
Software Engineering Abstractions for the
Multi-Touch Revolution

Lode Hoste
Vrije Universiteit Brussel

Pleinlaan 2
1050, Elsene

lode.hoste@gmail.com

1. PROBLEM ANDMOTIVATION
Multi-touch interfaces allow users to use multiple fingers

to provide input to a graphical user interface. The idea of
allowing users to touch and manipulate digital information
with their hands has been subject of research for more than
25 years [5, 4]. Recently several of these research artifacts
have found their way to industry, with examples like the
iPhone and the Microsoft Surface. Mainstream program-
ming languages do not offer support to deal with the com-
plexity of these new devices. Unlike the evolution in the
hardware technology, the complexity of these new devices
has not yet been addressed by adequate software engineer-
ing abstractions.

Current multi-touch frameworks provide a narrow range of
hardcoded functionality like pinch, rotate and move known
as multi-touch gestures. There is however a substantial need
to develop new and more gestures for domain specific appli-
cations. Multi-touch devices are inherently concurrent and
provide a continuous stream of events. In many of these
frameworks capturing these events to extract gestures is
done by means of event handlers. Programming multi-touch
devices with event handlers is cumbersome for a number of
reasons.

First, programming with event handlers introduces a lot
of overhead, even when implementing a simple two-finger
gesture. This is because the programmer has to manually
store and combine the events generated by several event han-
dlers. Moreover, he has to manually garbage collect the
stored events when they become uninteresting.

Secondly, current state of the art hardware does not pro-
vide the programmer with any information about which fin-
gers are being used. The only information available in an
event is an identifier and a position. In many multi-finger
gestures it is crucial to map the identifiers to the correct
fingers. Implementing this mapping manually complicates
the event handling code significantly.

Thirdly, the programmer has to deal with conflicts be-
tween multiple gestures. For example, the well known pinch
gesture only tracks the distance between two finger, which

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

may conflict with the rotate gesture. This creates the need
to specify some priority between gestures in order to resolve
the conflicts when multiple gestures are detected. In cur-
rent approaches this conflict handling code scattered over
the detection of multiple gestures. Therefore, adding a new
gesture requires deep knowledge about the existing gestures.

Finally, it is difficult in current approaches to maintain
temporal invariants, for example when implementing the
click and double click gestures. The programmer has to use
a timer which takes care of triggering the click gesture after
a period of time if no new events came in which triggered the
double click gesture. This code is distributed over multiple
event handlers, again complicating the event handling code
significantly.

We claim that current multi-touch libraries providing sim-
ple event handlers are too low level, resulting in complex
event handling code. As a result, we advocate the use of
a rule language which allows programmers to derive use-
ful patterns out of the events generated by the multi-touch
device. The advantage of such an approach is that the pro-
grammer no longer needs to be concerned about how to de-
rive gestures but only about describing the gesture.

2. UNIQUENESS OF OUR APPROACH
Our proposed solution finds its roots in Complex Event

Processing (CEP) [8]. CEP deals with analyzing and cor-
relating multiple events, with the goal of identifying mean-
ingful events. Existing CEP implementations only focus on
temporal reasoning with events. In order to cope with the
needs of the multi-touch domain, spatial operators are also
needed, for example in a drag gesture. Spatio-temporal data
models have already been discussed in many research papers
[7, 2]. They were however not intended for use in this do-
main. To the best of our knowledge our work is unique in
applying high level language concepts for the development
of multi-touch enabled applications.

We wrote a driver which converts low level signals to
TUIO [3] events1, a protocol supported by many multi-touch
interfaces. These TUIO events are fed into a reasoning en-
gine, as logical facts which are evaluated against a set of
rules. Facts are stored as tuples in the following form:

(Factname attribute1 , attribute2 , ..., attributeN)

Next to these TUIO events, changes to the GUI are also fed
to the reasoning engine. For example when moving a pic-
ture, the surface where the move gesture applies must also

1Our Stantum TUIO bridge implementation can be down-
loaded at http://github.com/Zillode/Stantum-TUIO-bridge

509

be altered.

Figure 1 shows a tap (or click) gesture in our rule lan-
guage. Our syntax is based on CLIPS [1]. The left-hand side
of the rule (before the ⇒) contains a number of condition
elements that are matched against the fact-base. Actions
on the right-hand side are taken when the left-hand side is
satisfied. Variables in a rule are denoted by a question mark.

(defrule myTap
(declare (salience 100))
(SetOf

(TUIO_Event ?fingerID ,_,_,Within: 300),
?eventList),

?eventList [0]. state == BIRTH ,
(isListOf ?eventList [1.. -2]. state , MOVE),
?eventList [-1]. state == DEATH ,
(veryNearPosition ?eventList)
=>
(assert (Tap ?fingerID , ?eventList [0]. position)))

Figure 1: Tap gesture

When the rule myTap triggers, the fact Tap is asserted
containing a specific fingerID and the position where the
tap was performed. The matching is done by a logical rule
using the facts from the multi-touch devices which have the
following form:

(TUIO_Event fingerID , position , state , time)

The fingerID attribute is a unique identifier for one finger.
The position is a pair of the X-Y coordinates. There are
three possible states: birth (finger down), move (finger up-
date) and death (finger up). The final attribute denotes the
time of detection in milliseconds.

SetOf selects the list of TUIO events grouped by fin-
gerID within 100 milliseconds and binds it to the variable
eventList. The list is ordered by ascending time, list[0] being
the oldest event. Negative indexes are used relative to the
end of the list, meaning list[-1] being the youngest event.

The next three lines in the rule specify respectively, that
the first element in the list should be a birth event, in be-
tween the first and the last there should only be move events
and the last element should be a death event. Finally the
last line in the rule uses the veryNearPosition spatial oper-
ator, forcing all events to be very near to each other. This
constraints the tap event to be performed in a certain range
since a tap should not happen with a lot of movement.

We introduced a priority concept in order to provide the
user with easy accessible event consumption. Events that
are matched by a rule with a higher salience, will not be
available to the other rules. When two rules have the same
priority, they share the ownership of the event.

Evaluating these rules for every event that enters the fact-
base, even for a modest rule set, would be far too slow.
Rather than reevaluating the entire fact-base against all the
rules, we use an optimization technique called RETE which
caches intermediate results. Therefore, it is relatively effi-
ciently to perform the permutation of fingerID’s. Our ap-
proach is unique to combine the concepts of CEP with an op-
timized RETE engine for the multi-touch environment. The
result is an efficient high level language to describe multi-
touch gestures.

3. RELATEDWORK
Multi-touch libraries can be roughly divided into two ap-

proaches. A first approach, adopted by many of the industry

platforms, such as the iPhone and Windows 7 SDK, is un-
der the form of a low level library that allows one to capture
the events sent by the multi-touch device. In many of these
libraries capturing these events is done by creating event
handlers. In these systems the programmer has to: manu-
ally store and combine the events generated by several event
handlers, deal with conflicts between multiple gestures, keep
track of temporal invariants, and find out which identifier
maps to which finger. All this makes that programming
with such approaches is cumbersome.

A second approach adopted by gesture frameworks is to
make use of template matching [6]. However in these frame-
works the detection is limited to single point and stroke ges-
tures. When template-based recognition gets extended with
multiple points, it will still be complex to recognise collab-
orative gestures because of the variability of positions.

4. CONTRIBUTIONS
The complexity of human-computer interaction will greatly

increase with the rise of multi-touch interfaces. In order
to deal with this evolution, we need adequate software en-
gineering abstractions. We presented a first step in that
direction in the form of a domain-specific language support-
ing spatio-temporal operators. This makes it possible to
describe gestures using simple constructs. It allows pro-
grammers to easily deal with multiple fingers, hands and
persons. We removed the complexity to manually store and
combine the events generated by several event handlers and
the problems that flow forth from this approach. We have
implemented a fully functional proof of concept prototype2,
and we are currently optimizing it for speed. First experi-
ments with our prototype have revealed that our approach
scales well for traditional gestures as well as for some more
exotic gestures that we have implemented.

5. REFERENCES
[1] J. Giarratano, G. Riley. Clips Manuals, version 6.0.

Johnson Space Center, NASA, 1993.

[2] C. Holzmann. Rule-based reasoning about qualitative
spatiotemporal relations. In MPAC 07: Proc. 5th Intl.
workshop, pages 49–54, NY, USA, 2007. ACM.

[3] M. Kaltenbrunner, T. Bovermann, R. Bencina, and
E. Costanza. TUIO: A protocol for table-top tangible
user interfaces. In GW 2005: Proc. 6th Intl workshop.
Citeseer, 2005.

[4] S. Lee, W. Buxton, and K. Smith. A multi-touch three
dimensional touch-sensitive tablet. ACM SIGCHI
Bulletin, 16(4):21–25, 1985.

[5] N. Mehta. A flexible machine interface. 1982.

[6] D. Rubine. Specifying gestures by example. ACM
SIGGRAPH Computer Graphics, 25(4):337, 1991.

[7] S. Schwiderski-Grosche and K. Moody. The spatec
composite event language for spatio-temporal reaso-
ning in mobile systems. In DEBS 09: Proc. of the 3rd
ACM Intl. CONF., pages 1–12, NY, USA, 2009. ACM.

[8] E. Wu, Y. Diao, and S. Rizvi. High-performance
complex event processing over streams. In Proc. 2006
ACM SIGMOD Intl. CONF., page 418. ACM, 2006.

2A short movie of our working prototype can be downloaded
from http://www.youtube.com/watch?v=wCSppBNNPEI

510

