
Midas: A Declarative Multi-Touch Interaction Framework

Christophe Scholliers1, Lode Hoste2, Beat Signer2 and Wolfgang De Meuter1

1Software Languages Lab
2Web & Information Systems Engineering Lab

Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussels, Belgium

{cfscholl,lhoste,bsigner,wdmeuter}@vub.ac.be

ABSTRACT
Over the past few years, multi-touch user interfaces emerged
from research prototypes into mass market products. This
evolution has been mainly driven by innovative devices such
as Apple’s iPhone or Microsoft’s Surface tabletop computer.
Unfortunately, there seems to be a lack of software engineer-
ing abstractions in existing multi-touch development frame-
works. Many multi-touch applications are based on hard-
coded procedural low level event processing. This leads to
proprietary solutions with a lack of gesture extensibility and
cross-application reusability. We present Midas, a declar-
ative model for the definition and detection of multi-touch
gestures where gestures are expressed via logical rules over a
set of input facts. We highlight how our rule-based language
approach leads to improvements in gesture extensibility and
reusability. Last but not least, we introduce JMidas, an in-
stantiation of Midas for the Java programming language and
describe how JMidas has been applied to implement a num-
ber of innovative multi-touch gestures.

Author Keywords
multi-touch interaction, gesture framework, rule language,
declarative programming

ACM Classification Keywords
D.2.11 Software Engineering: Software Architectures; H.5.2
Information Interfaces and Presentation: User Interfaces

General Terms
Algorithms, Languages

INTRODUCTION
More than 20 years after the original discussion of touch-
screen based interfaces for human-computer interaction [9]
and the realisation of the first multi-touch screen at Bell
Labs in 1984, multi-touch interfaces have emerged from re-
search prototypes into mass market products. Commercial
solutions, including Apple’s iPhone or Microsoft’s Surface

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TEI’11, January 22–26, 2011, Funchal, Portugal.
Copyright 2011 ACM 978-1-4503-0478-8/11/01...$10.00.

tabletop computer, introduced multi-touch user interfaces to
a broader audience. Various manufacturers currently follow
these early adopters by offering multi-touch screen-based
user interfaces for their latest mobile devices. There is not
only an increased use of multi-touch gestures on touch sen-
sitive screens but also based on other input devices such
as laptop touchpads. Some multi-touch input solutions are
even offered as separate products like in the case of Apple’s
Magic Trackpad1. Furthermore, large multi-touch surfaces,
as seen in Single Display Groupware (SDG) solutions [14],
provide new forms of copresent interactions.

While multi-touch interfaces offer significant potential for
an enhanced user experience, the application developer has
to deal with an increased complexity in realising these new
types of user interfaces. A major challenge is the recognition
of different multi-touch gestures based on continuous input
data streams. The intrinsic concurrent behaviour of multi-
touch gestures and the scattered information from multiple
gestures within a single input stream results in a complex de-
tection process. Even the recognition of simple multi-touch
gestures demands for a significant amount of work when us-
ing traditional programming languages. Furthermore, the
reasoning over gestures from multiple users significantly in-
creases the complexity. Therefore, we need a clear separa-
tion of concerns between the multi-touch application devel-
oper and the designer of new multi-touch gestures to be used
within these applications. The gesture designer must be sup-
ported by a set of software engineering abstractions that go
beyond simple low level input device event handling.

In software engineering, a problem can be divided into its
accidental and essential complexity [1]. Accidental com-
plexity relates to the difficulties a programmer faces due to
the choice of software engineering tools. It can be reduced
by selecting or developing better tools. On the other hand,
essential complexity is caused by the characteristics of the
problem to be solved and cannot be reduced. While the
accidental complexity of today’s mainstream applications is
addressed by the use of high-level programming languages
such as Java or C#, we have not witnessed the same software
engineering support for the development of multi-touch ap-
plications. In this paper, we present novel declarative pro-
gramming language constructs in order to tackle the acci-
dental complexity of developing multi-touch gestures and to
enable a developer to focus on the essential complexity.

1http://www.apple.com/magictrackpad/

http://www.apple.com/magictrackpad/

We start with a discussion of related work and present the
required software engineering abstractions for multi-touch
frameworks. We then introduce Midas, our three-layered
multi-touch architecture. After describing the implementa-
tion of JMidas, a Midas instantiation for the Java program-
ming language, we outline a set of multi-touch application
prototypes that have been realised based on JMidas. A criti-
cal discussion of the presented approach and future work is
followed by some general conclusions.

RELATED WORK
Recently, different multi-touch toolkits and frameworks have
been developed in order to help programmers with the de-
tection of gestures from a continuous stream of events pro-
duced by multi-touch hardware [7]. The frameworks that we
are going to discuss in this section provide some basic soft-
ware abstractions for recognising a fixed set of traditional
multi-touch gestures, but most of them do not support the
definition of new application-specific multi-touch gestures.

The Sparsh UI framework [11] is an open source multi-touch
library that supports a set of built-in gestures including hold,
drag, multi point drag, zoom, rotate, spin (two fingers hold
and one drags) as well as double tap. The implementation
of gestures based on hard-coded mathematical expressions
limits the reusability of existing gestures. The framework
only provides limited support to reason about the history of
events. Sparsh UI provides historical data for each finger on
the touch-sensitive surface by keeping track of events. As
soon as a finger is lifted from the surface, the history related
to the specific finger is deleted. This makes it difficult to im-
plement multi-stroke gestures but on the other hand avoids
any garbage collection issues. Furthermore, Sparsh UI does
not deal with the resolution of conflicting gestures. Overall,
Sparsh UI is one of the more complete multi-touch frame-
works providing some basic software abstractions but offers
limited support for multi-stroke and multi-user gestures.

Multi-touch for Java (MT4j)2 is an open source Java frame-
work for the rapid development of visually rich applications
currently supporting tap, drag, rotate as well as zoom ges-
tures. The architecture and implementation of MT4j is sim-
ilar to Sparsh UI with two major differences: MT4j offers
the functionality to define priorities among gestures but on
the other hand it does not provide historical data. When-
ever an event is retrieved via the TUIO protocol [6], mul-
tiple subscribed gesture implementations, called processors,
try to lock the event for further processing. The idea of the
priority mechanism is to assign a numeric value to each ges-
ture. Gesture processors with a lower priority are blocked
until processors with a higher priority have tried (and failed)
to consume the event. With such an instantaneous priority
mechanism, a processor has to decide immediately whether
an individual event should be consumed or released. How-
ever, many gestures can only be detected after keeping track
of multiple events, which limits the usability of the priority
mechanism. Finally, the reuse of gesture detection function-
ality is lacking from the architectural design.

2http://mt4j.org

Grafiti [10] is a gesture recognition management framework
for interactive tabletop interfaces providing similar abstrac-
tions as Sparsh UI. It is written in C# and subscribes to a
TUIO input stream for any communication with different
hardware devices. An automated mapping of multiple lists
to multiple fingers is also not available and there are no con-
structs to deal with multiple users. Therefore, permutations
of multi-touch input have to be performed manually which is
computationally intensive and any reusability for composite
gestures is lacking. Furthermore, the static time and space
values are limiting the dynamic environment of multi-touch
devices. The framework allows gestures to be registered
and unregistered at runtime. In Grafiti, conflict resolution
is based on instantaneous reasoning and there is no notion of
uncertainty. The offered priority mechanism is similar to the
one in MT4j where events are consumed by gestures and are
no longer available for gestures with a lower priority.

The libTISCH [2] multi-touch library currently offers a set
of fixed gestures including drag, tap, zoom and rotate. The
framework maintains the state and history of events that are
performed within a widget. This allows the developer to
reason about event lists instead of individual events. How-
ever, multi-stroke gestures are not supported and an auto-
matic mapping of lists to fingers is not available. Incoming
events are linked to the topmost component based on their
x and y coordinates. Local gesture detection is associated
with a single widget element for the total duration of a ges-
ture. A system-wide gesture detection is further supported
via global gestures. Global gestures are acceptable when
working on small screens like a phone screen, but these ap-
proaches cease to work when multiple users are performing
collaborative gestures. The combination of local and global
gestures is not supported and gestures outside the boundaries
of a widget require complex ad-hoc program code.

Commercial user interface frameworks are also introducing
multi-touch software abstractions. The Qt3 cross-platform
library provides gestures such as drag, zoom, swipe (in four
directions), tap as well as tap-and-hold. To add new ges-
tures, one has to create a new class and inherit from the
QGestureRecognizer class. Incoming events are then
fed to that class one by one as if it would have been di-
rectly attached to the hardware API. Also the Microsoft .NET
Framework4 offers multi-touch support since version 4.0. A
simple event handler is provided together with traditional
gestures such as tap, drag, zoom and rotate. In addition,
Microsoft implemented a two-finger tap, a press-and-hold
and a two-finger scroll. However, there is no support for im-
plementing more complex customised gestures.

Gestures can also be recognised by comparing specific fea-
tures of a given input to the features of previously recorded
gesture samples. These so-called template-based matching
solutions make use of different matching algorithms includ-
ing Rubine [12], Dynamic Time Warping (DTW), neural
networks or hidden Markov models. Most template-based

3http://qt.nokia.com/
4http://msdn.microsoft.com/en-us/library/
dd940543(VS.85).aspx

http://mt4j.org
http://qt.nokia.com/
http://msdn.microsoft.com/en-us/library/dd940543(VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd940543(VS.85).aspx

gesture recognition solutions perform an offline gesture de-
tection which means that the effect of the user input will only
be visible after the complete gesture has been performed.
Therefore, template-based approaches are not suitable for a
number of multi-touch gestures (e.g. pinching). Some ges-
ture recognition frameworks, such as iGesture [13], support
template-based algorithms as well as algorithms relying on
a declarative gesture description. However, these solutions
currently offer no or only limited support for the continuous
online processing of multi-touch gestures.

While the presented frameworks and toolkits provide spe-
cific multi-touch gesture recognition functionality that can
be used by an application developer, most of them show a
lack of flexibility from a software engineering point of view.
In the following, we introduce the necessary software engi-
neering abstractions that are going to be addressed by our
Midas multi-touch interaction framework.

Modularisation Many existing multi-touch approaches do
not modularise the implementation of gestures. Therefore,
the implementation of an additional gesture requires a deep
knowledge about already implemented gestures. This is a
clear violation of the separation of concerns principle, one
of the main principles in software engineering which dictates
that different modules of code should have as little overlap-
ping functionality as possible.

Composition It should be possible to easily compose ges-
tures in order to define more complex gestures. For exam-
ple, a scroll gesture could be implemented by composing
two move up gestures.

Event Categorisation When detecting gestures, one of the
problems is to categorise the events (e.g. events from a spe-
cific finger within the last 500 milliseconds). This event cat-
egorisation is usually a cumbersome and error-prone task,
especially when timing is involved. Therefore, event cate-
gorisation should be offered to the programmer as a service
by the underling system.

GUI-Event Correlation While the previous requirement ad-
vocates the preprocessing of events, this requirement ensures
the correlation between events and GUI elements. In most
of today’s multi-touch frameworks, all events are transferred
to the application from a single entry point. The decision
about which events correlate to which GUI elements is left
to the application developer or enforced by the framework.
However, the reasoning about events correlating to specific
graphical components should be straightforward.

Temporal and Spatial Operators Extracting meaningful
information from a stream of events produced by the multi-
touch hardware often involves the use of temporal and spa-
tial operators. Therefore, the underlying framework should
offer a set of temporal and spatial operators in order to keep
programs concise and understandable. In current multi-touch
frameworks, there is no or limited support for such operators
which often leads to complex program code.

MIDAS ARCHITECTURE
The processing of input event streams in human-computer
interaction is a complex task that many frameworks address
by using event handlers. However, the use of event handlers
has proven to violate a range of software engineering prin-
ciples including composability, scalability and separation of
concerns [8]. We propose a rule-based approach with spatio-
temporal operators in order to minimise the accidental com-
plexity in dealing with multi-touch interactions.

The Midas architecture consists of the three layers shown
in Figure 1. The infrastructure layer contains the hardware
bridge and translator components. Information from an in-
put device is extracted by the hardware bridge and trans-
ferred to the translator. In order to support different de-
vices, concrete Midas instances can have multiple hardware
bridges. The translator component processes the raw input
data and produces logical facts which are propagated to the
fact base in the Midas core layer. The inference engine eval-
uates these facts against a set of rules.

Midas

Application Layer

Core Layer

Infrastructure Layer

GUI

Hardware
Bridge

* Translator

Fact
Base

Inference
Engine

Rule
Base

Shadows Model

Figure 1. Midas architecture

The rules are defined in the Midas application layer but
stored in the rule base. When a rule is triggered, it can invoke
some application logic and/or generate new facts. Further-
more, GUI elements are accessible from within the reason-
ing engine via a special shadowing construct.

Infrastructure Layer
The implementation of the infrastructure layer takes care of
all the details to address the hardware and transforming the
low level input data into logical facts. A fact has a type and
a number of attributes. The core fact that every Midas im-
plementation has to support is shown in Listing 1.

Listing 1. Core fact
1 (Cursor (id ?id) (x ?x) (y ?y) (x−speed ?xs)
2 (y−speed ?ys) (time ?t) (state ?s))

This core fact has the type Cursor and represents a single
cursor (e.g. a moving finger) from the input device. The at-
tributes id, x, y, x-speed, y-speed and time represent
the id, position, movement and time the cursor moved. The
attribute state indicates how the cursor has changed and
can be assigned the values APPEAR, MOVE or DISAPPEAR.

Core Layer
The Midas core layer consists of an inference engine in com-
bination with a fact base and a rule base that is going to be
described in the following.

Rules
We use rules as an expressive and powerful mechanism to
implement gesture recognition. Listing 2 outlines the im-
plementation of a simple rule that prints the location of all
cursors. The part that a rule should match in order to be
triggered is called its prerequisites (before the⇒), while the
actions to be performed if a rule is triggered are called its
consequences.

Listing 2. Example rule
1 (defrule PrintCursor
2 (Cursor (x ?x) (y ?y))
3 =>
4 (printout t ‘‘A cursor is moving at: ’’ ?x ‘‘,’’ ?y))

The first line shows the definition of a rule with the name
printCursor. This rule specifies the matching of all facts
of type Cursor as indicated on the second line. Upon a
match of a concrete fact, the values of the two x and y at-
tributes will be bound to the variables ?x and ?y. Subse-
quently, the rule will trigger its actions (after the ⇒) and
print the text “A cursor is moving at:” followed by the x and
y coordinates.

Temporal Operators
As timing is very important in the context of gesture recog-
nition, all facts are automatically annotated with timing in-
formation. This information can be easily accessed by using
the dot operation and selecting the time attribute. Midas de-
fines a set of temporal operators to check the relationship
between the timing attribute of different facts. The temporal
operators and their definitions are shown in Table 1.

Operator Args Definition
tEqual f1,f2 ∣f1.time− f2.time∣ < "t
tMeets f1,f2 f1.time− f2.time = "tmin

tBefore f1,f2 f1.time < f2.time
tAfter f1,f2 f1.time > f2.time
tContains f1,f2,f3 f2.time < f1.time < f3.time

Table 1. Temporal operators

Note that the tEqual operator is not defined as the absolute
equality but rather as being within a very small time inter-
val "t. This fuzziness has been introduced since input device
events seldom occur at exactly the same time. Similar "tmin,
the smallest possible time interval, is used to expresses that
f1 happened instantaneously after f2.

Spatial Operators
In addition to temporal operators, Midas offers the defini-
tion of spatial constraints over matching facts as shown in
Table 2. These spatial operators expect that the facts they
receive have an x and y attribute.

Operator Args Definition
sDistance f1,f2 euclidianDistance(f1, f2)
sNear f1,f2 sDistance(f1, f2) < "s
sNearLeftOf f1,f2 "s > (f2.x− f1.x) > 0
sNearRightOf f1,f2 "s > (f1.x− f2.x) > 0
sInside f1,f2 �(f1, f2)

Table 2. Spatial operators

Again, we have a small distance value "s to specify that two
facts are very close to each other. This distance is set as a
global variable and adjustable by the developer. Since the
input device coordinates are already transformed by the in-
frastructure layer, the value of "s is independent of a spe-
cific input device. For sInside, the fact f2 is expected to
have a width and height attribute. The � function checks
whether the x and y coordinates of f1 are within the bound-
ing box (f2.x, f2.y)(f2.x+ f2.widtℎ, f2.y+ f2.ℎeigℎt).
Note that we also support user-defined operators.

List Operators
The implementation of gestures often requires the reason-
ing over a set of events in combination with temporal and
spatial constraints. Therefore, in Midas we have introduced
the ListOf operator that enables the reasoning over a set
of events within a specific time frame. An example of this
construct is shown in Listing 3. The prerequisite will match
a set of Cursor events that have the same finger id and oc-
curred within 500 milliseconds. Finally, the matching sets
are limited to those sets that contain at least 5 Cursors.
Note that due to the declarative approach the developer does
no longer have to keep track of the state of the cursors in the
system and manually group them according to their id.

Listing 3. ListOf construct
1 ?myList <− (ListOf (Cursor (same: id)
2 (within: 500)
3 (min: 5))

A list matched by the ListOf operator is guaranteed to be
time ordered. This is required for the multi-touch interac-
tion domain as one wants to reason about a specific motion
along the time axis. By default, rule languages do not imply
a deterministic ordering but allow arbitrary pattern match-
ing to cover all possible combinations. The spatial operators
from the previous sections are also defined over lists. For
example, sAllNearBottomOf expects two lists l1 and
l2 and the operator will return true only if all the elements
of the first list are below all elements of the second list.

Movement Operators
The result of the ListOf construct is a list which can be
used in combination with movement operators. A move-
ment operator verifies that a certain property holds for an
entire list. For example, the movingUp operation is defined
as follows:

movingUp(list)⇐⇒ ∀i, j : i < j ∧ list[i].y > list[j].y

In a similar way, we have defined the movingDown, moving-
Left and movingRight operators.

Application Layer
The application layer consists of a regular program which is
augmented with a set of rules in order to describe the ges-
tures. A large part of this program however will deal with
the GUI and some gestures will only make sense if they are
performed on specific GUI objects. As argued in the intro-
duction, the reasoning over GUI objects in combination with
the gestures should be straightforward. Therefore, in a Mi-
das system the GUI objects are reified as so-called shadow
facts in the reasoning engine’s working memory. This im-
plies that the mere existence of the GUI objects automati-
cally give rise to the associated fact.

The fields of a GUI object are automatically transformed
into attributes of the shadow fact and can be accessed like
any other fact fields. However, a shadow fact differs from
regular facts in the sense that the values of its attributes are
transparently kept synchronised with the values of the ob-
ject it represents. This allows us to reason about application
level entities inside the rule language (i.e. graphical objects).
Moreover, from within the reasoning engine the methods of
the object can be called in the consequence block of a rule.
This is done by accessing the predefined Instance field
of a shadow fact followed by the name and arguments of the
method to be invoked. Listing 4 shows an example of call-
ing the setColor method with the argument "BLUE" on
a circle GUI element.

Listing 4. Method call on a shadow fact instance
1 (?circle.Instance setColor ‘‘BLUE’’)

Finally, the attributes of a shadow fact can be changed by
using the modify construct. When the modify construct is
applied to a shadow fact, the changes are automatically re-
flected in the shadowed object.

Priorities
When designing gestures, parts of certain gestures might
overlap. For example, the gesture for a single click over-
laps with the gesture for a double click. If the priority of the
single click would be higher than the double click gesture,
a user would never be able to perform a double click since
the double click would always be recognised as two single
click gestures. Therefore, it is important to ensure that the
developer has means to define priorities between different
gestures. In Midas, gestures with a higher priority will al-
ways be matched before gestures with a lower priority. An
example of how to use priorities in rules is given in Figure 5.
The use of priorities allows the programmer to tackle prob-
lems with overlapping gestures. The priority concept further
increases modularisation since normally there is no intrusive
code needed in order to separate overlapping gestures.

Listing 5. Priorities
1 (defrule PrioritisedRule
2 (declare (salience 100))
3 <prerequisites>
4 =>
5 <consequence>)

‘Flick Left’ Gesture Example
After introducing the core concepts of the Midas model, we
can now explain how these concepts can be combined in or-
der to specify simple gestures. The Flick Left gesture ex-
ample that we are going to use has been implemented in
numerous frameworks and interfaces for photo viewing ap-
plications. In those applications, users can move from one
photo to the next one by flicking their finger over the photo
in a horizontal motion to the left. In the following, we show
how the Flick Left gesture can be implemented in a compact
way based on Midas .

One of the descriptions of the facts representing a Flick Left
gesture is as follows: “an ordered list of cursor events from
the same finger within a small time interval where all the
events are accelerated to the left”. The implementation of
new gestures in Midas mainly consists of translating such
descriptions into rules as shown in Listing 6.

Listing 6. Single finger ‘Flick Left’ gesture
1 (defrule FlickLeft
2 ?eventList[] <−
3 (ListOf (Cursor (same: id) (within: 500) (min: 5)))
4 (movingLeft ?eventList)
5 =>
6 (assert (FlickLeft (events ?eventList))))

The prerequisites of the rule specify that there should be a
list with events generated by the same finger by making use
of the ListOf construct. It further defines that all these
events should be generated within a time frame of 500 mil-
liseconds and that the list must contain at least 5 elements.

Gesture Composition
We have shown that set operators enable the declarative cat-
egorisation of events. The Midas framework supports tem-
poral, spatial and motion operators to declaratively specify
different gestures. Furthermore, priorities increase the mod-
ularisation and shadow facts enable the programmer to rea-
son about their graphical objects in a declarative way.

In the Midas framework, it is common to develop complex
gestures by combining multiple basic gestures as there is no
difference in reasoning over simple or derived facts. This
reusability and composition of gestures is achieved by as-
serting gesture-specific facts on gesture detection. The reuse
and composition of gestures is illustrated in Listing 7, where
a Double Flick Left composite gesture is implemented by
specifying that there should be two Flick Left gestures at ap-
proximately the same time.

Listing 7. ‘Double Flick Left’ gesture
1 (defrule DoubleFlickLeft
2 ?upLeftFlick <− (FlickLeft)
3 ?downLeftFlick <− (FlickLeft)
4 (sAllNearBottomOf ?downLeftFlick.events
5 ?upLeftFlick.events)
6 (tAllEqual ?upLeftFlick ?downLeftFlick)
7 =>
8 (assert (DoubleFlickLeft)))

The implementation of this new composite gesture in tra-
ditional programming languages would require the use of
additional timers and threads. By adopting a rule-based ap-
proach, one clearly benefits from the fact that we only have
to provide a description of the gestures but we do not have
to be concerned on how to derive the gesture.

JMIDAS PROTOTYPE IMPLEMENTATION
We have implemented a concrete JMidas prototype of the
Midas architecture and embedded it in the Java program-
ming language. This enables programmers to define their
rules in separate files and to load them from within Java.
It also implies that developers can make use of Java objects
from within their rules in order to adapt the GUI. We first de-
scribe which devices are currently supported by JMidas and
then outline how to program these devices based on JMidas.

Input Devices
In order to support a large amount of different multi-touch
devices, we have decided to implement an abstraction layer
currently supported by many multi-touch devices. Two im-
portant existing abstraction layers providing a common and
portable API for input device handling are the TUIO [6] and
the TISCH protocol [2]. We chose TUIO as one of the in-
put layers in the JMidas prototype implementation because
of its features in terms of portability and performance. This
implies that any input device supporting the TUIO protocol
can automatically be used in combination with JMidas.

Figure 2. JMidas application on a Stantum SMK 15.4

A first multi-touch device that has been used in combina-
tion with the JMidas framework is the Stantum SMK 15.45

shown in Figure 2, a 15.4 inch multi-touch display that can
deal with more than ten simultaneous touch points. Unfor-
tunately, the Stantum SMK 15.4 does not offer any TUIO
support and we had to implement our own cross-platform
TUIO bridge that runs on Linux, Windows and Mac OS X.

Note that the Midas framework is not limited to multi-touch
devices. A radically different type of input device supported
by the JMidas framework are the Sun SPOTs6 shown in Fig-
ure 3. A Sun SPOT is a small wireless sensor device that
embeds an accelerometer to measure its orientation or mo-
tion.
5http://www.stantum.com
6http://sunspotworld.com

Figure 3. JMidas Sun SPOT integration

Previous experiments with the Sun SPOT device have shown
that gestural movements can be successfully recognised by
using a Dynamic Time Warp (DTW) template algorithm [5].
However, it was rather difficult to express concurrent gestu-
ral movements of multiple Sun SPOTs based on traditional
programming languages due to similar reasons as described
for the multi-touch domain. These difficulties can be over-
come by using the temporal operators offered by JMidas and
a developer can reason about 3D hand movements tracked by
Sun SPOTs. The JMidas Sun SPOT support is still experi-
mental but we managed to feed the reasoning engine with
simple facts for individual Sun SPOTs and the recognition
results for composite gestures look promising.

Initialisation
The setup of the JMidas engine is a two step process to be
executed in the application layer as shown in Listing 8. First,
a new JMidas engine is initialised (line 1) which corresponds
to setting up the Midas core layer introduced earlier in Fig-
ure 1. The second step consist of connecting one or multiple
input sources from the infrastructure layer (lines 2–8). This
step also specifies a resolution for the display via the RES X
and RES Y arguments. After this initialisation phase, the
engine can be started and fed with rules. In Listing 8 this
is highlighted by calling the start method and loading the
rules from a file called rules.md (lines 9–10).

Listing 8. JMidas engine initialisation
1 JMidasEngine engine = new JMidasEngine();
2 TuioListener listener =
3 new TuioToFactListener(engine, RES X, RES Y);
4 TuioClient client = new TuioClient();
5 client.addTuioListener(listener);
6 SunSpotListener spListener = new SunSpotListener(engine);
7 SunSpotClient spClient = new SunSpotClient();
8 spClient.addSunSpotListner(spListener);
9 engine.start();

10 engine.loadFile(‘‘rules.md’’);

In JMidas, we use Java annotations to reify objects as logical
facts. When a class is annotated as Shadowed, the JMidas
framework automatically reifies the instances as logical facts
with the classname as type and the attributes corresponding
to the fields of the object. The field annotation Ignore
is used to exclude specific fields from being automatically
reified as attributes of the logical fact.

http://www.stantum.com
http://sunspotworld.com

An example of how to use the Java annotation mechanism is
given in Listing 9. Since the Circle object is annotated as
Shadowed, its instances will be reified by JMidas as logical
facts. The Circle class has the three fields x, y and z,
whereas the last field has been annotated as Ignore. This
implies that the z field will not be reified as an attribute of the
logical fact. From within the logical rules, the programmer
can match objects of type Circle by using the following
expression: (Circle (x ?x) (y ?y)).

Listing 9. Shadowing GUI elements
1 public @Shadowed class Circle {
2 int x;
3 int y;
4 @Ignore
5 int z;
6 Circle(int id, int x, int y) { ... }
7 }

Reasoning Engine
JMidas incorporates an event-driven reasoning engine based
on the Rete [3] algorithm. The core reasoning engine used
in JMidas is the Jess [4] rule engine for Java which had to
be slightly adapted for our purpose. The Jess reasoning en-
gine has no built in support for temporal, spatial or motion
operations. Moreover, we have extended the engine to deal
with ordered list operations. Other reasoning engines could
have led to the same result but we opted for the Jess reason-
ing engine due to its performance and the fact that it already
offers basic support for shadow facts. However, we felt that
in the context of our work this integration was not conve-
nient enough and added several annotations to ensure that
the synchronisation between facts and classes is handled by
the framework.

Implemented Gestures
JMidas implements all of the traditional gestures such as
drag, tap, double tap, stretch and rotate. In addition to these
standard gestures, we have validated our approach by imple-
menting a set of complex gestures shown in Figure 4. Ac-
cording to the Natural User Interface Group, (NUI group)7,
these complex gestures possibly offer a more ergonomic and
natural way to interact with multi-touch input devices.

Figure 4. Complex gestures implemented in JMidas

Note that we have not empirically evaluated the claims of
the NUI group since the focus of our work is to prevent
7http://nuigroup.com

the programmer from dealing with the accidental complexity
while implementing multi-touch applications. To the best of
our knowledge, our complex gestures shown in Figure 4 are
currently not implemented by any other existing multi-touch
framework.

DISCUSSION AND FUTURE WORK
The implementation of gesture-based interaction based on
low-level programming constructs complicates the introduc-
tion of new gestures and limits the reuse of common inter-
action patterns across different applications. Current multi-
touch interfaces adopt an event-driven programming model
resulting in complex detection code that is hard to main-
tain and extend. In an event-driven application, the control
flow is driven by events and not by the lexical scope of the
program code, making it difficult to understand these pro-
grams. The developer has to manually store and combine
events generated by several event handlers. In Midas, a pro-
grammer only has to provide a declarative description of a
gesture and the underlying framework takes care of how to
match gestures against events.

Current state-of-the-art multi-touch toolkits provide limited
software abstractions to categorise events according to spe-
cific criteria. Often they only offer information that there is
an event with an identifier and a position or provide a list
of events forming part of a single stroke. However, for the
implementation of many multi-stroke gestures, it is crucial
to categorise these events. The manual event classification
complicates the event handling code significantly. With the
presented Midas ListOf operator, we can easily extract
lists of events with certain properties (e.g. events with the
same id or events within a given time frame).

With existing approaches, it is difficult to maintain tempo-
ral invariants. For example, when implementing the click
and double click gestures, the gesture developer has to use
a timer which takes care of triggering the click gesture after
a period of time if no successive events triggered the dou-
ble click gesture. This results in code that is distributed over
multiple event handlers and, again, significantly complicates
any event handling. We have introduced declarative tem-
poral and spatial operators to deal with this complexity. In
contrast to most existing solutions, Midas further supports
the flexible composition of new complex gestures by simply
using other gestures as rule prerequisites.

Our Midas frameworks addresses the issues of modularisa-
tion (M), composition (C), event categorisation (EC), GUI-
event correlation (G) as well as the temporal and spatial
operators (TS) mentioned in the related work section. Ta-
ble 3 summarises these software engineering abstractions
and compares Midas with the support of these requirements
in current state-of-the-art multi-touch toolkits. This com-
parison with related work shows that, in contrast to Midas,
none of the existing multi-touch solutions addresses all the
required software engineering abstractions.

As we have explained earlier, there might be conflicts be-
tween different gestures in which case priorities have to be

http://nuigroup.com

M C EC G TS
Sparsh-UI +/- +/- +/- +/- -

MT4j +/- - - +/- -
Grafiti +/- +/- +/- +/- -

libTISCH +/- - +/- + -
Qt4 +/- +/- - +/- -

.NET - - - - -
Templates + - - - -

Midas + + + + +

Table 3. Comparison with existing multi-touch toolkits

defined to resolve these conflicts. In current approaches, this
conflict resolution code is scattered over the code of multiple
gestures. This implies that the addition of a new gesture re-
quires a deep knowledge of existing gestures and results in a
limited extensibility of existing multi-touch frameworks [7].
In contrast, our Midas framework offers a built-in priority
mechanism and frees the developer from having to manually
implement this functionality.

In the future, we plan to develop an advanced priority mech-
anism that can be adapted dynamically. We are currently
also investigating the JMidas integration of several new input
devices, including Siftables8 and a voice recognition system.
Even though these devices significantly differ from multi-
touch surfaces, we believe that the core idea of applying a
reasoning engine and tightly embedding it in a host language
can simplify any gesture recognition development.

CONCLUSION
We have presented Midas, a multi-touch gesture interaction
framework that introduces a software engineering method-
ology for the implementation of gestures. While existing
multi-touch frameworks support application developers by
providing a set of predefined gestures (e.g. pinch or rotate),
our Midas framework also enables the implementation of
new and composed multi-touch gestures. The JMidas pro-
totype highlights how a declarative rule-based language de-
scription of gestures in combination with a host language in-
creases the extensibility and reusability of multi-touch ges-
tures. The presented approach has been validated by imple-
menting a number of standard multi-touch gestures as well
as a set of more complex gestures that are currently not sup-
ported by any other toolkit. While the essential complexity
in dealing with advanced multi-touch interfaces cannot be
reduced, we offer the appropriate concepts to limit the ac-
cidental complexity. We feel confident that our approach
will support the HCI community in implementing and inves-
tigating innovative multi-touch gestures that go beyond the
current state-of-the-art.

REFERENCES
1. F. P. Brooks, Jr. No Silver Bullet: Essence and

Accidents of Software Engineering. IEEE Computer,
20(4):10–19, April 1987.

2. F. Echtler and G. Klinker. A Multitouch Software
Architecture. In Proc. of NordiCHI 2008, 5th Nordic

8http://sifteo.com

Conference on Human-Computer Interaction, pages
463–466, Lund, Sweden, 2008.

3. C. L. Forgy. RRete: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem. Artificial
Intelligence, 19(1):17–37, 1982.

4. E. Friedman-Hill. Jess in Action: Java Rule-Based
Systems. Manning Publications, July 2003.

5. L. Hoste. Experiments with the SunSPOT
Accelerometer. Project report, Vrije Universiteit
Brussel, 2009.

6. M. Kaltenbrunner, T. Bovermann, R. Bencina, and
E. Costanza. TUIO: A Protocol for Table-Top Tangible
User Interfaces. In Proc. of GW 2005, 6th Intl.
Workshop on Gesture in Human-Computer Interaction
and Simulation, Ile de Berder, France, May 2005.

7. D. Kammer, M. Keck, G. Freitag, and M. Wacker.
Taxonomy and Overview of Multi-touch Frameworks:
Architecture, Scope and Features. In Proc. of Workshop
on Engineering Patterns for Multi-Touch Interfaces,
Berlin, Germany, June 2010.

8. I. Maier, T. Rompf, and M. Odersky. Deprecating the
Observer Pattern. Technical Report
EPFL-REPORT-148043, Ecole Polytechnique Fédérale
de Lausanne, Lausanne, Switzerland, 2010.

9. L. H. Nakatani and J. A. Rohrlich. Soft Machines: A
Philosophy of User-Computer Interface Design. In
Proc. of CHI ’83, ACM Conference on Human Factors
in Computing Systems, pages 19–23, Boston, USA,
December 1983.

10. A. D. Nardi. Grafiti: Gesture Recognition mAnagement
Framework for Interactive Tabletop Interfaces. Master’s
thesis, University of Pisa, 2008.

11. P. Ramanahally, S. Gilbert, T. Niedzielski,
D. Velázquez, and C. Anagnost. Sparsh UI: A
Multi-Touch Framework for Collaboration and
Modular Gesture Recognition. In Proc. of WINVR
2009, Conference on Innovative Virtual Reality, pages
1–6, Chalon-sur-Saône, France, February 2009.

12. D. Rubine. Specifying Gestures by Example. In Proc.
of ACM SIGGRAPH ’91, 18th Intl. Conference on
Computer Graphics and Interactive Techniques, pages
329–337, Las Vegas, USA, August 1991.

13. B. Signer, U. Kurmann, and M. C. Norrie. iGesture: A
General Gesture Recognition Framework. In Proc. of
ICDAR 2007, 9th Intl. Conference on Document
Analysis and Recognition, pages 954–958, Curitiba,
Brazil, September 2007.

14. J. Stewart, B. B. Bederson, and A. Druin. Single
Display Groupware: A Model for Co-present
Collaboration. In Proc. of CHI ’99, ACM Conference
on Human Factors in Computing Systems, pages
286–293, Pittsburgh, USA, May 1999.

http://sifteo.com

	Introduction
	Related Work
	Midas Architecture
	Infrastructure Layer
	Core Layer
	Rules
	Temporal Operators
	Spatial Operators
	List Operators
	Movement Operators

	Application Layer
	Priorities
	`Flick Left' Gesture Example
	Gesture Composition

	JMidas Prototype Implementation
	Input Devices
	Initialisation
	Reasoning Engine
	Implemented Gestures

	Discussion and Future Work
	Conclusion
	REFERENCES

