
Interactive Paper as a Reading Medium in
Digital Libraries

Moira C. Norrie, Beat Signer, and Nadir Weibel

Institute for Information Systems
ETH Zurich

8092 Zurich, Switzerland
{norrie,signer,weibel}@inf.ethz.ch

Abstract. In digital libraries, much of the reading activity is still done
on printed copies of documents. We show how digital pen and paper
technologies can be used to support readers by automatically creating
interactive paper versions of digital documents during the printing
process that enable users to activate embedded hyperlinks to other
documents and services from printed versions. The approach uses a
special printer driver that allows information about hyperlinks to be
extracted and stored at print time. Users can then activate hyperlinks
in the printed document with a digital pen.

1 Introduction

Even in digital libraries, paper still plays an important role as many users print
documents before reading them. Various studies have analysed the affordances of
paper behind this preference for reading on paper [1]. One notable reason is the
ease with which paper documents can be annotated in various ways. However,
once a document is printed, it stands in isolation having lost its connections to
other documents and services that have become characteristic of digital libraries.
Specifically, embedded hyperlinks in HTML, PDF or MS Word documents are
no longer active and often invisible in the printed versions.

We have shown previously how digital pen and paper technologies can be
used to create interactive paper documents that link the paper and digital
worlds [2]. We believe that these technologies could also be beneficial for readers
in digital libraries by automatically creating interactive paper versions of digital
documents during the printing process. In this paper, we describe how we
have achieved this by developing a special printer driver that allows us to
extract and store hyperlink information at the time of printing. Users can then
activate hyperlinks on paper using a digital pen. At the same time, handwritten
annotations can be digitally captured and later accessed in the digital world.

The main issue was how to provide a general model and framework that allows
hyperlink definitions for paper documents to be generated on demand at the time
of printing. The anchors of the hyperlinks are shapes within a physical page
defined in terms of (x,y) coordinates based on the physical layout of the printed
document which may or may not correspond to that of the digital document.

B. Christensen-Dalsgaard et al. (Eds.): ECDL 2008, LNCS 5173, pp. 232–243, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Interactive Paper as a Reading Medium in Digital Libraries 233

Nowadays it is common for content management systems to provide special print
formats for documents. Also, users may control certain features of the digital
rendering through font selections, window re-sizing etc. We present a general
approach for creating hyperlink definitions within paper documents based on an
analysis of the digital source and describe how this has been integrated into a
general framework for interactive paper documents.

Section 2 provides an overview of related work. Interactive paper technology is
introduced in Sect. 3. Our approach and the underlying architecture are presented
in Sect. 4, while the mechanisms used to define and generate hyperlinks within
printed pages are described in Sect. 5. Concluding remarks are given in Sect. 6.

2 Related Work

The integration of actions performed on paper documents with digital media was
investigated in the DigitalDesk project [3] where a camera mounted over a desk
was used to track a user’s hand movements on paper documents and translate
them into digital actions. The Origami project [4] extended the DigitalDesk
approach by dealing with interactions from printed web pages. In this system,
HTML documents are rendered as postscript files and the positions and link
targets of all embedded hyperlinks are recorded in the application’s registry.
If the printout of such an HTML document is used on the DigitalDesk and
detected by the over-desk camera, links can be activated by pointing to the
specific positions within the paper document and the corresponding digital web
page is projected onto the desk next to the printed document. Both of these
systems require a complex infrastructure and are limited in terms of mobility.

Other research projects and commercial products focus on the identification
of, and interaction from, single elements within a paper document such as pages
or paragraphs. Both the PaperClick1 and the Wiziway2 applications allow the
creation of links on paper defined by means of printed place holders such as linear
barcodes or pictograms. Other approaches, including the InfoPoint project [5] or
more recent commercial products such as ScanLife3, make use of 2D-barcodes
placed on paper sheets which can be captured with regular digital cameras
available in mobile phones.

Recent research projects such as PaperPoint [6] and Print-n-Link [7] have
demonstrated how digital pen and paper technologies such as Anoto4 can be
used to turn paper documents into interactive objects. A hyperlink within a
paper document is defined in terms of an active area and the action of touching
the paper with a digital pen within this area activates the link. This technology
provides the potential for users to interact with printed documents using the
digital pen in a way that closely mimics interaction in a normal desktop browser
using a mouse. PaperPoint allows PowerPoint presentations to be controlled and
1 http://www.paperclick.com
2 http://www.wiziway.com
3 http://scanbuy.com
4 http://www.anoto.com

234 M.C. Norrie, B. Signer, and N. Weibel

annotated from printed handouts, while Print-n-Link allows users to search for
scientific publications on the web and then print interactive paper versions that
give information about citations through an audio channel and can activate web
searches for cited documents.

ProofRite [8] is another system based on Anoto technology that maps between
digital and paper versions of the same document. It allows free-form annotations
on the paper version of a text document to be included at the same physical
location within the digital source document.

Ideally, users of digital libraries should be able to print any form of document
such as web pages, PDF files and MS Word documents and immediately start
interacting with these using a digital pen. While this may seem simple compared
to some of the systems described above, it is important to consider the exact
nature of the mapping between the digital and physical documents required
in each case. In the case of PaperPoint, templates were manually authored
that link specific areas on a presentation handout to fixed actions in the
PowerPoint application such as showing the first slide or the next slide. So
when a presentation handout is printed, all links are pre-defined and the system
simply has to add the required Anoto pattern. Other systems such as Print-
n-Link only deal with PDF documents where there is a direct correspondence
between positions on paper and positions within the digital document. Similarly,
in ProofRite, handwritten annotations are captured and simply embedded into
the digital version of that document at the same positions. So in the case of
ProofRite and Print-n-Link, there is a simple one-to-one mapping between the
digital and paper documents.

Our goal was to be more general and not only handle cases where there is a
one-to-one mapping between the digital and paper versions of documents. This
happens more and more often nowadays as content management systems provide
special print formats for digital documents or users want to control features of
the digital or physical renderings. This means that we had to develop a general
printing tool that would analyse documents during the printing process to
extract information about hyperlinks and generate corresponding link definitions
within an interactive paper framework.

3 Interactive Paper

A number of digital pens based on Anoto functionality are now available
commercially. These pens work on an almost invisible dot pattern that encodes
(x,y) positions within a vast virtual document space. A camera within the
digital pen processes information encoded within the dot pattern in real-time
resulting in up to 70 (x,y) positions per second. The technology was originally
developed for the digital capture of handwriting. Multiple handwritten pages
can be captured and stored within the pen before being transferred to a PC
via a Bluetooth or USB connection. Hitachi Maxell and Logitech have recently
released digital pens based on Anoto functionality that can also be used in
streaming mode where position information is transmitted continuously. This

Interactive Paper as a Reading Medium in Digital Libraries 235

Camera

Processor

Memory

Battery

Ink
Cartridge

0.3 mm

(a) Anoto technology (b) Pointing to a printed page

Fig. 1. Interactive paper web page

enables the pens to be used for real-time interaction as well as writing capture.
Figure 1(a) provides an overview of the basic Anoto technology.

Various frameworks have been developed to deal with interactions from
an Anoto-enabled paper document. The Anoto SDK [9] supports the simple
post-processing of the data captured by the digital pen within a paper form,
while the PaperToolkit framework [10] created at Stanford University, the
PADD system [11] from the University of Maryland and the iPaper/iServer
infrastructure [2] developed at ETH Zurich allow more complex real-time
interactions to be managed. By using a general link server for interactive paper
such as the iServer platform, it is possible to define active areas on paper and
bind them to digital resources such as images, videos and web pages or to digital
services. The digital pen can then be used in much the same way on paper
documents as a mouse would be used during web browsing sessions to follow
links to other web resources or trigger application calls.

In order to select active areas on paper, these areas first have to be authored and
the paper document has to be Anoto-enabledby covering it with the corresponding
dot pattern. In Print-n-Link [7], interactive paper versions of scientific papers
available in PDF can be created automatically at the time of printing by simply
selecting a special printer driver that will add Anoto pattern allocated dynamically
from the available pattern space. The necessary active areas are automatically
generated by analysing the PDF document at printing time for information about
citations. In the rest of the paper, we describe how we have generalised this
approach to deal with cases where there is not a simple one-to-one mapping
between the digital document and the physical rendering on paper.

4 Printer Driver for Interactive Paper Documents

To embed hyperlinks within the printed instance of a document and define the
corresponding active areas, we have to identify the exact position on paper of
all link elements (e.g. a word, a sentence or an image). We therefore intercept
the publishing process, extract all link information before printing and map

236 M.C. Norrie, B. Signer, and N. Weibel

these to shapes within the paper instance. The exact positions on paper are
determined from the physical representation of the document specified in a
Page Description Language (PDL). The main objective of PDLs is to enable
the independence of a document from the software used to render it on the
screen, the operating system and the printing device: A document should not
differ when displayed on different machines or printed on different printers. The
best known PDLs are Adobe’s PostScript (PS) [12] and Portable Document
Format (PDF) [13], but there exist other emerging formats such as the Microsoft
XML Paper Specification (XPS) [14], an XML-based paginated representation
of a document that is based on the Microsoft Extensible Application Markup
Language (XAML) and released with Microsoft Vista and Office 2007. Our
approach may be applied to different PDLs, however, in this paper, we describe
how it was implemented based on XPS.

To examine the process in detail, we will consider the case of printing HTML
web pages since nowadays it is frequently the case that the printed versions
differ significantly from the digital versions and there is not a simple one-to-one
mapping between them. We note, however, that the approach and architecture
are general and different types of documents can be handled by integrating
appropriate plug-ins. Our PaperWeb plug-in enables the printing of interactive
web pages in such a way that the paper documents are automatically augmented
with Anoto functionality and all hyperlinks can be activated using a digital pen.
Thus, a user may point to a paper-link—a hyperlink on paper—activate its target
and open the linked page within a desktop browser. Currently the system works
with the Mozilla Firefox browser.

The basic architecture of PaperWeb is outlined in Fig. 2. The browser first
locates the hyperlinks and then sends the complete XHTML Document Object

Fig. 2. PaperWeb architecture

Interactive Paper as a Reading Medium in Digital Libraries 237

Model (DOM) to our special printer which generates an XPS version of the
web page.

In order to extract the hyperlink information, we implemented a Firefox
extension which is activated when the user prints an interactive web page. The
extension analyses the DOM tree of the XHTML document and retrieves all
hyperlinks. In the current implementation, we look for <a href> (anchor) and
<area> tags, but the system can easily be extended to support other elements.
During the printing process, the printer driver augments the document with
Anoto pattern and sends it to the physical printer. The XPS representation
that contains the retrieved hyperlinks is forwarded to the iDoc framework [15]
which extracts both the information about the position and target of each link.
We implemented a specific content analyser for the iDoc content mapper that
is responsible for mapping physical elements rendered in the XPS document to
their digital counterparts within the web page. By analysing the XPS document
in terms of the the shapes and tags that it contains, the semantic mapper
creates a link between the printed instances of every linked element and its
representation within the digital source document. For every hyperlink, a paper-
link is created by publishing its position and size together with the target address
to the interactive paper plug-in (iPaper) of the iServer platform.

Once the document is printed, users may immediately interact with the paper
version using a digital pen. Pen positions on paper are transmitted via Bluetooth
to the iPaper client which forwards a request to iServer. If the position is within
a paper-link active area, then the link target will be displayed in the user’s
browser. If the pen position is elsewhere on a page, it can be assumed that
the document is being annotated and a special capture component called. The
capture is completed when the pen leaves the paper for a fixed time or touches
a paper-link. One of the issues is what happens to such annotations. A minimal
approach is to simply record them and attach them to a page. More advanced
solutions may attach them to specific elements within a page or to even interpret
them as commands as is done in the paper-based editing system PaperProof [16].
Further, the issue of where they will be stored and how they will be visualised will
very much depend on the type of the document and also the general architecture
of the system. For example, in the case of a PDF document, it would be possible
to attach the annotation to the corresponding position within the digital version.
In the case of a web page, it assumes that a browser is used that supports
annotation, for example Amaya5. It is beyond the scope of this paper to discuss
these options in detail, but we emphasise that while it is a straightforward matter
to capture handwritten annotations with a digital pen, the complexities come
from how they are then handled within a particular digital library system.

5 Paper Hyperlinks

Web designers often define specific layouts of a web page allowing web authors
to add text, graphical content or animations in predefined regions. Web page
5 http://www.w3.org/Amaya/

238 M.C. Norrie, B. Signer, and N. Weibel

layouts help to define the appearance of a page in a way that is independent of a
web browser, the client’s display resolution or the size of the windows. However,
this implies that the information contained within the predefined regions may
reflow in order to adapt to a client’s preferences. Figure 3 shows the same web
page rendered in two different sizes within a Firefox web browser. Note that while
the left and right columns remain more or less the same, there is a reflowing of
the text in the middle column.

(a) Maximised web page (b) Resized web page

Fig. 3. Different page representations

When printing a web page, its representation changes again depending on the
web browser used and the paper size. The physical representation of the page on
paper normally differs from the one displayed on the screen, since some elements
such as the background or menus may be removed and the font size adapted to
the paper size. A printed version of the web page in Fig. 3 is shown in Fig. 4
and, as one can see, there is a simpler version of the header component without
graphics and links, and no menu column.

In order to access the hyperlinks from paper, we have to determine their physi-
cal position at the time of printing. Since we cannot rely on the representations of
the web page displayed on the screen, we need to be able to map elements within
a digital representation of a document to areas within the printed instance. We
use a two-step process that consists of first highlighting link elements within the
digital document to create shapes that can later be retrieved to define the active
areas within a physical page.

Hyperlink Highlighter

The XHTML DOM model stores all elements and objects contained within a
web page as a tree. The hyperlinks are also stored within the DOM tree and are
accessible by parsing the tree. Regardless of the object representing the hyperlink

Interactive Paper as a Reading Medium in Digital Libraries 239

Fig. 4. Printed web page version

(text, graphic, video, etc.), it is always possible to locate it and extract the target
address of that hyperlink.

Since information about hyperlinks is lost during the printing process, we
introduce the concept of a highlighter to generate graphical shapes around link
elements. Our Firefox extension analyses the DOM tree during the publishing
process, extracts information about the document structure and defines bounding
boxes for each hyperlink based on the JavaScript code shown in Figure 5.

For each link element, a PaperWeb division element (<div>) is created and
special style commands are applied to create the highlighting box. The bounding
boxes are invisible for the user but are rendered into the paginated XPS version of
the web page. The hyperlink element is copied from the DOM tree and included in
the PaperWeb <div> element. We also need the target address of the original web
page hyperlink which is extracted from the DOM anchor element and inserted as
a new division element into the existing PaperWeb <div> element. This second
division element contains a textual, visible representation of the target address
and is positioned in the top-left corner of the parent <div> element. After the
PaperWeb division element has been defined, it is placed before the original anchor
element within the DOM tree and the anchor element is then removed.

After the highlighting phase, the web page is transformed into a physical
representation through XPS. Since the highlighting shapes are part of the web
page, they are not lost during the printing process and may be retrieved from
the physical web page representation. Figure 6 shows an extract of a web page
during the highlighting phase. Note that, in the figure, the highlighted shapes
have been emphasised by the light blue colour but normally they are not visible
to the end user.

Hyperlink Retriever

Having generated a physical representation of the web page containing the
highlighted hyperlinks, we still need to retrieve their position and target

240 M.C. Norrie, B. Signer, and N. Weibel

function paperweb(){
var hrefs = window.content.document.getElementsByTagName(’a’);

var areas = window.content.document.getElementsByTagName(’area’);

highlight(hrefs);

highlight(areas);

}

function highlight(els){
for(var i = 0; i < els.length; i++){

var href=els[i];

var target = href.href;

var targetNode= window.content.document.createTextNode("idocRes:"+ target);

var my node = href.cloneNode(true);

var div paperweb = window.content.document.createElement(’div’);

var div link = window.content.document.createElement(’div’);

div paperweb.setAttribute(’class’, ’paperweb’);

div paperweb.setAttribute(’style’, ’position:relative; display: inline;

background-color:lightblue;’);

div link.setAttribute(’class’, ’paperweb link’);

div link.setAttribute(’style’, ’display:inline; position:absolute; color:red;

font-size:1px; left:0; top:0;’);

div link.appendChild(targetNode);

div paperweb.appendChild(my node);

div paperweb.appendChild(div link);

href.parentNode.insertBefore(div paperweb, href);

href.parentNode.removeChild(href);

}
}

Fig. 5. PaperWeb Firefox extension

addresses in order to generate link definitions that can be imported into the
iPaper/iServer platform for interactive paper. We first locate the highlighted
hyperlinks by analysing the XPS, then calculate their exact position on the page
and finally extract the information about the target address.

An XPS file is basically a ZIP archive containing a set of XML files—one file
for each physical page—describing the structure of the page on a graphical level.
All fonts and embedded images are included in the ZIP archive. Glyphs elements
are used within XPS to represent a sequence of uniformly formatted text and
Path elements are used to add vector graphics and raw images to an XPS page.
Figure 7 shows an example of the XML representation of a Glyphs and a Path
XPS element. The position of a Glyphs element is characterised by the OriginX
and OriginY attributes. The FontUri attribute defines the font to be used,
Indices represents the distances between single characters composing a glyph
and UnicodeString contains the glyph’s actual text content. The geometry and
the position of graphics is handled by the Data attribute of Path elements.

The blue boxes visible in Fig. 6 are rendered in XPS with a Path object
and defined as four points within the Data element as shown in Fig. 7(b). The
hyperlink’s target is rendered as a Glyphs object containing a special iDocRes

Interactive Paper as a Reading Medium in Digital Libraries 241

Fig. 6. Highlighted hyperlinks

<Glyphs

Fill="#ff000000"

FontRenderingEmSize="4.32017"

FontUri="/Documents/1/Resources/Fonts/

083FE3E4-4F2E-85D9-B082CEBD4F5E.odttf"

StyleSimulations="None"

OriginX="54.08" OriginY="105.92"

Indices="40;55;43;3;61;88;85;76;70;75"

UnicodeString="ETH Zurich"/>

(a) Glyphs element

<Path

Fill="#ffACDCE8"

Data="F1 M 54.08,101.6 L 78.08,

101.6 78.08,106.72 54.08,106.72 z"

/>

(b) Path element

Fig. 7. XPS element representation

identifier. By analysing the position and the size of the blue boxes, it is easy
to find the objects that it contains. Every box contains exactly two elements:
the hyperlink target rendered as a glyph, which may be identified through
the iDocRes identifier, and a second element which is either a Glyphs or a
Path element, depending on the hyperlink’s source element (text or graphics).
By iterating over all boxes, we can identify all hyperlinks defined within the
source web page and extract the position and size of their bounding boxes.
This information is finally exported to iServer which is responsible for mapping
the active paper area defined by the bounding box to the corresponding digital
service which will open the target web page within a web browser.

For this purpose, three iServer/iPaper entities are created: a rectangular
shape, an active component and a link. The shape element defines the exact
dimensions and position of the box within the printed document page. The
active component specifies the service to be called if a user touches a shape with
the digital pen. We use a BROWSER active component specifying the target web
address to be opened within the default browser. Finally, a link entity is used
to associate the shape with the corresponding active component. Figure 8 shows
an XML extract of a single PaperWeb link definition within the iServer/iPaper
framework.

242 M.C. Norrie, B. Signer, and N. Weibel

<rectangle id="paperweb shape eth" creator="paperweb" layer="linkLayer"

resource="paperweb eth 1">

<name>PaperWeb Rectangle for ’ETH Zurich’</name>

<upperLeft>

<point><x>14</x><y>27</y></point>

</upperLeft>

<size><width>6</width><height>1</height></size>

</rectangle>

<activeComponent id="paperweb ac eth" creator="paperweb">

<name>PaperWeb AC for ’ETH Zurich’</name>

<properties>

<parameter>

<key>org.ximtec.iserver.ac:uri</key>

<value>https://www.ethz.ch<index EN/value>

</parameter>

</properties>

<identifier>org.ximtec.iserver.activecomponent.BROWSER</identifier>

</activeComponent>

<link id="paperweb link 1" creator="paperweb" sources="paperweb shape eth"

targets="paperweb ac eth">

<name>PaperWeb Link for ’ETH Zurich’</name>

</link>

Fig. 8. iServer XML link definition

6 Conclusions

We have described a general approach for creating interactive paper versions of
digital documents during the printing process based on digital paper and pen
technologies. This allows users to read documents on their preferred medium
of paper without losing the links to other documents and services typically
represented by embedded hyperlinks. Details were given of a specific plug-
in that enables web pages to be printed as interactive paper documents.
The demonstration of the PaperWeb solution includes the presentation of the
different processing steps as well as digital pen-based interaction with interactive
printed web pages.

References

1. Sellen, A.J., Harper, R.: The Myth of the Paperless Office. MIT Press, Cambridge
(2001)

2. Norrie, M.C., Signer, B., Weibel, N.: General Framework for the Rapid
Development of Interactive Paper Applications. In: Proceedings of CoPADD 2006,
1st International Workshop on Collaborating over Paper and Digital Documents,
Banff, Canada, pp. 9–12 (November 2006)

Interactive Paper as a Reading Medium in Digital Libraries 243

3. Wellner, P.: Interacting With Paper on the DigitalDesk. Communications of the
ACM 36(7) (July 1993)

4. Robinson, P., Sheppard, D., Watts, R., Harding, R., Lay, S.: Paper Interfaces to
the World-Wide Web. In: Proceedings of WebNet 1997, World Conference on the
WWW, Internet & Intranet, Toronto, Canada (November 1997)

5. Kohtake, N., Rekimoto, J., Anzai, Y.: InfoPoint: A Device that Provides a Uniform
User Interface to Allow Appliances to Work Together over a Network. Personal and
Ubiquitous Computing 5(4), 264–274 (2001)

6. Signer, B., Norrie, M.C.: PaperPoint: A Paper-Based Presentation and Interactive
Paper Prototyping Tool. In: Proceedings of TEI 2007, First International
Conference on Tangible and Embedded Interaction, Baton Rouge, USA, pp. 57–64
(February 2007)

7. Norrie, M.C., Signer, B., Weibel, N.: Print-n-Link: Weaving the Paper Web.
In: Proceedings of DocEng 2006, ACM Symposium on Document Engineering,
Amsterdam, The Netherlands (October 2006)

8. Conroy, K., Levin, D., Guimbretière, F.: ProofRite: A Paper-Augmented Word
Processor. In: Demo Session of UIST 2004, 17th Annual ACM Symposium on User
Interface Software and Technology, Santa Fe, USA (October 2004)

9. Anoto, A.B.: Development Guide for Service Enabled by Anoto Functionality
(February 2006)

10. Yeh, R.B., Klemmer, S.R., Paepcke, A.: Design and Evaluation of an Event
Architecture for Paper UIs: Developers Create by Copying and Combining.
Technical report, Stanford University, Computer Science Department (2007)

11. Guimbretière, F.: Paper Augmented Digital Documents. In: Proceedings of UIST
2003, 16th Annual ACM Symposium on User Interface Software and Technology,
Vancouver, Canada, pp. 51–60 (November 2003)

12. Adobe Systems Inc.: PostScript Language Reference Manual
13. Adobe Systems Inc.: PDF Reference, Adobe Portable Document Format. 5th edn.

Version 1.6 (February 2006)
14. Microsoft Corporation: XML Paper Specification, Version 1.0 (October 2006)
15. Weibel, N., Norrie, M.C., Signer, B.: A Model for Mapping between Printed and

Digital Document Instances. In: Proceedings of DocEng 2007, ACM Symposium
on Document Engineering, Winnipeg, Canada (August 2007)

16. Weibel, N., Ispas, A., Signer, B., Norrie, M.C.: PaperProof: A Paper-Digital Proof-
Editing System. In: Proceedings of CHI 2008, ACM Conference on Human Factors
in Computing Systems, Florence, Italy (April 2008)

	Interactive Paper as a Reading Medium in Digital Libraries
	Introduction
	Related Work
	Interactive Paper
	Printer Driver for Interactive Paper Documents
	Paper Hyperlinks
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

