
Feature Assembly Framework: Towards Scalable and
Reusable Feature Models

Lamia Abo Zaid
Vrije Universiteit Brussel

Pleinlaan 2

1050 Brussels

 +32 2 629 3754

Lamia.Abo.Zaid@vub.ac.be

Frederic Kleinermann
Vrije Universiteit Brussel

Pleinlaan 2

1050 Brussels

+32 2 629 5713

Frederic.Kleinermann@vub.ac.be

Olga De Troyer
Vrije Universiteit Brussel

Pleinlaan 2

1050 Brussels

+32 2 629 3504

Olga.DeTroyer@vub.ac.be

ABSTRACT

Feature models have been commonly used to model the variability
in software product lines. In this paper we present the Feature
Assembly framework which is a new approach for creating feature
models through feature composition and feature assembly.
Furthermore, it promotes feature reusability by storing features in
a so-called feature pool, which acts as a feature repository. The
Feature Assembly Framework is based on the Feature Assembly
feature modeling method, which will be briefly introduced. It is a
multi-perspective approach for modeling variability, to deal with
the complexity of large systems. The feature assembly modeling
method also provides a simpler and easier to use modeling
language, which separates the variability specifications from the
feature specifications to allow reusing features in different
contexts.

Categories and Subject Descriptors

D.2.13 [Software Engineering]: Reusable Software – Domain

Engineering, Reuse Models

General Terms

Management, Design, Economics.

Keywords

Feature Analysis, Variability, Reuse, Feature Assembly, Feature
Model, Feature Diagram, Perspective, Viewpoint, Feature
Composition.

1. INTRODUCTION

A software product line (SPL) [1] is a collection of software
products that has a common architecture that supports variant set

of features (also called Software Product Families [2]). Feature is
a lightweight term that refers to a capability of the system or
artifact. For this reason, the notion of feature is very convenient
for modeling Software Product Lines. Some features are required
by all members of the product family and are thus common to all
members of the product line, while each member of the product
line has a set of distinguishing features (i.e. variable features).
Different combinations of features allow constructing different
products from a single product line.

To be able to profit maximally from the benefits of software
product lines, but also to keep the development of such software
under control, feature-oriented domain analysis should be adopted
early in the development process to effectively identify and
characterize the product line features (i.e. capabilities and
functionalities). In feature oriented domain analysis (FODA),
features are abstractions that different stakeholders can understand
[3]. Feature models [3] [4] are used to represent the
commonalities and differences in the features provided by the
product line.

A software product line often undergoes adjustments to meet the
continuous changes in customer and market requirements.
Keeping this under control at an affordable cost is still a major
problem. Increasing the scope and diversity of the products that
the product line delivers, results in several serious problems both
at the domain analysis level1 (i.e. modeling level) (see e.g., [5]
[6]) and at the architecture level (see e.g., [7] [8]). As the product
line matures, its scope may significantly widen due to the
introduction of new features. This causes on the one hand a
decrease in the complete commonality (i.e. the features that are
common to all members of the product line) of its products, and
on the other hand, an increase in the partial commonality (i.e. the
features that are common to a subset of the members of the
product line) of its products [8]. It could even be the case that a
company that started with one product line evolves to having
multiple related product lines. However, current feature models
are not flexible enough to cope with continuous changing
requirements, furthermore they do not scale well (we will discuss
this in more detail in section 2).

In this paper, we present a new approach for creating feature
models. The presented approach is based on creating feature

1 In this paper we restrict ourselves to the effect of change at a

domain analysis stage.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
VaMoS '11, January 27-29, 2011 Namur, Belgium.
Copyright © 2011 ACM 978-1-4503-0570-9/01/11... $10.00.

models by composing and reusing features. Initially, as a product
line is defined, a feature model(s) representing it is specified.
These features are then stored in a feature pool for later reuse. The
pool of features allows for creating different product lines by
reusing already existing features. In addition, whenever an
existing product line undergoes a change in its scope or
requirements or a new product line is needed, new features can be
introduced and added to the pool for later reuse. We call this
approach Feature Assembly Framework. The new approach is
based on a new revised feature modeling method (Feature

Assembly Modeling Technique) that addresses the above-
mentioned needs.

This paper is organized as follows: in section 2 we discuss the
limitations of current feature modeling techniques. In section 3,
we present our Feature Assembly Framework, and in section 4, we
briefly explain the associated feature modeling method. Next,
section 5 provides an example that illustrates the approach and its
benefits. In section 6 we discuss related work. Section 7 provides
the conclusion and discusses future work.

2. LIMITATIONS OF CURRENT

FEATURE MODELING
In feature-oriented analysis, the product line capabilities and
functionalities are identified and characterized. Feature models [3]
[4] are used to model the commonality and variability in the
features provided by the product line. They do so by means of a
hierarchical (tree-based) representation of the features that make
up the product line. This poses several problems, firstly in top
down approaches the problem domain should be fully understood
to be able to decompose the problem into smaller problems.
Secondly, in feature models, the top down decomposition of
features is implicitly based on both functional decomposition and
variability decomposition. Not having a clear distinction between
two fundamentally different types of relations, i.e. functional
decomposition and variability decomposition, makes the modeling
process difficult and is a source of errors [9] [10]. Thirdly, the
hierarchical top down decomposition structure adopted in these
feature models makes maintenance more difficult (due to a
significant amount of backtracking), and reduce and hinder
reusability. It has been shown in [11] that top down modeling
approaches are not appropriate for reuse. For more efficient
modeling of product lines a balance is required between top down
(decomposition) and bottom up (compositional) approaches for
supporting reusability with variability, as has been argued in [12].

Additionally, with the large number of features in today’s
software, feature models have shown to suffer from a scalability
problem [13]. Creating a feature model with thousands of features
and managing their dependencies is not an easy task. Not only is
the creation of large feature models difficult, but also their
modification and maintenance is a complex task [5] [14]. In
addition, the added value of a graphical representation is lost as
the trees easily become very large and don’t provide an easy
overview anymore.

In current feature models, a feature is given a type that
indicates how the feature contributes to the variability of the
system. This limits the possibility to reuse the same feature in a
different context with different variability requirements, as the
type may need to be different. For example, a bank transfer

payment feature may be mandatory in one setting while optional
in another (e.g., depending on the target market or country). As
the type (here mandatory or optional) is inextricably associated
with the feature, it will not be possible to reuse the feature as it is.
In addition, change is also an issue. It is quite difficult to add new
features or change an existing feature (e.g., change its variability
type). For example, a Payment feature may have two alternatives
Bank Transfer and PayPal (Alternative Features), when targeting
new markets this feature may need to be extended with other
payment methods (e.g., Visa, Mastercard, and Bancontact/Mister

Cash). Furthermore, suppose that the Bank Transfer feature needs
to become mandatory to suit all markets, while there is a need to
select one or more of the other payment features (OR Features).
Such a change requires deleting the old Alternative Feature group,
creating a new OR group, and changing the type of the Bank

Transfer feature to mandatory. Note that adding and removing
branches in the feature model tree may not always be a
straightforward task in current feature modeling tools (e.g. it may
need backtracking and reconstruction of more than one branch or
even level).

The above-mentioned observations have given rise to the
development of a new approach for feature modeling. The
presented approach is based on reusing and composing features. It
supports creating feature models for product lines by assembling
features from an existing and continuously growing pool of
features. To achieve this, a rigorous hybrid methodology that
combines both a top down and a bottom up approach is adopted
and a revised feature modeling technique was defined. To
overcome the problem of scalability, abstraction mechanisms for
feature models are introduced. This feature assembly approach is
mainly intended for the feature modeling of large systems that will
evolve or grow over time.

The next section will explain the Feature Assembly
Framework.

3. FEATURE ASSEMBLY MODELING

FRAMEWORK
Feature Assembly aims at modeling variable software by
assembling together new features as well as previously defined
features. Feature Assembly Framework allows reusing features
from a repository of features that we call Feature Pool. Feature
Assembly is a feature-oriented modeling framework. In contrast
with existing feature modeling techniques it defines features
independent from how they (directly) contribute to the variability
of a specific product line. Rather a feature is defined based on
whether it represents a concrete capability provided by the
product line or as a specification of some abstract capability (more
details in section IV). This is essential to be able to reuse features
in different contexts. The information of how a certain feature
contributes to the variability of a particular product is only
relevant when the feature is actually assembled with other features
to model a specific product line. As an example, two product lines
may share some features, but may have different restrictions on
how the features could be selected/ deselected in certain products.
Therefore, in Feature Assembly, how a feature contributes to the
variability of a specific product line or product is not inextricably
associated with the feature. This information is rather part of the
feature assembly model that specifies a specific software product

line. Therefore, how the features contribute to variability is only
expressed in the feature assembly model, not in the feature pool.

Figure 1 illustrates the Feature Assembly Framework.
Features in the feature pool do not refer directly to code but are
rather abstract representations of software features. They are
stored together with some metadata (annotations) to facilitate
searching for appropriate features. The metadata holds
information like: a description, a rationale, the product lines in
which this feature is used, the date of creation, collaborators (i.e.
the stakeholders involved with it), and owner(s) (i.e. the
stakeholder(s) that defined it). In addition, relations and
dependencies between features, which are independent of the
context of use (but inherently connected to the features), are also
stored. Such as composition relations of a feature, variants of a
feature, and feature dependencies (such as includes and
excludes).For example, in a quiz application (see section V for the
full explanation), the dependency that a Rich Editor ‘requires’ a
Basic Editor is always true (i.e. for any application that will use
the Rich Editor), therefore it is saved in the feature pool as a
property of the Rich Editor feature.

Initially the pool is empty, and gets populated with the features
that define the first product line (or product). The mechanism of
the Feature Assembly Framework is shown in figure 2. When a
new product line (or even product) is required, the product line
requirements are analyzed to determine the new product line
variability and commonality. The new product line’s features are
then identified. It will be investigated whether the required
features already exist in the feature pool or whether they are new
and thus need to be defined. This is done via searching the feature
pool using any of the metadata associated with the features. For
example, by issuing a search query that contains a specific feature
attribute, rationale, a specific word in the description, or
annotation. Existing features are extracted from the feature pool
(possibly with their appropriate descendents; this is entirely up to
the modeler and differs from one case to another). Generally, for a
feature that is composed of finer grained subfeatures, the
subfeatures will also be extracted as long as they represent a
mandatory part of their parent feature. Likewise, a feature that has
many variant features associated with it, the modeler may extract a

selection of variant features as not all may be relevant for his
purpose.

New features are defined with the appropriate level of detail. A
feature assembly model that represents the required new product
line is created combining both the new features and the existing
ones. In addition, the newly created features are added to the
feature pool along with their metadata.

This process allows the continuous growth of the feature pool in
addition to feature reuse. In the next section, we will briefly
explain the Feature Assembly Modeling technique used for
constructing the feature assembly models.

Figure 2. Feature Assembly Process

for Feature Model Assembly

4. FEATURE ASSEMBLY MODELING

TECHNIQUE
The idea of creating feature models by assembling features,
whether already existing or new, is made possible by using a
flexible feature modeling technique, called Feature Assembly
Modeling, that allows abstracting the features from how they
relate to variability. In our previous work [15], we have defined
this Feature Assembly Modeling technique2. The modeling
technique is intended to model large and complex variable
software during analysis and/or design. To deal with the
scalability issue, we provide the modeler with different abstraction

2 We give a brief overview of the approach here to help the reader

understand the example that demonstrates the feature assembly
framework.

Figure 1. Feature Assembly Framework Overview

viewpoints or so-called perspectives. Modeling software can be
considered from many different viewpoints, e.g., from the
viewpoint of the user, from the viewpoint of the functionality,
from the viewpoint of the hardware, etc. Trying to deal with all
the viewpoints at the same time is very difficult and will usually
result in badly structured designs. A better approach is to identify
the different viewpoints needed and model the required
capabilities of the software with respect to one viewpoint at the
time. Therefore, we have introduced the concept of perspective.
We allow modeling the variability from a (variable and
extensible) set of perspectives. Each perspective describes the
software’s variability from a certain point of view, and together
they describe the variability of the required software. Note that
the set of perspectives to be considered is variable. This means
that the modeler can decide which perspectives are useful for the
system and which not. He even can stick to one single perspective
(e.g., the system perspective) and if he thinks a certain
perspective(s) is missing, it can be added (extensibility).

For all perspectives the same modeling technique is used. This
modeling technique is a revised version of the traditional feature
modeling techniques. It was necessary to introduce such a revised
technique to overcome the limitations of feature modeling
mentioned earlier. It is based on a few simple modeling concepts
that allow modeling features, variability relations and feature
dependencies. For more details and evaluation of the approach we
refer the reader to [15].

4.1 Multi-Perspective Approach
A perspective is used to model the variability of the software from
a certain point of view. The perspectives used for the modeling
can be freely chosen depending on the application under
consideration. To help the analysis, a set of possible perspectives
have been identified. Possible perspectives include: System

perspective, Users perspective, Functional perspective, Non-

functional perspective, User Interface perspective, and
Localization perspective. As already mentioned, it is not required
to consider all these perspectives. For instance, the Localization
perspective is only useful for software that needs to be localized
for different markets. This set of perspectives can be further
extended based on the needs of the application under
consideration. For example, a Hardware perspective may be
considered for embedded applications; or a Task perspective
could be used for modeling task-based applications.

The exact definition of the concept of feature depends on the
perspective taken. In general, a feature can be considered as a

physical or logical unit that acts as a building block for meeting

the specifications of the perspective it belongs to. A feature
belonging to one perspective may relate to other features (via

dependencies), also to features in other perspectives.

4.2 Modeling Primitives
The concept of Feature is the basic building block in our feature
assembly modeling technique. We distinguish two types of
features: Concrete Feature and Abstract Feature. The first type,
Concrete Feature represents a unit of system capability. A
concrete feature may be further decomposed to finer grained
features to increase the level of detail. The second type, Abstract
Feature is a source of variability; it represents a generalization of
one or more specific features, called Option Features. An Option
Feature represents an actual specification of its abstract feature.
Concrete option features may also be decomposed to finer grained
features. To illustrate the difference between the Abstract features
and Concrete features, consider a Quiz Product Line application
(see also section 5). In this application, Operation Mode is an
abstract feature, while Quiz and Exam are examples of concrete
operation modes and are therefore concrete features. Note that
they are option features for the abstract feature Operation Mode.

Figure 3. UML Meta Model for Feature Assembly Modeling Primitives

Within a feature assembly model, features are assembled using
feature relations. Two types of feature relations are defined:
Composition Relation and Specification Relation. A Feature

Composition Relation represents a whole-part relation and is
either Mandatory or Optional. A Mandatory Feature Composition
defines a compulsory whole-part relation, while an Optional
Feature Composition defines an elective whole-part relation. A
Specification Relation can only be used for an Abstract Feature
and allows associating the possible (concrete) Option Features
with this Abstract Feature. In terms of variability, an Abstract
Feature represents a variation point (i.e. a point at which several
possibilities exist [16]). The Option Features associated with the
Abstract Feature represent the variants (i.e. the specific
possibilities of a certain feature [16]). The number of Option
Features (variants) allowed to be selected in a certain product is
expressed via a Cardinality Constraint Relation. The Cardinality
Constraint Relation specifies the minimum and maximum number
of features allowed to be selected. A dash (" -") is used to specify
“any”.

In addition, features may be associated with Feature

Dependencies [3], which specify how the selection of one feature
may affect the selection of other feature(s). These dependencies
specify how features interact with one another in a single
perspective and between different perspectives. For example, a
Requires dependency between two features belonging to different
perspectives shows how they collaborate together to provide a
specific required capability, while an Excludes dependency
expresses incompatibility between features. We actually use the
regular feature model dependencies. So, we will not elaborate on
them.

Figure 3 shows the Meta model (UML class diagram) for the
Feature Assembly Modeling technique.

All different types of features are stored in the feature pool.
Feature Compositional Relations between features are also stored
in the feature pool, yet they are not enforced while reusing the
features, i.e. features can be reused from the pool with or without
their full set of descendants. Furthermore, a feature can be reused
without its ancestors. Similarly, also Specification Relations
between Abstract Features and Option Features are stored in the
pool. When reused, an Option Feature cannot be used without its
Abstract parent, while an arbitrary number of Option Features can
be reused for a single Abstract Feature. Also Feature
Dependencies are stored in the feature pool, but they are not
enforced when reusing features unless selected. The reason for
storing relations and dependencies with features but not enforcing
them when reusing the features is that it depends on the context of
use where or not the relations and/or dependencies hold.

5. EXAMPLE
In this section we provide an example to illustrate the Feature
Assembly and Feature Assembly Modeling technique. Consider a
Quiz Product Line application (QPL) that is intended to meet
many customers and markets. Therefore important perspectives
for such as an application are: the System perspective that
describes the fundamental features of the product line, the Users
perspective that identifies possible target users, the Functional
perspective that identifies and models the required functionalities,
the User Interface perspective that identifies and models the

elements of the required user interface (meeting all possible target
users), and the Localization perspective that models different
market requirements.

 Legend3

Figure 4. Quiz Product Line System Perspective

Figure 4 shows the Feature Assembly Model for the System
perspective. As shown in figure 4, a Quiz application is
mandatory composed of a set of features namely: Questions,
Layout, License, Report Generator, Operation Mode and
Question Editor. In addition, the following features are optional
part of the quiz application: Question Generator, Utilities, and
Publish. The Questions feature is an Abstract Feature (i.e.
variation point), which has five concrete Option Features (i.e.
variants). In any valid product at least two and at most four of
these options should exist; this is specified by the cardinality 2:4.
On the other hand, the Abstract Feature Operation Mode has four
Option Features; at least one has to be selected. No upper limit is
defined, which means that maximum number of operation modes
allowed in any valid application, is equal to the number of
available Option Features. This is indicated by the dash in the
variability cardinality 1:-. The Question Generator feature is
further decomposed into a Randomize Questions feature
(responsible for randomizing the questions). The feature
Randomize Questions on its turn is decomposed into a Fixed

Options feature (which represents a normal random number
generator) and an optional Branching Path feature (which allows
creating paths for selecting the next question to display). Figure 4
also shows some other features that are part of the quiz
application (Utilities and Publish), but details about these features
are not further specified (yet). This is an important aspect of the
Feature Assembly approach; it allows identifying Abstract
Features (variation points) while the concrete Option Features

3 The same legend is used for all subsequent figures.

(variants) may not yet be known. This allows adopting an
incremental design approach. When the concrete Option Features
become available, they can be added to the model together with
the associated Cardinality Constraints. Listing 1 shows the inter-
perspective dependencies between the features of the quiz System
perspective.

Figure 5 shows the Feature Assembly Model for the Users
perspective, where features represent user categories. Figure 6
gives the Graphical User Interface perspective (due to space
limitation only a subset of the features is shown). Furthermore,
the three different
perspectives shown in
figures 4, 5, and 6
hold intra-perspective
dependencies that
specify how different
features in different
perspectives relate.
Listing 2 shows a
sample of the intra-
perspective
dependencies for the
perspectives given for
the Quiz application.

Figure 7. Exam Product Line Feature Assembly System

Perspective

 To illustrate how one can make use of feature reuse in Feature
Assembly, consider the need for developing an Exam product line.
Clearly, some features defined for the Quiz product line are also
applicable in the Exam product line. Using our Feature Assembly
approach, the reusable features are looked-up and extracted from
the feature pool. Reusable features include: Report Generator,
License, Questions, Question Generator, and Layout. Abstract
Features such as Layout are extracted from the pool in addition to
(some of) their associated Option Features, in this case, Template

Based and Custom. Similarly, Concrete Features are extracted,
because their decomposition (defined for the Quiz product line) is
also applicable for the Exam product line, their descendents are
also extracted. Figure 7 shows the feature assembly model for the
System perspective of the Exam product line application. Note
how some features (e.g., Questions and Layout) are reused but
with different variability specifications (defined by the different
cardinality). When selecting features from the feature pool, the
perspectives need to be respected, i.e. it is not allowed to reuse a
feature in a perspective other than the one it was defined for. This
is because the semantics of the concept feature is different in
different perspectives. Therefore it is not allowed to mix features
from different perspectives when reusing them. On the other hand
a feature defined in more than one perspective can be reused in
any of the perspectives it was defined in, as long as the
perspective of reuse is the same as the perspective of definition.
Actually a feature is identified by its name and its perspective.

Matching Excludes Simple

Fill the Blank Excludes Simple

Self Assessment Requires Branching Path

Self Assessment Requires Report Generator

Exam Requires Report Generator

Listing 1. Sample Inter-Perspective Dependencies for the

System Perspective

Figure 5. QPL Users Perspective

Figure 6. QPL Graphical User Interface Perspective

(Users.Higher_Education AND

User_Interface.Template_Based) requires

System.Quiz_Question_Generator

(User_Interface.Dutch AND

User.Cooperate_Bussiness) Excludes

System.Standard

(User_Interface.Dutch OR User_Interface.French)

requires User_Interface.English

Users.Cooperate_Bussiness requires

User_Interface.English

Listing 2. Sample Intra-Perspective Dependencies

In addition to the existing features, some new features were
required for the Exam product line such as: Timer, Generate

Certificate, Question Multimedia and Equation Editor. Moreover,
features could be further elaborated when reused, such as the
Publish and Utilities features, which are Abstract Features and
had no Option Features associated with them yet in the Quiz
product line. For example, the Publish feature has three Option
Features associated with it in the Exam product line, namely: CD,
Flash and HTML. A Feature Assembly model is created from the
new features and the existing ones as shown in figure 7 (new
features are shown with a grey shade).

6. RELATED WORK
Feature Assembly is based on the idea of assembling products
from a set of existing features as well as new features. This idea
has been applied successfully in manufacturing as a way to
achieve mass production, such as cars, engines and many
electronic appliances. In Feature Assembly we use the idea of
assembling to compose feature models from a set of existing
features. The principle of assembling a certain product from
preexisting artifacts (components) has previously been proposed
in software engineering. For example, in [17] the statement “One
of the essential characteristics of engineering disciplines is to
build a product by assembling pre-made, standard components”
was made. Component Based Development (CBD) [17] [18] is
based on developing software by composing pre existing
components. Furthermore, there is a separation between the
development of the components and the development of the
software that will utilize these components [19]. This has called
for creating self contained components that would then minimize
the writing of code to only gluing code (code that glues the
components together). Although the idea of CBD did not achieve
its merits in software development in general, it has been a great
success in some specific domains. For example web services
based applications [20] [21] and e-learning applications [22] are
often built using a CBD approach. For example, in web services,
applications are assembled from a set of appropriate web services
according to the functionality they provide. Web service discovery
and identification plays an important role in the success of the
web service composition approaches [20]. Web services are
annotated with their usage, this description is then stored in a
central web service registry. To find a certain web service, the
registry is inspected [21].

The idea of using composition of components for achieving
software reusability with variability was first introduced in [8], as
a result of the widening of the product line scope due to new
emerging requirements. The idea proposed in that paper was to
create software based on composing existing and new
components. Frameworks were introduced as a possible
architectural support.

The need for applying reusability in combination with the product
line technique was advised in [12]. The authors advice reusing
previously made (variable) components in new software
applications for the sake of rapid development in large variable
software applications. They argue that the combination of
reusability with variability will speed up the development process.
However they do not give details about how such reusability can
be achieved.

In [23] the idea of product populations was introduced to
represent a portfolio or set of product lines, in which products of a
single product line have many commonalities, and in addition
many commonalities exist between the different sets of product
lines [23]. The author points out that to achieve productibility in
such a setting there is a need for reuse between the different
product lines. In addition, their methodology relies on
composition rather than decomposition of components. This is the
same principle as we propose with feature assembly but rather on
a feature level.

The above-mentioned work in CBD applied to product lines, tried
to solve the problem of maintaining productiblity via reuse in
addition to variability. They are situated on the component level
rather than the on the modeling level. This makes them more code
oriented. Furthermore, taking reusability into account at an early
design stage is complementary to reuse at a component level and
could enhance the reusability of the components. In [24] the
authors promote reuse in product line development as means for
rapid development. They argue that care must be taken to balance
between reuse and product differentiation. They present an
approach for balancing needs for differentiation and reuse in
complex product lines based on industrial cases.

On the level of modeling variability, many works have extended
the original FODA, for example FORM [25], FeatureRSEB [26],
PLUSS [27], and CBFM [28] in order to introduce more
modeling power and overcome some of its limitations, but none of
them have explored the idea of feature assembly.

Software perspectives or viewpoints was first introduced to
software development in [29] to show how adopting perspectives
helps in efficient modeling of the software system. In [30] [31]
[32] abstraction via viewpoints was introduced for software
architecture modeling. In [33] a multi perspective approach for
modeling variability was proposed, in which perspectives were
defined based on stakeholders. Each stakeholder has his/her own
perspective in defining variability. Therefore, stakeholders are
able to maintain their own partial models about the domain and its
variability. In [34], a different approach for separation of concerns
was adopted, the approach depends on defining model fragments.
A model fragment is a partial model with defined dependencies to
other model fragments. The fragments need to be merged to have
a global overview of the complete model, while doing so the
consistency of the overall model is checked.

In addition, in the domain of feature modeling, some works have
been proposed to support change (the type of change at the design
stage is referred to as offline change [35]) in feature models. The
need for refactoring emerges from the need for change in feature
models, either to widen the scope of an existing product lines or
to support product evolution (usually driven by customer needs)
or to recover from existing errors. In [36], the authors developed
a versioning system for feature models in which each feature is
associated with two versions: logical version and container
version. They mark the change in the features logical functionality
and in the overall feature model functionality respectively. In
[37], the authors define a list of possible patterns for refactoring
feature models. The patterns identify the most common changes
that could be required in a certain feature model and provide how
to modify the feature model to adapt to that change. Although
somehow related, the purpose of that kind of work is on capturing
the evolution of a single model.

In [38] a decision oriented approach for modeling variability
called DOPLER (Decision-Oriented Product Line Engineering for
effective Reuse) was presented. DOPLER provides a generic meta
model composed of Assets and Decisions for modeling variability.
This meta model can then be extended to each specific domain to
create domain specific meta models for variability modeling.
Decisions represent a problem space view on the product line’s
variability, while assets represent an abstract view of the solution
space in the degree of detail needed for subsequent product
derivation, both are represented from the perspective of users.
Assets are linked to decisions via inclusion conditions, which are
rules that define which assets will be added during product
derivation. The approach supports evolution by allowing
propagation of the meta model changes to already existing
variability models.

7. CONCLUSION AND FUTURE WORK
In this paper we have presented a new framework for modeling
and reusing variability called Feature Assembly. Feature
Assembly Framework uses the idea of assembling features in
order to model variable software. Furthermore, it promotes feature
reusability by storing the features in a so-called feature pool,
which acts as a feature repository. Whenever a new feature is
needed, it is also added to the pool of features therefore allowing
the pool to continuously grow.

We believe that Feature Assembly is an important step towards
better reusability in variable software. Although composing
software from components has been around for over a decade
now, it is by experience quite difficult to be fully achieved. This is
mostly due to the fact that components are not usually built with
reusability in mind. Therefore, in this paper we introduce
composition and reusability as early as possible, i.e. during
domain analysis and design. In this way, it promotes to take
reusability into account early in the development cycle. Moreover,
we also make use of reusability and composition during this phase
as well. So it is design for reuse as well as design by reuse.

The concept of creating feature models by assembling features is
made feasible via the Feature Assembly Modeling technique. We
have briefly introduced the Feature Assembly Modeling technique
which is a multi-perspective approach for realizing separation of
concerns in order to deal with the variability modeling of large
and complex software. Adopting a perspective-based approach for
defining features helps abstracting from issues that are not
relevant for a particular aspect or viewpoint. By expressing
dependencies between features of different perspectives, the
different perspectives are connected. This will also be useful when
making configuration to eliminate invalid feature combinations.
Through its revised feature modeling technique, it enables
reusability of features. The specification of the information about
the variability is separated from the definition of the features.

The next step in the research is to provide tool support for the
Feature Assembly approach. This includes the realization of the
feature pool and providing a powerful search mechanism for
looking for suitable features. Scalability of the approach should be
further investigated. Although current data stores hold billions of
records with no problems further investigation on the query
response time for the feature pool search should be investigated in
large feature pools. Also an industrial evaluation of the approach
is planned. Furthermore, linking features to implementation

components is desirable to ensure traceability and to also realize
reusability at the architecture level.

8. ACKNOWLEDGEMENT
This research is sponsored by IRSIB (Institute for the
encouragement of Scientific Research and Innovation of Brussels)
through the VariBru project (www.varibru.be). The authors
would like to thank Wim Codenie, Nicolás González-Deleito, and
Tom Tourwé from Sirris for their valuable discussions regarding
the needs of the industry, which highly contributed to the
elaboration of the ideas.

9. REFERENCES

[1] J. Bosch, “Design and Use of Software Architectures:
Adapting and Evolving a Product-Line Approach”, Addison-
Wesley, Boston (MA), 2000

[2] M. Sinnema, S. Deelstra, J. Nijhuis, J. Bosch, “COVAMOF:
A Framework for Modeling Variability in Software Product
Families”, In: Proceedings of the Third Software Product
Line Conference (SPLC 2004), Springer Verlag Lecture
Notes on Computer Science, vol. 3154 (LNCS 3154), , pp.
197–213, 2004

[3] K.C. Kang, J. Lee, P. Donohoe, “Feature-Oriented Product
Line Engineering”, IEEE Software, vol. 19, no. 4, pp. 58-65,
2002

[4] K. Kang, S. Cohen, J. Hess, W. Novak, A. Peterson,
“Feature-oriented domain analysis (FODA) feasibility
study”, Technical Report CMU/SEI-90-TR-021, Software
Engineering Institute, Carnegie-Mellon University, 1990

[5] M. Acher, P. Collet, P. Lahire, , R. France, “Composing
Feature Models”, In: 2nd International Conference on
Software Language Engineering (SLE'09), 2009

[6] S. A. Ajila, A. B. Kaba, “Evolution support mechanisms for
software product line process”, In: J. Syst. Softw., vol. 81,
no. 10, pp. 1784-1801, 2008

[7] J. Bosch, “Expanding the Scope of Software Product
Families: Problems and Alternative Approaches”, In:
Proceedings of the 2nd International Conference on the
Quality of Software Architectures (QoSA 2006), 2006

[8] R. Van Ommering, J. Bosch, “Widening the scope of
software product lines — from variation to composition”, pp.
31-52, 2002

[9] T. von der Massen, H. Lichter, “Deficiencies in feature
models”, In: T. Mannisto, J. Bosch (Eds.), Workshop on
Software Variability Management for Product Derivation -
Towards Tool Support , 2004

[10] M. Riebisch, “Towards a more precise definition of feature
models”, In: Modelling Variability for Object-Oriented
Product Lines. pp. 64-76, 2003

[11] M. Pizka, A. Bauer, “A brief top-down and bottom-up
philosophy on software evolution”, In: Proc. of the Int.
Workshop on Principles of Software Evolution (IWPSE),
2004

[12] J. Estublier, G. Vega, “Reuse and variability in large
software applications”, In: ESEC/SIGSOFT FSE 2005, pp.
316-325, 2005

[13] J. Bosch Software Product Families in Nokia. In: 9th
International Conference SPLC2005 (2005).

[14] A. Maccari, A. Heie, Managing infinite variability in mobile
terminal software. Softw., Pract. Exper, 35(6), pp. 513-537 ,
2005

[15] L. Abo Zaid, F. Kleinermann, O. De Troyer, “Feature
Assembly: A New Feature Modeling Technique”, 29th
International Conference on Conceptual Modeling, Lecture
Notes in Computer Science, Vol. 6412/2010, pp. 233-246,
2010

[16] Svahnberg, M., van Gurp, J., Bosch,J., “A taxonomy of
variability realization techniques”, In: Software Practice &
Experience, vol 35(8), pp. 1-50, 2005

[17] J. A. Wang, “Towards component-based software
engineering”, In: Proceedings of the seventh annual CCSC
Midwestern conference on Small colleges. Consortium for
Computing Sciences in Colleges, pp. 177-189, 2000

[18] G.T. Heineman, G.T. Councill, “Component-Based Software
Engineering: Putting the Pieces Together”, Addison-Wesley
Professional, ISBN 0-201-70485-4, 2001

[19] I. Crnkovic, M. Chaudron, S. Larsson, “Component-Based
Development Process and Component Lifecycle”,
International Conference on Software Engineering Advances
(ICSEA'06), pp.44, 2006

[20] B. Srivastava, J. Koehler, “Web service composition -
current solutions and open problems”, In: Proceedings of
ICAPS 2003, 2003

[21] S. Dustdar, , W. Schreiner, “A survey on web services
composition, International Journal of Web and Grid
Services”, Vol. 1, No. 1, pp. 1-30, 2005.

[22] V. H. Menéndez, , M.E. Prieto, “A Learning Object
Composition Model”, UNISCON 2008, 469-474, 2008

[23] van Ommering, R.: Software reuse in product populations.
Software Engineering, IEEE Transactions on 31 (7), 537-
550, 2005

[24] J. Savolainen, J. Kuusela, M. Mannion, T. Vehkomäki:
“Combining Different Product Line Models to Balance
Needs of Product Differentiation and Reuse”. ICSR 2008:
116-129, 2008

[25] K. Kang, S. Kim, J. Lee, K. Kim, E. Shin, M. Huh: “FORM:
A Feature-Oriented Reuse Method with Domain-Specific
Reference Architectures”, In: J. Annals of Software
Engineering. vol. 5, pp. 143-168, 1998

[26] M. Griss, J. Favaro, M. d’Alessandro, “Integrating Feature
Modeling with the RSEB”, In: Fifth International Conference
on Software Reuse, pages 76–85, 1998

[27] M. Eriksson, J. Börstler, K. Borg: The PLUSS Approach -
Domain Modeling with Features, Use Cases and Use Case
Realizations. In: Obbink and Pohl (eds), pp. 33- 44, 2005

[28] K. Czarnecki, C. H. P. Kim, “Cardinality-Based Feature
Modeling and Constraints: A Progress Report”, In:
OOPSLA’05 International Workshop on Software Factories ,
2005

[29] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, M.
Goedicke, “Viewpoints: A Framework for Integrating
Multiple Perspectives in System Development”, Intl. J. of
Software Engineering and Knowledge Engineering 2(1), pp.
31–57, 1992

[30] T.C. N. Graham, “Viewpoints Supporting the Development
of Interactive Software”, In Proceedings of Viewpoints 96:
International Workshop on Multiple Perspectives in Software
Development, ACM Press, San Francisco, USA, pp. 263-
267, 1996

[31] E. Woods, “Experiences Using Viewpoints for Information
Systems Architecture: An Industrial Experience Report”,
EWSA 2004: pp. 182-193, 2004

[32] B. Nuseibeh, J. Kramer, A. Finkelstein, “ViewPoints:
Meaningful Relationships Are Difficult!“, In: Proceedings of
International Conference on Software Engineering
(ICSE'03), 2003

[33] M. Mannion, J. Savolainen, T. Asikainen, “Viewpoint-
Oriented Variability Modeling”, In: International Computer
Software and Applications Conference (COMPSAC’09), pp.
67–72, 2009

[34] D. Dhungana, P. Grünbacher, R. Rabiser, T. Neumayer,
“Structuring the modeling space and supporting evolution in
software product line engineering”, Journal of Systems and
Software 83(7), pp.1108-1122 , 2010

[35] S. A. Ajila, A. B. Kaba: “Evolution support mechanisms for
software product line process”, In: J. Syst. Softw., vol. 81,
no. 10, pp. 1784-1801, 2008

[36] R. Mitschke, M. Eichberg, “Supporting the Evolution of
Software Product Lines”, In: ECMDA Traceability
Workshop, 2008

[37] V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P. Borba, C. J.
P. de Lucena, “Refactoring product lines”, GPCE 2006: 201-
210

[38] D. Dhungana, P. Grünbacher, R. Rabiser, “The DOPLER
meta-tool for decision-oriented variability modeling: a
multiple case study”, Journal of Automated Software
Engineering, DOI: 10.1007/s10515-010-0076-6 (in press)

