
A Semantics-based Aspect-Oriented Approach
to Adaptation in Web Engineering

Sven Casteleyn

Vrije Universiteit Brussel
Pleinlaan 2

1050 Brussel, Belgium

Sven.Casteleyn@vub.ac.be

William Van Woensel
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussel, Belgium

William.Van.Woensel@
vub.ac.be

Geert-Jan Houben

Vrije Universiteit Brussel
Pleinlaan 2

1050 Brussel, Belgium;
Technische Universiteit Eindhoven,
PO Box 513, 5600 MB Eindhoven,

The Netherlands
Geert-Jan.Houben@vub.ac.be

ABSTRACT
In the modern Web, users are accessing their favourite Web
applications from any place, at any time and with any device. In
this setting, they expect the application to user-tailor and
personalize content access upon their particular needs. Exhibiting
some kind of user- and context-dependency is thus crucial in Web
Engineering. In this research, we focus on separating the
adaptation engineering process from regular Web engineering by
applying aspect-oriented techniques. We show how semantic
information and metadata associated with the content can be
exploited in our aspect-oriented approach. Furthermore, the
approach allows the use of global (structural) properties of the
Web application in adaptation specification. We thus obtain
several advantages, which are demonstrated in this paper: to
control adaptation (specification) separate from (regular) Web
Engineering concerns in a richer, more consistent, robust and
flexible way.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures –
Languages; H.5.4 [Information Interfaces and Presentation]:
Hypertext/Hypermedia – Architectures, Navigation.

General Terms: Design, Languages

Keywords
Web Engineering, Aspect-Orientation, Adaptation, Semantic Web.

1. INTRODUCTION
Technology developments and evolutions on the Web bring

new requirements and challenges for Web engineers, as well as
opportunities.

Wireless network technology has been improving rapidly over
recent years, and finally seems to have reached the maturity
required for commercial success. This is due to two key

ingredients: increased bandwidth, closing up the gap with
common broadband Internet speeds, and widespread availability,
mainly achieved by rapid deployment and price-drop of new and
superior standards by mobile telecom operators (e.g. UMTS). Not
coincidentally, advances in the capabilities of handheld and
portable devices (e.g. mobile phones, PDA’s, portable game-
consoles) have been equally large. More economical power-
usage, increased graphical capabilities and heightened processing
power have turned these devices into full-fledged Web clients. As
a consequence, network environments today are heterogeneous
and omni-present; users are now truly accessing the Web from
anywhere, with any device, and at anytime. This trend in
technology is one of a number of examples that motivate the need
for advanced user and context adaptation in Web applications.
Moreover, the trend and its amazing speed also clearly indicate
the need to control the adaptation engineering within Web
application engineering.

A parallel evolution is the emergence of the Semantic Web, in
which the semantics of the content are made explicit by means of
metadata and ontologies. With more and more semantic data
available (mostly in the form of RDF(S), also in OWL), the steps
toward realizing the Semantic Web are becoming more and more
concrete. Just to point out some examples: Wordnet has been
available in RDF format some time now1; Wikipedia can be
accessed in various RDF-notations2, and evidently modern Web
2.0 applications (e.g. YouTube, MySpace, Flickr) provide a
wealth in user-provided meta-information in the form of tagging.
This wealth of semantic (metadata) information leads to exciting
new possibilities: semantic-based search engines3, automated
agents crawling and extracting relevant information, complex
querying4, (automatically) combining information from different
sources4, etc. These examples exploit Semantic Web techniques
and approaches that offer opportunities for Web engineers as well.
One opportunity that deserves more attention lies in exploiting
this metadata to perform more flexible and complex

1 See http://www.w3.org/2001/sw/BestPractices/WNET/wn-

conversion.html
2 See http://labs.systemone.at/wikipedia3
3 E.g. http://www.swoogle.com/
4 E.g. http://dbpedia.org/

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission and/or a
fee.
HT’07, September 10–12, 2007, Manchester, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-820-6/07/0009...$5.00.

personalization and adaptation in access to the application
content5.

The aforementioned heterogeneity of the Web and client devices,
and the growing demand and expectation of the user for a
personalized browsing experience that depends on location,
device and time, naturally have their consequences for the Web
engineer. To provide content access that thus adapts to user and
context the Web engineering approaches require straight-forward
but rigid, powerful and independent adaptation engineering. Next,
we observe that adaptation is typically cross-cutting: instead of
being localized to one particular place in the Web application
(design), it is typically spread over the entire Web application. In
regular software engineering, aspect-orientation is a proven
abstraction and modularization technique to tackle so-called
cross-cutting design concerns. Consequently, it is our proposition
that these techniques can serve excellently to tackle (cross-
cutting) adaptation concerns, and separate the adaptation
specification from the regular Web engineering (concerns). At the
same time, aspect-oriented adaptation reduces the required effort
when specifying adaptation, mainly by preventing unnecessary
(adaptation) code duplication. In this paper, we concretely
materialize the aspect-oriented techniques by exploiting the
semantic metadata available in (the design of) the Web
applications content. By doing so, we successfully separate
adaptation specification from regular web design, and obtain
several advantages, as will be argued in this paper: simpler yet
more flexible, more robust, consistent and powerful adaptation
support, and a higher degree of re-usability.

This paper is structured as follows. Section 2 shortly reviews
Hera-S, the Web engineering method used to illustrate our
approach. Section 3 shortly elaborates on existing adaptation
support in Hera-S. Section 4 explains why and how aspect-
orientation is used to specify complex adaptation, based on
semantic (meta)data. Section 5 discusses how to realize the
approach presented in this paper. Section 6 discusses our
implementation, and finally section 7 states conclusions.

2. Hera-S in a Nutshell
Hera-S is a Web Information System (WIS) design method

that combines the strength of Sesame [3], a popular open source
RDF framework, and the rich modeling capabilities of Hera, a
model-driven approach for engineering Web applications based
on semantically structured data. As most existing WIS design
methods, Hera-S distinguishes domain, navigation and
presentation design. By cleanly separating these design concerns
in separate design models the complexity of creating large Web
applications is effectively reduced. Key feature of Hera-S is the
fact that it is completely based on RDF technology: it takes as
input an RDF- or OWL-based specification of the content data
(the so called Domain Model), and specifies how the data is
chunked and made navigable in the so-called Application Model.
The Presentation Model finally adds the necessary details for
presentation (e.g. positioning, look-and-feel). We remark that the
schemas of these models are also specified using RDF(S).
Another distinctive characteristic of Hera-S is its explicit focus on
adaptation and personalization. Hera-S therefore maintains a
Context Model, which allows user- and context-based adaptation

5 See for example http://www.personal-reader.de/

(more on this in the next sections). An illustrative overview of the
Hera-S architecture can be found in Figure 1. Fed by data from
the actual data source, which conforms to the Domain Model and
is stored as a Sesame repository, the Application Model is
instantiated, resulting in so-called Application Model Pages
(AMP’s). Using the presentation model, the actual Web pages can
be generated. In previous publications, it was demonstrated that
both proprietary and external engines can be used for this task
(e.g. [11]).

Figure 1 Hera-S Architecture

To later understand the semantic-based adaptation illustrations
expressed in Hera-S, let us consider some small examples, taken
from our running case, namely the IMDB Website6. This large-
scale case is a copy of the actual IMDB Website, and was set up
to experiment and test various aspects of Hera-S, among which
the aspect-oriented adaptation support as proposed in this paper.
To give a small idea of it’s scale: the Domain Model (DM) for our
IMDB Website roughly consists of thirty concepts and over
hundred (data- and object-) properties. The actual content was
obtained using our dedicated crawler, which extracted a
representative data set (296.233 RDF triples, consisting of 23.626
movies and 1481 persons) from the actual IMDB Website.

Here, we focus our examples on the Application Model (AM),
where adaptation will be specified. When exploiting the semantics
of the content data to perform adaptation, we will also use the
Domain Model (DM), but as this is simply standard RDF(S) it
does not require any further clarification. Our examples are
expressed using Turtle7, a well-known, compact, and easy-to-use
RDF syntax.

The central AM notions are (Navigational) Units, Attributes and
Relationships. Units represent chunks of content information, and
thus group those elements that will be shown together to the user.
Units typically correspond to a single concept in the DM, yet this
is not mandatory (i.e. they might also refer to several domain
concepts). The elements contained in a Unit are either Attributes,
or other Units (called Sub-units). Attributes are literal values,
typically representing strings although any other URI-referable
media type is allowed (e.g. pictures, videos). Attributes mostly
refer to (datatype) properties in the DM8, and thus specify exactly
which of these properties will be presented to the user. Sub-units

6 http://www.imdb.com/
7 http://www.dajobe.org/2004/01/turtle/
8 More specifically, a datatype property of the concept that

corresponds to the Unit in which the attribute appears.

simply provide further grouping of elements, and behave much
like regular Units. Finally, Relationships represent (browsable)
links between units, and are built upon underlying semantic
relationships between concepts of the DM. The AM for our
IMDB running case consists of over thirty units and sub-units, of
which we will show two (simplified) examples. Consider the case
where we want to show a movie (by its title), and its director(s)
(his/her name, picture and movies he/she directed). In Turtle
notation, the AM includes:

:MovieUnit a am:NavigationalUnit ;
 am:hasInput [a am:Variable ;
 am:varName “M”;
 am:varType imdb:Movie];

 am:hasAttribute [
 rdfs:label “Title” ;
 am:hasQuery
 “SELECT T FROM {$M} rdf:type {imdb:Movie};
 rdfs:label {T}”] ;

 am:hasAttribute [
 rdfs:label “Plot” ;
 am:hasQuery
 “SELECT P FROM {$M} rdf:type {imdb:Movie};
 imdb:moviePlotOutline {P}”] ;

 am:hasUnit [
 rdfs:label “Director” ;
 am:refersTo :DirectorUnit ;
 am:hasQuery
 “SELECT D FROM {$M} rdf:type {imdb:Movie};
 imdb:movieDirector {D} rdf:type {imdb:Director}”
] .

:DirectorUnit a am:NavigationalUnit ;
 am:hasInput [a am:Variable ;
 am:varName “D” ;
 am:varType imdb: Director];

 am:hasAttribute [
 rdfs:label "Name" ;
 am:hasQuery
 “SELECT L FROM {$D} rdf:type {imdb:Director};
 rdfs:label {L}”] ;

 am:hasAttribute [
 rdfs:label "Photo" ;
 am:hasQuery
 “SELECT Ph FROM {$D} rdf:type {imdb:Director};
 imdb:hasMainPhoto {Ph}”] ;

 am:hasRelationship [
 rdfs:label “Movies directed” ;
 am:refersTo :MovieUnit ;
 am:hasQuery
 “SELECT M FROM {$D} rdf:type {imdb:Director};
 imdb:directorFilmography {M}”
] .

The example consists of two units: MovieUnit and DirectorUnit,
both containing some elements and representing a particular
grouping of information. The MovieUnit contains two attributes,
one representing the “title” of a movie, the other representing the
“plot” of the movie. Finally, the MovieUnit also contains a sub-
unit, representing the director(s) for that movie. Note that the sub-
unit “refersTo” the DirectorUnit, which specifies what exactly to
show for a Director. We chose here to use a sub-unit, as opposed
to a navigational relationship, which will result in the final
Webpage showing the information on directors shown on the
same page as the movie (instead of a link to a page representing
the director). The DirectorUnit also contains some attributes, and
a relationship, which represents a browsable element, in this case
linking to the movies directed by this director.

Another issue to remark for this example is that (almost) each
element in a unit, be it a sub-unit, an attribute or a relationship,
has a SeRQL query associated with it. This query is responsible
for the instantiation of the particular AM-element with actual data
(from the data source), and allows the designer to select exactly
and only the particular content that is desired. Thereby, the
designer wields the complete power of SeRQL, and is also able to
integrate Context Model data in the query. In this way, as we will
see in the next section, versatile and fine-grained adaptation can
naturally be integrated in the Application Model.

Next to the above basic constructs, Hera-S supports update-
queries (to update the context model), forms, scripts, (guided)
tours, Web services and frame-based navigation. For details on
these elements we refer to [16].

3. Adaptation Engineering Perspective
 We now take a closer look at the adaptation specification.
Before we continue with our Hera-S running example, let’s
shortly review how adaptation is typically tackled in hypermedia
in general, and in some well-known Web engineering methods in
particular. Adaptation specification in hypermedia lead to the
field of Adaptive Hypermedia, where both techniques and
methods for adaptation were identified [4]. In this context,
adaptive access to content is mostly achieved by adding
(adaptation) conditions to the regular hypermedia design. These
conditions constitute adaptive access to hypermedia content:
depending on the truth-value of these conditions, some content is
either shown or hidden (a representative example is the AHA!
System [2]). In Web engineering, adaptation support generally
adheres to this approach. In OOHDM/SHDM, conditions on
navigation concepts and relationships are specified in the
navigation class model [15]. In WebML, navigational conditions
are specified as queries over de data [7] in a so called profile.
Some methods apply Event-Condition-Action rules to specify
adaptation. Examples include OO-H, which uses the
Personalization Rule Modeling Language (PRML) [12], WSDM,
which uses the Adaptation Specification Language [5] and
WebML, in the context of user-behavior aware Web Applications
[8]. It is worth noting that some of these methods do consider
other actions besides conditioning elements to be viewed, e.g.
sorting, altering navigation paths. UWE, an OO-based Web
engineering method, specifies adaptation conditions as OCL
constraints on the conceptual model [14]. We do remark that, in
the context of UWE, aspect-orientation has been used to specify
(some) adaptation [1]. In that paper, (only) some particular types

of adaptive navigation were considered, i.e. adaptive link hiding,
adaptive link annotation, adaptive link generation. Moreover, the
granularity of the considered aspects is totally different: where [1]
considers one particular kind of adaptation (e.g. link hiding) as an
aspect, our paper considers the adaptation process as a whole.
Aspect specification in our paper is thus considered at a higher
level of abstraction, and exploits semantic information as a key
element. Furthermore, an important drawback of [1] is its manual
pointcut specification, i.e. each element of the pointcut requires
manual annotation; in our approach pointcut specification is done
using a generic querying mechanism.

To illustrate how adaptation is specified in Hera-S, we use the
same AM examples as introduced in the previous section. Flexible
and expressive adaptation support is provided there through the
SeRQL expressions underlying every element of the Application
Model. Indeed, these expressions may include conditions that
make the instantiation of the particular AM element dynamic. If
the condition references the Context Model (denoted by the “cm:”
prefix), it thus expresses user or context-dependency, and so the
resulting Web application becomes adaptive to the current user or
context. Reconsider the DirectorUnit from Section 2, and imagine
we don’t want to display the director’s picture when the user is
using a small-screen pda-like device, and furthermore, directed
movies should only be shown when the director is in the user’s
favorite director list. The DirectorUnit would then look as follows
(for clarity, the adaptation conditions that were added are put in
bold; non-altered parts were omitted):

:DirectorUnit a am:NavigationUnit ;
 ...
 am:hasAttribute [
 rdfs:label "Photo" ;
 am:hasQuery
 “SELECT Ph
 FROM {$D} rdf:type {imdb:Director};
 imdb:hasMainPhoto {Ph},
 {} rdf:type {cm:CurrentUser};
 cm:userDevice {Dev}
 WHERE NOT Dev LIKE 'pda'"
] ;

 am:hasRelationship [
 rdfs:label “Movies directed” ;
 am:refersTo :MovieUnit ;
 am:hasQuery
 “SELECT M
 FROM {$D} rdf:type {imdb:Director};

 imdb:directorFilmography {M} imdb:hasAgeRating {}
 imdb:minAllowedAge {Min},
 {cm:CurrentUser} cm:age {Age}
 WHERE Age >= Min”

] .

It shows that using SeRQL, arbitrary user or context conditions
can thus be written into any regular selection query present in the
AM. While SeRQL is both versatile and expressive and therefore
allows arbitrary and powerful personalization, inherently the way
in which adaptation is specified in the global Web application
design suffers from some drawbacks:

• Adaptation specification is localized: In the above
example, we restricted the display of pictures from directors.
However, adaptation is typically not localized: e.g. for small-
screen users it makes more sense to eliminate all pictures
from their application, instead of only director pictures.
While certainly possible with the above approach, it would
require not only restricting pictures of directors (in
DirectorUnits), but instead eliminating all pictures, wherever
their appearance is specified in the Application Model. This
forces the designer to (manually) identify all attributes of
units in the AM where pictures are shown, and subsequently
alter the corresponding queries in all these units.

• Adaptation specification is hard-coded: as mentioned in
the example of the previous bullet, the designer needs to
identify (over the entire AM) which queries will return
pictures, and subsequently alter these queries. When
extending the AM later on (for example, by adding songs or
games to the Web site) and possibly introducing new
pictures, these pictures would still be shown to the user,
unless adaptation conditions are (manually) added also for
these new parts of the AM.

• Global (structural) properties are not usable: because
adaptation conditions are limited to one particular element
(i.e. integrated in a query), they cannot express restrictions
based on global properties of the Application or Domain
Model. For example, expressing that pictures can be shown
to small screen users, but only on pages where no other
pictures appear, is currently impossible.

We also observe that valuable semantic information is ignored in
a scenario as above. Although the semantic (type) information for
media elements is present in the Domain Model, this knowledge
is ignored. Instead, it is left to the designer to interpret which
queries involve pictures, and typically he/she must perform all
required adaptation manually. This leaves room for human error,
with possible inconsistencies in the adaptation behavior as a
result. Adaptation engineering is also totally intertwined with the
(classical) Web engineering (concerns), complicating the overall
design.

Adaptation engineering obviously requires a more systematic and
higher-level approach. We also notice how the semantic
information (naturally present and associated with the content) is
there to exploit for this purpose. In the next section, we present an
aspect-oriented and semantic-based approach to adaptation
specification. Our approach effectively separates adaptation
engineering from (regular) Web engineering. Furthermore, we
also tackle the fact that adaptation concerns are typically spread
over the entire Web application and exploit the valuable semantic
information typically present in the content specification. Finally,
the approach is also perfectly suited to take into account (global)
structural properties of the global Web application.

4. Aspect-Oriented Adaptation Engineering
 As established in the previous section, adaptation design is

typically spread all over the Web application design. A similar
observation was made in the programming community. When
studying certain design concerns, it gradually became clear that
some concerns cannot be localized to one particular function or
module. A clear example is logging, the code of which is

typically spread over the entire application code. Such a concern
is called cross-cutting. The answer of the programming
community to address such a concern while maintaining good
abstraction and modularization is aspect-orientation [13]: instead
of duplicating the required logging code in different places in the
application code, it is specified as an aspect. An aspect consists of
a pointcut and an advice. The pointcut performs a query over the
programming code, selecting exactly those locations where the
cross-cutting concern comes into play. The advice consequently
specifies which action should be taken whenever this cross-
cutting concern is detected (i.e. which piece of code should be
‘injected’). Exactly the same paradigm can be applied for
adaptation specification: some (adaptation) action, i.e. the advice,
is typically required to be in multiple places in the Web
application, i.e. the pointcut. The pointcut will thus consist of a
query over the AM, selecting exactly those elements which
require an action to be taken for adaptation. The action itself will
typically consist of injecting adaptation-conditions to particular
places selected by the pointcut. However, we will not limit
ourselves to only adding adaptation-conditions. In fact, as we will
see, an adaptive action will consist of a arbitrary transformation
applied to the AM elements selected in the poincut, and will thus
also allow adding, deleting or replacing elements, based on a
certain (context- or user-dependent) condition. In the next two
subsections, we will discuss pointcuts and advices in detail in this
adaptation engineering perspective.

We devised our own Aspect Language, baptized SEAL
(Semantics-based Aspect-Oriented Adaptation Language), which
is custom-made to provide adaptation support in the context of
Hera-S. Such languages, specifically aimed at supporting certain
tasks in a specific domain, are called domain specific languages
[9]. Their advantages are well-documented, and clearly motivate
our choice for a newly designed language here, as opposed to
using a general-purpose language. Most important benefits are
reduced complexity (constructs take into account the peculiarities
of Hera-S models, and thus allow easy and quick handling of
these models) and ease of use (domain experts may readily
understand and use our domain-specific language, and do not
need to learn a more complex general-purpose language). In this
section, we explain the SEAL language constructs and their
semantics; how the semantics of the adaptation aspects are
realized (in Hera-S) is the subject of the next section.

4.1 Pointcuts
Pointcut expressions help to select exactly those elements

from the Application Model where adaptation concerns need to be
applied. The basic pointcut statement selects all AM elements. All
subsequent language constructs restrict (condition) this selection
in some way:

Type restriction: Using the “type” construct, selection of
elements is restricted to those of a certain type. The following
constructs are available: “unit”, “subunit”, “attribute”,
“relationship”, “query”, “form” “label”, “query”, “tour”, “target”,
“source”. Typical examples include:
- type unit, subunit; (selects all units and sub-units)
- type attribute; (selects all attributes)

Conditions: Next to type restriction, element selection in the
pointcut may be restricted according to name, value (a property of
an AM-element should have a certain value; see the third example

where it is specified that the label of an attribute should have a
certain value using the hasLabel keyword), aggregation (an
element contains another element, or is containedIn another
element), or aggregate function (using a numerical condition on
the amount of contained/containedIn elements, specified using
count). Where appropriate, string pattern-matching is allowed
when conditioning values (see the first example below).
Specifically for relationships, restrictions on source and target
may be specified (using from and to). Logical expressions may be
negated or combined using logical conjunction or disjunction;
parentheses are used to alter default logical operator precedence.
Typical examples include:

- type unit and hasName “movie*”; (selects all units that have a
name that starts with “movie”)
- type subunit and contains (2 < count(type attribute)) < 5);
(selects all sub-units which have between 2 and 5 attributes
specified)
- type attribute and containedIn (type unit and contains (type
attribute and hasLabel “title”)); (selects all attributes contained in
a unit, which has an attribute labeled “title”)

Native calls: SEAL supports calls to the native underlying query
language, in our case SeRQL, using the <SeRQL> construct. This
hook is provided so that the expert user can still specify intricate
queries which would otherwise not be possible with SEAL. It also
allows querying and referencing the Domain Model, and thus to
exploit valuable DM information (we demonstrate this benefit in
section 4.3).

4.2 Advices
Advices specify exactly what needs to be done to the

element(s) selected in the pointcut. SEAL supports the following
constructs:

Adding conditions: Conditioning elements is the common way of
adapting. Conditions (condition expressions) typically reference
the Context Model to express a kind of context or user-
dependency. In analogy with Hera-S notational conventions (see
section 3), referencing the Context Model is done using the
“cm:”-prefix; referencing the Domain Model is done using the
namespace-prefix that was used in the Domain Model (i.e. in our
case “imdb:”). Navigation in the respective models can be done
using the “.”-operator (e.g. imdb:hasAgeRating.minAllowedAge;
see example below). As usual, condition expressions can be
combined using logical conjunction, disjunction or negation, and
can have parentheses altering the standard operator precedence.
The semantics are such that depending on the truth value of the
condition, the particular element is then shown or not. In
adaptation engineering the most common practice is to include
(add) conditions when a new adaptation concern is considered.
Typical examples include:

- ADD CONDITION cm:age >= 18; (adds a condition to the
elements selected in the pointcut denoting that the age of the user
should be 18 or above, i.e. he/she is not a minor)
 - ADD CONDITION imdb:hasAgeRating.minAllowedAge <=
cm:age; (adds a condition to the elements selected in the pointcut
which specifies that the age of the current user should be higher
than the minimum allowed age for these elements, a property
specified in the Domain Model. Note that in the left part,
navigation starts from the elements selected in the pointcut, while

the right part specifies navigation in the Context Model (denoted
by the “cm:” prefix) for the current user. We will elaborate further
on this example in section 4.3.

Adding/deleting elements: (New) elements can be added to the
elements selected in the pointcut, if a certain condition is fulfilled,
or existing elements selected in the pointcut can be deleted. When
adding elements, plain RDF(S) can be added (the designer is
responsible for validity), or it is possible to use ADD something
statements where something is any of the AM elements. The
semantics is such that these advices need to be performed at
runtime upon page-request (see next section). Typical examples
include:

- if cm:age < 18 DELETE; (simply deletes the elements selected
in the pointcut if the current user is a minor, i.e. cm:age < 18)
- if cm:bandwith >= 1000 ADD attribute containing hasLabel
“Trailer”, hasQuery “SELECT T FROM {$variable} rdf:type
{imdb:Movie}; imdb:movieTrailer {T}”;
(adds, to the element(s) selected in the pointcut (movies), an AM-
attribute showing the trailer, with the label “Trailer” and the
corresponding query, if the user’s bandwidth is above 1000 Kbps)

Replacing elements: (Parts of) existing elements selected in the
pointcut can be replaced, if a certain condition is fulfilled. Only
the explicitly specified parts of the elements are replaced; parts
which do not appear in the replace-statement are simply copied.
As in the pointcut expressions, pattern matching symbols may be
used to match (part of) the element to be replaced (see the first
example below) Typical examples include:

- if cm:userDevice=“pda” REPLACE hasRefersTo value
“Big*Unit” BY hasRefersTo value “Small*Unit”;
(if the user uses a pda, let relationships/sub-units refer to a smaller
version of the unit)
- if cm:userDevice = “pda” REPLACE hasSubunit BY
 hasRelationship; (replaces the hasSubUnit elements by
hasNavigationRelation; all attributes of the particular sub-units
are left unchanged)

4.3 Adaptation Aspects: Examples
With pointcuts and advices described, we can now consider

some examples of adaptation aspects which were specified for our
running case, the IMDB Website. For each example, we will first
state the adaptation requirement, and subsequently formulate the
adaptation aspect realizing this requirement, followed by a small
explanation. We will gradually show the strength of our approach,
and illustrate and motivate how we benefit from our aspect-
oriented approach, and how we exploit semantic information
when specifying adaptation aspects. We start off with a simple
adaptation requirement, affecting only one particular element in
the design:

Adaptation Requirement: for users that specified they do not want
any spoilers, don’t show the plot outline for a movie

Adaptation Aspect:
POINTCUT hasLabel “Plot” and containedIn (type unit and
hasName “MovieUnit”)
ADVICE ADD CONDITION cm:spoilerInfo = true;

The pointcut selects the AM-element (in our case an attribute)
which is labeled “Plot” and is contained in the “MovieUnit” unit.

The advice adds the relevant condition to only show this “plot”
attribute if the user specified he doesn’t mind spoilers (i.e.
cm:spoilerInfo = true). This first example is somewhat naive, and
corresponds to typical condition-based approaches: the desired
adaptive behavior is specified on one particular attribute from a
specific unit. This adaptation specification does not use the full
potential of SEAL: it is still localized and hard-coded. Indeed,
imagine there is another movie-unit present in the AM (e.g. an
elaborated version), which also shows the plot. In this case,
another aspect specification would be required to also restrict
visibility of this plot information, similar to typical condition-
based approaches which require manual specification of
conditions on all affected elements. The only advantage we have
gained here is the fact that our adaptation specification is
separated from the (regular) Web design; for the rest, the same
drawbacks as for condition-based approach exist.

Let’s now turn our attention to a more advanced example,
demonstrating a cross-cutting adaptation concern:

Adaptation Requirement: restrict navigation for non-registered
users to top-level links

Adaptation Aspect:
POINTCUT type relationship and from (type subunit) and to
(type unit)
ADVICE ADD CONDITION cm:isRegistered = true

This pointcut selects all relationships, i.e. links, which originate
from a(ny) sub-unit and target a(ny) unit. The advice indicates to
add to these relationships the condition that the (current) user
should be registered. Thus, the above adaptation aspect will
present the non-registered user with a restricted view on the Web
application: only top-level links (i.e. those appearing in units) will
be shown, any link that originates from a sub-unit and targets a
top-level unit, and thus typically presents an elaborated view on
the particular concepts represented in the sub-unit, will be hidden.
This adaptation concern is clearly cross-cutting: it is not localized,
yet spread over the entire AM. In our IMDB Website, execution
of the advice affected fifteen sub-units linking to top-level units.
Note that this adaptation aspect is perfectly re-usable over
(different) Web applications, as the adaptation specified is in no
way hard-coded to the current AM.

The previous example basically restricts the visibility of (certain)
links according to a certain property of the user, as stored in the
Context Model. Often, a slight variation of the previous
adaptation requirement occurs: one does see the links, but
clicking them transfers the user to a registration page. This
adaptation requirement is depicted below.

Adaptation Requirement: restrict navigation for non-registered
users to top-level links by transferring him to a registration page

Adaptation Aspect:
POINTCUT type relationship and from (type subunit) and to
(type unit)
ADVICE if cm:isRegistered = false REPLACE hasTarget value
“*” BY hasTarget value “imdb:RegistrationUnit” ;

The pointcut remains unchanged, selecting all relationships
originating from a sub-unit, and targeting a unit. However, the
advice doesn’t simply add a condition to the selected
relationships, as in the previous example. The actual adaptation

that is performed is thus not filtering, as it typically done in
condition-based approaches. Instead, the advice replaces, if the
user is not registered, the value of the ‘hasTarget’ attribute
(whatever it was) to the “imdb:RegistrationUnit” unit, causing all
selected links to redirect to the registration unit. In this way, the
elements of the AM are actually (conditionally) altered,
completely changing their behavior.

In the next example, we demonstrate how SEAL allows exploiting
metadata present in the Domain Model to perform cross-cutting
adaptation:

Adaptation Requirement: don’t show any age-restricted
information to minors

Adaptation Aspect:
POINTCUT type subUnit and hasInput in
(<SeRQL> SELECT I FROM {imdb:hasAgeRating} rdfs:domain
{I})
ADVICE ADD CONDITION
imdb:hasAgeRating.minAllowedAge <= cm:age;

The pointcut selects all sub-units9 that have as input a certain
concept which has a hasAgeRating property specified in the
Domain Model (the latter part is represented by the native SeRQL
expression). The advice adds a condition to these sub-units,
denoting that they should only be shown if the age of the user
(specified in the Context Model) is higher than the minimum
allowed age (specified in the Domain Model) for that resource.
Note that in this example, no specific (AM) elements are specified
in the pointcut. In other words, at specification time, it is not
known which elements will or will not have an ‘hasAgeRating’
property. Only at runtime, it will be determined which elements
have an ‘hasAgeRating’ property specified (in the Domain
Model), and subsequently the corresponding elements will be
selected from the AM. This clearly illustrates that the burden of
identifying the place(s) in the AM where a certain adaptation
needs to be performed is alleviated from the application engineer.
Instead, these places are specified in a declarative way, using
semantic metadata present in the Domain Model. This adaptation
aspect is thus not hard-coded, and actually quite robust: even
when (later on) adding new resources to the Web application
(imagine for example that IMBD decides to add songs to its
collection), and therefore adding new units and/or sub-units
describing these resources, the adaptation aspect will
subsequently also identify these new resources and their
corresponding sub-units, and restrict their access/visibility
accordingly. In our IMDB example, two concepts have a
‘hasAgeRating’ property specified: imdb:movie and imdb:game,
which lead to six sub-units being identified for adaptation.

Finally, in the last example we will perform some adaptation
based on a complex, global property of the Application Model:

Adaptation Requirement: for pages with a lot of in-page
information specified, replace this information by links which

9 Note that we actually also need to hide relationships pointing to
age-restricted information, instead of only sub-units showing it.
We have omitted relationships from the current example for
clarity, but the desired behavior could easily be achieved by
adding, in disjunction, a expression in the pointcut to also select
these relationships (similar to the one selecting sub-units).

point to dedicated pages showing this information, if the user is
using a pda.

Adaptation Aspect:
POINTCUT type subunit and contains (count (type attribute) >=
5) ;
ADVICE if cm:userDevice = "pda"
REPLACE hasSubunit BY hasRelationship

The pointcut selects all sub-units which have five or more
attributes (“large” sub-units). The advice subsequently replaces
these sub-units (actually their in-page occurrence) by
relationships that link to dedicated pages representing this
particular information. In this way, users will only see
information directly relevant for the current page, and be
presented with links to related information instead of seeing it in-
page. In our IMDB Website, five occurrences of sub-units
containing more than five attributes were retrieved (representing
both imdb:person and imdb:movie twice, and imdb:theater once).
Note that this adaptation aspect exploits characteristics of the
entire AM, not just one single element, in this case the amount of
attributes. We stress that this kind of behavior cannot be reached
by current approaches which simply rely on adding conditions to
(single) elements. Furthermore note that, as in the third example,
the actual adaptation that is performed is not filtering (as is
commonly done), but instead alters AM elements.

5. REALIZING ASPECT-ORIENTED
ADAPTATION SPECIFICATIONS
As we have demonstrated in the previous section, specifying
(metadata-based) aspect-oriented adaptation yields several
advantages. However, as is always the case when offering more
powerful and higher-level tools to the designer, the
implementation strategy of these tools becomes more complex.
Let us sum up the specific challenges, originating from our
semantics-based aspect-oriented approach and discuss our
considerations for implementing. In the next section, we will
discuss our actual implementation.
The main challenge originating from our aspect-oriented approach
is the fact that we allow the designer to specify, with one
adaptation aspect, adaptation occurring at multiple places of the
Application Model. Just as in aspect-oriented software
development, this requires weaving the aspects in the regular
code. In our case, two approaches are possible: either performing
the weaving on model-level, and subsequently using the modified
models with the regular Hera-S presentation generation engine (as
shown in Figure 1), or realizing the adaptation aspects on instance
level, in other words on the AM (instance) Pages resulting from
the Hera-S presentation generation engine. The latter approach is
feasible, and has already been implemented using a third-party
rule-based adaptation engine (the GAC [10]) in the past, yet for a
simpler version of SEAL. This solution consisted of mapping the
adaptation aspects to rules, which were run on the AM Pages and
performed the required adaptation [6]. However, this approach
suffers from two major drawbacks: 1) too much data is retrieved:
data that will be filtered out anyway by the adaptation rule(s) is
still retrieved at every page request, yielding extra unnecessary
and costly (real-time) processing, and 2) only filtering is
supported: adding or replacing elements was impossible, unless
the adaptation engine is connected to the Hera-S engine and a
feedback loop is realized, which would again lead to loss of

performance. The first approach, weaving the adaptation on
model-level, does not yield these disadvantages, yet requires
implementing an interpreter for SEAL-pointcuts, and injecting the
adaptation conditions (specified in the advices) into arbitrary
existing SeRQL queries corresponding to the elements identified
in the pointcut (i.e. query rewriting). The former is done by
evaluating the pointcuts, and translating them to SeRQL queries
on the (RDF-based) Application Model, selecting the desired AM
elements. The latter is done by extending the existing SeRQL
queries (corresponding to each element of the AM selected in the
pointcut), so that the existing path expressions (in the FROM-
clause of the SeRQL-query) are extended to include the necessary
elements on which we can specify the conditions. The actual
conditions can then be written in (an additional) WHERE-clause.
Since the path to the relevant property values and their
comparison is specified in the advice condition, we have all the
ingredients available to perform this query extension.
Another distinctive feature of our adaptation engineering
approach is its metadata-based nature. Since knowledge contained
in the Domain Model can be used by the adaptation engineer in
the adaptation aspects, evaluating such adaptation aspects requires
resolving these domain-references. Furthermore, adaptation
advices are not limited to injecting conditions (e.g.
adding/deleting/replacing elements), and may also contain
Context Model references. The result is that such adaptation
aspects cannot be applied at the time of deployment, but need to
be applied at runtime, upon page-request. Fortunately, in this case
the advice only needs to be applied on the requested page, not on
the entire model, and thus performance overhead is minimal. The
resulting (altered) part of the AM specification is then fed to the
Hera-S presentation engine, which subsequently generates the
requested (and adapted) Webpage.

6. IMPLEMENTATION
The parser for the pointcut part of the language was

constructed using the JavaCC parser generator10, while the Javacc
JJTree tool was used to automatically generate AST (Abstract
Syntax Tree) classes. This tool also provides support for the
Visitor design pattern, which is used here to traverse the AST
corresponding to a given pointcut expression. Sesame [3] is used
to store the AM and DM, and to execute SeRQL queries on them.

Our approach for pointcuts consists of translating each of the
pointcut conditions (restrictions) to a SeRQL query, which
extracts the elements from the AM that satisfy the condition.
These queries are then executed and their results put in separate
Vector objects. The logical connectors, combining the conditions,
are mapped to equivalent Vector methods (e.g. logical
conjunction corresponds to retainAll). The count function is
implemented by executing the query corresponding to the nested
condition, and subsequently counting the resulting values (note
that there is no equivalent for ‘count’ in SeRQL). We took the
approach of mapping conditions to separate queries, as opposed to
translating the pointcut to one single SeRQL query, to avoid
nested queries (which have known performance issues), and to
uniformly implement references to the Domain Model.

10 Java Compiler Compiler [tm] (JavaCC [tm]) - The Java Parser

Generator. https://javacc.dev.java.net/

The implementation of the advice uses a similar approach: the
JavaCC parser generator and the JJTree tool were used to
generate AST classes. The Visitor design pattern was used to
evaluate the advices, using the relevant SeRQL packages to alter
the RDF(S)-based Application Model11. A separate package was
implemented for SeRQL-query rewriting, implementing the
strategy described in the previous section.

The existing Hera-S presentation generation engine subsequently
is to be used for actual presentation generation. Description of this
tool is outside the scope of this paper. Adaptation aspect
evaluation as described above is integrated in the tool, to be
performed upon page request, before feeding the resulting
(adapted) AM Page specification to the engine.

7. CONCLUSION
In this paper, a further separation of concerns in WIS design

was pursued, by separating the adaptation engineering process
from the regular Web design process. Based on a first observation
that adaptation is typically a cross-cutting design concern, and the
consequent observation that semantic metadata and its querying
and access facilities are more readily available today, we
proposed a semantics-based aspect-oriented approach to separate
adaptation specification from the regular Web design. We
demonstrated in this paper that this combined approach to
adaptation engineering allows easier, more compact and more
powerful adaptation specification for cross-cutting adaptation
concerns. We showed that adaptation on the basis of semantic
(meta)data results in more generic, more robust, more powerful
and better re-usable adaptation specifications. We discussed in
this paper our considerations related to the required
implementation strategy, and finally our implementation, based
on existing Semantic Web tools (i.e. Sesame).

Although the presented approach yields all the
aforementioned advantages, some future work is still required.
Our immediate plans are both theoretical and practical. An issue
that is currently not sufficiently investigated is the possible
interaction(s) that can occur between different adaptation aspects.
Indeed, theoretically it is possible that one adaptation aspect
nullifies the effects of another. As an immediate solution, we are
considering to add priorities to aspects, so that the adaptation
engineer has control over the execution order of aspects.
However, a more profound study is needed to examine all
possible aspect interactions. Next, we are also looking into the
implementation to further optimize the (SeRQL) query
construction resulting from aspects. Since the aspects are
executed at runtime, performance is critical. Finally, further
experiments with our IMDB Website will possibly lead to
extending SEAL for further expressiveness.

8. REFERENCES
[1] Bausmeister, H., Knapp, A., Koch, N., Zhang, G. Modelling

Adaptivity with Aspects. In Proceedings ICWE2005,
Sydney, Australia, pp. 406-416 (2005)

11 Note that our implementation here currently relies on SeRQL,

i.e. to modify RDF repositories. However, with update
extensions to SPARQL emerging, the latter would be equally
usable.

[2] De Bra, P., Smits, D., Stash, N. The Design of AHA!,
Proceedings of the 17th ACM Conference on Hypertext and
Hypermedia, pp. 171-195, Odense, Denmark (2006)

[3] Broekstra, J., Kampman, A., van Harmelen, F. A generic
architecture for storing and querying rdf and rdf schema. In –
Proceedings of ISWC 2002, LNCS 2342, pp. 54–68 (2002)

[4] Brusilovsky, P. (1996). Methods and techniques of adaptive
hypermedia. In User Modeling and User-Adapted
Interaction, 6 (2-3), pages 87-129, Springer
Science+Business Media B.V

[5] Casteleyn, S., De Troyer, O., Brockmans, S. Design Time
Support for Adaptive Behaviour in Web Sites, In
Proceedings of the 18th ACM Symposium on Applied
Computing, pp. 1222 - 1228, Melbourne, USA (2003)

[6] Casteleyn, S., Fiala, Z., Houben, G.J., van der Sluijs, K.
Considering Additional Adaptation Concerns in the Design
of Web Applications, Adaptive Hypermedia and Adaptive
Web-Based Systems, 4th International Conference, AH2006,
pp. 254-258, Dublin, Ireland (2006)

[7] Ceri, S., Fraternali, P., Maurino, A., Paraboschi, S.. One-To
One Personalization of Data-Intensive Web Sites. In WebDB
Workshop (1999)

[8] S. Ceri, F. Daniel, V. Demaldé, and F. M. Facca. An
Approach to User-Behavior-Aware Web Applications. in
Proceedings of ICWE 2005 , Sydney, Australia, (2005)

[9] Van Deursen, A., Klint, P. and Visser, J.. Domain-Specific
Languages: An Annotated Bibliography. In SIGPLAN
Notices 35(6), ACM Press, pp. 26-36 (2000)

[10] Fiala, Z., Hinz, M., Meissner, K., Wehner, F. A Component-
based Approach for Adaptive Dynamic Web Documents.
Journal of Web Engineering, Vol. 2, No. 1&2, pp. 58-73
(2003)

[11] Fiala, Z., Frasincar, F., Hinz, M., Houben, G.J., Barna, P.,
Meissner, K. Engineering the Presentation Layer of
Adaptable Web Information Systems. In Proceedings of the
International Conference on Web Engineering, Munich,
Germany, pp. 459-472 (2004)

[12] Garrigós I., Gómez J., Barna P., Houben G.J. A Reusable
Personalization Model in Web Application Design. In
Proceedings of the International Workshop on Web
Information Systems Modeling (WISM), Sydney, Australia
(2005)

[13] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C.V., Loingtier, J., Irwin, J. Aspect-Oriented Programming.
In Proceedings of the 11th European Conference on Object
Oriented Programming (ECOOP’97), Jyväskylä, Finland, pp.
220-242 (1997)

[14] Koch, N., Kraus, A. and Hennicker, R. The Authoring
Process of the UML-based Web Engineering Approach. In
Proceedings of the 1st International Workshop on Web-
Oriented Software Technology (2001)

[15] Schwabe, D., Szundy, G., De Moura, S.S., Lima, F. Design
and Implementation of Semantic Web Applications. In
WWW Workshop on Application Design, Development and
Implementation Issues in the Semantic Web (2004)

[16] van der Sluijs, K., Houben, G.J., Broekstra, J., Casteleyn, S.
Hera-S - Web Design Using Sesame, In Proceedings of the
6th International Conference on Web Engineering, pp. 337-
344, Palo Alto,California, USA (2006)

