
Active Components as a Method for Coupling
Data and Services – A Database-Driven

Application Development Process

Beat Signer1 and Moira C. Norrie2

1 Vrije Universiteit Brussel
Pleinlaan 2

1050 Brussels, Belgium
bsigner@vub.ac.be

2 Institute for Information Systems, ETH Zurich
CH-8092 Zurich, Switzerland

norrie@inf.ethz.ch

Abstract. In the area of highly interactive systems, the use of object
databases has significantly grown in the past few years due to the fact
that one can, not only persistently store data in the form of objects,
but also provide additional functionality in terms of methods defined
on these objects. However, a limitation of such a tight coupling of ob-
jects and their methods is that parts of the application logic cannot be
reused without also having instances of these objects in the new applica-
tion database. Based on our experience of designing multiple interactive
cross-media applications, we propose an approach where we distinguish
between regular database objects containing the data and so-called active
components storing metadata about specific services. Active components
are first class objects which, at activation time, can perform some op-
erations on the server as well as on the client side. Since active compo-
nents are standalone lightweight components, they can be dynamically
bound to single objects or semantically grouped sets of objects and be
automatically invoked by different forms of database interactions. The
database-driven development of arbitrary client and server-side appli-
cation functionality not only simplifies the design of highly interactive
systems, but also improves the reuse of existing components across dif-
ferent systems.

1 Introduction

In recent years, there has been a rapid growth in the number of applications
where the same data can be accessed by different input modalities as well as
from a variety of input devices. These types of highly interactive applications
generally require an adaptation of the content as well as the form of interaction
in order to become accessible from different client devices. Nevertheless, the
database is often seen purely as a storage container for data, with any complex
interaction handled and implemented in an application-specific manner.

If, however, a database can not only store data but also some general ap-
plication logic, this functionality can be reused in the development process of a
specific application, thereby simplifying the design of new applications in terms
of time and cost. Furthermore, by reusing existing application logic, the cor-
responding functionality gets refined and optimised over time leading to more
stable and less error-prone applications.

Of course, the idea of modular software development and the reuse of com-
ponents is not a new one and there exists a variety of different solutions for
component-based software development such as the OSGi Service Platform3.
Also Web Services and service-oriented architectures (SOAs) offer a method for
loosely coupling different distributed components and composing complex appli-
cations out of simple building blocks and services.

However, for many existing solutions, the configuration and use of the ser-
vices still requires substantial programming skills and often the solutions are too
heavyweight for applications that should run on devices with limited resources.
They are based on a simple remote method invocation (RMI) mechanism where
a client-side proxy component offers the functionality of a remote service. While
this simplifies the development of applications with a distributed application
functionality, it does not really provide a method for designing reusable com-
ponents for more complex client-server interaction. Based on our experience in
developing multiple interactive cross-media applications and working together
with, not only programmers, but also designers and artists, we identified a need
for a less programming intensive solution for reusing functionality in the devel-
opment of these kinds of applications. We present a solution where application
functionality can not only be executed remotely on the server but also run on
the client side and enable complex interaction between client and server-side
application functionality.

In this paper, we show how database-driven application development can
be simplified through the concept of active components. Some motivational ex-
amples for database-driven client and server-side functionality are provided in
Sect. 2. Related work in terms of solutions for reusing component-based applica-
tion functionality in software engineering and also active databases is discussed
in Sect. 3. In Sect. 4, we introduce the concept of active components and outline
the basic idea of storing data as well as services in an object database. We then
present our architecture for executing active components in Sect. 5 and provide
some details about the prototype implementation of our new active component-
based approach in Sect. 6. Different active component use cases are presented in
Sect. 7 before providing concluding remarks in Sect. 8.

2 Motivation

To motivate our approach, we will first provide some application scenarios where
data managed by a database system is accessed through a combination of data-
base-driven client- and server-side services. We will later show how this kind

3 http://www.osgi.org

of database-driven client-server interaction can be realised based on our active
component solution for coupling data and services.

If we think about the evolution of the Web and how rich Internet applications
(RIAs) are nowadays used to mimic the behaviour of desktop applications within
a browser, we can see that a similar behaviour can be achieved by using some
form of active database content that is deployed to and executed on the client
side. RIAs normally need a browser plug-in or a virtual machine to run the
client-side components, which is the equivalent of a runtime environment for
active components deployed to the client side as introduced later in this paper.
If we implement an active component runtime environment as a browser plug-in,
we can execute the client-side active component directly within a web browser for
the access to and manipulation of any remote data stored in an object database.

While in most service-oriented architectures there is an explicit remote exe-
cution of services offered by a server, we would like to introduce a scenario where
services are executed implicitly by accessing database objects. A service could
for example be associated with specific object instances, object types or semantic
collections of database objects. If such a database object with an associated ac-
tive component is accessed, the linked active component is automatically loaded
by an active component runtime environment. An example where active compo-
nents are associated with specific media on the type level is shown in Fig. 1.

TextText Editing
Active Component

API

Client1 Client2 Client3

Fig. 1. Media service component

The idea is that specific applications (clients) no longer directly deal with
raw media types but rather use services offered by active components coupled to
these media types. In the example shown in Fig. 1, all objects of type text have
been associated with a special text editing active component. This text editing
component provides some basic text editing functionality such as the insertion
or deletion of a set of characters within a text which can be reused and shared by
different client applications. Of course we would easily have the possibility to run
different text editing active component implementations at remote sites while
still having control over who is currently accessing a specific text resource based
on a given server-side text editing component. The text editing component could
be used by standard word processors (e.g. Microsoft Word) as well as browser-
based text editors or a basic editing active component executed within the active
component runtime environment of small portable devices.

Since the text editing functionality is not implemented as methods on the
text data objects themselves, we could still exchange the services provided for
specific classes or instances of media types by simply dynamically reconfiguring
the associated active components. Another advantage is that we could provide
editing functionality for rich media types out of the database and the number
of supported formats could be extended in a flexible way. The active compo-
nent runtime environment would be in charge of providing a layer for the basic
functionality by running the media service active components whereas specific
input and output devices might provide different user interfaces on top of these
media service components. Since we can not only define active component ser-
vices on a type level but also use role-driven service invocation based on object
classification, our text objects in Fig. 1 could be dynamically reconfigured over
time and bound to other services (e.g. a logger service) based on their classifica-
tion. Note that type-based as well as role-driven service invocation is a powerful
mechanism for automatically triggering any object-related functionality which
otherwise would have to be explicitly accessed by static library method calls.

Another use case we would like to address is the processing of data generated
by physical objects such as sensors. In today’s “Internet of Things” where more
and more physical objects become integrated with the digital world by sensing
for example some environmental parameters, it becomes important that input
from these objects can be easily integrated with digital information spaces as
represented by a database. If we can guarantee that some kind of active com-
ponent runtime environment is available for the augmented physical objects,
then the client-server active component communication provides a lightweight
solution for updating sensor data in a database. At initialisation time, a physi-
cal object could query for a specific active component which would then define
the application logic on the client and server side and provide functionality for
database updates.

In the next section, we present related work in terms of solutions for active
databases as well as component-based and service-oriented architectures. We
then introduce our database-driven and active component-based development
process for applications such as the ones presented in this section.

3 Related Work

In component-based software engineering (CBSE) [1], the emphasis is on building
modular components with well-defined interfaces which can then be composed
to develop more complex systems. This allows components to be aggregated in
a distributed manner as well as within a single local system. More recent tech-
nologies for software components in distributed computing are Web Services [2]
and service-oriented architectures (SOAs) [3]. While these technologies provide
a solution for language independent reuse of business logic as well as data ex-
change, there is still quite some effort required for a developer to register and
make use of existing Web Services. Also, data exchange over the transport layer
is well suited to standard business applications, but does not suit the processing

of real-time and streaming data as produced, for example, by different types of
physical sensors. More recently there have also been some efforts to apply SOA
principles to DBMSs to provide loosely-coupled database services [4], but in this
case the principles are applied to the DBMS rather than to the applications.

While Web Services mainly focus on digital services, there exist other ap-
proaches trying to integrate physical devices as elements of a component-based
architecture. For example, as part of a research project, the OSGi model has
been generalised to support the “Internet of Things” by turning physical de-
vices and objects into loosely coupled software modules that interact with each
other through service interfaces [5]. Since OSGi can use direct method invoca-
tions without requiring a transport layer, it is much faster than a Web Service
approach. In contrast to Web Services, OSGi components can also directly react
to the appearance and disappearance of new services. However, the extended
OSGi model deals with integration on a rather low level in terms of different
transport protocols such as Bluetooth and is less concerned with higher level
concepts directly supporting the application developer.

The connection and integration of devices with a service oriented architecture
is the idea of the Service-Oriented Device Architecture (SODA) [6] and some
of its implementations such as DBNet [7]. The SODA solution is effective for
connecting powerful client devices but less suited to realising lightweight services
as required by devices with limited computing and communication resources.

Database systems were traditionally designed to store application data which
was then accessed and manipulated by one or more application programs. While
the data was managed by the database system, the application logic normally
formed part of a specific application accessing the database. The handling of any
application logic outside of the database potentially results in a replication of
functionality if multiple applications are going to use the same data and imple-
ment the same or similar functionality. Of course, this often led to maintenance
problems if parts of the application logic had to be updated at a later stage since
changes to different implementations were necessary.

The idea to move functionality from the application layer into the data-
base was originally introduced to perform integrity checks within the database.
Nowadays almost all commercial relational database systems support triggers as
a form of automatically executing some functionality, for example implemented
as stored procedures [8], within the database. Triggers are usually represented
as event-condition-action (ECA) rules which were adopted as the main means
of representing business logic in the paradigm of active database systems [9].
The event describes the happening, inside or outside of the database, to which
a rule might respond. Upon a specific event, the condition part of an ECA rule
is checked and, if necessary, the corresponding action is executed.

There were also proposals to extend object databases with ECA rules to
support the active database paradigm. For example, the TriGS system [10]
was an active object database based on GemStone [11]. In these systems, the
application-specific interaction with data is often defined by methods on the
data objects and the ECA rules are mapped to invocations of these methods.

In contrast to active object databases, we propose a clear distinction between
regular data objects and active components providing services based on these
data objects. This is mainly due to the fact that functionality provided by the
active components is sometimes closely related to the interaction with different
input and output modalities. Therefore, this functionality should not be imple-
mented as methods on the class level since this would restrict its reuse across
different classes of database objects without (mis)using inheritance. However,
this additional extrinsic object behaviour should not be implemented via vari-
ous static library calls but be designed as active components that are bound to
data objects and can access and update any information managed by these data
objects and also create new data objects.

Furthermore, an active component should not only be able to be triggered
by a single event but also process successive events if required. These long-lived
interactions—note the similarity to long-lived transactions—are very helpful in
the design of more complex types of interactions with data where the single
triggering of a method is not sufficient since additional input data (e.g. stream-
ing data) should be processed by an active component. While active object
databases support the execution of methods on database objects, our active
component-based solution also provides a mechanism to deploy and run parts
of the application functionality on the client side, thereby enabling rich types of
long-lived interactions between client- and server-side active components.

4 Approach

The active component concept was originally developed as part of a general link
server for cross-media information management [12]. While the server initially
supported the cross-linking of arbitrary types of digital and physical resources,
we were looking for a way to integrate, not only data and information in terms of
different resources such as web pages, movie clips and sounds, but also services
as represented by small software components that would be executed when a
link is activated.

The concept of active components has been generalised and can now be in-
stantiated as an active component runtime environment on top of an existing
object database system. The activation of active component services is man-
aged by the active component runtime environment. In addition to the set of
regular database objects O = {O1, O2, . . . , Om}, the database now also has to
persistently handle a set of active components A = {A1, A2, . . . , An}.

The active component runtime layer enables the definition of associations or
links li between arbitrary database objects Oj and active components Ak. The
active component runtime environment shown in Fig. 2 checks for any associated
active components after each query processed by the database system. If a re-
turned object Oi has an associated active component Aj , the active component
service is started and gets a handle to the database object Oi. Note that, in
the current version, only queries resulting in single database objects may also
trigger an associated active component service. Result sets are currently treated

without the additional active component features but we plan to investigate how
this could best be handled in future research. The coupling of database objects
with active component services can be achieved on the instance level as well as
on the schema class level. Let us assume that our object database contains the
classes or types T = {T1, T2, . . . , Tn}. A link li can then be defined between a
type Tj and an active component Ak which implies that the active component
service is also bound to all the subtypes of Tj . For example, an association li
can be defined between a type contact and a service Ak that operates on ob-
jects of a contacts database. Each time a contact object is accessed, the active
component runtime layer ensures that the associated service is started and gets
access to the contact object.

Our object-model further distinguishes between the typing of objects for
representing behavioural properties and the semantic classification of objects by
grouping them into collections [13]. Therefore, a third possibility for the service
binding is to define an association li between an active component Aj and one
or multiple of these semantic collections C = {C1, C2, . . . , Cn} resulting in role-
driven service invocation. Since these role-driven services are no longer bound to
the object type, objects can easily gain and lose service functionality over time by
simple reclassification (service evolution). Note that the kind of implicit service
invocation presented in this section is not available in most service-oriented
architectures where services have to be invoked explicitly.

Client

data and
ACs AC Registry

AC Runtime
Environment

Logic

AC Library

Stub Logic

Object DB

Fig. 2. Active component runtime environment

A second way of accessing a service offered by an active component is to query
the active component directly by its name (shown in Fig. 3). After a query is
sent to the database, the active component runtime environment checks whether
the returned object is an active component Ai. In the case that the database
returns an active component, the object is not forwarded to the requester but
instead the corresponding service is invoked. Note that in this direct form of
service invocation, the active component will not get a handle to any linked
data object Oj .

+name: String
+identifier: String
+timeout: int
+parameters: Hashtable<String, String>

ActiveComponent

Fig. 3. Active component database object

Since an active component only contains some data about the service to
be invoked, we need a way of getting access to the actual program code to
be executed. The identifier field provides a unique identifier which is used
to lookup the corresponding stub and logic classnames in an active component
registry and fetch the classes from the active component library. An example of an
entry in the active component registry is shown in Fig. 4. After a classname has
been retrieved from the active component library, the Java reflection mechanism
is used to dynamically load the corresponding Java class and initialise it with
any data provided by the active component database object.

identifier

stub

logic

org.ximtec.iserver.activecomponent.BROWSER

org.ximtec.iserver.activecomponent.stub.BrowserStub

org.ximtec.iserver.activecomponent.logic.BrowserLogic

Fig. 4. Active component registry entry

Due to the fact that some active components will deal with multiple input
events and we can never be sure whether further data has to be processed, an
active component may have an optional timeout field that defines after how
many milliseconds without a new input event an active component should be
terminated. Last but not least, each active component can contain an arbitrary
number of properties in terms of key/value string pairs defining different param-
eters of the service to be invoked.

By decoupling the functionality offered by an active component service and
the data object stored in the database, one gains flexibility in reusing the corre-
sponding functionality since it is no longer implemented as a class method and
therefore no longer tightly coupled to a specific class of objects. Furthermore,
through the use of the active component registry and library, the implementa-
tion of a specific service offered by an active component can be easily updated
or replaced at any time. The introduction of active components as first-class
objects eliminates the need to introduce artificial class hierarchies just for the
sake of reusing some application functionality and leads to a cleaner and more
flexible integration of data and the corresponding services.

5 Architecture

As stated earlier, our active component-based solution enables not only the re-
mote invocation of server-side services but also more complex and richer types
of interaction with any database content. Often it is not sufficient for an active
component to react to and process a single event, but instead it needs to estab-
lish some long-term interaction with a client application or device. In addition
to the active components managed by the active component runtime layer in
combination with the DBMS (active component logic), we therefore also sup-
port the concept of active components that are deployed to the client side by
the database (active component stub) as highlighted in Fig. 5.

data and
ACs AC Registry

AC Runtime
Environment

Logic

AC Library

Stub Logic

AC Registry

AC Runtime
Environment

Stub

AC Library

Stub Logic

Client Server

Object DB

Fig. 5. Client-server active component runtime environment

In this new client-server active component scenario, the first phase is still
the same. After the active component runtime environment has detected that
an active component has been returned as a result of a query, the corresponding
active component logic is instantiated and initialised on the server side. In the
next step, a representation of the active component including its unique identifier
and all the other fields is sent to the client side. The active component response
is detected by the client-side active component runtime environment and, after
a lookup in the active component registry, the corresponding active component
stub class is fetched from the active component library and executed on the client
side. In Fig. 5, the active component registry as well as the active component
library are part of the client environment. However, these two lookup services
could also be accessed remotely.

An interesting aspect of the client-server active component approach is that
the active component stub can take over the control over any input from the
client and communicate directly with the server-side active component logic
instance. It is up to the implementation of a specific active component stub
to define any criteria for the termination of an active component service by
calling a special setDone() method. Note that the terms client and server are
to be interpreted on a conceptual level and do not necessarily imply that the
active component stub and logic instances have to run on remote sites. It is even

possible that an active component stub interacts with an active component logic
within the same virtual machine.

We can basically distinguish three different types of active component services
that can be driven by the database. If only data has to be created, updated or
deleted on the database side, an active component logic instance can be used to
implement this kind of functionality as shown in Fig. 6. After a database request
has been processed, the corresponding active component logic is loaded and a
confirmation message (OK) is sent to the client. Note that the confirmation for
the client can either be sent after the active component stub has been successfully
initialised or after the execution of the active component logic has finished. This
solution is closely related to the AOODB approach with the difference that
interactions may also be driven explicitly from outside rather than being based
only on the internal database state. An example of such a server-side active
component service could be an active component that provides some business
logic and updates multiple database objects when invoked.

Client
Application

Database
Server

database request

AC
Stub

AC
Logic

load AC

OK

Client Server

Fig. 6. Server-side application functionality

The second type of service involves the client component only. In this case,
illustrated in Fig. 7, the server-side active component logic just sends an active
component specification to the client side without executing any application
functionality. The client-side active component runtime environment loads the
corresponding active component stub instance and executes its functionality. An
example of a client-side active component could be a Movie active component
that is deployed to the client together with the URI of a movie clip as a parameter
and opens the movie in the client’s default movie player.

The advantage of this database-driven execution of client-side functionality is
that it becomes easier to deploy specific functionality to different client devices.
As long as a client device provides an active component runtime environment, an
active component stub can be executed on different devices. Another advantage
of the database-driven deployment of client-side services is that we can avoid any
redundant installation and update of services on different client devices since the
functionality is deployed to these devices on demand.

Client
Application

Database
Server

database request

AC
Stub

AC
Logic

load AC
AC message (XML)

Client Server

load AC

Fig. 7. Client-side application functionality

The most powerful active component service solution involves the combined
execution of application functionality on the server as well as on the client side
and potential communication between the client- and server-side active com-
ponents as highlighted in Fig. 8. This flexible approach supports a variety of
use cases ranging from consistency checks on the client side before sending up-
date queries to the database to the filtering and streaming of real-time data. In
Sect. 7, we will provide some examples of how this client-server active compo-
nent approach has been used for implementing highly interactive user interfaces
to databases.

Client
Application

Database
Server

database request

AC
Stub

AC
Logic

load AC
AC message (XML)

Client Server

load AC
AC message

AC message

.......

Fig. 8. Client- and server-side application functionality

Note that the second as well third type of active component services, where
part of the active component functionality is executed on the client side, are not
supported by AOODB solutions or Web Service approaches.

6 Implementation

A first prototype of the active component framework for database-driven services
has been realised in Java on top of our own object-oriented data management
framework [14]. However, the presented concepts are general enough to be imple-
mented in other programming languages and environments. Since our application
scenario was mainly dealing with various client devices accessing and interacting
with information stored within our object-oriented database system, we have
chosen a classical client-server architecture where the client communicates with
the server over the HTTP protocol. The active component communication does
not have to be limited to a single protocol and different configurations are pos-
sible.

While our OODBMS stores active components in terms of database objects
containing the relevant information to initialise the services at request time,
it is up to the client- and server-side active component runtime environments
to start the corresponding services. For each uniquely identifiable service, the
corresponding stub and logic Java classes have to be registered in the active
component registry. The client- and server-side active component runtimes use
this information provided by the active component registry to dynamically load
the classes.

The active component logic and stub classes share some common features
such as all the metadata provided by the active component database object
as well as an initialisation method as shown in Fig. 9. After an active com-
ponent stub has been loaded, its init() method is invoked. The active com-
ponent metadata is then serialised in XML and sent to the client-side active
component runtime environment. After deserialising the XML message, an ac-
tive component stub is instantiated on the client side. The active component
stub provides an enhanced initialisation method where the component gets not
only access to its configuration data (ACConfiguration) but also a handle to
the client (device) initiating the interaction. Subsequent events are processed by
the processEvent() method and there might be some potential communication
with the server-side active component logic. Any request from an active com-
ponent stub to its corresponding active component logic is sent in XML format
and processed by the active component logic’s handleActionRequest() method
which generates an appropriate response.

It is up to the client-side active component to decide when its work has
to be finished and the component has to be unloaded. As soon as the active
component stub’s setDone() method gets invoked as part of the component’s
program logic, the active component stub is unloaded by the client-side active
component runtime environment. Note that before its removal from the system,
there is an upcall to the active component’s finish() method. This enables
the active component developer to perform any necessary cleanup and release
of acquired resources such as database or network connections. In addition, a
client- or server-side active component has an optional timeout parameter and
is terminated automatically if it has been idle for longer than a given amount of
time.

+init(ACConfiguration c, ACEvent e)
+processEvent(ACEvent e)
+setDone()
+finish()

ActiveComponentStub

+init()
+Object handleRequest(Object request)

ActiveComponentLogic

+init(AComponent dbActiveComponent)

+name: String
+identifier: String
+timeout: int
+parameters: Hashtable<String, String>

ActiveComponent

Fig. 9. Active component stub and logic

There are some resource-specific active components which require additional
information from the client triggering the active component. These components
can be reused in different applications but they always have to be used in com-
bination with a client providing the appropriate input data. On the other hand,
generic active components do not depend on any additional information from the
client. An example of a generic active component is a Browser active component
opening the system’s default web browser with a given URI parameter.

Note that while the current implementation is based on Java, it is also possi-
ble to support active components implemented in other programming languages.
It would even be possible to have stub and logic components that are imple-
mented in different languages given that the communication could, for example,
be over XML. It is up to the active component registry and active component
library to provide access to an active component in the required programming
language based on the active component identifier. Of course in order to support
active components implemented in other programming languages, we would also
have to implement additional active component runtime environments.

By providing the corresponding active component runtime environment on
top of our data management framework, we also plan to implement some of the
examples introduced earlier in Sect. 2.

7 Use Case

A major advantage of having the active components as first class objects within
the system rather than implementing the corresponding functionality within a
method that is tightly bound to a specific database object is that it becomes
easier to reuse functionality of existing active components by inheritance. To
illustrate this, we provide an example of several active components that build
on top of each other and have been implemented as part of our interactive pa-
per platform (iPaper) [15, 16] for processing digital pen input. Digital pen and

paper technology4 enables the continuous capturing of a pen’s position on ordi-
nary paper augmented with a position encoding pattern. The captured digital
information can, for example, be processed by an active component and used to
trigger digital actions and services. Note that we only show the details for the
stub components since, for this specific task, most of the interaction takes place
on the client side.

As part of a specific iPaper application, we wanted to capture pen stroke
information from a digital pen, perform intelligent character recognition (ICR)
on the captured handwriting and output the recognised text using a text-to-
speech (TTS) engine. Instead of implementing this functionality as a monolithic
piece of program, the active component-based approach enabled us to separate
the functionality into several reusable active components highlighted in Fig. 10.

+processEvent(ACEvent e)

ActiveComponentStub

+getLastLocation()
+getInputDevice()

DefaultStub

+getCaptureArea()
+handleNote(Note note)

CaptureNoteStub

+handleNote(Note note)
+handleText(String text)

CaptureAndIcrStub

+handleText(String text)

CaptureAndSpeakStub

+handleNote(Note note)

CaptureAndStoreStub

Fig. 10. Active component examples

A first client-side active component is the DefaultStub, an extension of the
ActiveComponentStub providing some general functionality required by many
interactive paper active components. For example, the DefaultStub provides
access to the last pen position (getLastLocation()) that was processed by the

4 http://www.anoto.com

active component or offers a handle to the buffered input device. Note that the
DefaultStub is an abstract class and therefore it is not possible to directly
instantiate any DefaultStub active component.

The CaptureNoteStub active component extends the DefaultStub class
and offers the functionality to capture handwritten notes. For example, the
CaptureNoteStub communicates with its server-side logic component to get in-
formation about the capture area from the interactive paper database. This
information is accessible via the getCaptureArea() method and is used as a
criteria to finish the capture process and terminate the active component as
soon as the pen leaves the predefined capture area. The CaptureNoteStub is
still an abstract class which can be accessed by other services that would like
to build on top of a capture service. As a result of the capture process, there is
an upcall to the abstract handleNote() method with the captured note as an
argument, as soon as the capture process finishes. Note that the configuration
of a CaptureNoteStub active component contains a variety of other key/value
properties to, for example, define whether a captured note should be cropped.

A simple active component that makes use of the CaptureNoteStub service
is defined in the CaptureAndStoreStub class. By overriding the handleNote()

method, the CaptureAndStoreStub active component gets access to the cap-
tured note and stores it in the local file system. The configuration parameters
of the CaptureAndStoreStub component include information about the format
of the document to be stored (e.g. jpeg or gif) as well as the path and filename.

This example of an active component storing the captured note in the file
system was only introduced to show that an active component’s functionality,
in this case the one of the CaptureNoteStub, can be reused by many differ-
ent active components. Our goal is to further process the capture information
and therefore we implement a CaptureAndIcrStub that takes the output of the
CaptureNoteStub component, performs some intelligent character recognition
on the stroke data and returns a text in string form. The CaptureAndIcrStub

is again an abstract class and the handleText() method has to be overridden
by any concrete subclass.

Last but not least, the CaptureAndSpeakStub class is an extension of the
CaptureAndIcrStub component implementing the handleText() method and
feeding the text to a text-to-speech engine. A summary of the method upcalls
within the inheritance hierarchy of the CaptureAndSpeakStub class is shown in
Fig. 11.

handleNote()

CaptureNoteStub CaptureAndIcrStub CaptureAndSpeakStub

handleText()
perform ICR

send text to
voice engine

Fig. 11. Active component method calls

Figure 12 outlines the interaction between the CaptureAndSpeakLogic and
CaptureAndSpeakStub components as part of a capture process. After the Cap-

tureAndSpeakLogic and CaptureAndSpeakStub components have been initial-
ised, the CaptureAndSpeakStub sends a request to the server-side active com-
ponent to get information about the capture area. The CaptureAndSpeakStub

then autonomously processes any positional input from the digital pen until the
pen leaves the predefined capture area. It finally applies an intelligent charac-
ter recognition (ICR) algorithm to the captured data and sends the resulting
string to a text-to-speech (TTS) engine. While it was not the goal of this active
component to store the captured information, this functionality can be easily
realised by sending a message with the captured data to the server-side active
component. This server-side storage of captured information based on active
components was used in the EdFest interactive paper-based festival guide [17]
for sharing comments. In the EdFest application, active components were not
only used to persistently store captured information but also to send requests to
external databases.

Digital Pen
and Paper

iPaper
Client

iServer
and iPaper

ID, page, (x,y)

(x,y) coordinates

(x,y) coordinates

(x,y) coordinates

(x,y) coordinates
...

CaptureAnd-
SpeakStub

CaptureAnd-
SpeakLogic

load AC

AC message (XML)

load AC
AC message

(capture area)

capture area
(x,y) coordinates

(x,y) coordinates (x,y)

(x,y)
ICR and TTS

(x,y) coordinates
ID, page, (x,y)

Client Server

...

(x,y) coordinates

Fig. 12. Client and server active component interaction

To achieve the task of capturing some pen-based input, recognising the hand-
written information and producing the corresponding voice output, we have de-
fined four reusable components. There are several advantages of this fine gran-
ularity of functionality offered by the different active components. First of all,
the frequent reuse of the components should enhance the overall quality of the

components over time. Since there is a growing set of active components, it also
becomes easier for the developer to design and implement extensions of existing
active components. Another advantage is that the code size of a single active
component is relatively small and therefore it is easy to understand the func-
tionality that it offers. Furthermore, we gain flexibility by storing the active
component configurations in a database since all of its parameters can easily be
adapted at runtime without a recompilation of the source code. However, the
reusability of active component functionality within and across applications is
only one aspect. As we have shown, another important benefit is the definition
of modular and component-based client-server interaction which goes far beyond
the “simple” remote service invocation offered by other solutions.

Our database-driven application development process based on active compo-
nents has been successfully used to realise multiple highly interactive cross-media
applications. These applications included artistic installations [18] as well as a
variety of interactive paper applications [16, 19].

8 Conclusions

We have presented a database-driven approach for developing highly interactive
applications based on active components. While many systems focus on the in-
tegration of services on the protocol level, our approach provides a high-level
lightweight solution for an application developer to implement and reuse modu-
lar services. The clear separation of data objects and services provided by active
components further simplifies the reuse of services with various types of data.
Since active components are first-class database objects, their associated services
can easily be configured within the database. A service provided by an active
component can be flexibly associated with data objects on the instance, type or
classification level. Role-driven service invocation provides a flexible mechanism
for runtime object evolution in terms of services that are bound to a specific ob-
ject. Further, the client-server active component runtime environment provides
a powerful solution for executing parts of the application on the client side and
for establishing a client-server service communication. While service-oriented
architectures allow for executing remote services, our active component-based
approach enables the definition and execution of autonomous and encapsulated
client-server services. The automatic deployment of services to the client side
not only simplifies the installation and maintenance of new functionality but
also enables a richer form of interaction between client-side services and appli-
cation data that is stored on the server side.

Acknowledgements

We would like to thank Samuel Willimann and Philipp Bolliger for their work
on the prototype implementation of the active component framework. We would
further like to thank Stefania Leone and Alexandre de Spindler for their valuable
comments on the paper.

References

1. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Professional (November 2002)

2. Papazoglou, M.: Web Services: Principles and Technology. Prentice Hall (Septem-
ber 2007)

3. Krafzig, D., Banke, K., Slama, D.: Enterprise SOA: Service-Oriented Architecture
Best Practices. Prentice Hall (November 2004)

4. Subasu, I.E., Ziegler, P., Dittrich, K.R., Gall, H.: Architectural Concerns for Flexi-
ble Data Management. In: Proc. of SETMDM 2008, EDBT Workshop on Software
Engineering for Tailor-made Data Management, Nantes, France (March 2008)

5. Rellermeyer, J.S., Duller, M., Gilmer, K., Maragkos, D., Papageorgiou, D., Alonso,
G.: The Software Fabric for the Internet of Things. In: Proc. of IOT 2008, First Intl.
Conference on the Internet of Things, Zurich, Switzerland (March 2008) 87–104

6. de Deugd, S., Carroll, R., Kelly, K., Millett, B., Ricker, J.: SODA: Service Oriented
Device Architecture. IEEE Pervasive Computing 5(3) (2006) 94–96

7. Tok, W.H., Bressan, S.: DBNet: A Service-Oriented Database Architecture. In:
Proc. of DEXA 2006, 17th Intl. Conference on Database and Expert Systems
Applications, Krakow, Poland (September 2006) 727–731

8. Eisenberg, A.: New Standard for Stored Procedures in SQL. ACM SIGMOD
Record 25(4) (December 1996) 81–88

9. Paton, N.W., Daz, O.: Active Database Systems. ACM Computing Surveys
(CSUR) 31(1) (March 1999) 63–103

10. Kappel, G., Retschitzegger, W.: The TriGS Active Object-Oriented Database
System – An Overview. ACM SIGMOD Record 27(3) (September 1998) 36–41

11. Bretl, R., Maier, D., Otis, A., Penney, J., Schuchardt, B., Stein, J., Williams, E.H.,
Williams, M.: The Gem–Stone Data Management System. In: Object Oriented
Concepts, Databases and Applications. ACM Press (1989)

12. Signer, B., Norrie, M.C.: As We May Link: A General Metamodel for Hypermedia
Systems. In: Proc. of ER 2007, 26th Intl. Conference on Conceptual Modeling,
Auckland, New Zealand (November 2007) 359–374

13. Norrie, M.C.: Distinguishing Typing and Classification in Object Data Models.
Information Modelling and Knowledge Bases VI 26 (1995) 399–412

14. Kobler, A., Norrie, M.C.: OMS Java: A Persistent Object Management Framework.
In: Java and Databases. Hermes Penton Science (May 2002) 46–62

15. Norrie, M.C., Signer, B., Weibel, N.: General Framework for the Rapid Devel-
opment of Interactive Paper Applications. In: Proc. of CoPADD 2006, 1st Intl.
Workshop on Collaborating over Paper and Digital Documents, Banff, Canada
(November 2006) 9–12

16. Signer, B.: Fundamental Concepts for Interactive Paper and Cross-Media Infor-
mation Spaces. PhD thesis, ETH Zurich (May 2006) Dissertation ETH No. 16218.

17. Signer, B., Grossniklaus, M., Norrie, M.C.: Interactive Paper as a Mobile Client
for a Multi-Channel Web Information System. World Wide Web Journal 10(4)
(December 2007) 529–556

18. Vogelsang, A., Signer, B.: The Lost Cosmonaut: An Interactive Narrative Envi-
ronment on Basis of Digitally Enhanced Paper. In: Proc. of VS 2005, 3rd Intl.
Conference on Virtual Storytelling, Strasbourg, France (December 2005) 270–279

19. Signer, B., Norrie, M.C.: PaperPoint: A Paper-Based Presentation and Interactive
Paper Prototyping Tool. In: Proc. of TEI 2007, First Intl. Conference on Tangible
and Embedded Interaction, Baton Rouge, USA (February 2007) 57–64

