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ABSTRACT
Multimodal interfaces have shown to be ideal candidates for
interactive systems that adapt to a user either automatically or
based on user-defined rules. However, user-based adaptation
demands for the corresponding advanced software architec-
tures and algorithms. We present a novel multimodal fusion
algorithm for the development of adaptive interactive systems
which is based on hidden Markov models (HMM). In order to
select relevant modalities at the semantic level, the algorithm
is linked to temporal relationship properties. The presented
algorithm has been evaluated in three use cases from which
we were able to identify the main challenges involved in de-
veloping adaptive multimodal interfaces.
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INTRODUCTION
Multimodal interaction has been shown to enhance human-
computer interaction by providing users with an interaction
model that is closer to human-human interaction than stan-
dard interaction via mouse or keyboard. By providing users
with a number of different modalities and by offering them
the possibility to use these modalities either in a complemen-
tary or in a redundant manner, multimodal interfaces take ad-
vantage of the parallel processing capabilities of the human
brain [25]. Furthermore, due to the different ways on how
modalities can be combined, multimodal interfaces have the
potential to adapt to a user, by offering them one or multiple
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preferred schemes of interactions. However, research on the
combination or fusion of different modalities has progressed
slower than the appearance of new modalities. In particu-
lar, fusion-related topics such as the dynamic adaptation of
fusion engines, for example with help of machine learning
techniques, still need to be addressed in more detail by the
scientific community [21].

In this article, we present a novel algorithm for the fusion of
input modalities in multimodal interfaces. In the past few
years, we focussed on studying different aspects of multi-
modal input fusion. To this end, a framework for the pro-
totyping of multimodal interfaces, called HephaisTK, has
been developed. HephaisTK allows developers to focus on
the creation of their multimodal applications, without having
to worry about the integration of input libraries, input data
normalisation, concurrency management or the implementa-
tion of fusion algorithms. The HephaisTK framework comes
along with a number of fusion algorithms for managing input
data. Among the different algorithms, a symbolic-statistical
fusion algorithm based on hidden Markov models (HMMs),
which offers the possibility to take a user’s feedback into ac-
count, has been developed. While this novel multimodal fu-
sion algorithm represents a first major contribution of our pa-
per, a second contribution is the identification of a number
of challenges to be overcome for the introduction of user-
induced automatic multimodal interface adaptation based on
some of our initial explorations.

We start by presenting related work on prototyping tools and
multimodal fusion algorithms with respect to the adaptation
to the user and context. The following section introduces
the HephaisTK framework and its architecture, as well as the
SMUIML language, on which the presented algorithm has
been built. The HMM-based fusion algorithm that we used
for the user adaptation is then presented and we describe how
to integrate such an algorithm in a typical multimodal sys-
tem. This is followed by an evaluation of our HMM-based
algorithm. Finally, we provide some conclusions and outline
possible future work.

RELATED WORK
Research on fusion algorithms and prototyping tools for mul-
timodal interactive systems has been an active field during
the last two decades. In this section, we are going to intro-
duce the state of the art on fusion algorithms for multimodal
interactive systems, provide a summary of notable results on



prototyping tools and give an overview on adaptation to user
and context.

Fusion of Multimodal Input Data
On a conceptual level, Sharma et al. [29] consider the data,
feature and decision levels for the fusion of incoming data.
Each fusion scheme can operate at a different level of analy-
sis of the same modality channel. Data-level fusion consid-
ers data from a modality channel in its rawest form, where
fusion is generally used on different channels of the same
modality, in order to enhance or extract new results. Adap-
tation of data-level fusion typically focusses on taking into
account contextual information to improve results. Feature-
level fusion is used on tightly coupled, synchronised modal-
ities, such as speech and lip movement. Low-level features
extracted from raw data are usually processed with machine-
learning algorithms. Adaptation on the feature level can be
used when multiple data sources provide data for the same
modality. Decision-level fusion is the most common type of
fusion in interactive multimodal applications, because of its
ability to extract meaning from loosely coupled modalities.
Complex forms of adaptation can be applied on the decision-
level, including the adaptation to the number of users, user
profiles or device. On an algorithmic level, typical decision-
level fusion algorithms are frame-based fusion, unification-
based fusion and hybrid symbolic-statistical fusion.

• Frame-based fusion [18] uses data structures called frames
or features for the meaning representation of data coming
from various sources or modalities.

• Unification-based fusion [30] is based on the recursive
merging of attribute/value structures to obtain a logical
meaning representation. However, both frame-based as
well as unification-based fusion rely on a predefined and
non-evolutive behaviour.

• Symbolic-statistical fusion [6, 31] is an evolution of stan-
dard symbolic unification-based approaches, which adds
statistical processing techniques to the fusion techniques
described above. These hybrid fusion techniques have been
demonstrated to achieve robust and reliable results. A clas-
sical example of a symbolic-statistical hybrid fusion tech-
nique is the Member-Team-Committee architecture used in
Quickset [9]. However, these techniques need training data
specific to the targeted application.

On a modelling level, the CARE properties as defined by
Coutaz and Nigay [10] show how modalities can be com-
posed. Note that CARE stands for complementarity, assign-
ment, redundancy and equivalence. Complementary modali-
ties will need all modalities for the meaning to be extracted,
assigned modalities allocate one and only one modality to
each meaning, redundant modalities state that all modalities
can lead to the same meaning and equivalent modalities as-
sert that any modality can lead to the same meaning. The
difference between redundancy and equivalence is the way in
which cases with multiple modalities occurring at the same
time are dealt with.

Multimodal Authoring Frameworks
Quickset by Cohen et al. [9] is a speech/pen multimodal inter-
face based on the Open Agent Architecture1, which served as
a test bed for unification-based and hybrid fusion methods.
The integration of multimodal input fusion with the mod-
elling of multimodal human-machine dialogues was intro-
duced by IMBuilder and MEngine [4], which both make use
of finite state machines. In their multimodal system, Flippo
et al. [14] use a parallel application-independent fusion tech-
nique, based on a software agent architecture. In their sys-
tem, fusion has been realised by using frames. After these
original explorations, the last few years have seen the appear-
ance of a number of fully integrated tools for the creation of
multimodal interfaces. Among these tools are comprehen-
sive open source frameworks such as OpenInterface [28] and
Squidy [20]. These frameworks share a similar conceptual
architecture with different goals. While OpenInterface tar-
gets pure or combined modalities, Squidy was created as a
particularly effective tool for streams composed of low level
data. Finally, in contrast to the linear, stream-based architec-
ture adopted by most other solutions, the Mudra [16] frame-
work adopts a service-based architecture. However, few of
these tools provided services to test, use and compare multi-
ple fusion algorithms.

Adaptation to User and Context
When considering user adaptation, different ways of adapt-
ing the user interface can be considered. On the one hand, the
user interface can be created in such a way that it will adapt
automatically and without any user intervention. The adap-
tation can thus be performed automatically to the context of
use or to the user. On the other hand, users can be given the
possibility to modify the user interface in a proactive way.
More formally, Malinowski et al. [23] proposed a complete
taxonomy for user interface adaptation. Their taxonomy is
based on four different stages of adaptation in a given in-
terface, namely initiative, proposal, decision and execution.
Each of these adaptations at the four different stages can be
performed by the user, the machine or both. López-Jaquero et
al. proposed the ISATINE framework [22]. This framework
introduces seven stages of adaptation including the goals, the
initiative, the specification, the application, the transition, the
interpretation as well as the evaluation of adaptation. Interest-
ingly, while adaptation has been investigated for traditional
WIMP interfaces [5] or context-aware mobile interfaces [1],
less work has been devoted to user-induced adaptation in the
context of multimodal interfaces. Octavia et al. [24] explored
adaptation in virtual environments, especially on how to build
the user model.

The HephaisTK framework that we are going to present in the
next section and in particular a novel adaptive multimodal fu-
sion algorithm, contribute to this currently not much explored
research on user-induced adaptive multimodal interfaces.

HEPHAISTK FRAMEWORK
Before we present our new solution for user-induced adapta-
tion in multimodal interaction, we introduce the framework in
1http://www.openagent.com



which the new algorithm has been integrated, since its archi-
tecture, modules and scripting language influenced the choice
we made in terms of our user adaptation solution.

HephaisTK is a framework that has been built to help de-
velopers in creating multimodal interfaces via a range of
tools [12]. The HephaisTK framework shown in Figure 1
offers engineers a framework which manages, stores and
presents data coming from a number of input recognisers
in an uniform way, with the possibility to query past input
events. Second, the tool provides different multimodal in-
put data fusion algorithms, including a classical implementa-
tion of frame-based fusion as well as our novel algorithm pre-
sented in the next section. Third, multimodal human-machine
dialogue is described by means of a high level modelling lan-
guage, called SMUIML, which is linked to the CARE prop-
erties [10]. Compared to the tools in the related work sec-
tion, HephaisTK focusses on the study of fusion algorithms,
as well as on the high level modelling of multimodal human-
machine interaction through the SMUIML language.
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Figure 1. HephaisTK architecture

Developers of multimodal interfaces define the behaviour of
their multimodal interface in a configuration file loaded by
HephaisTK. This configuration file defines which recognisers
to use (input/output level), how an event is triggered and how
it is linked to the human-machine dialogue (event level), and
the various states of the dialogue and the transitions between
these states are specified (dialogue level). The adaptation
level links the dialogue with contextual and user information.
To model this human-machine dialogue for a specific client
application, the SMUIML language has been developed [13].

The SMUIML language is divided in three different layers
dealing with different levels of abstraction as shown in Fig-
ure 2. The lowest level specifies the different modalities
which will be used in the context of an application, as well
as the particular recognisers to be used to access the differ-
ent modalities. The middle level addresses input and out-
put events. Input events are called triggers whereas output

events are called actions. Triggers are defined per modality
and therefore not directly tied to specific recognisers. They
can express different ways to trigger a particular event. For
example, a speech trigger can be defined in such a way that
“clear”, “erase” and “delete” will all lead to the same event.
Actions are the messages that the framework will send to the
client application. The highest level of abstraction in Fig-
ure 2 describes the actual human-machine dialogue by means
of defining the contexts of use and interweaving the differ-
ent input events and output messages between those differ-
ent contexts, as well as link to adaptation-related information.
The resulting description takes the form of a state machine, in
a similar way as Bourguet’s IMBuilder [4]. The combination
of modalities is defined based on the CARE properties as well
as the (non-)sequentiality of input triggers.

context 1 context 2

Triggers
=======
(trigger 1)
PAR_AND
(trigger 2)

Actions
=======
(action 1)
(action 2)

1st
recogniser

2nd
recogniser

Java client
applica-
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dialogue
level
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 level

input/output
 level

transition

Human

Machine

user & context model                        adaptation level

Figure 2. SMUIML and its three levels of abstraction

To come back to the overall HephaisTK architecture, an in-
tegration committee is in charge of interpreting the multi-
modal input data in order to create a suitable answer for
the user. The different components of the integration com-
mittee are shown in Figure 1. The FusionManager and
FissionManager are linked to the DialogManager
which informs them about the current state of the interac-
tion and what they can expect as input information. The
DialogManager relies on the interpretation of the appli-
cation-specific SMUIML script for managing the interaction.
The FusionManager focusses on the interpretation of in-
coming input data based on information provided by the
DialogManager. It also encapsulates the different avail-
able fusion algorithms. In addition to a classic frame-based
multimodal fusion algorithm, we have developed an HMM-
based multimodal fusion algorithm which is described in the
next section.

HMM-BASED MULTIMODAL FUSION ALGORITHM
As presented in the previous section, the HephaisTK frame-
work has been designed to serve as a test platform for multi-
modal input data fusion algorithms. Based on HephaisTK,
different algorithms including our new machine learning-
based fusion algorithm have been implemented and tested.



The idea of mixing the adaptiveness of machine learning-
based recognition algorithms with the expressive power of
higher level rules is getting more attention recently, with ex-
amples demonstrating the overall effectiveness in recognition
rates and expressiveness of such hybrid approaches [7]. How-
ever, symbolic-statistical approaches, such as the ones men-
tioned in the related work section, tend to not take into ac-
count temporal relationships between modalities, which we
believe is a necessary feature of fusion algorithms for mul-
timodal interactive systems. Furthermore, the adaptation to
user behaviour has only been sparsely studied. We also have
to stress that machine learning algorithms have mainly been
used for multimodal input fusion at the feature level to typ-
ically improve the recognition results of a specific modality
or in offline analysis systems such as biometrics or meeting
browsers. However, at the decision level, purely rule-based
approaches such as frame-based or unification-based fusion
have been the norm so far.

Goals of the Algorithm
When considering which type of machine learning should be
used, hidden Markov models have been prioritised because
of their easy adaptation to time-related processes. Hidden
Markov models have historically been used in temporal pat-
tern recognition tasks, such as speech [19, 26], handwriting
or gesture recognition. Since the fusion of input data also
focusses on time-dependant patterns, HMMs have been seen
as one of the obvious choices when considering the differ-
ent alternatives among statistical models. Due to the fact that
SMUIML models the human-machine interaction via states,
the transition from the dialogue model to a Markov process
is relatively straightforward. Hidden Markov models have al-
ready been used for tasks such as video segmentation [17]
or biometric person recognition [8] using multimodal input
data at the data or feature level. However, to the best of our
knowledge, HMMs have not yet been applied for the fusion
of multimodal input events at the decision level in the context
of real-time multimodal human-machine interfaces.

Our goals when designing the new multimodal fusion algo-
rithm were threefold:

1. Consider a class of machine learning algorithm which has
shown its efficiency at modelling the flow of time events
and thus is ideally suited for the modelling of multimodal
human-computer interaction.

2. In the fusion recognition process take into account a set
of the most likely results from probability-based modality
recognisers, such as speech or gesture recognisers.

3. Be able to adapt and correct results from the fusion algo-
rithm on-the-fly based on user feedback.

Hidden Markov Models
As presented by Rabiner [26], hidden Markov models are
based on discrete Markov processes, in particular discrete
time-varying random phenomenons for which the Markov
property holds. In place of directly observing the states of the
discrete Markov process, a hidden Markov model observes
the (hidden) states through a set of stochastic processes that

produce the sequence of observations. The most likely se-
quence of states, given a set of observations, is extracted by
the Viterbi algorithm [15]. Finally, the training of hidden
Markov models is achieved with help of the Baum-Welch al-
gorithm [2], a particular case of a generalised expectation-
maximisation algorithm.

Algorithm in Action
The first challenge when integrating HMMs as fusion algo-
rithms for multimodal interaction is to map the features and
states to the actual human-machine interaction model. In our
case, data fed to the HMM will be semantic-level informa-
tion, such as a speech utterance or the high-level description
of a gesture such as “flick left”. For our implementation of the
algorithm, the Java Jahmm HMM library2 was used. Scripts
written in the SMUIML modelling language [13] serve as
high-level descriptions of the HMMs topology. A second
challenge was to minimise the need for training the algorithm
before being able to actually use the system. As we explain
later, a pre-training of our system is achieved through the sim-
ulation of expected inputs described in SMUIML.

As an example to explain how the algorithm works, let us
consider the “put that there” example by Bolt [3]. In this ex-
ample, a user is seated in front of a wall on which different
shapes are displayed. To move a shape from one place to the
other, the user points to the shape and utters “put that there”
while pointing to another place on the wall. Five different
input events are expected, including three speech related trig-
gers (“put”, “that” and “there”) and two gesture related trig-
gers (i.e. pointing events). Note that in our example, the two
pointing events will be considered as events of the same type.

idle
state

"that"

"put" "there"

<point>

Figure 3. A sequence of states for a “put that there” multimodal event

The step from the high-level human-machine interaction de-
scription to the actual implementation of the HMM-based fu-
sion algorithm is achieved as described in the following. In
SMUIML, the <context> element is used to describe dif-
ferent application states. For example, in a drawing applica-
tion, free line drawing and shape editing could be modelled
as different states of the application. Different application
states in SMUIML are modelled with help of one HMM for
each state. This implies that changing states in an application
created with HephaisTK, corresponds to changing from one
2http://code.google.com/p/jahmm/
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Figure 4. Instantiation of the HMM-based fusion algorithm with observations and HMMs created and trained based on a SMUIML script

<context> element to another in SMUIML. This in turn
is equivalent to switching from one HMM to another HMM.
The “put that there” example consists of a single interaction
with only one context and thus a single HMM. In the current
implementation of the algorithm, any adapted training done
after the initialisation phase will not transfer directly during
context switching.

At runtime, input events such as a speech utterance or a ges-
ture are modelled as individual observations. Basically, one
input event described in the SMUIML script corresponds to
one observation of the HMM. Every time an input event is
processed by the HephaisTK framework, it is sent to the
FusionManager. For the list of all input events happening
in a specified time window, the FusionManager considers
potential combinations. Those combinations are then injected
into the HMM. The Viterbi algorithm is subsequently used on
the HMM to extract the most probable state sequences. These
state sequences are compared to a set of expected observa-
tion sequences which are defined by the <transition>
elements of the current <context> in the SMUIML script.
For example, the following succession of input events: “put”
*point* “that” *point* “there” would generate a state se-
quence as illustrated by the red dashed arrows in Figure 3. If
a match is found, the information that a sequence of events
corresponding to the SMUIML script description has been
found is passed to the client application.

Instantiation of the HMM-Based Fusion Algorithm
The instantiation of HMM-based fusion in HephaisTK is per-
formed based on a given SMUIML script as highlighted in
Figure 4. First, all triggers defined in the script are parsed
and states are created based on this list of triggers (step 1).
Basically, one state corresponds to one trigger definition,
with the addition of an idle state which serves as a start-
ing state. Then, for each defined <context> element, one
HMM is instantiated with the number of states correspond-

ing to T + 1; T being the number of triggers declared for
the current <context> (step 2). All states are initially in-
terconnected, except the idle one. A discrete output obser-
vation distribution is used to connect the hidden layer with
the observations. All <transition> elements declared in
the SMUIML script are then parsed and, based on the syn-
chronicity rules, a set of all expected output sequences is gen-
erated for each context (step 3).

The input events processed by HephaisTK all come from
users interacting with a multimodal interface, for example by
means of speech, gestures or gaze. Therefore, correlated in-
put events generally happen within relatively small time win-
dows of less than 10 seconds. Synchronicity and time order-
ing of modalities is modelled via the CARE property-based
<par or>, <par and>, <seq or> and <seq and> ele-
ments in SMUIML. These elements are in turn used to create
the list of expected output sequences for all HMMs. For ex-
ample, a <transition> declared as equivalent means that
any of the modalities in the transition will lead to the same
next <context>.

Finally, each HMM undergoes a pre-training stage, with au-
tomatically created sequences of observations injected into
their applicable HMM. The Baum-Welch algorithm is used
to find the unknown parameters of the HMM, hence allowing
the fusion algorithm to be directly used (step 4). Basically, the
internal structure of an HMM trained this way corresponds
to the weighted state machine representation of the human-
machine dialogue defined in the SMUIML script. The HMM
can then stay this way, as a “luxury” weighted state machine,
or be refined with real training data or user feedback at run-
time. The HMM can also be trained at instantiation time with
real training data, if it is available.

The particular strength of HMMs for the implementation of
this human-machine dialogue in comparison to ad-hoc meth-
ods lies in the possibility to adapt the HMM behaviour at



runtime. As pointed out in the introduction of this subsec-
tion, the main goal when creating an HMM-based fusion al-
gorithm was to lay the foundations in HephaisTK for adding
the ability to adapt to context and user feedback. HephaisTK
was therefore modified to support a simple “I am not ok with
that result” feedback from the user. If no particular result is
specified, HephaisTK assumes that the last result has to be
corrected. The HMM is then re-trained in order to give less
weight to the erroneous result. An illustration of this feed-
back process is provided in the next section.

Our description of the HMM-based fusion algorithm integra-
tion is based on the SMUIML modelling language. However,
the presented algorithm could be integrated into any multi-
modal system considering input events as normalised infor-
mation atoms at the semantic level. A full modelling of the
entire human-machine dialogue is not mandatory, but helps
to map the interaction flow to Markov models and improves
results. Also, without such a model, the training of the algo-
rithm with help of recorded sequences would be required.

EVALUATION
The evaluation of our new multimodal fusion algorithm has
been conducted in three steps. First, a qualitative evalua-
tion using existing multimodal applications that were created
based on HephaisTK has been performed. Then a more for-
mal evaluation using the framework’s integrated benchmark-
ing tool [11] was carried out. These two tests were designed
to assess the accuracy and performance of our HMM-based
fusion algorithm. Third, the adaptation to user input was also
tested. In addition to these three evaluations, explorations of
user-induced adaptation in the context of a particular applica-
tion are presented. Initial conclusions based on the results of
these explorations are then discussed.

Qualitative Test Using Real-World Applications
The first task was to check whether the HMM-based al-
gorithm aligned itself correctly with the expected results
for applications that had already been developed with the
HephaisTK framework based on a classic frame-based fusion
algorithm. Those applications did not take into account user
adaptation but were good illustrations of use cases consid-
ering the CARE-based combination of modalities. Among
the tested applications, a multimodal music player applica-
tion was chosen to illustrate redundancy versus equivalence
cases. Another application, a tool for document management
in smart meeting rooms called Docobro [12], was used for
the cases of sequential and non-sequential complementarity
between modalities.

Both of these two applications were migrated to the HMM-
based fusion algorithm. Only a single line in the HephaisTK
XML configuration file, specifying the fusion algorithm to be
used, had to be changed. No other code in the SMUIML mod-
elling script or the client Java application had to be modified.
More importantly, since the SMUIML modelling script which
defines the human-machine dialogues is used as preliminary
training for the HMM-based fusion algorithm, no explicit
training is required before the applications can be used. In
fact, applications can even hot swap fusion algorithms while

they are running, since context switching information is prop-
agated in real-time to every fusion algorithm. While this was
only a qualitative evaluation, the goal was to check whether
the overall behaviour of the HMM-based fusion algorithm
would at least be comparable to the frame-based one. Three
expert users were presented with the two applications, first
running with the frame-based fusion algorithm, then with the
HMM-based fusion algorithm. Users were given five minutes
with each of the condition to work with the application. Then
an interview was conducted with them after each condition.
During these interviews, users reported a coherent behaviour
between both algorithms, with less false positives in the case
of the HMM-based algorithm. Overall, sequenced and unse-
quenced complementarity, redundancy as well as equivalence
cases were managed in a similar way by both algorithms. Re-
garding the responsiveness of the HMM-based fusion algo-
rithm, users did not report a noticeable difference between
both algorithms.

Quantitative Assessment Through an EMMA Benchmark
HephaisTK’s integrated benchmarking tool [11] has been
used to validate our initial observations. The benchmarking
tool simulates various recognisers for a number of modali-
ties and feeds this input data into the framework at predefined
times, which have been previously recorded from a user ses-
sion. The benchmarking tool then collects the fusion results
in place of the client application. In the test setting shown in
Figure 5, the HephaisTK framework works as if real modali-
ties and a real client application were used.

Multimodal 
Fusion Engine 

<interpret1 t=5 …/> 
<interpret2 t=9 …/>  
… 

Interpretation 

<event1 st=1 et=4 …/> 
<event2 st=3 et=5 …/>  
<event3 st=8 et=9 …/> 
… 

Testbed 

<interpret1 t=5 …/> 
<interpret2 t=9 …/>  
… 

Ground Truth PERFORMANCE 

Figure 5. Benchmark test setting

The HephaisTK benchmarking tool allows for reproducible
testing of the overall behaviour of the framework and of its
performance and enables a comparison of different multi-
modal fusion algorithms. The benchmarks themselves are
described via the XML EMMA language3 which has been
defined by the W3C Multimodal Interaction Working Group.
Benchmarking tests were preferred over live user testing in
order to compare the performance of two fusion algorithms
working under the same conditions in a framework.

The results of our tests are illustrated in Figure 6 and Fig-
ure 7. Note that the screenshots of the benchmarking tool
were slightly altered by adding horizontal black lines to dif-
ferentiate the steps of each test. Each line corresponds to a
3http://www.w3.org/TR/emma/



single input sent to the HephaisTK framework. Details are,
from left to right: the time in milliseconds when the data was
sent with 0 being the start of the test, the used modality, the
content of the data and the expected answer from the fusion
engine. In green or red is the answer which was effectively
sent (or not) by the framework, whether this was the correct
answer and finally how much time (in milliseconds) elapsed
between sending the piece of data and receiving the result.

Figure 6. Equivalence and redundancy tests

Note that some delays are well above 100 ms. These delays
represent in fact the delay between the time when the first
single modality data of a complex command was fed into the
framework and the time when the final multimodal command
was fused. For example, the “put” command on the first line
of Figure 7 was sent to the framework 318 ms before the com-
plete “put that there” command was fused.

Figure 7. Sequential and non-sequential complementarity tests

The CARE properties were used as a basis to test the accu-
racy of the HMM-based fusion algorithm. Each CARE prop-
erty was first modelled with a correct case and then with some
noise introduced. Finally, erroneous commands were fed into
the system to check its resistance against false positives. Fig-
ure 6 shows the results for the equivalence and redundancy
cases. “Hello” messages were input in different modalities,
first sequentially and then at the same time. The test was ex-
ecuted in four sequences with an increasing number of noise
along the legitimate data. As shown in Figure 6, the HMM
algorithm managed to pass all tests with or without added
noise. The second part of this series of tests was to check

whether sequential and non-sequential complementarity fu-
sion was correctly managed by the fusion algorithm. The re-
sults are shown in Figure 7. The well-known “put that there”
case was used to model these tests. Listing 1 shows the mod-
elling of the command in SMUIML with parallel and sequen-
tial temporal constraints used. Four variants of the command
were used: two legit variants, then an incomplete command
and finally a garbled command. As outlined in Figure 7, the
two correct commands were successfully fused while the in-
complete and garbled commands were both rejected by the
algorithm.

Listing 1. “Put that there” expressed in SMUIML.
<transition leadtime=”1500”>

<seq and>
<trigger name=”put trigger” />
<par and>
<trigger name=”that trigger” />
<trigger name=”object pointed event” />

</par and>
<par and>
<trigger name=”there trigger” />
<trigger name=”object pointed event” />

</par and>
</seq and>
<result action=”put that there action” />

</transition>

Finally, a challenging multimodal fusion task was tested in
the form of the “play next track” example discussed in [11].
This task involves the differentiation between three different
nuances of meaning, only based on the order of the input
events. In [11], the frame-based fusion algorithm was used
and could not correctly differentiate the various cases, be-
cause frames cannot easily represent this level of temporal
nuances. There was a slightly better behaviour when sequen-
tial constraints were taken into account.

Figure 8. “Play next track” example without sequential constraints in
the upper part and with sequential constraints in the lower part

Figure 8 shows the same tests but this time with the new
HMM-based fusion algorithm. The first case without sequen-
tial constraints is still not completely solved but at least pro-
vides a consistent answer compared to most results returned
by frames. The two other cases are correctly fused. As for
the test run with sequential constraints, the HMM-based al-
gorithm scores perfectly. We think that these challenging
cases of ambiguous input sequences emphasise the advantage
HMMs have over other classes of fusion algorithms, due to
their ability to model time-related processes. However, we



think that a full user evaluation would be needed in order to
further assess the effects on usability of the different algo-
rithms since our evaluation primarily focussed on the accu-
racy of recognition.

Performance
Multimodal interfaces should be responsive and therefore
the fusion algorithms have to demonstrate reasonable perfor-
mance. A full test run using the same list of commands as
the tests of Figure 6 and Figure 7 was used. In total, the
test run fed 40 different pieces of information into the sys-
tem and expected 20 different fusion results. The full test
was run 5 times with each algorithm and the delays between
the input of data and the retrieval of the corresponding results
were measured. 100 different measures were thus taken for
each algorithm. The average computation time over these 100
measures for the frame-based fusion algorithm was 18.2 ms,
with a standard deviation of 12.7 ms. On the other hand, the
average computation time for HMM-based fusion algorithm
was 16.6 ms, with a standard deviation of 11.6 ms, which
is not significant. Further examination showed that the actual
computation time of the fusion algorithms is much lower than
these average values and a significant amount of the time is
used by other HephaisTK computations. In fact, it appeared
that most of HephaisTK’s computation time is devoted to
information storage and retrieval in the internal database as
well as the information passing between the different soft-
ware agents. In the future, we therefore intend to also test the
algorithms with more complex situations and events.

User-Induced Adaptation
As presented in the related work section, adaptation can take
a multitude of shapes. We are particularly interested in what
is called user-induced automatic adaptation in Malinowski
et al.’s framework [23]: Initiative from the user and Proposal-
Decision-Execution from the machine. In this form of adap-
tation, the user signals to the machine that a given output was
not what they expected and implicitly asks the machine to
accordingly revise its judgement. The identification of the
“wrong” result, the decision about a correction as well as the
execution of the necessary changes are left to the machine and
only the error detection part depends on the user as shown in
Figure 9. The user is also not explicitly asked to select which
result they would have preferred which guarantees minimal
intrusion. Of course such a semi-automatic adaptation intro-
duces some challenges for the machine processing.

In HephaisTK, the definition of the human-machine dialogue
through SMUIML and the HMM-based fusion algorithm al-
lows to explore user-induced automatic adaptation. User
feedback was experimentally tested in the following way: vi-
bration sensors were attached to the computer screen of a ma-
chine running the HephaisTK framework. When the com-
puter screen is gently slapped, the vibration sensors are acti-
vated and provide input to the framework. Those vibration
sensors events are tagged in the dialogue manager as user
feedback expressing dissatisfaction from the user. The cor-
rection is sent to the HephaisTK FusionManager which
adapts the behaviour of the HMM-based fusion algorithm ac-
cordingly. The erroneous result was in our test case simply

considered to be the last output produced by the fusion algo-
rithm. The HMM for the current context is trained to give
less weight to the particular transition which triggered this
erroneous result.

We have conducted some tests of this setting with help of the
benchmarking tool, in order to verify the correct behaviour of
the algorithm. The same tests as explained above were used,
but in the case of a wrongly recognised result, simulated user
feedback was injected into HephaisTK. Three different cases
were tested and in all three cases the algorithm adapted suc-
cessfully its behaviour. The same setting was then used “live”
with the Docobro document browser and the multimodal mu-
sic player.

Multimodal Inputs 

System Output 

Feedback Channel 

Figure 9. User-based error detection and feedback

Based on our tests, we can draw the conclusion that the in-
tegration of user-induced automatic adaptation in multimodal
interfaces raises the following challenges: the identification
of the problematic fusion result, the identification of the
source of the error and the creation of a meaningful correction
as well as the possibility for undo operations.

When the user indicates the wish for a fusion result to be cor-
rected, other fusion results might already have been processed
before the user’s feedback reaches the fusion engine. In the
presented test environment, the erroneous fusion result was
always considered to be the last one. Evidently, this strategy
proved soon to be error prone. Since the HMM-based fusion
algorithm provides a probability for the correct recognition
with each fusion result, this probability score was used to try
to give less weight to the least probable fusion result among
the most recent ones. This strategy was not satisfactory ei-
ther and the identification of the erroneous fusion behaviour
among the latest results without further input from the user is
still an open issue.

The identification of the source of error is also an open is-
sue. Indeed, the fusion algorithm works with interpretations
coming from different recognisers. If the erroneous fusion
behaviour originates from a recognition mistake of a partic-
ular modality (e.g. speech recogniser), downgrading a fusion
result at the fusion algorithm level could worsen the fusion
results rather than improving them. On the other hand, if
the source of the error is correctly identified, the individual
modality recognisers have the possibility to make use of a
user’s feedback to correct their results. We assume that exten-
sive testing could help to identify thresholds at which “bad”
results should be delegated either to the fusion algorithm or
to individual recognisers, or be simply ignored if no source
could be assigned.



The meaningful correction was satisfactory throughout the
tests achieved with the previously described setting. When
incorrect results originating from the latest fusion result were
produced by the HMM-based fusion algorithm, a retraining of
the current context’s HMM lead to a reduction of false posi-
tives. However, if the error did not originate from the latest
fusion algorithm result, the lack of some “undo” functional-
ity showed to be problematic. Keeping two copies of each
HMM and having one version trained one step later than the
other should help to introduce this “undo” mechanism at the
technical level.

CONCLUSION
We presented our work on a novel algorithm for decision-
level fusion of input data in the context of multimodal interac-
tive systems. Our algorithm is based on hidden Markov mod-
els and has been implemented and tested in the HephaisTK
framework. A qualitative as well as quantitative assessment
of the algorithm has been conducted with HephaisTK’s in-
tegrated benchmarking tool. We conducted repeated tests of
two multimodal fusion algorithms by feeding them with mul-
timodal inputs organised in a series of examples. These exam-
ples represented different cases of unambiguous and ambigu-
ous time-synchronised multimodal input. With similar pro-
cessing time, our new HMM-based fusion algorithm demon-
strated similar or better accuracy than a classic frame-based
fusion algorithm. This improvement in accuracy, coupled
with the capability of our new HMM-based algorithm to take
temporal combinations of modalities into account, makes it
a promising solution for decision-level fusion engines of in-
teractive multimodal systems. Furthermore, the algorithm
demonstrated its strength in adapting fusion results based on
user and context information. Our initial explorations on au-
tomatic user-induced adaptation in multimodal interfaces re-
vealed three main challenges to be overcome before the pre-
sented type of adaptivity can be fully employed in multimodal
interfaces: 1) the identification of the problematic fusion re-
sult, 2) the identification of the source of error and 3) error
correction and learning.

In the future, we plan to explore automatic user-induced adap-
tation, based on the challenges identified in this paper. We
will do further evaluations through tests on specific tasks and
hypotheses, as well as a user study with more users. We fur-
ther plan to focus on making full use of probability scores
provided by individual modality recognisers and go beyond
the simple integration in HMMs. The robust handling of in-
puts with uncertainty needs to be tackled not only on the algo-
rithm level but also on the dialogue level. To this end, we plan
to integrate a variant of the framework proposed by Schwarz
et al. [27] into HephaisTK, which should complement the
management of the probability scores at the algorithm level.
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