mentioned
learners. These volunteers are a very valuable re-
source as their expertise carries a lot of value to the
learners, but they are frequently not trained as edu-
cators. Often, they also do not have experience with
what makes good educational content and what the
typical progression of students looks like. Therefore,
we want to make sure that they can spend their time
doing what they do best, creating code samples for
the material they want to cover. We then need to in-
clude a system to automatically create exercises of
varying difficulty levels about this content so students
can progress naturally. More invested volunteers can
also be a major help if we guide them in the creation
of what good online resources look like. Using this
guidance, they can contribute by developing a small
application instead of directly writing content.

The curriculum designers are typically members
of organisations that want to combine these open ed-
ucation resources into a holistic curriculum covering
enough content to prepare learners to take an entry-
level position in a specific role, such as a web devel-
oper dealing with in-demand frameworks. The cur-
riculum designers often have limited pedagogical or
technical expertise, and given the fact that they are
likely part of a small non-profit organisation with lim-
ited funding and popular technologies evolve quickly,
they normally do not have the luxury to spend a year

in designing a brand new curriculum. Given these
constraints, it is important for curriculum designers to
find adequate resources—often created by the volun-
teer developers mentioned earlier—that can be reused
and repurposed to fit their needs.

Even though these constraints have a major impact
on what kind of material might work and what will
not (precluding many theoretically ideal approaches),
we feel that it is valuable to specifically target this
challenging context, given that these learners are not
reached by traditional university education, and they
stand to gain the most by switching to a stable job in
the information technology sector. Note that every-
thing that we present can also form an added value
for regular education.

3 System Components

In the following, we introduce the key components
necessary to properly construct a curriculum for our
target audience. These components consist of a set
of independent online resources focusing on a nar-
row learning objective, while providing immediate
feedback in order for students to practise and im-
prove even when no teacher is nearby, a new way
to explore existing source code in order that students
can learn from pedagogically sound content gener-
ated from samples provided by content creators, and
a mobile companion application that allows students
to practise some exercises in a gamified environment
while they are on the go and do not have access to a
desktop computer or laptop.

3.1 Micromaterials

In the field of education, we have units of learn-
ing materials called learning objects (LO), with each
learning object having well-defined goals on what
they are trying to teach. When authors of these learn-
ing objects take the necessary precautions to ensure
that they can be openly reused by other educators,
these learning objects might be referred to as open
education resources (OER). The 2019 UNESCO def-
inition describes OER as “teaching, learning and re-
search materials that make use of appropriate tools,
such as open licensing, to permit their free reuse, con-
tinuous improvement and repurposing by others for
educational purposes”.6 It is clear from this defini-
tion that it is not enough to simply be freely available
to others to be classified as an OER, but it should be
realistic to incorporate these resources into existing

6https://opencontent.org/definition/



larger curricula as educators see fit. The comput-
ing education research field has already made great
strides towards not only developing some of these re-
sources, but also making them available to a larger
community. For example, every year authors can sub-
mit nifty assignments that they used in their lectures
to the nifty assignments track of the Technical Sym-
posium of the ACM Special Interest Group on Com-
puter Science Education (SIGCSE) and present them
to their peers. It is important to note that during the
submission process authors have to provide additional
metadata about an assignment, such as the intended
target audience, additional context or its strengths as
well as weaknesses. This additional metadata is of vi-
tal importance for educators who do not simply want
to use existing open education resources as they are,
but possibly repurpose them for their own situations.
After the conference, the artefacts are uploaded to the
nifty assignments page of Stanford University7 where
they can be found with all the necessary metadata.

There is a subset of open education resources re-
ferred to as micromaterials, a term coined by Adam
Leskis.8 In order for an open education resource to
classify as a micromaterial, there are additional con-
straints that need to be satisfied. A micromaterial
should be directly usable by the learner and the mi-
cromaterial should be able to provide automated feed-
back so the learner can improve without additional
oversight by an educator. This way of working is
a perfect match with our target audience of learners
who might be practising at home after a workday. Al-
though it is not a strict requirement to be considered
a micromaterial, many existing micromaterials con-
tain automatically generated content and are mobile
friendly. This provides the user with a virtually end-
less amount of content they can work through until
they grab the concept that they are trying to learn.

In order to further illustrate the idea of a microma-
terial, we provide three examples of micromaterials
that have been developed to be used by our students.

• King’s Scroll
In this browser-based game students are shown a
randomly generated piece of JavaScript code that
modifies four boolean variables (helmet, sword,
shield and cape) (Malaise and Signer, 2023). They
have to interpret the piece of JavaScript code and
select the hero that satisfies the constraints of
these variables at the end of execution of the code.
The micromaterial is used to help students prac-
tise the control flow of JavaScript programs.

7http://nifty.stanford.edu
8https://micromaterialsblog.wordpress.com

Figure 1: Screenshot of King’s Scroll micromaterial

• SQL Study Buddy
This browser-based application uses sql.js9 (an
SQLite version transpiled to WebAssembly) and
allows students to write queries to be executed
in their browser. This helps to lower the barrier
as nothing needs to be installed locally and stu-
dents cannot mess up their database given that it
is recreated for every exercise. Students are asked
to write SQL queries to perform certain operations
in the online code editor. Every time a student ex-
ecutes their query, a set of assertions are run. By
looking at which assertions pass and which fail,
students can keep improving their queries until all
checks pass.

• HTML Study Buddy
HTML Study Buddy is a browser-based applica-
tion to practise the basics of HTML markup. Stu-
dents are presented a screen that is divided into
three parts. In the right part of the screen, they
see a webpage that they have to recreate. Fur-
ther, in the left part of the screen, they are pre-
sented jigsaw puzzle pieces based on Google’s
Blockly library. Those jigsaw pieces contain spe-
cific HTML markup. The available pieces are de-
termined by the elements used on the page the stu-
dents have to recreate, to prevent them from be-
ing overwhelmed. Students can snap the pieces
together in order to construct the webpage. The
webpage resulting from the markup on the assem-
bled jigsaw pieces is updated in the centre of the
screen as soon as a student drags one of the pieces.

3.2 Study Lenses

As discussed earlier in Section 2, there exists an am-
ple number of online sample projects for nearly every

9https://sql.js.org



given topic in programming. Programmers like to
write blog posts about new technologies that they
think are exciting which can also be beneficial for
them to attract new employers. The main issue how-
ever is that these posts are typically not written by
pedagogical experts and the sample code does often-
times not have actionable goals for students to learn
from in a step-by-step manner. This led to the idea of
study lenses.10

The concept of study lenses is straightforward; we
want to empower students to be able to learn from any
online code the learner encounters, but still do so in
a pedagogically sound way. In order to achieve this
goal, raw source code is used as input for different
lenses and each lens is used to generate materials for
a specific learning objective (e.g. reading or tracing).
A wide variety of views are possible and one of the
more basic examples can highlight the code’s syntax
and overlay a canvas to enable students to annotate
and highlight parts of the code. A different lens might
take the code file, parse it and present the code as a
flowchart to help students focus on the control flow,
or the execution of the program could be visualised
in tools such as PythonTutor11 to help student focus
on what goes on in the program’s memory during ex-
ecution. Some micromaterials can also be packaged
as lenses. For example, we have lenses that ask stu-
dents questions about their code or lenses that intro-
duce errors in the code that a student has to fix. The
study lenses environment builds on a plugin-based ar-
chitecture where educators and developers can intro-
duce new lenses on demand.

When designing new lenses, there are a couple of
important constraints to take into consideration. First,
it is important that lenses work on plain code. Any
code should run fine in the target environment and
content creators should not need to change the way
they write the examples to fit the study lenses environ-
ment. Second, lenses should be designed with a “peel
away” principle in mind, where early lenses can pro-
vide a lot of additional context on top of the code, but
the more advanced lenses should do so less and less,
in turn revealing a general-purpose development en-
vironment that matches realistic industry setups. This
way we can satisfy the expertise reversal (Kalyuga
et al., 2009) and the skill transfer (Chiaburu and Mari-
nova, 2005) principles. Finally, lenses should not cre-
ate any platform lock. Content created to be used with
the lenses should not rely on any custom syntax and
the content should still be usable (to some extent) in
a different environment. This is why there is a strong
push towards using open web standards that can be

10https://github.com/colevandersWands/study-lenses/
11https://pythontutor.com

reused everywhere in addition to regular code files for
all aspects of curriculum packaging.

The current implementation of study lenses is
available open source and as a Node.js package that
can be installed globally on a student’s system. Stu-
dents can run the study command from any place in
their file system to explore the current directory in the
study lenses environment. There also exists a study
lenses version that can be embedded into packaged
curricula as described later in Section 4.

3.3 Companion App

The need for mobile learning environments has been
discussed in the past (Göksu and Atici, 2013) and
its importance has also been highlighted to us during
conversations we had with students of different up-
skilling courses. Many students emphasise the use-
fulness of having access to some material on the go
when they happen to have some time available to en-
gage with content during free time, such as when they
are taking public transportation. Therefore, we im-
plemented an initial prototype of a mobile companion
application; not to replace the study lenses environ-
ment or the online resource, but as an additional way
of consuming content. In order to make the applica-
tion fully portable, we opted for a smartphone appli-
cation that stores its content offline and thus can be
used even without any cellular connection.

The mobile app has two main functionalities. First
it can be used to view (short) presentations about im-
portant topics as a refresher, which might be useful to
do right before a class or before students start working
on their laptops when getting home. Second the app
also includes small exercises that are generated from
code files. The app further includes some gamifica-
tion elements such as push notifications to remind stu-
dents to get their daily practise, and daily goals such
as completing 10 exercises every day. After complet-
ing a certain number of exercises, badges can be un-
locked and shown in the application. Further, exer-
cises are presented according to the Leitner box sys-
tem where exercises that have never been completed
have the highest chance of being selected, and the
more often an exercise has been successfully com-
pleted, the less frequently it is shown. In the following
we list the currently supported types of exercises.

• Parsons Problem
Parsons problems have been used for a long time
in computing education research (Du et al., 2020).
When given a Parsons problem, students receive
all the lines of a code snippet in a shuffled form.
By dragging and dropping the lines, students need
to recreate the original code snippet. Whenever a



line is placed at the right position, a green check-
mark is shown on that line. This way, users in-
crementally work on the problem until they have
solved the exercise.

• Comment Slots Exercise
In a comment slots exercise, a user is presented a
snippet of code, but all the comments have been
replaced with combo boxes. It is up to the student
to interpret the code and match every comment
with the corresponding line of code.

• Parameter Chooser
In a parameter chooser exercise, users are pre-
sented with a function that takes at least two pa-
rameters. However, all occurrences of the pa-
rameters in the body will be replaced by combo
boxes. By reading and understanding the sur-
rounding code, it is up to the learner to infer which
of the parameters is used.

• Code Snippet to/from Flowchart
Code Snippet to/from flowchart exercises present
the user with an original code snippet and three
flowcharts. One of the flowcharts is the correct
translation of the code snippet, the other two are
based on slightly altered versions of the code snip-
pet. It is up to the user to determine which of the
three flowcharts matches the original snippet. An
inverted version of this exercise is also possible
where users receive one flowchart and three pieces
of JavaScript code.

• Multiple Choice Questions
The multiple choice question exercises have
been inspired by “questions about learners’
code (QLCs)” (Lehtinen et al., 2021). In these
exercises, the application analyses a code snippet
shown to a student and asks them questions about
the code. Examples of questions include “What is
the name of the function?”, “Is function X asyn-
chronous?” or “Which of the following variables
are declared in loop initialisers?”.

4 Curriculum Packager

There is a strong need for many organisations to set up
new courses as well as to update existing ones. These
courses could be both long-term formation such as
‘Introduction to Web Development’ over a period of
up to a year, or an advanced follow-up course such
as ‘Reactive Programming’ with a duration of two
months only. It is essential for organisations to be
able to set up these smaller curricula in order to ac-
commodate for the specific professional needs in their
geographical area.

In recent years, research on how to best pack-
age a curriculum has been conducted by the Curricu-
lum Materials Working Group.12 However, their re-
search mainly targets long-form traditional university
courses making use of existing learning managements
systems (LMS). Similar research lead to open stan-
dards such as SCORM,13 that allow moving material
between LMS’s. However, such a setup is not a per-
fect fit for our intended use case of ad-hoc volunteers,
working together to come up with a set of open learn-
ing materials. The management of an LMS requires a
substantial effort and the time learners spend on learn-
ing to work with the LMS is time they could have
spent on learning about the concrete content. There-
fore, we strive for our learning environment to be as
close to the industry tools that coaches and learners
will be using throughout their careers. The prelim-
inary version of the packager combines the compo-
nents introduced in the previous section into a holistic
self-contained online curriculum that can be deployed
to any cloud hosting service. Note that our packager
currently supports JavaScript-based curricula, but we
plan to add other programming languages.

In our solution, the source of a curriculum is made
up from a set of folders, with each folder represent-
ing one learning object (e.g. LO1) as illustrated in
Figure 2. Such a learning object can consist of any
type of files, but the following files are given a special
meaning during the packaging process:

• Readme.md
The readme.md file is used to describe general in-
formation about the learning object in markdown
format. Typically, it is recommended for the de-
scription to list the main goals of the learning ob-
ject and to refer to relevant online resources such
as videos or blog posts. We also strongly encour-
age any learning object to link to relevant micro-
materials using the provided markdown function-
ality. Since the system uses traditional readme
files, the learning objects can easily be used out-
side of our environment and content developers do
not need to learn any custom syntax.

• curriculum.json
The optional curriculum.json file contains
metadata for the packager. The name property
can be used to set how the name of the learning
object should appear in the generated curriculum.
The ignoreList property tells the exercise gen-
erator which files to ignore when generating exer-
cises. Further, the requires property can be used
to indicate which learning objects should be com-

12https://cssplice-cm.github.io
13https://scorm.com



Source Material

LO3

intro.presentation.md

readme.md

code 

sample 2

LO2

Online Resources

video

blog

micromaterial

links to

package

Study Lenses

Web Server

Presentations

Web Interface Companion App

Generated Exercises

Packaged Curriculum

publish

LO1

requires

code

sample 1

curriculum.json

LOs

Figure 2: Curriculum packager overview

pleted before the user can partake in this learning
object. The idea for this metadata was inspired
by Harper-Lite,14 a similar system that strives to
make lesson (learning object) discovery easier by
having authors include a harper.yaml file in the
root directory of each lesson.

• study.json
Optionally, a study.json file can be placed
in any folder with code samples (e.g. code
sample 1) to configure the default options and
lenses to be used by the study lenses environment.

• *.presentation.md
Files with a filename *.presentation.md will
be interpreted as presentation files by the curricu-
lum packager. The content of the file should con-
tain valid markdown that will be turned into a pre-
sentation by the revealjs15 JavaScript library.

• *.js
All JavaScript files detected in the folder will be
parsed and analysed in order to generate exercises
based on the code. In future versions of the cur-
riculum packager, we also plan to support other
programming languages.

As we can see from the previous description, there
is no need for curriculum authors to become spe-
cialised in custom tools. Their main work consists
of coming up with realistically looking examples of
the code in action. The markdown files can easily be
reused in different contexts regardless of what learn-
ing environment is being used. This way we can avoid
a vendor lock-in to our solution. Since all learning
objects are simple folders that can be checked-in to
GitHub, we satisfy all requirements that open learning
objects should have according to the Curriculum Ma-
terials Working Group, namely that we should be able
to create, fix, revise, reuse, share, find, track, pull,
push, evaluate and credit open learning materials.

14https://third-bit.com/ideas/harper/
15https://revealjs.com

Once the curriculum designers have collected the
learning objects they wish to include in their curricu-
lum, they can run our curriculum packager desktop
application and select all the relevant folders. The
packer will then run through these folders and gen-
erate a prepackaged curriculum. The generated cur-
riculum will be a Node.js project using an Express
web server to host all its content. This project can
then easily be deployed online or be made available
on GitHub for students to run it locally. When access-
ing content from the web server, users are presented
with all the learning objects in card form. On these
cards, users can see the content of the readme.md file.
Further, there are buttons to access the content of the
learning object via the included study lenses server or
to watch any of the presentations on the online slide
presentation screen. At the top of the page there is a
QR code that can be scanned by the companion appli-
cation to download the curriculum’s material (i.e. the
mobile exercises and the presentation) for offline use.

In a future version of the packager, we are plan-
ning to add support for automatically generating
learning spaces on GitHub based on workflows re-
fined over several years of running ICT courses on
GitHub. These would provide a low maintenance al-
ternative to traditional learning management systems.
Organisations willing to run a new class would be able
to specify a list of students, and the system would au-
tomatically generate a GitHub repository where stu-
dents can find an outline of their syllabus, indicate
their progress on the Kanban board and post issues if
they get stuck, while using the same tools and work-
flows they will use in their professional career.

5 Challenges and Future Work

Let us now discuss some of the main challenges that
we expect to face when further developing the cur-
riculum packager, as well as some interesting research
directions that we plan to address in the near future.



5.1 The Reusability Paradox

Some criticism has arisen from researchers about the
dangers of taking learning concepts out of their origi-
nal context. The claim is that the context itself forms
part of the material to learn, and that material that is so
context agnostic that it can be used anywhere actually
does not provide any real value anywhere (South and
Monson, 2000). This problem has been named the
re-usability paradox and represents one of the main
challenges when building a curriculum out of exist-
ing components and designing the reusable compo-
nents. This is something that one always has to keep
in mind. However, research has shown that there def-
initely is still value in the creation of reusable com-
ponents in education as long as effort is done to find
the right balance between de-contextualisation and
usefulness (Wiley et al., 2004). This means that we
should not go overboard by reducing the size of the in-
dividual topics and that it is okay that some individual
objects still cover more than strictly one topic (Bart
et al., 2019). A rule of thumb proposed by Wiley
is that we should ask ourselves “Can you imagine
wanting to teach some portion of this topic without
teaching the other parts?”. If the answer is no, all
the subtopics belong to one learning object. We be-
lieve there is still room to construct a set of guide-
lines on the scoping of learning objects that can be
shared with other researchers interested in designing
reusable learning objects.

5.2 Automatic Exercise Generation

A future direction we wish to further explore are
other ways to automatically generate exercises based
on codebases. Ideally, these exercises should cover
all aspects of the PRIMM (Predict-Run-Investigate-
Modify-Make) principle (Sentance et al., 2019) to en-
sure that students can improve step by step over the
given codebase. In our current implementation, all
exercise generation is done by parsing the JavaScript
files using Acorn16 and analysing the abstract syntax
tree. We are convinced that this technique can be
used to generate even more interesting exercises be-
sides the ones we are generating today. Apart from
this method, we are also looking into other ways to
generate exercises based on machine learning. Inter-
esting research towards automatic exercise generation
based on the code-trained Natural Language Model
Codex presented by OpenAI (Chen et al., 2021) has
recently been presented at ICER (Sarsa et al., 2022).
This is definitely another promising direction that we
are planning to further investigate.

16https://github.com/acornjs/acorn

5.3 More Ways to Look at Code

We will keep advancing the study lenses platform and
search for interesting and useful new lenses that could
benefit our learners. We feel like the concept of using
existing files as a basis and providing students differ-
ent ways of interacting with and analysing these files,
is an interesting concept to further explore. The ver-
satility of the study lenses and the additional content
they provide out of the box—as long as there is some
example code given in a domain—leads to a great
amount of new content for learners to take in with a
small time investment needed by content creators.

In its current form, the study lenses implementa-
tion works as a web environment, which is great given
the flexibility and ease-of-use this provides. We are
further investigating what it could look like to have
the plug-in-based study lenses concept incorporated
into existing Integrated Development Environments
(IDEs). This would not only allow students to ben-
efit from the layers of interactivity and perspectives
on top of the code right where they are already work-
ing but it would also allow the students to take this
environment with them and use those tools to help
them understand work related code as they graduate
towards their first internships.

5.4 Knowledge and Content Modelling

In recent years, there has been a push towards the
use of knowledge graphs in education. A knowledge
graph is a formal way to describe all the topics and
their relations that are covered within a field of ed-
ucation. The topics are represented as nodes, while
the directed edges indicate which topics are prerequi-
sites of other topics (Rizun, 2019). This representa-
tion allows for automated reasoning and might enable
future intelligent tutoring systems. In past work, the
knowledge graph representation has been used to find
ways on how to model students’ progression (Ilkou
and Signer, 2020), as well as to build recommenda-
tion engines suggesting only exercises in a learner’s
zone of proximal development, both in traditional ed-
ucation (Baker et al., 2020) as well as in sports edu-
cation (Malaise and Signer, 2022).

We are planning to further investigate the use of
student modelling to adapt the content to the learn-
ers. This modelling will consist of two parts. First,
we will model the learners’ constraints and prefer-
ences (i.e. “What devices do they have access to?”
or “Can they study for long sessions or do they typ-
ically have multiple short sessions?”). Second, we
will also use personal knowledge graphs to model
the progression of individual learners throughout the



global knowledge graph. Based on this additional in-
formation, we would like to introduce an intelligent
tutoring system in order to better recommend exer-
cises to the students. One can, for instance, imag-
ine that the application does not simply show exer-
cises based on the Leitner box system, but makes
informed suggestions based on a student’s past per-
formance for specific individual skills. It might fur-
ther be used to detect a user’s knowledge gaps. In
this domain, the EduCOR ontology17 could be a good
fit, as it models both the education side of things but
also incorporates the mapping to labour-market skills.
Recently, GraphBRAIN has been used to power an
initial implementation of an intelligent tutoring sys-
tem (Ferilli et al., 2022). GraphBRAIN allows users
to utilise ontologies as database schema on top of a
graph database. Exploring the direction of having our
model conceptualised as an ontology (in combination
with EduCOR) is a promising direction as it means
that all generated data could easily be shared across
systems with other projects in the field of computing
education research.

6 Conclusion

In this position paper we presented a number of
challenges and constraints faced by small organisa-
tions offering professional training and up-skilling for
learners who are not served by traditional education.
We introduced a preliminary version of a curriculum
packager combining micromaterials, study lenses and
a companion mobile app to address some of these
challenges. It is important to note that most of the
content designed to work in the presented context and
its constraints will also be usable in general contin-
ued education. We further discussed some remaining
challenges and future research directions. The pro-
posed research is essential for reaching under-served
learners and to expand the body of knowledge in com-
puting education research.

REFERENCES

Akdur, D. (2022). Analysis of Software Engineering Skills
Gap in the Industry. ACM TOCE.

Baker, R. et al. (2020). The Results of Implementing Zone
of Proximal Development on Learning Outcomes. In
Proc. of EDM 2020.

Bart, A. C., Hilton, M., Edmison, B., and Conrad, P. (2019).
The Problem of Packaging Curricular Materials. In
Proc. of SIGCSE 2019.

17https://tibonto.github.io/educor/

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
et al. (2021). Evaluating Large Language Models
Trained on Code. arXiv.

Chiaburu, D. S. and Marinova, S. V. (2005). What Predicts
Skill Transfer? An Exploratory Study of Goal Orien-
tation, Training Self-Efficacy and Organizational Sup-
ports. International Journal of Training and Develop-
ment, 9(2).

Devier, B. H. (2019). Teacher Shortage and Alternative Li-
censure Solutions for Technical Educators. The Jour-
nal of Technology Studies, 45(2).

Du, Y., Luxton-Reilly, A., and Denny, P. (2020). A Review
of Research on Parsons Problems. In Proc. of ACE
2020.

Ferilli, S., Redavid, D., Di Pierro, D., and Loop, L. (2022).
An Ontology-driven Architecture for Intelligent Tu-
toring Systems with an Application to Learning Ob-
ject Recommendation. IJCISIM, 14.

Göksu, İ. and Atici, B. (2013). Need for Mobile Learn-
ing: Technologies and Opportunities. Procedia - So-
cial and Behavioral Sciences, 103.

Ilkou, E. and Signer, B. (2020). A Technology-enhanced
Smart Learning Environment Based on the Combina-
tion of Knowledge Graphs and Learning Paths. In
Proc. of CSEDU 2020.

Kalyuga, S., Ayres, P., Chandler, P., and Sweller, J. (2009).
The Expertise Reversal Effect. Educational Psychol-
ogist, 38(1).

Lehtinen, T., Santos, A. L., and Sorva, J. (2021). Let’s
Ask Students About Their Programs, Automatically.
In Proc. of ICPC 2021.

Malaise, Y. and Signer, B. (2022). Personalised Learning
Environments Based on Knowledge Graphs and the
Zone of Proximal Development. In Proc. of CSEDU
2022.

Malaise, Y. and Signer, B. (2023). King’s Scroll: An Ed-
ucational Game to Practise Code Prediction. In Proc.
of SIGCSE 2023.

Rizun, M. (2019). Knowledge Graph Application in Educa-
tion: A Literature Review. Folia Oeconomica, 3(342).

Sarsa, S., Denny, P., Hellas, A., and Leinonen, J. (2022).
Automatic Generation of Programming Exercises and
Code Explanations Using Large Language Models. In
Proc. of ICER 2022.

Sentance, S., Waite, J., and Kallia, M. (2019). Teaching
Computer Programming With PRIMM: A Sociocul-
tural Perspective. Computer Science Education, 29(2-
3).

South, J. B. and Monson, D. W. (2000). A University-
wide System for Creating, Capturing, and Delivering
Learning Objects. The Instructional Use of Learning
Objects.

Voka (2019). Voka: “The Shortage of Technical Profiles is
Threatening to Become the Achilles’ Heel of Innova-
tion in Flanders”. Stanley Milton.

Wiley, D., Waters, S., Dawson, D., Lambert, B., Barclay,
M., Wade, D., and Nelson, L. (2004). Overcoming the
Limitations of Learning Objects. JEMH, 13(4).


