
Efficient Mobile Querying of Distributed RDF Sources

Elien Paret1, William Van Woensel1, Sven Casteleyn2, Beat Signer1, Olga De Troyer1

1Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
{Elien.Paret, William.Van.Woensel, Beat.Signer, Olga.DeTroyer}@vub.ac.be

2Universitat Politècnica de València, Camino de Vera S/N, 46007, Valencia, Spain
Sven.Casteleyn@upv.es

Recent advancements in mobile devices and the omnipresence of wireless
connectivity have turned handheld devices into powerful mobile web clients. This
evolution has made the wealth of online Semantic Web data accessible to mobile
devices. To support this new opportunity, we present a semantic technology-based
client-side solution to efficiently query large amounts of distributed online RDF
sources. The main idea is to continuously extract and manage metadata from RDF
sources and to store this metadata in a local Source Index Model (SIM). At query
execution time, the SIM is consulted to identify and assemble potentially relevant
sources. In contrast to other approaches [1-3], we do not rely on any query endpoints.
Our solution pays attention to the computational limitations of mobile devices by
querying only relevant sources and thereby improving the overall query execution
time. We do not aim to replace existing mobile query engines, but rather build on
them to efficiently and transparently query large sets of online RDF sources.

The first step of our solution involves the creation of a SIM as highlighted in
Fig. 1. Each time we receive a new source reference from an application, the source is
downloaded and relevant metadata is extracted and stored in the SIM. Since RDF is a
predicate-based formalism, we base our approach on the presence of predicates in the
data sources to filter out irrelevant data sources similar to [1,2]. We further aim to
exploit the semantic information embedded in RDF documents in terms of the type of
the predicate subjects (i.e. domain). RDF sources and SPARQL queries often use this
domain information to detail triples and restrict triple patterns. We consider two
different SIM variants: the first variant stores only the found predicates while the
second variant manages the found predicates together with their domains. Note that
the second SIM variant still supports queries with unspecified predicate domains.
The second step of our approach consists in resolving an application query over the
combined data set of relevant sources as shown in Figure 2. First, the query analyzer
extracts the metadata of the given SPARQL query that is compatible with the data
stored in the SIM (predicates or predicates with their domains). The triple patterns
occurring in the WHERE clause of a SPARQL query are used to restrict the query
results in the graph pattern matching process. Therefore, we need to examine the
WHERE clause in order to identify potentially relevant sources. Subsequently, the
extracted query metadata is matched to the metadata managed by the Source Index
Model. The matching is performed for each triple pattern. Sources that contain
predicates (and subject types) referenced in one or more query triple patterns are also

2 E. Paret et al.

included in the final dataset. In this way, queries that are not solvable by a single data
source can potentially be answered by a combination of data sources. Once the
relevant sources are identified, they are assembled and the query engine, for example
Androjena, executes the query on the collected set of relevant data sources. To
validate our solution, we conducted a series of performance experiments on a Sony
Ericsson Xperia X10 device with 567 MB memory and a 1 GHz processor. Four
distinctive queries have been executed on datasets of 50, 100, 250 and 500 RDF
sources. These RDF files had an average size of 3.7 kB and were automatically
generated using random resource types and properties from a number of ontologies
describing, for example, buildings, shops and products. For the dataset of 500 sources,
the use of the first SIM variant resulted in an average query response time of 20198
ms, the use of the second SIM variant resulted in an average of 8415 ms whereas
26099 ms were necessary if no SIM was used.

We have presented a client-side query service for the efficient querying of
distributed RDF sources in mobile settings. Our solution is based on a Source Index
Model and does not require any query endpoints. A major challenge was to find the
right balance between the amount of stored index data and the resulting maintenance
overhead on the one hand, and the number of potentially filtered irrelevant data
sources on the other hand. Our validation confirms that we can achieve a significant
speed-up in querying distributed RDF data sources while ensuring that our solution
scales well with growing sets of data sources.

Acknowledgement: Sven Casteleyn is supported by an EC Marie Curie Intra-
European Fellowship for Career Development, FP7-PEOPLE-2009-IEF, N° 254383.

References

[1] B. Quilitz and U. Leser, Querying Distributed RDF Data Sources with
SPARQL, Proc. of ESWC 2008, Tenerife, Spain, June 2008.

[2] H. Stuckenschmidt, R. Vdovjak, J. Broekstra and G.-J. Houben, Towards
Distributed Processing of RDF Path Queries, International Journal of Web
Engineering and Technology, 2(2/3), 2005.

[3] Z. Kaoudi, K. Kyzirakos and M. Koubarakis, SPARQL Query Optimization
on Top of DHTs, Proc. of ISWC 2010, Shanghai, China, 2010.

 Fig. 1. RDF indexing Fig. 2. Query handler

