
On Generating Content and Structural Annotated
Websites using Conceptual Modeling

Sven Casteleyn1, Peter Plessers1, Olga De Troyer1

1 Vrije Universiteit Brussel
Pleinlaan 2, 1050 Elsene – Brussel

Belgium
{Sven.Casteleyn, Peter.Plessers, Olga.DeTroyer}@vub.ac.be

http://wise.vub.ac.be/

Abstract. An important milestone in the evolution of the Web is the Semantic
Web: a Web in which the semantics of the available content and functionality is
made explicit. Web design methods, originally aimed at offering a well-
structured, systematic approach to Web design, now face new opportunities and
challenges: Semantic Web technology can be used to make the semantics of the
conceptual design models explicit; however a major challenge is to (semi-)
automatically generate the semantic annotations, effectively enabling the Se-
mantic Web. In this paper, we describe how WSDM, a well-known Web de-
sign method, was adapted to use Semantic Web technology for its conceptual
modeling and how this can be exploited to generate semantically annotated
websites. We consider two types of semantic annotations: content-related anno-
tations and structural annotations. The first type allows to describe the seman-
tics of the content of the website, the latter are annotations that explicitly de-
scribe the semantics of the different structural elements used in the website.

1 Introduction

Websites have evolved from a handful of statically linked pages into complex appli-
cations, serving a vast amount of rapidly changing information and functionality to a
highly diversified audience. Web design methods were conceived to help the Web
designer in coping with the complexity of designing and creating websites. Current
Web design methods offer conceptual modeling primitives for different design con-
cerns (i.e. most methods distinguish between data, navigation and presentation) com-
bined with a systematic development approach.

The latest developments in the field of the Web are related to the vision of the Se-
mantic Web. To allow making the semantics of the available Web content explicit,
several (Semantic Web) technologies were introduced (e.g., RDF, OWL). With the
arrival of the Semantic Web and its related technologies, new opportunities and chal-
lenges for Web design methods arose. A first opportunity lies in the use of Semantic
Web technologies internally in the Web design method. More in particular, the use of
ontologies allows to explicitly express the semantics of the different design models
(meta-models), as well as the semantics of the represented data. In addition, the use of

Semantic Web technology in combination with semantically rich conceptual model-
ing concepts allows the generation of semantically annotated websites: websites in
which the semantics of the content is made explicit by means of annotations. We call
this kind of annotations content-related annotations to distinguish them from a sec-
ond type of annotations, the so-called structural annotations. Indeed, it is also possi-
ble to annotate a website so that not only the semantics of its content are made ex-
plicit, but also the semantics of its structure. Dedicated ontologies describing the
semantics of structural elements for a particular use (e.g., the WAfA ontology [19] is
dedicated to assist visually impaired users while browsing) can be used to make the
semantics of the different structural elements (e.g., a navigation menu, a logo, an
advertising banner) explicit. These structural annotations can be generated by exploit-
ing the conceptual design information captured during the design process. The more
semantically rich design modeling concepts are used, the more of these semantically
rich structural annotations can be generated. These structural annotations can subse-
quently be exploited by external applications requiring specific knowledge on the
website structure: e.g., page transcoders (to transcode a webpage in a form more
appropriate for screen readers used by visually impaired users) or search engine in-
dexers.

In this paper, we explain how WSDM [4], an existing Web design method, com-
bines Semantic Web technology and Conceptual modeling to allow the development
of websites that satisfy the needs of the Semantic Web (section 2). We discuss how
the adoption of Semantic Web technology is exploited to (semi-) automatically gen-
erate content-related semantic annotations (section 3), and to fully-automatically
generate structural annotations (section 4). We also illustrate the benefits of structural
annotations with two useful applications: facilitate accessibility for visually impaired
users, and provide aid for search engines indexing websites. As the annotation proc-
ess is performed on a conceptual level and the actual annotations are generated, the
approach provides benefits over existing (manual) annotation approaches: (1) annota-
tion is automatic (for structural annotations) or semi-automatic (for content-related
annotations), (2) static as well as dynamic websites are supported, (3) changes in site
structure or presentation do not invalidate the annotations (in contrast to manual an-
notation approaches) and (4) the generated annotations are more consistent. We dis-
cuss the actual implementation of the annotation generation process in section 5.
Section 6 discusses related work, and finally, section 7 gives conclusions.

2 WSDM Overview and its Ontology

WSDM (Web Semantics Design Method), developed in 1998 [4], aimed to offer a
systematic, multi-phase approach to Web design. It makes a clear distinction between
the conceptual design and the implementation aspects. Each design phase focuses on
one specific aspect: requirements specification, task modeling, content and function-
ality modeling, navigational design, presentation modeling and implementation.

With the emergence of the Semantic Web, WSDM has been adapted to support the
development of semantic websites, i.e. the method supports the semantic annotation
of content and structure. To achieve this, (1) an (OWL) ontology is used to formally

define the different WSDM design models, and (2) OWL is used as conceptual mod-
eling language for the content and the functionality. The OWL ontology, which for-
mally defines the different design models used in WSDM, is called the WSDM On-
tology. The WSDM ontology can be compared to a set of meta-models. When using
the method, the WSDM ontology is populated and will contain the design models
created by the designer for the website under development.

In the remainder of this section, an overview of WSDM is given (see figure 1), and
the different models are formally described using Description Logic syntax1 [1]2.

Fig. 1. WSDM Overview

Mission Statement Specification: In this first phase the mission statement of the
website is formulated. The intention is to identify the purpose of the website, the
topics and the target users. The mission statement is formulated in natural language.
The WSDM Ontology fragment describing the mission statement is as follows:
{MissionStatement m (= 1 hasValue), ⊤ m ∀hasValue.String}.
Note that for the remainder of this section we will omit specification of datatype
properties for reasons of clarity.
Audience Modeling: In this phase, the targeted users identified in the mission state-
ment, are classified into so called audience classes. An audience class is a group of
visitors that has the same information and functional requirements. An audience class
that has the same and more requirements than another audience class is defined as an
audience subclass. This results in an audience class hierarchy. For each audience
class, the characteristics of the members of the class and their usability requirements
are formulated. The output of this phase is the audience model consisting of the audi-
ence class hierarchy, and the characteristics and requirements of each audience class.
The WSDM Ontology fragment describing the relevant concepts for the Audience

1 Description Logic is the formal underlying framework for OWL(-DL)
2The full specification of the WSDM Ontology can be found at

http://wise.vub.ac.be/ontologies/WSDMOntology.owl.

Modeling phase look as follows: {UsabilityRequirement m Requirement, Informa-
tionRequirement m Requirement, FunctionalRequirement m Requirement, ∃hasAudi-
enceSubclass.⊤ m AudienceClass, ⊤ m ∀hasAudienceSubclass.AudienceClass,
∃hasRequirement.⊤ m AudienceClass, ⊤ m ∀hasRequirement.Requirement, ∃has-
Characteristic.⊤ m AudienceClass, ⊤ m ∀hasCharacteristic.Characteristic}.

Conceptual Design: In this phase, conceptual models are made starting from the
requirements formulated in the previous phase. The designer creates conceptual mod-
els for the content, functionality and structure of the website. The conceptual design
makes an abstraction from any implementation detail or target platform. The content
and functionality are modeled during the Task & Information Modeling sub phase;
the navigational structure is defined during the Navigational Design sub phase.

Information and functionality modeling is based on the requirements identified
during Audience Modeling. Tasks are defined for the different requirements. These
tasks are analyzed and modeled in detail using a slightly modified version of CTT
(Concurrent Task Trees) [5]. Tasks are decomposed (step by step) into a set of ele-
mentary subtasks, and temporal relations among them are indicated. The result is a
task model. For each elementary task, an object chunk is created to formally describe
the information and functionality needed to perform this task [5]. OWL is used as
conceptual modeling language for the object chunks. The output of the Task & In-
formation Modeling phase is a set of object chunks.

The relevant part of the WSDM Ontology describing object chunks is given next:
{∃isComposedOf.⊤ m ObjectChunk, ⊤ m ∀
isComposedOf.(Class + DatatypeProperty + ObjectProperty)}.

The goal of the Navigational Design is to define the conceptual structure of the
website and to model how the members of the different audience classes can navigate
through the website and perform their tasks (from a conceptual point of view). For
each audience class, a dedicated navigation structure, called navigation track, is de-
fined. A navigation track can be considered as a sub site containing all and only the
information and functionality needed by the members of the associated audience
class. Such a navigation track is composed of nodes (conceptual units of navigation)
and links (which connect nodes). Links may be parameterized. Note that during the
conceptual navigation design, no actual page structure is yet created. This is done
during implementation design (see next). The output of this phase is the navigational
model.

The WSDM Ontology fragment describing the relevant Navigation Design con-
cepts is as follows: {∃hasChunk.⊤ m Node, ⊤ m ∀hasChunk.ObjectChunk, ∃has-
Source.⊤ m Link, ⊤ m ∀ hasSource.Node, ∃hasTarget.⊤ m Link, ⊤ m ∀hasTar-
get.Node, ∃hasCondition.⊤ m Link, ⊤ m ∀hasCondition.Condition, ∃hasParame-
ter.⊤ m Link, ⊤ m ∀hasParameter.Parameter}.

Implementation Design: Here, the conceptual design models are complemented with
information required for the actual implementation: the distribution of nodes and
links on pages (Site Structure Design), presentation issues (Presentation Design) and
logical data source (Logical Data Design).

During Site Structure Design, the conceptual navigation structure of the website
is mapped onto pages, i.e. it is decided which nodes (with associated object chunks)
and links defined in the navigational model will be grouped onto Web pages. Differ-
ent site structures can be defined, targeting different devices, contexts or platforms.

The output of this phase is the site structure model. The WSDM Ontology frag-
ment describing the relevant Site Structure Design concepts is as follows:
{∃hasNode.⊤ m Page, ⊤ m ∀hasNode.Node, Page m ∃hasNode.Node}.

The goal of the Presentation Design is to describe the layout of the pages, i.e., po-
sitioning and style. First, page templates are designed. Different kinds of templates
may be needed, e.g., a homepage template, a title page template, leaf page templates.
WSDM provides several Template Concepts (e.g., ‘Footer’, ‘Header’, ‘Sidebar’) to
model page templates. For styles, Cascading Style Sheets are currently used. Next, it
is specified how the information and functionality (modeled by means of the object
chunks and grouped by means of nodes and assigned to a page) should be presented.
Therefore, WSDM offers several Presentation Concepts to model the layout and pres-
entation of a page. These Presentation Concepts vary from primitive ones (e.g.,
‘Grid’, ‘Row’, ‘MultimediaConcept’, ‘FormConcept’) to high-level concepts (e.g.,
‘Menu’, ‘Section’). Also during Page Design, the designer must decide on labels and
presentation styles for links. The output of this phase is the presentation model con-
sisting of a set of templates, and for each page defined in the site structure model a
page model.

The Logical Data Design is needed for data-intensive websites that maintain their
data in a data source. In this phase, this data source must be defined and the relation-
ship between the conceptual level (i.e. the object chunks) and the data source must be
expressed. This last issue is explained into more detail in the next section.

3 Content-Related Semantic Annotations

In this section, we describe how WSDM allows designing websites of which the
content is semantically annotated. Important to our approach is that this is supported
at a conceptual level. The approach extends and refines our previous work as de-
scribed in [15]: multiple existing domain ontology can be used, if needed, an appro-
priate (application) ontology can be extracted from the design, but most importantly,
the use of OWL facilitates easier specification of semantic annotations.

Conceptual Design
The goal of our approach is to generate a website of which the content is automati-

cally annotated with one or more domain ontologies which are related with the topics
covered by the website. Details about the actual generation process are given in sec-
tion 5. Here, we describe the principles of the approach and what must be done by the
designer to obtain a semantically annotated website. In practice, three different cases
may occur when designing a website:
1. No appropriate domain ontology exists or is available. A new ontology will be

created incrementally as a result of the creation of the object chunks, i.e. by inte-
grating all object chunks (see [6]). The object chunks are expressed as views on

this ontology. Note that there is no additional effort required from the designer.
Such an ontology is often called an application ontology.

2. A single domain ontology exists that covers completely the domain of the website.
In this case, this ontology is taken as the basis for the conceptual design. The de-
signer needs to express the concepts and relations used in the object chunks in
terms of concepts from this domain ontology, e.g., by referring to an ontology
concept instead of defining a new one. In this way, the object chunks are defined
as views on this domain ontology.

3. Multiple domain ontologies are needed to cover the domain of the website. In this
case, the different domain ontologies must be aligned first. This is done by defin-
ing a so-called reference ontology and by defining mappings between the domain
ontologies and this reference ontology. Then, the concepts used in the object
chunks can be defined in term of the concepts of this reference ontology, and the
object chunks will be views on the reference ontology.

Fig. 2. General architecture illustrating the different mappings.

Figure 2 shows an overview of the architecture covering these three cases. The dif-
ferent domain ontologies used are aligned by defining a mapping between the domain
ontologies and the reference ontology (called domain ontology mappings). This refer-
ence ontology can also be used to define additional concepts not present in the avail-
able domain ontologies but relevant for the application. Note that in the case of just
one domain ontology, the references ontology plays the role of this domain ontology
(possibly also augmented with additional concepts). In the case where there is no
domain ontology available, the reference ontology plays the role of application ontol-
ogy that is incrementally constructed. The second type of mappings, called object
chunk mappings, defines the object chunks as views on the reference ontology. A
view mechanism is required because the conceptualization as specified by a domain
ontology may not always exactly suit the requirements of the website. E.g., a domain
ontology may specify an address as composed of a street, number and city, but the
website may prefer to consider the address as a single entity (i.e. a single string).

To illustrate the different mappings, we give a small example. As in section 2, we
use Description Logic syntax, this time to describe object chunks, reference ontology
and domain ontologies. Suppose, a first (existing) domain ontology contains (besides
other axioms) the following axioms: {Man m Person, Woman m Person, ⊤ m ∀has-
MaternityLeave.{true, false}, ∃hasMatenityLeave.⊤ m Woman, Woman m (= 1 has-
MaternityLeave)} (Informally: ‘Man’ and ‘Woman’ are subtypes of ‘Person’, and for
a ‘Woman’ it is specified if she is on maternity leave or not). A second (existing)
domain ontology describes a partly overlapping domain, and contains the following

axioms: {⊤ m ∀hasSex.{M, F}, ∃hasSex.⊤ m Person, ∃hasStreet.⊤ m Person, ⊤ m
∀hasStreet.String, ∃hasCity.⊤ m Person, ⊤ m ∀hasCity.String, ∃hasCountry.⊤ m
Person, ⊤ m ∀hasPostalCountry.String} (a ‘Person’ is either male or female, speci-
fied by the ‘hasSex’ property, and a ‘Person’ has an address which is specified by the
‘hasStreet’, ‘hasCity’ and ‘hasCountry’ properties). To align these two domain on-
tologies, it is necessary to resolve the different ways of representing a person’s sex
(i.e. respectively by using subtypes, and by using a hasSex property) and furthermore
to merge the non-overlapping parts of both ontologies. Suppose this is done by con-
structing the following reference ontology:
{Man m Person, Woman m Person, ⊤ m ∀hasMaternityLeave.{true, false}, ∃hasMat-
enityLeave.⊤ m Woman, ∃hasStreet.⊤ m Person, ⊤ m ∀hasStreet.String, ∃hasCity.⊤
m Person, ⊤ m ∀hasCity.String, ∃hasCountry.⊤ m Person, ⊤ m ∀ hasCoun-
try.String}

Then, the following domain ontology mappings express the relations between the
reference ontology and the two domain ontologies (trivial mappings are omitted):

Reference ontology Domain Ontology1 Domain Ontology2

Man Man Person WHERE hasSex = ‘M’

Woman Woman Person WHERE hasSex = ‘F’

hasMaternityLeave hasMaternityLeave -

Now assume that the Web designer wants to consider an ‘address’ as a single
string. This is expressed in the object chunk as follows: {Man m Person, Woman m
Person, ∃hasAddress.⊤ m Person, ⊤ m ∀hasAddress.String} (‘Man’ and ‘Woman’
are subtypes of ‘Person’, and a ‘Person’ has an address specified as a single string).
Now, ‘hasAddress’ cannot refer in a one-to-one way to a concept in the reference
ontology. Instead, the following Object Chunk Mapping is needed (trivial one-to-one
mappings are again omitted). The ‘+’-sign indicates the concatenation of strings.

Object Chunk Reference ontology

hasAddress hasStreet + hasCity + hasCountry

Data Source Mapping
When the website is generated (from the models), the actual pages need to be filled

with data. The designer may decide to use a data source (e.g., a relational database) to
maintain the data. To be able to generate the actual pages a mapping is needed be-
tween the conceptual level (i.e. the object chunks) and this data source. The mapping
is defined between the reference ontology and the data source. E.g., in the case of a
relational database, the data source mapping indicates the tables and columns where
instances of concepts of the reference ontology can be found. Note that, similar as for
object chunk mappings and domain ontology mappings, no one-to-one mapping can
be assumed. For example, for a relational table ‘Person(ID, street, city, country, gen-
der, hasMaternityLeave), we have the following data source mappings:

Reference ontology Data Source

hasMaternityLeave SELECT hasMaternityLeave FROM Person WHERE gender=’F’

Woman SELECT ID FROM Person WHERE gender=’F’

Man SELECT ID FROM Person WHERE gender=’M’

The different mappings will be used to generate the actual annotations (see section 5).
This approach is different from the usual annotation approaches that define mappings
with the ontology directly on the implementation level (see also section 6 on related
work). In our approach, the mappings are defined at the conceptual level. This has
several advantages. We mention the most important ones:
1. Implementation independent: the basis for the annotations is made on the concep-

tual level, and therefore the actual website annotations can be
generated along with different implementations.

2. Consistency of annotations: as concepts (in the object chunks) are linked to Ref-
erence Ontology concepts and only one link per concept is given, it is not possi-
ble (like in other annotation approaches) that the actual annotations (for different
instances) are not consistent.

3. Both static and dynamic websites supported: the implementation generation
process of WSDM (see section 5) does not distinguish between static and dy-
namic websites; annotations are effortlessly generated for both types of websites.

4 Structural Semantic Annotations

By exploiting the semantics of the modelling concepts (e.g., menu, header, node)
used in the different design models (and captured in the WSDM Ontology), useful
annotations concerning the structure of the website can be generated. This is realized
by defining a mapping between the WSDM Ontology concepts and an external ontol-
ogy describing the semantics of structural elements (tailored for a certain use). An
example of such an ontology is the WAfA ontology [19]. Subsequently, these map-
pings can be used to annotate the actual website with concepts from this external
ontology. As the mappings are dependent on the ontology used, we will illustrate the
approach for two different ontologies: the WAfA ontology (developed to assist visu-
ally impaired users) and a (newly created) block-ontology (to assist search engines in
more accurately indexing a website). Evidently, it is possible to annotate one website
using multiple ontologies, each describing different types of structuring elements.

Structural Annotations to support Accessibility for Visually Impaired User
Currently, most visually impaired users rely on screen readers to access websites.

These screen readers sequentially read a page. This is not only time-consuming for
the user but in addition a lot of information that is conveyed by means of layout (e.g.,
white space, tables used for structuring) is lost. The Dante approach [19] allows an-
notating Web pages using the WAfA ontology, which defines concepts that allow
indicating how objects on a page are presented and the role they fulfil in the presenta-
tion. These annotations allow (external applications) to transcode Web pages in a
form more suitable for accessing pages using screen readers. However, currently it is
a manual annotation process, and this is an effort that is too labour intensive to be

usable in general. Moreover, the resulting annotations are typically sensitive to
changes in the websites content or structure (and re-annotation is required).

By defining a mapping between the modelling concepts in the WSDM ontology
and the concepts in the WAfA ontology, the WAfA annotations can be generated
automatically when developing a website using WSDM. Here we give the mapping
for two representative concepts. To describe the mapping rules, we use the following
notational convention: first, the WAfA concept is given in bold, followed by it’s
meaning (in italic). Where needed an informal explanation of the mapping rule is
given and finally a formal definition using Semantic Web Rule Language (SWRL)3
which is particularly suited to handle OWL specifications and makes automatic anno-
tation generation possible (see section 5). Some mapping rules between the WSDM
and WAfA-ontology are straightforward one-to-one mappings; others are more com-
plex and need to exploit the knowledge captured by means of several concepts, and/or
the relationships between them. Two examples follow:

• WAfA:TableOfContent: A list of available sections and a link to the beginning
of each section
 wsdm:NavigationTableOfContent(?i) ⇒ WAfA:TableOfContent(?i)4

• WAfA:DropDownLinkMenu: A DropDownLinkMenu is a menu that appears
below an item when the user clicks on it. A linkmenu corresponds to a
wsdm:Menu represented as a wsdm:List in WSDM. Furthermore, to denote it
is a dropdown menu, it should have an associated wsdm:Behaviour defined
with wsdm:Event ‘onClick’ and wsdm:Action ‘dropDown’. Each menu with
this behaviour is a DropDownLinkMenu in WSDM.

 wsdm:Menu(?i) ∧ wsdm:representedBy(?i, ?x) ∧ wsdm:List(?x) ∧
 wsdm:hasBehavior(?x, ?y) ∧ wsdm:Behavior(?y) ∧ wsdm:onEvent(?y,
 'on Click') ∧ wsdm:doAction(?y, 'dropDown')
 ⇒ wafa:DropDownLinkMenu(?i)

Other mapping rules are defined in a similar manner. Currently, we have defined
mapping rules for 74% of the WAfA Ontology concepts (see [16]). Note that this
mapping is a once-only activity. Thereafter, it can be used to automatically generate
structural annotations for any website5.

Structural Annotations for Search Engine Support
To improve search results, search engines apply a technique called page segmenta-

tion (see e.g. [3] for an overview). The aim of page segmentation is to distinguish
meaningful “blocks” (also called “passage”) in a Web page according to the logical
structure, the presentation and the semantics of page objects. This information is
subsequently exploited in page-rank and website indexing algorithms (e.g. [3, 10]).
Extensive research has been done in devising information retrieval algorithms that are
able to extract the relevant blocks from a given Web page. Unfortunately, as valuable
design knowledge about the structure and semantics of page objects is not available in
typical Web pages, output of these algorithms is unavoidably limited. Similar as in

3 See http://www.daml.org/2003/11/swrl/.
4 Both ontologies were developed independently, which explains different names for similar

concepts.
5 Compare to manual annotation approaches, where each website needs be processed by hand.

the previous case, semantics concerning structure available in the WSDM design
models can be used to automatically generate semantic annotations describing the
“blocks” required to sophisticate search engine’s indexing algorithms. As no ontol-
ogy describing these blocks and their relationships exists, we have created a prove-of-
concept block-ontology describing different semantic blocks (e.g., topics, sections,
units) and their relationships (both semantic, e.g., ‘isSubTopicOf’, and spatial, e.g.,
‘below’). Note that it would be possible to directly use the WSDM Ontology to make
the annotations. However, this would require knowledge of the WSDM Ontology by
the page segmentation algorithms. Two example mapping rules are:

• block:Section: A block representing a section in a Web page
 wsdm:Section(?i) ⇒ block:Section(?i)

• block:SemanticBlock: A block representing a semantic unit (presented to-
gether). In WSDM, an object chunk represents (a unit of) information needed for
a single task. The wsdm:Grid representing a
wsdm:ObjectChunk can be annotated as a block:SemanticBlock:

 wsdm:Grid(?i) ∧ wsdm:representsChunk(?i, ?x) ∧
wsdm:ObjectChunk(?x) ⇒ block:SemanticBlock(?i)

5 Implementation Generation Process

To generate the actual semantically annotated website, a transformation pipeline is
used. We will not explain the complete pipeline but instead focus on the generation of
the annotations. The pipeline takes all the models of the conceptual and the imple-
mentation design as inputs. The transformations to generate the implementation of the
website (without annotations) consists of four steps (T1, T2, T3 and T4 in Figure 3):

T2

T3

T4

T5

Pages

T1

T2

T3

T4

PagesPages
ConcreteStructural

Annotations

Object
Chunks

Navigation
Model

Site Structure
Model

Page
Models

Data Source
Mapping

T5

Content
Related

Annotations

Figure 3 Implementation Generation Overview

• Model Integration (T1): integrates the different input models into one single
model. In principle, this transformation can be omitted, but it simplifies the fol-
lowing transformations.

• Implementation Mapping (T2): the implementation platform is chosen (e.g.,
HTML, XHTML, WML), and the integrated model derived in T1 is transformed
towards the chosen platform. References to data (i.e., to instances in object
chunks) are not yet processed; this is done in the next transformation T3.

• Query Construction (T3): the references to instance values in the object chunks
are resolved and mapped onto queries on the data source. This is performed fully
automatically because the mappings from the object chunks to the reference on-
tology and from the reference ontology to the data source are available (see sec-
tion 5.1 for an example).

• Query Execution (T4): finally, the queries derived in T3 are processed, and the
actual pages are generated by inserting the data at the proper places. When the
query execution phase is performed offline, a static website is created; when it is
performed at runtime, a dynamic website is the result.

Generating Content-Related Annotations
The content of the website is annotated by means of the OWL reference ontology

(see section 3). Remember that the object chunks are defined as views (or conceptual
queries) on the reference ontology. In the query construction (T3), these conceptual
queries are transformed into executable queries using both the object chunk- and data
source mappings. We explain by means of a small example (based on the example of
section 3) how these mappings allow us to generate content-related annotations.

Figure 4 Generating Content-Related Semantic Annotations

An overview of the content-related annotation generation process is illustrated in
figure 4. Consider a conceptual query expressing the address of men (1). Using the
object chunk mapping (OCM), this conceptual query on the original object chunk is
transformed into a conceptual query on the reference ontology (2). Using the data
source mapping (DSM), the resulting conceptual query is transformed into an execu-
table (SQL) query (3) on the actual data source (here a relational database). The result
of this query is a set of instances, in the form of a table, of which an example tuple is
shown in (4). The data in this table is subsequently transformed into a set of instances
of the reference ontology using the inverse data source mapping (DSM-1) (5). Finally,
the address is presented as a single string (as was specified by the object chunk),
using the inverse object chunk mapping (OCM-1) (6). Note that, by inserting -
tags surrounding the individual attributes, we are still able to refer to the individual
parts of the address string on the Web page, i.e. no semantic information present in

the reference ontology is lost. Finally, we link the generated HTML code (given in
(6)) and the instantiation of reference ontology concepts together using XPointer
expressions: page.html#xpointer(id("1"))<=>refOnt#xpointer(id("23")/hasStreet)
Generating Structural Annotations

Taking as input the design models in the WSDM Ontology and the mapping be-
tween the WSDM Ontology and an (external) ontology describing structural elements
(e.g., the WAfA ontology), a transformation T5 can be added to the transformation
pipeline to generate the structural annotations. To illustrate the generation of struc-
tural annotations, consider the example in which a (WSDM) menu with menu-items
is transformed to a bulleted list in HTML, including structural annotation denoting
the presence of a menu for accessibility purposes (using the WAfA ontology):

(1) Result after T1 (2) Result after T4
<ul id=“menu1”>
 <li id=”item1”>
 item 1

 <li id=”item2”>...

(3) Result after T5

<wsdm:Menu rdf:id=“menu1”>
 <wsdm:hasItem>
 <wsdm:MenuItem rdf:id=“item1”>
 <wsdm:Label>item 1</wsdm:Label>
 <wsdm:hasNavRef
 rdf:resource=”#ref1”/>
 </wsdm:MenuItem> </wsdm:hasItem>
 <wsdm:hasItem>
 <wsdm:MenuItem id=“item2”>
 ...
 </wsdm:MenuItem> </wsdm:hasItem>
 <wsdm:representedBy
 rdf:resource=”#bulletedList”/>
</wsdm:Menu>

http://.../wafa.owl#linkMenu

http://www.example.com/page.html

#xpointer(id(“menu1”))

Note how the unique ids, originating from the WSDMOntology instances, are
maintained through the transformation pipeline and reflected in the final code. In our
example, the bulleted list in (2) carries the same id as the high-level presentation
concept wsdm:Menu in (1), denoting that the (bulleted) list structure actually repre-
sents a menu, and it is annotated with a WAfA:linkMenu concept.

A prototype implementation of the transformation pipeline was made using Se-
mantic Web technology: OWL for the WSDM Ontology and (instantiations of the)
design models and object chunks, XSLT to perform the transformation steps, and
xPointer to link annotations and actual implementation (i.e. HTML).

6 Related Work

When reviewing the literature concerning semantic annotations, we can mainly
distinguish three different approaches: manual, (semi-)automatic, and Web engineer-
ing approaches. The difference between manual and automatic approaches consists of
the fact that the former ones require a (manual) mapping between content and seman-
tics, while the latter attempt to extract the semantics automatically (e.g., using NLP
techniques). Examples of automatic approaches include Melita [2] and KMI annota-
tion framework [13]. Manual annotation approaches offer the user tool support to
define annotations for HTML documents. The first tool in this context was the SHOE

Knowledge Annotator [9], which only supports static Web pages. In course of time,
other manual annotation tools arose: SMORE [18] (adding authoring support by us-
ing an embedded HTML editor), Ont-O-Mat [8] (adding support for dynamic Web
pages by annotating database implementations).

Both manual and automatic approaches suffer some disadvantages. The adequacy
of automatically generated annotations is generally lower compared to manual ap-
proaches; the disadvantage of manual approaches is that the annotations are defined
on an implementation level (making them more vulnerable to changes) and require a
substantial effort from the designer after the website is already implemented.

Recently, research has also been focused on integrating semantic Web technology
into Web design methods. Examples of semantic Web design methods include
SHDM [14], Hera [7], OntoWeaver [12], OntoWebber [11]. These methods use on-
tology languages (e.g., RDFS, OWL) as modeling language for their design models.
This has the advantage that existing ontologies can be used in the design process and
that a verification of the design models is feasible. Some of these approaches offer the
possibility to make the data models internally constructed externally available (in the
form of RDFS or OWL). However, none of these approaches actually generates web-
sites that are annotated i.e., they rather offer the content (independently) in user- (e.g.,
HTML) and machine-readable form (e.g., RDF). Explicitly linking Web content with
ontologies that describe the semantics (semantic annotations) is required to support
for example content rating and filtering (see http://www.w3.org/TR/rdf-pics). These
methods also do not provide support for structural annotations.

The only known approach similar to the one described in this paper, is WEESA
[17]. However, WEESA is not a design method by itself, but can be used after the
design and for design methods that specify their design models in XML. It is able to
generate content-related semantic annotations by defining a mapping between the
XML schemas and existing ontologies. The disadvantage of WEESA is that it cannot
benefit from the Web design process itself, but instead needs to define the mapping
regardless if a domain ontology was used during the design process or not. As far as
we are aware of, no other Web design method generates structural annotations.

7 Conclusion

In this paper, we described how in the website design method WSDM Semantic
Web technology (OWL) and conceptual modeling is used to generate two types of
semantic annotations: content-related annotations and structural annotations. The use
of ontologies for the conceptual modeling of information and functionality during the
design process allows (semi-) automatically generation of content-related semantic
annotations. Three different situations are considered 1) no existing domain ontology
is available, 2) a single existing domain ontology can be used, and 3) multiple exist-
ing domain ontologies must be used. Next to content-related semantic annotations, we
also discussed structural semantic annotations: annotations which (semantically)
describe the structure of the website. This type of annotations is generated exploiting
the semantics of the different design modeling concepts. The approach is illustrated
for two types of structural annotations and their usefulness has been pointed out.

The integrating of the annotation generation in the design process of a website, as
described here, has the following advantages over existing (post-website-deployment)
annotation approaches: smaller effort required (i.e. content-related annotations are
semi-automatically generated, structural annotations fully automatically), robustness
(annotations are not invalidated when re-designing the website), higher consistency,
and support for dynamic websites.

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description
Logic Handbook (2003)

2. Ciravegna, F., Dingli, A., Petrelli, D., Wilks, Y: User-System Cooperation in Document
Annotation based on Information Extraction. In Proc. of EKAW 02, Sigüenza Spain (2002)

3. Deng Cai, Shipeng Yu, Ji-Rong Wen, Wei-Ying Ma.: Block-based web search. ACM SIGIR.
(2004), pp. 456-463

4. De Troyer, O. and Leune, C.: WSDM: A User-Centered Design Method for Web Sites. In
Proceedings of the 7th WWW Conference, Elsevier, (1998), pp. 85-94

5. De Troyer, O., Casteleyn, S.: Modeling Complex Processes for Web Applications using
WSDM. In Proceedings of the 3rd Int. IWWOST workshop (2003)

6. De Troyer, O., Plessers, P., Casteleyn, S.: Conceptual View Integration for Audience Driven
Web Design. In CD-ROM Proc. of the WWW2003 Conference, Budapest Hungary (2003)

7. Frasincar, F., Houben, G.-J.: Hypermedia presentation adaptation on the semantic web. In
Proceedings of AH 2002, LNCS, Springer (2002), pp. 133-142

8. Handschuh, S., Staab, S.: Authoring and annotation of web pages in CREAM. The 11th Int.
World Wide Web Conference (WWW2002), Honolulu Hawaii USA (2002)

9. Heflin, J., Hendler, J.: Searching the web with SHOE. Artificial Intelligence for Web Search,
Papers from the AAAI Workshop, WS-00-01, AAAI Press (2000), pp. 35-40

10.Jiang X.-M., Xue, G.-R., Song W.-G., Zeng, H.J., Chen, Z., Ma W.-Y.: Exploiting PageR-
ank at Different Block Level. In Proceedings of the WISE 2004, (2004), pp. 241-252

11.Jin, Y., Xu, S., Decker, S., Wiederhold, G.: OntoWebber: A Novel Approach for Managing
Data on the Web. In Proceedings of ICDE (2002), pp. 488-489

12.Lei, Y., Motta, E., Domingue, J.: Modelling Data-Intensive Web Sites with OntoWeaver. In
proceedings of the International Workshop WISM2004, Riga Latvia (2004)

13.Kiryakov, A., Popov, B., Terziev, I., Manov, D., Ognyanoff, D.: Semantic Annotation,
Indexing, and Retrieval. Elsevier's Journal of Web Semantics, Vol. 2, Issue (1) (2005)

14.Moura, S., Schwabe, D.: Interface Development for Hypermedia Applications in the Seman-
tic Web. In Proceedings of LA Web 2004, Ribeirão Preto, Brasil. IEEE CS Press (2004)

15.Plessers, P., De Troyer, O.: Annotation for the Semamtic Web during Website Develop-
ment, In Proceedings of the ICWE 2004 Conference, Munich Germany (2004), pp. 349-353

16.Plessers, P. Casteleyn, S., Yesilada, Y., De Troyer, O., Stevens, R., Harper, S., Goble, C.:
Accessibility: A Web Engineering Approach, In Proceedings of the 14th Int. World Wide
Web Conference, Chiba Japan (2005), pp. 353-362

17.Reif, G., Gall, H., Jazayeri, M.: WEESA - Web Engineering for Semantic Web Applica-
tions. In Proceedings of the 14th Int. World Wide Web Conference, Chiba Japan (2005)

18.Vargas-Vera, M., Motta, E., Domingue, J., Lanzoni, M., Stutt, A., Ciravegna, F.: MnM:
Ontology Driven Semi-Automatic and Automatic Support for Semantic Markup. In Proc. of
the 13th International Conference on Knowledge Engineering and Management (2002)

19.Yesilada, Y., Harper, S., Goble, G., Stevens, R. Screen Readers Cannot See. In ICWE 2004
Proceedings, (2004), pp 445-458

