OMS Java: Providing Information, Storage and
Access Abstractions in an Object-Oriented
Framework

Adrian Kobler, Moira C. Norrie, Beat Signer, and Michael Grossniklaus
{kobler, norrie, signer, grossniklaus}@inf.ethz.ch

Institute for Information Systems
ETH Zurich, CH-8092 Zurich, Switzerland

Abstract. In this paper, we present the main objectives and compo-
nents of the OMS Java data management framework. We argue that
developers of modern information systems require high-level application
programming interfaces, storage platform independence and support for
universal client access. We describe how the OMS Java framework pro-
vides three level of abstractions — storage, information and access in order
to realise these objectives. We then present each of these layers in turn
— starting with the information abstractions which lie at the core of the
system and then going on to the storage and access layers.

1 Introduction

To support the engineering of modern information systems, we require a new
generation of open, extensible data management frameworks that provide high-
level application programming interfaces and aid modularity and reuse. Ideally
such a framework should be general enough that it is independent of the im-
plemention platform, not only in terms of hardware and operating system, but
also the storage platform. Additionally, in a world which is rapidly moving to a
paradigm of community information spaces, it is vital that support for univer-
sal client access be an integrated part of such a framework and not simply an
afterthought.

Clearly, a framework that meets all of these requirements will be complex.
However, the important factor is that the complexity lies in the implementation
of the framework and not in its use. Further, to make the complexity manage-
able and ensure generality, it is important that the framework is based on clear
concepts and has a well-defined structure.

OMS Java [KN0Oa] is a data management framework that we have developed
in line with these requirements and goals. In this paper, we present an overview
of OMS Java in terms of its three layers of abstraction — information, storage
and access. The information abstractions specify the core model on which the
framework is based in terms of data constructs, operations and workspaces.
The storage abstractions hide persistent storage details from the application
developer and provide storage platform independence. The access abstractions
enable applications with universal client access to be developed quickly and
easily.

We start in section 2 with a more detailed look at the requirements of such
frameworks and the abstraction layers. Each of the three abstraction layers is
then presented in turn, beginning in section 3 with a description of the informa-
tion layer which is the core of the framework. Section 4 then presents the storage
layer and the main architecture of the OMS Java framework. In section 5, we
turn to consider the access layer which deals with the web server part of the
OMS framework and universal client access. Concluding remarks are given in
section 6.

2 Framework Requirements

Most existing frameworks fail primarily in their support for high-level application
programming interfaces. At the core of information management is access to,
and the manipulation of, large collections of objects and the associations and
dependencies between them. Yet the data abstractions provided by many systems
tend not to be at the same level as that of the application model.

One approach is to base information system development on relational tech-
nologies, using JDBC [Ree97] as the interface between the Java application ob-
jects and the storage objects and forcing the application developer to manage
the mapping between the two.

Another approach is to provide a persistent object framework in which case
the developer is relieved from the task of having to perform such mappings. Such
systems include object-oriented database systems (OODBMS) and also persis-
tent Java systems such as Java Data Objects [JDO00] and PJama [PAD97].
The problem with those systems is that while the storage management aspect
is catered for little or no support is provided for the management of the infor-
mation space and client access to this space. For example, these systems usually
provide little support for accepted database concepts of semantic classification,
constraints, triggers and both schema and object evolution. In addition, there
is usually no or little support for the process of information system engineer-
ing and the coding effort is often tedious and repetitive both within and across
applications. In the end, the application developer must provide their own mini-
framework to aid the development process.

At the level of the application interface, most data management systems and
frameworks left it to the developer to use a preferred GUI framework. With the
development of the web, the importance of providing web interfaces quickly and
easily was recognised, especially as new potential markets for data management
technologies emerged in terms of e-commerce and web content management sys-
tems. New systems and frameworks rapidly appeared, but most are tied into
HTML technologies. It has now been recognised that it is better to exploit XML
technologies and use XML [XMLO0O] as an intermediate data format and use
XSLT templates [XMLOO] for presentation. However, in many cases it is not
so easy to cleanly adapt existing systems and frameworks to an XML-based
solution.

The design and development of the OMS Java framework has always had the
goal of supporting the application developer through the provision of a high-
level application programming interface based on well-defined information ab-
stractions. Further it was defined with openness and extensibility in mind. The
extension and re-engineering of the framework to provide universal client access
and web content management support based on XML technologies was carried
out within a few person-months.

presentation
client characteristics Access Layer structure XML for access and presentation
o ol teristics . data semantics
domain characteristics | [nformation Layer . . XML for distribution and data exchange
operation semantics
Lo PRI persistence .
storage engine characteristics Storage Layer o XML for imports and exports
distribution

Fig. 1. OMS Java Abstraction Layers

We show the resulting abstraction layers of the OMS Java framework in
figure 1. In the middle, reflecting its central role, is the information layer which
provides abstractions dealing with the core constructs and operations of the
underlying data model in terms of data and operation semantics. At this level,
the application developer is concerned with the characteristics of the application
domain in terms of information objects and operations.

At the lower level, we have the storage layer which provides storage abstrac-
tions dealing with issues of persistence and distribution. These abstractions hide
from the application developer the characteristics of particular storage engines.
This provides storage platform independence, enabling applications to be eas-
ily migrated across platforms and a platform to be chosen that matches the
requirements, budget and system support knowledge of a given operational en-

vironment.))] o)
The access layer provides abstractions dealing with issues of presentation

and structure on client devices. At this level, the application developer is con-
cerned with client characteristics in terms of access device, authorisation and
both information and presentation preferences.

As stated earlier, the latest versions of the OMS Java framework are based
on XML technologies — in particular with respect to the access layer. However,
as indicated on the right-hand side of figure 1 , we are actually using XML
technologies at all three levels. At the storage level, we use XML as a format for
the importation and exportation of data. At the information level, it is used as
a general format for data exchange and also for distributed processing. At the
access level, we use it for client access and presentation. Accordingly, we have
three types of XML documents and therefore three DTDs (Document Type
Definitions) corresponding to the three layers.

3 OMS Java Information Layer

The information layer is at the heart of the system in that it defines the data
abstractions in terms of which the application domain will be represented. Thus,
it specifies the set of constructs and operations that define the core of the appli-
cation programming interface. In other words, the information layer defines the
data model on which both the framework and application design are based. This
data model must therefore be both semantically expressive to aid the application
developer and also amenable to efficient, platform-independent implementation.
The OMS Java framework is based on the OM object data model [Nor93,Nor95]
which is a generic collection-based model offering a rich set of collection con-
structs and also a powerful collection algebra. The model combines features of
entity-relationship and object-oriented models, but it is important to note that
in contrast to many of these it also has a full operational model that includes
a query algebra and language, a data manipulation language and also triggers
and constraints.

employee project
Employees || Projects -
disjoint
[rogramme] [[manager
(1:3)
Programmers | | Managers

Fig. 2. OM Application Model

In figure 2 , we give an example application model to show the main con-
structs of the OM model. Entity sets are modelled as collections of objects of a

given type. Specialisation are modelled as subcollections and classification con-
straints may be placed over two or more subcollections. For example, Managers
and Programmers are both subcollections of Employees and they are specified
to be disjoint which means that they have no common members.

Associations between objects are represented as a special form of binary
collection which is a collection of pairs. A binary collection has two forms of con-
straint over it — the specification of a source and target collection to restrict pair
membership, and cardinality constraints. In the example of figure 2 , WorksOn
is a binary collection containing pairs of the form (e,p) where e is a member of
Employees and p a member of Projects. e may be associated with 0 to 6 mem-
bers of Projects and p can be associated with 1 or more members of Employees.
Note that there is also a subcollection relationship between binary collections
Manages and WorksOn.

The collection model — constructs, constraints and operations — are gener-
alised over both unary and binary collections and also over collections with set,
bag, ranking (ordered, no duplicates) and sequence behaviours. Note that it is
also possible to dynamically change the behaviour of a collection. For instance, a
collection with set behaviour can seamlessly evolve into one with bag behaviour.
This contrasts with the Collections Framework (CF) which is part of the Java 2
Platform Standard Edition (J2SE) and which is supported by most OODBMSs.
In the CF, the behaviour of a collection is specified by the corresponding Java
class and must be determined during implementation, whereas OM collections
are semantic collections and can change their behaviour at run-time.

While the full details of the OM model cannot be presented here, there are
two special points that merit further discussion with respect to data management

frameworks. The first is that the OM model has a much richer classification
model than that supported in typical object-oriented programming languages.

An application entity may have several roles with role-dependent features. To
model this directly requires multiple instantiation, i.e. the possibility for objects
to have more than one type. For example, if we removed the disjoint constraint
in figure 2 , we would allow for the case that an employee is both a manager and
a programmer. We then say that an object has type units employee, manager
and programmer. Further, the model supports role modelling through a dynamic
composition of objects from the information units corresponding to its various
type units as determined by context. In the case of accessing an object through
a collection, it is the membertype of this collection that determines context.

The OM model can really be considered as a two-level model — the collec-
tions and constraints at the upper level and the types at the lower level dealing
with object representation and behaviour. Correspondingly, we represent OM
objects in the OMS Java Framework by a class OMObject which represents the
object in terms of a persistent OID and alias. Further, an OM object can be
associated to one or more Java instances representing the various information
units of an object.

Figure 3 shows these two levels. The OMS Java Framework provides the

classes for the various OM constructs such as collections and associations. The
application developer then specifies type units of OM objects in terms of the

OMS Java data definition language (DDL). In addition, a developer can provide
application classes corresponding to type units for defining methods and special
data structures, but it is also possible to use the scripting language of OMS Java
for method specification.

Note also that the constructs of the OMS Java framework include an OMWork
space construct. OM has a transactional, persistent workspace model. This
means that an application program has a persistent workspace. The updates
stored in the workspace are written to the database only when a commit opera-

. OM Constructs provided by OMS Java Framework
OMObject
ﬁ}?s OMObject, OMCollection,
OMAssociation, OMWorkspace,
Employee Application Classes provided by Application Developer
Programmer Java Classes correspond to Type Units
Java Instances correspond to Information Units
Manager

Fig. 3. OM Objects in OMS Java Framework

tion is performed. At any time, a rollback operation may be performed to delete
the changes stored in the workspace.

The second point to mention is the importance of the association concept
and its realisation as a separate construct in both the model and the framework.
The importance of maintaining consistency between mutual references has long
been recognised and, for this reason, there is specific support within the model of
the ODMG standard [CBB*00]. However, few OODBMSs actually support this
within their model and, even in the cases of those that do such as Objectivity/DB
(www.objy.com), it is still tedious for the application programmer to specify and
maintain these. A major problem is that the associations are specified as part
of the target and source class definitions, rather than as a separate construct.
As a result, the programmer must develop classes in conjunction. In contrast,
OMS Java application developers can focus on one part of the application at a
time and then link the parts together through the introduction of associations.
Adding an association has no effect on the classes being associated. This brings
clear advantages in terms of modular development and class reuse.

Generally, existing OODBMS and frameworks are very limited in terms of
the forms of constraints that they manage. In most cases, all consistency checks
and controls are left to the programmer. For example, current OODBMS do not
support the notion of a subcollection. This means that the application program-
mer must explicitly maintain such a containment relationship himself. In the
case of OMS Java, triggers may be used to automatically maintain consistency
of a subcollection relationship under updates to collection membership.

To demonstrate how much the application developer’s task can be simplified
by providing basic collection, subcollection and association constructs, we im-
plemented a simple framework for ObjectStore (www.odi.com) providing these
constructs. This framework is used in a practical course on OODBMS, and on
every occasion, there is a strong positive feedback from the students regarding
the reduction of development time and simplification of code.

Further, the fact that associations are represented as separate constructs en-
ables operations to be performed over these associations. In practice, we have
found that the key to many complex queries lies in focusing on the associa-
tions and applying operations such as composition, nesting and special forms of
selection to locate objects of interest and only then processing these objects.

4 OMS Java Storage Layer

Within the OMS Java framework, persistent storage is provided by an OMS
Java server component. One or more OMS Java workspaces can be connected to
an OMS Java Server using the Java Remote Invocation Mechanism (Java RMI)
as indicated in figure 4. Optionally, also an OMS Java workspace can be made
persistent in which case we can distinguish between objects stored only locally
and ones managed by the server.

Client Application Client Application

OMS Java
Workspace OMS Java
Workspace

Java RMI Java RMI

OMS Java Server

Fig. 4. OMS Java Architecture

Approaches to persistent object management can be classified into mapping
approaches or direct storage approaches. In the case of mapping approaches, ap-
plication objects are mapped to storage objects or relations. The mapping either
be performed statically or dynamically at run-time. As an example of the former
approach, a relational DBMS may be used to store application data with Java
applications using JDBC to store and retrieve data. In this case, it is the applica-
tion programmer who performs the mapping between the persistent data and the
application objects. Other systems perform the mapping automatically by pro-
viding storage abstractions at the level of application objects rather than at the
level of storage objects. For example, Sun’s Java Blend product (www.sun.com)
supports the run-time mapping of Java objects to an underlying DBMS, and the
architecture described by the Java Data Objects specification [JDOO00] provides
a transparent interface for persistent data storage.

In the case of direct storage approaches, the storage engine is capable of stor-
ing the application objects directly. For example, the ODMG standard [CBB*00]
defines interfaces and language bindings to object-oriented DBMSs such as Ob-
jectStore (www.odi.com) and Objectivity/DB (www.objy.com). In addition, there
have been projects such a PJama [PADT97] which integrate the notion of or-
thogonal persistence into the Java programming language through changes to

the Java Virtual Machine.
Since one of the main goals of the OMS Java framework is to enable appli-

cation developers to design and implement applications without having to deal
with implementation aspects of storage management and, at the same time, have
a choice of storage platform, we chose a dynamic mapping approach — but in
fact combine many features of existing approaches to persistence.

The storage management component of OMS Java has been designed in such
a way that it is possible to use various storage engines for the storage of appli-
cation objects. For example, as shown in figure 4, a relational DBMS may be
used via a JDBC interface or a given ODMG-compliant OODBMS using a Java
language binding. In addition, we have implemented storage interfaces based
on persistent Java systems such as PJama and ObjectStore PSE, lightweight
databases such as Berkeley DB (www.sleepycat.com) and even using simple ob-
ject serialisation.

We use a mapping approach to achieving persistence. In our mapping, every
Java application object is represented by one or more state container objects
as indicated in figure 5. Two categories of attribute values can be stored in
state containers — base type values and object references which, as with other
persistent object systems, are our own unique persistent OIDs.

Two aspects that have to be taken into account in the design of a client/server
persistent object framework are the handling of large collections of objects and
the number of simultaneously open remote connections. For example, in OMS

Java Object Attributes

class Demo {
Isr;trir:‘;; n:";—\— ———_ attrName = “no”
Hashiable table:Y < B Name = it

DemoObj obj; \ |\ ~ value = “3”
AN

|
<
! v attrName = “name”
| v N type = BASETYPE
| v className = “java.lang.String”
| \ V]| value="“demo object”

v \ N

Object \ N attrName = “table”

type = OBJREF

className = “Java.utl Hashtable"
value = “21” (OID)

attrName = “obj”

type = OBJREF
className = “DemoObj”
value = “25” (OID)

Fig. 5. Java Instance and its State Containers

Java, all data structures for bulk information processing such as collections are
based on maps and lists. Hence, the OMS Java workspace uses special proxy
classes DBMap, DBList and DBIterator to access collections of objects remotely
through JAVA RMI without retrieving the entire collection object over the net-
work. These proxy classes have corresponding remote objects on the server side
and access to a specific instance of a map or list is given by its unique OID. Note
that there is also a proxy class for state container objects. To keep the number
of open connections small and network traffic efficient, the only connections are
through the various client and associated server objects described above.
Integrating a new DBMS into the OMS Java framework as a storage platform
requires that only a few interface classes, for example, for state container objects,
maps, lists and iterators be implemented using the API of that DBMS. Our
experience shows that additionally a small number of DBMS specific classes
also need to be implemented — making it a total of typically around 10 classes.
For optimisation reasons, it is possible to configure the storage manager to use

indexes for certain values and to extend it with customised data structures. For
this, a developer can specify them through API of a specific DBMS or define them

using a DBMS-independent high-level framework such as the eXtreme Design
Framework [Kob01] which is based on the same storage management component

as OMS Java.
It is beyond the scope of this paper to describe the OMS Java storage frame-

work in detail. More information about it can be found in [SKN98 KNOOb] where
we also discuss the extensibility support of OMS Java in terms of spatial and
temporal data management.

5 OMS Java Access Layer

As stated previously, a modern data management framework must support the
development of web-based applications and this includes access from, not only
standard desktop web browsers, but also various forms of mobile client devices
such as phones and PDAs. In such a rapidly evolving environment as the web
(along with mobile and pervasive computing), it is vital that such a framework
is not tied into any one protocol or type of client device.

Generally, we use the term document to refer to a presentation unit delivered
to the client in response to a single access request. Thus, it may be an HTML
document, a WML document, a PDF file or a voice text — the format of which
may depend on a whole range of parameters such as the client device, user
preferences, context as well as the information requested.

To achieve a general access layer, it is important to separate out the notions
of information, content and presentation. The former corresponds to the actual
objects of the information layer that represent application entities. By content,

we mean the content of documents that will be presented to the user. Such a
document may be composed from many information objects. The presentation
specifies the precise presentation format of these documents in terms of both the
document format and the layout.

In figure 6, we show the general web server architecture for the access layer
of the OMS Java framework. For a specific application, all client access is via a
single Java servlet [Mos98] — the Entry Servlet. The Entry Servlet detects the
user agent type from the HTTP request header and delegates the handling of
the request to the appropriate servlet. For example, we show servlets to handle
requests from HTML browsers, XML browsers and also WAP phones in terms

of WML browsers.
Browser Browsei Browsel

Entry Servlet

Deledation

Apply XSL
Transform,
split
Collections
(WML only)

i [HTML Serviet | [XML Serviet | [WML Serviet]

Uses the DOM
to build XML

XML Server

A

v

OMS Java API
OMS Java Workspace

Fig. 6. OMS Java Web Access

The request handling servlets then access the database by connecting to an
OMS Java workspace via the OMS Java API. The connection may either be
direct or via the OMS Java XML server. Direct connections deal with requests
that do not involve data retrieval such as updates or checking membership of
an object in a collection. The XML server forwards requests to the OMS Java
workspace and generates XML representations for any data objects to be re-
turned to the servlets. The requesting servlets then use the appropriate XSLT
templates to transform the XML results to the corresponding documents to be
returned to the client.

Note that we are not storing an XML documents, but rather generating them
dynamically based on a hierarchical view of data derived at access time. Actually
what we generate is the DOM (document object model) structure, rather then
the XML document itself, since it serves only as an intermediate structure in
our architecture and is immediately processed using XSLT templates to produce
the document sent to the client.

Using generic XSLT templates for various client devices, we are able to
provide generic browsers and editors for the current set of supported client
types. Adding a new client type involves implementing the corresponding servlet
and writing the appropriate XSLT templates. Our initial framework supported
HTML, XML and WML browsers and we were able to add support for NTT
DoCoMo’s Imode internet access system (mainly use by mobile phones in Japan)
with only a few hours work. In [SGNO1], we describe the architecture in detail
and describe also the implementation of a community agenda using the frame-
work.

While the above architecture is sufficient to support universal client access,
developing a specific application interface in terms of documents and presen-
tations requires a rather tedious and sometimes complex process of producing

customised XSLT templates. We therefore chose to further extend the OMS
Java framework to fully support the engineering of web applications through
web content management.

A general problem of current web content management systems such as Vi-
gnette [Cor01] and Interwoven [Inc00] is the fact that they tend to address the
problem from the side of document generation and management rather than from
that of semantic information content. In contrast, many of the proposals from
the database side (e.g. [CFP99,FLM98]) tend to focus on presenting the contents
of a database on the web and neglect the operational aspects of developing and
managing a complex web site.

To support web content, meant extending the data managed by OMS Java to
include also document content and presentation data as well as the application
data. The extended framework OMS Java CMS (Content Management System)
provides in-built support for web content management via pre-defined objects
types and collections. The resulting schema is rather large and complex so we
show only the main components of the schema in figure 7.

OMS Content Manager
! CMWorkflows CMGatekeepers |

[CMTemplates HCMComponents CMContents }
Application
Objects

Fig. 7. OMS Java Web Content Management

Documents are composed from components which may be either simple or
compound. A simple component is an object of a simple component type such as
text, URL, link or image. A compound component is known as a container and
these represent recurring component groups. To provide multi-lingual support,
we distinguish between components and contents and represent the language-
dependent part of components.

The rendering of objects is based on XSLT templates which are also objects
of the OMS Java workspace. However, in contrast to most existing web content
management systems, the transformation is not based on a single static XSLT
stylesheet, but rather performed using a dynamically generated stylesheet. Each
component may be associated with a default template and, optionally, several
context specific templates.

Ideally, one must be able to change and extend a web application while it is
up and running. Components therefore have a life cycle consisting of develop-
ment, approval and active phases with only objects in the active phase actually
appearing on the web site to users other than the developers. In OMS Java CMS,
the state of the components are represented and controlled by workflows. Gate-
keeper objects are responsible for filtering document components according to
specified criteria such as the workflow state. Further details of OMS Java CMS
can also be found in [SGNO1].

6 Conclusions

In this paper we have presented an overview of the OMS Java framework. Our
intention was to focus not on the technical detail, but rather on the requirements
that must be demanded of modern data management frameworks if they are to
support information system engineering. It is insufficient to cater only for the
requirements of persistent storage. One must also ensure that the abstractions

provided to the application programmers enable then to concentrate on the
application semantics and to work at a high-level of abstraction. For this reason,
we have based the core of the OMS Java framework on a generic, semantic
object data model. Further, we stress the importance that data management
frameworks must also support the general benefits of object-oriented software
construction and support modularity and re-usability and the importance of
using separate association constructs to achieve this.

Finally, we emphasise the importance of providing the necessary access ab-
stractions to support the development of application interfaces in the context of
universal clients. For full support of web site engineering, this requires also sup-
port for content management. Having developed an initial version of the OMS
Java CMS framework for this purpose, we are currently developing applications
with a view to refining and/or extending this part of the framework.

References

[CBBJrOO} R. G. G. Catell, Douglas K. Barry, Mark Berler, Jeff Eastman, David Jordan, Craig Rus-
sell, Olaf Schadow, Torsten Stanienda, and Fernando Velez. The Object Data Standard:
ODMG 3.0. Morgan Kaufmann Publishers, 2000.

[CFP99] S. Ceri, P. Fraternali, and S. Paraboschi. Design Principles for Data-Intensive Web Sites.
SIGMOD RECORD, 28(1), 1999.

[Cor01] Vignette Corporation. Vignette Content Management Server. White Paper, February
2001.

[FLM98] D. Florescu, A. Levy, and A. Mendelzon. Database Techniques for the World-Wide Web:
A Survey. SIGMOD Record, 27(3), 1998.

[Inc00] Interwoven Inc. Application Development using Interwoven : Version 1.1. White Paper,
December 2000.

[JDO00] Java Data Objects, JSR 000012, Version 0.8. Technical report, Sun Microsystems,
www.sun.com, June 2000.

[KNOOa] A. Kobler and M. C. Norrie. OMS Java: A Persistent Object Management Framework .
L’Objet, 6, November 2000.

[KNOOb] A. Kobler and M. C. Norrie. OMS Java: An Open, Extensible Architecture for Advanced
Application Systems such as GIS. In International Workshop on Emerging Technologies
for GEO-Based Applications, Ascona, Switzerland, May 2000.

[Kob01] Adrian Kobler. The eXtreme Design Approach. Phd thesis, Department of Computer
Science, ETH, CH-8092 Zurich, Switzerland, 2001.

[Mos98] Karl Moss. Java Servlets. McGraw-Hill, 1998.

[Nor93] M. C. Norrie. An Extended Entity-Relationship Approach to Data Management in Object-
Oriented Systems. In 12th Intl. Conf. on Entity-Relationship Approach, pages 390-401,
Dallas, Texas, December 1993. Springer-Verlag, LNCS 823.

[Nor95] M. C. Norrie. Distinguishing Typing and Classification in Object Data Models. In Infor-
mation Modelling and Knowledge Bases, volume VI, chapter 25. IOS, 1995. (originally
appeared in Proc. European-Japanese Seminar on Information and Knowledge Modelling,
Stockholm, Sweden, June 1994).

[PAD197] T. Printezis, M. Atkinson, L. Daynes, S. Spence, and P. Bailey. The Design of a new Per-
sistent Object Store for PJama. In The Second International Workshop on Persistence
and Java, 1997.

[Ree97] George Reese. Database Programming with JDBC and Java. O’Reilly & Associates,
1997.

[SGNO1] B. Signer, M. Grossniklaus, and M. C. Norrie. Java Framework for Database-Centric Web
Site Engineering. In Proc. 4th Workshop on Web Engineering, Hong Kong, May 2001.

[SKNO98] A. Steiner, A. Kobler, and M. C. Norrie. OMS/Java: Model Extensibility of OODBMS for
Advanced Application Domains. In Proc. 10th Conf. on Advanced Information Systems
Engineering (CAiSE’98), Pisa, Italy, June 1998.

[XMLO0O] Extensible Markup Language (XML) 1.0 (Second Edition). Technical report, W3C,
http://www.w3.org/xml/, October 2000.

