
Diploma Thesis

GOMES

An Object-Oriented GUI for the Object
Model Multi-User Extended Filesystem

Beat Signer, IIIC
beat.signer@switzerland.org

July 28th 1999

Institute for Information Systems
Swiss Federal Institute of Technology (ETHZ)

Diploma Professor:
Prof. Moira C. Norrie

Supervisor:
Gabrio Rivera

Abstract

Today’s file systems often lack flexibility as a consequence of being modeled
too close to the underlying physical storage structure of their files. The object
model multi-user extended file system (OMX-FS) is a new vision of a file system,
providing more functionality and flexibility than most file systems currently
do. It integrates database functionality into the operating system and strictly
separates the physical storage structure of files from their logical use. The
goal of this diploma thesis was the design and implementation of GOMES, an
object-oriented graphical user interface for the OMX-FS, offering easy access
to the full power of the OMX-FS file system. Being a Java application GOMES
is highly portable. It is based on XML-RPC, a networking protocol encoding
remote method invocations with the help of the extensible markup language.
Using XML-RPC a remote object mechanism is designed and employed in order
to communicate in a machine and programming language independent manner.

Contents

1 Introduction 1

2 Architecture of GOMES 3

3 General Design Principles 7

4 GUI Components of GOMES 15

5 XML-RPC 25

6 Future Work 31

7 Conclusion 33

A Glossary 35

B API Reference 37
B.1 The gomes Package . 38
B.2 The gomes.core Package . 41
B.3 The gomes.event Package . 55
B.4 The gomes.model Package . 59
B.5 The gomes.server Package . 69
B.6 The gomes.util Package . 79
B.7 The gomes.view Package . 93
B.8 The gomes.view.util Package . 107
B.9 The xmlrpc Package . 117

Chapter 1

Introduction

The object model multi-user extended file system OMX-FS described in [15],
is an approach to a new file system architecture directly integrating database
functionality into the operating system. OMX-FS is based on the object model
OM [13, 14] and fully embedded into the Oberon System 3 operating system
[2, 18]. The strength of the OMX-FS lies in an additional level of abstraction
in order to clearly differentiate the physical storage structure of files from their
logical usage. Files are moreover treated as objects and provide the full func-
tionality of the underlying OM model as for example the distinction between
typing and classification and the concepts of collections and associations. As
a result, users have much more power to logically order their files. By the
strict distinction between the physical storage structure of the files, which is
totally hidden to the user, and their logical use, there exist no more pathnames
representing the storage location of files in the user interface of the OMX-FS.
Therefore the sharing of parts of the file system is a lot easier than in a common
file system.

The goal of this diploma thesis was the design and implementation of GOMES,
an object-oriented graphical user interface for the OMX-FS, offering easy ac-
cess to the full strength of the OMX-FS file system. In a first step, we had to
investigate how computer users generally work with graphical user interfaces
and elaborate the most important GUI design principles to be considered when
implementing a graphical user interface for a file system. The result of this case
study is presented in Chapter 3. After inspecting existing visualization tech-
niques of today’s file systems and analyzing their advantages and disadvantages,
an optimal way to visualize the characteristic operations and functionalities of
the OM model (such as collections and associations) the OMX-FS is based on
had to be found. In Chapter 4 the process of designing adequate graphical
representations for the new OMX-FS concepts is summarized and the current
implementation of GOMES is motivated.

The overall architecture of GOMES and the tasks of the different layers the
system is based on is discussed in Chapter 2.

2

Since GOMES is a Java [3, 4, 8, 9, 10] client application, whereas the OMX-FS
server is implemented using the Oberon programming language and normally
runs on a remote machine, a solution allowing the Java virtual machine to com-
municate with the remote OMX-FS system had to be found. Our approach,
consisting of mapping the OMX-FS objects on the Java client side by a re-
mote object mechanism based on the remote procedure call protocol using the
extensible markup language (XML-RPC), is presented in Chapter 5.

In the Appendix B interfaces of all classes used by GOMES and a short descrip-
tion of each class can be found, allowing to easily extend the current system.

Chapter 2

Architecture of GOMES

GOMES’ overall architecture can be grouped into four main layers (see Fig-
ure 2.1). The bottom layer, the XML-RPC Layer, is responsible for the com-
munication of GOMES and the OMX-FS server. It implements the XML-RPC
protocol, a remote procedure call protocol allowing to invoke remote methods
on objects of the OMX-FS (the XML-RPC protocol is explained in Chapter 5).

Based on the facility of remote procedure calls introduced by the XML-RPC
layer, the second layer (Core Layer) implements an object serialization mech-
anism to model remote objects for all objects of the OMX-FS. This allows to
use the objects of the OMX-FS like local Java objects. The whole mechanism
of remote objects is completely transparent to the programmer. After method
invocation on a wrapping remote object of the Core Layer, it will redirect the
corresponding method call to the OMX-FS by making use of the underlying
XML-RPC layer. The OMX-FS server will invoke the method on its Oberon
object and return the result of the remote procedure call to the corresponding
object in the Core Layer of GOMES. The Core Layer wrapper object will finally
return the result similar to a local method call, i.e. the programmer will not
notice anything about the network communication caused by the method call.
If the result of a remote procedure call is an OMX-FS object and not a scalar
value, the Core Layer will generate a new wrapper object on the fly (for more
information on modeling remote objects see Chapter 5).

The two top layers, the Model Layer and the View Layer are responsible for the
graphical representations of GOMES. The components of the Model Layer are
directly based on the remote objects provided by the underlying Core Layer.
Since the OMX-FS is a multi-user system, an update mechanism had to be
implemented guaranteeing that the objects of the Model Layer are always con-
sistent to the objects of the OMX-FS system. All components of the View
Layer have their corresponding models in the Model Layer and rely on the
Model-View-Controller design principle (MVC) to achieve consistency (for more

4 Architecture of GOMES

information on the usage of design patterns see [7]). The concepts of the View
Layer are outlined in Chapter 4.

Storage UnitStorage Unit Storage Unit

Inter-/Intranet

XML-RPC

Model Layer

OMX-FS

Running on Oberon

System 3.

Encoding/Decoding of

XML-RPC requests.

XML-RPC Layer

View Layer

Visualization of the

OMX-FS functionality.

Core Layer

objects.

Maintenance of remote

Models of the View

Layer.

Figure 2.1: Architecture of GOMES

5

The clear distinction between the different layers allows to replace a layer with-
out affecting the remaining layers. It is hence possible to use an alternative
networking and object serialization protocol by just exchanging the XML-RPC
Layer.

For each of these four main layers the corresponding Java package can be found
in the API reference (see Appendix B). The functionality of the XML-RPC
Layer is implemented in the xmlrpc package, the gomes.core package is re-
sponsible to provide the functionality of the Core Layer, while the packages
gomes.model and gomes.view are the implementations of the two top layers.

Chapter 3

General Design Principles

In this chapter some design principles are explained which influenced the de-
velopment of the graphical user interface for the OMX-FS. It is not a complete
guidance for the design of a graphical user interfaces, but rather some aspects
of good user interface design are presented. For further information about the
design of user interfaces see [5, 6, 11, 17].

When designing a user interface, developers always have to ask themselves how
potential users will use their applications. Are they going to specify actions
and then select the objects to be processed as often used in command-line
interfaces and menu-driven interfaces (action-object paradigm), or will they first
select an object and then choose the corresponding operation to be executed
on the specified object (object-action paradigm)? While the first approach was
often used in the past, today’s applications tend to use the object-oriented user
interface paradigm (OOUI), hence the latter approach. An advantage of the
object-action approach is that users do not have to remember what action is
valid for which object. The object has just to be selected and only those actions
that can be performed on it will be available. This allows the user to explore
the user interface in a simple manner by just selecting objects and look at the
actions available for them. It further enables a user to work directly with the
objects which reflects a user’s way of doing work in the real world. Considering
these aspects, we tried to strictly use the object-action paradigm designing the
GOMES system.

The object-action paradigm can be further supported by the introduction of
a drag and drop mechanism. This provides a convenient and intuitive way
to perform many tasks using direct object manipulation, by first selecting an
object (drag) and then choosing the corresponding action to be performed by
releasing the object on a drop target. Users should always be informed when a
drag and drop operation is currently in process, e.g. by modifying the shape of
the mouse pointer when a drag is initiated. The change of the mouse pointer

8 General Design Principles

when moving over a potential drop target gives the user visual feedback if the
target object is accepting a drop and the operation can be completed.

At an early stage of graphical user interface design the developer should decide
if the application is going to be used as a stand alone application showing only
one main window on the screen at any time or if the application should cover the
whole screen implementing its own desktop manager allowing the placement of
overlapping windows on top of other windows like papers on a real world desk.
The advantage of an application modeled as a desktop is the fact that it has
got a three-dimensional look, resembling a desk being familiar to users. The
increased control allows them to organize the whole screen to meet their own
needs and there is no longer an ultimate need to close or delete unused windows
since they just can be iconified. When using a desktop manager, it should be
possible to place a symbolic reference (icon) to each object shown in a win-
dow onto the main desktop. This greatly improves working performance since
regular user have the chance to place frequently used objects on the desktop,
guaranteeing permanent access to them. The icons should clearly identify the
objects or concepts they represent. When using different versions of the same
icon (e.g. small and large versions), they should have similar shape, color and
detail. Icons, or generally symbols, have been found to be recognized faster
and more accurately than simple textual information. The graphical attributes
of icons, such as shape and color, are therefore very useful for a quick classifi-
cation of objects. An example of a good classification scheme that speeds up
recognition are the icons indicating the kind of dialog box shown in Figure 3.1
and Figure 3.2, respectively.

Figure 3.1: Icons provided by the Java Metal Look and Feel for fast
classification of message boxes

Figure 3.2: Informational dialog box using the default Java Metal Look
and Feel classification icon

9

If these default icons are used in a consistent way in front of each message
produced by an application, users will be able to faster classify the content of
a message box.

Modal dialog boxes, i.e. dialog boxes blocking the whole system and restricting
the order in which a certain task can be executed are only to be used when
interaction with the application cannot process while the dialog box is displayed.
Every time a new dialog box is opened, the initial keyboard focus should be set
to the control users are most likely to choose first except the command might
cause data loss. This initial focus is especially important for users navigating
through applications using only the keyboard. The default command button is
the button which is selected if a user presses the Return key. It represents the
action that a user is most likely to perform and is identified with a heavier border
than the other command buttons. A command that might cause data loss
should never be made a default button, even if it is the action most frequently
performed (see Figure 3.3).

Figure 3.3: Default button Yes protecting the user from data loss

Consistency is a key aspect of useful graphical user interfaces. A major benefit
of consistency is, that users can transfer their knowledge of parts of the appli-
cation to new consistent parts they are learning. Since people like to explore
and learn a new application by trial and error, the testing of new functionality
should be encouraged by avoiding that users can easily lose data or even damage
the whole application by just one simple operation. A system reacting over-
sensitive to erroneous input will discourage users from trying out new things.
The exploring of new functions will be inhibited and users will work slowly and
overcautious to avoid mistakes. Inconsistence in a graphical user interface is
moreover very contra-productive, because it forces users to memorize all special
cases and therefore unnecessarily increases the application’s overall complexity.
To achieve interface consistency, most operating system providers publish style
guidelines for application developers. These guidelines specify the appearance
and behavior of the user interface describing the windows, menus and various
control mechanisms available and provide some guidance on when to use the
different components. For examples of industry guidelines see [1, 12].

10 General Design Principles

A goal of a good user interface is to hide the complexity of a sophisticated
application (in our case the OMX-FS) by keeping the interface simple and
straightforward while still providing the full power of the underlying system.
Basic functions which are widely used should be immediately apparent, while
advanced functions may be less obvious to new users. Often it is a good idea
to introduce a user gradually to an application such that the full complexity
of the system will not be visible at first. Nevertheless, the user should be
able to control this process. As an example, for an experienced user it is very
annoying and time consuming to always confirm a message box of the form Do
You really want to delete file XYZ? if he wants to delete a file. While such
a support is advisable for novices to protect them from an irretrievable data
loss, a regular user should have the possibility to disable these mechanisms. An
example of customizable support for experienced users is shown in Figure 3.4.
It illustrates the possibility to disable tooltips in the GOMES system. While

Figure 3.4: Control of tooltips in GOMES

tooltips are a good memory help for unexperienced users, it may be annoying
for an expert user always being distracted by tooltips providing absolutely no
new information. At any time the user should be in control of the application’s
graphical user interface and not being limited by the notion of correct actions
to accomplish a certain task imposed by the developer designing the interface.

The user interface should immediately reflect the result of any operation by
visual feedback, allowing the user to check whether the result is as expected
or the action has to be undone. During modal operations which will take
a longer time, the mouse pointer should be changed (e.g. to an hourglass).
Additionally, some sort of progress bar may indicate the remaining time to
complete the current task (Figure 3.5). Without any of this provisions, users
tend to get impatient already after a short period without any visual feedback
and will become frustrated, because they do not know if the system is still
working correctly or if it is blocked by a faulty task.

11

Figure 3.5: Estimated download time indicated by a progress bar

Another example of direct visual feedback supporting the user with additional
context-sensitive information, is the concept of tooltips. Every time the mouse
pointer is left over a graphic component for a certain time, a message box will
appear, showing additional information about the corresponding component.
A strict usage of tooltips greatly improves the process of learning to work with
a new application.

Modern graphical user interfaces must support different interaction devices (e.g.
mouse, keyboard, microphone etc.). At least they should support the use of
either keyboard or mouse. Users should be allowed to switch between different
input devices but it must also be possible to accomplish an entire task using the
same input device. For example, it might be very tedious always having to use
the mouse to scroll a window. If a user is currently editing a textual passage
by keyboard, it should also be possible to scroll the window without having to
change to the mouse input device, i.e. there should be a mechanism to scroll
a window using the keyboard only. Furthermore providing different interaction
mechanisms takes into account that users have different abilities and working
environments.

Keyboard mnemonics are single underlined alphanumeric characters in a menu
title, a menu item or other interface elements, that move the cursor to the
corresponding choice and select it, if pressed in combination with the Alt key
(see Figure 3.6). They support the idea of input device independency by en-

Figure 3.6: Pop-up menu using mnemonics and keyboard accelerators

12 General Design Principles

suring that all application functionalities are also accessible from the keyboard,
i.e. without using the mouse. Each component should have an associated
mnemonic, except default and cancel buttons in dialog boxes. The Return key
should be used for default buttons and the Escape key for cancel buttons in-
stead. When a window is opened, the initial keyboard focus should be assigned
to the most logical component (typically the component that most likely will
be used first or otherwise the component in the upper left corner of the win-
dow). Keyboard Accelerators – single keys or combination of keys assigned
to frequently performed actions – are still another keyboard alternative to the
mouse. They are useful for operations frequently used by regular users, pro-
viding fast access to menu items without having to display the menu itself.
Examples of keyboard accelerators are the copy and paste operators for clip-
board control, which normally can be invoked by pressing Ctrl+C or Ctrl+V,
respectively (as shown in Figure 3.6). The visual equivalent to keyboard ac-
celerators is a tool bar. It contains several buttons providing the users direct
access to the most frequently used commands.

Menus are very important user interface components. They enable users to
choose an action which should be performed on the selected object from a list
of potential operations. Like in the real world (e.g. on a restaurant’s menu
card) the items displayed on menus should be logically grouped by separators
to help learning and to speed up the visual search process. Menus always have
to be static, i.e. they should not be reordered based on the frequency they were
chosen. Options found on more than one menu must be positioned consistently
on all menus by placing them on the same relative position. The menu titles
should be short and clearly designed (only single words) immediately orienting
the user about the menu’s content and its purpose. Menu entries have to
provide an indication what is going to happen when the menu item is selected.
A right-pointed arrow is used for multi-level menus, whereas ellipsis (the three
dots: “. . . ”) after a menu item indicate that the command is not fully specified
and the user will have to make additional selections in an appearing dialog box
to accomplish the specification. If a menu item is not currently available, it
should be disabled by dimming its text. If there is no possibility to make a
menu item available it has to be omitted entirely rather than just disabling it,
since a disabled menu item implies that the user has the possibility to make
it available. If a menu item appears in several menus (for instance, if a copy
command appears in a contextual menu as well as in a drop-down menu), the
same shortcut should be usable.

A special form of menus are pop-up menus sometimes also called contextual
menus as shown in Figure 3.7. They are displayed when a user presses the
right mouse button while the mouse pointer is over an object or area associated
with the corresponding menu, i.e. they show a menu in context of the selected
object. A problem of contextual menus is, that they do not provide any visible
indication of their existence and therefore users might not find them, especially
if the application does not make extensive use of this kind of menu. For that
reason any features presented in contextual menus should also be available in

13

Figure 3.7: Pop-up menu invoked by pressing the right mouse button
on the HTML Files folder

better visible and accessible components like drop-down menus. The keyboard
accelerators and mnemonics shown in pop-up menus additionally have to be
consistent with their use in corresponding drop-down menus.

Chapter 4

GUI Components of GOMES

The aim of GOMES was to find an adequate graphical representation of the
rich functionality provided by the OMX-FS. Since the OMX-FS is an extension
of existing file systems and therefore also includes their base functionality, we
tried to visualize this common base functionality in a similar way to existing
file systems, which has the great advantage that users already experienced with
other file management systems will be able to use the base functionality of
GOMES without much effort (an overview of the whole GOMES desktop is
shown in Figure 4.7).

In the OMX-FS, files are not referenced by their pathnames and filenames
like in other file systems. They are treated as objects and modeled totally
independently of the underlying storage architecture. This implies that in the
visualization of GOMES, a file does not have a visible unique identifier (it is
even possible to have two different files with the same filename) and has always
to be viewed in the current context. A great advantage of the OMX-FS is its
concept of collections. They are similar to folders in other file systems and
provide much the same base functionality. Whereas in most file systems a file
can only be part of one folder to guarantee its identification (a file residing in
several folders would not have the unique pathname necessary for identification)
this restriction is no longer existent in the OMX-FS! You may now argue that
the concept of links used by many other file systems gives you the same power
as the OMX-FS’ collection concept. The technique of introducing files acting as
links does indeed allow to put a file virtually in several folders but at the same
time evokes the severe problem of dangling links after removing the original file.
Differently to other file systems, a collection can have several supercollections.
This flexibility of collections is great to manage files, but does nevertheless
introduce some problems when trying to visualize the collections, analyzed in
the next section.

A first idea for the visualization of collections was to show them in a tree struc-
ture as used by many other file systems. This approach’s problem is that, as

16 GUI Components of GOMES

explained in the previous section, a collection may have several supercollec-
tions, i.e. the structure of the OMX-FS collections is not a common tree but a
directed acyclic graph (DAG). A possible solution would have been to choose a
more complex representation showing the whole collection DAG on the screen
as shown in Figure 4.1. While this variant may be a suitable solution for a

Figure 4.1: Representation of collections as a DAG

small amount of collections, it does not scale very well. How can a file system
with thousands of collections be visualized without confusing the user and how
can the collections be arranged?

Reminding that it should be possible to use the base functionality of GOMES
similar to existing file systems, we decided to visualize the collection the same
way folders are represented in many other file management systems. On the
one hand the view of a collection should show the files it contains and at the
same time it should also visualize its subcollections allowing a user to browse
the file system. In the following we will speak of a folder if we mean a collection
showing the files and subcollections it contains and consistently use the terms
super- and subfolders for super- and subcollections.

The GOMES File Manager, the collection view implemented in GOMES, is
shown in Figure 4.2. It contains two explorers, one on the left and one on the
right hand side, separated by a button bar. Each explorer is a composition
of three parts. The center part shows the current folder with all its files and
subfolders. The user can choose three different view styles for this central
folder view. He can either select a detailed view as shown on the left hand side
providing additional information like the file size, creation time etc., a large
icon view as shown on the right hand side showing only a large icon and the
corresponding file name or the small icon view which is similar to the large
icon view but uses smaller icons. The files and folders shown in the main folder
view can either be separated (folders on top), as shown on the left hand side
of Figure 4.2, or mixed as in the right main folder view. Furthermore the
content of a folder view can be ordered by name, size, creation date or the date

17

Figure 4.2: The GOMES File Manager

the object was last modified, either in an ascending or descending order. The
sorting criteria can be specified by selecting the corresponding menu entry from
the folder menu or just by clicking on the table header of the column containing
the values to be sorted. A small red arrow in the header of the main folder view
always provides visual feedback about the sorting criteria and sorting order
(ascending or descending).

The top section of the explorer maintains all superfolders of the central main
folder view. By double clicking on a folder in the top section, a user can make
this folder the main folder, i.e. he can go one step upwards in the DAG structure.
This mechanism is identical to the one used by many other file managers with
the difference that in the GOMES system it is possible to choose from several
superfolders.

As explained earlier, a file can be part of several folders but until now a user
has no opportunity to easily change from one folder containing a file to another
folder containing the same file. It should be possible to show all folders a specific
file is part of, which is exactly the task of the bottom part of the explorer view. If
the current selection in the main folder view is a file, the bottom view will show
all folders the selected file is part of. Choosing a folder in the main folder results
in presenting all of its superfolders in the bottom view. The explained three
explorer components give users a great flexibility browsing their file system.

18 GUI Components of GOMES

Although GOMES provides a drag and drop mechanism, it should additionally
be possible to execute all operations without drag and drop, allowing the user
to choose his favorite technique. To support binary operations, i.e. operations
which need two objects as parameter, the GOMES File Manager contains two
explorers. The selected object is always one parameter of such a binary opera-
tion while the main folder of the unselected explorer is the second parameter.
The offering of two explorers allows one of them to be used as a short time
memory, supporting a fast return to a certain folder. By choosing one of the
adopt-buttons positioned at the top of the button bar, the views of the two
main folders can be synchronized by setting the left main folder equal to the
right main folder or the other way around, allowing a user to go back to the
position stored in the neighbor folder. The use of one of the two folders as
memory help may be sufficient for a short session but generally a user needs
frequently several folders. By dragging a folder or file from the GOMES File
Manager view and dropping it somewhere onto the main desktop, a user can
gain easy access to these files and folders in the future (Figure 4.7 shows some
folders and files on the main desktop).

The GOMES system totally supports five different mechanisms to choose an
operation, whereas each operation can be executed at least by two of them. A
first way to initiate a command is the drag and drop mechanism already dis-
cussed in the previous section. This is a very intuitive way to choose operations,
especially in an object-oriented user interface as GOMES is. How do we put
a document in a folder in the real world? We just pick up the document and
put it into the folder. And this is exactly the same way as you can add a file or
folder to a new folder in GOMES! Just drag the file and drop it on the desired
folder. There are many other operations which can also be executed by drag
and drop, e.g. an object can be deleted by dropping it on the trash.

A drawback of the drag and drop mechanism is that the user must always
have access to the source and the target objects of the operation. A technique
similar to the drag and drop mechanism but without the need of having access
to the source and the target at the same time is GOMES’ implementation of
a clipboard. By choosing the copy command, a user can copy the selected
object to the clipboard. This is equal to the initiation of a drag but without
having to drop the object immediately. At any time the user has now access
to the element in the clipboard shown in the lower right corner of the main
desktop (see Figure 4.6). By selecting the paste command, he can initiate an
binary operation with the currently selected object and the clipboard object as
parameters (similar to the drop command explained earlier).

A problem of the described drag and drop but also the copy and paste mech-
anism is, that the user has to know which operation is implicitly bound to a
drop or paste action within the current context. Users preferring to explicitly
choose a command can also select the operation from the menu bar on the top
of each window. The leftmost menu entry of the menu bar is always the Object
menu showing all operations to be performed on the currently selected object.

19

Similar to the selection of a command in the menu bar is the use of pop-up
menus. Every object has an associated menu which will pop up if a the user
clicks on it with the right mouse button and will then show a context sensitive
menu of all available operations. A common problem of pop-up menus is the
user not knowing which objects are supporting a pop-up menu and which do
not. To avoid this confusion, in GOMES each object has an associated pop-up
menu.

Last but not least certain commands can also be chosen from the button bar of
the explorer view mentioned earlier. The command chosen by clicking a button
will always be applied to the current selection of the GOMES File Manager
view the button bar resides in.

The second main component of the OMX-FS system to be visualized by GOMES
is the association allowing to model dependencies between files. As an exam-
ple, there could be some pictures in the OMX-FS all being part of a certain
HTML page. A user will be able to model these dependencies by adding the
pictures and the corresponding HTML page to a certain association, e.g. the
part of association. The concept of association gives a user additional power
to logically order the files of his file system at a low level, enabling all applica-
tions to profit from the association mechanism. An association always posses a
domain collection and a range collection restricting the possible files to be part
of the corresponding association. If two files have to be connected by a certain
association, one file has to be in the association’s domain collection and the
other in the associations range collection, i.e. there exist certain constraints.

In a first attempt we considered the integration of the visualization of asso-
ciations in the existing explorer view. We immediately had to realize that
collections and associations are two quite different concepts and that their rep-
resentation in a single view would be very confusing. As we already stated at
the beginning of this chapter, the use of the base functionality of the OMX-FS
should be similar to existing file systems. While the GOMES File Manager
gives a user access to this base functionality, the concept of associations is ad-
ditional to most existing file systems. We therefore decided to design a separate
view for the visualization of associations. This gives a novice-user the opportu-
nity to use the GOMES File Manager for file management similar to existing
file systems without being confused by parts of the association-view shown in
the same window but never used, while an experienced user can make use of
OMX-FS’ full strength by also working with the separate association view.

Searching an adequate graphical representation for associations, we first had to
answer the question how users of GOMES will make use of them. A first attempt
was to allow a user to open a certain association, showing the association with
all its associated files. In a second step the user would have to search the desired
file he wishes the associations for either in the domain collection or in the range
collection. The problem of this attempt was, that it is not very intuitive and
does not rely on the object-action paradigm described in chapter 3.

20 GUI Components of GOMES

Generally a user has a certain file selected and wants to get information about
the associations of this specific file. In GOMES he can get access to this infor-
mation by choosing the Association menu item either from the pop-up menu
of the corresponding file (Figure 4.3) or from the Object menu in the title bar
of the window containing the selected file. The association pop-up menu will

Figure 4.3: Pop-up menu showing associations of a file

show all potential associations the corresponding file may be part of, i.e. all
associations containing one of the folders the selected file is part of either as
domain or range folder. We have chosen this approach (presenting all poten-
tial associations the selected file may be part of) to enhance the procedure of
generating a new association between two files as explained later.

The association pop-up menu is separated into two main sections. The upper
section shows all associations the selected file may be domain file while the
bottom part shows the associations it may be range file of. By selecting a
particular association from the potential associations in the pop-up menu, a
new association view as shown in Figure 4.4 will be opened.

The top section of the association view contains an iconified version of the asso-
ciation itself and the visualization of the domain and range folders (remember
that folder is here an equivalent term for the OM model collections). The icon
view of the association can be used like all other objects in the GOMES system,
i.e. it is also possible to drag and drop on the association. As an example, the

21

Figure 4.4: Association view showing a specific association

drop of an association on another association will make the drop target to the
superassociation of the dropped association, consistently to the use of the drag
and drop mechanism on folders. The lower part of the association view shows
all files associated with the current one. Since either the domain or the range
file is already defined by the file the association was opened on, to create a new
association a user only has to choose the file defining the part of the association
not yet specified. This method of constructing a new association evolved from
the consistent use of the object-action paradigm. An alternative way to build
up a new association would have been to first choose the type of the association
to be built from a menu and then define the new association’s domain and range
file (action-object paradigm).

To concretely build a new association, the user has to drag and drop a file
to the lower part of the association view. The dropped file together with the
file the association view was opened on will build the domain and range file of
the new association. If a user is not sure which files can be used for a certain
association, a new GOMES File Manager view showing all potential members
of the association can be opened by double clicking either the domain folder or
the range folder in the upper part of the association view.

After having outlined the two main concepts to be visualized by GOMES (col-
lection and association), in continuations the remaining parts building up the
whole GOMES system are discussed.

The common operations available on all main objects of GOMES (files, folders
and associations) can be invoked from the pop-up menu of the corresponding
object, from the main menu or by just clicking on one of the buttons within
the button bar. When renaming a file, we always have to remember that the
filename is not a unique identifier anymore but rather a description of the file,
i.e. it is possible to have two files with the same file name in one folder.

22 GUI Components of GOMES

By cloning a GOMES object, a copy of the object will be generated and inserted
into the OMX-FS. This process has not to be confounded with the copying of
an object, which will copy the object into the clipboard but not generate a copy
of the file within the OMX-FS system.

The two other commands not to be confounded are the Remove and the Delete
of an object. The context sensitive Remove operation will not remove the object
from the OMX-FS system at all, moreover it will remove the corresponding file
from its context currently visualized. For example a remove operation applied
to a file shown in a folder view will remove the file from the current folder
whereas a remove of the same file shown in an association view will remove the
corresponding association the file is part of. By deleting an object, the user
definitively removes it from the underlying OMX-FS. Due to security aspects,
the OMX-FS system will not physically delete the file but insert it in a special
collection. A user has still access to the deleted files by the concept of this special
trash collection shown in the lower left corner of the main desktop allowing him
to recycle any deleted file.

Tooltips are used for different jobs within the GOMES system. On the one
hand, they present additional information about objects, e.g. object size or
creation date (Figure 4.5), on the other hand they are used to give a user some

Figure 4.5: Tooltip showing additional information about a file.

kind of help about the different GOMES commands by always appearing if the
mouse resides above a menu item. As shown earlier in Figure 3.4, it is possible
to disable tooltips for the whole GOMES system giving expert users the oppor-
tunity not always being distracted by tooltips providing no new information.
The GOMES desktop can be further customized by choosing a desktop theme
(color schema) and arranging the objects on the desktop.

Finally the status bar positioned at the bottom of the desktop (see Figure 4.6)
permanently informs the user about the current state of the GOMES system.
It is partitioned into a message part and a clipboard section. The message part

23

Figure 4.6: Status bar of the GOMES desktop

immediately reflects the result of any operation by showing textual feedback
allowing the user to check whether the result is as expected. It additionally
supports the user with information if a chosen operation is not possible in the
current context. The second part of the status bar is the clipboard view which
shows always the clipboard’s content. The object shown in the clipboard view
will be the source for the next paste action the user performs. Furthermore, it
allows the user to check if a copy action was successful immediately updating
the clipboard view with the new clipboard object.

24 GUI Components of GOMES

Figure 4.7: The whole GOMES desktop

Chapter 5

XML-RPC

As stated earlier, the OMX-FS is implemented in Oberon-2, an object-oriented
version of the Oberon programming language. Generally, the object-oriented
graphical user interface GOMES will not be executed on the same machine
the OMX-FS server is running. Since GOMES nevertheless has to be able to
make use of the whole file management functionality provided by the OMX-FS
system, a mechanism had to be found that allows the Java Virtual Machine
to communicate with the remote OMX-FS talking a different language and
vice versa, i.e. some kind of Esperanto understandable by the two applications
implemented in different programming languages and running on different plat-
forms! On the one hand GOMES should be able to make remote procedure calls
(RPC) and on the other hand the OMX-FS server must have the possibility to
inform the graphical user interface about changes on its objects by invoking cer-
tain remote methods provided by GOMES guaranteeing consistency of remote
objects.

We decided to choose the relatively new XML-RPC protocol1, a standard pro-
tocol that uses the Extensible Markup Language (XML) to encode the remote
procedure calls, for the whole inter-application communication between the
Java virtual machine and the OMX-FS server, well knowing that we would
never achieve the same performance as with an optimized proprietary protocol
using stable sockets. An advantage of using the XML-RPC protocol is that
the whole communication is based on the well established HTTP networking
protocol. At the same time the use of the HTTP protocol may also a disad-
vantageous since each simple remote method call will have to build up a new
HTTP connection (since HTTP/1.1 it is possible to solve this problem using
persistent connections). This will become very time consuming if many remote
procedure calls are required to perform a single GOMES task.

1http://Frontier.UserLand.Com/tree$2.8.2.1

26 XML-RPC

By encoding the remote procedure calls and their results with the help of
XML, the XML-RPC protocol furthermore allows us to view the content of
the OMX-FS system using one of the latest network browser releases already
able to show extensible markup language documents. Last but not least ap-
plications implementing the XML-RPC protocol will be able to make use of
the OMX-FS independently of the language they are implemented in and the
platform they are running on!

In this chapter we first will outline how the chosen XML-RPC protocol employs
the extensible markup language to encode its data types. In a second part we
describe how the protocol is used to model our own remote objects on the Java
client side which can be used like normal Java objects but are in reality wrappers
of the real Oberon objects residing on the machine running the OMX-FS.

Actually, the usage of the extensible markup language to encode remote proce-
dure calls is only an implementation detail. Every other language allowing to
define new meta information tags to represent the data types of the XML-RPC
protocol could be used instead. Building on the extensible markup language
has the advantage that there already exist quite a few robust XML parsers for
the Java programming language allowing to parse extensible markup language
documents with a limited effort. The simple application programming interface
for the extensible markup language (SAX) is a small standard Java interface
(for its specification see the Java interface org.xml.sax.Parser) for event-based
XML parsing implemented by different available Java parsers. Each Java parser
relying on the SAX interface traverses the tree of document nodes contained in
an extensible markup language document and reports parsing events like the
beginning of a new XML meta tag, input strings or the end of an XML tag to
the application using a call back mechanism. An application interested in some
of the parsing events will have to implement the org.xml.sax.DocumentHandler
interface, i.e. it has to implement the corresponding methods which will be
called by the XML-parser every time the corresponding meta tag is found.

The described method of using an existing extensible markup language parser
implementing the SAX interface enables us to process extensible markup lan-
guage documents and construct an internal representation of them, i.e. it al-
lows GOMES to read the extensible markup language document resulting from
a remote procedure call processed by the OMX-FS server. To encode the in-
formation necessary to invoke a remote method, we further have to be able to
generate new extensible markup language documents. This is exactly the task of
the XMLWriter (see appendix B.9) which can be used similar to the Java output
stream classes and will encode all its input data into an XML-document.

Based on the explained facilities to read and generate new extensible markup
language documents, in a next step the XML-RPC protocol specified by Fron-
tier.UserLand.Com was implemented. An XML-RPC call is just a HTTP-POST
request containing a remote procedure call encoded in XML. As an example of
an XML-RPC call Figure 5.1 shows what the multiplication of two double val-

27

<methodName>Math.multiply </methodName>

<value><double>

<value><double>256.0

</double></value>128.0

</methodCall>
</params>

</double></value>

<?xml version="1.0" encoding="ISO-8859-1"?>

<param>

</param>

</param>

<param>
<params>

<methodCall>

Content-length: 245
User-Agent: Java1.2
Accept: text/xml
Host: 192.168.1.1
Content-Type: text/xml;charset=UTF-8
POST RPC2 HTTP/1.0

GOMES

XML-RPC Parser XML-RPC Generator

XML-RPC Generator XML-RPC Parser

HTTP/1.1 200 OK
Connection: close
Content-Length: 159
Content-Type: text/xml
Server: 192.168.1.2

<?xml version="1.0" encoding="ISO-8859-1"?>
<methodResponse>

<params>
<param>

</methodResponse>

</param>
</params>

<value><double>32768.0</double></value>

writeRequest("Math,multiply", Vector parameters) Double result = 32768.0

Execute procedure ’multiply’ in
module ’Math’ (Oberon).

OMX-FS

Figure 5.1: Example of an XML-RPC call multiplying two values

ues looks like. Each remote procedure call consists of two parameters: the
name of the method to be invoked and a vector containing the parameters of
the corresponding method. The parameters can either be scalars like integers,
dates, etc. or composed values like structures and arrays (the scalar and com-
posed values defined by the XML-RPC protocol are shown in table table 5.1
and table 5.2, respectively). In our example Math.multiply indicates that the
procedure multiply in the module Math has to be executed. The parameter
vector further contains two double values. The caller of the remote method in-
vocation, in this case GOMES, will encode this information into an extensible
markup language document using the XML-RPC generator. Here another ad-
vantage of the XML-RPC protocol becomes apparent, namely how easy XML
documents are readable by humans. The generated document will be sent to
the server using a simple HTTP-POST request. The OMX-FS server will parse
the received document, execute the defined method and send the result as a new
XML document to the caller. Finally GOMES will parse the XML document
containing the result of the remote procedure call and return its value as result
of the method invocation.

The implementation of the XML-RPC protocol allows for remote method in-
vocations with scalar or composed return values. As shown in the previous
example, we have to specify the method to be called by a module name and the

28 XML-RPC

XML-Tag Type Java Type
<i4> or <int> four-byte signed integer java.lang.Integer
<boolean> 0 or 1 java.lang.Boolean
<string> ASCII string java.lang.String
<double> double-precision signed

floating point number
java.lang.Double

<dateTime.iso8601> date/time java.util.Date

Table 5.1: Scalar XML-RPC values

XML-Tag Type Java Type
<struct> set of members each

containing a name and
a value

java.util.Hashtable

<array> single <data> element
which can contain any
number of values

java.util.Vector

Table 5.2: Composed XML-RPC values

corresponding procedure name. Unfortunately, this only allows us to call static
methods (procedures) but no methods bound to objects as needed. Furthermore
it should also be possible that a remote procedure call returns a new object and
not only a scalar value. Therefore, a new layer (Core Layer) which is responsible
to construct and maintain remote objects had to be built on top of the existing
XML-RPC layer. The Core Layer contains remote wrapper objects for all the
corresponding main objects of the OMX-FS. Since each object has a unique
object ID, we use the object ID instead of the module name if not a procedure
but a method on a specific object has to be invoked. The response format for
scalar and composed values stays the same as explained earlier. Additionally
to this scalar format a new object format is introduced, which will always be
used when an object has to be returned (see figure 5.2). An object return value

data Type dataObject ID

scalar/composed return value object return value

Figure 5.2: The two types of return values

is a vector containing two main parts: an object descriptor and a data part.
The object descriptor contains a type descriptor string followed by the unique
object ID. The data part optionally contains some values to initialize the object.
Every time an XML-RPC caller receives the result of a remote procedure call,
he first has to check if the result is a scalar value or a remote object (vector
containing one element or vector containing two elements, respectively). In the

29

first case where a scalar value is returned, nothing special has to be done. If a
remote object is returned, a special object loader will be invoked. This object
loader maintains a mapping table of the OMX-FS types and their correspond-
ing wrapping objects in the Core Layer of GOMES. The object loader will be
invoked with the type descriptor string of the remote procedure call result as
argument and will return a new Java wrapping object. As an invariant, each
remote object always has a unique object ID and therefore the object ID of
the result value will immediately be assigned to the new remote object. In a
next step, the initialization method of the new remote object will be invoked
with the data part resulting from the remote procedure call as argument. Since
each remote object exactly knows the format of the data it has to receive, it
will parse the data field and initialize the corresponding variables. The object
load mechanism allows us, to dynamically extend the system by adding new
classes to the mapping table. It is further possible to cascade the data parts of
an object, e.g. if the returned object is an extension of another class type. In
such a case, a supertype will first call its subtypes initialization method and in
a second step parse its own additional data.

A last problem we had to solve is to guarantee consistency of the whole GOMES
system. Since the OMX-FS is a multi-user system but our remote objects
are some type of local copies, a mechanism had to be introduced allowing the
OMX-FS to notify GOMES about object changes. Therefore GOMES will
register all its remote objects by object ID in a central table. Every time an
object in the OMX-FS changes, OMX-FS will send a message containing the
object ID of the corresponding object to GOMES which will invalidate the
corresponding remote object and reload it from the OMX-FS system.

Since XML-RPC uses the HTTP protocol and is therefore not very fast, some
kind of caching had to be introduced in order to reduce the number of remote
procedure calls. Every time an object is returned, not only the object itself but
also the result of its most frequently used methods will be returned as part of
the data field. This additional information is stored in the remote object and
every time one of these cached methods will be called on the remote object,
there will be no remote procedure call, since the data is already cached.

To illustrate the remote object loading and method caching mechanism, Fig-
ure 5.3 shows the loading of an OMCore.Object returned by the OMX-FS as
the result of a remote procedure call. In a first step (1) the CoreObjectLoader
extracts the object descriptor part from the remote procedure call result. It
searches the remote object class for the Oberon type OMCore.Object in its
class mapping table and dynamically loads the corresponding CoreObject. Af-
ter assigning the unique Object ID to the new CoreObject the object loader
invokes the object’s initialization method with the data part of the remote pro-
cedure call result as parameter (2). Since the CoreObject has a superclass
(CoreOMObject) we first have to initialize this superclass. The data part of the
remote procedure call result contains two elements. The first vector entry is
the initialization data for the superclass of CoreObject while the second part

30 XML-RPC

CoreObject

procedure call

size = ...

result of remote
label creationTime sizeOMCore.Object Object ID

CoreOMObject

label = ...

creationTime = ...
CoreClassLoader

Core Layer

1

3

2

Figure 5.3: Processing of an object return value

contains its own data. The CoreObject invokes the initialization method of
its superclass CoreOMObject (3) with the first data vector entry as parameter,
resulting in the initialization of the label and creationTime variables. In a final
step the initialization method of the CoreObject processes the second entry of
the result data vector and assigns its value to the size variable

The label, creationTime and size values normally have to be fetched by a remote
method invocation every time they are needed. Since they are frequently used
by GOMES, they are already transfered at the construction time of a new
object. This allows the wrapping remote object to cache these values and
reduce the number of necessary remote procedure calls. As an example, if the
getLabel() method is invoked on a remote CoreObject the return value label
will be fetched from the cache and no remote procedure call has to be made.

Finally, it has to be mentioned that the XML-RPC protocol is a small and quite
efficient protocol. It is much simpler than other standards like CORBA [16]
and DCOM and still has the power to become an important remote procedure
call protocol in the future. The magic of the protocol is that the whole object
serialization mechanism can be expressed by only two simple tags, the <struct>
and the <array> tag.

Chapter 6

Future Work

Due to the modular architecture of the GOMES system, it is possible to easily
replace a layer of the system without affecting the others. To improve the
performance when running GOMES and the OMX-FS system on the same
machine, the implementation of an alternative proprietary remote procedure
protocol for the communication between GOMES and the OMX-FS, replacing
the XML-RPC layer, could be considered.

Chapter 7

Conclusion

The goal of this diploma thesis was the design and implementation of GOMES,
an object-oriented graphical user interface for the object model muti-user ex-
tended file system (OMX-FS) offering easy access to the full strength of the
OMX-FS file system.

The Java application GOMES was realized based on a case study about how
computer users generally work with graphical user-interfaces, especially with
user-interfaces of file management systems.

The main design principles of GOMES are its strict use of the object-action
paradigm supported by a drag and drop mechanism. For the base functionality
of the OMX-FS we tried to use a visualization similar to existing file managers,
allowing novice users to profit quickly of GOMES. Additional components, such
as the association view, enable the expert to make use of the full strength of
the underlying OMX-FS file system.

The XML-RPC protocol has been proved to support the communication be-
tween GOMES and the OMX-FS quite well. Modeling its own remote object
mechanism allows GOMES to get access to the full functionality of the OMX-FS
system it is based on. GOMES’ method caching technique makes it possible to
keep the performance penalty of the HTTP based XML-RPC protocol within
acceptable boundaries.

Acknowledgments
I am very grateful to my supervising assistant Gabrio Rivera for always hav-
ing the time to answer my questions and beeing flexible in adding additional
functionality to the OMX-FS file system interface. Thanks also to the other
members of the GlobIS group, the members of the OMS-Lab and especially to
Prof. Moira C. Norrie, for the opportunity of my diploma thesis.

Appendix A

Glossary

clipboard A storage place for a single object which can
be inserted using the copy command, while a
paste allows to insert the clipboard’s content
into other components.

drag Moving the mouse while holding down a mouse
button.

drag and drop To drag a component in order to apply an oper-
ation with the drop target.

drop Releasing of the mouse button after a drag was
initiated.

drop target The component over which a drop occurs.
drop-down menu A menu appearing when a user selects a menu

title in the menu bar.
icon A symbol graphically representing an object or

a concept.
keyboard acceler-
ator

A combination of keys that activates a menu
item even if the corresponding menu is not cur-
rently displayed.

menu A list of menu items logically grouped.
menu bar The horizontal bar at the top of a window con-

taining the titles of the drop-down menus.
menu item A single choice in a menu. Generally menu items

are commands that a user can select.
mnemonic An underlined alphanumeric character, typically

in a menu title, a menu item or the text of a com-
ponent. A mnemonic allows the user to activate
the corresponding command by pressing the Alt
key and the underlined letter.

36 Glossary

Oberon-2 Object-oriented version of the programming
language Oberon, a successor of Pascal and
Modula-2.

pop-up menu A contextual menu appearing when a user
presses the right mouse button while the mouse
pointer is over an object associated with that
menu. It offers only menu items applicable to
the selected object.

separator A graphical line used to logically group menu
items and other components.

tooltip A short message shown when a user moves the
mouse pointer over a component associated with
the corresponding tooltip.

XML Extensible markup language allowing to define
new markup tags or even new markup lan-
guages.

XML-RPC Protocol developed by Frontier.UserLand.Com
allowing to invoke remote methods by using
XML.

Appendix B

API Reference

The whole GOMES system consists of nine packages which will be described
in the following. The gomes package contains the main classes to start the
GOMES client application. The maintenance of all remote objects is done by
the gomes.core package. Package gomes.event provides some specific events
and event listeners, respectively. The classes of the gomes.model package build
the model for the whole visualization provided by the gomes.view package. A
stub server supporting the system with data based on the local file system is
implemented in the gomes.server package. The gomes.util package provides
general utility classes while the gomes.view.util package contains view specific
utility classes. Last but not least the xmlrpc package implements the XML-
RPC protocol specified by Frontier.UserLand.Com allowing the Java virtual
machine to communicate with the Oberon OMX-FS.

38 API Reference

B.1 The gomes Package

The gomes package contains the startup classes of the GOMES system. Desktop
is the main class of the whole system which will start the graphical user inter-
face. OMXFS builds the entry point to the OMX-FS whereas OMXFileSystem
provides the base functionality of the OMX-FS file system.

ABSTRACT CLASS

CLASS

OMXFileSystemCoreFileSystem

CoreOMXFS OMXFS

Desktop

INTERFACE

JWindow

gomes

gomes.core

javax.swing

extends

implements

Figure B.1: The gomes package

B.1 The gomes Package 39

gomes.Desktop

java.lang.Object

java.awt.Component

java.awt.Container

java.awt.Window

javax.swing.JWindow

public Desktop

extends JWindow

implements GOMESObjectSelectionListener

Desktop and main application of the OMX file system.

Fields

Type Description

public static final Integer ICON LAYER

Constructors

Description

Desktop() Constructs a new GOMES main desktop.

Methods

Returns Description

public static

GOMESObject

getClipboard() Returns the content of the clipboard.

public static

OMXFileSystem

getFileSystem() Returns the currently opened file system.

public static JDesktopPane getMainDesktop() Returns the main desktop.

public void initClipboard() Initializes the clipboard.

public static void main(String[] args) The GOMES main application.

public void objectSelected(GOMESObjectSelectionEvent event) Up-called when-

ever a GOMESObject was selected.

protected void readPreferences() Reads the preferences from a file.

public static void setClipboard(GOMESObject object) Adds an object to the clipboard.

public static void showStatus(String text) Adds a message to the status bar.

public static void showWarning(String text) Adds a warning message to the status bar.

public void updatePreferences() Updates the preferences.

public void writePreferences() Writes the preferences to a file.

gomes.OMXFileSystem

java.lang.Object

gomes.core.RPCObject

gomes.core.CoreFileSystem

public OMXFileSystem

extends CoreFileSystem

Remote object of the ’OMXFS.Filesystem’ type specified by the OMX-FS.

Methods

40 API Reference

Returns Description

public CoreCollection getFilesCollection() Returns the root collection of the file system con-

taining all the objects.

public CoreCollection getTrashCollection() Returns a collection containing all the objects of

the trash.

public CoreUser getUser() Returns the user currently using the file system.

public CoreAssociation newAssociation(String label, CoreCollection domainCollection, Core-

Collection rangeCollection) Adds a new association to the file system.

public CoreCollection newCollection(String label, CoreCollection supercollection) Adds a new

collection to the file system.

public CoreObject newFile(String filename) Adds a new file to the file system.

public CoreObject openFile(CoreIdentifier identifier) Opens a file. A write lock will be

installed.

public CoreSet openFiles(String filename) Opens all the files with the specified filename.

public CoreObject openFirstFile(String filename) Opens the first file with the specified

filename.

public void setUser(CoreUser currentUser) Sets the current user of the file system.

gomes.OMXFS

java.lang.Object

gomes.core.RPCObject

gomes.core.CoreOMXFS

public OMXFS

extends CoreOMXFS

Remote object of the ’OMXFS’ static methods specified by the OMX-FS.

Methods

Returns Description

public static void deleteFileSystem(CoreUser user, CoreFileSystem fileSystem) Deletes

the whole file system.

public static CoreUser getUser(String username, String password) Returns a CoreUser for a

specified user name and a corresponding password.

public static

CoreFileSystem

login(CoreUser user) Login for a specified file system

public static

CoreFileSystem

login(CoreUser user, int fileSystemNo) Login for a specified file system

public static void logout(CoreUser user) Logout for a specified file system.

public static void logout(CoreUser user, int fileSystemNo) Logout for a specified file sys-

tem.

public static

CoreFileSystem

newFileSystem(CoreUser creator) Creates a new file system.

protected static void readPreferences() Reads the preferences from a file.

public static void updatePreferences() Updates the preferences.

public static void writePreferences() Writes the preferences to a file.

B.2 The gomes.core Package 41

B.2 The gomes.core Package

The gomes.core package is responsible for the mapping of the Oberon OMX-FS
objects to the Java GOMES system by maintaining the whole remote-object
framework. RPCObject is the base class of all remote objects. The RPC-

CoreCollection

XmlRpcMethodHandler

ABSTRACT CLASS

CLASS

Object RPCObject

CoreMessage

CoreAssociation

CoreType

CoreObject

CoreInstance

CoreFilesystem

CoreCondition

CoreUser

CoreOMObject

CoreOMXFS

CoreSet

CoreIdentifier

CoreTable

CoreSystem

INTERFACE

java.lang gomes.core

extends

implements

xmlrpc

CoreObjectLoaderRPCObjectLoader

Figure B.2: The gomes.core package

ObjectLoader is a dynamic object loader invoked every time a new remote
object has to be generated. The user can dynamically add new classes to a
mapping table which will be used loading remote objects. The CoreObject-
Loader is the specific RPCObjectLoader extension for the OMX-FS, providing
the corresponding mapping of Oberon types to Java classes (e.g. the OMX-FS

42 API Reference

type OMCore.Association is mapped to the Java class gomes.core.Core-
Association). The CoreSystem maintains the CoreObjectLoader for the cur-
rent session. The remaining extensions of the RPCObject class are the corre-
sponding remote objects for the OMX-FS types.

B.2 The gomes.core Package 43

gomes.core.CoreAssociation

java.lang.Object

gomes.core.RPCObject

gomes.core.CoreOMObject

public CoreAssociation

extends CoreOMObject

Remote object of the ’OMCore.Association’ type specified by the OMX-FS.

Constructors

Description

CoreAssociation(String objectID, XmlRpcMethodHandler methodHandler) Constructs a new CoreAs-

sociation.

CoreAssociation(String objectID, XmlRpcMethodHandler methodHandler, String label, int access-

Mode, Date creationDate, Date modificationDate) Constructs a new CoreAssociation.

Methods

Returns Description

public void addSuperassociation(CoreAssociation superassociation) Adds a su-

perassociation to the association.

public boolean containPair(CoreObject domainObject, CoreObject rangeObject) Re-

turns true if the association contains the two associated objects domain-

Object and rangeObject, false otherwise.

public CoreAssociation copy() Returns a copy of the association.

public CoreSet domainRestriction(CoreObject rangeObject) Returns a set of all the

pairs (domainObject, rangeObject) the association contains, whereas the

range object has to be equivalent to the specified object.

public void enumerate(CoreMessage message) Sends a message to all the objects the

associations contains.

public CoreObject findFirst(CoreCondition condition) Returns the first object fulfilling the

specified condition.

public CoreSet getAllSubassociations() Returns all subassociations of the association.

public CoreSet getAllSuperassociations() Returns all superassociations of the associ-

ation.

public CoreSet getDomain(CoreObject rangeObject) Returns a set containing all the

objects of the association’s domain.

public CoreCollection getDomainCollection() Returns the domain collection of the associa-

tion.

public CoreTable getObjects() Returns a table (2 columns) containing the objects of the

association. Each row contains a pair of two associated objects.

public CoreSet getRange(CoreObject domainObject) Returns a set containing all the

objects of the association’s range.

public CoreCollection getRangeCollection() Returns the range collection of the association.

public CoreSet getSubassociations() Returns a set containing the subassociations of

the association (only one level in the hierarchy of subassociations).

public CoreSet getSuperassociations() Returns a set containing the superassociations

of the association (only one level in the hierarchy of superassociations).

public void insertPair(CoreObject domainObject, CoreObject rangeObject) Asso-

ciates two objects.

public CoreSet rangeRestriction(CoreObject domainObject) Returns a set of all the

pairs (domainObject, rangeObject) the association contains, whereas the

domain object has to be equivalent to the specified object.

public void removePair(CoreObject domainObject, CoreObject rangeObject) Re-

moves the specified pair of objects from the association.

public void removeSuperassociation(CoreAssociation superAssociation) Removes

the specified association from the set of superassociations.

44 API Reference

gomes.core.CoreObjectLoader

java.lang.Object

gomes.core.RPCObjectLoader

public CoreObjectLoader

extends RPCObjectLoader

implements XmlRpcMethodHandler

Object loader for dynamic loading of remote objects. The Oberon types are mapped to the corresponding

Java classes to be used loading a new object.

Constructors

Description

CoreObjectLoader() Constructs a new CoreObjectLoader.

Methods

Returns Description

public Object invokeMethod(String method, Vector params) Invokes a method on the

CoreObjectLoader to notify about an object modification.

public Object loadObject(Vector result, XmlRpcMethodHandler methodHandler)

Loads an ’RPCObject’ object from the data encoded in the result vec-

tor. The result may either contain one or two elements. If it contains only

one element the result is one of the defined XML-RPC standard types (not

really a remote object, because no methods can be invoked on the result).

If the result vector contains two elements, the first element contains the

unique object ID and the corresponding class name of the object, whereas

the second element contains object specific data.

gomes.core.CoreCollection

java.lang.Object

gomes.core.RPCObject

gomes.core.CoreOMObject

public CoreCollection

extends CoreOMObject

Remote object of the ’OMCore.Collection’ type specified by the OMX-FS.

Constructors

Description

CoreCollection(String objectID, XmlRpcMethodHandler methodHandler) Constructs a new CoreCol-

lection.

CoreCollection(String objectID, XmlRpcMethodHandler methodHandler, String label, int accessMode,

int size, Date creationDate, Date modificationDate) Constructs a new CoreCollection.

Methods

Returns Description

public void addSupercollection(CoreCollection supercollection) Adds a supercol-

lection to the collection.

B.2 The gomes.core Package 45

Returns Description

public boolean contain(CoreObject object) Returns true if the collection contains the

specified object, false otherwise.

public CoreCollection copy() Returns a copy of the collection.

public Enumeration elements() Returns all the objects of the collection.

public void enumerate(CoreMessage message) Sends a message to all the objects the

collection contains.

public CoreObject findFirst(CoreCondition condition) Returns the first object fulfilling the

specified condition.

public void fireRPCObjectChangePerformed(RPCObjectChangeEvent event)

Notifies all listeners that have registered interest for notification on this

event type.

public CoreSet getAllSubcollections() Returns all subcollections of the collection.

public CoreSet getAllSupercollections() Returns all supercollections of the collection.

public CoreSet getAssocsByDomain() Returns a set of all the associations having this

collection as domain collection.

public CoreSet getAssocsByRange() Returns a set of all the associations having this

collection as range collection.

public CoreType getMembertype() Returns the membertype of the collection.

public CoreSet getObjects() Returns a set containing all the objects of the collection.

public int getSize() Returns the size of the collection.

public CoreSet getSubcollections() Returns the subcollections of the collection (only

one level in the hierarchy of subcollections).

public CoreSet getSupercollections() Returns the supercollections of the collection

(only one level in the hierarchy of supercollections).

public void init(Object data) Invoked by the RPCObjectLoader after generating a

new object. The data part contains the elements of the table.

public void insert(CoreObject object) Adds an object to the collection.

public void remove(CoreObject object) Removes an object from the collection.

public void removeSupercollection(CoreCollection supercollection) Removes a su-

percollection from the collection.

public void setMembertype(CoreType membertype) Sets the membertype of the

collection.

public void setSize(int size) Sets the size of the collection.

gomes.core.CoreCondition

java.lang.Object

gomes.core.RPCObject

public CoreCondition

extends RPCObject

Remote object of the ’OMCore.Condition’ type specified by the OMX-FS.

Constructors

Description

CoreCondition(String objectID, XmlRpcMethodHandler methodHandler) Constructs a new CoreCon-

dition.

Methods

Returns Description

public void init(Object data) Invoked by the RPCObjectLoader after generating a

new object. The data part may be used to initialize the object.

46 API Reference

gomes.core.CoreFileSystem

java.lang.Object

gomes.core.RPCObject

public CoreFileSystem

extends RPCObject

Remote object of the ’OMXFS.Filesystem’ type specified by the OMX-FS.

Constructors

Description

CoreFileSystem(String objectID, XmlRpcMethodHandler methodHandler) Constructs a new Core-

FileSystem.

Methods

Returns Description

public CoreObject associateFiles(CoreAssociation association, CoreObject domainObject,

CoreObject rangeObject) Adds a new associated pair of objects to spec-

ified association.

public void closeFile(CoreObject file) Closes a file. The write lock on the file will

be released.

public void deleteAssociation(CoreAssociation association) Deletes an association

from the file system.

public void deleteCollection(CoreCollection collection) Deletes a collection from the

file system.

public void deleteFile(CoreObject file) Deletes a file from the file system.

public void emptyTrash() Deletes all objects the trash contains.

public CoreCollection getFilesCollection() Returns the root collection of the file system con-

taining all the objects.

public int getFileSystemNo() Returns the number of the file system.

public CoreCollection getTrashCollection() Returns a collection containing all the objects of

the trash.

public void init(Object data) Invoked by the RPCObjectLoader after generating a

new object. The data part may be used to initialize the object.

public CoreAssociation newAssociation(String label, CoreCollection domainCollection, Core-

Collection rangeCollection) Adds a new association to the file system.

public CoreCollection newCollection(String label, CoreCollection supercollection) Adds a new

collection to the file system.

public CoreObject newFile(String filename) Adds a new file to the file system.

public CoreObject openFile(CoreIdentifier identifier) Opens a file. A write lock will be

installed.

public CoreSet openFiles(String filename) Opens all the files with the specified filename.

public CoreObject openFirstFile(String filename) Opens the first file with the specified

filename.

public void saveFileSystem() Stores the file system.

B.2 The gomes.core Package 47

gomes.core.CoreIdentifier

java.lang.Object

gomes.core.RPCObject

public CoreIdentifier

extends RPCObject

Remote object of the ’OMCore.Identifier’ type specified by the OMX-FS.

Constructors

Description

CoreIdentifier(String objectID, XmlRpcMethodHandler methodHandler) Constructs a new Core-

Identifier.

Methods

Returns Description

public void init(Object data) Invoked by the RPCObjectLoader after generating a

new object. The data part may be used to initialize the object.

gomes.core.CoreInstance

java.lang.Object

gomes.core.RPCObject

gomes.core.CoreOMObject

public CoreInstance

extends CoreOMObject

Remote object of the ’OMCore.Instance’ type specified by the OMX-FS.

Constructors

Description

CoreInstance(String objectID, XmlRpcMethodHandler methodHandler) Constructs a new Core-

Instance.

CoreInstance(String objectID, XmlRpcMethodHandler methodHandler, String label, int accessMode,

Date creationDate, Date modificationDate) Constructs a new CoreInstance.

Methods

Returns Description

public CoreObject getObject() Returns the corresponding object.

public CoreType getType() Returns the type of the instance.

48 API Reference

gomes.core.CoreMessage

java.lang.Object

gomes.core.RPCObject

public CoreMessage

extends RPCObject

Remote object of the ’OMCore.Message’ type specified by the OMX-FS.

Constructors

Description

CoreMessage(String objectID, XmlRpcMethodHandler methodHandler) Constructs a new Core-

Message.

Methods

Returns Description

public void init(Object data) Invoked by the RPCObjectLoader after generating a

new object. The data part may be used to initialize the object.

gomes.core.CoreObject

java.lang.Object

gomes.core.RPCObject

gomes.core.CoreOMObject

public CoreObject

extends CoreOMObject

Remote object of the ’OMCore.Object’ type specified by the OMX-FS.

Constructors

Description

CoreObject(String objectID, XmlRpcMethodHandler methodHandler) Constructs a new CoreObject.

CoreObject(String objectID, XmlRpcMethodHandler methodHandler, String label, int accessMode, int

size, Date creationDate, Date modificationDate) Constructs a new CoreObject.

Methods

Returns Description

public CoreObject copy() Returns a copy of the object.

public CoreInstance findFirstInstance(CoreCondition condition) Returns the first object ful-

filling the specified condition.

public void fireRPCObjectChangePerformed(RPCObjectChangeEvent event)

Notifies all listeners that have registered interest for notification on this

event type.

public CoreSet getAllAssocsByDomain() Returns all possible associations the object

can be domain part of.

public CoreSet getAllAssocsByRange() Returns all possible associations the object

can be range part of.

public CoreSet getAssocsByDomain() Returns a set of all the associations containing

a pair with this object as domain.

B.2 The gomes.core Package 49

Returns Description

public CoreSet getAssocsByRange() Returns a set of all the associations containing a

pair with this object as range.

public CoreSet getCollections() Returns the collections the object is part of.

public CoreInstance getInstance(CoreType context) Returns an instance for the correspond-

ing context.

public CoreSet getInstances() Returns the object’s instances.

public int getSize() Returns the size of an object.

public CoreSet getTypes() Returns the object’s types.

public void init(Object data) Invoked by the RPCObjectLoader after generating a

new object. The data part contains the elements of the object.

public void notifyInstances(CoreMessage message) Sends a message to all instances.

public void setSize(int size) Sets the size of an object.

gomes.core.CoreOMObject

java.lang.Object

gomes.core.RPCObject

public CoreOMObject

extends RPCObject

Remote object of the ’OMCore.OMObject’ type specified by the OMX-FS. Each CoreOMObject has a label,

an access mode, a creation date and a modification date.

Fields

Type Description

public static final int NO ACCESS

public static final int READ ONLY ACCESS

public static final int READ WRITE ACCESS

Constructors

Description

CoreOMObject(String objectID, XmlRpcMethodHandler methodHandler) Constructs a new Core-

OMObject.

CoreOMObject(String objectID, XmlRpcMethodHandler methodHandler, String label, int accessMode,

Date creationDate, Date modificationDate) Constructs a new CoreOMObject.

Methods

Returns Description

public void fireRPCObjectChangePerformed(RPCObjectChangeEvent event)

Notifies all listeners that have registered interest for notification on this

event type.

public int getAccessMode(CoreUser user) Returns the access mode of the object.

public Date getCreationDate() Returns the date the object was created.

public String getLabel() Returns the label (description) of the object.

public Date getModificationDate() Returns the date the object was last modified.

public void init(Object data) Invoked by the RPCObjectLoader after generating a

new object. The data part contains some attributes of the object (label,

access mode, creation date and modification date).

public void setLabel(String label) Sets the label (description) of the object.

public void setModificationDate() Sets the date the object was last modified to

the current date.

50 API Reference

Returns Description

public String toString() Returns a string representation of the CoreOMObject’s con-

tent.

gomes.core.CoreOMXFS

java.lang.Object

gomes.core.RPCObject

public CoreOMXFS

extends RPCObject

Remote object of the ’OMXFS’ static methods specified by the OMX-FS.

Constructors

Description

CoreOMXFS() Constructs a new CoreOMXFS.

Methods

Returns Description

public static void deleteFileSystem(CoreUser user, CoreFileSystem filesystem, Xml-

RpcMethodHandler methodHandler) Deletes the whole file system.

public static CoreUser getUser(String userName, String password, XmlRpcMethodHandler

methodHandler) Returns a CoreUser for a specified user name and a

corresponding password.

public void init(Object data) Invoked by the RPCObjectLoader after generating a

new object. The data part may be used to initialize the object.

public static

CoreFileSystem

login(CoreUser user, int filesystemNo, XmlRpcMethodHandler method-

Handler) Login for a specified file system.

public static void logout(CoreUser user, int fileSystemNo, XmlRpcMethodHandler method-

Handler) Logout for a specified file system.

public static

CoreFileSystem

newFileSystem(CoreUser creator, XmlRpcMethodHandler methodHan-

dler) Creates a new file system.

gomes.core.CoreSet

java.lang.Object

gomes.core.RPCObject

public CoreSet

extends RPCObject

Remote object of the ’ADTSets.Set’ type specified by the OMX-FS.

Constructors

Description

CoreSet(String objectID, XmlRpcMethodHandler methodHandler) Constructs a new CoreSet.

B.2 The gomes.core Package 51

Methods

Returns Description

public void add(Object object) Adds an object to the set.

public Enumeration elements() Returns the objects of the set.

public Object get(int index) Returns the object at the specified position.

public void init(Object data) Invoked by the RPCObjectLoader after generating a

new object. The data part contains the elements of the set.

public int size() Returns the number of objects the set contains.

gomes.core.CoreSystem

java.lang.Object

public CoreSystem

extends Object

Maintains the CoreObjectLoader which will be used to load the remote objects.

Constructors

Description

CoreSystem()

Methods

Returns Description

public static

CoreObjectLoader

getObjectLoader() Returns the object loader to load the remote objects.

gomes.core.CoreTable

java.lang.Object

gomes.core.RPCObject

public CoreTable

extends RPCObject

Remote object of the ’ADTTables.Table’ type specified by the OMX-FS.

Constructors

Description

CoreTable(String objectID, XmlRpcMethodHandler methodHandler) Constructs a new CoreTable.

CoreTable(String objectID, XmlRpcMethodHandler methodHandler, Object data) Constructs a new

CoreTable.

52 API Reference

Methods

Returns Description

public int getColumnCount() Returns the number of columns the table contains.

public int getRowCount() Returns the number of rows the table contains.

public Object getValueAt(int rowIndex, int columnIndex) Returns the value at posi-

tion (rowIndex, columnIndex) in the table.

public void init(Object data) Invoked by the RPCObjectLoader after generating a

new object. The data part contains the elements of the table.

gomes.core.CoreType

java.lang.Object

gomes.core.RPCObject

gomes.core.CoreOMObject

public CoreType

extends CoreOMObject

Remote object of the ’OMCore.Type’ type specified by the OMX-FS.

Constructors

Description

CoreType(String objectID, XmlRpcMethodHandler methodHandler) Constructs a new CoreType.

CoreType(String objectID, XmlRpcMethodHandler methodHandler, String label, int accessMode, Date

creationDate, Date modificationDate) Constructs a new CoreType.

Methods

Returns Description

public void addSupertype(CoreType supertype) Adds a supertype to the type.

public CoreType copy() Returns a copy of the type.

public CoreSet getCollections() Returns a set containing the type’s collections.

public CoreSet getInstances() Returns a set containing the types’s instances.

public CoreSet getObjects() Returns a set containing the type’s objects.

public CoreSet getSubtypes() Returns a set containing the type’s subtypes.

public CoreSet getSupertypes() Returns a set containing the type’s supertypes.

public void removeSupertype(CoreType supertype) Removes a supertype from the

type.

gomes.core.CoreUser

java.lang.Object

gomes.core.RPCObject

public CoreUser

extends RPCObject

Remote object of the ’OMUtilities.User’ type specified by the OMX-FS.

B.2 The gomes.core Package 53

Constructors

Description

CoreUser(String objectID, XmlRpcMethodHandler methodHandler) Constructs a new CoreUser.

Methods

Returns Description

public void init(Object data) Invoked by the RPCObjectLoader after generating a

new object. The data part may be used to initialize the object.

gomes.core.RPCObjectLoader

java.lang.Object

public RPCObjectLoader

extends Object

Object loader for dynamic loading of remote objects. The user can add new classes to a mapping table which

will be used loading remote objects.

Constructors

Description

RPCObjectLoader()

Methods

Returns Description

public void addClass(String originalClass, String mappedClass) Adds a new class to

the mapping table of the object loader.

public Class getClass(String originalClass) Returns the corresponding mapping class.

public RPCObject getInstance(String className, String objectID, XmlRpcMethodHandler

methodHandler) Constructs a new instance of an RPCObject.

gomes.core.RPCObject

java.lang.Object

public abstract RPCObject

extends Object

implements XmlRpcMethodHandler

Base class of all remote objects. Each remote object has a unique object identifier which will be used to

identify operations on a specific object.

54 API Reference

Fields

Type Description

protected

EventListenerList

listenerList

protected static final

Vector

NO PARAMS

Constructors

Description

RPCObject(String objectID, XmlRpcMethodHandler methodHandler) Constructs a new RPCObject.

Methods

Returns Description

public void addRPCObjectChangeListener(RPCObjectChangeListener listener)

Adds an RPCObjectChangeListener to the RPCObject.

public void fireRPCObjectChangePerformed(RPCObjectChangeEvent event)

Notifies all listeners that have registered interest for notification on this

event type.

public

XmlRpcMethodHandler

getMethodHandler() Returns the method handler responsible to pro-

cess operations on the RPCObject.

public String getObjectID() Returns the unique object ID of the RPCObject.

public abstract void init(Object data) Invoked by the RPCObjectLoader after generating a

new object. The data part may be used to initialize the object.

public Object invokeMethod(String methodName, Vector parameters) Invokes a

method on the RPCObject.

public static Object invokeStaticMethod(String moduleName, String methodName, Vector

parameters, XmlRpcMethodHandler methodHandler) Invokes a static

method.

public void removeRPCObjectChangeListener(RPCObjectChangeListener lis-

tener) Removes an RPCObjectChangeListener from the RPCObject.

public void setMethodHandler(XmlRpcMethodHandler methodHandler) Sets the

method handler which will be responsible to process operations on the

RPCObject.

public void setObjectID(String objectID) Sets the unique object ID of the RPC-

Object.

public String toString() Returns a string representation of the OMObject’s content.

B.3 The gomes.event Package 55

B.3 The gomes.event Package

The gomes.event package contains classes responsible for event handling. Look-

implements

extendsINTERFACECLASS

ABSTRACT CLASS

GOMESObjectSelectionListener

ActionListener

ExtendedActionListener

GOMESObjectSelectionEvent

Object LookAndFeelChangeListener PropertyChangeListener

java.lang java.beans

java.util

java.awt.event

EventObject

RPCObjectChangeEvent

EventListener

RPCObjectChangeListener

gomes.event

Figure B.3: The gomes.event package

AndFeelChangeListener is listening for changes to the look and feel of the
desktop. ExtendendActionListener allows to bind an object to a specific ac-
tion. A GOMESObjectSelectionEvent is fired each time an object is selected,
while GOMESObjectSelectionListener is listening for these selection events.
RPCObjectChangeListener and RPCObjectChangeEvent are used to guarantee
GOMES’ consistency to the OMX-FS.

56 API Reference

gomes.event.ExtendedActionListener

java.lang.Object

public abstract ExtendedActionListener

extends Object

implements ActionListener

An action listener allowing to bind an object to an action.

Constructors

Description

ExtendedActionListener(Object producer) Constructs a new ExtendedActionListener.

Methods

Returns Description

public Object getProducer() Returns the object bound to the action.

gomes.event.GOMESObjectSelectionEvent

java.lang.Object

java.util.EventObject

public GOMESObjectSelectionEvent

extends EventObject

Event indicating that an GOMESObject was selected.

Fields

Type Description

public static final int LEFT BUTTON

public static final int MIDDLE BUTTON

public static final int RIGHT BUTTON

Constructors

Description

GOMESObjectSelectionEvent(GOMESObject source, int clickCount, int mouseButton) Constructs

a new GOMESObjectSelectionEvent.

GOMESObjectSelectionEvent(GOMESObject source, MouseEvent e) Constructs a new GOMES-

ObjectSelectionEvent.

Methods

Returns Description

public int getClickCount() Returns the number of mouse clicks on the selected

GOMESObject.

public GOMESObject getGOMESObject() Returns the GOMESObject which produced the

selection event.

B.3 The gomes.event Package 57

Returns Description

public boolean isLeftButton() Returns true if the the GOMESObject was selected with

the left mouse button, false otherwise.

public boolean isMiddleButton() Returns true if the GOMESObject was selected with

the middle mouse button, false otherwise.

public boolean isRightButton() Returns true if the GOMESObject was selected with

the right mouse button, false otherwise.

public String toString() Returns a string representation of the GOMESObjectSelec-

tionEvent.

gomes.event.GOMESObjectSelectionListener

public abstract interface GOMESObjectSelectionListener

implements EventListener

Interface that a GOMESObjectSelection listener has to implement to receive GOMESObjectSelection events.

Methods

Returns Description

public void objectSelected(GOMESObjectSelectionEvent event) Up-called when-

ever a GOMESObject was selected.

gomes.event.LookAndFeelChangeListener

java.lang.Object

public LookAndFeelChangeListener

extends Object

implements PropertyChangeListener

A look and feel change listener used to handle changes to the look and fell of the application.

Constructors

Description

LookAndFeelChangeListener(JComponent component) Constructs a new LookAndFeelChange-

Listener.

Methods

Returns Description

public void propertyChange(PropertyChangeEvent event) Up-called whenever a

property changed.

58 API Reference

gomes.event.RPCObjectChangeEvent

java.lang.Object

java.util.EventObject

public RPCObjectChangeEvent

extends EventObject

Event indicating that an RPCObject has changed.

Fields

Type Description

public static final int DELETED

public static final int MODIFIED

Constructors

Description

RPCObjectChangeEvent(RPCObject source, int changeType) Constructs a new RPCObject-

ChangeEvent.

Methods

Returns Description

public RPCObject getObject() Returns the RPCObject which produced the change event.

public boolean isDeleted() Returns true if the RPCObject was deleted.

public boolean isModified() Returns true if the RPCObject was modified but not

deleted, false otherwise.

public String toString() Returns a string representation of the RPCObject-

ChangeEvent.

gomes.event.RPCObjectChangeListener

public abstract interface RPCObjectChangeListener

implements EventListener

Interface that an RPCObjectChange listener has to implement to receive RPCObjectChange events.

Methods

Returns Description

public void objectChanged(RPCObjectChangeEvent event) Up-called whenever an

RPCObject has changed.

B.4 The gomes.model Package 59

B.4 The gomes.model Package

The package gomes.model contains the models used by the different views
of GOMES. The GOMESObject interface ensures the base functionality of the
OMX-FS CoreOMObject. GOMESCollection is an interface to be implemented
by objects representing a collection of GOMESObjects. GOMESTableModel is an
extension of the TableModel supporting easy access to the underlying objects.
The remaining classes are the main models of GOMES based on the correspond-
ing remote core classes.

GOMESType

java.lang

gomes.core

gomes.model

GOMESAbstractCollectionObject

CoreCollection

CoreObject

CoreType

CoreInstance

CoreAssociation

GOMESInstance

GOMESAssociationModel

GOMESFileModel

GOMESFolderModel

javax.swing

CLASS

ABSTRACT CLASS

INTERFACE

TableModel GOMESTableModel

GOMESObject

GOMESIconModel

GOMESCollection

implements

extends

GOMESTrash

Figure B.4: The gomes.model package

60 API Reference

gomes.model.GOMESAbstractCollection

java.lang.Object

public GOMESAbstractCollection

extends Object

implements GOMESCollection

Standard implementation of the GOMESCollection interface.

Constructors

Description

GOMESAbstractCollection()

Methods

Returns Description

public void addElement(GOMESObject object) Adds an object to the collection.

public Enumeration elements() Returns all objects the collection contains.

public int getSize() Returns the number of objects the collection contains.

gomes.model.GOMESAssociationModel

java.lang.Object

gomes.core.RPCObject

gomes.core.CoreOMObject

gomes.core.CoreAssociation

public GOMESAssociationModel

extends CoreAssociation

implements GOMESObject

Model of association views.

Constructors

Description

GOMESAssociationModel(CoreAssociation association) Constructs a new GOMESAssociationModel.

GOMESAssociationModel(CoreAssociation association, ImageIcon smallIcon, ImageIcon largeIcon)

Constructs a new GOMESAssociationModel.

GOMESAssociationModel(String objectID, XmlRpcMethodHandler methodHandler, String label, int

accessMode, Date creationDate, Date modificationDate) Constructs a new GOMESAssociationModel.

GOMESAssociationModel(String objectID, XmlRpcMethodHandler methodHandler, String label, int

accessMode, Date creationDate, Date modificationDate, ImageIcon smallIcon, ImageIcon largeIcon) Con-

structs a new GOMESAssociationModel.

Methods

Returns Description

public void addRPCObjectChangeListener(RPCObjectChangeListener listener,

int objectType, GOMESFileModel currentFile) Adds an RPCObject-

ChangeListener to the GOMESFolderModel. The listener will also be

informed about changes on objects the folder contains.

public CoreAssociation copy() Returns a copy of the GOMESAssociationModel.

B.4 The gomes.model Package 61

Returns Description

public CoreObject findFirst(CoreCondition condition) Returns the first GOMESFileModel

fulfilling the specified condition.

public CoreSet getAllSubassociations() Returns all subassociations of the association.

public CoreSet getAllSuperassociations() Returns all superassociations of the associ-

ation.

public String getCapitalizedTypeDescription() Returns a description of the object’s

type (first letter is capitalized).

public CoreSet getDomain(CoreObject rangeObject) Returns a set containing all the

GOMESFileModels of the associations domain.

public CoreCollection getDomainCollection() Returns the domain GOMESFolderModel of

the association.

public ImageIcon getLargeIcon() Returns the large icon to be used showing the GOMES-

AssociationModel.

public CoreTable getObjects() Returns a table (2 columns) containing the GOMESFile-

Models of the association. Each row contains a pair of two associated

GOMESFileModels.

public Enumeration getParents() Returns the parents (superassociations) of the OMXAsso-

ciationsModel.

public CoreSet getRange(CoreObject domainObject) Returns a set containing all the

OMXfileModels of the associations range.

public CoreCollection getRangeCollection() Returns the range GOMESFolderModel of the

association.

public int getSize() Returns the size of the GOMESAssociationModel.

public ImageIcon getSmallIcon() Returns the small icon to be used showing the GOMES-

AssociationModel.

public CoreSet getSubassociations() Returns a set containing the subassociations of

the association (only one level in the hierarchy of subassociations).

public CoreSet getSuperassociations() Returns a set containing the superassociations

of the association (only one level in the hierarchy of superassociations).

public String getToolTipText() Returns the text to be shown in the tooltip for the

association object.

public String getTypeDescription() Returns a description of the object’s type.

public void removeRPCObjectChangeListener(RPCObjectChangeListener lis-

tener, int objectType, GOMESFileModel currentFile) Removes an

RPCObjectChangeListener from the GOMESAssociationModel and all

the objects it contains.

public void setLargeIcon(ImageIcon largeIcon) Sets the large icon to be used show-

ing the GOMESAssociationModel.

public void setSmallIcon(ImageIcon smallIcon) Sets the small icon to be used show-

ing the GOMESAssociationModel.

public String toString() Returns a string representation of the GOMESAssociation-

Model content.

gomes.model.GOMESCollection

public abstract interface GOMESCollection

Interface to be implemented by objects representing a collection of GOMESObjects.

Methods

Returns Description

public Enumeration elements() Returns all objects the collection contains.

public int getSize() Returns the number of objects the collection contains.

62 API Reference

gomes.model.GOMESFileModel

java.lang.Object

gomes.core.RPCObject

gomes.core.CoreOMObject

gomes.core.CoreObject

public GOMESFileModel

extends CoreObject

implements Comparable, GOMESObject

Model of file views.

Constructors

Description

GOMESFileModel(CoreObject coreObject) Constructs a new GOMESFileModel.

GOMESFileModel(CoreObject coreObject, ImageIcon smallIcon, ImageIcon largeIcon) Constructs a

new GOMESFileModel.

GOMESFileModel(String objectID, XmlRpcMethodHandler methodHandler, String label, int access-

Mode, int size, Date creationDate, Date modificationDate) Constructs a new GOMESFileModel.

GOMESFileModel(String objectID, XmlRpcMethodHandler methodHandler, String label, int access-

Mode, int size, Date creationDate, Date modificationDate, ImageIcon smallIcon, ImageIcon largeIcon)

Constructs a new GOMESFileModel.

Methods

Returns Description

public int compareTo(Object object) Compares the GOMESFileModel to another

GOMESFileModel. Returns -1 if this FileModel is smaller than the File-

Model it has to be compared to, 1 if it is larger and 0 if the two FileModels

are equal.

public CoreObject copy() Returns a copy of the GOMESFileModel.

public CoreInstance findFirstInstance(CoreCondition condition) Returns the first

GOMESInstance fulfilling the specified condition.

public CoreSet getAllAssocsByDomain() Returns all possible GOMESAssociation-

Models the object can be domain part of.

public CoreSet getAllAssocsByRange() Returns all possible GOMESAssociationMod-

els the object can be range part of.

public CoreSet getAssocsByDomain() Returns a set of all the GOMESAssociation-

Models containing a pair with this object as domain.

public CoreSet getAssocsByRange() Returns a set of all the GOMESAssociationMod-

els containing a pair with this object as range.

public String getCapitalizedTypeDescription() Returns a description of the object’s

type (first letter is capitalized).

public CoreSet getCollections() Returns the GOMESFolderModels the object is part

of.

public CoreInstance getInstance(CoreType context) Returns an GOMESInstance for the cor-

responding context.

public CoreSet getInstances() Returns the objects GOMESInstances.

public ImageIcon getLargeIcon() Returns the large icon to be used showing the GOMES-

FileModel.

public Enumeration getParents() Returns the parents (folders) the GOMESFileModel is part

of.

public ImageIcon getSmallIcon() Returns the small icon to be used showing the GOMES-

FileModel.

public String getToolTipText() Returns the text to be shown in the tooltip for the

GOMESFileModel object.

public String getTypeDescription() Returns a description of the object’s type.

public CoreSet getTypes() Returns the objects GOMESTypes.

public void setLargeIcon(ImageIcon largeIcon) Sets the large icon to be used show-

ing the GOMESFileModel.

B.4 The gomes.model Package 63

Returns Description

public void setSmallIcon(ImageIcon smallIcon) Sets the small icon to be used show-

ing the GOMESFileModel.

gomes.model.GOMESFolderModel

java.lang.Object

gomes.core.RPCObject

gomes.core.CoreOMObject

gomes.core.CoreCollection

public GOMESFolderModel

extends CoreCollection

implements GOMESObject, GOMESCollection, GOMESTableModel

Model of folder views.

Fields

Type Description

protected static Class[] classTypes

protected static String[] columnName

Constructors

Description

GOMESFolderModel(CoreCollection coreCollection) Constructs a new GOMESFolderModel.

GOMESFolderModel(CoreCollection coreCollection, ImageIcon smallIcon, ImageIcon largeIcon) Con-

structs a new GOMESFolderModel.

GOMESFolderModel(String objectID, XmlRpcMethodHandler methodHandler, String label, int ac-

cessMode, int size, Date creationDate, Date modificationDate) Constructs a new GOMESFolderModel.

GOMESFolderModel(String objectID, XmlRpcMethodHandler methodHandler, String label, int ac-

cessMode, int size, Date creationDate, Date modificationDate, ImageIcon smallIcon, ImageIcon largeIcon)

Constructs a new GOMESFolderModel.

Methods

Returns Description

public void addChangeListener(ChangeListener listener) Adds a new ChangeLis-

tener to the folder. The listener will be informed every time the data

stored in the folder changes.

public void addRestrictedRPCObjectChangeListener(RPCObjectChangeLis-

tener listener) Adds an RPCObjectChangeListener to the GOMESFold-

erModel (objects within the folder are not included).

public void addRPCObjectChangeListener(RPCObjectChangeListener listener)

Adds an RPCObjectChangeListener to the GOMESFolderModel. The lis-

tener will also be informed about changes on objects the folder contains.

public void addTableModelListener(TableModelListener listener) Adds a listener

to the list of objects being notified each time a change to the data model

occurs.

public CoreCollection copy() Returns a copy of the GOMESFolderModel.

public Enumeration elements() Returns all objects the GOMESFolderModel contains.

public CoreObject findFirst(CoreCondition condition) Returns the first GOMESFileModel

fulfilling the specified condition.

protected void fireChange() Sends a ’ChangeEvent’ to all the ChangeListeners listening

for changes to the data stored in the OMXFolder.

64 API Reference

Returns Description

public void fireTableCellUpdated(int row, int column) Notifies all listeners that

the value of the cell at (row, column) has been updated.

public void fireTableChanged(TableModelEvent e) Forward the given notification

event to all ’TableModelListeners’ registerd for this table model.

public void fireTableDataChanged() Notifies all listeners that all cell values in the

table’s rows may have changed.

public void fireTableRowsDeleted(int firstRow, int lastRow) Notfies all listeners

that rows in the (inclusive) range ’firstRow’ - ’lastRow’ have been deleted.

public void fireTableRowsInserted(int firstRow, int lastRow) Notfies all listeners

that rows in the (inclusive) range ’firstRow’ - ’lastRow’ have been inserted.

public void fireTableRowsUpdated(int firstRow, int lastRow) Notfies all listeners

that rows in the (inclusive) range ’firstRow’ - ’lastRow’ have been updated.

public void fireTableStructureChanged() Notfies all listeners that the table’s

structure has changed.

public CoreSet getAllSubcollections() Returns all subcollections of the GOMESFold-

erModel.

public CoreSet getAllSupercollections() Returns all supercollections of the GOMES-

FolderModel.

public CoreSet getAssocsByDomain() Returns a set of all the GOMESAssociation-

Models having this collection as domain collection.

public CoreSet getAssocsByRange() Returns a set of all the GOMESAssociationMod-

els having this collection as range collection.

public String getCapitalizedTypeDescription() Returns a description of the object’s

type (first letter is capitalized).

public Class getColumnClass(int column) Returns the lowest common denominator

class (ancestor class) in the column which is used to by the table to set

up a renderer and an editor for the column.

public int getColumnCount() Returns the number of collumns managed by the

data model.

public String getColumnName(int columnIndex) Returns the name of the column at

’columnIndex’ which is used to initialize the table’s column header name.

public GOMESObject getElementAt(int row) Returns the GOMESObject for the specified

row.

public ImageIcon getLargeIcon() Returns the large icon to be used showing the GOMES-

FolderModel.

public CoreType getMembertype() Returns the membertype of the collection.

public CoreSet getObjects() Returns a set containing all the GOMESFileModels of the

collection.

public Enumeration getParents() Returns the parents (folders) the GOMESFolderModel is

part of.

public int getRowCount() Returns the number of rows managed by the data

model. This method should be fast, as it is used frequently by the ’JTable’.

public ImageIcon getSmallIcon() Returns the small icon to be used showing the GOMES-

FolderModel.

public CoreSet getSubcollections() Returns the subcollections of the GOMESFolder-

Model (only one level in the hierarchy of subcollections).

public CoreSet getSupercollections() Returns the supercollections of the GOMESFol-

derModel (only one level in the hierarchy of supercollections).

public String getToolTipText() Returns the text to be shown in the tooltip for the

GOMESFolderModel object.

public String getTypeDescription() Returns a description of the object’s type.

public Object getValueAt(int row, int column) Returns a value object for the cell at

’row’ and ’column’.

public boolean isCellEditable(int row, int column) Returns true is the cell at ’row’ and

’column’ is editable, false otherwise.

public void removeChangeListener(ChangeListener listener) Removes a Change-

Listener listening for changes to the data stored in the folder.

public void removeRestrictedRPCObjectChangeListener(RPCObjectChange-

Listener listener) Removes an RPCObjectChangeListener from the

GOMESFolderModel but not from the objects the folder contains.

public void removeRPCObjectChangeListener(RPCObjectChangeListener

listener) Removes an RPCObjectChangeListener from the GOMESFold-

erModel and all the objects it contains.

B.4 The gomes.model Package 65

Returns Description

public void removeTableModelListener(TableModelListener listener) Removes a

listener from the list of objects being notified each time a change to the

data model occurs.

public void setLargeIcon(ImageIcon largeIcon) Sets the large icon to be used show-

ing the GOMESFolderModel.

public void setSmallIcon(ImageIcon smallIcon) Sets the small icon to be used show-

ing the GOMESFolderModel.

public void setValueAt(Object value, int row, int column) Sets a value object for

the cell at ’row’ and ’column’.

public String toString() Returns a string representation of the GOMESFolderModel

content.

gomes.model.GOMESIconModel

public abstract interface GOMESIconModel

Interface for icon models.

Methods

Returns Description

public String getLabel() Returns the label (description) of the object.

public ImageIcon getLargeIcon() Returns a large icon (32x32 pixels) for the object.

public ImageIcon getSmallIcon() Returns a small icon (16x16 pixels) for the object.

public String getToolTipText() Returns a tooltip text for the object.

gomes.model.GOMESInstance

java.lang.Object

gomes.core.RPCObject

gomes.core.CoreOMObject

gomes.core.CoreInstance

public GOMESInstance

extends CoreInstance

Remote object of the ’OMCore.Instance’ type specified by the OMX-FS.

Constructors

Description

GOMESInstance(CoreInstance coreInstance) Constructs a new GOMESInstance.

Methods

Returns Description

public CoreObject getObject() Returns the corresponding GOMESFileModel.

public String getToolTipText() Returns the text to be shown in the tooltip for the

GOMESInstance object.

66 API Reference

Returns Description

public CoreType getType() Returns the instance’s type.

public String toString() Returns a string representation of the GOMESInstance con-

tent.

gomes.model.GOMESObject

public abstract interface GOMESObject

implements GOMESIconModel

Interface representing the base functionality of the CoreOMObject.

Methods

Returns Description

public int getAccessMode(CoreUser user) Returns the access mode of the object.

public String getCapitalizedTypeDescription() Returns a description of the object’s

type (first letter is capitalized).

public Date getCreationDate() Returns the creation date of the object.

public String getLabel() Returns the label (description) of the object.

public Date getModificationDate() Returns the date the object was last modified.

public Enumeration getParents() Returns the parents of the object.

public int getSize() Returns the size of the object.

public String getTypeDescription() Returns a description of the object’s type.

public void setLabel(String label) Sets the label (description) of the object.

public void setModificationDate() Sets the date of the last object modification to

the current date.

gomes.model.GOMESTableModel

public abstract interface GOMESTableModel

implements TableModel

Extension of the TableModel allowing to get the object responsible for the data on a single row.

Methods

Returns Description

public GOMESObject getElementAt(int row) Returns the GOMESObject for the specified

row.

B.4 The gomes.model Package 67

gomes.model.GOMESTrash

java.lang.Object

public GOMESTrash

extends Object

implements GOMESObject

Model representing the trash.

Constructors

Description

GOMESTrash() Constructs a new GOMESTrash.

GOMESTrash(ImageIcon smallIcon, ImageIcon largeIcon) Constructs a new GOMESTrash.

Methods

Returns Description

public int getAccessMode(CoreUser user) Returns the access mode of the object.

public String getCapitalizedTypeDescription() Returns a description of the object’s

type (first letter is capitalized).

public Date getCreationDate() Returns the creation date of the object.

public String getLabel() Returns the label (description) of the object.

public ImageIcon getLargeIcon() Returns the large icon to be used showing the GOMES-

Trash.

public Date getModificationDate() Returns the date the object was last modified.

public Enumeration getParents() Returns the parents of the trash (the trash has no parents).

public int getSize() Returns the size of the object.

public ImageIcon getSmallIcon() Returns the small icon to be used showing the GOMES-

Trash.

public String getToolTipText() Returns the text to be shown in the tooltip for the

GOMESFileModel object.

public String getTypeDescription() Returns a description of the object’s type.

public void setLabel(String label) Sets the label (description) of the object.

public void setLargeIcon(ImageIcon largeIcon) Sets the large icon to be used show-

ing the GOMESTrash.

public void setModificationDate() Sets the date of the last object modification to

the current date.

public void setSmallIcon(ImageIcon smallIcon) Sets the small icon to be used show-

ing the GOMESTrash.

gomes.model.GOMESType

java.lang.Object

gomes.core.RPCObject

gomes.core.CoreOMObject

gomes.core.CoreType

public GOMESType

extends CoreType

Remote object of the ’OMCore.Type’ type specified by the OMX-FS.

68 API Reference

Constructors

Description

GOMESType(CoreType coreType) Constructs a new GOMESType.

Methods

Returns Description

public CoreType copy() Returns a copy of the GOMESType.

public CoreSet getCollections() Returns a set containing the GOMESFolderModels of

the GOMESType.

public CoreSet getInstances() Returns a set containing the GOMESInstances of the

GOMESType.

public CoreSet getObjects() Returns a set containing the GOMESFileModels of the

GOMESType.

public CoreSet getSubtypes() Returns a set containing the supertypes of the GOMES-

Type.

public CoreSet getSupertypes() Returns a set containing the supertypes of the

GOMESType.

public String getToolTipText() Returns the text to be shown in the tooltip for the

GOMESType object.

public String toString() Returns a string representation of the GOMESFolderModel

content.

B.5 The gomes.server Package 69

B.5 The gomes.server Package

The gomes.server package is a stub for the OMX-FS since the OMX-FS does
not yet implement the XML-RPC interface. The package simulates the behavior
of the OMX-FS providing data based on the local file system. Server is the
main class which will start a new server on the specified port. The extensions
of ServerRPCObject are representing the corresponding types of the OMX-FS.
As soon as the OMX-FS implements the XML-RPC interface, it will be used
instead of the gomes.server package.

java.lang xmlrpc

ServerRPCObject

Server

Object

ServerCondition

ServerFileSystem

ServerIdentifier

ServerOMObject

ServerAssociation

ServerCollection

ServerInstance

ServerObject

ServerType

ServerOMXFS

ServerSet

ServerTable

ServerUser

ServerMessage

ABSTRACT CLASS

CLASS INTERFACE

XmlRpcMethodHandler

extends

implements

gomes.server

Figure B.5: The gomes.server package

70 API Reference

gomes.server.Server

java.lang.Object

public Server

extends Object

Stub server providing data for GOMES.

Constructors

Description

Server()

Methods

Returns Description

public static void addObject(ServerRPCObject object)

public static String generateObjectID()

public static

XmlRpcMethodHandler

getObject(String objectID)

public static void main(String[] args)

gomes.server.ServerAssociation

java.lang.Object

gomes.server.ServerRPCObject

gomes.server.ServerOMObject

public ServerAssociation

extends ServerOMObject

Server association.

Constructors

Description

ServerAssociation(String label, int accessMode, Date creationDate, Date modificationDate)

Methods

Returns Description

public void addSuperassociation(ServerAssociation superassociation)

public Boolean containPair(ServerObject domainObject, ServerObject rangeObject)

public ServerAssociation copy()

public ServerSet domainRestriction(ServerObject rangeObject)

public void enumerate(ServerMessage message)

public ServerObject findFirst(ServerCondition condition)

public ServerSet getAllSubassociations()

public ServerSet getAllSuperassociations()

public Vector getData()

public ServerSet getDomain(ServerObject rangeObject)

public ServerCollection getDomainCollection()

public ServerTable getObjects()

B.5 The gomes.server Package 71

Returns Description

public ServerSet getRange(ServerObject domainObject)

public ServerCollection getRangeCollection()

public ServerSet getSubassociations()

public ServerSet getSuperassociations()

public String getType()

public void insertPair(ServerObject domainObject, ServerObject rangeObject)

public Object invokeMethod(String method, Vector params)

public ServerSet rangeRestriction(ServerObject domainObject)

public void removePair(ServerObject domainObject, ServerObject rangeObject)

public void removeSuperassociation(ServerAssociation superAssociation)

gomes.server.ServerCollection

java.lang.Object

gomes.server.ServerRPCObject

gomes.server.ServerOMObject

public ServerCollection

extends ServerOMObject

Server collection.

Constructors

Description

ServerCollection(OSFolder folder)

Methods

Returns Description

public void addSupercollection(ServerCollection supercollection)

public Boolean contain(ServerObject object)

public ServerCollection copy()

public void enumerate(ServerMessage message)

public ServerObject findFirst(ServerCondition condition)

public ServerSet getAllSubcollections()

public ServerSet getAllSupercollections()

public ServerSet getAssocsByDomain()

public ServerSet getAssocsByRange()

public Vector getData()

public ServerType getMembertype()

public ServerSet getObjects()

public ServerSet getSubcollections()

public ServerSet getSupercollections()

public String getType()

public void insert(ServerObject object)

public Object invokeMethod(String method, Vector params)

public void remove(ServerObject object)

public void removeSupercollection(ServerCollection collection)

public void setMembertype(ServerType membertype)

72 API Reference

gomes.server.ServerCondition

java.lang.Object

gomes.server.ServerRPCObject

public ServerCondition

extends ServerRPCObject

Server condition.

Constructors

Description

ServerCondition()

Methods

Returns Description

public Vector getData()

public String getType()

public Object invokeMethod(String method, Vector params)

gomes.server.ServerFileSystem

java.lang.Object

gomes.server.ServerRPCObject

public ServerFileSystem

extends ServerRPCObject

Server file system.

Constructors

Description

ServerFileSystem()

Methods

Returns Description

public ServerObject associateFiles(ServerAssociation association, ServerObject domainOb-

ject, ServerObject rangeObject)

public void closeFile(ServerObject file)

public void deleteAssociation(ServerAssociation association)

public void deleteCollection(ServerCollection collection)

public void deleteFile(ServerObject file)

public void emptyTrash()

public Vector getData()

public ServerCollection getFilesCollection()

public Integer getFileSystemNo()

public ServerCollection getTrashCollection()

public String getType()

public Object invokeMethod(String method, Vector params)

public ServerAssociation newAssociation(String label, ServerCollection domCollection, Server-

Collection ranCollection)

B.5 The gomes.server Package 73

Returns Description

public ServerCollection newCollection(String label, ServerCollection supercollection)

public ServerObject newFile(String filename)

public ServerObject openFile(ServerIdentifier identifier)

public ServerSet openFiles(String filename)

public ServerObject openFirstFile(String filename)

public void saveFileSystem()

gomes.server.ServerIdentifier

java.lang.Object

gomes.server.ServerRPCObject

public ServerIdentifier

extends ServerRPCObject

Server identifier.

Constructors

Description

ServerIdentifier()

Methods

Returns Description

public Vector getData()

public String getType()

public Object invokeMethod(String method, Vector params)

gomes.server.ServerInstance

java.lang.Object

gomes.server.ServerRPCObject

gomes.server.ServerOMObject

public ServerInstance

extends ServerOMObject

Server instance.

Constructors

Description

ServerInstance(String label, int accessMode, Date creationDate, Date modificationDate)

74 API Reference

Methods

Returns Description

public Vector getData()

public ServerObject getObject()

public String getType()

public Object invokeMethod(String method, Vector params)

public ServerType type()

gomes.server.ServerMessage

java.lang.Object

gomes.server.ServerRPCObject

public ServerMessage

extends ServerRPCObject

Server message.

Constructors

Description

ServerMessage()

Methods

Returns Description

public Vector getData()

public String getType()

public Object invokeMethod(String method, Vector params)

gomes.server.ServerObject

java.lang.Object

gomes.server.ServerRPCObject

gomes.server.ServerOMObject

public ServerObject

extends ServerOMObject

Server object.

Constructors

Description

ServerObject(OSFile file)

ServerObject(String label, int accessMode, int size, Date creationDate, Date modificationDate)

B.5 The gomes.server Package 75

Methods

Returns Description

public ServerObject copy()

public ServerInstance findFirstInstance(ServerCondition condition)

public ServerSet getAllAssocsByDomain()

public ServerSet getAllAssocsByRange()

public ServerSet getAssocsByDomain()

public ServerSet getAssocsByRange()

public ServerSet getCollections()

public Vector getData()

public ServerInstance getInstance(ServerType context)

public ServerSet getInstances()

public String getType()

public ServerSet getTypes()

public Object invokeMethod(String method, Vector params)

public void notifyInstances(ServerMessage message)

gomes.server.ServerOMObject

java.lang.Object

gomes.server.ServerRPCObject

public ServerOMObject

extends ServerRPCObject

Server OMObject.

Constructors

Description

ServerOMObject(String label, int accessMode, Date creationDate, Date modificationDate)

Methods

Returns Description

public Integer getAccessMode(ServerUser user)

public Date getCreationDate()

public Vector getData()

public String getLabel()

public Date getModificationDate()

public String getType()

public Object invokeMethod(String method, Vector params)

public void setLabel(String label)

public void setModificationDate()

public String toString() Returns a string representation of the OMObject’s content.

76 API Reference

gomes.server.ServerOMXFS

java.lang.Object

gomes.server.ServerRPCObject

public ServerOMXFS

extends ServerRPCObject

Server OMXFS.

Constructors

Description

ServerOMXFS()

Methods

Returns Description

public void deleteFileSystem(ServerUser user, ServerFileSystem fileSystem)

public Vector getData()

public String getType()

public ServerUser getUser(String userName, String password)

public Object invokeMethod(String method, Vector params)

public ServerFileSystem login(String userID, int fileSystemNo)

public void logout(ServerUser user, int fileSystemNo)

public ServerFileSystem newFileSystem(ServerUser creator)

gomes.server.ServerRPCObject

java.lang.Object

public abstract ServerRPCObject

extends Object

implements XmlRpcMethodHandler

Base type of all server objects.

Constructors

Description

ServerRPCObject()

Methods

Returns Description

protected Object createAnswer(Object object)

public abstract Vector getData()

public String getObjectID()

public abstract String getType()

public abstract Object invokeMethod(String methodName, Vector parameters)

public String toString() Returns a string representation of the OMObject’s content.

B.5 The gomes.server Package 77

gomes.server.ServerSet

java.lang.Object

gomes.server.ServerRPCObject

public ServerSet

extends ServerRPCObject

Server set.

Constructors

Description

ServerSet(Vector elements)

Methods

Returns Description

public Vector getData()

public String getType()

public Object invokeMethod(String method, Vector params)

gomes.server.ServerTable

java.lang.Object

gomes.server.ServerRPCObject

public ServerTable

extends ServerRPCObject

Server table.

Constructors

Description

ServerTable()

Methods

Returns Description

public Vector getData()

public String getType()

public Object invokeMethod(String method, Vector params)

78 API Reference

gomes.server.ServerType

java.lang.Object

gomes.server.ServerRPCObject

gomes.server.ServerOMObject

public ServerType

extends ServerOMObject

Server type.

Constructors

Description

ServerType(String label, int accessMode, Date creationDate, Date modificationDate)

Methods

Returns Description

public void addSupertype(ServerType type)

public ServerType copy()

public ServerSet getCollections()

public Vector getData()

public ServerSet getInstances()

public ServerSet getObjects()

public ServerSet getSubtypes()

public ServerSet getSupertypes()

public String getType()

public Object invokeMethod(String method, Vector params)

public void removeSupertype(ServerType supertype)

gomes.server.ServerUser

java.lang.Object

gomes.server.ServerRPCObject

public ServerUser

extends ServerRPCObject

Server user.

Constructors

Description

ServerUser()

Methods

Returns Description

public Vector getData()

public String getType()

public Object invokeMethod(String method, Vector params)

B.6 The gomes.util Package 79

B.6 The gomes.util Package

The gomes.util package contains a variety of tools. BooleanComparator,
DateComparator, IntegerComparator, LongComparator and StringCompa-
rator compare objects of the corresponding type. Interface DataString is

TableModelListener

GOMESTableModel

Comparator

AbstractTableModel

DataString

java.lang gomes.util

GOMESMenu

MultiLineString

ABSTRACT CLASS

CLASS

GOMESStatusMessage

GOMESToolTip

TableSorterTableMapper

OSFolder

DateFormatter

Constant

Log

OSFileSystem

OSFile

Object BooleanComparator

DateComparator

IntegerComparator

LongComparator

StringComparator

INTERFACE extends

implements

java.util

javax.swing.table

gomes.model

javax.swing.event

Figure B.6: The gomes.util package

implemented by classes providing a special string representation. The Log class
should be used instead of printing to the standard System.out since it en-
hances the logging process. Constant defines some constants of GOMES. The
GOMESMenu class is used to build all menu entries whereas GOMESToolTip is used

80 API Reference

for tooltips and GOMESStatusMessage for the messages in the status line. The
use of these three classes guarantees a consistent look of menus, tooltips and
messages in the whole GOMES system. DateFormatter is used to format dates
(e.g. it allows a special representation of the current day). MultiLineString di-
vides a string into parts of a specified maximal length. OSFile, OSFolder and
OSFileSystem are used to internalize and build a model of the local file system.
TableMapper is a wrapper class for table models which can be used to modify
(e.g. to sort) the data in a virtual model (uses the decorator design pattern,
see [7]) whereas TableSorter is a specific extension of TableMapper allowing
to sort a table using a quick sort algorithm.

B.6 The gomes.util Package 81

gomes.util.BooleanComparator

java.lang.Object

public BooleanComparator

extends Object

implements Comparator

Comparator for boolean objects.

Constructors

Description

BooleanComparator()

Methods

Returns Description

public int compare(Object object1, Object object2) Compares two boolean values.

gomes.util.Constant

java.lang.Object

public Constant

extends Object

Some constants of the GOMES system.

Fields

Type Description

public static final Date DATE INIT

public static final int DEFAULT TOOLTIP SIZE

public static final

ImageIcon

ICON INIT

public static final int INT INIT

public static final long LONG INIT

public static final String STRING INIT

Constructors

Description

Constant()

82 API Reference

gomes.util.DataString

public abstract interface DataString

String representation of an object.

Methods

Returns Description

public String getString(Object object) Returns the string representation of an object.

gomes.util.DateComparator

java.lang.Object

public DateComparator

extends Object

implements Comparator

Compares two date objects.

Constructors

Description

DateComparator()

Methods

Returns Description

public int compare(Object date1, Object date2) Compares two date values.

gomes.util.DateFormatter

java.lang.Object

public DateFormatter

extends Object

Formatted string representation of a date.

Constructors

Description

DateFormatter()

B.6 The gomes.util Package 83

Methods

Returns Description

public static String getString(Date date) Returns a formatted string representation of a

date. The date of the current day will be handled especially, i.e. not the

date but the string ’today’ will be returned.

gomes.util.GOMESMenu

java.lang.Object

public GOMESMenu

extends Object

Factory responsible to create the menu entries of the whole GOMES system. Guarantees consistency of all

menu entries.

Fields

Type Description

public static final int MNEMONIC ABOUT

public static final int MNEMONIC ADOPT TO LEFT

public static final int MNEMONIC ADOPT TO RIGHT

public static final int MNEMONIC ASSOCIATION

public static final int MNEMONIC CLONE

public static final int MNEMONIC CLOSE

public static final int MNEMONIC COPY

public static final int MNEMONIC DELETE

public static final int MNEMONIC DELETE FILE SYSTEM

public static final int MNEMONIC EMPTY TRASH

public static final int MNEMONIC EXIT

public static final int MNEMONIC HELP

public static final int MNEMONIC INFO LOGGING

public static final int MNEMONIC LEFT FOLDER

public static final int MNEMONIC LOGGING

public static final int MNEMONIC METHOD LOGGING

public static final int MNEMONIC NEW ASSOCIATION

public static final int MNEMONIC NEW FILE

public static final int MNEMONIC NEW FILE MANAGER

public static final int MNEMONIC NEW FILE SYSTEM

public static final int MNEMONIC NEW FOLDER

public static final int MNEMONIC OBJECT

public static final int MNEMONIC OPEN

public static final int MNEMONIC OPTIONS

public static final int MNEMONIC PASTE

public static final int MNEMONIC PROPERTY

public static final int MNEMONIC REMOVE

public static final int MNEMONIC RENAME

public static final int MNEMONIC RIGHT FOLDER

public static final int MNEMONIC SYSTEM

public static final int MNEMONIC THEMES

public static final int MNEMONIC TOOLTIP

public static final int MNEMONIC XMLRPC LOGGING

84 API Reference

Constructors

Description

GOMESMenu()

Methods

Returns Description

public static JMenuItem getAboutItem() Returns the menu item to be used to show about in-

formation.

public static JMenuItem getAdoptLeftFolderItem() Returns the menu item to be used to adopt

the left folder.

public static JMenuItem getAdoptRightFolderItem() Returns the menu item to be used to

adopt the right folder.

public static JMenu getAssociationMenu() Returns the menu to be used for associations.

public static JMenuItem getCloneItem() Returns the menu item to be used to clone an object.

public static JMenuItem getCopyItem() Returns the menu item to be used to copy an object.

public static JMenuItem getDeleteFilesystemItem() Returns the menu item to be used to delete

a file system.

public static JMenuItem getDeleteItem() Returns the menu item to be used to delete an object.

public static JMenu getDesktopThemesItem() Returns the menu to be used for desktop

themes.

public static JMenuItem getEmptyTrashItem() Returns the menu item to be used to empty the

trash.

public static JMenuItem getExitItem() Returns the menu item to be used to exit the application.

public static JMenu getHelpMenu() Returns the menu to be used for help.

public static

JCheckBoxMenuItem

getInformationLoggingItem(boolean initValue) Returns the menu

item to be used to enable/disable information logging.

public static JMenu getLeftFolderMenu() Returns the menu to be used for operations on

the left folder of the explorer view.

public static JMenu getLoggingMenu() Returns the menu to be used for logging.

public static

JCheckBoxMenuItem

getMethodCallLoggingItem(boolean initValue) Returns the menu

item to be used to enable/disable method logging.

public static JMenuItem getNewAssociationItem() Returns the menu utem to be used for the

creation of new associations.

public static JMenuItem getNewFileItem() Returns the menu item to be used for the creation

of new files.

public static JMenuItem getNewFileManagerItem() Returns the menu item to be used to open

a new file manager.

public static JMenuItem getNewFilesystemItem() Returns the menu item to be used to create

a new file system.

public static JMenuItem getNewFolderItem() Returns the menu item to be used for the creation

of new folders.

public static JMenu getObjectMenu() Returns the menu to be used for operations on ob-

jects.

public static JMenuItem getOpenItem() Returns the menu item to be used to open an object.

public static JMenu getOptionMenu() Returns the menu to be used to for options.

public static JMenuItem getPasteItem() Returns the menu item to be used to paste an object.

public static JMenuItem getPropertyItem() Returns the menu item to be used to show proper-

ties.

public static JMenuItem getRemoveItem() Returns the menu item to be used to remove an object

from another object.

public static JMenuItem getRenameItem() Returns the menu item to be used to rename an

object.

public static JMenu getRightFolderMenu() Returns the menu to be used for operations on

the right folder of the explorer view.

public static JMenu getSystemMenu() Returns the menu to be used for system properties.

public static

JCheckBoxMenuItem

getToolTipItem(boolean initValue) Returns the menu item to be used

to enable/disable tool tips.

public static

JCheckBoxMenuItem

getXmlRpcLoggingItem(boolean initValue) Returns the menu item to

be used to enable/disable XML-RPC logging.

B.6 The gomes.util Package 85

gomes.util.GOMESStatusMessage

java.lang.Object

public GOMESStatusMessage

extends Object

Factory responsible for the status messages of the GOMES system. Guarantees consistency of all status

messages.

Constructors

Description

GOMESStatusMessage()

Methods

Returns Description

public static final String changeLabel(GOMESObject object, String newLabel) Returns the mes-

sage to be used if the label of an object is changed.

public static final String changeToolTip(boolean value) Returns the message to be used if the

tooltip property is changed.

public static final String clipboardAssociationToAssociation(GOMESAssociationModel su-

perAssociation, GOMESAssociationModel association) Returns the

message to be used if an association is copied from the clipboard to an

association.

public static final String clipboardFileToFolder(GOMESFolderModel folder, GOMESFileModel

file) Returns the message to be used if a file is copied from the clipboard

to another folder.

public static final String clipboardFolderToFolder(GOMESFolderModel superFolder, GOMES-

FolderModel folder) Returns the message to be used if a folder is copied

from the clipboard to a folder.

public static final String cloneObject(GOMESObject object) Returns the message to be used if

an object is cloned.

public static final String copyToClipboard(GOMESObject object) Returns the message to be

used if an object is copied to the clipboard.

public static final String deleteObject(GOMESObject object) Returns the message to be used if

an object is deleted.

public static final String newAssociation(String associationLabel, String domainObjectLabel,

String rangeObjectLabel) Returns the message to be used if two files

are associated.

public static final String newFileImpossible() Returns the message to be used if it is impossible

to create a new file.

public static final String newFileToFolder(String filename, GOMESFolderModel folder) Returns

the message to be used if a new file is added to a folder.

public static final String newFolderImpossible() Returns the message to be used if it is impos-

sible to create a new folder.

public static final String newFolderToFolder(String folderName, GOMESFolderModel folder)

Returns the message to be used if a new folder is added to a folder.

public static final String openObject(GOMESObject object) Returns the message to be used if

an object is opened.

public static final String removeFileFromFolder(GOMESFolderModel folder, GOMESFileModel

file) Returns the message to be used if a file is removed from a folder.

public static final String removeFromAssociation(GOMESAssociationModel association,

GOMESFileModel domainFile, GOMESFileModel rangeFile) Returns

the message to be used if two associated files are removed.

public static final String removeSubfolder(GOMESFolderModel folder, GOMESFolderModel

subfolder) Returns the message to be used if a subfolder is removed from

its superfolder.

public static final String removeSuperfolder(GOMESFolderModel folder, GOMESFolderModel

superfolder) Returns the message to be used if a superfolder is removed

from its subfolder.

86 API Reference

gomes.util.GOMESToolTip

java.lang.Object

public GOMESToolTip

extends Object

Factory responsible for the tool tips of the GOMES system. Guarantees consistency of all tooltips.

Fields

Type Description

public static final String ABOUT

public static final String ADOPT LEFT FOLDER

public static final String ADOPT RIGHT FOLDER

public static final String ASSOCIATION

public static final String CLONE

public static final String COPY

public static final String DELETE

public static final String DELETE FILESYSTEM

public static final String DESKTOP THEMES

public static final String EMPTY TRASH

public static final String EXIT

public static final String HELP

public static final String INFORMATION LOGGING

public static final String LEFT FOLDER

public static final String LOGGING

public static final String METHOD CALL LOGGING

public static final String NEW ASSOCIATION

public static final String NEW FILE

public static final String NEW FILE MANAGER

public static final String NEW FILESYSTEM

public static final String NEW FOLDER

public static final String OBJECT

public static final String OPEN

public static final String OPTION

public static final String PASTE

public static final String PROPERTIES

public static final String REMOVE

public static final String RENAME

public static final String RIGHT FOLDER

public static final String SYSTEM

public static final String TOOLTIP

public static final String XML RPC LOGGING

Constructors

Description

GOMESToolTip()

B.6 The gomes.util Package 87

gomes.util.IntegerComparator

java.lang.Object

public IntegerComparator

extends Object

implements Comparator

Comparator for integer objects.

Constructors

Description

IntegerComparator()

Methods

Returns Description

public int compare(Object integer1, Object integer2) Compares two integer values.

gomes.util.Log

java.lang.Object

public Log

extends Object

Tool for additional outputs. A good compiler will eliminate the method calls if the corresponding constant

is set to false. Exception logging can not be manipulated and will allways produce an output!

Constructors

Description

Log()

Methods

Returns Description

public static final void printException(String message, Exception e) Logging output of excep-

tions if EXCEPTION LOGGING is true.

public static final void printInformation(String output) Logging output of additional informa-

tion if informationLogging is true.

public static final void printMethod(String output) Logging output of method calls if method-

Debugging is true.

public static final void printRPC(Object object, String method, String params) Debugging out-

put of remote procedure calls if rpcDebugging is true.

public static final void printSecurity(String output) Logging output of security information if

securityLogging is true.

public static void setInformationLogging(boolean informationLogging) Sets the state of

’information logging’. If information logging is set to true, additional

information will be logged.

public static void setLogging(boolean logging) Sets the overall logging state. If this state

is set true, the most possible logging will be performed.

public static void setMethodLogging(boolean methodLogging) Sets the state of ’method

logging’. If method logging is set to true, method calls will produce addi-

tional output.

88 API Reference

Returns Description

public static void setSecurityLogging(boolean securityLogging) Sets the state of ’security

logging’. If security logging is set to true, additional security information

will be logged.

public static void setXmlRpcLogging(boolean xmlRpcLogging) Sets the state of ’XML-

RPC logging’. If XML-RPC logging is set to true, XML-RPC calls will be

logged.

gomes.util.LongComparator

java.lang.Object

public LongComparator

extends Object

implements Comparator

Comparator for long objects.

Constructors

Description

LongComparator()

Methods

Returns Description

public int compare(Object long1, Object long2) Compares two long values.

gomes.util.MultiLineString

java.lang.Object

public MultiLineString

extends Object

Divides a string in parts of a specified maximal size. The parts will will be separated by a ’\n’.

Constructors

Description

MultiLineString()

Methods

Returns Description

public static String getString(String string, int maxSize) Returns a ’multi line string’ each

line smaller than the specified maximum size. The lines will be separated

by a ”\n”.

B.6 The gomes.util Package 89

gomes.util.OSFile

java.lang.Object

public OSFile

extends Object

File based on the local file system used to build up the stub server’s file system.

Constructors

Description

OSFile(String label, int size, Date creationDate, Date modificationDate) Creates a new OSFile.

Methods

Returns Description

public void addParentFolder(OSFolder folder) Adds a parent folder to the object.

public int compareTo(Object object) Compares the label of this object to the spec-

ified object.

public int getAccessMode() Returns the access mode of the object.

public Date getCreationDate() Returns the creation date of the object.

public String getLabel() Returns the label (description) of the object.

public Date getModificationDate() Returns the date the object was last modifi-

cated.

public Enumeration getParentFolders() Returns the parent folder of the object.

public int getSize() Returns the size of the object.

public void setCreationDate(Date creationDate) Sets the creation date of the ob-

ject.

public void setLabel(String label) Sets the label (description) for the object.

public void setModificationDate(Date modificationDate) Sets the last modification

date of the object.

public void setSize(int size) Sets the size of the object.

public String toString() Returns a string representation of the GOMESObject’s con-

tent.

gomes.util.OSFileSystem

java.lang.Object

public OSFileSystem

extends Object

File system based on the local file system building up the stub server’s file system.

Constructors

Description

OSFileSystem(String path) Constructs a new OSFileSystem.

Methods

Returns Description

public OSFolder getRootFolder() Returns the root folder of the OSFileSystem.

90 API Reference

gomes.util.OSFolder

java.lang.Object

gomes.util.OSFile

public OSFolder

extends OSFile

Folder based on the local file system used to build up the stub server’s file system.

Constructors

Description

OSFolder(String label, int size, Date creationDate, Date lastModifiedDate) Constructs a new OSFolder.

Methods

Returns Description

public void addFile(OSFile file) Adds an OSFile to this folder.

public void addSubfolder(OSFolder folder) Adds a folder to this folder.

public Enumeration getFiles() Returns all files the folder contains.

public Enumeration getSubfolders() Returns the subfolders of the folder.

gomes.util.StringComparator

java.lang.Object

public StringComparator

extends Object

implements Comparator

Comparator for string objects.

Constructors

Description

StringComparator()

Methods

Returns Description

public int compare(Object object1, Object object2) Compares two strings. Re-

turns -1 if the first string is smalller than the second one, 1 if it is larger

and 0 if the strings are equal.

B.6 The gomes.util Package 91

gomes.util.TableMapper

java.lang.Object

javax.swing.table.AbstractTableModel

public TableMapper

extends AbstractTableModel

implements GOMESTableModel, TableModelListener

Fields

Type Description

protected

GOMESTableModel

model

Constructors

Description

TableMapper()

Methods

Returns Description

public Class getColumnClass(int column) Redirects the ’getColumnClass’ to the real

model.

public int getColumnCount() Redirects the ’getColumnCount’ to the real model.

public String getColumnName(int column) Redirects the ’getColumnName’ to the

real model.

public GOMESObject getElementAt(int position) Redirects the ’getElementAt’ to the real

model.

public GOMESTableModel getModel() Returns the real model for which the mapping is done.

public int getRowCount() Redirects the ’getRowCount’ to the real model.

public Object getValueAt(int row, int column) Redirects the ’getValue’ to the real

model.

public boolean isCellEditable(int row, int column) Redirects the ’isCellEditable’ to the

real mode.

public void setModel(GOMESTableModel model) Sets the model for which the map-

ping has to be done.

public void setValueAt(Object value, int row, int column) Redirects the ’setValueAt’

to the real model.

public void tableChanged(TableModelEvent event) Informs all the listeners about

a change in the table.

gomes.util.TableSorter

java.lang.Object

javax.swing.table.AbstractTableModel

gomes.util.TableMapper

public TableSorter

extends TableMapper

Wrapper to sort a table (uses the decorator design pattern).

92 API Reference

Constructors

Description

TableSorter(GOMESTableModel model) Constructs a new sorting table wrapper.

Methods

Returns Description

public void addHeaderRenderer(JTable table) Adds a special icon header renderer

to each column header of the table.

public void addMouseListenerToHeaderInTable(JTable table)

public GOMESObject getElementAt(int row) Maps the ’getElementAt’ request to the original

model.

public boolean getTopFolder() Retruns the ’topFolder’ property indicating if folders

always have to be on top.

public Object getValueAt(int row, int column) Maps the ’getValueAt’ request to the

original model.

public void setModel(GOMESTableModel model) Sets a new real model for the

TableSorter and resets the mapping list (identity mapping).

public void setTopFolder(boolean topFolder) Sets the ’topFolder’ property indicat-

ing if folders always have to be on top.

public void setValueAt(Object value, int row, int column) Maps the ’setValueAt’

request to the original model.

public void sort() Sorts the table using a quicksort algorithm.

public void sortByColumn(int column, boolean ascending) Sorts the table by the

specified column and order.

public void tableChanged(TableModelEvent event) Redirects the TableModelEvent

to the original model after resetting the mapping list.

B.7 The gomes.view Package 93

B.7 The gomes.view Package

The gomes.view package contains the different views of GOMES. GOMESObject-
IconView builds the base class of all icon views. GOMESObjectSmallIconView
and GOMESObjectLargeIconView are two concrete implementations of icon views

GOMESExplorerView

GOMESObjectIconViewDnDPanel

GOMESObjectSmallIconView

GOMESObjectLargeIconView

GOMESFolderDetailView

GOMESAssociationPanel

GOMESAssociationPanel

JFrame GOMESLoginView

ABSTRACT CLASS

CLASS

javax.swing

javax.swing.event

java.awt.dnd

GOMESAbstractCollectionView

GOMESFileManagerView

GOMESAssociationView

JLabel

JPanel

GOMESFolderSmallIconView

GOMESFolderLargeIconView

JDesktopPane

JTable

JInternalFrame

DroppablePanel GOMESCollectionIconView

INTERFACE

DropTargetListener

TableModelListener

extends

implements

GOMESObjectDetailView

GOMESCollectionView

gomes.view.util gomes.view

RPCObjectChangeListener

gomes.event

Figure B.7: The gomes.view package

94 API Reference

to be used whenever a drag and drop icon is needed. The DroppableDesktop-
Pane is a desktop pane with drop capabilities, i.e. icons can be placed on
the desktop. The interface GOMESCollectionInterface guarantees a selection
mechanism to be implemented by objects representing a view of a collection.
GOMESObjectDetailView is shown whenever a file is opened. GOMESLoginView
provides a login dialog asking for the user name and the corresponding pass-
word. GOMESExplorerView is the main view to show collections and files.
GOMESFolderSmallIconView, GOMESFolderLargeIconView and GOMESFolder-
DetailView are main views of the GOMESExplorerView the user can choose.
GOMESFileManagerView consists of two GOMESExplorerViews. GOMESAssocia-
tionPanel shows all the information concerning an association.

B.7 The gomes.view Package 95

gomes.view.AssociationPanel

java.lang.Object

java.awt.Component

java.awt.Container

javax.swing.JComponent

javax.swing.JPanel

public AssociationPanel

extends JPanel

implements GOMESCollectionView

Constructors

Description

AssociationPanel(GOMESObjectIconView domainIcon, GOMESObjectIconView associationIcon,

GOMESObjectIconView rangeIcon)

Methods

Returns Description

public void addGOMESObjectSelectionListener(GOMESObjectSelectionListener

listener) Adds a GOMESObjectSelectionListener to the GOMES-

CollectionIconView.

public void fireGOMESObjectSelectionPerformed(GOMESObjectSelectionEvent

event) Notifies all listeners that have registered interest for notification

on this event type.

public GOMESObject getSelection() Returns the selected GOMESObject object.

public void initSelection() Initializes the selection.

public boolean isSelected() Returns true if the collection or one of its elements is se-

lected.

public void paint(Graphics g)

public void removeGOMESObjectSelectionListener(GOMESObjectSelection-

Listener listener) Removes a GOMESObjectSelectionListener from the

GOMESCollectionIconView.

public void resetSelection() Resets the current selection.

gomes.view.DroppableDesktopPane

java.lang.Object

java.awt.Component

java.awt.Container

javax.swing.JComponent

javax.swing.JLayeredPane

javax.swing.JDesktopPane

public DroppableDesktopPane

extends JDesktopPane

implements DropTargetListener, GOMESCollectionView

Desktop pane providing drop functionality.

96 API Reference

Constructors

Description

DroppableDesktopPane() Constructs a new DroppableDesktopPane.

Methods

Returns Description

public void addGOMESObjectSelectionListener(GOMESObjectSelectionListener

listener) Adds a GOMESObjectSelectionListener to the Desktop.

public void addToDesktop(GOMESObjectIconView iconView, int x, int y) Adds an

icon view to the desktop.

public void dragEnter(DropTargetDragEvent e) A Drag operation has encountered

the DropTarget.

public void dragExit(DropTargetEvent e) The Drag operation has departed the

DropTarget without dropping.

public void dragOver(DropTargetDragEvent e) A Drag operation is ongoing on the

DropTarget.

public void drop(DropTargetDropEvent e) The Drag operation has terminated with

a Drop on this DropTarget.

public void dropActionChanged(DropTargetDragEvent e) The user has modified

the current drop gesture.

public void fireGOMESObjectSelectionPerformed(GOMESObjectSelectionEvent

event) Notifies all listeners that have registered interest for notification

on this event type.

public GOMESObject getSelection() Returns the selected GOMESObject object.

public void initSelection() Initializes the selection.

public boolean isSelected() Returns true if the collection is selected, false otherwise.

public void removeGOMESObjectSelectionListener(GOMESObjectSelection-

Listener listener) Removes a GOMESObjectSelectionListener from the

Desktop.

public void resetSelection() Resets the current selection.

gomes.view.GOMESAbstractCollectionView

java.lang.Object

java.awt.Component

java.awt.Container

javax.swing.JComponent

javax.swing.JPanel

public abstract GOMESAbstractCollectionView

extends JPanel

implements GOMESCollectionView

Standard implementation of the GOMESCollectionView interface.

Constructors

Description

GOMESAbstractCollectionView() Constructs a new GOMESAbstractCollectionView.

B.7 The gomes.view Package 97

Methods

Returns Description

public void addGOMESObjectSelectionListener(GOMESObjectSelectionListener

listener) Adds a GOMESObjectSelectionListener to the GOMES-

AbstractCollectionView.

public void fireGOMESObjectSelectionPerformed(GOMESObjectSelectionEvent

event) Notifies all listeners that have registered interest for notification

on this event type.

public void removeGOMESObjectSelectionListener(GOMESObjectSelection-

Listener listener) Removes a GOMESObjectSelectionListener from the

GOMESAbstractCollectionView.

gomes.view.GOMESAssociationView

java.lang.Object

java.awt.Component

java.awt.Container

javax.swing.JComponent

javax.swing.JInternalFrame

public GOMESAssociationView

extends JInternalFrame

implements RPCObjectChangeListener

View for associations.

Fields

Type Description

public static final int DOMAIN OBJECT

public static final int RANGE OBJECT

Constructors

Description

GOMESAssociationView(GOMESAssociationModel association, int objectType, GOMESFileModel

currentFile) Constructs a new GOMESAssociationView.

Methods

Returns Description

public void initialize() Initializes the association view.

public void newAssociationAction()

public void newFolderAction(GOMESFolderModel folder)

public void objectChanged(RPCObjectChangeEvent event) Up-called whenever an

RPCObject shown in the GOMEAssociationView has changed.

98 API Reference

gomes.view.GOMESCollectionIconView

java.lang.Object

java.awt.Component

java.awt.Container

javax.swing.JComponent

javax.swing.JPanel

gomes.view.util.DroppablePanel

public GOMESCollectionIconView

extends DroppablePanel

implements GOMESCollectionView

View of a GOMESCollection.

Fields

Type Description

protected

EventListenerList

listenerList

Constructors

Description

GOMESCollectionIconView(GOMESCollection model) Constructs a new view for an GOMESCol-

lection.

Methods

Returns Description

public void addGOMESObjectSelectionListener(GOMESObjectSelectionListener

listener) Adds a GOMESObjectSelectionListener to the GOMES-

CollectionIconView.

public void fireGOMESObjectSelectionPerformed(GOMESObjectSelectionEvent

event) Notifies all listeners that have registered interest for notification

on this event type.

public GOMESCollection getModel() Returns the model of the GOMESCollectionIconView.

public GOMESObject getSelection() Returns the selected icon view.

public void initSelection() Initializes the selection.

public boolean isSelected() Returns true is the collection or an element within it is

selected.

public void removeGOMESObjectSelectionListener(GOMESObjectSelection-

Listener listener) Removes a GOMESObjectSelectionListener from the

GOMESCollectionIconView.

public void resetSelection() Resets the current selection.

B.7 The gomes.view Package 99

gomes.view.GOMESCollectionView

public abstract interface GOMESCollectionView

Interface to be implemented by views showing a collection of objects.

Methods

Returns Description

public void addGOMESObjectSelectionListener(GOMESObjectSelectionListener

listener) Adds a GOMESObjectSelectionListener to the GOMESCollec-

tionView.

public void fireGOMESObjectSelectionPerformed(GOMESObjectSelectionEvent

event) Notifies all listeners that have registered interest for notification

on this event type.

public GOMESObject getSelection() Returns the last recently selected GOMESObject (only

single selection allowed).

public void initSelection() Selects the first element in the collection.

public boolean isSelected() Returns true if the collection is selected, false otherwise.

public void removeGOMESObjectSelectionListener(GOMESObjectSelection-

Listener listener) Removes an GOMESObjectSelectionListener from the

GOMESCollectionView.

public void resetSelection() Resets the selection state of the GOMESCollection-

View.

gomes.view.GOMESExplorerView

java.lang.Object

java.awt.Component

java.awt.Container

javax.swing.JComponent

javax.swing.JPanel

gomes.view.GOMESAbstractCollectionView

public GOMESExplorerView

extends GOMESAbstractCollectionView

implements RPCObjectChangeListener

View containing a GOMESFileManagerView and its super- and subfolders.

Fields

Type Description

public static final int DETAIL VIEW

public static final int LARGE ICON VIEW

public static final int SMALL ICON VIEW

Constructors

Description

GOMESExplorerView(GOMESFolderModel folder, int viewType) Constructs a new GOMESExplor-

erView.

100 API Reference

Methods

Returns Description

public

GOMESFolderModel

getFolder() Returns the folder shown in the main view.

public GOMESObject getSelection() Returns the last recently selected GOMESObject (only

single selection allowed).

public boolean getTopFolder() Returns true if folders are shown on top, false otherwise.

public void initialize() Initializes the GOMESExplorerView.

public void initSelection() Selects the first element in the folder view.

public boolean isBottomCollectionSelected() Returns true if the bottom collection is

selected, false otherwise.

public boolean isFolderSelected() Returns true if the main folder is selected, false oth-

erwise.

public boolean isSelected() Returns true if the collection is selected, false otherwise.

public boolean isTopCollectionSelected() Returns true if the top collection is selected,

false otherwise.

public void objectChanged(RPCObjectChangeEvent event) Up-called whenever an

RPCObject shown in the GOMESExplorer view has changed.

public void resetSelection() Resets the selection state of the GOMESCollection-

View.

public void setFolder(GOMESFolderModel folder) Sets the folder viewe to the spec-

ified folder. The top view is also updated.

public void setTopFolder(boolean topFolder) Sets the ’topFolder’ property indicat-

ing if folders should be shown on top.

public void setViewType(int viewType) Sets the type of the main view (small icons,

large icons or detail view).

public void sortByCreationDate() Sorts the objects of the main view by date of

creation.

public void sortByModificationDate() Sorts the objects of the main view by the

date of their last modification.

public void sortByName() Sorts the objects of the main view by filename.

public void sortBySize() Sorts the objects of the main view by filesize.

gomes.view.GOMESFileManagerView

java.lang.Object

java.awt.Component

java.awt.Container

javax.swing.JComponent

javax.swing.JInternalFrame

public GOMESFileManagerView

extends JInternalFrame

implements GOMESCollectionView

Main view for the visualization of collections containing two GOMESExplorerViews.

Constructors

Description

GOMESFileManagerView(GOMESFolderModel folder) Constructs a new GOMESFileManagerView.

B.7 The gomes.view Package 101

Methods

Returns Description

public void addGOMESObjectSelectionListener(GOMESObjectSelectionListener

listener) Adds a GOMESObjectSelectionListener to the GOMESAb-

stractCollectionView.

public void fireGOMESObjectSelectionPerformed(GOMESObjectSelectionEvent

event) Notifies all listeners that have registered interest for notification

on this event type.

public GOMESObject getSelection() Returns the last recently selected GOMESObject (only

single selection allowed).

public void initSelection() Selects the first element in the folder view.

public void removeGOMESObjectSelectionListener(GOMESObjectSelection-

Listener listener) Removes a GOMESObjectSelectionListener from the

GOMESAbstractCollectionView.

public void resetSelection() Resets the selection state of the GOMESCollection-

View.

gomes.view.GOMESFolderDetailView

java.lang.Object

java.awt.Component

java.awt.Container

javax.swing.JComponent

javax.swing.JTable

public GOMESFolderDetailView

extends JTable

implements GOMESCollectionView, ChangeListener

Detailed folder view.

Fields

Type Description

protected

EventListenerList

listenerList

Constructors

Description

GOMESFolderDetailView(GOMESTableModel model) Constructs a new GOMESFolderDetailView.

Methods

Returns Description

public void addGOMESObjectSelectionListener(GOMESObjectSelectionListener

listener) Adds a GOMESObjectSelectionListener to the GOMESFold-

erDetailView.

public void fireGOMESObjectSelectionPerformed(GOMESObjectSelectionEvent

event) Notifies all listeners that have registered interest for notification

on this event type.

public int getPreferredColumnWidth(TableColumn column) Returns the pre-

ferred width for column ’column’.

102 API Reference

Returns Description

public GOMESObject getSelection() Returns the last recently selected GOMESObject (only

single selection allowed).

public Point getToolTipLocation(MouseEvent event) Returns the tooltip location in

the receiving component coordinate system. If null is returned, Swing will

choose a location.

public String getToolTipText(MouseEvent event) Returns the tooltip for this

GOMESFolderDetailView.

public void initColumnSizes() Initializes the width of all columns.

public void initSelection() Selects the first element in the GOMESFolderDetailView.

public boolean isSelected() Returns true if the folder view is selected, false otherwise.

public void removeGOMESObjectSelectionListener(GOMESObjectSelection-

Listener listener) Removes a GOMESObjectSelectionListener from the

GOMESFolderDetailView.

public void resetSelection() Resets the selection state of the GOMESFolderDetail-

View.

public void stateChanged(ChangeEvent event) Invoked if the data in the modell

changed. A new thread is generated which will update the view.

gomes.view.GOMESFolderLargeIconView

java.lang.Object

java.awt.Component

java.awt.Container

javax.swing.JComponent

javax.swing.JPanel

gomes.view.GOMESAbstractCollectionView

public GOMESFolderLargeIconView

extends GOMESAbstractCollectionView

implements TableModelListener

Folder view using large icons.

Constructors

Description

GOMESFolderLargeIconView(GOMESTableModel model) Constructs a new GOMESFolderLarge-

IconView.

Methods

Returns Description

public GOMESTableModel getModel() Returns the model containing the data of this view.

public GOMESObject getSelection() Returns the selected icon view.

public void initSelection() Initializes the selection.

public boolean isSelected() Returns true if the collection is selected, false otherwise.

public void resetSelection() Resets the current selection.

public void tableChanged(TableModelEvent e) Invoked when data in the table has

changed.

B.7 The gomes.view Package 103

gomes.view.GOMESFolderSmallIconView

java.lang.Object

java.awt.Component

java.awt.Container

javax.swing.JComponent

javax.swing.JPanel

gomes.view.GOMESAbstractCollectionView

public GOMESFolderSmallIconView

extends GOMESAbstractCollectionView

implements TableModelListener

Folder view using small icons.

Constructors

Description

GOMESFolderSmallIconView(GOMESTableModel model) Constructs a new view for a GOMES-

Folder.

Methods

Returns Description

public GOMESTableModel getModel() Returns the model containing the data of this view.

public GOMESObject getSelection() Returns the selected icon view.

public void initSelection() Initializes the selection.

public boolean isSelected() Returns true if the collection is selected, false otherwise.

public void resetSelection() Resets the current selection.

public void tableChanged(TableModelEvent e) Invoked when data in the table has

changed.

gomes.view.GOMESLoginView

java.lang.Object

java.awt.Component

java.awt.Container

java.awt.Window

java.awt.Frame

javax.swing.JFrame

public GOMESLoginView

extends JFrame

Login view of GOMES.

Constructors

Description

GOMESLoginView() Constructs a new GOMESLogonView.

104 API Reference

Methods

Returns Description

public Vector getLoginInfo() Returns the information the user entered in the login

field.

gomes.view.GOMESObjectDetailView

java.lang.Object

java.awt.Component

java.awt.Container

javax.swing.JComponent

javax.swing.JLabel

public GOMESObjectDetailView

extends JLabel

Simple view of a GOMESObject.

Constructors

Description

GOMESObjectDetailView(GOMESObject model) Constructs a new view of a GOMESObject.

Methods

Returns Description

public GOMESObject getModel() Returns the model containing the data of this view.

gomes.view.GOMESObjectIconView

java.lang.Object

java.awt.Component

java.awt.Container

javax.swing.JComponent

javax.swing.JPanel

gomes.view.util.DnDPanel

public abstract GOMESObjectIconView

extends DnDPanel

Base class for the visualization of a GOMESObject.

Fields

Type Description

public static DataFlavor gomesObjectIconFlavor

B.7 The gomes.view Package 105

Constructors

Description

GOMESObjectIconView(GOMESObject model) Constructs a new GOMESObjectIconView.

Methods

Returns Description

public void drop(DropTargetDropEvent e) The Drag operation has terminated with

a Drop on this DropTarget.

public GOMESIconModel getModel() Returns the model containing the data of this view.

public Object getTransferData(DataFlavor flavor) Returns an object which represents

the data to be transferred. The class of the object returned is defined by

the representation class of the flavor.

public DataFlavor[] getTransferDataFlavors() Returns an array of DataFlavor objects in-

dicating the flavors the data can be provided in. The array is ordered

according to preference for providing the data (from most richly descrip-

tive to least descriptive).

public boolean isDataFlavorSupported(DataFlavor flavor) Returns whether the spec-

ified data flavor is supported or not for this object.

public boolean isSelected() Indicates if the GOMESObjectIconView is selected.

public void setSelected(boolean selected) Sets the selection mode of the GOMES-

ObjectIconView. True if the GOMESObjectIconView should be selected,

false otherwise.

gomes.view.GOMESObjectLargeIconView

java.lang.Object

java.awt.Component

java.awt.Container

javax.swing.JComponent

javax.swing.JPanel

gomes.view.util.DnDPanel

gomes.view.GOMESObjectIconView

public GOMESObjectLargeIconView

extends GOMESObjectIconView

Large icon view of a GOMESObject.

Constructors

Description

GOMESObjectLargeIconView(GOMESObject model) Constructs a new GOMESObjectLargeIcon-

View.

Methods

Returns Description

public Point getToolTipLocation(MouseEvent event) Returns the tooltip location in

the receiving component coordinate system. If null is returned, Swing will

choose a location.

public String getToolTipText() Returns the tooltip for this GOMESObjectSmallIcon-

View.

106 API Reference

Returns Description

public void setSelected(boolean selected) Sets the selection mode of the GOMES-

ObjectLargeIconView. True if the GOMESObjectLargeIconView should

be selected, false otherwise.

gomes.view.GOMESObjectSmallIconView

java.lang.Object

java.awt.Component

java.awt.Container

javax.swing.JComponent

javax.swing.JPanel

gomes.view.util.DnDPanel

gomes.view.GOMESObjectIconView

public GOMESObjectSmallIconView

extends GOMESObjectIconView

Small icon view of a GOMESObject.

Constructors

Description

GOMESObjectSmallIconView(GOMESObject model) Constructs a new GOMESObjectSmallIcon-

View.

Methods

Returns Description

public Point getToolTipLocation(MouseEvent event) Returns the tooltip location in

the receiving component coordinate system. If null is returned, Swing will

choose a location.

public String getToolTipText() Returns the tooltip for this GOMESObjectSmallIcon-

View.

public void setSelected(boolean selected) Sets the selection mode of the GOMES-

ObjectSmallIconView. True if the GOMESObjectSmallIconView should

be selected, false otherwise.

B.8 The gomes.view.util Package 107

B.8 The gomes.view.util Package

MouseListener

javax.swing.table

awt.datatransfer

awt.dnd

awt.eventjavax.swing

javax.swing.plaf.metal

java.lang

gomes.view.util

gomes.util

Object

MultiLineToolTipUI

DesktopUtilities

GridBagLayouter

DefaultTheme

BeOSTheme

DesertTheme

FilesizeTableCellRenderer

MetalToolTipUI

DefaultMetalTheme

JPanel DnDPanel

DroppablePanel

IconTableCellRenderer

DateTableCellRenderer

FilenameTableCellRenderer

DefaultTableCellRenderer

JButton DynamicButton

DropTargetListener

ABSTRACT CLASS

CLASS

DataString

TableCellRenderer

DragSourceListener

DragGestureListener

Transferable

INTERFACE extends

implements

Figure B.8: The gomes.view.util package

108 API Reference

The gomes.view.util package contains tools for the views of the GOMES
system. DynamicButton is the button used for button bars. DnDPanel is
the base class of views accepting drag and drop actions (e.g. icons) whereas
DroppablePanel is the base class of views accepting drop actions only. Icon-
TableCellRenderer, DateTabelCellRenderer, FilenameTableCellRenderer
and FilesizeTableCellRenderer are customized cell renderers for the table
entries. DesktopUtilities provides facilities to add frames to the desktop and
arrange them. GridBagLayouter simplifies the usage of the gridbag layout.
MultiLineToolTipUI is a customized tooltip renderer allowing to show multi-
ple lines in a tooltip. DesertTheme, BeOSTheme and DefaultTheme are three
desktop themes the user of GOMES can choose to customize his desktop.

B.8 The gomes.view.util Package 109

gomes.view.util.BeOSTheme

java.lang.Object

javax.swing.plaf.metal.MetalTheme

javax.swing.plaf.metal.DefaultMetalTheme

public BeOSTheme

extends DefaultMetalTheme

Desktop theme in BeOS style defining the color schema of the desktop.

Constructors

Description

BeOSTheme()

Methods

Returns Description

protected ColorUIResource getPrimary1() Returns the primay1 color.

protected ColorUIResource getPrimary2() Returns the primay2 color.

protected ColorUIResource getPrimary3() Returns the primay3 color.

protected ColorUIResource getSecondary1() Returns the secondary1 color.

protected ColorUIResource getSecondary2() Returns the secondary2 color.

protected ColorUIResource getSecondary3() Returns the secondary3 color.

gomes.view.util.DateTableCellRenderer

java.lang.Object

java.awt.Component

java.awt.Container

javax.swing.JComponent

javax.swing.JLabel

javax.swing.table.DefaultTableCellRenderer

public DateTableCellRenderer

extends DefaultTableCellRenderer

implements DataString

Renderer for a date cell in a table.

Constructors

Description

DateTableCellRenderer() Constructs a new date table cell renderer.

Methods

Returns Description

public String getString(Object date) Returns the string representation of a ’date’ ob-

ject.

public Component getTableCellRendererComponent(JTable table, Object value,

boolean isSelected, boolean hasFocus, int row, int column) Returns the

component to be used to draw dates by the table renderer.

110 API Reference

gomes.view.util.DefaultTheme

java.lang.Object

javax.swing.plaf.metal.MetalTheme

javax.swing.plaf.metal.DefaultMetalTheme

public DefaultTheme

extends DefaultMetalTheme

Default desktop theme defining the color schema of the desktop.

Constructors

Description

DefaultTheme()

Methods

Returns Description

protected ColorUIResource getPrimary1() Returns the primay1 color.

protected ColorUIResource getPrimary2() Returns the primay2 color.

protected ColorUIResource getPrimary3() Returns the primay3 color.

protected ColorUIResource getSecondary1() Returns the secondary1 color.

protected ColorUIResource getSecondary2() Returns the secondary2 color.

protected ColorUIResource getSecondary3() Returns the secondary3 color.

gomes.view.util.DesertTheme

java.lang.Object

javax.swing.plaf.metal.MetalTheme

javax.swing.plaf.metal.DefaultMetalTheme

public DesertTheme

extends DefaultMetalTheme

Desktop theme in desert style defining the color schema of the desktop.

Constructors

Description

DesertTheme()

B.8 The gomes.view.util Package 111

Methods

Returns Description

protected ColorUIResource getPrimary1() Returns the primay1 color.

protected ColorUIResource getPrimary2() Returns the primay2 color.

protected ColorUIResource getPrimary3() Returns the primay3 color.

protected ColorUIResource getSecondary1() Returns the secondary1 color.

protected ColorUIResource getSecondary2() Returns the secondary2 color.

protected ColorUIResource getSecondary3() Returns the secondary3 color.

gomes.view.util.DesktopUtilities

java.lang.Object

public DesktopUtilities

extends Object

Tool for the maintenance of the main desktop.

Constructors

Description

DesktopUtilities()

Methods

Returns Description

public static void addToDesktop(JDesktopPane desktop, JInternalFrame internalFrame)

Adds an internal frame to the desktop. The added internal frame will

be set to front.

public static

JInternalFrame

getInternalFrame(Component component) Returns the internal frame

the specified component resides in.

public static void setSelected(JInternalFrame internalFrame) Sets the specified internal

frame selected.

public static void toFront(JInternalFrame internalFrame) Moves the specified internal

frame to front.

gomes.view.util.DnDPanel

java.lang.Object

java.awt.Component

java.awt.Container

javax.swing.JComponent

javax.swing.JPanel

public abstract DnDPanel

extends JPanel

implements DragSourceListener, DragGestureListener, DropTargetListener, Transferable

Panel providing drag and drop functionality.

112 API Reference

Constructors

Description

DnDPanel() Constructs a new DnDPanel.

Methods

Returns Description

public void dragDropEnd(DragSourceDropEvent e) Invoked when the drag and

drop operation completes.

public void dragEnter(DragSourceDragEvent e) Invoked when the hotspot enters a

platform dependent drop site.

public void dragEnter(DropTargetDragEvent e) Invoked when a drag operation has

encountered the DropTarget.

public void dragExit(DragSourceEvent e) Invoked when the hotspot exits a platform

dependent drop site.

public void dragExit(DropTargetEvent e) Invoked when the drag operation has de-

parted the DropTarget without dropping.

public void dragGestureRecognized(DragGestureEvent e) When the DragGestur-

eRecognizer recognizes a DnD action, it messages the registered DragGes-

tureListener by invoking the ’dragGestureRecognized’ method.

public void dragOver(DragSourceDragEvent e) Invoked when the hotspot moves

over a platform dependent drop site.

public void dragOver(DropTargetDragEvent e) Invoked when a drag operation is

ongoing on the DropTarget.

public void drop(DropTargetDropEvent e) Invoked when the drag operation has ter-

minated with a drop on this DropTarget.

public void dropActionChanged(DragSourceDragEvent e) Invoked when the user

has modified the drop gesture.

public void dropActionChanged(DropTargetDragEvent e) Invoked when the user

has modified the current drop gesture.

gomes.view.util.DroppablePanel

java.lang.Object

java.awt.Component

java.awt.Container

javax.swing.JComponent

javax.swing.JPanel

public abstract DroppablePanel

extends JPanel

implements DropTargetListener

Panel providing drop functionality.

Constructors

Description

DroppablePanel() Constructs a new DroppablePanel.

B.8 The gomes.view.util Package 113

Methods

Returns Description

public void dragEnter(DropTargetDragEvent e) Invoked when the hotspot enters a

platform dependent drop site.

public void dragExit(DropTargetEvent e) Invoked when the hotspot exits a platform

dependent drop site.

public void dragOver(DropTargetDragEvent e) Invoked when the hotspot moves

over a platform dependent drop site.

public void drop(DropTargetDropEvent e) Invoked when the drag operation has ter-

minated with a drop on this DropTarget.

public void dropActionChanged(DropTargetDragEvent e) Invoked when the user

has modified the drop gesture.

gomes.view.util.DynamicButton

java.lang.Object

java.awt.Component

java.awt.Container

javax.swing.JComponent

javax.swing.AbstractButton

javax.swing.JButton

public DynamicButton

extends JButton

implements MouseListener

Dynamic image button changing its border on rollovers.

Constructors

Description

DynamicButton(String label, Icon image) Constructs a new dynamic button.

DynamicButton(String label) Constructs a new dynamic button without an image.

DynamicButton(String label, Icon image, String toolTip) Constructs a new dynamic button.

Methods

Returns Description

public void mouseClicked(MouseEvent event) Handles a clicked button.

public void mouseEntered(MouseEvent event) Handles an entering of the cursor in

the button area.

public void mouseExited(MouseEvent event) Handles a leaving of the cursor from

the button area.

public void mousePressed(MouseEvent event) Handles a pressed button.

public void mouseReleased(MouseEvent event) Handles a released button.

114 API Reference

gomes.view.util.FilenameTableCellRenderer

java.lang.Object

java.awt.Component

java.awt.Container

javax.swing.JComponent

javax.swing.JLabel

javax.swing.table.DefaultTableCellRenderer

public FilenameTableCellRenderer

extends DefaultTableCellRenderer

implements DataString

Renderer for a filename cell in a table.

Constructors

Description

FilenameTableCellRenderer() Constructs a new filename table cell renderer.

Methods

Returns Description

public String getString(Object filename) Returns the string representation of a ’file-

name’ object.

public Component getTableCellRendererComponent(JTable table, Object value,

boolean isSelected, boolean hasFocus, int row, int column) Returns the

component to be used to draw filenames by the table renderer.

gomes.view.util.FilesizeTableCellRenderer

java.lang.Object

java.awt.Component

java.awt.Container

javax.swing.JComponent

javax.swing.JLabel

javax.swing.table.DefaultTableCellRenderer

public FilesizeTableCellRenderer

extends DefaultTableCellRenderer

implements DataString

Renderer for a filesize cell in a table.

Constructors

Description

FilesizeTableCellRenderer() Constructs a new filesize table cell renderer.

B.8 The gomes.view.util Package 115

Methods

Returns Description

public String getString(Object object) Returns the string representation of a ’Long’

object.

public Component getTableCellRendererComponent(JTable table, Object value,

boolean isSelected, boolean hasFocus, int row, int column) Returns the

component to be used to draw filesizes by the table renderer.

gomes.view.util.GridBagLayouter

java.lang.Object

public GridBagLayouter

extends Object

Tool to use the GridBagLayout.

Constructors

Description

GridBagLayouter()

Methods

Returns Description

public static void addComponent(Container container, Component component, int top,

int left, int bottom, int right) Adds a component to a container with a

GridBagLayout.

public static void addComponent(Container container, Component component, int gridx,

int gridy, int gridwidth, int gridheight, int top, int left, int bottom, int

right, double weightx, double weighty, int anchor, int fill) Adds a compo-

nent to a container with a GridBagLayout.

gomes.view.util.IconTableCellRenderer

java.lang.Object

java.awt.Component

java.awt.Container

javax.swing.JComponent

javax.swing.JPanel

public IconTableCellRenderer

extends JPanel

implements TableCellRenderer, DataString

Renderer for an ImageIcon in a table.

Constructors

Description

IconTableCellRenderer()

116 API Reference

Methods

Returns Description

public String getString(Object object) Returns the string representation of an object.

public Component getTableCellRendererComponent(JTable table, Object value,

boolean isSelected, boolean hasFocus, int row, int column) Returns the

component to be used to draw icons by the table renderer.

public void paint(Graphics g) Draws the icon on the graphics context.

gomes.view.util.MultiLineToolTipUI

java.lang.Object

javax.swing.plaf.ComponentUI

javax.swing.plaf.ToolTipUI

javax.swing.plaf.basic.BasicToolTipUI

javax.swing.plaf.metal.MetalToolTipUI

public MultiLineToolTipUI

extends MetalToolTipUI

UI component to generate multi line tooltips.

Fields

Type Description

public static final String LINE SEPARATOR

public static final int MARGIN

Constructors

Description

MultiLineToolTipUI() Constructs a new MultiLineToolTipUI.

Methods

Returns Description

public static ComponentUI createUI(JComponent c) Creates a UI for a MultiLineTooltip.

public Dimension getPreferredSize(JComponent component) Returns the preferred size

of the multi line tooltip.

public void paint(Graphics g, JComponent c) Draws the component to the specified

graphics context.

B.9 The xmlrpc Package 117

B.9 The xmlrpc Package

The xmlrpc package implements the XML-RPC protocol specified by Fron-
tier.UserLand.Com. It implements an object serialization and deserialization
mechanism based on an existing XML parser. XmlRpc is the main class for

extends

Runnable

org.xml.sax

java.lang xmlrpc

implements

java.io

XmlRpcServer

XmlRpcClient

XmlRpcBooleanValue

XmlRpcComposedValueObject

XmlRpcArrayValueXmlRpcIntegerValue

XmlRpcDateValue

XmlRpcDoubleValue

ABSTRACT CLASS

Exception

XmlRpcStructureValue

HandlerBase XmlRpc XmlRpcServerRequest

XmlRpcWriter XmlWriter

SizedInputStream OutputStreamWriter

InputStream

XmlRpcClientResponse

XmlRpcException

XmlRpcMethodHandler

INTERFACECLASS

XmlRpcValue

Figure B.9: The xmlrpc package

parsing an XML-RPC document. It is an extension of the HandlerBase of
the corresponding SAX parser. XmlRpcServerRequest is used by the client
to send an XML-RPC request to a server whereas XmlRpcClientResponse is
used by the server to send the answer of an XML-RPC request to the client.
XmlWriter is an output stream allowing to write XML documents. Based on
the XMLWriter, the XmlRpcWriter builds an output stream allowing to write

118 API Reference

XML-RPC documents. SizedInputStream is a tool class used by an XML-RPC
server to extract the data part of an HTTP request. Every time an error occurs,
an XmlRpcException is raised. The interface XmlRpcMethodHandler has to be
implemented by classes acting as handlers for XML-RPC requests (it is possible
to cascade several XML-RPC handlers). The XmlRpcClient allows to invoke a
method on a remote object. On the server side an XmlRpcServer is listening for
XML-RPC requests on a specific port. XmlRpcValue is the base class of all val-
ues defined by the XML-RPC protocol (the scalar values XmlRpcIntegerValue,
XmlRpcBooleanvalue, XmlRpcDateValue and XmlRpcDoubleValue and the com-
posed values XmlRpcStructureValue and XmlRpcArrayValue, respectively).

B.9 The xmlrpc Package 119

xmlrpc.HttpWriter

java.lang.Object

java.io.Writer

java.io.OutputStreamWriter

public HttpWriter

extends OutputStreamWriter

Tool to write HTTP protocol headers.

Constructors

Description

HttpWriter(OutputStream outputStream) Constructs a new HttpWriter.

Methods

Returns Description

public void writeError(String message) Writes a HTTP error response to the Out-

putStream.

public void writeResponse(String result) Writes a HTTP response to the Output-

Stream.

xmlrpc.XmlRpc

java.lang.Object

org.xml.sax.HandlerBase

public abstract XmlRpc

extends HandlerBase

Base class for the parsing of an XML-RPC document.

Fields

Type Description

public static final String COMMAND OK

Constructors

Description

XmlRpc()

Methods

Returns Description

public void characters(char[] data, int start, int length) Up-call by the SAX parser

returning the character data (content) of the current element.

public void endElement(String name) Up-call by the SAX parser indicating the end

of an element (’endTag’).

public void error(SAXParseException e) Receives notification of a recoverable parser

error.

120 API Reference

Returns Description

public void fatalError(SAXParseException e) Reports a fatal XML parsing error.

public synchronized void parse(InputStream inputStream) Parses the XML InputStream. For ev-

ery element of the XML InputStream the methods startElement(), charac-

ters() and endElement() are invoked and the corresponding Java object ID

is built. For each root level object (parameter) the method objectParsed()

is executed.

public void startElement(String name, AttributeList attributes) Up-call by the SAX

parser indicating the start of new element (’startTag’). Each element has

a type identified by name and may have a set of attribute specifications.

public String toString() Returns a string representation of the XmlRpc class.

public void warning(SAXParseException e) Receives notification of a parser warn-

ing.

xmlrpc.XmlRpcArrayValue

java.lang.Object

xmlrpc.XmlRpcValue

xmlrpc.XmlRpcComposedValue

public XmlRpcArrayValue

extends XmlRpcComposedValue

Representation of an ’array’ value specified by the XML-RPC specification from ’Frontier.UserLand.Com’.

Constructors

Description

XmlRpcArrayValue() Constructs a new XmlRpcArray Value.

Methods

Returns Description

public void addElement(XmlRpcValue child) Adds an element to the XmlRpc-

ArrayValue.

public Object getContent() Returns the content (in Java representation) of the ’array’

value.

public void setContent(Object content) The content of a XmlRpcArrayValue is not

set by setContent(). Use addElement() to add elements to the content.

public String toString() Returns a string representation of the XmlRpcArrayValue’s

content.

xmlrpc.XmlRpcBooleanValue

java.lang.Object

xmlrpc.XmlRpcValue

public XmlRpcBooleanValue

extends XmlRpcValue

Representation of a ’boolean’ value specified by the XML-RPC specification from ’Frontier.UserLand.Com’.

Constructors

B.9 The xmlrpc Package 121

Description

XmlRpcBooleanValue() Constructs a new XmlRpcBoolean value.

XmlRpcBooleanValue(Object content) Constructs a new XmlRpcBoolean value.

Methods

Returns Description

public void setContent(Object content) Constructs a new XmlRpcBoolean value.

public String toString() Returns a string representation of the XmlRpcBooleanValue’s

content.

xmlrpc.XmlRpcClient

java.lang.Object

public XmlRpcClient

extends Object

implements XmlRpcMethodHandler

The XmlRpcClient allows to invoke a method defined by an XML-RPC ’methodName’-tag (the handler name

followed by a method name separated by a dot) and the corresponding parameters.

Constructors

Description

XmlRpcClient(String host, int port) Constructs a new XmlRpcClient.

Methods

Returns Description

public Object invokeMethod(String methodName, Vector parameters) Generates an

XML-RPC request and sends it to the server. After parsing the result the

corresponding Java object is returned.

xmlrpc.XmlRpcComposedValue

java.lang.Object

xmlrpc.XmlRpcValue

public abstract XmlRpcComposedValue

extends XmlRpcValue

Base class of the composed XML-RPC values ’array’ and ’struct’.

Constructors

Description

XmlRpcComposedValue()

122 API Reference

Methods

Returns Description

public abstract void addElement(XmlRpcValue child) Adds an element to the composed

value.

xmlrpc.XmlRpcDateValue

java.lang.Object

xmlrpc.XmlRpcValue

public XmlRpcDateValue

extends XmlRpcValue

Representation of a ’dateTime.iso8601’ value specified by the XML-RPC specification from ’Frontier.User-

Land.Com’.

Constructors

Description

XmlRpcDateValue() Constructs a new XmlRpcDateValue.

XmlRpcDateValue(Object content) Constructs a new XmlRpcDateValue.

Methods

Returns Description

public static Date decode(String date) Decodes an XML-RPC representation of a date to

a Date object.

public static String encode(Date date) Encodes a Date object to an XML-RPC representa-

tion (’dateTime.iso8601’).

public void setContent(Object content) Sets the content of the XmlRpcDateValue.

public String toString() Returns a string representation of the XmlRpcDateValue’s

content.

xmlrpc.XmlRpcDoubleValue

java.lang.Object

xmlrpc.XmlRpcValue

public XmlRpcDoubleValue

extends XmlRpcValue

Representation of a ’double’ value specified by the XML-RPC specification from ’Frontier.UserLand.Com’.

Constructors

Description

XmlRpcDoubleValue() Constructs a new XmlRpcDoubleValue.

XmlRpcDoubleValue(Object content) Constructs a new XmlRpcDoubleValue.

B.9 The xmlrpc Package 123

Methods

Returns Description

public void setContent(Object content) Sets the content of the XmlRpcDouble-

Value.

public String toString() Returns a string representation of the XmlRpcDoubleValue’s

content.

xmlrpc.XmlRpcException

java.lang.Object

java.lang.Throwable

java.lang.Exception

public XmlRpcException

extends Exception

Used for exceptions occured executed the XML-RPC protocol.

Fields

Type Description

public static final int DEFAULT FAULT CODE

Constructors

Description

XmlRpcException(String message) Constructs a new XmlRpcException containing an error message.

XmlRpcException(int faultCode, String message) Constructs a new XmlRpcException containing an

error message and a fault code.

Methods

Returns Description

public int getFaultCode() Returns the fault code of the exception.

xmlrpc.XmlRpcIntegerValue

java.lang.Object

xmlrpc.XmlRpcValue

public XmlRpcIntegerValue

extends XmlRpcValue

Representation of an ’int’ value specified by the XML-RPC specification from ’Frontier.UserLand.Com’.

Constructors

Description

XmlRpcIntegerValue() Constructs a new XmlRpcIntegerValue.

XmlRpcIntegerValue(Object content) Constructs a new XmlRpcDoubleValue.

124 API Reference

Methods

Returns Description

public void setContent(Object content) Sets the content of the XmlRpcInteger-

Value.

public String toString() Returns a string representation of the XmlRpcIntegerValue’s

content.

xmlrpc.XmlRpcMethodHandler

public abstract interface XmlRpcMethodHandler

XmlRpcMethodHandler has to be implemented by classes acting as handlers for a remote procedure call.

Methods

Returns Description

public Object invokeMethod(String method, Vector parameters) Returns the result or

throws an exception if something went wrong.

xmlrpc.XmlRpcServer

java.lang.Object

public XmlRpcServer

extends Object

implements Runnable, XmlRpcMethodHandler

A Server listening for XML-RPC requests on a specific port. Different handlers implementing the Xml-

RpcMethodHandler interface can be added to the server to process remote procedure calls.

Constructors

Description

XmlRpcServer(int port) Constructs a new XmlRpcServer.

Methods

Returns Description

public void addMethodHandler(String handlerName, XmlRpcMethodHandler

methodHandler) Registers a method handler on the server. The

different methods of the handler can be called over XML-RPC as

’handlerName.methodName’.

public

XmlRpcMethodHandler

getMethodHandler(String handlerName) Returns the method handler

for the corresponding handler name.

public Object invokeMethod(String methodName, Vector parameters) Invokes the

method of the corresponding handler.

public void removeMethodHandler(String handlerName) Removes a method han-

dler from the server.

public void run() Starts the main thread listening for client requests.

public void stop() Stops the server and closes the socket the server is listening at.

B.9 The xmlrpc Package 125

xmlrpc.XmlRpcServerRequest

java.lang.Object

org.xml.sax.HandlerBase

xmlrpc.XmlRpc

public XmlRpcServerRequest

extends XmlRpc

Used to send an XML-RPC request to the server.

Constructors

Description

XmlRpcServerRequest(URL server) Constructs a new Server request object.

Methods

Returns Description

public Object invokeMethod(String method, Vector parameters) Invokes a method on

the server.

public void startElement(String name, AttributeList attributes) Overrides the

equivalent method in XmlRpc to handle also faulty responses.

xmlrpc.XmlRpcStringValue

java.lang.Object

xmlrpc.XmlRpcValue

public XmlRpcStringValue

extends XmlRpcValue

Representation of an ’string’-value specified by the XML-RPC specification from ’Frontier.UserLand.Com’.

Constructors

Description

XmlRpcStringValue() Constructs a new XmlRpcStringValue.

XmlRpcStringValue(Object content) Constructs a new XmlRpcStringValue.

126 API Reference

Methods

Returns Description

public void setContent(Object content) Sets the content of the XmlRpcStringValue.

public String toString() Returns a string representation of the XmlRpcStringValue’s

content.

xmlrpc.XmlRpcStructureValue

java.lang.Object

xmlrpc.XmlRpcValue

xmlrpc.XmlRpcComposedValue

public XmlRpcStructureValue

extends XmlRpcComposedValue

Representation of a ’struct’ value specified by the XML-RPC specification from ’Frontier.UserLand.Com’.

Constructors

Description

XmlRpcStructureValue() Constructs a new XmlRpcStructureVallue.

Methods

Returns Description

public void addElement(XmlRpcValue child) Adds an element to the XmlRpcStruc-

tureValue. Uses the name set by the last call of setName().

public Object getContent() Returns the content (in Java representation) of the ’struct’

value.

public void setContent(Object content) The content of a XmlRpcStructureValue is

not set by setContent(). Use addElement() to add elements to the content.

public void setName(String name) Sets the name of the structure.

public String toString() Returns a string representation of the XmlRpcStruc-

tureValue’s content.

xmlrpc.XmlRpcValue

java.lang.Object

public XmlRpcValue

extends Object

Base class for all the ’value’ types used by the XML-RPC procedure call protocol defined in the XML-RPC

specification from ’Frontier.UserLand.Com’.

Constructors

Description

XmlRpcValue() Constructs a new value.

XmlRpcValue(Object content) Constructs a new value.

B.9 The xmlrpc Package 127

Methods

Returns Description

public Object getContent() Returns the content of the value.

public void setContent(Object content) Sets the content of the value.

public String toString() Returns a string representation of the XmlRpcValue’s content.

xmlrpc.XmlRpcWriter

java.lang.Object

java.io.Writer

java.io.OutputStreamWriter

xmlrpc.XmlWriter

public XmlRpcWriter

extends XmlWriter

Tool to write XML-RPC data to an OutputStream.

Fields

Type Description

public static final String ARRAY TAG

public static final String BOOLEAN TAG

public static final String DATA TAG

public static final String DATE TAG

public static final String DOUBLE TAG

public static final String FAULT CODE

public static final String FAULT STRING

public static final String FAULT TAG

public static final String INTEGER TAG 1

public static final String INTEGER TAG 2

public static final String MEMBER TAG

public static final String METHOD CALL TAG

public static final String METHOD NAME TAG

public static final String METHOD RESPONSE TAG

public static final String NAME TAG

public static final String PARAM TAG

public static final String PARAMS TAG

public static final String STRING TAG

public static final String STRUCTURE TAG

public static final String VALUE TAG

Constructors

Description

XmlRpcWriter(OutputStream outputStream) Constructs a new XmlRpcWriter.

Methods

Returns Description

public void writeError(int faultCode, String fault) Writes an XML-RPC error re-

sponse to the OutputStream.

public void writeObject(Object object) Writes the XML-RPC representation of a

Java object to the OutputStream.

128 API Reference

Returns Description

public void writeRequest(String method, Vector parameters) Writes an XML-RPC

request to the OutputStream.

public void writeResponse(Object param) Writes an XML-RPC response to the

OutputStream.

xmlrpc.XmlWriter

java.lang.Object

java.io.Writer

java.io.OutputStreamWriter

public XmlWriter

extends OutputStreamWriter

Tool to write XML data to an OutputStream.

Constructors

Description

XmlWriter(OutputStream outputStream) Constructs a new XmlWriter.

Methods

Returns Description

public void write(String data) Writes an XML string to the output stream. There

will be a special handling of some characters.

public void writeComment(String comment) Writes an XML comment to the out-

put stream.

public void writeEndTag(String tag) Writes an XML end tag to the output stream.

public void writeStartTag(String tag) Writes an XML start tag to the output

stream.

Bibliography

[1] Apple Computer, Inc. Macintosh Human Interface Guidelines. Addison-
Wesley, 1992.

[2] A. Fischer and H. Marais. The Oberon Companion. A Guide to Using and
Programming Oberon System 3. VDF, 1998.

[3] David Flanagan. Java in a Nutshell: A Desktop Quick Reference. A
Nutshell handbook. O’Reilly & Associates, Inc., second edition, 1997.

[4] Michael Foley and Mark McCulley. JFC Unleashed: The Comprehensive
Solution. Sams, 1999.

[5] Susan Fowler and Victor Stanwick. The GUI Style Guide. Academic Press,
1994.

[6] Wilbert O. Galitz. The Essential Guide to User Interface Design: An
Introduction to GUI Design Principles and Techniques. John Wiley &
Sons, 1996.

[7] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1995.

[8] David M. Geary. Graphic Java 2: Mastering the JFC, Volume 2: Swing.
Prentice-Hall, 1999.

[9] Cay S. Horstmann and Gary Cornell. Core Java 1.1: Volume 1: Funda-
mentals. Prentice-Hall, third edition, 1997.

[10] Cay S. Horstmann and Gary Cornell. Core Java 1.1: Volume 2: Advanced
Features. Prentice-Hall, first edition, 1998.

[11] Virginia Howlett. Visual Interface Design for Windows: Effective User
Interfaces for Windows 95, Windows NT, and Windows 3.1. John Wiley
& Sons, 1996.

130 Bibliography

[12] Sun Microsystems. Java Look and Feel Design Guidelines. Addison-Wesley,
1999.

[13] Moira C. Norrie. An extended entity-relationship approach to data man-
agement in object-oriented systems. In Proceedings of the 12th Interna-
tional Conference on Entity-Relationship Approach, 1993.

[14] Moira C. Norrie, Alain Wuergler, and M. Wunderli. A model for clas-
sification structures with evolution control. In Proceedings of the 15th
International Conference on Conceptual Modelling, 1996.

[15] Gabrio Rivera and Moira C. Norrie. OMX-FS: A File System Architec-
ture based on the OM Object Data Model. Technical report, Institute for
Information Systems, ETHZ, 1999.

[16] Jon Siegel. CORBA: Fundamentals and Programming. John Wiley & Sons,
1996.

[17] Susan Weinschenk, Pamela Jamar, and Sarah C. Yeo. GUI Design Essen-
tials. John Wiley & Sons, 1997.

[18] N. Wirth and J. Gutknecht. Project Oberon. Addison-Wesley, 1992.

