
Experimental Platform for
Mobile Information Systems

Rudi Belotti, Corsin Decurtins, Moira C. Norrie, Beat Signer, Ljiljana Vukelja
Institute for Information Systems

ETH Zurich
CH-8092 Zurich, Switzerland

{belotti,decurtins,norrie,signer,lvukelja}@inf.ethz.ch

ABSTRACT
Interaction design is a major issue for mobile information
systems in terms of not only the choice of input-output
channels and presentation of information, but also the ap-
plication of context-awareness. To support experimentation
with these factors, we have developed a platform that sup-
ports the rapid prototyping of multi-channel, multi-modal,
context-aware applications. The paper presents the main
components of the platform and describes how it was used
to develop a tourist information system for an international
arts festival where interaction was based on a combination
of speech input-output and interactive paper.

Categories and Subject Descriptors
H.4.3 [Information Systems Applications]: Communi-
cations Applications—information browsers; H.5.2 [Infor-
mation Interfaces and Presentation]: User Interfaces—
prototyping ; H.5.4 [Information Interfaces and Presen-
tation]: Hypertext/Hypermedia—architectures, navigation,
user issues

General Terms
Design, Experimentation

Keywords
Mobile information system, interactive paper, web publish-
ing, rapid prototyping, voice interface, tourist guide

1. INTRODUCTION
Mobile information systems require platforms that not

only deal with the challenges of data distribution and dy-
namic networking, but also entirely new forms of interac-
tion and information delivery. Ideally, users should receive
the right information at the right time and place, and in a
way that restricts neither their mobility nor their interac-
tion with other people and the environment. This means

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiCom’05, August 28–September 2, 2005, Cologne, Germany.
Copyright 2005 ACM 1-59593-020-5/05/0008 ...$5.00.

that devices must be either wearable or very portable and
easily placed in pockets when not in use.

If we consider the domain of tourism which has been a
focus of several research projects in mobile information sys-
tems [16], many of these requirements are not met in terms
of the devices and forms of interaction provided. Tourism is
generally a social activity and part of the enjoyment is plan-
ning activities together with family and friends. The screens
of PDAs that are often used in mobile applications are small
and difficult to read outdoors, especially by more than one
person at a time. Further, the small screen size limits the
amount of information that can be viewed at one time and
does not support the actions of comparing and combining in-
formation which is often what tourists want to do [4]. Some
researchers have therefore experimented with tablet PCs to
provide better functionality [5], but clearly these further re-
strict mobility as they are much heavier than PDAs and
require the use of both hands. Various other options, such
as head-mounted displays, digitally augmented paper and
audio, have received less attention but clearly are all wor-
thy of consideration and experimentation, either alone or in
combination.

Our research goals into mobile computing are twofold:
first, to investigate new forms of information access and
interaction suited to mobile environments and, second, to
develop information system platforms capable of supporting
them and the experimentation process. In this paper, we
present an experimental platform for the rapid prototyping
of multi-channel, multi-modal and context-aware informa-
tion systems. To motivate the architectural design choices
and explain the operation of the various components and
their interplay, we explain in some detail how the platform
was used to develop a tourist information system for the
Edinburgh international arts festivals where interaction was
based on a combination of speech input-output and interac-
tive paper.

The necessary generality and flexibility required for rapid
prototyping was achieved by adopting a database approach
that enables all information about the application and its
interface, the system and the devices to be stored in one or
more databases and be updated dynamically at run-time.
Further, the approach that we adopt is based on an inte-
gration and extension of concepts from open hypermedia
systems and web publishing databases.

We begin in Section 2 with a description of our approach
and the main components of the platform. In Section 3, we
then present the tourist information system that we devel-
oped and the specific architecture of this system in terms

of the functionality, devices and modes of interaction sup-
ported. Using this example, we go on to explain the details
of the various components of the platform, at the same time
showing what is involved in developing specific applications.
Section 4 details the client controller, while the web publish-
ing and hypermedia components are presented in Sections 5
and 6, respectively. Section 7 provides some discussion of
our experiences with the system during user trials carried
out in Edinburgh during the 2004 festivals. To show the
generality of the platform, we briefly describe in Section 8
how the same platform was used to develop an installation
for a media artist. Concluding remarks are given in Sec-
tion 9.

2. APPROACH
Rapid application prototyping and experimentation in mo-

bile information systems requires a flexible and extensible
information platform for content delivery. Not only must
it support the requirements of multi-channel and context-
aware access that have come to be expected in state-of-the-
art mobile systems, but also the highly-dynamic nature of
experimental systems where it may be necessary to integrate
and reconfigure new devices, resources, modes of interaction
etc. at any time. Further, for purposes of experimentation,
it may be desirable to offer alternative interfaces and modes
of operation in parallel or to easily be able to switch back
and forth between different configurations.

In the case of mobile systems, it is especially important
to consider the possibilities of different interface modalities
in order to meet the demands of users who are on the move
and possibly in an environment where normal desktop-style
interfaces are inappropriate. If one considers the example
of tourists, they do not want to carry heavy equipment and
often want to be hands-free. They move between very quiet
environments, such as art galleries and theatres, and very
noisy environments, such as main streets and bars. Much
of the time is usually spent outdoors sightseeing and wan-
dering. They often travel in pairs or groups and collaborate
in discovery and planning of activities. For all of these rea-
sons, a simple adaptation of a visual desktop interface to
a small screen device such as a PDA may not be the most
appropriate solution. Various forms of innovative wearable
devices are under investigation and non-visual channels such
as audio can play an important role. Paper is an infor-
mation medium already used extensively in mobile environ-
ments and emerging technologies for interactive paper also
present interesting possibilities for augmenting paper maps
and guides with digital information and services. In our
experiments on mobile information systems, we have devel-
oped a demonstrator application for tourists at the annual
Edinburgh Festivals that offers a variety of interfaces, in-
cluding ones based on interactive paper and audio as well as
one based purely on audio.

To facilitate the rapid prototyping of user interfaces for
multiple devices and modes of interaction, it is clear that
the user interfaces should be generated dynamically based
on content and presentation templates rather than hard-
coded. Such a content-driven approach brings the advan-
tage that only the final visualisation step has to be changed
to support a new client device or mode of interaction, while
the application logic and content remain the same for all
output devices. Assuming an architecture based on XML,
this essentially means that new XSLT templates have to be

written to adapt content to a specific structure and layout
represented in the appropriate format of the output chan-
nel. In some cases, additional automatic content repurpos-
ing may be necessary to conform to the features of a specific
device.

It is also important that the development platform should
support experimentation with context-awareness, enabling
application developers to easily define and change their no-
tion of context and allowing all aspects of a system to be
made context-dependent. This means that not only may the
information presented to the user depend on factors such as
time and location, but also the mode of interaction. For ex-
ample, as the user moves from an indoor environment to an
outdoor environment, the system may automatically switch
the output channel from a visual display to an audio de-
vice. Only a multi-modal information platform can guar-
antee that the user or system may choose the appropriate
access modality based on the current context. It also en-
sures that the developers and interaction designers have the
necessary support to experiment with flexible combinations
of various input and output modalities.

To meet all of these requirements, we have developed the
web publishing platform OMSwe [15] and a client controller
for input/output handling, that together support not only
multi-channel, context-aware information delivery, but also
multi-modal interfaces. To achieve maximum flexibility, the
web publishing platform is an object-oriented database sys-
tem OMS Pro [9] into which new web publishing concepts
have been integrated. The OMS Pro system was itself de-
veloped to support rapid prototyping of, not only database
applications, but also new database concepts and all as-
pects of the system can be changed dynamically at run-time.
Key to this is the fact that all information is represented as
database objects—including application metadata and sys-
tem data. In the case of OMSwe, this also means that the
structure and presentation of web documents, as well as the
content, are defined through objects which can be updated
at run-time. Further by introducing a context-awareness
mechanism that applies to objects, all aspects of the appli-
cation and system can be made context-aware. Details of
the OMSwe system and its role in the platform for mobile
information systems are given in Section 5.

As stated above, interactive paper offers interesting possi-
bilities for users to access digital information and services in
mobile environments. It is just one example of linking phys-
ical objects in the user’s environment to digital artefacts.
The web is a hypermedia system that links arbitrary digital
resources together and, in effect, what we would like to do
is to extend the web to physical spaces (sometimes referred
to as physical hypermedia). To support cross-media link-
ing, and specifically interactive paper, we have developed a
cross-media server, called iServer [19] that allows any form
of resources, physical or digital, to be linked together. A
plug-in architecture enables new types of resources to be
integrated easily. Further, we can link not only static infor-
mation, but also active content represented by program code
which gets executed at link activation time. In Section 6, we
describe how iServer was used in the festival application to
support an interface based on interactive paper, including
the use of active components to allow writing capture.

By integrating the components introduced above—namely
OMSwe, iServer and the client controller—as shown in Fig-
ure 1, an extremely flexible and powerful platform for exper-

Cross-Media
Server

Client
Controller

Web
Publishing

Content
Database

Link
Database

Active
Components

User

Figure 1: System components

imentation with mobile information systems is achieved. It
enables context-aware applications with multi-modal, multi-
channel interfaces to be developed quickly and even allows
for the simultaneous testing of alternative interfaces and
run-time system evolution. Also, these applications may
span physical and digital spaces allowing all sorts of physi-
cal objects and locations to be digitally augmented.

The Client Controller component handles the interaction
with the user. Based on a user’s interaction and other con-
textual information such as positional and temporal data, it
sends a request to the Cross-Media Server component which
delivers the linked information. This information can either
be data stored in the content database or active content.
Information stored in the content database will be trans-
formed to the appropriate format of the output channels by
the Web Publishing component, which includes a context
engine. The result may contain information for multiple
output channels and it is the responsibility of the Client
Controller to activate the appropriate output channels.

The selection of an active component results in the execu-
tion of its associated program code on the client and on the
server side. An active component may directly return a re-
sult to the Client Controller by accessing other information
resources such as, for example, an external database. How-
ever, some active components do not directly return a result
to the user but instead process subsequent client requests.
This second form of active component is helpful in defin-
ing complex interaction patterns which may be allocated to
different active components.

interaction
(user or sensor) activates links

content resources

services (applications)
active components

XML-based
web publishing

generate documents

generate documents

Figure 2: Interaction process

A simplified version of interactions involved in accessing
information is shown in Figure 2. Interaction may be explic-
itly invoked by a user or implicitly triggered by a context-
aware object (context sensor) and results in an activation

of the resources linked to the triggered event, which can be
content resources, services or active components. Finally, a
generated document is sent back to the user.

A database approach is used throughout the development
of all components. This means that all component metadata
are represented as database objects, enabling dynamic up-
dates and system reconfiguration at run-time. In the next
section, we present the festival application that is used in
later sections to describe the components and their interac-
tions in detail.

3. EDFEST SYSTEM
Tourism has been recognised as a domain with consider-

able potential for the use of mobile technologies and a num-
ber of research projects have developed PDA-based tourist
guides, for example, Georgia Tech’s Cyberguide [1], the Lan-
caster GUIDE system [6] as well as Xerox PARC’s elec-
tronic guidebook [23]. While commercial guides such as the
city guides from Vindigo [21] have had some success, ethno-
graphic studies of tourists such as that of Chalmers and
Brown [4] report on the fact that it is rare to see tourists
on city streets using these guides. Paper maps and guide
books continue to be considered the essential tourist acces-
sories. The Campiello project [8] chose to investigate the
use of paper as an interface. Paper flyers and special news-
papers were distributed around a city and tourists could use
them to activate services or input data to a community in-
formation system by using scanners at special kiosks.

There are many strong arguments for retaining paper in
mobile environments, including the fact that it is light, ro-
bust, cheap and easily annotated in a number of different
ways [10, 12, 18]. Also, the planning of activities during
a city visit often involves combining and comparing infor-
mation within and across documents such as maps, event
brochures and guidebooks and this is easier using paper
documents than working with digital mobile devices with
small screens. We therefore chose to investigate the use of
emerging technologies for digitally augmented paper in mo-
bile tourist environments and, particularly, in the context of
a large international arts festival.

The Edinburgh Festival Fringe is the world’s largest public
arts festival with more than 250 venues and 1700 shows per
day. With so many events on offer, visitors often plan which
events to visit at short notice and based on contextual fac-
tors such as location and time as well as ticket availability.
Reviews also play an important role in the selection process
and are not only published in newspapers and on-line, but
also displayed outside venues and attached to event flyers.
Ideally, tourists should be able to access information about
the city, the venues, the events and also reviews during the
visit and not only during pre-visit planning. The Edinburgh
festivals therefore provide an ideal environment for testing
technologies for mobile information systems and appropri-
ate means of delivering relevant information in a timely and
convenient manner.

We considered various options for the display of informa-
tion and decided to dispense with any form of visual dis-
play such as a PDA, tablet PC or head-mounted display
and instead focus on audio output for a first demonstrator.
However, since a major goal of the longer-term project is
to investigate different interaction modes in mobile environ-
ments, a key requirement was to ensure that different access
modes could be supported simultaneously and to provide

a flexible platform for development and experimentation.
While our main focus for this project was therefore on pa-
per and audio, we also developed basic interfaces suited for
tablet PCs, PDAs and head-mounted displays.

The resulting EdFest system was based on the interaction
components shown in Figure 3, namely a special interactive
paper brochure containing a map and event list, a digital
pen and an earpiece used for voice interaction.

Figure 3: EdFest interaction components

The interactive paper brochure is implemented using An-
oto technologies [2] originally developed for hand-writing
capture. This technology is based on a special pattern of
dots that encodes document position information and a digi-
tal pen that has a camera alongside the stylus. It can process
images in real-time to give up to 100 x and y pen positions
per second. This information is stored in the pen and can be
transmitted to a computer on demand. Both Logitech and
Nokia have developed digital pens based on this technology.
We were able to use a prototype of the Nokia pen specially
modified by the Anoto engineers to send position data di-
rectly and hence enable us to use the pen as an interaction
device as well as for writing capture.

A central server has a database with information about
venues, events, restaurants and also user reviews. The pa-
per brochure contains a list of events as well as a map which
is marked with venues and the user can request information
about a venue by simply pointing with the pen at the appro-
priate location on the map. The system will then initiate a
voice dialogue that allows a user to get general information
about the venue and events being held there.

The user also has a GPS device, enabling the system to de-
tect their location and support locator and navigation tasks.
For example, there is a “Where Am I?” button located at
the bottom of the map. The system helps the users locate
their position on the map by telling them the general grid
position, together with a general guide to placement within
the grid e.g. “Grid F5, top right”. If the user then points
with the pen within that grid, the system will give feedback
telling them where to move the pen to arrive at the pre-
cise location. Users can also use this functionality to locate
events listed in the brochure by pointing to the venue and
being told where to find that venue on the map.

The user can access additional information about an event
by simply pointing to relevant areas within the brochure
event listing, part of which is shown in Figure 4. The user
can get information about the artist, a description of the
event, names of other events of the same category and also
information about ticket prices and availability. In many
cases, the choice of exactly what type of information is re-
quired is determined through voice dialogue. There is also a
rating area where users can input their rating by selecting a
star rating between 1 and 5. The average rating is accessed
by pointing to the text “Rating”.

Figure 4: Part of EdFest booklet page

By pointing to the timing information associated with
each event, a user can set a reminder for a specific event.
The system will then remind the user via an audio mes-
sage a specified time before the start of the event. Last but
not least, the users can enter their reviews either by writ-
ing short comments alongside the event listing or by writing
longer texts in a separate notebook with the Anoto pattern.
These reviews are sent to the central database server and
can then be accessed by other users requesting information
about the corresponding event.

The resulting EdFest architecture is shown in Figure 5.
The system is based on a client-server infrastructure. On
the server side, we have the two components: iServer [19],
the cross-media link server, and OMSwe [14], the web pub-
lishing server. The client side consists of several components
described later in this section.

As mentioned in the previous section, iServer uses a plug-
in mechanism to support different resource types. In the
case of digitally augmented paper, the iServer plug-in man-
ages the link information necessary to map x and y coor-
dinates delivered by the digital pen to digital objects rep-
resented by active areas. Thus, in this case, the resources
are pages and the selectors over resources that define link
anchors are arbitrarily complex geometrical shapes within
pages. As well as mapping to content resources such as im-
ages, videos and web documents, active components can be
used to bind areas on paper to arbitrary services as described
later in Section 6.

The OMSwe server manages the application database,
which contains information about the festivals, events, users,
venues, etc. and also the definition of interfaces in terms
of document structures and XSLT presentation templates.
Document structures are defined in terms of components,
known as web elements, and the component model allows
for both dynamically defined and parameterised web ele-
ments. In the case of EdFest, OMSwe delivers VoiceXML

Nokia Digital
Pen SU-1B

Client
Controller

iServer
and iPaper

EdFestDB
(OMSwe)

Pen
Client

Voice
Engine

x,y coordinates

docID, page, (x,y) + context

HTML
Browser

HTML

HTTP request
user interaction

URL + context
deliver information in
the appropriate format

augment with context

Active Content Context Engine

OMSwe
Application DB

Web Elements

docID, page, (x,y)

Link DB
Paper Plug-in

VoiceXML, HTML, ...
VoiceXML, HTML, ...VoiceXML

HTTP request

user interaction

GPS (NMEA)

Headset

EdFest Mobile Client

PAN WiFi LAN/WAN
LAN

Figure 5: EdFest architecture

files for the voice engine and different HTML pages for pre-
and post-visit desktop web browsing, and also for the possi-
ble use of a head-mounted display or PDA during the visit.
The Context Engine is responsible for managing the context
information and, if required, can build high-level semantic
context objects from primitive values obtained from hard-
ware or software sensors.

On the client side, the system consists of several compo-
nents that offer specific functionalities. The Pen Client is re-
sponsible for the communication with the digital pen, while
the voice engine is responsible for processing the VoiceXML
files included in the response from the server and also pro-
vides the facility to interact with the system using voice.
An HTML browser was also provided on the client side for
experimentation with head-mounted displays.

The digital pen is connected to the client computer over
Bluetooth. For the audio input and output, we use wired
as well as Bluetooth headsets. A GPS sensor is connected
to the USB port and provides a serial port emulator, which
makes it easier to get the GPS coordinates. The client is
connected to the server using an ethernet connection, ad-hoc
wireless network, wireless network’s public access points or
mobile phone GPRS connections. With the first prototype,
we did most of the tests in the laboratory using ethernet
connections, whereas in the field we used ad-hoc wireless
connections.

A request of the Pen Client goes through the Client Con-
troller proxy to the iServer component. When the iServer
receives the request including the pen’s x and y coordinates,
it resolves the activated link to the appropriate URL. For
example, a specific active area within the booklet might be
mapped to http://edfest.org/oms?db anchor=getRating.
The iServer acts as a proxy for the OMSwe publishing frame-
work, which receives the URL and returns the appropriate
VoiceXML document dynamically generated from content
stored in the database. At the same time, OMSwe deliv-
ers the context information contained in the request to the
Context Engine. The publishing platform selects the ap-
propriate information from the festival application database

and delivers it in the appropriate format according to the
current context.

The Context Engine receives all relevant information from
the OMSwe server and updates the corresponding context
elements such as the user’s location, the protocol in use,
language settings, the content type and the current callback
address. An additional context factor allowed for is the set
of users nearby. If some important changes in context hap-
pen, the EdFest system can contact the interested user using
the callback information. This functionality is used, for in-
stance, to remind users about the start of events.

OMSwe delivers the information to the Client Controller,
which is responsible for dispatching it to the appropriate
rendering component. In the case of a VoiceXML docu-
ment, the Client Controller forwards the information to the
Voice Engine, which provides audio output to the user. The
user can also interact with the system using the microphone
provided on the headset.

4. CLIENT CONTROLLER
As we have seen in the previous section, the client of the

EdFest system is composed of several interface components
such as the Pen Client and the Voice Engine. These compo-
nents are all HTTP clients since they are either off-the-shelf
components such as the Voice Engine or customised com-
ponents such as the Pen Client that were developed with
other application setups in mind. By default, the compo-
nents are autonomous and do not know anything about each
other. They could in principle communicate directly and in-
dependently with the server components through an HTTP
connection. However, in the case of a platform for mobile
information systems, and the EdFest application in partic-
ular, we wanted to intertwine the components to form an
integrated multi-modal user interface that can provide more
functionality than the sum of all functionalities of the sepa-
rate components.

The Client Controller is the component that takes care of
this integration and is the central component on the client

side. It acts as an HTTP proxy for the Pen Client and the
Voice Engine. Instead of communicating directly with the
server components, the HTTP connection goes through the
Client Controller which is therefore able to alter or even
replace both HTTP requests from the interface component
and responses from the server. It can also trigger side-effects
based on the request or the response and further integrates
additional components, such as the GPS context sensor.

One of the most important features of the Client Con-
troller is the dispatching of HTTP responses. A request is
usually initiated by the user through one of the interface
components, either through a touch with the pen or a voice
input in response to a voice dialogue. Without the Client
Controller, we would have a multi-channel interface where
the channels are completely independent. For a full multi-
modal interface, we need to be able to trigger a request using
one modality but display the response in another modality.
In the EdFest application, for example, we want to request a
voice output or dialogue by pointing with the pen to a par-
ticular area in the paper brochure. In this case, the HTTP
request is triggered by the Pen Client and the response from
the server is interpreted by the Client Controller. It analyses
the content type of the response and dispatches the result
to the appropriate component (e.g. the Voice Engine). In
order to complete the HTTP request that was initiated by
the Pen Client, the Client Controller sends back a default
response for the content type of the Pen Client upon success-
ful dispatching of the original HTTP response. The dispatch
mechanism is kept very flexible so that the Client Controller
can easily be extended with new interface components.

Another issue in multi-modal interfaces is the consistency
and synchronisation of the various input and output chan-
nels. For example, it may not make sense that the Voice
Engine continues processing a voice dialogue with informa-
tion about an event after the user selects another event. User
events should therefore be able to interrupt actions. For this
reason, the Client Controller analyses the generated requests
to determine whether or not to stop actions such as voice
output. In the first implementation of the EdFest system,
this analysis was kept very simple and the Client Controller
stops any running voice dialogues when new requests are re-
ceived. While, in many cases, this is what the user wants,
there are some cases where the user may want to continue
listening to the text while perhaps writing a comment on an
event. This is one of the interaction issues that we want to
experiment with in the future to develop more sophisticated
means of deciding when to interrupt actions based on an
analysis by the Client Controller of the request content.

As already mentioned in Section 3, the EdFest applica-
tion also makes use of context information managed by the
Context Engine on the server side. A lot of the context infor-
mation such as the GPS coordinates and information about
the devices in use originates on the client side. The Client
Controller is also responsible for collecting this information
and propagating it to the Context Engine on the server side
by hitchhiking with the HTTP requests from the interface
components. This can be done by augmenting the URL of
the HTTP request with additional parameters or generating
a multi-part request depending on the quantity of the data
to be sent. On the server side, the additional context pa-
rameters are passed transparently through the iServer com-
ponent to the OMSwe system, where they are passed to the
Context Engine.

If the user does not issue any requests for a certain length
of time, the Client Controller can initiate a special context
update request autonomously. Such a request is used to
update the context information and act as a sign of life signal
from the client. This ensures that the context information
on the server side, such as the location of all system users,
is kept up to date.

The Client Controller provides an additional mechanism
for pushing information from the server to the client by
acting as an HTTP server and listening for notification re-
quests. These requests can be sent by the OMSwe system
or, indeed, any other component of the system. The IP ad-
dress, port and URL that the Client Controller listens to are
part of the context information that it sends to the Context
Engine which keeps track of the callback information for all
system users. If a server-side component wants to send a
notification to a user, it looks up the corresponding callback
URL and makes a notification call to this URL. In the cur-
rent EdFest prototype, we use this feature to inform users
of friends nearby as well as for event reminders.

5. PUBLISHING COMPONENT
Nowadays a web publishing framework has to support

multi-channel access and, increasingly, context-awareness.
Although a large variety of tools and technologies are avail-
able to support the publishing of static and dynamic data
on the web, many of these lack a well-defined declarative
model. Within the research community, this problem has
been recognised and a number of model-based approaches
have been proposed. In contrast to most of these, our ap-
proach is system-based rather than tool-based. By this, we
mean that, instead of developing tools on top of existing
database technologies, we wanted to develop a database sys-
tem with support for web publishing integrated into the core
model and system.

OMSwe [15] is the resulting web publishing framework. To
handle context-dependent access to data, a notion of state
had to be integrated into the database system to represent
both interaction and context states. Context-dependent in-
formation delivery is then controlled by matching the con-
text state of a request to context-specific versions of the
objects involved. The integration of a general context en-
gine [3] into the database is a major step towards supporting
a rich variety of context-aware applications. Since the con-
text dimensions are stored in a database rather than being
hard-coded in the application, it is possible to easily adapt
applications by adding new context dimensions.

The model of context that we use is similar to that pro-
posed by others for HTML [22] and also semi-structured
data [20]. Context is defined in terms of a set of charac-
teristics which specify the various factors to be taken into
account in deciding on the content, structure and presenta-
tion of a document. These characteristics can include any-
thing from user-related factors such as language preference
and location to system-related factors such as the request
protocol and client device. The EdFest application allows
for several context dimensions such as a user’s identity, his
current location, the time, the language setting and the pro-
tocol used.

Objects which are deemed to be context-sensitive can have
multiple variants. Each variant has a set of characteristic-
value pairs that define the contexts in which it is appropri-
ate. For example, in EdFest, the template object used to

render a venue object has a variant for each output format
that needs to be generated as represented by the format
characteristic, e.g. format=html. Variants may also have
a valid time period associated with them to allow time-
dependent components of a document to be specified.

While it is beyond the scope of this paper to describe the
context model and mechanisms in detail, it is important to
note that, for a given request and context state, variants
are selected according to a best match rather than an ex-
act match. This avoids having to specify variants for each
possible context state. Characteristics such as language can
be specified as ordered lists of preferences and defaults are
defined for cases where no match is found. For cases where
the characteristic value is critical, it may be specified as
mandatory. Details can be found in [15].

The context-awareness and variant features of OMSwe al-
low a very elegant implementation of the multi-channel re-
quirements. For the EdFest prototype we have implemented
four different channels: HTML, VoiceXML, PDF and a spe-
cial data export channel. The HTML channel is currently
used only for the display of captured notes for users with
a head-mounted display. In addition, we have also used it
internally for development and technical testing. The aim
of the current EdFest system was clearly to support on-site
activities during the visit to the festivals. But as we also
aim to support pre- and post-visit activities in the future,
the HTML channel will be extended for these activities. An
important channel, especially for accessing dynamic infor-
mation, is the voice channel. OMSwe generates VoiceXML
dialogues from the data objects for the display of informa-
tion and access to services. The dialogues usually contain
multiple forms that the user can navigate by selecting op-
tions through voice input. For experimentation, we also de-
veloped a version of the EdFest system that has a voice-only
interface.

However, the main channel of the EdFest prototype is not
the voice interface, but the paper brochure. This brochure is
also generated by the OMSwe publication framework. The
system contains templates that generate an XSL:FO [17]
document with the content of the booklet dynamically gen-
erated from information stored in the database. This in-
cludes the listings of events, the map and other pages. The
XSL:FO document is then transformed into a PDF docu-
ment which can be printed and bound to a booklet. The
Anoto pattern that is used by the Nokia pen has to be added
manually to the generated PDF document. We are currently
working on integrating this step into the publication process,
so that the booklets can be printed directly out of the web
publishing system.

With the dynamic generation of the paper brochures and
booklets, we also need an automated export of the mapping
information for the iServer component to define the neces-
sary cross-media links. As the iServer component uses a sep-
arate database for the linking information, this database has
to be updated upon creation of a new brochure by the web
publication system. For this reason, we have implemented
a special channel in the content publishing framework that
generates an XML description of the linking information for
the paper brochure. This XML description can be imported
by the corresponding tool of the iServer component.

For the EdFest application, we printed the booklets be-
fore going to Edinburgh for the user trials and all users had
the same booklet. For this setup, we could also have pro-

duced the booklets with other tools, such as word processors
or desktop publishing tools, but the authoring of the links
from paper would have been difficult to control, especially
since the booklet went through many design changes. An-
other major advantage of using a web publishing framework
to generate the printed documents is that we can also dy-
namically produce customised booklets.

The four channels of the web publishing framework are
independent. The integration, if necessary, is done by the
Client Controller as already described. From the point of
view of the content publication component, it just provides
a multi-channel interface to some information and services.
This means that the client has to issue separate requests for
each document that it wants to access since the web pub-
lishing framework can only return one response for every
request. For example, it is not possible to return both an
HTML document and a voice dialogue as the result of a
single request. This is a limitation that is not well suited
to a true multi-modal user interface. With the Client Con-
troller, we can currently use a workaround in that we can
analyse a request and transform it into multiple requests
for the different channels or modalities if required. The
drawback however is that the client has to specify the chan-
nels for the response of the request. An activation of ad-
ditional output channels based on context information or
data in the EdFest application database would not be pos-
sible. For this reason, we are extending the current imple-
mentation of OMSwe with the ability to return multi-part
responses. Which and how many responses will be generated
can be determined dynamically based on application data,
publication data or context information. The multi-part
responses would be split by the Client Controller and the
individual responses dispatched to the corresponding han-
dler components. This would allow, for example, that a
single response could return control information for the Pen
Client, some voice output and an image to be shown on the
head-mounted display. Similar approaches to multi-modal
interfaces are currently also being investigated as part of
W3C’s Multimodal Interaction Activity (MMI) [13]. The
XHTML+Voice (X+V) specification, for example, allows
the embedding of VoiceXML elements in an XHTML docu-
ment. There are web browsers that already interpret this
format, for example, Opera’s Multimodal Browser. The
availability of standards and corresponding tools would of
course tremendously simplify the development of such multi-
modal interfaces.

6. PAPER AS A MOBILE DEVICE
As mentioned earlier, the iServer platform is a cross-media

information management framework supporting digital as
well a physical artefacts. The iPaper plug-in that we devel-
oped for interactive paper and used in EdFest was developed
in the context of a European project Paper++. More details
of the specific technologies developed within this project and
the motivations behind the research can be found in [11, 19].

In this section we introduce active components, a new type
of resource that was developed for the iServer platform to
support the design of complex interaction components as re-
quired by the EdFest prototype. While regular links just re-
turn a single piece of information such as an HTML page or a
movie clip, active components are Java objects that become
instantiated based on a configuration stored in the iServer

Nokia Digital
Pen SU-1B

Pen
Client

x,y coordinates

Client
Controller

EdFestDB
(OMSwe)

iServer
and iPaper

docID, page, (x,y)

docID, page, (x,y) + context

OMSwe
AC

load AC

URL + context

VoiceXML, HTML, ...

Scenario 1

x,y coordinates

Scenario 2

docID, page, (x,y)

augment with context

augment with context
docID, page, (x,y) + context

load AC
Capture

AC

AC message (XML)
AC message (XML)

Capture
AC

x,y coordinates

AC command (getSelector)
getSelector

AC selector
AC selectorselector

x,y coordinates

x,y coordinates

x,y coordinates

x,y coordinates

x,y coordinates

x,y coordinates

x,y coordinates

.

.

.

x,y

x,y

.

.

.
upload image (HTTP POST)

upload OKupload OK

upload OK

get selector

get
information

store
image

load AC

inform AC

VoiceXML, HTML, ...

Figure 6: Client- and server-side active components

database and can be executed on the server as well as on
the client side. The Pen Client is a component that can run
active components on the client side. It distinguishes two
working modes: a browsing mode where no active compo-
nent is running on the client side and an active mode where
an active component has been instantiated and is currently
running. On incoming pen events, the Pen Client either
sends a regular request to iServer or delegates the pen re-
quest to a running active component.

We present two scenarios where active components have
been used on the server as well as on the client side to man-
age complex operations within the EdFest system. As men-
tioned earlier, iServer with the iPaper plug-in mainly stores
metadata about active regions within the festival brochure
while the actual festival data about venues, performances
etc. are stored in the OMSwe application database.

In the first scenario, the OMSwe active component runs
on the server side and mainly acts as a proxy for information
that is actually stored in the external OMSwe application
database. This active component is typically used when the

user points somewhere in the EdFest booklet with the pen
to get additional information in the form of audio output.
The Pen Client sends an HTTP request to iServer and the
plug-in for digitally augmented paper resolves the positional
information to the appropriate target resource as shown in
scenario 1 of Figure 6. In the case that the information
is stored in the external EdFest database, the resolved re-
source will be an OMSwe active component. Based on the
active component’s identifier (name), an object of the corre-
sponding Java class is instantiated and initialised with the
active component’s supplementary data stored in the iServer
database. In the case of an OMSwe component, this data
includes a query encoded as an HTTP request that can be
sent to the EdFest application database. Before this request
is actually sent to the OMSwe server, it has to be augmented
with the contextual information of the incoming iServer re-
quest that has been added by the Client Controller. After
the query has been sent to the external OMSwe database,
the OMSwe active component sends the response directly
back to the Client Controller which dispatches it to the

appropriate output channel as described in Section 4. We
have used a single database for managing information about
the festival, but the concept of an active server-side proxy
component could be used to integrate various heterogeneous
data sources.

The Nokia Digital Pen that we used for the Edinburgh
festival trials, continuously streams data in the form of po-
sitional information to the Pen Client. While the user is
browsing the brochure, this information is stored in a buffer
and, only after a certain amount of time, is it possible to ac-
tually send a request to iServer. This filtering of pen events
works fine in the case of a user pointing to specific areas of
the paper brochure which normally should result in a sin-
gle request. Furthermore, the Pen Client always checks if
there is still an outstanding response for a request that has
been sent earlier, in combination with a fixed timeout. If
there is a conflict, the new request is rejected and the Pen
Client acoustically informs the user that another request is
currently being processed. In this browsing mode, each pen
event, after the described filtering, results in a single request
which is sent to the server component as outlined earlier in
Figure 5. However, for certain tasks, it makes sense that
the Pen Client processes multiple pen events before send-
ing a request to iServer. This enhanced application logic of
the Pen Client can be realised by applying client-side active
components. In the remainder of this section, we present
a client-side active component that was used within the
EdFest demonstrator to capture hand-written user notes.

The lower part of Figure 6 shows a second scenario, where
a note is captured based on the user’s interaction with the
festival booklet, involving a client-side active component. If
a user starts to write in an active area that has been defined
as a capture area, the Pen Client first sends a single event to
iServer as is normally done in the browsing mode. The iPa-
per plug-in of iServer performs a lookup for the specific pen
position and returns a capture note active component. An
instance of the capture note component is instantiated on
the server side, based on the active component’s configura-
tion information stored in the iServer database. In the case
of the capture note component, this information includes an
upload address, i.e. a URL where the captured note finally
should be uploaded, as well as a timeout parameter which is
used for non-explicit termination of the capturing process as
described later. The active capture note component loaded
on the server side, sends an XML message including the
identifier (name) of the active component as well as vari-
ous configuration parameters back to the Pen Client. The
MIME type of the HTTP response which is sent back is set
to application/paperpp.client so that the Client Con-
troller knows that it has to be dispatched to the Pen Client.

The Pen Client receives the XML message and identifies it
as an active component response. An instance of the appro-
priate capture note active component stub is instantiated
based on the identifier of the active component XML mes-
sage and the additional information stored within the mes-
sage. During this initialisation phase the capture note active
component has to obtain information about the active re-
gion (selector) to which it is actually bound. Therefore, the
client-side active component sends a special getSelector

active component command to the server-side active com-
ponent which looks up this information and sends back a
response containing the requested selector. Note that in
the case where this information is only needed once dur-

<?xml version="1.0" encoding="UTF-8"?>

<iserver>

<activeComponent id="capture" creator="beat">

<name>Capture Note Active Component</name>

<identifier>CAPTURE NOTE</identifier>

<properties>

<parameter>

<key>org.ximtec.iserver.ac:uri</key>

<value>http://edfest.org/oms?

db anchor=edf comment add&

db edf comment add1=e-Dazzle50ContempJws

</value>

</parameter>

<parameter>

<key>org.ximtec.iserver.ac:uploadParam</key>

<value>db edf comment add2</value>

</parameter>

</properties>

<timeout>3000</timeout>

</activeComponent>

</iserver>

Figure 7: Active Component

ing the initialisation phase of the client-side active compo-
nent, it could always be directly integrated into the first
active component message to reduce the number of requests
and therefore improve the system’s performance. When the
client-side stub for the capture note component is created,
it asks the Pen Client for the time when the last request was
sent to the server, which is the time when the request for the
capture note component itself was initiated. This informa-
tion is used later to fetch the appropriate information from
the buffer. After the active component has been loaded, the
pen switches from browsing mode to active mode which sim-
ply means that subsequent pen events are delegated to the
client-side active component instead of directly being sent to
the server. As explained before, the capture note client-side
component requested information about the active region
that was defined as a capture area.

The capture process is completed when either the pen
leaves the active capture area or after the predefined time-
out, which is also a parameter of the capture note compo-
nent, elapses. In the meantime, all pen events are stored in
the buffer. After the capture process has been terminated
by one of the two possibilities just described, the capture
note component does a lookup in the buffer to get all po-
sitional information that has been acquired during the cap-
ture process. This lookup is based on the temporal informa-
tion that the active component requested in its initialisation
phase. Finally, the captured information is sent to the pre-
defined upload URL either as a JPEG image or as scalable
vector graphics (SVG). The OMSwe server sends a response
confirming that the upload of the image was successful which
is delegated to the capture note active component. The ac-
tive component informs the Pen Client that it has finished
its work and it is immediately unloaded by the Pen Client
which switches back to the default browsing mode.

The active components can be defined directly in the data-
base or they can be imported from an XML document. Fig-
ure 7 shows an active component with its main attributes.
The name is used to find a specific active component whereas

(a) Browsing (b) Voice interaction (c) Writing

Figure 8: User trials at the Edinburgh festivals

the identifier is applied to bind the definition of an active
component to its related Java class. The example shows an
active component for information capture and therefore the
first parameter with the uri key defines the web address
for uploading the captured information. The second para-
meter contains an upload parameter which will be added
to the server request by the client-side active component.
Finally, the active component has a timeout of 3000 mil-
liseconds which means that if the idle time is greater than
this threshold, the capture process will be terminated auto-
matically.

The concept of having client- and server-side active com-
ponents which can communicate by sending special active
component messages has proved to be useful if the client-
side component has to get additional information stored in
the iServer database. Note that the two active components
presented here are just two possible implementations of the
very flexible and powerful active component concept which
enormously simplifies the implementation of complex inter-
action components. Various other active components have
been implemented as part of the EdFest prototype to sup-
port different interaction tasks such as the rating of an event
or the localisation of a venue.

7. EDFEST AT THE FESTIVAL
Initial tests and user trials of the EdFest system took

place in Edinburgh during August 2004. Usability trials
were carried out during a three-day period on various lo-
cations in the city, including public places and locations in
and around festival venues. They involved the testing of the
EdFest prototype, a mix of semi-structured interviews, ob-
servations based on video and audio recordings and also user
questionnaires. While it is beyond the scope of this paper to
describe the user studies in detail, we include in this section
some general remarks on the outcomes.

Test users included experts from the HCI and CSCW
fields who work in Edinburgh or were visitors to the fes-
tival as well as tourists interviewed in public places. A total
of 3 expert users and 8 non-expert users completed detailed
trials lasting around 45-60 minutes with full video record-
ings. In addition, we carried out a number of smaller trials
as well as observing and videoing tourists in various venues

and public spaces such as streets, bars and cafes. A user
working with the paper brochure is shown in Figure 8.

The interaction with the system is usually initiated by
pointing to a specific area of the booklet with the pen. For
some of the users it was unclear that they could also talk
to the system in order to navigate through the voice di-
alogues. Even after learning that they have this possibil-
ity, some users went on using the pen for input, in paral-
lel to the voice input. This demonstrates the necessity of a
multi-modal interface were people can use their capability of
performing redundant and continuous interaction to achieve
their goals.

A few users expressed a reluctance about having to talk
to the system in public places in order to get information or
perform some task. One option would be to remove voice as
an input channel and instead use only paper for input and
audio for output only. The removal of voice input would
certainly resolve the ambiguity of having to use a particu-
lar modality for a particular interaction, but of course sup-
porting both modalities would be a richer and more natural
interface.

One problem of using the pen as a pointing device was the
fact that some users were concerned that they would mark
the brochure. We have found this to be a general problem
associated with the dual mode of the modified pen which can
act both as a selection and writing device. Ideally, the pen
itself should have a mechanism to switch between modes, for
example by clicking on the end it could retract the writing
stylus and switch from writing to selection mode. We con-
sider such amendments to the design of digital pens essential
if they are to become devices with this dual functionality.

Generally, the response to the interactive brochure was
positive and users found the map-based interaction, includ-
ing the locator functionality, to be particularly intuitive and
very useful. There was positive feedback concerning the
means of inputting and getting event ratings as well as for
setting the reminders. More problems were experienced with
interaction through the printed event lists as here it was less
clear to users what response to expect from pointing to vari-
ous positions on the page. In the case of event lists, there are
many possible design layouts that can be chosen and, given
the novelty of the technologies, a lack of design guidelines.

Nokia Digital
Pen SU-1B

Client
Controller

iServer
and iPaper

Cosmonaut
Database

Pen
Client

Various
Services

x,y coordinates

URL + context

Append contextdocID, page, (x,y)

SMessage
SMessageLight

PAN LAN

docID, page,
(x,y) + context

Cosmonaut Client

Sound

Display

OMSwe

LAN

Figure 9: Lost Cosmonaut architecture

Here, the feedback from the user studies provided valuable
input towards experimenting with alternative designs in the
future.

8. INTERACTIVE ART INSTALLATION
The Lost Cosmonaut [7] is an interactive art installation

which was realised in collaboration with an artist in resi-
dence based on the same experimental mobile platform as
EdFest. The goal was to investigate the use of technolo-
gies for interactive paper in interactive narratives and story
writing.

The general setup of the Lost Cosmonaut installation is
shown in Figure 10. A user sits in a dark room in front of a
semi-circular desk. The wall in front of the user contains a
large round hole which is used as a screen for projecting dig-
ital information such as images, videos and animations. On
the desk there is a Nokia Digital Pen and three documents—
a star map, a book, and a collection of love letters—forming
part of an interactive narrative about Soviet cosmonauts lost
in space. Movement of the documents determines which one
is the current focus of interest.

Figure 10: Lost Cosmonaut setup

When a visitor interacts with the documents, the content
presented on the round screen as well as the ambient sound
and the lighting in the room change according to the user

actions. The documents have some pre-authored content,
but visitors are encouraged to add texts and drawings to
the artefacts themselves. While the linearity of the story is
already broken by giving a user the freedom to select arbi-
trary information in the three documents, each user further
becomes an author of the story by adding his own content.
Thereby, the interactive narrative collaboratively written by
different users evolves over time.

For the Lost Cosmonaut installation, it was important to
have an architecture that is flexible in managing digital in-
formation and delivering information on a variety of output
channels. The overall Lost Cosmonaut architecture, shown
in Figure 9, is similar to the one used in the EdFest demon-
strator with the Pen Client, the Client Controller, iServer
and the OMSwe publishing component. A new Service Mes-
sage (SMessage) format was introduced for controlling var-
ious output channels such as light control, ambient sound
and video. These mood changes are influenced by the cur-
rent document that the user is working on. All documents
are tagged with RFID identifiers which are detected by an
antenna placed on the back side of the table and handled by
an iServer RFID plug-in.

The requirements of the installation changed as the artist
developed his ideas and it was essential to have an extensible
information platform such as the one presented in this paper.
The platform not only supported the rapid prototyping of
the application in terms of content and services, but also
enabled easy integration of new input and output channels.

9. CONCLUSIONS
We have presented a platform that supports rapid proto-

typing of mobile information systems. While we generally
advocate the use of rapid prototyping in system develop-
ment, we feel that it is even more crucial in the relatively
new area of mobile applications intended to provide context-
aware information services based on emerging technologies.
Interaction with these services becomes a major issue and
there are many innovations in the features offered by new
devices. It is therefore important to experiment, not only
with alternative modes of interaction, but also multi-modal
interfaces.

We have shown that by combining general platforms for
context-aware web publishing and cross-media services, we
achieved a very flexible platform for mobile information sys-
tems. This platform supports multi-channel, context-aware
applications that may even span physical and digital spaces,
thereby enabling digital information and services to be linked
to places and objects in a user’s environment.

The EdFest project served as both a driving force for the
design and development of the platform and a first major
demonstration of its use. The project integrates many dif-
ferent aspects of mobile systems addressed individually in
other research projects and, hence, presented us with many
challenges. The system described in this paper represents
the first phase of a three year project and trials will be
carried out at the festival each August during this period.
Three major versions of the EdFest system will be devel-
oped and, for each of these, there will be a great deal of
smaller tests with alternative designs. It is therefore vital
for us that we have a platform that, not only supports the
functionality we need, but also enables all aspects of the sys-
tem to be changed easily and quickly. This is achieved by
using data-driven approaches, where all information about
the application and its configuration is represented in one
or more databases in terms of objects that are subject to se-
mantic consistency constraints. This means that they can be
updated dynamically at run-time, but that there are guar-
antees that this is done in a controlled way.

10. ACKNOWLEDGEMENTS
We thank the other members of the EdFest team: Barbara

Aeppli, Philipp Bolliger, Marco Dubacher, Michael Gross-
niklaus, Slavisa Maslic and Alexios Palinginis. We also
thank Rob Procter and his team at the University of Ed-
inburgh for their help with the user trials.

11. REFERENCES
[1] G. Abowd, C. Atkeson, J. Hong, S. Long, R. Kooper,

and M. Pinkerton. Cyberguide: A Mobile
Context-Aware Tour Guide. Wireless Networks,
3:421–433, 1997.

[2] Anoto AB, http://www.anoto.com.

[3] R. Belotti, C. Decurtins, M. Grossniklaus, M. C.
Norrie, and A. Palinginis. Interplay of Content and
Context. In Proc. of ICWE 2004, 4th Intl. Conference
on Web Engineering, Munich, Germany, July 2004.

[4] B. Brown and M. Chalmers. Tourism and Mobile
Technology. In Proc. of ECSCW 2003, 8th European
Conference on Computer Supported Cooperative Work,
Helsinki, Finland, September 2003.

[5] B. Brown and E. Laurier. Designing Electronic Maps:
an Ethnographic Approach. In L. Meng, A. Zipf, and
T. Reichenberger, editors, Map Design for Mobile
Applications. Springer Verlag, 2004.

[6] K. Cheverst, N. Davies, K. Mitchell, A. Friday, and
C. Efstratiou. Developing a Context-Aware Electronic
Tourist Guide: Some Issues and Experiences. In Proc.
of CHI 2000, The Hague, The Netherlands, September
2000.

[7] The Lost Cosmonaut, Interactive Art Installation,
http://www.lostcosmonauts.ethz.ch/.

[8] A. Grasso, A. Karsenty, and M. Susani. Augmenting
Paper to Enhance Community Information Sharing.

In Proc. of DARE’2000, Designing Augmented Reality
Environments, Elsinore, Denmark, April 2000.

[9] A. Kobler, M. C. Norrie, and A. Würgler. OMS
Approach to Database Development through Rapid
Prototyping. In Proc. of WITS’98, 8th Workshop on
Information Technologies and Systems, Helsinki,
Finland, December 1998.

[10] D. M. Levy. Scrolling Forward: Making Sense of
Documents in the Digital Age. Arcade Publishing,
October 2001.

[11] P. Luff, C. Heath, M. C. Norrie, B. Signer, and
P. Herdman. Only Touching the Surface: Creating
Affinities Between Digital Content and Paper. In
Proc. of CSCW 2004, ACM Conference on Computer
Supported Cooperative Work, Chicago, USA,
November 2004.

[12] C. C. Marshall. Annotation: From Paper Books to
Digital Library. In Proc. of DL’97, 2nd ACM Intl.
Conference on Digital Libraries, Philadelphia, USA,
July 1997.

[13] W3C Multimodal Interaction Activity,
http://www.w3.org/2002/mmi/.

[14] M. C. Norrie and A. Palinginis. Empowering
Databases for Context-Dependent Information
Delivery. In Proc. of UMICS 2003, Workshop on Data
Ubiquitous Mobile Information and Collaboration
Systems, Klagenfurt/Velden, Austria, June 2003.

[15] M. C. Norrie and A. Palinginis. Versions for Context
Dependent Information Services. In Proc. of COOPIS
2003, 11th Intl. Conference on Cooperative
Information Systems, Catania, Italy, November 2003.

[16] A. Pashtan, R. Blattler, A. Heusser, and
P. Scheuermann. CATIS: A Context-Aware Tourist
Information System. In Proc. of IMC 2003, 4th Intl.
Workshop of Mobile Computing, Rostock, Germany,
June 2003.

[17] D. Pawson. XSL-FO: Making XML Look Good in
Print. O’Reilly & Associates, August 2002.

[18] A. J. Sellen and R. Harper. The Myth of the Paperless
Office. MIT Press, November 2001.

[19] B. Signer and M. C. Norrie. A Framework for
Cross-media Information Management. In Proc. of
EuroIMSA 2005, Intl. Conference on Internet and
Multimedia Systems and Applications, Grindelwald,
Switzerland, February 2005.

[20] Y. Stavrakas and M. Gergatsoulis. Multidimensional
Semistructured Data: Representing
Context-Dependent Information on the Web. In Proc.
of CAiSE 2002, 14th Conference on Advanced
Information Systems Engineering, Toronto, Canada,
June 2002.

[21] Vindigo City Guide, http://www.vindigo.com.

[22] W. Wadge, G. Brown, M. Schraefel, and T. Yildrim.
Intensional HTML. In Proc. of PODDP 98, 4th Intl.
Workshop on Principles of Digital Document
Processing, Saint Malo, France, March 1998.

[23] A. Woodruff, P. Aoki, A. Hurst, and M. Szymanski.
Electronic Guidebooks and Visitor Attention. In Proc.
of ICHIM 2001, 6th. Intl. Cultural Heritage
Informatics Meeting, Milan, Italy, 2001.

