
Assisting Mobile Web Users: Client-Side Injection of
Context-Sensitive Cues into Websites

Sven Casteleyn
Vrije Universiteit Brussel

Pleinlaan 2, 1000 Brussel, Belgium
+32 2 629 3754

Sven.Casteleyn@vub.ac.be

William Van Woensel
Vrije Universiteit Brussel

Pleinlaan 2, 1000 Brussel, Belgium
+32 2 629 3754

William.Van.Woensel@vub.ac.
be

Olga De Troyer
Vrije Universiteit Brussel

Pleinlaan 2, 1000 Brussel, Belgium
+32 2 629 3504

Olga.Detroyer@vub.ac.be

ABSTRACT
In a mobile setting, the user often browses the Web to consult
information related to his current context and environment: e.g.,
reviews of nearby restaurants, or tourist information on visited
monuments. On the other hand, the limitations of mobile devices
(e.g., limited screen) and the peculiarities of mobile Web usage
(e.g., walking around, driving a car) make it cumbersome to
extensively browse a Web page for such useful information. In
this paper, we present a client-side approach that aims to assist the
mobile user in his browsing session, by correlating the Web
page’s content with the mobile user’s context, and subsequently
emphasizing and enriching relevant content with so-called
context-sensitive cues. To achieve this, we utilize the SCOUT
framework for mobile applications to model and access the user’s
context, and RDFa annotations present on existing Web pages to
identify Web page elements suitable to enrich with context-
sensitive cues. The cues themselves are injected using existing
adaptation techniques, borrowed from the field of Adaptive
Hypermedia.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General; H.1.1 [Information
Systems]: Models and Principles – Systems and Information
Theory; H.4 [Information Systems]: Information Systems
Applications; H.5.4 [Information Systems]: Information
Interfaces and Presentation – Hypertext/Hypermedia

General Terms
Theory, Design

Keywords
Mobile Application, Context-awareness, Context-sensitive
Adaptation, Client-side, Semantic Web

1. INTRODUCTION
In recent years, we have seen a drastic evolution of the Mobile
Web. Several enabling technologies are reaching maturity, leading
to an increased market segment of Mobile Web users1 who no
longer solely need to rely on specialized, down-scaled versions of
Web applications. In particular, new generation mobile devices,

1 According to a study of NetMarketshare, mobile browser market

share doubled in the last eight months; see
http://marketshare.hitslink.com/report.aspx?qprid=61

such as Apple’s multi-touch iPhone or Research in Motion’s
(RIM) Blackberry, provide more advanced and user-friendly input
capabilities, and sport Web browsers capable of displaying most
Web applications without the need for specialized mobile
versions. Furthermore, wireless networks are becoming
increasingly available, and up to par data transmission speeds
(e.g., 3G networks, available in most developed countries and
allowing up to 14 Mbit/s download speeds) are now gradually
becoming accessible to the general public. Additionally, mobile
devices increasingly possess positioning and sensing capabilities
(e.g., GPS; RFID and NFC readers2; Quick Response (QR)
codes3, supported on any Web enabled camera phone), which
provide possibilities to extensively map the user’s environment.

On the other hand, Mobile Web usage is significantly different
compared to browsing the Web on a desktop. Mobile users often
have particular browsing purposes (e.g., compare shop prices,
finding reviews of nearby restaurants), and cannot spend the same
amount of time browsing and searching for information (e.g., they
are walking around, driving a car). Furthermore, despite hard- and
software advancements, mobile users still suffer from the
limitations of their mobile device as compared to their desktop
counterparts (e.g., smaller screen size, reduced input possibilities),
making it cumbersome to view all information offered on a
regular Web page.

In this paper, we present a client-side approach, called COIN
(COntext INjection), which makes visited Websites context-
sensitive on-the-fly by using so-called context-sensitive cues, in
order to assist the mobile user in his browsing activity. Context-
sensitive cues highlight content on a Web page that is related to
the context of the user (e.g., monuments he has passed, buildings
currently nearby), and/or enrich such content with additional
information obtained from the user’s context (e.g., description,
time spent nearby), to achieve a certain user-specific goal. For
example, on a tourist Website, a context-sensitive cue could
consist of highlighting places visited within the last twenty-four
hours, and indicating the time at which the user encountered this
place, in order to emphasize information relevant to the user’s
tour through the city. Such cues may also be personalized (e.g.,
only indicating vegetarian restaurants if the user is a vegetarian),
which further increases their benefit.

2 E.g., Nokia 5140 supports an RFID Reader Shell, while Nokia’s

6131 and 6212 models contain a built-in NFC reader.
3
 http://www.denso-wave.com/qrcode/qrstandard-e.html

In a nutshell, our approach consists of the following three steps: 1)
identify candidate Web page elements to enhance, by extracting
the semantics of the requested Web page’s content using semantic
annotations (e.g., RDFa4, microformats5) embedded in the
content, 2) match the extracted metadata with information
available on the user and his (current and past) context, and 3)
inject context-sensitive cues into the original Web page, using
adaptation techniques borrowed from the field of Adaptive
Hypermedia.

Our approach heavily relies on Semantic Web technologies. First,
we use the SCOUT framework for mobile applications [1], which
uses RDF(S) to model the user’s environment and is based on
modern mobile phone’s positioning and sensing possibilities.
Furthermore SPARQL is used to query this environment model.
Second, we exploit semantic annotations embedded in Websites,
to identify candidate Web page elements to enhance with context-
sensitive cues, and to match their associated metadata with
(metadata of) the user’s context.

The strength of this client-side approach is that it doesn’t require
any pre-engineering from the Web developer while creating the
Website: it works on any Website available on the Web as long as
it contains machine-readable semantic markup (our approach
currently supports RDFa). We provide two realizations of our
approach: a client–side solution, where the user needs to install
our mobile browser plugin, and also a server-side solution, where
the Web developer simply has to add a reference to our Javascript
code in his Website.

The remainder of this paper is structured as follows. Section 2
shortly recaps the SCOUT framework for mobile application
development, as this approach contains a mobile application
component built on top of this framework. Section 3 gives a
general overview of our approach to enhance existing Websites
with context-sensitive cues, and introduces a scenario which is
used throughout the paper. Section 4 explains how to identify
candidate page elements on a Web page using semantic
annotations, in order to add context-sensitive cues. Section 5
explains how to match candidate Web page elements with
information on the user’s context. Section 6 discusses how to
inject the context-sensitive cues. Section 7 discusses the
implementation of our approach, and section 8 related work.
Finally, section 9 provides conclusions and future work.

2. SCOUT IN A NUTSHELL
The SCOUT framework aims to support application developers in
building environment- and context-aware mobile applications.
These applications can rely on SCOUT’s ability to collect and
interpret certain sensory data, and to build an integrated,
conceptual model of the user’s current and past physical
environment. First, we recap the SCOUT framework in this
section, before elaborating the COIN approach and its mobile
application component built on top of this framework.

The SCOUT framework consists of a layered architecture: each
layer captures one particular design concern, and provides
abstractions and functionalities to the upper layer(s). By pursuing
a rigorous separation of concerns, we assure independence
between layers and from underlying technologies. We shortly

4 http://www.w3.org/TR/xhtml-rdfa-primer/
5 http://microformats.org/

explain each layer (bottom-up) below; a full overview of SCOUT
explaining each layer in detail can be found in [1].

The Detection Layer is responsible for detecting identifiable
physical entities (e.g., shops, monuments, buildings, other mobile
users) in the vicinity of the user. The layer contains a number of
components, each encapsulating a certain detection technique
(e.g., RFID/NFC, Bluetooth). We only assume a detected entity is
able to communicate a reference to an online resource describing
it, i.e., a URL. For the purpose of this paper, we assume these
online resources are RDF(S) files, describing the particular entity,
e.g., for a detected entity “the Atomium”, a well-known
monument in Brussels, this RDF(S) source could contain the
name “Atomium” using the rdfs:label property, a description
using dcmi:description6, additional info using rdfs:seeAlso, etc.).
One popular and cheap example of a detection technology is
Quick Response (QR) codes: 2D codes (encrypting a URL) that
can be printed using a regular printer, and subsequently scanned
and decoded to its original URL by any camera-enabled mobile
device. Another example is an online directory, which provides
location-specific resource URL’s based on the user’s current GPS
coordinates. As the different detection technique components
implement a uniform interface, the framework allows
transparently switching between different detection techniques, or
using several in parallel.

The Location Management Layer receives raw detection
information from the Detection Layer, and conceptualizes it by
creating positional relationships: when an entity is determined to
be nearby, a positional relation is created; when the entity is no
longer nearby, the positional relation is invalidated. Determining
proximity (i.e., nearness and remoteness) is done using proximity
strategies, which may differ depending on the available detection
data and the specific detection technique used. For example, a
straightforward proximity strategy for short-range, direct
detection techniques (e.g., RFID, NFC, Bluetooth) consists of
considering entities nearby whenever they are detected, and no
longer nearby when they move out of range. By allowing
applications to deal with positional relations in this conceptual
way, we allow them to abstract from particular sensing
technologies and the details of interpreting raw positional
information.

The Environment Layer provides applications with an
integrated, conceptual view of the user’s current (and past)
physical environment. For this purpose, it consists of two sub-
models: the (positional) Relation Model and the User Model. For
each detected entity, a reference to its online source (i.e., a URL),
and the creation and invalidation time of the corresponding
positional relation is stored in the (positional) Relation Model.
Next, information about the user, his characteristics, needs and
preferences, is stored in the User Model. The Environment Model
combines the information from the Relation Model, the online
RDF(S) source associated with nearby (or no longer nearby)
detected entities, and the information about the user himself, in
order to provide mobile application developers with an integrated
view on the user’s current and past environment7.

6 Dublin Core Metadata Initiative, a well known metadata

standard, see http://dublincore.org/
7 SCOUT combines online source and query analysis, together

with caching mechanisms, in order to optimize the amount of

In the Environment layer, Semantic Web technologies are heavily
exploited: RDF(S) is used to store the aforementioned models,
while existing RDF(S) / OWL vocabularies and ontologies are re-
used to represent online sources and the user’s metadata contained
in the User Model (e.g, CC/PP8 to represent preferences and
mobile device capabilities, FOAF9 for representing certain
properties of the user, DCMI6 to describe documents and items).

The Environment Layer also provides mobile application
developers with some basic services that provide access to these
models: pull-based data retrieval, where arbitrary SPARQL
queries are issued over the different models using the Query
Service, and push-based data retrieval, where a Notification
Service monitors changes in the environment and alerts registered
applications of specific changes.

The final layer, the Application Layer, contains the mobile
applications that are built on top of SCOUT. One such application
is the COntext INjection (COIN) mobile application, part of the
COIN approach which we elaborate in detail in the next sections.

3. INJECTING CONTEXT-SENSITIVE
CUES: GENERAL OVERVIEW
We are now ready to show how the injection of context-sensitive
cues is realized. Let us first elaborate a scenario that illustrates the
usefulness of context-sensitive cues, which we use throughout the
following sections to exemplify our approach. A mobile user is
visiting Brussels, and travelling around to visit various points of
interest. While on the road, he uses his mobile device to browse
the city’s tourist Website in order to find out more information
about the places, monuments, museums, etc. he is visiting. This
Website offers a wealth of information on Brussels’ famous
places and attractions, yet for the mobile user, it is cumbersome to
locate the information relevant for him at a particular moment.
For instance: which attractions are currently nearby or what has he
already seen? All the desired information is present on the
Website, yet it is buried in the wealth of information available. To
aid the mobile user, we inject context-sensitive cues into the Web
page he is visiting: i.e., cues which highlight places and/or
attractions he is currently nearby (or has been nearby in the course
of the day), while also conveying some information about the
encountered places/attractions, e.g., the time at which he
encountered them, how long he was nearby, and a link to their
own Website (if available). Continuing our scenario, towards
dinnertime, the mobile user would like to locate a restaurant to
have dinner. There are plenty of restaurant listings online, yet a
similar problem arises: are there any restaurants nearby his current
location, or his hotel?

information to download and store. This however is outside the
scope of this paper.

8 http://www.w3.org/TR/2007/WD-CCPP-struct-vocab2-
20070430/

9 http://www.foaf-project.org

Do they cater for his particular tastes (e.g., Italian cuisine)? Here,
cues are injected that indicate suitable restaurants, using a
recognizable icon, while also conveying why the restaurant was
highlighted (e.g., because they serve Italian cuisine).

Fig. 1. COIN Architecture

Figure 1 shows a general overview of our approach, without going
into technical details. We summarize the injection process below,
while the subsequent sections will explain the process in detail.

To be able to inject context-sensitive cues in a visited Web page,
the first required step is to analyze the page after it has been
loaded, in order to identify the page elements that potentially
qualify for context-sensitive cue injection. This is done by a first
component of COIN: a Web page component that parses the
semantic annotations on the Web page, and extracts the
corresponding metadata (1). These annotations provide explicit
meaning for specific Web page elements, and can thus be
employed to correlate them to the user’s current and past context.
This metadata, along with their corresponding page elements, is
communicated to the COIN mobile application (2), which runs on
top of the SCOUT framework. COIN subsequently invokes
queries on SCOUT’s Environment Model (3), in order to match
the semantic descriptions from the Web page with entities
available in the user’s Environment Model. Additionally, these
queries may include conditions over the User Model, in order to
further personalize results. The results of these queries (if any)
indicate which context-sensitive information can be injected into
the Web page, and are communicated back to the COIN
application (4). Based on these matching results, the COIN
application sends adaptation commands to the COIN Web page
component (5), which injects the corresponding context-sensitive
cues in the Web page (6) by applying adaptation techniques from
the field of Adaptive Hypermedia.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

4. ANALYZING THE WEB PAGE
The goal of analyzing the Web page is to identify Web page
elements that potentially qualify to be enhanced with context-
sensitive cues, and extract their associated metadata. For this
purpose, we rely on Web pages that are semantically annotated
using RDFa. RDFa, similar in purpose to microformats, is a W3C
recommendation that allows Web designers to embed RDF triples
in their Web page, thereby endowing any Web page element with
explicit semantics using (existing) vocabularies and ontologies.
Consequently, these semantic annotations allow us to correlate
concrete Web page elements with the user’s context, and therefore
the Web page elements they annotate are candidates for injection
of context-sensitive cues. A common use of RDFa is to indicate
which resource(s) are depicted on a picture, or which resource
corresponds to a certain string. The latter example is shown in the
following HTML snippet, taken from the Brussels’ tourist
Website from our scenario: for the string “Atomium”, the RDFa
annotation indicates that this represents the rdfs:label of the
resource <http://www.atomium.be/>. Consequently, the span tag
containing the string “Atomium” is a candidate page element to be
enhanced with context-sensitive cues.

<span xmlns:rdfs=".." about="http://www.atomium.be/"
 property="rdfs:label">Atomium

With current Web development tools, content management
systems and Web application frameworks now supporting RDFa
generation10, and major players such as Google and Yahoo!
jumping on board, our assumption of RDFa presence in Web
pages is not a liability. Furthermore, in [2], a mechanism is
introduced which allows microformats (a currently very popular
type of machine-readable markup) to be transformed to RDFa.

Our approach consists of parsing and extracting the RDFa
annotations present in an existing Web page, which are then
communicated as RDF triples to our COIN application on top of
SCOUT. COIN subsequently uses these semantic descriptions of
Web page elements in order to match Web page content to the
mobile user’s context, as provided by the Environment Model (see
next section).

5. MATCHING WEB PAGE METADATA
WITH THE ENVIRONMENT MODEL
The goal of the matching process is to match the semantic
descriptions of the Web page elements to the user's Environment
Model: i.e., the metadata about encountered entities, combined
with the user's own profile. This matching process is performed
by the COIN mobile application component, which runs on top of
SCOUT. This component receives the extracted RDF triples,
together with the page elements from which they were extracted,
from the COIN Web page component, and stores them in a “Page
Model”. A Page Model is thus an RDF graph consisting of the
RDF resources, properties and values found on the Web page,
together with a reference to their corresponding Web page
element. For example, for the RDFa example snippet of section 4,
the triple “<http://www.atomium.be> rdfs:label ‘Atomium’” is
extracted, with the SPAN element containing the string
“Atomium” as its corresponding Web page element. After the

10 Some examples: an RDFa extension for Adobe Dreamweaver is

available; a Drupal module (beta) supports RDFa generation,
with other modules supporting RDFa under development; a
RDFa library for Ruby on Rails is available; etc.

Page Model is built, the COIN application queries it to obtain the
semantics of each annotated Web page element. In other words, it
extracts the concrete RDF resource which this element represents,
by for instance providing a label for the resource (e.g., the SPAN
element represents the <http://www.atomium.be/> resource by
providing an rdfs:label for it). This is done by the following
SPARQL query, which is executed over the Page Model using
SCOUT’s Query Service:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX dc: <http://purl.org/dc/terms/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX pm: <http://wise.vub.ac.be/SCOUT/pm-ns#>
SELECT ?subject ?pageEl
WHERE
{
 ?triple rdf:subject ?subject
 {
 { ?triple rdf:predicate rdfs:label } UNION
 { ?triple rdf:predicate dc:title } UNION
 { ?triple rdf:predicate foaf:name }
 }
 ?triple pm:relatedEl ?pageEl
}

This query returns resources (?subject) along with the Web page
elements (?pageEl) by which they are represented . For this
purpose, it looks for triples describing RDF resources using
frequently used properties: in the above query, these are
rdfs:label, dc:title, and foaf:name. For our example RDFa snippet
in section 4, this query returns <http://www.atomium.be> as a
resource, and the SPAN element as a corresponding Web page
element.
The next step is to match the resources that were returned by the
above query to metadata of encountered entities present in the
Environment Model, and possibly to the user’s profile. As an
example of such metadata, consider the following RDF(S) snippet
from the Atomium entity’s online metadata source, which was
added to the Environment Model after detection:
<http://www.atomium.be> rdfs:label "Atomium" ;
 dcmi:description "The Atomium is a monument built for
 Expo '58, ..." ;
 rdfs:seeAlso <http://en.wikipedia.org/wiki/Atomium > ;
 ...

To achieve the matching between resources found on the Web
page and encountered entities, the COIN application generates a
SPARQL query over the Environment Model, which performs
this matching and collects the necessary information for a specific
context cue. The query given below does this for the first context-
sensitive cue of our scenario, i.e., the annotation of current and
previously nearby entities, and the injection of the time spent
nearby and optionally the entity’s Website. It uses the resulting
resources from the previous query (in our example,
<http://www.atomium.be>) and includes the necessary conditions
required for matching. In our scenario, we differentiate between
entities that are currently nearby, that were nearby in the last four
hours, and those nearby between four and twenty-four hours ago;
therefore, the condition, specified in the FILTER clause, restricts
the encountered entities to those encountered within the last
twenty-four hours. In the SELECT clause, we return useful data
(found in the environment model) on a matched entity required for
the particular context-sensitive cue. In our scenario, this is the
time at which it was encountered (denoted by scout:nearbyFrom),
the time at which the entity was no longer nearby (denoted by
scout:nearbyTo), and, if present (the OPTIONAL clauses), a link

containing additional information (denoted by rdfs:seeAlso or
foaf:homepage). The SPARQL query is as follows:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX em: <http://wise.vub.ac.be/SCOUT/em-ns#>
PREFIX scout: <http://wise.vub.ac.be/SCOUT/scout-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?entity ?from ?to ?webPage
WHERE {
 ?user rdf:type em:User ;
 scout:wasNearby ?entity .
 ?entity scout:nearbyFrom ?from ;
 scout:nearbyTo ?to .
 OPTIONAL
 {
 { ?entity foaf:homepage ?webPage }
 UNION
 { ?entity rdfs:seeAlso ?webPage }
 }

 FILTER ([current] – 24*60*60*1000 < ?from &&
 ?from < [current] &&
 (sameTerm(?entity,<http://www.atomium.be>) ||

 sameTerm(?entity, <...>
11
)))

}

Such a SPARQL query is thus generated for each type of context-
sensitive cue. The query below realizes the second part of our
scenario: i.e., finding encountered restaurants fitting the user’s
tastes. This query therefore illustrates further personalization, by
including conditions over the User Model in the query: i.e., taking
into account the user’s favorite type of cuisine (e.g., Italian):
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX em: <http://wise.vub.ac.be/SCOUT/em-ns#>
PREFIX scout: <http://wise.vub.ac.be/SCOUT/scout-ns#>
PREFIX resto:
 <http://gaia.fdi.ucm.es/ontologies/restaurant.owl#>
SELECT ?restaurant ?cuisine
WHERE
{
 ?user rdf:type em:User ;
 em:prefersCuisine ?cuisine ;
 scout:wasNearby ?restaurant .
 ?restaurant rdf:type resto:Restaurant ;
 resto:typeOfCuisine ?cuisine .

 FILTER([current] – 24*60*60*1000 < ?from
 && ?from < [current] && (sameTerm(?restaurant,
<http://www.brussel.be/Restaurant_La-Truffe-Noir>)
 || sameTerm(?entity, <...>)))
}

As can be observed, arbitrarily complex queries can be
constructed by the COIN application to facilitate a wide range of
context-sensitive cues, based on triples found in the Web page.
The above query furthermore takes full advantage of the
Environment Model as an integrated conceptual view over the
user (User Model) and his environment (Relation Model), as it
uses current and past environment information (i.e., restaurants
the user is or has been nearby in the last twenty-four hours) and
user information (i.e., his favorite type of food).

Based on the results of each query, suitable context-sensitive cues
are generated. This final step is elaborated in the following
section.

11 <...> represents another candidate resource to match: for each of

such resources, a sameTerm(..) operand is generated.

6. INJECTING CONTEXT-SENSITIVE
CUES
The next step in our approach is to inject the context-sensitive
cues in the existing Web page, based on the information that was
gathered from the matching process described in the previous
section. More specifically, for each Web page element that
matched to the user’s environment, the existing Web page is
adapted on-the-fly to include the desired context-sensitive cues.
The COIN Web page component contains the necessary
commands to perform the desired adaptation upon request of the
COIN mobile application.

The type of adaptation we employed is based on the well-
known adaptive techniques from the field of Adaptive
Hypermedia, first presented by Brusilovsky [5] and recently
updated by Knutov et al [6]. As explained in [6], three main types
of adaptation techniques exist: content adaptation, adaptive
presentation and adaptive navigation. Content adaptation concerns
showing/hiding or emphasizing/deemphasizing information, with
reported techniques such as inserting, removing, altering or
dimming content fragments, sorting of information, zooming or
scaling and the use of stretchtext. Adaptive presentation concerns
the alteration of presentation, with reported techniques such as
altering layout (e.g., rearranging, zooming), link sorting and
annotation, and combinatorial techniques (e.g., contextual links,
site map generation). Adaptive navigation concerns altering the
navigation structure, with reported techniques as link generation,
local or global guidance and link hiding (disabling, removing,
hiding). The interested reader is referred to [6] for more
information on these techniques.

Fig. 2. Screenshot of the Brussels’ tourist Website,

enhanced using COIN

For the purpose of demonstrating our approach in this paper,
we have selected three none-intrusive techniques: inserting
fragments, adaptive link generation and stretchtext, and propose a
new one, content annotation. The latter is inspired by link
annotation, but instead of annotating a link, we annotate (some)

relevant text in the Web page. We employ these techniques to
realize our context-sensitive cues in the following ways. To
highlight that a user has recently been nearby an entity
represented on a Web page, the page element corresponding to
this entity is highlighted by drawing a colored rectangle around it
(content annotation). Depending on the time that has elapsed since
the user was nearby the entity, different colors are used
(configurable by the user). For example, we configured our
component to use green for currently nearby entities, orange for
entities that were nearby within the last 4 hours, and red for
entities that were nearby more than 4 hours ago. Furthermore, a
“more” link is generated next to the Web page elements
corresponding to the encountered entities. When the user clicks on
this “more” link, some additional context-aware information is
inserted inline (stretchtext): the time at which the user last
encountered this entity, the time he spent nearby, and, if available,
a link to its homepage (adaptive link generation). For the second
context-sensitive cue, i.e., indicating encountered restaurants
(possibly serving the user’s favorite cuisine), we elected to insert
a recognizable icon for a restaurant, with an additional indication
if it serves the users favorite type of food (content annotation).

Figure 2 shows a screenshot of the Brussels’ tourist Website,
viewed in the mobile Firefox browser (codenamed Fennec).
Observe that the Web page element containing the string
“Atomium” has been highlighted with a green rectangle,
indicating the user is currently nearby the Atomium . The “more”
link has been clicked, and reveals the time the user encountered
the Atomium (14h45), how long he has been nearby (2 minutes),
and a link to its Website. The “European Parliament” string has
been highlighted in red, indicating that the corresponding entity
was encountered more than four hours ago (its ”more” link has
not been expanded). Figure 3 shows an online restaurant listing
where, next to the previously mentioned cue,, encountered
restaurants are additionally indicated using an icon. Furthermore,
in case the restaurant serves one of the user’s favorite types of
cuisine, the matched cuisine type is also inserted (“Italian
Cuisine”).

Fig. 3. Screenshot of a Brussel restaurant listing,

enhanced using COIN

7. IMPLEMENTATION
In this section, we provide some details about the implementation
of the SCOUT framework, the COIN mobile application and the
COIN Web page component. Afterwards, we discuss possible
ways for Web developers and mobile users to deploy our
approach.

7.1 Scout Framework and COIN Mobile
Application
SCOUT has been developed in JavaME (due to its portability
across devices), using the Connected Limited Device
Configuration (CLDC 1.1) and the Mobile Information Device
Profile (MIDP 2.0). It currently supports various detection
techniques, including RFID, NFC and QR codes, with fitting
proximity strategies based on the range of the sensing
technologies and GPS coordinates, to detect the presence of
nearby entities. The Environment Model is implemented as a
virtual, partially cached view over the User Model, Relation
Model and the online RDF(S) sources of encountered entities. The
MicroJena library12 is employed to store and access RDF data
locally. As it does not yet provide support for SPARQL querying
(although efforts are currently underway to implement this
support), we temporarily use an external query server to handle
SPARQL queries. The COIN mobile application is realized as an
application on top of SCOUT, and is also written in JaveME. We
have tested SCOUT and COIN on a Nokia N79 and a HTC Touch
Cruise device.

7.2 COIN Web Page Component
The COIN Web page component is implemented in Javascript,
and provides three core functionalities: RDF triple extraction,
communication with the COIN mobile application and Web page
adaptation.

The COIN Web page component converts the found RDFa
annotations into RDF triples using the RDFa library provided by
the W3C13. It sends the extracted triples to the COIN application
via a HTTP request, and subsequently receives (from the COIN
mobile application) appropriate Web page adaptation commands
as a response. A generic Javascript library is provided, which
consists of objects representing these adaptation commands. More
specifically, each object implements an adaptation technique to be
applied, and keeps an internal element identifier (identifying an
element from which RDF triples were extracted), and additional
information (e.g., text/link to be inserted, color of highlighting).
The Web page’s DOM is subsequently utilized to locate the
relevant element, and perform the necessary changes.

7.3 COIN Script Deployment
As mentioned in the previous section, our approach relies on a
Javascript running in the targeted Web page. This script can be
inserted in any Web page using the (X)HTML script tag. The
insertion can be done in two ways. In case the mobile user wants
to employ our approach to inject context-sensitive cues in any
existing (semantically annotated) Web page, he can install a
browser plugin which automatically injects our COIN script tag at
client side into each downloaded Web page. We have developed
such a plugin for the mobile version of the Firefox browser (called

12 http://poseidon.elet.polimi.it/ca/?page_id=59
13 http://www.w3.org/2006/07/SWD/RDFa/impl/js/20070301/

Fennec), which implements this functionality. We successfully
tested this plugin on a HTC Touch Cruise device.

In case Web designers are interested in adding context-sensitive
cues to their Website, without the need for users to install a
browser plugin, they can manually insert the script tag referring to
our Javascript file in their Web pages. By integrating it into page
templates, the COIN script can be easily duplicated on every Web
page.

8. RELATED WORK
In existing Adaptive Hypermedia Systems (AHS), adaptation is
mostly pre-engineered: the foreseen adaptation needs to be
engineered during the design of the adaptive system. Existing
systems utilize adaptation conditions (which mostly refer to user
or context information), denoting when to show/hide certain
content depending on context or user model. A representative
system is example is AHA! [5]. Other systems, such as WSDM
[6], use ECA (Event-Condition-Action) rules to perform
adaptation: after a certain event occurs (e.g., a page load), an
adaptation action is executed in case the associated condition
holds. In recent works [7, 8], aspect-oriented techniques are
utilized in order to separate adaptation concerns from the rest of
the design, and “weave” adaptation logic into the regular
design/code. Our approach does not require this adaptation
engineering: it works on existing, already deployed Web pages,
and doesn’t require any adaptation-specific engineering.
An extension for WebML is presented in [9] to support active
context-awareness, i.e., adaptation that is triggered from the
client-side. However, this adaptation logic still needs to be
explicitly engineered in the Website. In [10], a number of
SPARQL queries can be embedded inside a Web page, which
represent the personalization logic. These queries may reference
the user’s profile or online RDF sources, and are executed by a
client-side GreaseMonkey script. However, these queries need to
be provided by the Web developer (i.e., explicitly engineered),
and only a desktop setting is envisioned (i.e., no environment data
is considered). In [11], the author explores asynchronous
technologies (e.g., AJAX) to increase the efficiency and
effectiveness of adaptive hypermedia systems, by dynamically
replacing certain parts of the page by their adapted counterparts.
Similarly, COIN exploits client-side Javascript communication,
yet by sending adaptation commands (e.g., annotate text, generate
link) instead of page fragments to the in-page Javascript, which
subsequently adapts the Web page accordingly.

Our approach leaves the user in charge of his own browsing
session. In some related systems, such as [9, 12], the user’
browser is automatically navigated towards a page containing
information on his current situation. However, we have
consciously decided on utilizing adaptation techniques which are
non-disruptive: i.e., we avoid techniques which navigate towards
a different page or alter the page’s structure (e.g., link ordering),
as such techniques may annoy and confuse users, and most likely
lead to the creation of an incorrect mental map [13].

Our technique to add context-sensitive cues follows a current
trend towards client-side personalization or adaptation. For
example, Mozilla GreaseMonkey is a plugin for Firefox which
allows users to write Javascripts (so-called user scripts) that adapt
the Web page currently being browsed; Mozilla Jetpack allows
users to write Firefox extensions for the same goal. Bookmarklets
are popular ways of executing random Javascript code in any

browser and on any Web page, thus enabling cross-browser
adaptation of Web pages.

In contrast to existing approaches for context-aware information
delivery, we use a decentralized, distributed and Semantic-Web
based approach to context-awareness, where no intermediary
services are required to provide personalized, context-sensitive
data. As such, it is a perfect fit for our client-side solution, as all
the necessary context information is directly available locally. In
many other approaches, either a centralized Information System
(IS) is employed to store and maintain all context-specific data
(e.g., [14, 15]), or a centralized service is used which acts as an
integrated view over distributed data sources (e.g., [16, 17]).
Although such centralized approaches offload a lot of work from
the mobile devices themselves, it is also less scalable and flexible,
as every client needs to communicate with the same central
service. Also, we argue that the possibilities of mobile devices
will keep increasing, thus reducing the need for so-called “thin”
clients. Finally, as the SCOUT framework employs Semantic Web
technology (like in e.g., [18, 19]) to integrate heterogeneous data
sources and to represent the user’s context and environment, the
semantic annotations extracted from the Web page content can be
directly matched to the user’s contextual information. In
conclusion, to the best of our knowledge, there is no other
approach that allows on-the-fly, non pre-engineered and
personalized context-awareness injection in existing Websites.

9. CONCLUSION AND FUTURE WORK
In this paper, we presented a client-side approach to inject
personalized, context-sensitive cues into existing (RDFa
annotated) Web pages, in order to assist the mobile user in his
browsing activity. To achieve this, the Web page content is
matched to the user’s context, and useful contextual information is
injected into the existing Web page, and/or information related to
his context is highlighted. The approach is built on SCOUT, a
mobile application development framework that constructs an
integrated a conceptual view of the user and his environment. The
presented solution consists of two components. Firstly, there is the
COIN mobile application, which resides in the SCOUT’s
Application Layer, and obtains contextual information from
SCOUT’s Environment Model. Secondly, there is a Web page
component (in our implementation a Javascript), which extracts
RDF triples from the Web page and performs the adaptations on
relevant page elements as directed by COIN. The Javascript is
either added on the client-side by a mobile browser plugin, or
already present on a Web page, i.e., included by the Web
designer. Our approach thus does not require pre-engineering
from the Web developer: it effectively allows adding context-
sensitive cues to any RDFa annotated Web page.

In future work, we plan to build a more complete and elaborate
Page Model, by also taking into account the metadata of the Web
pages the original page links to. Based on this extended Page
Model, we expect to be able to offer richer context-sensitive cues,
and offer new types of context-sensitive cues (e.g., adaptive
guidance). Finally, we also aim to support additional annotation
types (e.g., microformats).

10. REFERENCES
[1] Van Woensel, W., Casteleyn, S., De Troyer, O. 2009. A

Framework for Decentralized, Context-Aware Mobile
Applications Using Semantic Web technology. In On the

Move to Meaningful Internet Systems: OTM 2009
Workshops, pp. 88--97, Portugal

[2] Adida, B. 2008: hGRDDL: Bridging microformats and
RDFa. In Web Semantics: Science, Services and Agents on
the World Wide Web, 6 (1), 54--60, Elsevier Science
Publishers B. V.

[3] Brusilovsky, P.: Methods and techniques of adaptive
hypermedia, User Modeling and User-Adapted Interaction. 6
(2-3), pp 87-129, Springer Science+Business Media B.V.
(1996)

[4] Knutov, E., De Bra, P., Pechenizkiy, M. 2009. AH 12 years
later: a comprehensive survey of adaptive hypermedia
methods and techniques. In The New Review of Hypermedia
and Multimedia, Volume 15, Issue 1, pp 5—38, Taylor &
Francis, Inc.

[5] De Bra, P. and Calvi L. 1998. AHA! An open Adaptive
Hypermedia Architecture. The New Review of Hypermedia
and Multimedia 4, pp. 115—139, Taylor & Francis, Inc.

[6] Casteleyn, S. 2005: Designer Specified Self Re-organizing
Websites. PhD thesis, Vrije Universiteit Brussel, Belgium

[7] Bausmeister, H., Knapp, A., Koch, N., Zhang, G. 2005.
Modelling Adaptivity with Aspects. In International
Conference on Web Engineering, pp. 406--416, Australia

[8] Casteleyn, S., Van Woensel, W., van der Sluijs, K., Houben,
G.J. 2009. Aspect-Oriented Adaptation Specification in Web
Information Systems: a Semantics-based Approach. In The
New Review of Hypermedia 15 (1), Peter Brusilovsky and
Paul De Bra (eds.), 39--91, Taylor and Francis.

[9] Ceri, S., Daniel, F., Facca, F., Matera, M. 2007. Model-
driven Engineering of Active Context-Awareness. In World
Wide Web 10 (4), 387--413, Kluwer Academic Publishers.

[10] Ankolekar, A., Vrandecic, D. 2008. Kalpana – Enabling
Client-Side Web Personalization. In 19th ACM conference on
Hypertext and hypermedia (HT ’08), pp. 21--26, USA.

[11] Putzinger, A. 2007. Towards Asynchronous Adaptive
Hypermedia: An Unobtrusive Generic Help System. In

Lernen – Wissen – Adaption (LWA ’07) Workshop, pp. 383--
388, Germany

[12] Challiol, C., Fortier, A., Gordillo, S.E., Rossi, G. 2008.
Model-based concerns mashups for mobile hypermedia. In
6th International Conference on Advances in Mobile
Computing and Multimedia (MoMM ’08), pp. 170--177,
Linz, Austria.

[13] Brusilovsky, P. 2007. Adaptive Navigation Support. The
Adaptive Web, pp. 263--290

[14] López-de-Ipiña, D., Vazquez, J.I., Abaitua, J. 2007. A
Context-aware Mobile Mash-up Platform For Ubiquitous
Web. In 3rd IET International Conference on Intelligent
Environments, pp. 116--123, IEEE, Germany.

[15] Tummala, H., Jones, J. 2005. Developing Spatially-Aware
Content Management Systems for Dynamic, Location-
Specific Information in Mobile Environments. In 3rd ACM
international workshop on Wireless mobile applications and
services on WLAN hotspots, Mobility support and location
awareness, pp. 14--22, ACM, Cologne, Germany.

[16] Cappiello, C., Comuzzi, M., Mussi, E., Pernici, B. 2006.
Context Management for Adaptive Information Systems. In
Electronic Notes in Theoretical Computer Science 146, 69—
84.

[17] Xue, W., Pung, H., Palmes, P.P., Gu, T. 2008. Schema
matching for context-aware computing. In 10th
international conference on Ubiquitous computing, pp. 292--
301, Korea

[18] Euzenat, J., Pierson, J., Ramparany, F. 2008. Dynamic
context management for pervasive applications. In Journal of
Knowledge Engineering Rev. 23, 21--49

[19] Frkovic, F., Podobnik, V., Trzec, K., Jezic, G. 2008. Agent-
Based User Personalization Using Context-Aware Semantic
Reasoning. In 12th international conference on Knowledge-
Based Intelligent Information and Engineering Systems (KES
'08), pp. 166--173, Zagreb, Croatia.

