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Abstract. There is an apparent need for specifying the integration of
multiple knowledge sources during the design of Web Information Sys-
tems (WIS) where the actual data is often retrieved from several content
providers. Despite that, there exists very little work on integration within
the context of WIS engineering and the related design methodologies in
particular. We argue that this new context brings several additional re-
quirements which must be dealt with in order to be able to successfully
deploy distributed WIS. In this paper we elaborate a model that covers
the integration phase of the WIS design trajectory. We centered our ap-
proach around the emerging data standard on the Semantic Web - RDF.
The proposed integration model is able to reconcile many semantic het-
erogeneities that frequently occur among disparate RDF sources. We also
address the issues of distributed RDF query processing and optimization,
and test the performance of our framework.

1 Introduction

The need for handling multiple sources of knowledge and information is very
apparent in the context of engineering Web Information Systems (WIS). The
actual data presented in a typical WIS is often retrieved from several (possibly
heterogeneous) set of sources. While the integration problem was carefully stud-
ied in isolation in the database field, there exists very little work on integration
in the context of Web engineering applications and of the design methodologies
that support them in particular. We argue that this new context brings several
additional requirements that must be dealt with in order to be able to success-
fully design a distributed WIS. The separation-of-concerns principle together
with the model-based approach has proven to be an efficient remedy to the com-
plexity of the WIS design. In this paper we elaborate a model that covers the
integration and data retrieval phase of the WIS design trajectory. We centered
our approach around the emerging data standard on the Semantic Web, the Re-
source Description Framework (RDF) [1]. RDF is the modeling foundation of
the Semantic Web. Despite its inherently distributed nature, most of the cur-
rent RDF processing engines store the RDF data locally as a single knowledge
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repository, i.e. RDF models from remote sources are replicated and merged into
a single model. Distribution is retained only virtually through the use of name-
spaces to distinguish between different models. We argue that many interesting
applications on the Semantic Web would benefit from, or even require an RDF
infrastructure that supports real distribution of information sources that can be
accessed from a single point. In this paper we focuss on the RDF integration
problem taking into account the context of WIS.

The rest of the paper is structured as follows. In section 2 we introduce the
Hera WIS design framework and derive some WIS specific requirements for the
integration phase. Section 3 summarizes the semantics of RDF(S) and formally
defines some important terms used in our integration suite. Section 4 describes
the Integration Model formalism which is able to deal with many semantic het-
erogeneities that frequently occur among sources on the Semantic Web. Section
5 addresses the issues of distributed query processing and optimization, and
describes the performance of our system. Section 6 presents concluding remarks.

2 Modeling WIS in Hera

A primary focus of the Hera project is to support Web-based information system
(WIS) design and implementation. A WIS generates a hypermedia presentation
for the data that is retrieved from the data storage in response to a user query.
This entire process of retrieving data and presenting it in hypermedia format
needs to be specified during the design of the WIS. The typical structure of the
WIS design in the Hera perspective consists of three layers: the semantic layer
focusing on the application’s semantics and the integration aspects, the appli-
cation layer designing a navigational view over the data, and the presentation
layer dealing with a concrete rendering platform such as HTML, WML or SMIL.

In this paper we focus mainly on the semantic layer of the Hera methodology.
After the process of integration, the conceptual model instances are generated
as response to a user query. Figure 1 presents an overview of the semantic layer
with its central component - the mediator.

2.1 Related Work

As opposed to Hera, most of the web engineering approaches (e.g. UWE [2],
WebML [3] or XWMF [4]) do not explicitly consider integration. A notable
exception is the OntoWebber [5] system which we detail below.

OntoWebber is a system for building and managing data-intensive websites.
Similarly to Hera, it adopts a model-driven ontology-based approach for declara-
tive website management and data integration. It advocates the use of ontologies
as the basis for constructing different models necessary for WIS design. Onto-
Webber supports the integration of heterogeneous data sources based on RDF as
common format for modeling semistructured data. In the first step OntoWebber
focuses on syntax reconciliation converting all source data into RDF. This RDF
data (both the schema and the instances) is replicated and stored locally. From
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Fig. 1. An overview of the semantic layer of Hera.

this point of view, OntoWebber acts as a data warehouse and does not guarantee
the freshness of its data, as opposed to the Hera integration framework which im-
plements the on-demand retrieval paradigm, assuring that the retrieved data is
always up-to-date. After the replication phase, the local copies of the source data
are articulated by the designer in terms of a reference ontology which captures
the domain of interest.

2.2 Hera Requirements for RDF(S) Data Integration in the
Context of WIS

By analyzing the specifics of WIS, we form the following set of requirements for
our integration framework. The existing approaches to data integration, e.g. [6]
often do not meet some of these important prerequisites which renders them less
suitable for designing WIS. Below we summarize the list of requirements for the
Hera integration framework.

– The use of (open) WWW standards
While in the past the main consumer of the information provided by WIS
was usually a human, currently there are more and more (Web) applications
that need to process this information as well. Moreover, WIS themselves
often consist of a complex composition of collaborating (Web) components,
such as the components in the Hera software suite. This requires the use
of Web standards throughout the entire process. To promote the re-use of



integration specifications by other parties on the Semantic Web, it is useful
that both the information to be integrated, and the integration specification
itself are expressed in the same description standard.

– Ontology level, model-based approach
Since WIS are data-intensive applications with large numbers of instances
per concept, it is not feasible to specify integration mappings for every in-
dividual instance. This data-intensive nature combined with the separation-
of-concerns principle adopted by Hera implies that the integration should be
expressible in an explicit model which reasons in terms of source ontologies
rather than in terms of the actual data instances. The instance integration
has to be realized on-the-fly during the query evaluation.

– Expressivity of the integration formalism
The integration formalism must be able to cover a wide range of semantic het-
erogeneities frequently occurring on the Semantic Web. This includes schema
heterogeneities where the source ontologies can differ in their concepts, prop-
erties, and structure. In particular, RDFS models often contain sequences of
connected properties—so-called ontology or schema paths. These paths can
differ considerably among the sources and the conceptual model. To recon-
cile these discrepancies is an essential prerequisite to successful evaluation
of join queries across multiple sources.

– Freshness of data
Hera has the ambition to support the engineering of WIS which often use
as content providers other autonomous Web sources. Both the structure and
the data of these sources may change without notification. While the struc-
tural changes are assumed to be less frequent, the actual data can change
frequently. In this context the freshness of the gathered data is an important
aspect and should be guaranteed.

3 RDF(S) and Ontologies

An RDF triple model is similar to a directed labeled graph [1]. The nodes in
the graph are used to represent resources or literals. Literals (strings) denote
content that is not processed further by the RDF processor.1 The nodes that
represent resources can be further classified as nodes representing URI references
or blank nodes. All non-blank nodes are (explicitly) labeled with resource iden-
tifiers (URIs) or string values. The edges in the graph represent properties and
are also labeled by URIs. The set of all labels occurring in the graph is called
the vocabulary of the graph. In order to associate formal semantics to an RDF
graph, all labels in its vocabulary must have an interpretation. An interpreta-
tion specifies for every URI reference what it stands for as well as whether it is a
property, resource, or a literal value. In case of a property it also describes what
value that property can take for things in the domain of discourse. To be able
to reason about sources at schema level we must extend the initial vocabulary
1 In this work we consider only plain literals but our approach can be easily extended

to typed literals as well.



with the standardized set of URI references defined in the RDF vocabulary and
RDF Schema vocabulary [7].

Definition 1 An RDFS interpretation of a vocabulary V is defined as 7-tuple:

(IR, IP, IC, LV, IS, IEXT, ICEXT )

where IR is a set of resources, IP is a set of properties, IC is a set of classes,
LV is a set of literal values, IS is a mapping V → IR defining the interpretation
(meaning) of URI references and literals, and IEXT is a mapping IP → 2IR×IR

defining the extent of properties.2 ICEXT defines an extent of every class. More-
over, every RDFS interpretation has to satisfy several semantic conditions, e.g.
the transitivity and reflexivity of rdfs:subClassOf and rdfs:subPropertyOf .
We refer to [7] for the complete condition list.

3.1 RDFS Ontologies

Both, the WIS that we need to populate with data and the sources are repre-
sented by their ontological descriptions. The ontology captures their domain of
discourse. When we refer to ontology, we mainly mean the hierarchy of concepts
together with their properties. The actual data that populates these concepts
is referred to as ontology instances. Note that due to the intensional nature of
RDF(S) semantics the antisymmetry property is not guaranteed to hold and
therefore we cannot say that there is a partial order on the set of classes and
properties. In the ontology definition below we use the pre-order relation—a bi-
nary relation that satisfies the reflexivity and transitivity, but not necessarily
the antisymmetry.

Definition 2 An RDFS ontology O as a 4-tuple (G, I, 4IC , 4IP ), where

– G is an RDF graph.
– I is an RDFS interpretation of the vocabulary of G and I holds that IR =

IP ∪ IC, i.e. there are no ‘instance’ resources.
– 4IC is a pre-order relation on the set IC defined by

IEXT (I(rdfs:subClassOf))
– 4IP is a pre-order relation on the set IP defined by

IEXT (I(rdfs:subPropertyOf))

If an RDF graph (and its interpretation) adheres to a given ontology O, i.e.
uses the properties and classes defined in O, it is considered to be an instantiation
of O.

Definition 3 Let G be an RDF graph and I its RDFS interpretation. The pair
(G, I) is an instantiation of the ontology O (G′, I ′, 4IC ,4IP ) if the following
holds: {c | (x, c) ∈ IEXT (I(rdf :type))} ⊂ I ′.IC, and I.IP ⊂ I ′.IP , and the
types from the extent of every non-system property in G follow the types defined
in O by the I ′(rdfs:domain), and I ′(rdfs:range) for that particular property.
2 When an interpretation I is applied to a single URI reference, it represents a straight-

forward application of the IS function of I.



Definition 4 A single path in ontology O (G, I, 4IC ,4IP ) is defined as triple
(C,P, T ) where C ∈ I.IC, P ∈ I.IP , T ∈ I.IC ∪ {I(rdfs:Literal)} and
(P, C) ∈ IEXT (I(rdfs:domain)) and (P, T ) ∈ IEXT (I(rdfs:ramnge)).

Informally, a single ontology path is a property together with its domain and
range classes. By using the following definition we can combine single ontology
paths into an arbitrarily long path expression.

Definition 5 Let p1, . . . pn be a sequence of single paths. They together con-
stitute a composed ontology path expression if for any neighboring single paths
pi(Ci, Pi, Ti) and pi+1(Ci+1, Pi+1, Ti+1) the following holds:

Ti 6= I(rdfs:Literal)∧
((Pi, Ci+1) ∈ IEXT (I(rdfs:range))∨
(Pi+1, Ti) ∈ IEXT (I(rdfs:domain))∨

(Ti, Ci+1) ∈ IEXT (I(rdfs:subClassOf))∨
(Ci+1, Ti) ∈ IEXT (I(rdfs:subClassOf)))

4 Integration Model

The official RDF semantics [7] makes a strong assumption about URI references:
they are assumed to be globally coherent, so that a single URI reference can
be considered to have the same meaning wherever it occurs. However, in the
heterogenous world of the WWW we often have to relax this assumption if we
want to integrate data from different sources. In Fig. 2 we depict an example
of two sources with different vocabularies and interpretations. Both however
describe the same domain and the integration model is a way to specify how they
relate to the conceptual model. The solid lines indicate mappings established
during the integration phase, and the dashed lines denote results during the
query answering process.3 The integration model defines a set of articulations
which create semantic mappings between the sources and the CM.

4.1 Articulations

The simplest form of articulation is that combining two single path expressions.
Informally, this articulation establishes a schema level link between two prop-
erties (one from a source and one from the CM). During the query resolution,
the instances of the source property are translated into instances of the property
from the CM.

Definition 6 Let OS be an RDFS ontology describing the source S and OCM

the (traget) RDFS ontology describing the WIS which we need to populate with
instances. A simple articulation As is defined as a pair (Q, R), where Q(C, P, T )
and R(C,P, T ) are single ontology paths in OCM and OS, respectively. At in-
stance level, the As is a function which transforms the source instances into CM
3 The property extent mappings IEXT are omitted for the sake of readability.
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instances. Let InstS be the instantiation of the source ontology OS. The instan-
tiation of the OCM is augmented such that the following holds:
∀(x, y) ∈ InstS .I.IEXT (R.P ) ∃(x′, y′) ∈ InstCM .I.IEXT (Q.P ) ∧ (x′, Q.C) ∈
InstCM .I.IEXT (I(rdf :type)) ∧ ((y′, Q.T ) ∈ InstCM .I.IEXT (I(rdf :type)) ∨
Q.T = I(rdfs:Literal)).

Although a simple articulation allows for different vocabularies, when also the
structure of the two ontologies differs we need a more sophisticated integration
tool. A path articulation defined below allows for the mapping of ontology path
expressions of different length. The idea is to link the beginning and the end of
the two paths and to apply simple articulations where they exist. In case there
exist some parts of the path in the CM which are not covered by the source
path expression, e.g. due to structural heterogeneity, we generate blank node
instances in the CM to keep the path connected.

Definition 7 Let OS be an RDFS ontology describing the source S and OCM

the (traget) RDFS ontology describing the WIS which we need to populate with
instances. A path articulation Ap is defined as a pair (p, q) where p, and q are
ontology path expressions in OCM and OS, respectively.

Let (C1x, P1x, T1x) and (C x, P x, T x) denote respectively the first and the
last single path of the composed path expression x. The semantics of Ap is de-
fined as the augmentation of the instantiation of the OCM in the following way.
For every instance of the path q we assume an instance of the path p consisting
of blank nodes between the defined properties of p such that the path is connected.



We generate instances to replace (some of) the blank nodes such that the fol-
lowing holds: ∀x ∈ InstS .I.ICEXT (C1q) ∃x′ ∈ InstCM .I.ICEXT (C1p) i.e. we
generate class instances for the beginning of the path p. We do the same also for
its end: ∀x ∈ InstS .I.ICEXT (T1q) ∃x′ ∈ InstCM .I.ICEXT (T1p). Unless the
end is a literal property, i.e. T S = I(rdfs:Literal), then the literal values are
copied: ∀(x, y) ∈ InstS .I.IEXT (P q) ∃(x′, y′) ∈ InstCM .I.IEXT (P p) : y = y′.
Further, we generate appropriate instances and replace the blank nodes for every
single path in p that has a simple articulation that associates it to a single path
from q.

To cover also the cases when a (literal) value in the conceptual model is ob-
tained from several paths, possibly distributed among different sources, we in-
troduce a multiple source articulation. A multiple source articulation is defined
as a tuple (pT , qS1 , . . . qSn

, Concat), where pT is an ontology path expression in
OCM , qS1 , . . . qSn

are ontology path expressions in source otologies, and Concat
is a function defining the concatenation result. Note that this articulation ap-
plies only for literal values. We omit the description of its semantics as it is a
straightforward extension of the path articulation. For the converse where sev-
eral values in the CM are obtained by splitting one value from a source we have
a multiple CM articulation: (pCM1 , . . . pCMn , qS , Split).

4.2 RDF(S) Representation of the Integration Model

As we stated in the requirements, it is useful that the integration framework can
be expressed in the same data format as the actual data that are integrated. It
both facilitates the semantic interoperability and allows for reasoning about the
integration phase at a higher level of abstraction. We translated the concepts
of our theoretical integration framework into an RDF schema called Integration
Model Ontology (IMO). This ontology describes in the RDF syntax the notion
of path expressions, articulations, etc. The integration model instances (IMI)
are created by the designer (or generated by a mapping tool) for a concrete
integration problem. Due to lack of space we do not present in detail the verbose
RDF serialization here, interested reader is referred to the Hera website4. The
IMO together with IMI are used by the mediator during the query processing.

5 Distributed RDF Query Processing

The mediator component is responsible for finding the answer to the user query
by consulting the available sources based on the integration model instances.
The mediator takes as input the user query formulated in SeRQL [8].

SELECT A, P

FROM {A} expertIn {TA}; authorOf {P},

{P} concerns {TP}; frontPage {F},

{F} mentions {A}

WHERE TA=TP

4 http://wwwis.win.tue.nl:8080/˜ hera



To illustrate the query processing in our mediator, consider the above SeRQL
query example.5 In this example we assume a total distribution, i.e. all properties
reside on different sources and the mediator performs all partial joins.

authorOf.P=frontPagr.P

authorOf
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frontPagr.P=concerns.P

expertIn
A,T

authorOf.A=expertIn.A

expertIn.T=concerns.Tmentions.A=expertIn.A

1 2

34

5

6

7

8

Fig. 3. Join graph.

The query in our example is processed as follows.

– We first normalize the SeRQL query in the sense that all variables that
are explicitly declared equal in the Where clause are given identical names
(variables TP and TA are both renamed to T ).

– From the normalized query we create a join graph (see Fig. 3) in which every
property in the From clause stands for a relation with two attributes defined
by the variable names. In the join graph we represent these relations as nodes
and connect every two nodes that share an attribute6. Every edge in the join
graph is interpreted as a join condition between the two connected relations.

– Next, we assign a random order to the edges of the join graph (the order
is depicted by numbers above the edges) and recursively fold the join graph
by combing the two nodes that are connected by the edge with the small-
est number. The folding sequence for our join graph is depicted in Fig. 4.
Dashed lines indicate the edges which are removed in that particular folding
step.7 The folding sequence essentially represents a query plan: a folding
step is equivalent to a join operator and every edge which is removed in
that particular step represents one conjunct in the join condition. To min-
imize the execution costs, this initial query plan is subsequently optimized
by reordering the joins.

5 “Retrieve all authors and their papers, where the author is an expert in the topic
that concerns the paper and he is also mentioned on the front-page of the paper.”

6 If the nodes share more attributes, we create one edge for each such attribute.
7 For the sake of clarity, the node names were abbreviated to their starting letters.
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– To consult the sources, the mediator locates for every property in the join
graph an articulation. From this articulation, it determines the source that
provides an answer to it together with an appropriately translated path
expression. This path expression is transformed into a SeRQL query and
executed on that particular source. The sources are consulted in a multi-
threaded fashion in order to achieve a high degree of parallelization. The
mediator subsequently collects the partial results and performs the necessary
join operations according to the query plan determined by the optimizer.

5.1 Query Optimization and Performance Evaluation

To test our integration framework we synthesized an RDFS schema of approx-
imately 50MB and instantiated it with 500MB of RDF instances. Note that a
schema/instance ratio of 10% is quite large; in normal circumstances, the size of
the schema seldom reaches even 1% of the size of the instances. This represented
for us a worst case scenario since the mediator has to join partial path results,
the bigger schema the more potential paths to join. The data set was distributed
among several computers connected by the Internet, and the underlying sources
were using the Sesame RDF storage system8.

8 http://www.openrdf.org/
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Note that the sources, unlike the mediator, contain instance indices and are
therefore very efficient for joining the path queries. Creating an instance index at
the mediator would require to gather all the data from the sources and thus turn-
ing our virtual repository into a datawarehouse with all its disadvantages like the
freshness problem, the maintenance problem, data ownership issues etc. Instead,
we adopted a schema based approach. Since the mediator has the schemas of
the underlying sources, in order to minimize its workload a sophisticated ontol-
ogy path indexing takes place. The main idea is to push down to the sources
the longest possible paths they can answer, reducing the number of joins at the
mediator. The performance improvement gained by schema indexing is depicted
in Fig. 5.

While the path indexing is clearly beneficial, especially for larger results sets
the joining at the mediator still represents a bottleneck. In order to minimize
the joining time, which in turn due to different cardinalities and join selectivities
largely depends on the order in which the joins are performed, we implemented a
join ordering heuristic as a combination of iterative improvement and simulated
annealing [9]. As depicted in Fig. 6, this improved the performance of the system
even further, especially after the initial calibration phase.

6 Conclusions

As the nature of WIS changes under the influence of the Semantic Web (SW) ini-
tiative, the need to capture the semantics of the application data increases. In the
typical WIS, the data is often gathered from several sources and it is crucial to
understand their semantic annotations. We derived a set of integration require-
ments in the context of WIS. To address them, we presented our integration
framework that helps to overcome semantic heterogeneities of RDFS meta-data
from different sources. We also evaluated the performance of our system and
proposed several optimization techniques to improve the the query evaluation.
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As future work we intend to extend the expressive power of our integration
model towards higher level ontology languages such as OWL, and to investigate
other possibilities to improve the performance of our implementation. One of
the promising directions to minimize both the mediator’s workload and the data
transfer from the sources is to establish a network of collaborating mediators
that would perform some query processing tasks, e.g. joins, on request.
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