
An Architecture for Open Cross-Media
Annotation Services

Beat Signer1 and Moira C. Norrie2

1 Vrije Universiteit Brussel
Pleinlaan 2

1050 Brussels, Belgium
bsigner@vub.ac.be

2 Institute for Information Systems, ETH Zurich
CH-8092 Zurich, Switzerland

norrie@inf.ethz.ch

Abstract The emergence of new media technologies in combination
with enhanced information sharing functionality offered by the Web
provides new possibilities for cross-media annotations. This in turn raises
new challenges in terms of how a true integration across different types of
media can be achieved and how we can develop annotation services that
are sufficiently flexible and extensible to cater for new document formats
as they emerge. We present a general model for cross-media annotation
services and describe how it was used to define an architecture that
supports extensibility at the data level as well as within authoring and
visualisation tools.

1 Introduction

With the rapid growth of Web 2.0 communities, many users are no longer simply
passive readers of information published on the Web and have become actively
involved in the information management process by creating new content or
annotating existing resources. While web technologies have enabled the large-
scale and low-cost sharing of information, annotation services allow users to
integrate and augment that information in an ad-hoc manner without any pre-
defined integration schemas or the need to have a local copy of that information
or even update access. This allows user communities to build a knowledge layer
on top of the Web through various forms of annotation services. As a result, the
idea of external link metadata as introduced by the hypertext community in the
form of dedicated link servers, has nowadays found its manifestation in more
widely used applications in the context of Web 2.0.

The opening of information resources to third-party contributors has also
been recognised by the digital library community as a way of enriching existing
content with community-based annotations and associations to supplementary
external resources. By bridging the gap between content managed within a
digital library and digital information available outside of the library, as well
as enabling annotations across digital library systems, external annotation and



link services may contribute to the integration of content managed by different
digital libraries.

The potential of knowledge sharing through collaborative annotations can
only be fully exploited, if a general and sustainable annotation fabric can be
established to ensure that annotations persist over time and can be reused and
extended by future applications. Therefore, some common annotation standards
and guidelines are required to make different solutions interoperable rather
than producing isolated and proprietary annotation services. In the context
of the Web, we have already seen first efforts to establish specific annotation
standards such as the one defined by the Annotea3 framework. The digital library
community has also tried to establish annotation standards by defining digital
library reference models which include annotations as information objects.

However, in addition to specifying common annotation models and standards,
it is necessary to define a flexible and extensible reference architecture capable
of supporting any form of cross-media annotation. It is no longer sufficient to
support only textual or a fixed set of multimedia annotations. The Web is a
platform with a rich and continuously evolving set of multimedia types and it is
important to ensure that link and annotation services can be easily extended to
cater for new media types at the data level as well as by integrating them into
authoring and visualisation tools. In this paper, we present such an architecture
along with the general cross-media annotation model on which it is based.

We begin in Sect. 2 by providing an overview of existing annotation systems.
In Sect. 3 we introduce the concept of open cross-media annotation systems
and discuss some of their requirements in terms of extensibility on both the
model and architecture level. We then introduce our cross-media annotation
model in Sect. 4, discussing how it supports extensibility and comparing its
main features with existing annotation proposals. Details of how to realise an
annotation service based on the proposed model and architecture are provided
in Sect. 5. Concluding remarks are given in Sect. 6.

2 Existing Annotation Systems

Before discussing different solutions for content annotation, we consider the
question of what the difference is between an annotation and a link or association
with supplemental information. In our opinion, the annotation process mainly
“differs” from regular linking as known from a variety of hypermedia systems
through the fact that the creation of a new annotation often includes the
content authoring of the annotation object itself. In contrast, link authoring
usually creates associations between existing resources. We would therefore see
annotation services as a specialised application of more general link services. This
implies that we do not treat annotations as metadata but deal with them on the
same level as any other information object. In this section, we therefore cover
more general hypermedia solutions as well as specialised annotation services.

3 http://www.w3.org/2001/Annotea/



The Annotea [1] project developed by the World Wide Web Consor-
tium (W3C) provides a framework for collaborative semantic annotations and
bookmarks as well as topics. Annotea makes use of the Extensible Markup Lan-
guage (XML) in combination with the Resource Description Framework (RDF)
to store annotation metadata about XML documents on separate servers.
The W3C’s Amaya4 browser and editor uses Annotea to annotate arbitrary
web pages. The Amaya editor enables parts of an HTML document to be
addressed based on XPointer expressions which can then be annotated by textual
information. Some of the ideas introduced by Annotea are nowadays used in
social bookmarking and tagging systems. The linking (and annotating) of XML
resources is also supported by the XML Linking Language (XLink) [2].

While Annotea and XLink make explicit assumptions about the type of
document to be annotated, the Flexible Annotation Service Tool (FAST) [3]
claims to be more flexible by providing a core annotation service with different
gateways for specific information management systems. The gateway approach is
a good mechanism to integrate the annotation service with different information
management systems. However, FAST does not explicitly deal with extensibility
issues in terms of different media types on the annotation tool and application
level. For a cross-media annotation service, it is essential that new media types
can be introduced without having to change already existing applications as we
show in the next section.

The interoperability of link services has also been discussed by the open
hypermedia community and different proposals such as the Open Hypermedia
Reference Architecture (OHRA) [4] have been made. The same comments that
have been given for FAST in terms of a simple extension with new media types
are also valid for the OHRA architecture.

An annotation service addressing parts of documents managed by a digital
library system through the concept of marks is presented by Archer et al. [5].
Annotations can be stored either together with the document or in an external
repository. While the system provides a flexible means of addressing specific
document parts, it currently supports only textual annotations.

A fixed set of multimedia annotations is supported by the web-based
MADCOW [6] multimedia digital annotation system which uses a client-
server architecture in combination with a browser plug-in. A good overview
of MADCOW and other annotation solutions is provided in [7]. While these
systems can be extended on the model level to support new types of media, we
will show that there is a lack of simple extensibility on the application level. In
an optimal case, there should be a clear separation of concerns not only between
the media-specific annotation details on the model level but also between a
general annotation authoring and management tool and its components dealing
with various types of annotation resources. As a contribution of this paper, we
therefore discuss some limitations of existing annotation tools and introduce an
architecture for extensible cross-media annotation services.

4 http://www.w3.org/Amaya/



3 Open Cross-Media Annotation

In this section, we discuss the limitations of existing digital annotation tools with
respect to support of cross-media annotations and introduce the requirements for
true cross-media annotation tools. Existing annotation architectures and services
can be classified based on the types of resources that can be annotated as well
as the potential media types that can be used in annotations. To illustrate the
different types of systems, we define the annotation matrix shown in Fig. 1. On
the horizontal axis, we mark the number of different resource types that can be
annotated whereas on the vertical axis we record the number of different media
types that can be used in annotating a given resource.

# resource types
1 2 3 4 5 ...

1

2

3

4

5

...

# annotation types

B1

B2

D2

open cross-media 
annotations

D1

A1... An C1 C2 C3

Figure 1. Annotation matrix

The simplest type of annotation service, represented by A = {A1, . . . , An}
in Fig. 1, only provides functionality for one type of resource to be annotated
(e.g. text) and the annotations themselves can also be of a single type only
(e.g. sound). An example of such a system is Annotea where XML documents
are annotated with textual content. Some more flexibility is provided by systems
where a single type of resource can be associated with annotations of different
media types. For example, textual content is annotated with text notes, sounds
and movies. These types of annotation services B = {B1, . . . , Bn} are located on
the vertical line going through 1. The Stickis5 browser toolbar is such a solution
where regular webpages can be annotated with a set of rich media content. A
third class of systems C = {C1, . . . , Cn} enables the annotation of different types
of resources, but with a single annotation media type only. Those solutions can

5 http://stickis.com



be found on the horizontal line going through 1. Last but not least, we have
true cross-media annotation services D = {D1, . . . , Dn}, where a set of different
resource types can be linked to annotations of different media types. An example
of such an annotation service is MADCOW, where a fixed set of digital resource
types (i.e. text, images and videos) can be annotated with text, images, sound
or videos.

Even if we have a true cross-media annotation service, there is often a
limitation in terms of there being a fixed set of media types that can be annotated
and used in annotations. We aim for an extensible solution where any new type
of resource or annotation can be added at a later stage. We name these types
of extensible solutions open cross-media annotation systems. Open cross-media
annotation systems are not represented by a single point in our annotation
matrix, but rather cover the entire shaded area. While some existing solutions
such as the FAST model support this kind of extensibility on the model level—at
least for digital media types—we show that there is a lack of extensibility when
it comes to the architecture and application level.

To illustrate what we mean by a lack of extensibility on the annotation
architecture and application level, let us have a closer look at the MADCOW [6]
multimedia digital annotation system. As mentioned earlier, the authoring tool
for creating new multimedia annotations has been realised as a browser plug-in.
The tool currently deals with text, image and video annotations which is also
reflected through different visual elements such as media-specific buttons in the
MADCOW user interface. Let us consider what happens if it is decided that
a new media type, for example sound, should be supported by the MADCOW
annotation system. Since the authoring tool has been implemented as a single
monolithic component, the user interface would have to be extended to deal
with the new type of resource. This implies that for each newly introduced
media type, a new version of the user interface would have to be deployed.
Furthermore, since there is no flexible mechanism to dynamically extend the
set of supported media types on demand, each instance of the annotation tool
always has to support all existing types of resources even if a user works only
with a limited subset of these media types. Last but not least, often there is
not a single annotation tool but different versions (e.g. browser plug-in and
standalone component) making use of the same underlying annotation model.
Therefore, we have to ensure that the user interfaces of all existing annotation
tools are extended individually in order to support a single new media type.
This problem of extensibility on the annotation tool or application level is not
something that is present in MADCOW only, but rather is common to most
existing annotation solutions when faced with requirements to introduce new
media types. Our solution to deal with this extensibility problem is to make sure
that the visual definition of annotation anchors (selectors) for a specific resource
type is no longer part of the general annotation tool but realised in separate
visual plug-in components that can be automatically installed on demand.

We propose an architecture for an open cross-media annotation system based
on a cross-media annotation model that supports this form of extensibility.



The basic idea is that we have one or more annotation services that offer their
functionality to different client applications as shown in Fig. 2. A first important
thing to point out is that we make a clear distinction between the core annotation
and link service and any media-specific implementation. The annotation service
knows how to deal with the underlying annotation model presented in the next
section but any media-specific functionality is introduced via specific data plug-
ins. To extend the annotation service with a new media type, a data plug-in has
to be provided. An annotation service might be installed with an existing set
of data plug-ins, but plug-ins can also be downloaded and installed on demand
from different resource plug-in repositories (see dashed arrows in Fig. 2). Since
we aim for extensibility not only on the model and data layer but also on the
application level, a visual plug-in has to be developed in addition to the data
plug-in. While it seems to be obvious to separate the media-specific creation and
visualisation of annotation or link anchors from the general annotation tools, it
is exactly the current lack of this separation of concerns that makes it difficult
to flexibly extend existing annotation solutions with new media types.

Annotation/Link 
Service

Client Application

 Annotation/Link 
Browser & Editor

Visual Plug-ins

Resource Plug-in Repository

Data Plug-ins

Visual Plug-ins Data Plug-insVisual Plug-ins

Figure 2. Open cross-media annotation architecture

Since we do not want to force application developers to rewrite and change
their entire application to make use of our annotation service, we propose
a standalone annotation/link browser component that runs on the client
platform. The only required communication between a client application and the
annotation browser deals with information about the resource that is currently
accessed within the client application. Based on a unique resource identifier, the
annotation browser contacts the annotation service to get information about
any additional external annotation and link data that has been defined for the
given resource. The annotation browser also has to ensure that a visual plug-in
for the given resource type is installed. Each visual plug-in has basically two
purposes. First, it has to be able to render a specific resource type and visualise
any annotation anchors (defined by selectors) that have been defined within
that resource. Secondly, the visual plug-in has to provide some functionality
to create and delete resources as well as selectors. After the information about



the annotations has been retrieved from the annotation service, the annotation
anchors will be highlighted by the visual plug-in. In the case that an annotation
is selected within the annotation browser, a request is sent to the annotation
server to get supplemental information for the selected annotation. As soon as
another resource is accessed in the client application, the information shown
in the annotation browser is automatically updated. While the communication
and integration of existing applications with an annotation tool is not novel and
has already been used in related approaches, again the extensibility of these
annotation tools is often limited due to the fact that the application logic of the
tool deals with media-specific details.

Having presented the general idea of open cross-media annotation systems
along with the requirements for extensibility on both the data and application
levels, we will provide some details of how extensibility is achieved on each of
these levels in the next two sections.

4 Annotation Model

In this section, we start by looking at one of the proposed reference models for
annotation services before going on to present our general cross-media annotation
model that could be used as a basis for the implementation of such services.

Within the DELOS Network of Excellence on Digital Libraries6, a reference
model (DLRM) was defined to support more systematic research on digital
libraries and serve as a foundation for comparing the functionality of different
digital library implementations. We briefly outline the parts of the DELOS
reference model dealing with annotations. This enables us to position our model
in relation to the existing reference model as well as highlighting some of the
major differences arising from the goal and intended use of the model.

Resource

Resource Set

belongTo

hasPart

associatedWith

Purpose

Information Object

expressedBy
describedBy

hasMetadata

hasAnnotation Region

Policy

Quality Parameter

Resource Format

Resource Identifier

identifiedBy

hasFormat

hasQuality

regulatedBy

Ontology

expressedBy

expressionOf

isa

Figure 3. Digital library resource domain concept map

6 http://www.delos.info



Figure 3 shows parts of the digital library resource concept map as introduced
in the DLRM document [8]. The most general concept in the reference model is
the Resource which is used to represent any digital library entity. Particular
instances of digital library resources (e.g. text, videos and annotations) are
represented by the Information Object concept. A Resource defines some
characteristics which are shared by all the different types of resources. These
characteristics include a unique resource identifier, information about the
resource format and quality as well as specific resource policy information.

The definition of composite resources is supported through the hasPart rela-
tion whereas the linking of different resources is enabled by the associatedWith
relation. The annotation of arbitrary resources (or particular regions) with other
information objects is represented by the hasAnnotation relationship between
the Resource and Information Object concepts. Since we will pay special
attention to the annotation mechanism while comparing our model with the
reference model, we would also like to give the exact definition of an annotation
as provided in the DLRM document:

An Annotation is any kind of super-structural Information Object
including notes, structured comments, or links, that an Actor may
associate with a Region of a Resource via the <hasAnnotation>
relation, in order to add an interpretative value. An annotation must
be identified by a Resource Identifier, be authored by an Actor, and may
be shared with Groups according to Policies regulating it (Resource
is <regulatedBy> Policy). An Annotation may relate a Resource to
one or more other Resources via the appropriate <hasAnnotation>
relationship.

Candela et al. [8]

After this very brief overview of the concepts for annotating and linking
resources in the DELOS digital library reference model, we now introduce our
model. The first thing to note is the fact that our model is defined using the
OM data model [9] that integrates concepts from both entity relationship (ER)
and object-oriented data models and is intended to bridge the gap between
conceptual and implementation models. This means that our model can be
mapped directly to database structures and is therefore a step closer to the
realisation of annotation services than the typical reference models while still
being at the conceptual level.

As explained in Sect. 2, we treat an annotation as a special type of link
between two or more resources. Our annotation model is actually an application
and extension of our more general resource-selector-link (RSL) model [10] for
cross-media linking. The extended RSL model is shown in Fig. 4.

The OM model supports information modelling through a separation of
classification and typing. While typing deals with entities represented by
objects with attributes, methods and triggers, the classification through named
collections deals with the semantic roles of specific object instances. In Fig. 4,
collections are represented by the rectangular shapes with the membertype
specified in the shaded upper right part. The OM model provides a high-level



entity

link

Links

selector resource

(1,*)(1,*)

(1,1) (0,*)

(0,*) (0,*)

RefersTo

HasTargetHasSource

partition

HasProperties

parameter

Properties
(0,*)

(0,*)

HasResolver
contextResolver

Context
Resolvers

Entities
(0,*)

(0,*)

user

Users

parameter

Preferences

group

Groups

(0,*)

(0,*)
(0,*)

(0,*)

HasMembers

AccessibleTo

individual

Individuals

(0,*)

(0,*)

(1,1)

partition

Has
Preferences

(0,*)

layer

LayersOnLayer |HasLayers|

(1,1)

(0,*) (0,*)

(0,*)

|HasChild|
(1,*)

(0,*)

link

Structural
Links

link

Navigational
Links

partition

link

Annotations

CreatedBy

ResourcesSelectors

Figure 4. RSL-based annotation model

association construct, represented by an oval shape, which enables associations
between entities to be classified and manipulated directly. A ranking over an
association is indicated by placing the association’s name between two vertical
lines (e.g. ∣HasLayers∣). It is important to emphasise that OM also serves as a
modelling language for a set of object-oriented data management systems and
has been used to implement our link and annotation server (iServer) [11].

Similar to the Resource concept in the DLRM model, our annotation
model introduces the generic notion of an entity type and all entity instances
are classified and grouped by the collection Entities. As in the DELOS
reference model, an entity has different characteristics which are shared among
all specialisations of the entity type. Each entity is created by exactly one
individual which is represented in the model by the CreatedBy association.
Furthermore, access rights can be defined at entity level by the AccessibleTo

association. Note that these access rights can be granted on the group level or
to individuals as well as to combinations of groups and individuals. A set of
contextResolver instances can be associated with each entity which defines if
an instance is available within a specific context. Last but not least, arbitrary
properties (parameters) in the form of key/value pairs can be associated with
an entity by using the HasProperties association. This enables the extension
of entities with any additional metadata required by third party applications
without having to extend the core data model. To deal with complex metadata,
an entity can also be associated with other entities by using the concept of
a link introduced in the following paragraphs. The RSL model offers three
specialisations of the abstract entity concept represented by the resource,
selector and link subtypes.

The resource type represents any particular digital or physical resource
that has to be managed by the annotation and link model. It is similar to the
Information Object concept in the DLRM model. For each specific resource



type to be supported, a new resource subtype with media-specific characteristics
has to be defined via a resource plug-in mechanism.

The definition of links between different entities is supported by the link

type. A link can have one or multiple source entities and point to one or more
target entities which is reflected by the cardinality constraints on the HasSource
and HasTarget associations. As mentioned earlier, we treat annotations as
a special classification of links which is represented by the collection named
Annotations in our model. Note that by treating links and annotations as first-
class objects and at the same time modelling them as specialisations of the
entity type, we gain some flexibility compared to the DLRM model where links
are represented by the associatedWith relation. We can not only define links
between resources but also create links that have other links as source or target
objects. This enables us, for example, to easily add an annotation to a link;
something which is not possible in the DLRM model since the hasAnnotation

relationship cannot be defined over the associatedWith relation.

Often we want to link or annotate specific parts of a resource rather than
entire resources. In our model, we therefore introduce the selector type as
a third specialisation of the entity type. A selector is tightly coupled to a
specific resource type (over the RefersTo association) and enables the selection
of a specific part of a given type of resource. For example, a selector for
sounds might be time-based (i.e. from time ti to time tj) whereas a selector
for text documents could be based on character positions (i.e. from character
ci to character cj). It is up to the developer of a new resource plug-in to not
only provide an implementation for the specific resource type but also the
corresponding selector. Each selector is further associated with a layer which,
in the case of overlapping selectors, defines their precedence order.

How does our selector concept compare to the resource addressing functio-
nality offered by the DLRM model? In the DLRM model, specific regions of a
resource can be annotated by using the Region concept. However, the mechanism
for selecting a specific region of a resource is only available for the information
object to be annotated but not for the annotation itself. This means that, in
DLRM, only entire information objects can be used as annotations whereas, in
our RSL-based model, also parts of resources can be used to annotate other
entities. Another benefit of the selector concept and the modelling of links and
annotations as first-class objects becomes evident, if we revisit the concept of
links provided by the associatedWith relation in the DLRM model. There, links
can only be defined between entire resources whereas in our model we can use
the selector concept to create links between specific parts of different resources.

As described earlier, our RSL-based annotation model defines any access
rights at entity level. This has the advantage that we can not only specify if a
resource is available as supported in the DLRM model by the regulatedBy and
Policy concepts but also define access rights on the selector and link level. This
means that we can, for example, define that a selector which is used to annotate
a resource is only available for specific users whereas the resource itself may be



available for everybody. We can therefore specify access rights on a very fine
level of granularity and not just define if an entire resource is accessible or not.

The same flexibility that has just been described for accessing annotations,
links, resources and selectors based on user profiles is also applicable to the
context-specific information delivery based on the contextResolver concept
introduced earlier in this section. This implies that an annotation or any
other entity might only be accessible in a specific context. For example, some
annotations might only become available if the user has already accessed specific
resources beforehand.

A final remark has to be made about the representation of different types of
annotations in our annotation model. In Fig. 4, only a single type of annotation,
described by the Annotations collection, is shown. Of course it is easily possible
to distinguish different types of annotation by introducing further subcollections.
We can, for example, distinguish between formal and informal annotations as well
as comments, explanations and other types of annotations. Since the OM model
offers the possibility that an object can be a member of different collections, it is
even possible that an annotation has multiple classifications at the same time as
described in [12]. Annotea also offers a flexible classification of annotations via
the annotation subtype concept. A slightly different approach has been chosen in
FAST [7], where parts of an annotation can be classified via a specific meaning
mechanism.

Our annotation model introduces some flexibility in terms of the granularity
and the types of objects that can be annotated as well as used in annotations.
While the model has many similarities to existing solutions, for example the
DLRM model, it also shows that through generalisation and the treatment of
annotations and links as first-class objects, we become more flexible in cross-
annotating digital as well as physical content. While the presented model can
be extended to deal with new types of media by providing specific resource
and selector implementations, the management of cross-media annotation and
link information is only part of the problem to be addressed. Whereas other
annotation models such as the FAST model also deal with media extensions on
the model level, in the next section we investigate some of the problems arising
when this extensibility should be supported at the application and annotation
tool level. Based on our experience in implementing solutions for different types
of cross-media annotations, we propose an extensible and scalable architecture
for open cross-media annotation services.

5 Extensible Annotation Tools

After highlighting the requirements for extensible cross-media annotation ser-
vices and presenting our solution on the model layer, we now show how the
extensibility can be dealt with on the authoring tool and visualisation level. As
introduced earlier, the data plug-ins are responsible for persistently storing any
additional data that is required to support a new media type. In particular, a
specific implementation of the resource and selector concepts have to be provided



for each new data plug-in and the interface methods to create, read, update and
delete (CRUD) media-specific data have to be implemented.

The functionality of a visual plug-in is defined by an interface that has to
be implemented by concrete visual plug-in instances. Each visual plug-in has to
provide some functionality to define new resources as well as selectors which can
then be used as annotation sources or targets by the general annotation tool.
Furthermore, the interface defines a number of methods that are used by the
general annotation tool to get access to the selector or resource that is currently
selected within the visual plug-in. This is the only direct connection from the
annotation browser introduced earlier in Fig. 2 to arbitrary visual plug-ins.

The annotation browser can not only be used to browse existing annotations
but also as an authoring tool to define new cross-media annotations. In the
default setting, the annotation browser shows two main windows next to each
other as indicated in Fig. 5. The window on the left-hand side represents
the source document whereas the one on the right-hand side is for the
target document. The tool further provides functionality to create and delete
annotations (CRUD) as well as to deal with more general functionality of the
link model (RSL). To define an annotation for a given source document, the
user first selects the specific part of the resource to be annotated in the left
window and then annotates it with parts of the resource shown in the right
window. Note that as part of the annotation process, the user can not only select
existing resources but also create new annotation resource instances based on
the editing functionality offered by the visual plug-in. After selecting the ‘create
annotation’ command, the authoring tool gets access to the required selected
entities via the visual plug-in interface. Note that since this single dependency
between the authoring tool and any existing plug-ins is defined on the entity level
(resources or selectors), the authoring tool does not deal with any media-specific
implementation and therefore does not have to be changed at all to support a
new resource type via the visual plug-in mechanism.

The default setup with two adjacent windows for the source document and its
annotation is very similar to the configuration of the Memex described by Bush,
where also a source and target screen are available [13]. The major difference is
that in Bush’s vision there is only a single resource type (microfilm) available,
whereas in our case we have a potentially unlimited number of resource types
represented by the set of available data and visual plug-ins. Of course the type
of resources visualised in the two windows can be changed independently since
each window is managed by a separate instance of a visual resource plug-in.
Furthermore, different configurations of the annotation authoring tool with more
than two resource windows are also imaginable.

While the use of the annotation browser and authoring tool provides access
to external annotation services without any GUI changes to an existing client
application, it is also possible to integrate the visualisation functionality for
specific media types directly within the client application. A client application
can either make use of existing visual plug-ins or the functionality defined by the
visual plug-in interface can be implemented in an application-specific manner.



C
R
U
D

R
S
L

Menu

Annotation/Link Browser & Editor Web Browser Client

Source Window Target Window

Figure 5. Annotation browser and editor interfacing with external clients

For example, the right-hand side of Fig. 5 shows a web browser client with
a visual plug-in which we developed for the XHTML resource type. The web
browser client communicates with the annotation editor and can either act as a
substitute for the source or target window. The important thing to note is that
each resource type is treated separately through a specific plug-in. If a user selects
a highlighted annotation selector within the client, it will be checked whether
a visual plug-in for the linked annotation is available and, if so, the annotation
is visualised. In the case that there is no client-specific visualisation available,
the annotation browser will be used as a mediator to visualise the corresponding
annotation. This has the major advantage that we can add new types of resources
to our annotation service without the client application having to know about
them. Of course, if desired, the client application can then always be extended to
“natively” support the new media type as shown for the web browser extension.

In the annotation authoring process described earlier, we can not only define
the selectors within the authoring tool but also directly access information from
the visual plug-ins installed in external client applications. In this case, the client
application informs the annotation tool about the currently active selector which
has to be used as an annotation source or target. This has the advantage that,
for annotation-aware client applications (with the corresponding visual plug-ins),
any selections can be done directly within the application and only the command
to create the annotation has to be issued by using the annotation authoring tool.

Various applications have been realised based on the presented cross-media
annotation and link model. For that purpose, different plug-ins for digital
resources (e.g. web pages or movies) as well as physical resources (e.g. interactive
paper or RFID-tagged objects) have been implemented [11]. While our earlier
applications were based on a simpler client-server architecture, we are currently
implementing the described architecture which should finally result in the desired
open cross-media annotation and link service.

6 Conclusions

We have presented an architecture for an open cross-media annotation system
that can be dynamically extended with new media types. Through generalisation



and the treatment of annotations and links as first-class objects, the presented
RSL-based annotation model introduces some flexibility in comparison to
existing annotation models. While a number of existing annotation models
deal with extensibility on the model level, the corresponding extensibility is
missing on the authoring and visualisation level. We have presented an integrated
open cross-media annotation solution providing a sustainable annotation fabric
in terms of an extensible cross-media annotation model together with an
architecture that guarantees future extensibility and ensures that annotations
persist and can be reused over time.

References

1. Koivunen, M.R.: Semantic Authoring by Tagging with Annotea Social Bookmarks
and Topics. In: Proc. of SAAW2006, 1st Semantic Authoring and Annotation
Workshop, Athens, Greece (November 2006)

2. Christensen, B.G., Hansen, F.A., Bouvin, N.O.: Xspect: Bridging Open
Hypermedia and XLink. In: Proc. of WWW 2003, 12th Intl. World Wide Web
Conference, Budapest, Hungary (May 2003)

3. Agosti, M., Ferro, N.: A System Architecture as a Support to a Flexible Annotation
Service. In: Proc. of the 6th Thematic Workshop of the EU Network of Excellence
DELOS, Cagliari, Italy (June 2004)

4. Goose, S., Lewis, A., Davis, H.: OHRA: Towards an Open Hypermedia Reference
Architecture and a Migration Path for Existing Systems. Journal of Digital
Information 1(2) (December 1997)

5. Archer, D.W., Delcambre, L.M.L., Corubolo, F., Cassel, L., Price, S., Murthy, U.,
Maier, D., Fox, E.A., Murthy, S., McCall, J., Kuchibhotla, K., Suryavanshi, R.:
Superimposed Information Architecture for Digital Libraries. In: Proc. of ECDL
2008, 12th European Conference on Research and Advanced Technology for Digital
Libraries, Åarhus, Denmark (September 2008)

6. Bottoni, P., Civica, R., Levialdi, S., Orso, L., Panizzi, E., Trinchese, R.:
MADCOW: A Multimedia Digital Annotation System. In: Proc. of AVI 2004, Intl.
Working Conference on Advanced Visual Interfaces, Gallipoli, Italy (May 2004)

7. Agosti, M., Ferro, N.: A Formal Model of Annotations of Digital Content. ACM
Transactions on Information Systems (TOIS) 26(1) (November 2007)

8. Candela, L., Castelli, D., Ferro, N., Ioannidis, Y., Koutrika, G., Meghini, C.,
Pagano, P., Ross, S., Soergel, D., Agosti, M., Dobreva, M., Katifori, V., Schuldt, H.:
The DELOS Digital Library Reference Model - Foundations for Digital Libraries
(December 2007)

9. Norrie, M.C.: An Extended Entity-Relationship Approach to Data Management
in Object-Oriented Systems. In: Proc. of ER ’93, 12th Intl. Conference on the
Entity-Relationship Approach, Arlington, USA (December 1993)

10. Signer, B., Norrie, M.C.: As We May Link: A General Metamodel for Hypermedia
Systems. In: Proc. of ER 2007, 26th Intl. Conference on Conceptual Modeling,
Auckland, New Zealand (November 2007)

11. Signer, B.: Fundamental Concepts for Interactive Paper and Cross-Media
Information Spaces. PhD thesis, ETH Zurich (2006) Dissertation ETH No. 16218.

12. Decurtins, C., Norrie, M.C., Signer, B.: Putting the Gloss on Paper: A Framework
for Cross-Media Annotation. New Review of Hypermedia and Multimedia 9 (2003)

13. Bush, V.: As We May Think. Atlantic Monthly 176(1) (July 1945)


