
From Static Methods to Role-Driven Service
Invocation – A Metamodel for Active Content in

Object Databases

Stefania Leone1, Moira C. Norrie1,
Beat Signer2, and Alexandre de Spindler1

1 Institute for Information Systems, ETH Zurich
CH-8092 Zurich, Switzerland

{leone,norrie,despindler}@inf.ethz.ch
2 Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussels, Belgium
bsigner@vub.ac.be

Abstract. Existing object databases define the behaviour of an object
in terms of methods declared by types. Usually, the type of an object is
fixed and therefore changes to its behaviour involves schema evolution.
Consequently, dynamic configurations of object behaviour are generally
not supported. We define the notion of role-based object behaviour and
show how we integrated it into an existing object database extended with
a notion of collections to support object classification and role modelling.
We present a metamodel that enables specific services to be associated
with objects based on collection membership and show how such a model
supports flexible runtime configuration of loosely coupled services.

1 Introduction

Object databases typically adopt the type model of object-oriented programming
languages such as Java as the data model. Behaviour is usually tightly coupled
to an object by defining methods in the object class and every instance of that
class will have the same behaviour. The only way of adapting that behaviour is
to introduce a subclass with overriding methods.

However, we have seen recent trends in programming and also system design
that aim for a looser and more flexible coupling of objects and behaviour. For
example, both aspect-oriented programming (AOP) and service-oriented archi-
tectures (SOAs) have been used as the basis for supporting context-aware ap-
plications by providing context-dependent behaviour [1, 2]. AOP deals with the
coupling of objects and behaviour at the programming level and requires recom-
pilation to cope with changes. SOAs offer much more flexibility as the binding of
services can be done at runtime. Our aim is to have that same flexibility within
a database to allow services to be bound to objects in a role-dependent way and
further to be able to change these bindings dynamically.

We present a model that allows active content to be bound to database ob-
jects dynamically to support a notion of role-dependent services. The behaviour

of an object is defined through a combination of intrinsic and extrinsic behaviour
with methods in the object class defining the former and services associated with
object roles defining the latter. We describe how this concept has been integrated
into a system based on the db4o object database3 extended with a notion of col-
lections to support object classification and role modelling.

We begin in Sect. 2 with a discussion of related work and then provide an
overview of our approach along with the associated three levels of application
models and the metamodel in Sect. 3. Details of the architecture required to
realise the model are presented in Sect. 4 and a description of our implementation
is given in Sect. 5. We provide a discussion of the approach in Sect. 6 and
concluding remarks are given in Sect. 7.

2 Background

Most object databases, including db4o, provide transparent persistence of pro-
gramming language object instances. Application developers therefore typically
use programming languages such as Java as the data modelling language and
there is a one-to-one mapping between application entities and object instances.
Essentially, the database schema corresponds to the classes that define the at-
tributes and methods available on object instances. It is well-known that this can
lead to certain tensions when it comes to dealing with issues of role modelling
due to the fact that the type models of object-oriented programming languages
like Java do not support concepts such as multiple instantiation and object evo-
lution. It is therefore difficult to model the fact that application entities may
have multiple roles simultaneously and that these roles may change over time.
Support for role modelling in object databases was an active area of research
in the 1990s and a variety of approaches have been proposed (e.g. [3–6]). For
example, the programming language Smalltalk [7] was extended to support role
modelling by having coexisting class and role hierarchies [6]. Each class that is
situated somewhere within the class hierarchy can be the root of a role hierarchy
which solves the problem of copying data and creating a new data object every
time an object has to take a new role. Furthermore, an object can have multiple
roles at the same time which is something that is not offered by object-oriented
programming languages but is sometimes “enforced” in languages with multiple
inheritance by introducing some kind of artificial class hierarchies.

More recently, the notion of adaptive behaviour in databases has received a
lot of attention. Traditionally, object behaviour is represented by methods de-
fined within a class and tightly bound to an object through its class definition.
Every object instance of a specific class therefore shows the same behaviour de-
fined by its class methods and any behaviour inherited from its superclasses.
However, there are cases where a developer may want the behaviour of an in-
stance to vary according to context [8] or for that behaviour to evolve over time.
It is therefore desirable to have a distinction between fixed class-based behaviour
and some role-driven runtime behaviour that can be flexibly adapted over time.
3 http://www.db4o.com

The adaptation of behaviour in object-oriented programming languages is
normally achieved through inheritance and the overriding of methods in a sub-
class. Sometimes the inheritance mechanism is misused just to get access to some
service functionality provided by another class. However, inheritance should only
be used if there is a proper is-a relationship between a class and its superclass
and not simply for the sake of code reuse. The problem of these artificial class
hierarchies is more serious if we consider programming languages that offer mul-
tiple inheritance where it becomes tempting to have one true is-a relationship
with multiple other inheritance relationships that are only used for behaviour
reuse. Even if the overriding of methods provides a mechanism for behaviour
adaptation, this form of adaptivity is only available at compile time since the
class definition can generally no longer be changed at runtime. In most object-
oriented programming languages, it is not possible for an object to evolve and
gain or lose certain behaviour over time. Only a few dynamic object-oriented lan-
guages such as Smalltalk offer the possibility to alter class definitions at runtime
so that objects may evolve. Other dynamically typed approaches for runtime
behaviour adaptation include prototype-based programming languages such as
Self [9] where the concept of classes does not exist at all and a cloning mechanism
is used for object instantiation.

Methods that do not directly describe any object behaviour are often imple-
mented as library functionality. These library services are generally represented
as static methods that access object instances only by passing these objects
as arguments within method calls. Also, there is no binding between classes of
objects and their associated services. It is up to the programmer to make an ex-
plicit connection from an object instance to its services as part of the application
implementation process.

Another solution for adding behaviour to a class is offered by AOP [10]. Ex-
tra behaviour is defined by so-called advices which are executed at well-specified
locations (pointcuts) within class methods defining the default behaviour. Func-
tionality or services shared by various classes of a software system (e.g. some
logging functionality) can be managed in a modular way by this separation of
cross-cutting concerns offered by AOP. The modelling of different types of cross-
cutting concerns at various levels of concerns is addressed in aspect-oriented
modelling (AOM). Note that the introduction of new behaviour in an aspect-
oriented program requires the recompilation and reloading of classes.

Web Services [11] and SOAs [12] enable the composition of services and
components in distributed computing. While these solutions offer a language
independent reuse of business services, their use often requires significant effort
from a developer. A service-oriented DBMS (SDBMS) architecture based on the
layered architecture presented in [13] is introduced in [14]. The SOA offer some
advantages over monolithic architectures in terms of flexibility. However, in this
case, it is important to note that the SOA is used for building and adapting a
DBMS by coupling different services rather than for developing an application.

Our aim was to get the same flexibility of service-orientation in terms of
dynamically coupling services to objects within the database in order to be able

to support the variable and dynamic aspects of object behaviour as well as
maximising the reuse of behaviour. Our approach allows domain data objects to
be associated with flexible role-driven services.

3 Approach

Our approach extends existing object databases with role modelling functionality
to enable role-driven service invocation. We have implemented this in db4o, but
note that the approach is general and could be used in other object databases.

A simple object model with standard object-oriented concepts such as classes
and objects has been extended with a new classification model based on collec-
tions and multiple instantiation inspired by the semantic, object data model
OM [15]. The collections semantically group a set of objects and the role of
an object is defined by its collection membership. Specific services can be as-
sociated with a collection to dynamically extend the behaviour of its member
objects. These services can either be executed manually by some user interac-
tion or triggered automatically by specific system events (e.g. the insertion of an
object into a collection). The classification of objects is orthogonal to the class
hierarchy offered by the object model and, through multiple classification, an
object can participate in multiple roles at the same time. The flexible runtime
reclassification of objects provides a powerful mechanism to dynamically assign
new services to an object without affecting its class definition.

Our solution for providing role-driven service invocation is based on a three-
layered modelling approach including type, classification and service models as
shown in Fig. 1. The type model deals with type specification in terms of at-
tributes and methods. The classification model is used for defining semantic
groupings of objects based on collections and relationships between objects. The
service model specifies the bindings between services and collections. As part of
our new application development process, each of these three models has to be
defined. Note that by introducing a type model and a classification model, we
clearly separate typing and classification as proposed in [5]. The three models are
orthogonal to each other resulting in a clear separation of concerns. We describe
each of these models in turn.

3.1 Type Model

The type model defines the types of the objects for a given application do-
main. As known from object-oriented models, a type declares a set of attributes
and methods. In the example shown in Fig. 1, we have three different types
document, latexDocument and author. The document type defines a set of at-
tributes such as creationTime and encoding as well as a method getSource()
which returns a document’s content. The type latexDocument is a specialisation
of the document type as represented by the subtype relationship. For example,
the latexDocument type provides some special handling of LATEX packages and
further offers a method compile() which compiles a LATEX source document

Collections Services

Classification
Model

Type
Model

Service
Model

by inheritance
assigned

getSource(): Object

creationTime: Date
keywords: Array[]
update: Date[]
encoding: String

document

addPackage(Package)
compile()

packages: Package[]

latexDocument

getName(): String
setEmail(URL)
getEmail(): URL

name: String
email: URL

author

document

latexDocument

LaTeX
Docments

document

Archived
Documents

HasAuthor

author

AuthorsDocuments
(1,*) (1,*)

document

Drafts

LaTeX
Docments

Drafts

Archived
Documents

Documents

LaTeXEditor

Printer

EmailNotifier

Backup

TextEditor

Logger

Fig. 1. Type, classification and service model

into an arbitrary output format (e.g. a PDF document). The author type de-
fines typical author properties as well as a set of methods to manipulate them.
Note that our extended object model supports objects that have multiple of
these types through multiple instantiation. An object can gain or lose types at
runtime based on specific operators for object evolution.

3.2 Classification Model

For object classification, we introduce the concept of collections that have a
name and a membertype. In Fig. 1, we use the graphical notation introduced
by the OM model [15] where collections are represented by shaded rectangles
with the name in the unshaded part and the membertype in the shaded part.
An object can be a member of multiple collections at the same time (multiple
classification) and be dynamically added to or removed from collections. Further-
more, collections support the notion of a super- and subcollection relationship.

An object in a subcollection will also be in all supercollections and the object is
automatically assigned to the corresponding roles.

We also introduce the concept of a binary collection with a tuple member-
type to represent an association from one collection to another. Figure 1 shows
a simple example where documents are associated with authors. The Documents
collection contains objects of type document and has the three subcollections
LaTeXDocuments, Drafts and ArchivedDocuments. Documents can be associ-
ated to authors via the HasAuthor association, with each author having authored
at least one document and every document having at least one author as indi-
cated by the (1,*) cardinality constraints.

The role modelling through classification is represented by the fact that doc-
uments can be in the collections LaTeXDocuments, Drafts and ArchivedDoc-
uments simultaneously. Note that there are some collections which do not put
further restrictions on the membertype. For example, the Documents, Drafts
and ArchivedDocuments collections all have the same document membertype.
The role of a particular document object can be manipulated by simply adding or
removing it from these collections. The fact that a draft of a document may also
be archived simply means that the object has to be added to both the Drafts
and ArchivedDocuments collections. However, in some cases, roles may imply
additional properties and methods by a more specific subcollection membertype.
Through multiple instantiation, objects can therefore gain or lose types and be
classified independently of the type hierarchy.

3.3 Service Model

The service model associates services with collections at design- or run time. On
the left-hand side of the service model in Fig. 1, we show the set of collections
defined in the classification model whereas the right-hand side gives a set of
services provided by the system. A service defines arbitrary functionality that can
be bound to an object. Services further specify to which type of objects they can
be assigned. A service exposes the Service interface which contains an invoke()
method. The binding happens on a collection level where an arbitrary number of
services can be assigned to one or multiple collections. These bindings can further
be constrained by a given context. Note that the collection membertype must
be compatible with the type declared by the service. As a result, a collection
defines a context to its members which specifies the set of available services.
Furthermore, since all members of a given subcollection are also members of their
supercollections, they inherit the service assignments via their supercollections
memberships.

We distinguish two types of service invocation. A service can be invoked ei-
ther automatically based on system events (e.g. if an object is updated, added to
or removed from a collection) or explicitly by some user interaction. Our example
shows both automatic and manual services. The Backup service is an automat-
ically invoked service assigned to the ArchivedDocuments collection. It reacts
to events generated when a document is inserted into the ArchivedDocuments
collection. In addition, it has a parameter periodicity with the value daily

which means that the service is invoked once a day for a daily backup of all
collection members. There are multiple collections with membertype document
but only the ones in the ArchivedDocuments will be backed up. This shows that
it is the collection membership (role) that defines which services are available
for a given object rather than its type.

A second automatically invoked service assigned to the ArchivedDocuments
collection is the EmailNotifier service. This service has been configured to
react to the removal of an object from the ArchivedDocuments collection to
automatically send an email to the authors to inform them that the document is
no longer archived. Note that to get access to the corresponding authors and their
email addresses, the EmailNotifier makes use of the HasAuthor association in
the classification model. Of course, a service can also be bound to multiple
collections and therefore the EmailNotifier service could be used for various
kinds of notifications.

The TextEditor, LaTeXEditor and Printer services are invoked explicitly
by some form of user interaction. For an explicit service invocation, the user is
normally presented with a dynamically generated graphical user interface from
where they can select one of the available services to be executed. In our ex-
ample, Documents are assigned the TextEditor and Print services. Due to the
fact that LatexDocuments is a subcollection of Documents, the TextEditor and
Printer services are also available to the members of that collection by means
of the collection hierarchy. The Logger service that is currently not bound to a
collection automatically logs information when objects are accessed. Note that
there can also be different implementations of a single service which can be
exchanged at runtime as indicated for the TextEditor service.

It is also possible to compose new services based on existing ones in order
to define more complex functionality out of modular service components. For
example, the Backup service is a composition of a compression service followed
by a copy service. For this purpose, each service may have an arbitrary number
of services associated in a specific order defining the sequence of execution.

The service layer is extensible in that new services can be added easily. As
described later, a service defines the expected type of object to which it can
be applied. For example, the Printer service is compatible with the document
type. This means that objects of type document or any subtype can be used
with that service. The functionality of a service is implemented in its invoke()
method. The method implementation may contain calls to external applications
as in our example where a Printer service is used to initiate the print job.

A metamodel of our system with all the necessary concepts for the three mod-
els described in this section is shown in Fig. 2. As discussed earlier, a collection
contains objects of a specific type which is represented by the HasMembertype
association between Collections and Types. In our metamodel, collections and
types are also objects which means that the Collections and Types collections
are subcollections of the Objects collection. Collections can be associated with
Services over the HasServices association which can be further constrained
by contextual conditions (Contexts) defined via the InContext association.

object

type

Types

collection

Collections

HasMembers

context

ContextsObjects
(1,*)

Has
Membertype

(1,1) (0,*)

(0,*)

HasServices

service

Services

InContext

|Contains|

(0,*) (0,*)

(0,*)

(0,*)

(0,*)

(0,*)

compService

Composed
Services

Fig. 2. Role-based service metamodel

A context instance defines a condition that can be evaluated based on infor-
mation available in the metamodel as well as any external contextual information
and returns true if the condition is satisfied. The service is only executed if all
associated contextual conditions are satisfied. New services can be composed
from existing services based on the Contains association and are handled by
the ComposedServices collection. Note that the Contains association is a rank-
ing which means that there is an order defined on the subservice relationship
defining the order of precedence when executing multiple cascaded services.

4 Architecture

Our system architecture shown in Fig. 3 combines standard data management
components, depicted on the left-hand side of the DBMS, with service compo-
nents on the right-hand side. The system offers a uniform API that allows an
application developer to make use of the functionality presented in the previous
section through the database and service API. The data management compo-
nent implements the typing and classification models and makes them available
through the database API, while the service management allows services to be
registered and service bindings to be managed based on the service API.

The service manager handles everything that has to do with services includ-
ing the service library where all available services are registered. Services can
be registered and unregistered at design time as well as at runtime. The service
manager also manages the service bindings. When assigning a service to a col-
lection, an entry is created in the binding registry which maintains all bindings
of services to collections. Note that a service can be assigned to multiple col-
lections and a collection can have multiple services assigned. In summary, the
service manager implements the service API offered to the application developer
and basically exposes the service model functionality.

As already mentioned, services can either implement functionality them-
selves, or act as a bridge to third-party functionality and applications. The fact
that they can access external functionality is illustrated by the three clouds in
the system architecture representing a printer, LATEX editor and text editor.

getSource(): Object

creationTime: Date
keywords: Array[]
update: Date[]
encoding: String

document

addPackage(Package)
compile()

packages: Package[]

latexDocument

getName(): String
setEmail(URL)
getEmail(): URL

name: String
email: URL

author

document

latexDocument

LaTeX
Docments

document

Archived
Documents

HasAuthor

author

AuthorsDocuments
(1,*) (1,*)

document

Drafts

Collections Services

LaTeX
Docments

Drafts

Archived
Documents

Documents

LaTeXEditor

Printer

EmailNotifier

Backup

TextEditor

Services

LaTeXEditor

Printer

EmailNotifier

Backup

TextEditor

Logger Logger

Fig. 3. System architecture

The Printer service, for example, accesses printing functionality provided out-
side the database. In contrast, a Logger service would implement the logging
functionality within the database.

The service manager is a runtime component that handles service invocation.
An object can invoke a service only in the context of a collection which defines
the role of that object. Based on the collection, the service manager determines
which services can be invoked by performing a lookup in the binding registry.
In the case of manual service invocation, the service manager returns the set of
available services. Note that since there is no fixed set of services and the number
of assigned services may change at runtime, the interface for selecting a service
has to be created dynamically. For example, for an object in LaTeXDocuments,
the service manager returns the TextEditor, LaTeXEditor and Printer services
and the user then has to explicitly select the service to be invoked.

Automatic service invocation is handled in two different ways. In the case
of periodic invocation, the service manager invokes the service based on the
defined periodicity. In the case of event-based invocation, the service manager is
notified upon an event such as the insertion of an object into a collection. The
notification contains the event type, the object that triggered the event and its
role and the service manager then invokes the corresponding service.

5 Implementation

The extended object database has been implemented in Java using the db4o
object database for persistent object storage and retrieval. db4o offers the same
object model as the programming platform it is embedded in, which in our case
is the Java object model. We therefore implemented an additional software layer
to run on top of db4o that enriches the Java object model with our additional
concepts for role-based service invocation. We first describe the implementation

of the collection and association concepts before presenting our new object im-
plementation for multiple instantiation. The complete set of classes forming the
database API is shown in Fig. 4. We will not discuss the DatabaseManager and
Database classes since they offer the same functionality already provided by the
underlying db4o object database.

create(String)
open(String): Database
close(String)
delete(String)

DatabaseManager

commit()
rollback()
createObject()
deleteObject()
retrieve(): Query

Database

add(java.lang.Object)
get(java.lang.Class): java.lang.Object
remove(java.lang.Object)

OMObject

java.lang.Object

getName(): String
getMembertype(): Class
add(Object)
remove(Object)
iterator(): Iterator

OMCollection
implements

java.util.Collection
getSourceMembertype(): Class
getTargetMembertype(): Class
add(Object, Object)
remove(Object, Object)
sourceRestriction(Object): OMCollection
targetRestriction(Object): OMCollection

OMBinaryCollection

Fig. 4. Database API

The OMCollection class implements the Java collection interface and there-
fore can be used in the same way as regular Java collections. The main dif-
ference lies in the intrinsic behaviour of automatically storing and deleting all
members to and from the database as soon as they are added and removed
from a collection. Associations are implemented as a binary collection class
(OMBinaryCollection), a subclass of the OMCollection class with a tuple mem-
bertype containing the types of the two associated objects.

Since members of a collection have to conform to the collection membertype,
objects must be able to evolve and dynamically gain and lose types. For this
purpose, we need a mechanism to add multiple types to an object at runtime
independently of the inheritance hierarchy. In contrast to the Java object model
where each object is an instance of its class, we introduce our own extended
object model implementation. We distinguish between an object representing
an identifiable entity and the concept of an instance serving as a container for
attribute values defined by its type. Multiple instantiation can then be achieved
by adding multiple instances to a single object. We use regular Java objects to
represent instances whereas an additional OMObject class is introduced to deal
with our new notion of objects. As shown in Fig. 4, the OMObject class manages a
set of instances and provides methods for adding, removing and retrieving any of
its instances at runtime. The OMObject class also offers transparent persistency
for storing and updating objects automatically along with all their instances.
Note that collections and binary collections are also represented as objects with
the OMCollection or OMBinaryCollection Java classes as assigned instances.

We now explain how the service definition and binding mechanisms have
been realised. After a new service has been developed, it has to be deployed to

the ServiceLibrary class shown in Fig. 5. The implementation of any service
must conform to the Service interface definition which also forms part of the
service API. The ServiceManager class provides methods to add and remove
services from the service library. It also offers the bind() and unbind() methods
for assigning services to the corresponding collections. In addition to the collec-
tion and service to be assigned, the bind method has further optional arguments
to specify the event triggering the service and any context classes it depends on.
A context is specified by implementing an interface declaring an evaluate()
method returning a boolean value which indicates whether the service should be
invoked or not. The evaluate method has access to any database content as well
as the object on which the service has to be invoked. The service manager also
contains the ServiceLibrary and BindingRegistry classes.

add(Service)
remove(Service)
getServices(): Service[]
bind(Service, Collection)
unbind(Service, Collection)

ServiceManager

Service[]

ServiceLibrary

Map<Collection, Service[]>

BindingRegistry
getParameterTypes() Class[]
getExpectedSourceType() Class
invoke(Object source, Object[] args)

<<interface>>
Service

Fig. 5. Service API

To illustrate the usage of our software layer for role-driven service invocation,
we show part of the implementation for the application modelled in Sect. 3. Any
type represented in the type model is implemented as a regular Java class. For
example, the document type is defined as follows:

class Document {
Date creation;

String[] keywords;

...

public Document() {
this.creation = new Date(System.currentTimeMillis());

}
public void addKeyword(String keyword) {

...

}
...

}
In order to implement the classification domain model, collections and asso-

ciations have to be created. As stated earlier, collections and binary collections
are regular Java classes and can be assigned to OMObjects via multiple instanti-
ation. After an object has been created using the database, it is assigned to the
collection or binary collection type as shown in the following code excerpt:
/* handle to the database ’db’ has been assigned previously */

OMObject documents = db.createObject();

documents.add(new OMCollection("Documents", Document.class))

Since collections are part of our system’s metamodel, they can also be cre-
ated in a more direct way using the createCollection() and createBin-
Collection() database methods. In the following example, the collections Doc-
uments and Authors are created as well as a binary collection for associating

documents and authors. Finally, the LaTeXDocuments, Drafts and Archived-
Documents collections are defined as subcollections of the Documents collection.
Note that the membertype of the collection is sent to the creation method in
terms of a Java class and, in the case of binary collections, the two membertypes
of the tuples have to be provided as shown below:

OMObject documents = db.createCollection("Documents", Document.class);
OMObject authors = db.createCollection("Authors", Author.class);
OMObject hasAuthor = db.createBinCollection("HasAuthor", Document.class, Author.class);
OMObject latexDocuments = db.createCollection("LaTeXDocuments", Latex.class);
OMObject drafts = db.createCollection("Drafts", Document.class);
OMObject archivedDocuments = db.createCollection("ArchivedDocuments", Document.class);
latexDocuments.get(OMCollection.class).addSuperCollection(documents);
drafts.get(OMCollection.class).addSuperCollection(documents);
archivedDocuments.get(OMCollection.class).addSuperCollection(documents);

Finally we show how the services can be created and assigned to specific
collections. In the following example, a service is created as an anonymous
class, registered as a service and bound to the Documents collection. Note that,
in the invoke method, basic query functionality offered by the Database and
BinaryCollection classes has been used to first retrieve the HasAuthor associ-
ation and then access all author objects for the document that has been removed
from the ArchivedDocuments collection. An email notification is sent to each
author of the no longer archived document as indicated in the code fragment:

Service emailNotifier = new Service() {
public Class[] getParameterTypes() {

/* there are no parameters to this service */

return new Class[] {};
}
public Class getExpectedSourceType() {

return Document.class;
}
public void invoke(Object source, Object[] args) {

OMBinaryCollection hasAuthor = db.retrieveBinCollection("HasAuthor");

OMCollection authors = hasAuthor.sourceRestriction((OMObject) source);

for (OMObject current : authors) {
URL address = current.get(Author.class).getEmail();
/* send email to address using Java API */

}
}

};

The newly created service is finally deployed to the service manager. A con-
text object is created which allows the service only to be invoked if permitted by
the general notification policy. The service is bound to the ArchivedDocuments
collection for invocation on removal events depending on the context evaluation:

/* handle to the service manager sm has been assigned previously */

sm.add(emailNotifier);

Context context = new Context() {
public boolean evaluate() {
/* return true if notification permitted by general notification policy */

}
};
sm.bind(emailNotifier, document, archivedDocuments, REMOVAL EVENT, context);

6 Discussion

We have introduced a three-layered modelling approach for dynamic role-based
object behaviour in object databases. The implementation of our metamodel
covering the concepts of each of these three models resulted in a compact software
layer on top of the db4o object database. Standard Java classes are used to
represent instances of the type model whereas the classification model is covered
by a collection and association framework reflected in an extended database API.
Any services specified in the service model are implemented based on a well
defined service interface and are bound to objects in a role-dependent manner
through the collection interfaces.

The loose coupling and runtime binding of services is addressed by SOAs.
While the publishing, registration and configuration of services in SOAs still
requires a major effort from a developer, we offer the same flexibility within a
database. Most SOAs deal with service invocation on a rather technical level,
whereas we offer high-level conceptual constructs for role-based service binding
and invocation. In addition to the explicit service invocation offered by SOAs,
our approach supports an implicit invocation of services based on the handling
of events in combination with an object’s role.

In contrast to SOAs where service calls are explicitly reflected in the pro-
gramming code, our role-based approach enables the configuration of services as
extrinsic object behaviour. Instead of dealing with alternative service invocations
by cumbersome if-then-else statements, our collection-based object classification
enables a highly flexible and dynamic runtime behaviour adaptation by simple
reclassification. Note that our active content approach has also been used for the
database-driven development of highly interactive systems [16].

The separation of intrinsic and extrinsic object behaviour is not addressed
in most object-oriented programming languages. While the intrinsic object be-
haviour is tightly coupled to an object’s type, there is often no mechanism
for object evolution and the flexible modelling of extrinsic object behaviour.
Any form of additional functionality that is non-type-specific is normally im-
plemented via static method calls to external software libraries. However, this
implies that a programmer has to deal with if-then-else statements to make use
of these library methods in a context-dependent manner. Furthermore, there is
no explicitly modelled relationship between this additional functionality and the
types of objects to which it should be applied. With our three-layered applica-
tion development approach, this library service functionality can be bound to
objects in a context-sensitive way without affecting an object’s type definition
and the reusability of object types across different applications.

Just as there is a trend to treat relationships and associations as first-class
constructs in modern programming languages in order to enhance the reusability
of components [17], we think that our solution leads to a clear separation of
concerns in dynamic service binding. This finally results in cleaner component
interfaces which are defined by object types and enhances the reusability of types
as well as services across different application domains.

7 Conclusion

While the concept of methods in object models is a rather static way of binding
behaviour to an object, we have presented an approach that enables a role-based
definition of object behaviour. Our three-layered conceptual model provides a
clear separation of concerns between the object type specification, the classifi-
cation and association of objects and the dynamic role-based service invocation
on individual objects. By means of a simple example application, we have high-
lighted how the role-driven service invocation mechanism leads to a cleaner de-
velopment process by associating objects with role-based behaviour which would
otherwise be spread across different static library method calls.

References

1. Dantas, F., Batista, T., Cacho, N.: Towards Aspect-Oriented Programming for
Context-Aware Systems: A Comparative Study. In: Proc. of SEPCASE 2007,
Minneapolis, USA (May 2007)

2. Gua, T., Punga, H.K., Zhang, D.Q.: A Service-Oriented Middleware for Building
Context-Aware Services. Journal of Network and Computer Applications 28 (2005)

3. Pernici, B.: Objects with Roles. In: Proc. of OIS ’90. (1990)
4. Albano, A., Bergamini, R., Ghelli, G., Orsini, R.: An Object Data Model with

Roles. In: Proc. of VLDB ’93, Dublin, Ireland (August 1993)
5. Norrie, M.C.: Distinguishing Typing and Classification in Object Data Models.

In: In Information Modelling and Knowledge Bases, volume VI. (1995)
6. Gottlob, G., Schrefl, M., Röck, B.: Extending Object-Oriented Systems with Roles.

ACM Transactions on Information Systems 14(3) (1996)
7. Goldberg, A., Robson, D.: Smalltalk-80: The Language and its Implementation.

Addison-Wesley (1983)
8. Grossniklaus, M., Norrie, M.C.: Supporting Different Patterns of Interaction

through Context-Aware Data Management. JWE 7(3) (2008)
9. Ungar, D., Smith, R.B.: SELF: The Power of Simplicity. Lisp and Symbolic

Computation 4(3) (1991)
10. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.M.,

Irwin, J.: Aspect-Oriented Programming. In: Proc. of ECOOP ’97, Jyväskylä,
Finland (June 1997)

11. Papazoglou, M.: Web Services: Principles and Technology. Prentice Hall (2007)
12. Krafzig, D., Banke, K., Slama, D.: Enterprise SOA: Service-Oriented Architecture

Best Practices. Prentice Hall (November 2004)
13. Härder, T.: DBMS Architecture – New Challenges Ahead. Datenbank-Spektrum

14 (2005)
14. Subasu, I.E., Ziegler, P., Dittrich, K.R.: Towards Service-Based Database Man-

agement Systems. In: Proc. of BTW 2007, Aachen, Germany (March 2007)
15. Norrie, M.C.: An Extended Entity-Relationship Approach to Data Management in

Object-Oriented Systems. In: Proc. of ER ’93, Arlington, USA (December 1993)
16. Signer, B., Norrie, M.C.: Active Components as a Method for Coupling Data

and Services – A Database-Driven Application Development Process. In: Proc. of
ICOODB 2009, Zurich, Switzerland (July 2009)

17. Balzer, S., Gross, T.R., Eugster, P.: A Relational Model of Object Collaborations
and its Use in Reasoning about Relationships. In: Proc. of ECOOP 2007, Berlin,
Germany (July 2007)

