
Updated version Published in Proceedings of the ER’98 Conference,

Lecture Notes in Computer Science (LNCS), Springer-Verlag, 1998.

Designing Well-Structured Websites: Lessons to be
Learned from Database Schema Methodology.

Olga De Troyer

Tilburg University, INFOLAB, Tilburg, The Netherlands
detroyer@kub.nl

Abstract. In this paper we argue that many of the problems one may expe-
rience while visiting websites today may be avoided if their builders adopt a
proper methodology for designing and implementing the site. More specifi-
cally, introducing a systematic conceptual design phase for websites, simi-
lar in purpose and technique to the conceptual design phase in database sys-
tems , proves to be effective and efficient. However, certain differences such
as adopting a user-centered view are essential for this. Existing database de-
sign techniques such as ER, ORM, OMT are found to be an adequate basis for
this approach. We show how they can be extended to make them appropriate
for website design. We also indicate how conceptual schemes may be use-
fully deployed in future automation of site creation and upkeep. Furthermore,
by including parts of such a conceptual schema inside the site, a new genera-
tion of search engines may emerge.

1 Introduction

The World Wide Web (WWW) offers a totally revolutionary medium for asynchronous
computer-based communication among humans, and among their institutions. As its
primary use evolves towards commercial purposes, competition for the browser’s
attention, often split-second, is now a dominating issue. This has forced the focus of
website design towards visual sophistication. Websites must be ‘cool, hip, killer’.
Most of the literature on website design therefore appears to deal with graphics, sound,
animation, or implementation aspects. The content almost seems to be of less impor-
tance. Most ‘web designers’ have certainly never been schooled in traditional design
principles nor in fundamental communication techniques. They have ‘learned’ to de-
sign webs by looking at other websites and by following a ‘trial-and-error’ principle.
In addition, the Web is constantly in evolution, outdating itself nearly daily. The
combination of all these factors for an individual website easily leads to problems of
maintenance but also of elementary usability.

mailto:detroyer@kub.nl

Indeed, as any database designer knows, if the represented information is not structured
properly, maintenance problems occur which are very similar to those in databases:
redundancy, inconsistency, incompleteness and obsolescence. This is not surprising as
websites as well as databases may provide (large) amounts of information which need
to be maintained. The same aspects also lead to usability problems. These are particu-
larly obnoxious as they are problems experienced by the target audience of the web-
site:
• Redundancy. Information which is needlessly repeated during navigation is annoy-

ing to most users.
• Inconsistency. If information on the site is found to be inconsistent, the user will

probably distrust the whole site.
• Incompleteness. Stale and broken links fall in this category, but incompleteness

is also experienced by users who cannot find the information which they expect to
be available on a site.

• Actuality . Organizations and information are often changing so quickly that the
information provided on websites soon becomes out of date. If a website has visi-
bly not been updated for a while, confidence of users in the information provided
is likely not to be very high.

Other usability problems are caused by:
• Lack of a mission statement. If the website has no declared goal, that goal, quite

simply, can not be reached. The key question, therefore, that must be answered by
its owner first is “What do I want to get out of my site?”. This mission statement
is the basis for any evaluation of the effectiveness of the site.

• Lack of a clearly identified target audience. The target audience is the audience
which will be interested in the site. If one does not have a clear understanding of
one’s target audience, it is quite difficult to create a compelling and effective site.

• Information overload. Users typically are not interested in wading through pages
and pages of spurious “information”. Also, attention spans tend to be short.

• The lost-in-hyperspace syndrome [11]. Hypertext requires users to navigate
through the provided information. If this navigation process is not well structured
or guided, users may easily get lost. This makes it more difficult and time-
consuming to locate the desired information.

The use of a proper design method could help solve some of these problems. A num-
ber of researchers have already recognized the lack of a design method for websites, or
more in general for web-based information systems, and have proposed methods:
HDM [7] and its successors HDM2 [6] and OOHDM [13], RMM [9], W3DT [17], the
method for analysis and design of websites in [15], SOHDM [10]. Older methods
(HDM, OOHDM, RMM) were originally designed for hypertext or hypermedia appli-
cations and do not deal comfortably with web-specific issues. In addition, these meth-
ods are very much data-driven or implementation oriented. Some have their origin in
database design methods like the E-R method [1] or object oriented (OO) methods such
as OMT [12]. These methods may be able to solve maintenance problems to some
extent but they do not address the other usability problems mentioned above.

In [4], we have proposed a website design method, called WSDM, which is ‘user
centered’ rather than ‘data-driven’. In a data-driven method the data available in the
organization is the starting point of the modeling approach. In our approach, however,
the starting point is the target audience of the website. The issues related to this target
audience run through the method like a continuous thread. We will explain the differ-
ences between data-driven and user-centered in more detail in section 3.1. We argue
that our approach results in websites which are more tailored to their users and there-
fore have a higher usability and greater satisfaction coefficient. WSDM also makes a
clear distinction between the conceptual design and the design of the actual presenta-
tion. The conceptual design, as in database design, is free from implementation details
and concentrates on the content and the structuring of the website. The design of the
presentation takes into consideration the implementation language used, the grouping
in pages, and the actual ‘look and feel’ of the website. This distinction is comparable
to the distinction made in database design between the conceptual design (e.g. an E-R
schema [1]) and the logical design (e.g. a relational schema).

The purpose of this paper is to explain the concept of a conceptual schema within the
context of a website design method (section 3) and to identify the different roles it
plays in the life cycle of the website (section 4). In section 2 we give a short overview
of the different phases of our WebSite Design Method. Section 5 concludes the paper.

2 The WebSite Design Method (WSDM)

We only present a brief overview of WSDM; a more detailed description can be found
in [4] and [5]. The method currently concentrates on kiosk websites. A kiosk website
[9] mainly provides information and allows users to navigate through that informa-
tion. An application website is a kind of interactive information system where the
user interface is formed by a set of web pages.

The core of the method consists of the following phases: User Modeling, Conceptual
Design, Implementation Design and the actual Implementation (see figure 1 for an
overview).

We suppose that the mission statement for the website has been formulated before the
start of the User Modeling phase. The mission statement should describe the subject
and the purpose of the website as well as the target audience. Without giving due
consideration to these issues, there is no proper basis for decision making, or for the
evaluation of the effectiveness of the website. As an example we consider the mission
statement of a typical university department website. It can be formulated as follows:
“Provide information about the available educational programmes and the ongoing
research to attract more students, researchers and companies, and enhance the internal
communication between students and staff members“.

The User Modeling phase consists of two sub-phases: User Classification and User
Class Description. In the User Classification we identify the future users or visitors of
the website and classify them into user classes. The mission statement will give an

indication of the target audience, but this has to be refined. One way of doing this is
by looking at the organization or the business process which the website should sup-
port. Each organization or business process can be divided into a number of activities.
Each activity involves people. These people are potential users/visitors of the site. In
our method, a user class is a subset of the all potential users who are similar in terms
of their information requirements. Users from the same user class have the same in-
formation requirements. As an example the user classes of our university example are:
Candidate Students, Enrolled Students, Researchers, Staff
Members and Companies. User classes need not be disjoint. The same person may
be in different user classes depending on the different roles he plays in the organiza-
tional environment. For example, a person can be an enrolled student as well as a staff
member.

User Classification

User Class Description

User Modeling

Implementation Design

Implementation

Navigational Design

Conceptual Design

Object Modeling

Fig. 1: Overview of the WSDM phases

In the User Class Description, the identified user classes are analyzed in more detail.
We not only describe (informally) the information requirements of the different users
classes, but also their usability requirements and characteristics. Some examples of
user’s characteristics are: levels of experience with websites in general, language is-
sues, education/intellectual abilities, age. Some of the characteristics may be translated
into usability requirements while others may be used later on in the implementation
phase to guide the design of the ‘look and feel’ of the website, e.g. younger people
tend to be more visually oriented than older people.

Although, all users from a single user class potentially have the same information
requirements, they may diverge with respect to their characteristics and usability re-
quirements. For example, within the user class Enrolled Students we may
distinguish between local students and exchange students. They have the same infor-
mation requirements (detailed information on courses) but have different characteristics
and usability requirements. Local students are young (between 18 and 28), are familiar
with the university jargon, the university rules and customs. They have a good level

of experience with the WWW. They prefer the local language for communication, but
have in general a good understanding of English. On the other hand, all communica-
tion with exchange students is done in English. We may not presume that they are
familiar with the university jargon and customs, or with the WWW.

To support different characteristics and usability requirements within a single user
class, we use perspectives. A perspective is a kind of user subclass. We define a per-
spective as all users in a user class with the same characteristics and usability require-
ments. For the user class Enrolled Students we may distinguish two perspec-
tives: Local Students and Exchange Students.

The Conceptual Design phase also consists of two sub-phases: the Object Modeling
and the Navigational Design. During Object Modeling the information requirements of
the different user classes and their perspectives are formally described in a number of
conceptual schemes. How this is done is described in section 3. During the Naviga-
tional Design we described how the different users will be able to navigate through the
website. For each perspective a separated navigation track will be designed. It is pre-
cisely the approach taken in the Object Modeling and Navigational Design based on
user classes and perspectives that constitute the user-centered approach of WSDM and
its departure from purely classic information system modeling.

In the Implementation Design we essentially design the ‘look and feel’ of the website.
The aim is to create a consistent, pleasing and efficient look and feel for the concep-
tual design made in the previous phase. If information provided by the website will be
maintained by a database then the implementation design phase will also include the
logical design of this database. The last phase, Implementation, is the actual realiza-
tion of the website using the chosen implementation environment, e.g. HTML.

3 The Conceptual Design of a Website.

During the User Modeling phase, the requirements and the characteristics of the users
are identified and different user classes and perspectives are recognized. The aim of the
Conceptual Design phase is to turn these requirements into a high level, formal de-
scription which can be used later on to generate (automatically or semi-automatically)
effective websites.

During Conceptual Design, we concentrate on the conceptual ‘what and how’ rather
than on the visual ‘what and how’. This means that like in database design we describe
what kind of information will be presented (object types and relationships; the concep-
tual ‘what’), but unlike in database design we also describe how it will be able to
navigate through the information (the conceptual ‘how’). This is needed because navi-
gating through the information space is an essential characteristic of websites. If the
navigation is not (well) designed or not adapted to the target audience, serious usabil-
ity problems occur. The conceptual ‘what’ is covered by the Object Modeling step, the
conceptual ‘how’ by the Navigational Design.

3.1 Object Modeling in a User-Centered Approach

In WSDM, the Conceptual Object Modeling results in several different conceptual
schemes, rather then in a single one as in classical database design. This is because we
have opted for a user-centered approach. In a data-driven approach, as used in database
design, the starting point of a conceptual design is the information available in the
organization: designers first model the application domain, and subsequently they
associate information with each class of users (e.g. by means of views or external
schemes). However, the data and the way it is organized in the application domain
may not reflect the user’s requirements. A good example of such a mismatch can be
found in the current website of our university

1.
 The structure of this website com-

pletely reflects the internal organizing structure of our university. This structure is
completely irrelevant for, and unknown to most users of this site. As an example, if
you want to look at the web for the products offered by the Computer-shop of our
university (called PC-shop) you must know that the PC-shop is part of the Computer
Center (actually it is one of the ‘External Services’ of the Computer Center), which
itself is a ‘Service Department’ of the University. You will not find it under ‘Facili-
ties’ like the Restaurant, the Copy-shop or the Branch Bank.

In our user-centered approach we start by modeling the information requirements of the
different types of users (user classes). Note that we make a distinction between a user-
centered approach and a user-driven approach. In a user-driven approach the users are
actively involved in the design process, e.g. through interviews, during scenario
analysis, prototyping and evaluation. This is not possible for kiosk websites on the
internet because most of the users are unknown and cannot be interviewed in advance
or be involved in the design process. However, we can fairly well identify the different
types of users and investigate their requirements. After all, the main goal of a kiosk
site is to provide information. Therefore, for each user class a conceptual schema is
developed expressing the information needs of that type of user. We call these concep-
tual schemes user object models. Like an “ordinary” conceptual schema, a user object
model (UOM) is expressed in terms of the business objects of the organization.

1
 http://www.kub.nl/ (in Dutch).

http://www.kub.nl/

Lecturer

Name
Title
Room
Tel
E-Mail

Course Material

Id
Name
Price
Date of Issue

with

Exam

Date
Room
Time
Duration

for

2

given by giving

1+

used for

Course

Id
Name
Description
Newsgroup
Exam Type
Required Reading
Programme Year

requiring

prerequisite
 for using

1+

written by

author of1+

Fig. 2: User object model for Enrolled Students

In [5] we explain how a user object model is constructed from the information re-
quirements expressed in a user class description. For each requirement a so-called ob-
ject chunk is constructed. Next, the object chunks of one user class are merged into a
single model.

In conceptual modeling in general, object models describe the different object types
(OTs), the relationships between these OTs, and rules or constraints. OO models also
describe behavior. For our purpose (modeling kiosk websites), modeling behavior is
not (yet) needed. The traditional conceptual modeling methods like E-R [1], the Ob-
ject-Role Model [8], [16], [2], or “true” OO methods like OMT [12] are therefore all
suitable. Figure 2 shows the UOM (in OMT notation) developed for the user class
Enrolled Students of our university department example.

3.2 Object Type Variants

As explained, the same user class may include different perspectives expressing differ-
ent usability requirements and characteristics. It is possible that this also results in
slightly different information requirements. In WSDM, we model this by means of
variants for OTs. A variant of some OT corresponds largely with the original OT but
has some small differences (variations). Consider as an example the OT Course for
the user class Enrolled Students. See figure 2 for a graphical representation.
About a course, enrolled students in general need the following information: the iden-
tification number of the course, the name of the course, a description of the content of
the course, the prerequisites for the course, specification of the required reading, the
type of exam of the course, the name of the newsgroup of the course and the pro-
gramme year in which the course may be followed.

However, for the subgroup (perspective) Local Students we want to offer this
information in the local language, while for the subgroup Exchange Students

the information must be provided in English. Also the programme year is not relevant
for exchange students and (the actual value of) the prerequisites, the required reading
and the exam type may differ between exchange students and local students. Indeed,
local students may have required reading written in the local language while for the
exchange students the required reading must be written in English. In implementation
terms, this means that for most (but not all) attributes of the OT Course we will
need to maintain two variants; an English one and a local language one. The recogni-
tion of these differences is essential for a user-centered approach and therefore they
should be modeled in an early phase. Some people may argue that the language is a
representation issue and therefore it should not be considered in the conceptual phase
but left to the implementation design. However, in this example, the language issue
is an important user requirement which also influences the actual information that will
be provided. If we do not recognize this during conceptual design, the information
provided for a course, except for the language, would be the same for local students
and exchange students.

To model the differences we introduce two variants for the OT Course:
Course/Local Students and Course/Exchange Students.

Course/Local Students:
• the identification number of the course;
• the local language name of the course;
• a description of the content of the course in the local language;
• the prerequisites for the course for the local students in the local language;
• the specification of the required reading for the local students in the local lan-

guage;
• the type of exam of the course for the local students in the local language;
• the name of the newsgroup of the course;
• the programme year in which the course may be followed.

Course/Exchange-Students:
• the identification number of the course;
• the English name of the course;
• a description of the content of the course in English;
• the prerequisites for the course for the exchange students in English;
• the specification of the required reading for the exchange students in English;
• the type of exam of the course for the exchange students in English ;
• the name of the newsgroup of the course.

Graphically, we use a parent-child notation to represent variants (see figure 3). The
parent OT is variant independent, each child OT is a variant of the parent OT. The
name of a variant OT is composed of the name of the parent OT followed by the vari-
ant identification, e.g. Course/Exchange Students.

A variant OT can have less attributes that its parent OT. Semantically, this means
that the omitted attributes are not meaningful for the variant. E.g. the Programme
Year attribute is omitted in the Course/Exchange Students because it is not
meaningful for exchange students. Note that in this respect variants are clearly differ-

ent from the notion of subtype. Subtypes can in general not be used to model vari-
ants.

Also attributes may have variants. Name/English Name and Name/Dutch
Name are two variants of the attribute Name. To relate the attribute variant to the
original attribute in the parent OT, the name of the original attribute is preceding the
name of the attribute variant. In some cases, it is possible that the original attribute
never will have an own value, but only serves as a means to indicate that the underly-
ing variant attributes have the same semantics. This is comparable to the concept of
abstract OT in object-oriented modeling. By analogy, we call this an abstract attribute.
In the OT Course, the attributes Name, Description, Exam Type and Re-
quired Reading are abstract attributes.

A variant OT cannot include or refer to attributes which are not defined in the parent
OT. This is to prohibit addition of completely new information (attributes) to a vari-
ant, in which case it will not be a variant anymore.

Course

Id
Name
Description
Newsgroup
Exam Type
Required Reading
Programme Year

Course/Exchange StudentsCourse/Local Students

Id
Name/ Dutch Name
Description/Dutch Descript
Newsgroup
Exam Type/Exam TypeDutch
Required Reading/Dutch Req. Reading
Programme Year

≈
Id
Name/English Name
Description/English Description
Newsgroup
Exam Type/Exam TypeEnglish
Required Reading/English Req. Reading

Fig. 3: Variants for the OT Course

In WSDM, information differences between the perspectives of a single user class are
modeled by means of OT variants. For each OT in the UOM of a user class, and for
each perspective of this user class, a variant may be defined to reflect the possible
information differences. To derive the conceptual schema for a perspective, called a
perspective object model (POM), it suffices to replace the OTs in the corresponding
UOM by the corresponding perspective variants. If an OT has no variant for the per-
spective, the OT is kept as it is.

3.3 Linking the Conceptual Models

As explained, the Object Modeling starts by building the user object models, one for
each user class. Subsequently, these models are refined using perspective variants to
derive the perspective object models (if a user class has no perspectives then the user
object model acts as perspective object model). In what follows we call OTs from a
perspective object model perspective OTs (POTs).

Perspective object models of a single user class are related by means of their user
object model. However, the different user object models are (still) independent. This is
not desirable, especially not when several user classes share the same information. It
would result in an uncontrollable redundancy. Therefore, the different user object mod-
els must be related. To do this we use an overall object model, the business object
model (BOM). This model is a conceptual description of the information (business
objects) available in the organization. It is independent of any type of user. Such a
business object model may already have been developed for the organization or the
application domain. If not, or if it is not available in a shape usable for our purpose,
it must be (re-)developed. The classical information analysis methods mentioned ear-
lier may be used for this. For this model, a data-driven approach is not a problem, on
the contrary: it is preferred.

Next, the different user object models are expressed as (possibly complex) views on
the BOM. Note that it is possible that during this step it turns out that the (existing)
BOM is incomplete. This is the case if information modeled in a user object model
cannot be expressed as information modeled in the BOM. In such a case it is necessary
to re-engineer the BOM. Figure 4 illustrates how the different types of conceptual
schemes developed during Object Modeling relate to each other.

business object model

user object model

user object model

perspective
object model

perspective
object model

perspective
object model

perspective
object model

perspective
object model

variant

variant

variant

variant

variant

user class descriptionapplication domain

view

vie
w

Fig. 4: Relationship between the different types of object models

3.4 Navigational Design

Once the Object Modeling is done, a conceptual navigation model is constructed. The
navigation model expresses how the different user types will be able to navigate
through the available information. Navigational models are usually described in terms
of components and links. We distinguish between information components, naviga-
tion components and external components (see figure 5). Information components
represent information. An information component may be linked to other components
to allow navigation. A navigation component can be seen as a grouping of links, and
so contains no real information but allows the user to navigate. An external compo-
nent is actually a reference to a component in another site.

Following our user-centered approach, we design an independent navigation track for
each perspective. To derive the navigation model, it is sufficient to connect the differ-
ent navigation tracks by a navigation component. In a nutshell, a navigation track for
a perspective may be constructed as follows: information components are derived from
the POTs and links are used to represent the relationships between POTs. This forms
the information layer of the navigation track. Next, a navigation layer, built up of
navigation components, is designed to provide different access paths to the informa-
tion components in the information layer. The top of a navigation track is a single
navigation component which provides access to the different navigation components
in the navigational layer. When the different navigation tracks are composed, these top
level components form the context layer of the navigation model. Figure 6 shows the
navigation track for the POM Exchange Students. Figure 7 shows how the
different navigation tracks are composed to make up the navigation model.

Navigation Component Information Component External Component Link

Fig. 5: Graphical representation of the navigation model concepts

Exchange Students Perspective

Exams by Course Courses by Name Course Materials Lecturers by Name

Course Materials by CourseCourse Materials by Id

Exam Course/
Exchange Students

Course Material Lecturer

Information Layer

Navigation Layer

Context Layer

Navigation Track for Exchange Students

Fig. 6. Navigation track for the perspective Exchange Students

Exchange Students Perspective

University Department

Local Students PerspectiveResearchers Perspective

Navigation Layer

Context Layer

Information Layer

Fig. 7: Composition of navigation tracks into a navigation model

In the rest of this paper we will use the term conceptual schema (CS) to denote the
result of the Conceptual Design: the UOMs, POMs, BOM and the navigation model.

4 Roles of the CS in the Website Life Cycle

The life cycle of a website contains many of the phases of a traditional Information
System (IS) life cycle, such as planning, analysis, design and implementation, but
also phases which are specific for web systems. The development process of a website
is more open-ended because a website is often not as permanently fixed as a traditional
IS. Designing a website is an ongoing process. Maintenance includes activities such
as monitoring new technologies, monitoring users, and adapting the website accord-
ingly. It is a continuous process of improvement. To emphasize this distinction, the
maintenance phase is sometimes called Innovation [3]. The typical Installation phase
is replaced by a Promotion phase in which the existence of the website is made public
(by publicity, references from other websites, etc.).

In this section we explain what role the CS may play in the Implementation phase,
the Promotion phase and the Innovation phase, and we explain how the CS may be
exploited even more inside the website.

During Implementation Design, the ‘look and feel’ of the website is developed. Start-
ing point for this is the navigation model. Through use of graphical design principles
and visual communication techniques, taking into account the characteristics of the
different perspectives, the navigation model will be translated into a presentation
model. (content of pages and their layout). Again, this is in some respect similar to
the mapping of a conceptual data schema into a logical data schema (e.g. a relational
one). Indeed, during Implementation Design one may decide to group information
components and links (from the navigational model) together and to present them to
the user as single packages of information. (In fact, we are developing algorithms and
tools to support this.)

Separating the conceptual and the implementation design for websites has the same
advantage as in database design. It offers the flexibility needed for designing large
websites. As explained, designing a website is an continuous process. By separating
the conceptual design from the implementation design, we yield the flexibility required
to support this incremental and evolving design process. Different implementation
designs may be built (e.g. as prototypes) and evaluated. Changes and additions to the
content are localized to the conceptual level, and the impact on the implementation
design can easily be traced. Adding a new user class only involves adding a new UOM
with its associated perspectives and navigation tracks. Changes to the presentation
only influence the implementation design. The actual implementation can be auto-
mated using available tools and environments for assisting in e.g. HTML implemen-
tations.

Because different perspectives may offer the same information (possibly presented
differently)

2
, we need to provide means to maintain this information and keep it con-

sistent. The obvious way of doing this is by maintaining the underlying information
(or parts of it) in a database. This need not be a full-fledged database, but in any case a
single storage place for information shared between different perspectives. As all in-
formation presented in the website is ultimately related to the business object model
(BOM) (by means of the POMs and UOMs), this BOM provides the conceptual
schema for the underlying database. From this BOM a logical database schema is then
generated (using appropriate database development tools) or manually built. The que-
ries needed to extract the information for building the pages can then be derived from
the POMs because they are already expressed as views on the BOM.

To reduce the lost-in-hyperspace syndrome, many sites contain an index page or site
map. This index page or site map gives a (hierarchical) overview of the website and
provides a central point for the user to locate a page in the website. We may consider
instead to replace it by a representation of (parts of) the conceptual schema which is
much richer in information than an index page. Each navigation track could contain a
suitable representation of its corresponding POM. This will not only allow the user to
locate information directly but will also help him/her to build a mental model of the
site and ultimately provide an on-line repository of meta-information which may be
queried. The availability of the CS literally ‘in-site’ may also be exploited by the
many different types of search engines to enhance their search effectiveness. In this
way promotion benefits as well.

5 Conclusions

In this paper we have explained the need for a conceptual design phase in website
design similar to the conceptual design phase in database systems. Based on early

2
 Note that this does not lead to the redundancy mentioned as a usability problem in the

introduction, because a user only follows one perspective and within one perspective,
redundancy is avoided.

experience with our method WSDM, we argued that a user-centered approach is more
appropriate for websites than the traditional data-centered approach used for database
design. As a consequence, the conceptual schema of a website cannot be seen as a
single schema but as a collection of schemes; each user perspective has its own con-
ceptual schema. To relate the different schemes and to control the redundancy possibly
introduced in this way, a business object model is used. To capture variations between
perspectives schemes, so-called OT variants are introduced. Because navigation is an
essential characteristic of websites, the conceptual schema also includes a navigation
model which describes how users will be able to navigate through the website, being a
collection of navigation tracks, one for each user perspective.

We have also shown that separation of the conceptual and the implementation design
for websites has the same advantages as in database design. As for database design it is
possible to deploy the conceptual schema technology in the future automation of site
creation and upkeep. CASE-type tools generating well-structured websites from user
requirements and business domain models are the next logical step. In addition, (parts
of) the conceptual schema may be represented and queried inside the website to reduce
the lost-in-hyperspace syndrome. New generations of search engines may exploit such
additional structural knowledge, e.g. by allowing them to interpret the meta-
information present in a website, and act on its semantics.

Acknowledgments: Many thanks go to Wim Goedefroy and Robert Meersman for
the interesting discussions on and the contributions to this research work.

References
1. P.P. Chen, The Entity-Relationship Model: Towards a Unified View of Data, ACM

Transactions on Database Systems, Vol 1 no 1, 1976, 471-522.
2. O. M.F. De Troyer, A formalization of the Binary Object-Role Model based on Logic.

In: Data & Knowledge Engineering 19, pp. 1-37, 1996.
3. J. December, M. Ginsberg, HTML & CGI Unleased, Sams.net Publishing, 1995.
4. O.M.F. De Troyer, C.J. Leune, WSDM: a User-Centered Design Method for Web Sites,

in proceedings of the WWW7 Conference, Brisbane, April 1997.
5. W. Goedefroy, R. Meersman, O. De Troyer, UR-WSDM: Adding User Requirement

Granularity to Model Web Based Information Systems. Proceedings of 1st Workshop
on Hypermedia Development, Pittsburgh, USA, June 20-24, 1998.

6. F. Garzotto, P. Paolini, L. Mainetti, Navigation patterns in hypermedia databases,
Proceedings of the 26th Hawaii International Conference on System Science, IEEE
Computer Society Press, pp. 370-379, 1993.

7. F. Garzotto, P. Paolini, D. Schwabe, HDM - A Model-Based Approach to Hypertext
Application Design, ACM Transactions on Information Systems, Vol 11, No 1, pp. 1-
26, 1993.

8. T. Halpin, Conceptual Schema and Relational Database Design, second edition, Pren-
tice Hall Australia, 1995.

9. T. Isakowitz, E. A. Stohr, P. Balasubramanian, RMM: A Methodology for Structured
Hypermedia Design, Communications of the ACM, Vol 38, No 8, pp. 34-43, 1995.

10. H. Lee, C Lee, C. Yoo, A Scenario-Based Object-Oriented Methodology for Developing
Hypermedia Information Systems, Proc. of HICSS ‘98.

11. H. Maurer, Hyper-G - The Next Generation Web Solution, Addison-Wesley 1996.
12. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen, Object Oriented

Modeling and Design, Prentice Hall Inc., 1991.
13. D. Schwabe, G. Rossi, The Object-Oriented Hypermedia Design Model, Communica-

tions of the ACM, Vol 38, No 8, 1995.
14. D. Schwabe, G. Rossi, S.D.J. Barbosa, Systematic Hypermedia Application Design

with OOHDM, http://www.cs.unc.edu/barman/HT96/P52/section1.html.
15. K. Takahashi, E. Liang, Analysis and Design of Web-based Information Systems,

Sixth International World Wide Web Conference, 1997,
http://www6.nttlabs.com/papers/PAPER245/Paper245.html.

16. J.J. Wintraecken, The NIAM Information Analysis Method - Theory and Practice,
Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990.

17. M. Bichler, S. Nusser, W3DT - The Structural Way of Developing WWW-sites, Proceed-
ings of ECIS’96, 1996.

http://www.cs.unc.edu/barman/HT96/P52/section1.html
http://www6.nttlabs.com/papers/PAPER245/Paper245.html

