
A Feature Modeling Approach for
Domain-Specific Requirement Elicitation

Olga De Troyer and Erik Janssens
Dept. Computer Science
Vrije Universiteit Brussel

Brussels - Belgium
{Olga.DeTroyer, erikjans}@vub.ac.be

Abstract— In this paper, we presented an approach for
domain-specific requirement elicitation. Building domain-specific
software requires the expertise of people with very different
background and with different levels of experience in software
development. This complicates the process of requirement
elicitation. The purpose of the approach is twofold. On the one
hand, we want to unlock available information on requirement
elicitation for particular domains. On the other hand, we want to
provide a mechanism for guiding the stakeholders (non-
computing as well as computing people) through the requirement
elicitation process in these domains. The approach is based on
Feature Modeling, a variability modeling technique used in
Software Product Lines. Furthermore, a tablet app has been
developed to support the approach. We demonstrate the
approach for two different domains, the domain of serious games
for children and the domain of e-shop web applications. A first
evaluation of the approach and the tool has been done by means
of two explorative case studies and resulted in positive feedbacks.

Index Terms—Requirement elicitation, Domain-specific, Tool
support, Feature modeling.

I. INTRODUCTION
In software engineering, more and more it is accepted that a

participatory design [1], where all stakeholders are actively
involved in the design process, helps in ensuring that the
software meets the needs of the users and will be successful.
The needs of the users are formulated during requirement
engineering. Requirement engineering consists of a number of
core activities: eliciting requirements, modeling and analyzing
requirements, communicating requirements, agreeing
requirements, and evolving requirements [2].

In domain specific software, i.e., software developed to
satisfy certain needs in a particular domain, domain experts and
possibly also end-users play an important role, especially
during requirement elicitation [3]. Requirement elicitation
comprises activities that enable the understanding of the goals,
objectives, and motives for building a proposed software
system and the requirements that must be satisfied by the
system in order to achieve these goals, as well as identifying
the system’s boundaries [2], [4]. However, domain experts and
end-users are usually no software engineers and may not be
knowledgeable about computing and requirement elicitation.
The stakeholders that we should involve in the requirement
elicitation are usually from different disciplines, with different

backgrounds, and with different levels of experience in
software development.

Different requirement elicitation techniques exist. For
interdisciplinary projects, group elicitation techniques, such a
brainstorming and focus groups, are often used to foster
stakeholder’s agreement and exploiting team dynamics to elicit
a richer understanding of the needs [2], [5]. However, from our
own experience in an interdisciplinary project, Friendly
ATTAC (http://www.friendlyattac.be/en/) aiming at the
development of a digital game against cyber bullying, we
believe that guidance is needed when using these techniques
with interdisciplinary stakeholders.

The members of the Friendly ATTAC research project
consist of social scientists, health psychologists, computer
scientists, and game developers. Requirement elicitation was
done by means of plenary meetings and buzz groups involving
different stakeholders: educational/youth stakeholders, e-safety
stakeholders, heath promotion stakeholders, and professional
game developers. Although these sessions were quite
successful in generating a lot of interactions and issues to
consider, in retrospect, we had the feeling that the meetings
could have been more efficient if there would have been more
guidance. Because of this lack of guidance, we were also not
sure if all relevant aspects that could influence the success of
the software (i.e., the serious game) had been taken into
consideration. Furthermore, we also observed a communication
gap between domain experts and software engineers, as also
reported by other researchers (e.g., [5]).

Because the production of high quality requirements
through effective elicitation is absolutely essential for the
engineering of successful software products [5], we decided to
investigate whether a domain-specific approach to requirement
elicitation could overcome some of the problems experienced.
The approach proposed is based on feature modeling, an
approach used in variability modeling [6] to express the
common and variable features in variable software, as well as
dependencies between features. We also developed a
lightweight tool to support the approach. It assists
interdisciplinary teams (consisting of the stakeholders with
different backgrounds, as well as software engineers) in the
requirement elicitation, allows optimizing the communication,
as well as making the requirement elicitation process more
effective and less time consuming.

The rest of the paper is structured as follows. Section II
formulates the objectives of the approach and Section III
presents background. Section IV explains the approach and
Section V discusses the tool developed to support the approach
and the evaluations performed. Section VI discusses related
work and Section VII concludes the paper.

II. OBJECTIVES
For specific domains, such as serious games (i.e., games for

a purpose other than pure entertainment) or web systems, a lot
of relevant information on how to develop an application is
already available. In general, the problem is that this
information is not readily available; it is usually scattered over
different sources or locked in the head of experienced people.
Software companies that are specialized in the development of
software for a certain domain may dispose of this information
but usually not in an explicitly form; their method for
requirement elicitation usually originated by experience and the
knowledge about how to perform a requirement elicitation
process needs to be transferred to new employees by means of
trainings or courses. Therefore, the goal of the approach is to
provide a mechanism that allows experienced people to capture
their knowledge about requirement elicitation in a specific
domain. Each domain has its own characteristics and therefore
different issues needs to consider during requirement elicitation
in different domains. For instance, for the domain of games, the
game genre and the reward system are important to consider,
while this is not the case for other domains. For some domains,
different lists of issues could be possible as different people
and companies may use different methods for the requirement
elicitation or there could be different types of applications. For
broad domains, it will not be possible to come to a very
detailed list of issues to consider, but the more specific the
domain, the more detailed the list of issues can be made. For
example, we could consider making a list of issues for the
development of web applications, however it is more useful to
subdivide this domain of web applications into different
subdomains corresponding with different website genres (such
as e-shops, news sites, or corporate website) and create a list of
issues to consider for each subdomain.

As argued in the introduction, we should also support the
requirement elicitation by making the discussions of the
different stakeholders (including the requirement engineers)
much more focused and efficient, resulting in more thoughtful
software. Furthermore, the participants should be guided to
consider all relevant aspects and issues concerning the
requirements elicitation in the given domain. This requires a
mechanism that allows expressing which issues need to be
considered, which could be considered, and what are the
different decisions and possible choices that should be made
during the requirements elicitation for a particular domain.

The main objectives for our approach are summarized
below. Note that the users of the approach are the stakeholders
involved in requirement elicitation: domain experts, end-users,
and other relevant parties, but also requirement engineers. The
objectives of the approach are:

O1. The users should be able to take the required decisions
and provide the necessary information regarding the
purpose and characteristics of the application, i.e., the
approach should support requirement elicitation in the
context of a particular domain. Note that other
requirement engineering activities such as modeling and
analyzing are outside the scope of the approach.
O1.1. The approach should guide the users through the

requirement elicitation process using a predefined
set of issues to consider, ensuring that all relevant
aspects are considered as far as possible.

O1.2. The approach should allow distinguishing between
issues required to consider and optional issues
because some issues may not be applicable for the
case at hand.

O1.3. The approach should allow providing possible
options and alternatives, whenever possible, for
decisions that should be taken. This is necessary as
not all users will be aware of all possible options
and alternatives. Note that for some issues it may
not be possible to provide predefined options and
alternatives.

O1.4. The approach should allow indicating the impact of
choices. The choice of an option or alternative may
have an impact on the options and alternatives
available for other issues, e.g., in educational games
the choice for a certain pedagogical approach may
limit the choice for the reward mechanisms. It is
important to be able to draw the attention of the
user on this.

O2. The approach (or its tool) should be usable in meetings
and by people with different backgrounds (i.e., casual
users as well as software professionals).

O3. The approach should be generic, meaning that it should
be usable for different domains.

III. BACKGROUND
To model and structure the issues to consider, options and

alternatives, and dependencies between options and alternatives
we use a particular Feature Modeling technique, Feature
Assembly [7]. Feature modeling was chosen because it
perfectly fit the requirements for our domain-specific
requirements elicitation approach. Feature modeling (e.g., [6])
is one of the most commonly used domain analysis techniques
for variability modeling and is used to express the common and
variable features in variable software or so-called Software
Product Lines [8]. In Feature Assembly, features can be
decomposed into more fine-grained features and can be
mandatory or optional. It is possible to specify different options
for a feature. A cardinality constraint is used to indicate the
number of options that can be selected. Also dependencies
between features can be expressed. An example of a feature
model in the context of software variability is given in Fig. 1.
The feature model specifies a Quiz Software Product Line. It
models all the features that could exist in a particular Quiz
application and how they are related. Features are graphically
represented as rectangles. An abstract feature (dotted rectangle)

is used to indicate that different options are possible. The
possible options are given by the specification relation (an
arrow pointing to the abstract feature), and the minimum and
maximum number of options that can be selected is given by a
cardinality constraint (notation “min:max”). An abstract feature
is a source of variability. Dependencies between features can
be specified textual or graphically. Examples of possible
dependency types between features are “excludes” (i.e., two
features exclude each other) and “requires” (i.e., including one
feature requires the inclusion of the other feature).

Fig. 1: Example of a (Partial) Feature Model (modified after [7])

A configuration of a feature model is a consistent selection
of a set of features available in the feature model that describes
a particular application (i.e., a member of the Software Product
Line described by the feature model). A feature model permits
a configuration if and only if it does not violate the relations,
constraints, and dependencies imposed by the model.

IV. FEATURE MODELING BASED APPROACH
Feature models perfectly fit the requirements for our

domain-specific requirements elicitation approach, and thus we
use this modeling technique to predefine the issues to consider,
the options and alternatives available, and the dependencies.
However, note that we only use feature modeling as an
information modeling technique. We don’t use it to define an
actual software product line.

As one of the purposes of the approach is to involve non-IT
users into the requirement elicitation process (next to
requirements engineers), we do not use the term feature. We
invented the term “guidea” (a portmanteau word for “guided”
and “idea”) and use this for what is called a feature in feature
modeling. The term GuideaTemplate is used for the concept of
feature model, and the term GuideaMap for the concept of
configuration.

An overview of the different steps in the process of our
approach is illustrated in Fig. 2 (using UML activity diagram).
The process is as follows: A requirement-engineering expert
creates a GuideaTemplate (i.e., feature model) for a specific
domain. This GuideaTemplate can then be used for the

requirements elicitation of different applications in the domain.
For this, the stakeholders involved in the requirement
elicitation of a specific application start from the given
GuideaTemplate and create a GuideaMap (i.e., a configuration
of the given feature Model). From this GuideaMap a textual
document can be generated containing the requirements
formulated and the decisions taken. Also a more formal
specification (e.g., XML-based) is generated for import into
other tools for further processing, e.g., modeling & analysis.

Fig. 2: Process of the Approach

Fig. 3: GuideaTemplate (partial) for the Domain of Serious Games for

Children

Fig. 4: GuideaTemplate for the Domain of E-shop Web Applications (adapted

from [10])

To demonstrate the approach, GuideaTemplates have been
created for the domain of serious games for children and for e-
shop web applications. A full description of the
GuideaTemplate for educational-oriented serious games for
children is explained in [9]. Fig. 3 provides a partial view on
the feature model (GuideaTemplate) for this domain. The
GuideaTemplate was created based on information collected
from the literature and during brainstorm sessions with the
technological stakeholders of the Friendly ATTAC project, and
from our own experience in developing serious games.

Fig. 4 provides the GuideaTemplate for e-shop web
applications. The GuideaTemplate for e-shop web applications
was developed by a master student in the context of his thesis.
To create this GuideaTemplate, the student examined a large
amount of e-shop websites to extract the features used in this
kind of web applications.

V. TOOL SUPPORT
To support our approach, we develop a graphical software

tool. The tool is a tablet (iPad) app that provides an easy and
intuitive interface for the underlying GuideaTemplates, i.e.,
feature models. We opt for a tablet app, as tablets are easier to
use in meetings and less intrusive than traditional laptops,
especially when one wants to provide a device to all
participants of the meeting. Next to the fact that the tool should
support the objectives formulated for our approach (Section II),
we also formulated the following additional requirements:
R1. The tool should provide explanations for the different

issues. This is necessary as not all people involved in the
requirement elicitation will be familiar with all
terminology.

R2. The tool should allow capturing the motivations for the
choices made and issues (not) considered. This allows
documenting the process.

R3. The tool should be able to visualize the choices made.
This allows the users to keep track of the elicitation
process as well as of the choices made.

R4. The user should be able to change decisions already made
and view the alternative choices again. This is needed
because during discussions, it is possible that people
change their mind.

R5. The tool should allow exporting the results in a textual
and readable form. This is needed to support
documenting the requirements in a textual form.

R6. The tool should have an easy to use graphical user
interface. Obvious, as the target users include non-
computer scientists (i.e., casual users).

Based on these requirements, we have opted for an

interface comparable to the interfaces of mind-mapping tools
(e.g., iThoughtsH1, XMind2, SimpleMind+3). A mind map is a
diagram used to connect thoughts and ideas based on the
concept of Radiant Thinking [11]. The main subject is placed
in the center and thoughts and ideas radiate from this main
subject in a hierarchical way. In a similar way, in our tool, the
root of the feature model is placed in the center and the sub-
features radiate from this central feature. The tool provides an
easy to use “point, tap, and drag” user interface (Objective O2
and Requirement R6). Fig. 5 provides a screenshot of the tool
while using the GuideaTemplate for the domain of Serious
Games for Children.

Each guidea (i.e., feature) is represented as a rounded
rectangle and contains the name of the guidea and an
explanation of this issue and why and/or when to consider it
(Requirement R1). For example, one issue to consider in the
domain of Serious Games for Children is ‘Age Range’ and its
explanation could be ‘The age of the player may influence
different aspects of the game. Therefore, specify the age range’.
Double tapping on a guidea will open the guidea and allow the
user to enter comments. The comments are used to document

1 www.ithoughts.co.uk/iThoughtsHD/
2 www.xmind.net/
3 www.simpleapps.eu/simplemind/

decisions taken and their motivations, or to write down things
to be remembered (Requirement R2).

A guidea can have sub-guideas. For example, in Fig. 5 the
guidea ‘Resources’ is decomposed into ‘Time’, ‘Budget’, and
‘People’. A guidea is connected to its sub-guideas by means of
arrows pointing towards the sub-guideas. The starting point is
the root guidea, in Fig. 5 called ‘My serious Game’, which
allows providing a short description of what the user wants to
achieve with the game, and (in this template) decomposed into
sub-guideas: ‘User Aspects’, ‘Pedagogical Aspects’, ‘Game
Aspects’, ‘Context of Use’, ‘Resources’, and ‘Implementation
Aspects’, which are on their turn decomposed (but not all
unfolded in Fig. 5).

Not all guideas are mandatory to consider. The optional
guideas are connected by dotted lines, the mandatory guideas
by a solid line (Objective O1.2). An optional guidea can be
deselected, but deselected guideas are still visible (grayed out –
see Fig. 5. for some examples) and can be reselected
(Requirement R4).

For some issues, a set of predefined options is available
from which the user can select one (or more – depending on the
guidea) (Objective O1.3). Such a guidea (which corresponds to
an abstract feature in Feature Assembly) is represented as a
small yellow colored rounded rectangle. An example is
‘Platform’ (see Fig. 6). For this guidea, the user can select one
or more options from the available list: ‘PC’, ‘Mac’,
‘Smartphone’, and ‘Tablet’. Options that cause a conflict or
require the selection of other options (for other guideas), are
marked with a red exclamation mark in the icon and the
required and/or conflicting options are shown when the user
taps the ‘i’ button on the right side of the option (Objective
O1.4) (see Fig. 7).

Like in mind mapping tools, the sub-guideas of a guidea
can be collapsed and unfolded (Requirement R3), dragging and
resizing is also possible, as well as changing the color of
guideas.

The GuideaMap created (so far) can be exported as text
(Requirement R5), as well as in an exchange format.

The app can work with different templates, satisfying
Objective O3. The GuideaTemplates can be loaded at run time.

VI. EVALUATION
To evaluate our approach, as well as the associated tool, we

decided to use case studies [12]. Setting up an experimental
evaluation would require the specification of an artificial
scenario, which would not allow us to evaluate the approach
but merely the usability of the tool. The use of real live case
studies allows us to evaluate the usability of the tool, as well as
the approach. Therefore, we conducted two explorative case
studies, both in the domain of serious games, aiming to build
initial understanding of the usability and effectiveness of
GuideaMaps tool and the underlying approach.

Fig. 5: GuideaMaps Screenshot

Fig. 6: Options for the Guidea Platform

The first case study was an informal case study, to obtain
initial feedback on the usability of the proposed approach and
tool and with the aim of deciding whether it was worth
pursuing in this direction. This case study was done with two
team members of the Friendly ATTAC project (age between 23
and 30). Both had been involved in the plenary session
mentioned in the introduction and volunteered to participate in
the evaluation session. The two persons involved had a

background in Communication Science and no experience with
tablets, requirement analysis, or game development.

Because, at the time we conducted this evaluation, most of
the requirements for the serious game to be developed were
already discussed (although in an ad-hoc way), in this
evaluation session we mainly focused on the usability of the
tool, and its capabilities to document the decisions taken.

Fig. 7: Indicating the Impact of Choices

After a short introduction explaining the goals of the
session and a short demonstration of the tool (5 minutes), an
iPad with the app loaded with a Serious Game GuideaTemplate
was handed over to the participants. They were asked to enter
the available information about their serious game in the tool
while we monitored their behavior. They were encouraged to
think aloud. Getting started and entering the information took
about 40 minutes. Afterwards, we asked the participants for

feedback, suggestions for improvement, and the
completeness/relevance of the provided GuideaTemplate. This
was done in an informal way and lasted 10 minutes.

In general, the participants provided positive feedback and
were impressed by the functionality of the tool, as well as by
the completeness of the template. They concluded that the tool
could be “very useful in meetings to capture, in a structured
way, the different decisions and make the necessary progress”.

The second case study was conducted with a Computer
Science master student who wanted to develop a serious game
for children as part of his master thesis. As the participant was
familiar with tablets, we were looking for feedback about the
learnability of the app for this kind of users, as well as about
the underlying approach. A preconfigured iPad was handed
over to the participant with only a very short explanation about
the purpose of the tool and the question to use it for his own
requirement elicitation. We also asked if he would be prepared
to fill in a questionnaire afterwards and be interviewed. There
was no benefit for the student to be biased about the tool. This
participant had experience with developing games in his free
time.

After he finished the requirement elicitation phase for his
project, we asked him to fill in the online Computer System
Usability Questionnaire4. The scores were all positive; on a
scale from 1 (strongly disagree) to 7 (strongly agree) he gave 5
times 6, 11 times 5, 2 times 4, and one 3. The lower scores (4
and 3) were due to some known bugs and limitations of the
tool: score 4 was on the questions “The system gives error
messages that clearly tell me how to fix problems”, “The
information (such as online help, on-screen messages, and
other documentation) provided with the system is clear”, and
the score 3 was on the question “Whenever I make a mistake
using the system, I recover easily and quickly”; the negative
aspects that he mentioned were also all about known bugs and
limitations. As positive aspects, he listed: “Easy to use”, “Good
overview”, “Gives a good insight into the requirements of the
project”. Next, we conducted an interview to obtain more
information about (a) the background of the participant: his
experience with developing games, use of tablets, and
familiarity with mind maps, (b) his opinion on the
GuideaTemplate, and (c) his opinion on the provided
functionality of the tool and our proposals for new features.
Overall, the interview confirmed the positive evaluation of the
questionnaire. He had no problems to start using the tool,
purpose and terminology was clear. He was satisfied with the
GuideaTemplate provided, he was not missing any issues, and
quite some issues made him think more rigorously about his
project and were even inspiring (e.g., the possibility to use a
buddy, and the alternatives provided for reward system).
Concerning the questions related to missing functionality and
proposals for extra functionality, he was not asking for major
new functionality. Two of the more advanced features that we
proposed were considered as “may be interesting”, i.e., (1) to
be able to add new guideas or to add extra options for a guidea
while using the map, and (2) to have a more structured
comment field (i.e., divided into different sections including

4 hcibib.org/perlman/question.cgi?form=CSUQ

decision and motivation). He was not interested in a
functionality to automatically solve conflicts with
dependencies, as he considered this too dangerous. He was
also fine with the current layout and saw no advantage in using
a hierarchical layout. He did mention some usability issues:
need for a better zooming, the possibility to hide some
information at a certain level of detail, to provide different
coloring rules (e.g., per level, per sub tree), and an export
function to an image format.

Although both case studies resulted in a positive evaluation,
it is not possible to generalize these results, because of the
explorative nature of the case studies. For this, more case
studies are needed, which are planned.

In the meantime, we also plan to extend the tool with some
new functionality, e.g., allow the user to add, within certain
limits, new guideas, as well as new options for abstract
guideas. We would allow this because it may be hard to
predefine all possible items and/or options at the time of
defining the GuideaTemplate and we don’t want to block
creativity by predefining everything in advance. On the other
hand, we should also be careful with providing such a
functionality as users may start to introduce issues that are
already available in the template but maybe under a different
name or lower in the decomposition, or introduce their own set
of issues and ignoring the predefined ones, which would
bypass the original purpose of the tool.

The app can be used by individuals (like in the two
evaluations) but also in meetings. During a meeting, the
participants can go together through the issues, or they can
prepare for the meeting by going through the issues in advance
and discuss them afterwards in the meeting. However, note that
we have not yet evaluated the tool in a meeting setting. Also no
specific functionality is yet provided to support teamwork, such
as functionality to keep track of who has decided what, when,
and why. This is planned for a next version.

VII. RELATED WORK
PROPEL [13] aims to guide users through the process of

creating behavioral properties specifications, which are often
used in requirements engineering to describe important aspects
of a systems behavior. The emphasis of PROPEL is on
constructing rigorous mathematical-based specifications. The
approach is based on templates represented as “disciplined’
natural language and finite automata. Our work is also based on
templates but doesn’t aim for a formal specification of the
requirements. We are also not focusing on behavioral
requirements. In [14], the templates are represented as
Questions Trees that ask users a hierarchical sequence of
questions about their intended properties. This hierarchical
format guides users through the process and provides for each
question, a set of alternative answers. The Questions Trees are
basically decisions trees and much more restricted than our
approach, for instance a user can select only one answer to each
question and based on the answer selected new questions are
presented to the user.

ORE [3] is an ontology based requirement elicitation
method. A domain ontology is used to capture domain

knowledge. The domain ontology is used for semantic
processing of requirements descriptions written in natural
language and for detecting incompleteness and inconsistency
[15], which is a different purpose than ours. Daramola et al.
[16] also use domain ontologies but combine them with
requirement boilerplates, which is a pre-defined structural
template for writing statements. This work is specific for
requirements about the security aspects of a software system.
Compared to our approach, their focus is on imposing a
uniform structure on the way requirements are written. In the
same way, Toro et al. [17] proposed linguistic patterns, which
are natural language requirement descriptions that can be
reused, and requirements patterns that are generic requirements
templates that can be reused with some adaptation. The concept
of requirements pattern is based on the same principles as the
well-known design patterns. Different requirement patterns for
different domains have been defined, e.g., Konrad & Cheng
[18] defined such patterns for embedded systems, and Li et al.
[19] identified requirements patterns for seismology software
applications. Others proposed a common structure for specific
types of requirements patterns language, e.g., Roher &
Richardson [20] proposed such a format for environmental
sustainability requirements.

For the domain of scientific computing projects, Smith &
Lai [21] proposed a specific requirement template, but the
terminology used in the template is not very accessible. Li et al.
[22] propose a domain specific requirement model for scientific
computing projects. They evaluated the model and the results
indicated that it facilitated the communication across the
domain boundary. Their model is specific for the domain of
scientific computing and still quite general (only containing
requirement types such as performance, data flow, process, and
data definition).

Bryant et al. [23] discussed domain-specific software
engineering and point out that “the move from general-purpose
to domain-specific representation has the potential to greatly
impact the field of software engineering by allowing domain
experts and end-users (who are not software engineers and do
not understand traditional programming languages) to describe
their computational needs in a representation that is familiar to
them (i.e., based on domain abstractions and notations).” They
also point out that requirement specification should be carried
out in a domain-specific manner, but they see domain-specific
requirement languages as the way to achieve this. We are not
aiming for the development of domain-specific requirement
languages.

Coulin et al. [5] also discuss the lack of systematic
guidelines and flexible methods for requirements elicitation.
Furthermore, they argue that no two software development
projects are exactly the same, and therefore all projects cannot
be adequately supported by a single static method. Therefore,
they propose creating a situational method for requirements
elicitation. The authors propose a systematic approach that
provides the ability to engineer and tailor situational methods
based on specific project characteristics. In their work, the
focus is on engineering a dedicated method for requirements
elicitation, which we don’t aim for.

Also mind maps have been used for requirement elicitation,
e.g., [24], [25], [26], [27], [28]. However, our approach is not
based on mind maps (but on feature models), we only use a
user interface that is very similar to the ones used for mind
maps. Note that Wanderley et al. [27] use mind maps as a first
step towards the creation of feature models, which is different
from our goal.

VIII. CONCLUSION & FURTHER WORK
In this paper, we presented an approach for domain-specific

requirement elicitation. More and more, the stakeholders that
should be involved in the requirement elicitation are from
different disciplines, with different backgrounds, and with
different levels of experience in software development. This
complicates the process of requirement elicitation.

The purpose of the approach is twofold. One the one hand,
we want to unlock available information on requirement
elicitation for particular domains. On the other hand, we want
to provide a mechanism for guiding the stakeholders (non-
computing as well as computing people) through the
requirement elicitation process.

The approach is based on Feature Modeling. The issues to
consider for a particular domain during requirement elicitation
are modeled by means of a feature model. Furthermore, a tablet
app has been developed to support the approach. The app
provides explanations for the different issues to consider,
indicates which issues are required and which are optional,
provides possible options and alternatives, indicates the
impacts of choices, and allows documenting choices made and
issues considered.

The approach has been demonstrated for two different
domains, the domain of serious games for children and the
domain of e-shop web applications. The approach and the
associated tool have been positively evaluated by two
explorative case studies. Limitations and further work have
been discussed.

ACKNOWLEDGMENT
This work is partially supported by the Agency for

Innovation by Science and Technology (Belgium)
(www.iwt.be) under the Friendly ATTAC project. We also like
to acknowledge the people involved in the evaluation of the
tool, Katrien Van Cleemput, Sara Bastiaensens, and Dieter Van
Thienen, as well as our PhD student Pejman Sajjadi for
creating the e-shop GuideaTemplate.

REFERENCES
[1] M. J. Muller and S. Kuhn, “Participatory design,”

Commun. ACM, vol. 36, no. 6, pp. 24 –28, 1993.
[2] B. Nuseibeh and S. Easterbrook, “Requirements

Engineering  : A Roadmap,” in Proceedings of the
Conference on the Future of Software Engineering, 2000,
vol. 1, pp. 35–46.

[3] H. Kaiya and M. Saeki, “Using Domain Ontology as
Domain Knowledge for Requirements Elicitation,” 14th
IEEE Int. Requir. Eng. Conf., pp. 189–198, Sep. 2006.

[4] B. H. C. Cheng and J. M. Atlee, “Research Directions in
Requirements Engineering,” in Future of Software
Engineering (FOSE ’07), 2007, pp. 285–303.

[5] C. Coulin, D. Zowghi, and A. E. K. Sahraoui, “A
Lightweight Workshop-Centric Situational Approach for
the Early Stages of Requirements Elicitation in Software
Systems Development,” in Proceedings of the
International Workshop on Situational Requirements
Engineering Processes (SREP 2005), France, 2005, pp.
136–151.

[6] S. Buhne, K. Lauenroth, and K. Pohl, “Modelling
requirements variability across product lines,” in 13th
IEEE International Conference on Requirements
Engineering (RE’05), 2005, pp. 41–50.

[7] L. Abo Zaid, F. Kleinermann, and O. De Troyer,
“Feature assembly: a new feature modeling technique,”
in Conceptual Modeling--ER 2010, 2010, pp. 233–246.

[8] J. Bosch, Design and Use of Software Architectures:
Adopting and Evolving a Product-line Approach.
Pearson Education, 2000, p. 354.

[9] O. De Troyer and E. Janssens, “Supporting the
requirement analysis phase for the development of
serious games for children,” Int. J. Child-Computer
Interact., In Press, available online
http://www.sciencedirect.com/science/article/pii/S22128
68914000099, 2014.

[10] P. Sajjadi, “Adapting WSDM to incorporate Web
Application Patterns,” Vrije Universiteit Brussel
(Belgium), 2012.

[11] T. Buzan and B. Buzan, “The Mind Map Book How to
Use Radiant Thinking to Maximise Your Brain’s
Untapped Potential,” New York Plume, 1993.

[12] J. Lazar, J. Feng, and H. Hochheiser, Research Methods
in Human Computer Interaction. John Wiley & Sons,
2010.

[13] R. L. Smith, G. S. Avrunin, L. A. Clarke, and L. J.
Osterweil, “PROPEL: An Approach Supporting Property
Elucidation,” in Proceedings of the 24th international
conference on Software engineering - ICSE ’02, 2002,
pp. 11–21.

[14] R. Cobleigh, G. Avrunin, and L. Clarke, “User guidance
for creating precise and accessible property
specifications,” in Proceedings of the 14th ACM
SIGSOFT international symposium on Foundations of
software engineering, 2006, pp. 208–218.

[15] H. Kaiya and M. Saeki, “Ontology Based Requirements
Analysis: Lightweight Semantic Processing Approach,”
in Fifth International Conference on Quality Software
(QSIC’05), 2005, pp. 223–230.

[16] O. Daramola, G. Sindre, and T. Moser, “A Tool-based
Semantic Framework for Security Requirements
Specification,” J. Univers. Comput. Sci., vol. 19, no. 13,
pp. 1940–1962, 2013.

[17] A. D. Toro, B. B. Jiménez, A. R. Cortés, and M. T.
Bonilla, “A Requirements Elicitation Approach Based in
Templates and Patterns,” in WER, 1999, pp. 17–29.

[18] S. Konrad and B. H. C. Cheng, “Requirements patterns
for embedded systems,” in Proceedings IEEE Joint
International Conference on Requirements Engineering,
2002, pp. 127–136.

[19] Y. Li, C. Pelties, M. Kaser, and N. Nararan,
“Requirements patterns for seismology software
applications,” in 2012 Second IEEE International
Workshop on Requirements Patterns (RePa), 2012, pp.
12–16.

[20] K. Roher and D. Richardson, “Sustainability requirement
patterns,” in 2013 3rd International Workshop on
Requirements Patterns (RePa), 2013, pp. 8–11.

[21] W. S. Smith and L. Lai, “A new requirements template
for scientific computing,” in Proceedings of the First
International Workshop on Situational Requirements
Engineering Processes--Methods, Techniques and Tools
to Support Situation-Specific Requirements Engineering
Processes, SREP, 2005, vol. 5, pp. 107–121.

[22] Y. Li, N. Narayan, J. Helming, and M. Koegel, “A
domain specific requirements model for scientific
computing,” Proceeding 33rd Int. Conf. Softw. Eng. -
ICSE ’11, p. 848, 2011.

[23] B. R. Bryant, J. Gray, and M. Mernik, “Domain-Specific
Software Engineering,” in FoSER’10 Proceedings of the
FSE/SDP workshop on Future of software engineering
research, 2010, pp. 65–68.

[24] K. Hiranabe, “StickyMinds | Agile Modeling with Mind
Map and UML.” [Online]. Available:
http://www.stickyminds.com/article/agile-modeling-
mind-map-and-uml. [Accessed: 29-May-2014].

[25] I. Mahmud and V. Veneziano, “Mind-mapping: An
effective technique to facilitate requirements engineering
in agile software development,” in 14th International
Conference on Computer and Information Technology
(ICCIT 2011), 2011, pp. 157–162.

[26] J. Jaafar, M. Atan, and N. A. A. H. Nazatul,
“Collaborative Mind Map tool to facilitate Requirement
Elicitation,” in 3rd International Conference on
Computing and Informatics, ICOCI 2011, 2011, pp. 214–
219.

[27] F. Wanderley, D. S. da Silveira, J. Araujo, and M.
Lencastre, “Generating feature model from creative
requirements using model driven design,” in Proceedings
of the 16th International Software Product Line
Conference on - SPLC ’12 -volume 1, 2012, p. 18.

[28] J. A. P. Contó, W. F. Godoy, R. H. Cunha, E. C. G.
Palácios, A. LErario, A. L. S. Domingues, J. A.
Gonçalves, A. S. Duarte, and J. A. Fabri, “Applying
Mind Maps at Representing Software Requirements,” in
Contributions on Information Systems and Technologies,
2013, pp. 1–5.

