
Ontology Change Detection using a Version Log

Peter Plessers∗, Olga De Troyer

Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
{Peter.Plessers, Olga.DeTroyer}@vub.ac.be

Abstract. In this article, we propose a new ontology evolution approach that
combines a top-down and a bottom-up approach. This means that the manual
request for changes (top-down) by the ontology engineer is complemented with
an automatic change detection mechanism (bottom-up). The approach is based
on keeping track of the different versions of ontology concepts throughout their
lifetime (called virtual versions). In this way, changes can be defined in terms
of these virtual versions.

1 Introduction

With the emergence of the Semantic Web [1], a new dimension has been added to the
World Wide Web (WWW). Before, the information and functionality provided on the
WWW was primarily tailored towards human interpretation, limiting the possibilities
for machine processing. The Semantic Web has been proposed as an answer to these
shortcomings by making the semantics of the web content explicit. Two major build-
ing blocks are used to realize this vision: ontologies as a formal, explicit specification
of a conceptualization [2], and semantic annotations connecting web content and on-
tologies to enrich the web content with semantic information. Besides containing se-
mantically annotated web pages, the Semantic Web is also a true ‘web of ontologies’
meaning that ontologies are interconnected, as they are reused and linked to each
other.

The subject of this paper concerns ontology evolution. Evolution is an intrinsic part
of the Semantic Web: alterations in a particular domain, changes of user requirements
or corrections of design flaws, they all may induce changes to the corresponding on-
tologies and to semantic annotations. Moreover, changes to one ontology may have
implications on many depending artifacts (other ontologies, annotations, applications,
etc. based on the changed ontology) [3]. The manual handling of this evolution proc-
ess of ontologies in a distributed, decentralized environment as the Semantic Web is
not feasible as it is a too laborious, time intensive and complex process [12]. There-
fore, it is vital that an approach is provided guiding the ontology engineer in this
complex ontology evolution process.

To be able to understand the modifications applied to an ontology, the changes
should be formally represented and captured. This is usually done through an evolu-
tion log listing all applied changes. Furthermore, the change representation used

∗ This research is partially performed in the context of the e-VRT Advanced Media project (funded by the

Flemish government) which consists of a joint collaboration between VRT, VUB, UG, and IMEC.

should be sufficient expressive (i.e. able to specify all possible changes to an ontol-
ogy), and should support different levels of granularity (i.e. fine-grained changes (e.g.
the creation of a single class) opposed to coarse-grained changes (e.g. the movement
of sibling classes to a different parent)). In current approaches, the evolution log is a
direct result of the changes requested by the ontology engineer. In this paper, we ar-
gue that such an approach may lead to a limited evolution log, missing valuable in-
formation. This makes it harder for (other) users and machines to understand and in-
terpret the ontology modifications. Therefore, we propose an ontology evolution
approach combining a top-down and a bottom-up approach. This means that the man-
ual request for changes by ontology engineers (top-down) is complemented with an
approach of automatic change detection (bottom-up).

The paper is structured as follows. Section 2 presents an overview of current prac-
tices in the domain of ontology evolution. Section 3 gives a general outline of the on-
tology evolution approach focusing on the different phases of the approach. Section 4
introduces the version log, which forms the basis of our approach. In the subsequent
sections, the relevant phases of our approach are elaborated in more detail: section 5
discusses the Change Request phase, section 6 presents the Change Implementation
phase, the Change Detection mechanism is given in section 7, while section 8 presents
the Change Recovery phase. Finally, section 9 discusses the advantages of our ap-
proach and provides conclusions.

2 Ontology Evolution

In this section, we give an overview of current practices in the domain of ontology
evolution. Stojanovic [11] has defined ontology evolution as the timely adaptation of
an ontology to the arisen changes and the consistent propagation of these changes to
depending artifacts. In [10] the authors identified a possible evolution process. The
core phases of this process can be summarized as follows:
• Change representation: in the context of a change request, the necessary changes

have to be identified and represented in a suitable format.
• Semantics of change: changes to an ontology can induce inconsistencies in other

parts of the ontology or to other depending artifacts. The task of this phase is to
solve these inconsistencies by requesting new deduced changes.

• Change propagation: the task of this phase is to bring all dependent artifacts in a
consistent state by propagating changes to these depending artifacts.

• Change implementation: this phase is used to inform an ontology engineer about
all the consequences of a change request, to apply all requested and deduced
changes and to keep track of all these applied changes in an evolution log.

To represent changes, they introduced in [6] three levels of abstractions of ontol-
ogy changes for the KAON language. They distinguished: elementary changes (modi-
fications to one single ontology entity), composite changes (modifications to the di-
rect neighborhood of an ontology entity) and complex changes (modifications to an
arbitrary set of ontology entities). Also Klein [5] makes a similar taxonomy for the
OWL language for which he defines both basic and complex change operations. Basic
change operations are changes to one single ontology entity whereas complex change

operations are a mechanism for grouping basic change operations together to form a
logical unit. The set of elementary changes and basic change operations (further
called basic changes) is exhaustive as it is derived from the underlying ontology lan-
guage; the set of composite changes, complex changes and complex change opera-
tions (further called composite changes) is infinite as new composite changes can al-
ways be defined [5]. The benefit of composite changes is that ontology engineers can
formulate their change requests at a higher-level of abstraction, corresponding to their
mental model of the change, instead of forcing them to think in terms of individual
basic changes.

In [4] the usefulness of a composite change detection approach was already indi-
cated. They introduced a detection mechanism based on rules and heuristics to detect
composite changes between two ontology versions (Vold and Vnew). While their ap-
proach is applicable in specific cases, in general, the approach has serious limitations:
• The approach requires that Vold is still available, because detection rules rely on

both Vold and Vnew. Unfortunately, when an ontology is modified, the original ver-
sion is often no longer available.

• Multiple changes to Vold may interfere possibly invalidating defined change detec-
tion rules. Take for example the composite change ‘moveSiblings’ (representing
the movement of all siblings to a different parent). A detection rule can be formu-
lated checking if all siblings of a parent A in Vold have a new parent B in Vnew. As-
sume that after the move of the siblings, one of the siblings was removed. This
would mean that the rule, as formulated, no longer applies. Nevertheless, the
‘moveSiblings’ change did occur.

The authors of [4] try to overcome these problems by introducing heuristics to change
the precise criteria of the rules to approximations. While heuristics may provide the
ontology engineer with some flexibility in the rule definitions, it is clear that it doesn’t
offer a bullet-proof solution as it makes the detection process imprecise and unpre-
dictable.

We argue that, when the ontology engineer solely specifies changes manually, the
log of changes may be missing valuable information. This is because of the following
reasons:
• It is not always trivial for ontology engineers to select the intended composite

change they want to apply due to the complexity involved. Instead they rely on ba-
sic changes to achieve step by step the desired result, evaluating the progress after
each step. As a consequence, the intended composite change will not be listed in
the evolution log.

• A same ontology modification can be achieved in different ways, using composite
changes that may differ in level of granularity (and therefore also have different
semantics) (e.g. ‘moveClasses’ and ‘moveSiblings’). The ontology engineer will
only select one change, meaning that the others will not be listed in the evolution
log.

• Meta-changes (information about changes) are valuable to understand occurred on-
tology modifications as they define the implication of a change. They are, unfortu-
nately, not useful for ontology engineers, as they don’t specify ‘what’ has to
change. Therefore, they don’t get listed in the log of changes.

• The number of possible composite changes is infinite. Nevertheless, ontology en-
gineers only use a finite number of these composite changes. If a fixed set of com-

posite changes is defined, this means that users are restricted to this set to under-
stand the occurred modifications, although other composite changes may be more
appropriate for them.

3 Overview of the Approach

In this section, we will give an overview of the different phases of our ontology evo-
lution approach. Some of the phases resemble phases from the evolution process pro-
posed in [10], but the incorporation of a change detection mechanism has influenced
these phases. The five phases of our approach are: (1) Change Request, (2) Change
Implementation, (3) Change Detection, (4) Change Recovery and (5) Change Propa-
gation. An overview of the phases is shown in Figure 1.

Fig. 1. Five phases of the ontology evolution approach.

 The purpose of the different phases is summarized as follows:
1. Change Request: In this phase, it is specified which changes need to be applied to

the ontology. The phase is divided into two steps. In the first step, the ontology en-
gineer specifies the request for change in terms of basic and composite changes. In
the second step, it is checked whether the ontology remains consistent if the re-
quested change would be applied. If this is not the case, new changes (called de-
duced changes) are added to the change request to solve the inconsistencies. Note
that this is an iterative process: new deduced changes may result in additional de-
duced changes. The result of this phase is a complete change request specification
composed of requested and deduced changes that transform an ontology from one
consistent version into another consistent version. In our example (see Figure 2),
two change requests are specified: (1) ‘removeSubtype(B, A)’ with deduced change
‘removePropertyInstantiation(p, I, “abc”)’, and (2) ‘addSubtype(B, C)’. This phase
is further elaborated in Section 5.

2. Change Implementation: This phase takes as input the complete change request
specification of the previous phase, and executes the specified changes on the on-
tology (see Figure 2b+c). We keep track of all changes applied through an evolu-
tion log, i.e. a log that stores all changes applied. A detailed overview of this phase
is presented in Section 6.

3. Change Detection: In this phase, it is checked whether other (composite) changes
(besides the one specified in the change request) or meta-changes occur as a con-
sequence of the ontology modification. This is done by comparing change defini-
tions to the modifications kept in a version log (see section 4). The change is added
to the evolution log, when a combination of modifications of the version log meets
the definition of that particular change. E.g. for Figure 2c, a composite change
‘changeSubclassRelation’ can be detected. We discuss this phase in detail in Sec-
tion 7.

4. Change Recovery: In this phase, the deduced changes from the Change Request
phase are checked and possibly need to be revised. We clarify this with the exam-
ple. When we specified during change request to remove the subclass relation be-
tween B and A, a deduced change was added to remove the property instantiations
of p for I to maintain consistency (Figure 2b). When we later on created a new
subclass relation between B and C, we detected that together both changes form a
composite change (e.g. changeSubclassRelation) and that the remove of the prop-
erty instantiation p of instance i was unnecessary. Therefore this deduced change
needs to be revised (see Figure 2d). This results in a new iteration of the evolution
process. A detailed description of this phase is given in Section 8.

5. Change Propagation: In this phase, depending artifacts are brought into a consis-
tent state by propagating changes listed in the evolution log to these depending ar-
tifacts. Due to space limitations as well as because the focus of this paper is on the
change detection aspect, this phase is not further elaborated in this paper. A de-
tailed approach concerning change propagation is described in [7, 8].

Fig. 2. An example illustrating an evolution process.

For this paper, we assume that an ontology is defined in terms of classes, properties
and individuals. The definition of classes, properties and individuals is specified by
instantiating either built-in or user-defined properties. We therefore define an ontol-
ogy as a five-tuple O = (C, P, I, PI, D) where:

 C is the set of Classes
 P is the set of Properties
 I is the set of Individuals
 PI is the set of Property Instantiations
 D is the set of all data values
A property instantiation pi ∈ PI is a three-tuple pi = (p, s, t) where:
 p ∈ P is a property
 s ∈ C ∨ s ∈ P ∨ s ∈ I is the source of the property instantiation
 t ∈ C ∨ s ∈ P ∨ s ∈ I ∨ t ∈ D is the target of the property instantiation

4 Version log

Before discussing the different phases of our approach, we first present one of the key
elements in our ontology evolution approach i.e. the version log. This log keeps track
of the different versions, called virtual versions, an ontology concept passes during its
lifetime: starting from the creation of the concept, over its modifications until its re-
tirement. Note the difference between the version log and the evolution log: the for-
mer lists the different versions of the ontology concepts, the latter lists the interpreta-
tions of these versions in terms of changes. We use the version log to keep ontologies
consistent; to serve as the basis for the definition of changes; and as source for change
detection. We will first explain the structure and the concepts used in this log. The
concepts used in this log are defined by means of an ontology, called the version on-
tology, and discussed in detail in subsection 4.1. In subsection 4.2, we introduce the
change definition language. The changes, used by ontology engineers to specify their
change requests, are defined in terms of this language. Change definitions are treated
in subsection 4.3.

4.1 Version ontology

The version log captures, for each concept of the ontology, its different versions. Each
version represents the definition of the concept at a moment in time. For each class,
property and individual that is created in the ontology, we create an associated in-
stance in the version log. This instance is an instance of the EvolutionConcept class.
Such an EvolutionConcept instance keeps, besides a reference to the concept in the
ontology (for which it was created – called the referred concept), a list of past and
current versions of the referred concept.

Whenever a change request for a concept in the ontology is executed, a new Ver-
sion instance is added to the associated EvolutionConcept instance, representing the
new version of the referred concept. Such a Version instance has (1) a transaction
time property i.e. the moment in time the modification was applied to the ontology
(hasTransactionTime), (2) a causes (and inverse causedBy) property to express which
version causes which other versions, reflecting the relation between requested
changes and deduced changes in the change request, (3) a state property (hasState) to
reflect the state of the version (pending or confirmed) and (4) optionally (if it exists)
the ID of the referred concept (hasID). Figure 3 gives an overview.

To capture a version of a concept, we have to file all its property instantiations that
together form its definition. To do this independently of the ontology language used,
we have defined a number of classes and properties to capture the most common on-
tology language constructs (e.g. complement, union and intersection of classes; sym-
metric and transitive characteristics of properties; etc.). We have defined the classes
IndividualVersion, PropertyVersion and ClassVersion to capture the version of re-
spectively individuals, properties and classes. Because space is limited, we cannot de-
scribe the complete version ontology, therefore we only discuss some parts. The in-
terested reader is referred to the full specification of the version ontology1.

1 See http://wise.vub.ac.be/ontologies/versionontology.owl

For an IndividualVersion we specify that the referred individual is an instance of a
certain EvolutionConcept instance (instanceOf) and capture the user-defined Proper-
tyInstantiations that form the definition of the individual (hasPI). For a PropertyVer-
sion we can specify for the referred property (among other properties) the domain and
range (hasDomain, hasRange). Also cardinality and value constraints may be speci-
fied (hasConstraint). For a ClassVersion we can specify for the referred class (among
other properties) a subtype relation (subTypeOf), possible cardinality and value con-
straints (hasConstraint), and an enumeration of individuals (enumerates) that together
form the definition of the class.

Note that for the cardinality and value constraints mentioned above, we make a dis-
tinction between global and local constraints, referring to the scope of the constraint.
Global constraints apply to every instantiation of a given property. Local constraints
only hold for those instantiations of a given property when used in a particular class.

Fig. 3. The Version concepts of the version ontology.

An extract of an example version log is given below. The extract shows an Evolu-
tionConcept representing the different versions a class ‘Student’. The first version
represents the initial version of the class. In the second version, we see that the class
includes a subtype relation. Note that the version log doesn’t specify ‘what’ has
changed; it only lists the successive versions.

<EvolutionConcept rdf:ID="fd42cc20">
 <refersTo rdf:resource="…/university#Student"/>
 <hasVersion>
 <ClassVersion rdf:ID="389a99b0">
 <hasTransactionTime>624</hasTransactionTime>
 <hasState>confirmed</hasState>
 <hasID>Student</hasID>
 </ClassVersion>
 </hasVersion>
 <hasVersion>
 <ClassVersion rdf:ID="389a99b1">
 <hasTransactionTime>628</hasTransactionTime>
 <hasState>confirmed</hasState>
 <hasID>Student</hasID>
 <subtypeOf rdf:resource="#fd42cc22" />

 </ClassVersion>
 </hasVersion>
</EvolutionConcept>

4.2 Change Definition Language (CDL)

The version log uses an explicit timeline for the different versions. The ‘hasTransac-
tionTime’ sequentially orders all versions across all EvolutionConcepts. Note that
versions originating from the same change request (i.e. user-specified and deduced
changes) will have the same transaction time. The order between such versions is de-
fined by the ‘causes’ and ‘causedBy’ properties. As previously mentioned, these
properties define which version causes which other versions, reflecting the relation
between requested changes and deduced changes. This information is required to be
able to undo changes (see Section 8). Figure 4 shows the timeline (TA and TB) for two
EvolutionConcept instances A and B. The transaction times of the different versions
refer to the timeline T. A variable cv refers to the current version of a concept. If n ∈
IN specifies the total amount of versions of one EvolutionConcept, than we can use cv
- a (where a ∈ N, a = n) to refer to the (n – a)th version of that concept. We also define
a variable cvp (where p ∈ P). This variable takes only those versions into account
where the instantiation of the given property p was changed; cvp refers to the last one
of these versions, cvp-1 to the previous one, etc.

Fig. 4. Timeline introduced by the version log.

This time aspect allows us to check properties of past versions of ontology con-
cepts [9]. This is done by means of conditions. These conditions are used to formulate
change definitions (see section 4.3). The conditions are resolved using pattern match-
ing. We use the following syntax to define conditions on versions (Note that V defines
a set of variables):

<property>(<source>, <target>, [<version>])

where
− <property> is the property we want to retrieve;
− <source> is the source of the queried property or a variable that substitutes the

source. <source> ∈ C or <source> ∈ P or <source> ∈ I or <source> ∈ V;
− <target> is the target of the queried property or a variable that substitutes the

target. <target> ∈ C or <target> ∈ P or <target> ∈ I or <target> ∈ D or <target>
∈ V;

− <version> is a reference to a version using the cv or cvp variable or a variable
that substitutes the version. Omitting a version reference means we refer to the

current version of the <target> (cv). <version> ::= cv[<property>][- <a>] (where
<a> ∈ IN) or <version> ∈ V.

We illustrate this with an example. Table 1 shows three versions of an individual i.

In the first version, i is an instance of ‘Student’. In a second version, i becomes an in-
stance of ‘Researcher’, and in version three i “publishes a first article”.

Table 1. Different versions of an example individual i.

Versions Statements
1st version instanceOf(i, ‘Student’)
2nd version instanceOf(i, ‘Researcher’)
3rd version instanceOf(i, ‘Researcher’)

publishes(i, ‘article_001’)

The following are two conditions:

Condition 1: instanceOf(i, 'Researcher', cv - 1)
Condition 2: instanceOf(i, 'Researcher', cvinstanceOf - 1)

The first condition allows to check if the individual i ∈ I was an instance of the
concept 'Researcher' during the previous version of i. The second condition allows to
check if during the previous version of the ‘instanceOf’ property instantiation, i was
an instance of ‘Researcher’. The first condition returns ‘true’ (cv - 1 refers to the 2nd
version), the second one returns ‘false’ (because the cvinstanceOf - 1 refers to 1st version).

4.3 Change Definitions

The Change Definition Language introduced in the previous subsection is used to
specify change definitions. A change is an interpretation of an ontology modification
i.e. the definition of a change formally specifies the modifications that correspond
with this change. These change definitions are used in two ways in our approach.
Firstly, ontology engineers specify their change requests in terms of change defini-
tions. The definition of the change specifies how the ontology has to change (see sec-
tion 5). Secondly, these same change definitions allow detecting other changes (not
specified during change request). This is possible because we are able to verify
whether some change definitions are satisfied by the modifications that occurred (see
section 7).

Both [5] and [6] distinguish basic and composite changes where composite
changes are defined in terms of basic and other composite changes (i.e. a functional
definition). In our approach, we define changes declaratively in terms of changing
versions. It is exactly this declarative definition of changes that will allow us to detect
changes based on the versions kept in the version log.

We make a distinction between changes (i.e. define ‘what’ has changed) and meta-
changes (i.e. define the implications of a change). Changes are further classified into
basic and composite changes. Basic changes can be expressed as a modification of
exactly one element of the version log by only imposing conditions on the changing

element (e.g. createSubtypeOf, deleteHasDomain, etc.). These basic changes are suf-
ficient to express any desirable change. A Composite change is either a modification
of exactly one element but also imposes conditions on other elements, or a modifica-
tion of more than one element.

As examples, we define the basic change ‘addDomain’, the composite change
‘moveUpDomain’ and the meta-change ‘restrictProperty’.

The basic change ‘addDomain’ adds A as domain of property p. Note that the defi-
nition only expresses a condition on the element that changes (hasDomain of a prop-
erty p). The definition specifies that A is the domain of p in the current version, but
wasn’t in a previous version.

∀ p ∈ P, A ∈ C: addDomain(p, A) ß
 ¬hasDomain(p, A, cv-1) ∧
 hasDomain(p, A, cv)

The composite change ‘moveUpDomain’ moves the domain of a property p up in
the hierarchy of classes. So if p has as domain the class A, the domain will be changed
to a superclass of A. Note that this change expresses an additional condition on the
subtype relation between A and B.

∀ p ∈ P, A, B ∈ C: moveUpDomain(p, A, B) ß
 hasDomain(p, A, cvhasDomain-1) ∧
 ¬hasDomain(p, A, cvhasDomain) ∧
 ¬hasDomain(p, B, cvhasDomain-1) ∧
 hasDomain(p, B, cvhasDomain) ∧
 subtypeOf(A, B, cv)

As an example of a meta-change, we define the ‘constraintWeakening’ meta-
change indicating a weakening of constraints as a consequence of the change. Differ-
ent modifications to an ontology can lead to a weakening of constraints, e.g. the raise
of a cardinality constraint or the extension of a value constraint, a change to a subtype
relation, etc. This means that multiple definitions exist for the ‘constraintWeakening’
each reflecting different causes. For this example, we define the ‘constraintWeaken-
ing’ meta-change in the case of a replacement of class B as the domain of property p
by class A, where A is a superclass of B. This is a weakening of constrains as first
only instances of class B could instantiate property p, now also individuals of class A
can. Note that the definition uses the ‘moveUpDomain’ change definition.

∀ p ∈ P: constraintWeakening(p) ß
 ∃ A, B ∈ C: moveUpDomain(p, B, A)

5 Change Request

Ontology engineers express their change requests (i.e. ‘what’ has to change) in terms
of the change definitions (as defined in section 4.3). Applying these changes directly
to the ontology may cause inconsistencies, meaning that the ontology would no longer
conform to the constraints imposed by the ontology language used. To avoid this, we

first process the requested change in the version log. To check if a requested change
can be applied, the conditions in the change definitions are tested. The conditions in
the change definition that refer to past versions form a pre-condition that needs to be
satisfied. If this pre-condition is not satisfied, the requested change cannot be applied
and the change request will be rejected. Otherwise, the changes are recorded in the
version log by adding new versions to the EvolutionConcepts referring to the ontol-
ogy concept to be changed so that the new current version satisfies the post-conditions
in the change definition. The conditions in the change definition that refer to current
versions form a post-condition. Note that these new versions are marked in the ver-
sion log with the value ‘pending’ for the property ‘hasState’ indicating that they are
not yet applied to the ontology itself.

Next, we have to check whether the ontology would remain consistent if we would
apply these new versions to the ontology itself. The consistency check is based on a
consistency model i.e. a model that restricts the version ontology so that it conforms
to the constraints imposed by the ontology language used (explained in section 5.1).
If it turns out that the requested change would cause inconsistencies, additional
changes should be added to the change request to solve these inconsistencies. Note
that in our approach, it is currently still the responsibility of the ontology engineer to
specify the additional changes. Keep in mind that the deduction of additional changes
is an iterative process. Every new deduced change creates a new version in the ver-
sion log, and the consistency check is reapplied. The ‘cause’ and ‘causedBy’ proper-
ties are used to express the causal relation between versions to reflect the causal rela-
tion that exists between requested and deduced changes.

The result of this phase is a complete change request (consisting of requested and
deduced changes) that transforms an ontology from a consistent version to another
consistent version. The actual implementation of the complete change request to the
ontology is done in the next phase (Change Implementation).

5.1 Consistency Model

To check for consistency, we make use of a consistency model. Such a consistency
model is a formal meta-model that restricts the version ontology so that it is conforms
to the constraints imposed by the ontology language used. This means that whenever
the latest version stored in the version log conforms to the consistency model, the re-
quested changes can be applied. Note that different consistency models may exist for
different ontology languages or different variants of an ontology language (e.g. OWL
Lite and OWL DL).

To clarify the consistency model, we give a number of example constraints that
represent constraints from OWL.
• In OWL, a subtype relation can only be defined between either two classes (sub-

ClassOf) or two between two properties (subPropertyOf):

∀ a, b: subTypeOf(a, b) ⇒ (a ∈ C ∧ b ∈ C) ∨
 (a ∈ P ∧ b ∈ P)

• In OWL, a property may have a domain and the domain of a property is a class:

∀ a, b: hasDomain(a, b) ⇒ a ∈ P ∧ b ∈ C

• In OWL DL and Full, the value of a cardinality constraint is a non-negative inte-
ger:

∀ C, v: hasCardinality(C, v) ⇒ v ∈ IN ∧ v ≥ 0

• In OWL Lite however, the previous constraint would not hold as the value of a
cardinality constraint is in this case restricted to 0 or 1. The previous constraint is
replaced by the following:

∀ C, v: hasCardinality(C, v) ⇒ v ∈ {0, 1}

6 Change Implementation

The objective of this phase is twofold. The first objective of the change implementa-
tion phase is to synchronize the ontology with the latest version of EvolutionCon-
cept(s) in the version log, i.e. the requested changes need to be applied to the ontol-
ogy. The second objective is to add the changes listed in the change request to the
evolution log. This log keeps track of all applied changes and gives an overview of
the complete evolution history of the ontology in terms of changes.

The process of applying changes to the actual ontology is quite simple. The con-
cepts that need to modify (obtained using the refersTo property in the version log) just
have to be replaced by the current version specified in the version log. To perform the
synchronization, a mapping between the concepts of the version ontology and the
elements of the chosen ontology language needs to be provided. Figure 5 shows an
example.

Fig. 5. Example mapping between Version log and an OWL ontology.

7 Change Detection

After the execution of the previous phases, the version log has been modified, the on-
tology has been synchronized with the version log and the requested changes have
been added to the evolution log. The changes specified in the change request are only

one way to see (interpret) the modification made to the ontology. From all the
changes defined (by means of change definitions), other definitions may also be sat-
isfied by the ontology modification and therefore these changes have also occurred.
To detect these additional changes, we use the following procedure. For each change
definition specified, we check if its definition is satisfied. As change definitions are
given in terms of conditions on the version log, a change definition is satisfied if all
conditions of its definition are satisfied. The changes, whose definitions are met, are
subsequently added to the evolution log. Note that this change detection process isn’t
limited to the ontology owner, but can be performed for all maintainers of artifacts
depending on the ontology. This makes it possible for maintainers of depending arti-
facts to specify their own set of change definitions, independently of the set of change
definitions of the ontology owner or other maintainers.

Notice that this change detection process is particularly flexible i.e. the detection
process is not dependent on the steps taken to achieve a particular change neither on
the order of these steps. Figure 6 illustrates this with two situations where both the
‘moveUpDomain’ change will be detected. In the first situation (1), the domain of
property p is changed from class B to class A being a superclass of B. This change
confirms to the definition of ‘moveUpDomain’ (see Section 4.3). In the second situa-
tion (2), the domain of property p is changed from class B to class A. This change
doesn’t conform to the definition of ‘moveUpDomain’ as the subtype condition is not
met. However, when in a next step, the subclass relation between B and A is added,
this modification will result in the detection of the ‘moveUpDomain’ change as all
conditions are now met.

Fig. 6. Two examples illustrating the change detection process.

8 Change Recovery

We start with an example. Assume for Figure 6(2) an instance i of class B with a
property instantiation of p. When the domain of property p is changed to class A, the
ontology would become inconsistent because the property instantiation of p for i is no
longer valid. To overcome this inconsistency, the change request will be extended
with an additional change to remove the property instantiation from i. When in the
next step, the subtype relation is added between B and A, we will detect the ‘move-
UpDomain’ change (see previous section). It becomes now clear that the removing of
the property instantiation of p from i was not necessary. This example illustrates the
necessity to be able to recover from deduced changes when detecting changes.

When a composite change is detected, the change recovery process is as follows:
1. As presented in section 4.3, the definition of a change is specified in terms of con-

ditions. For each property, possible pre-conditions and post-condition are specified
in terms of past and current versions. In this first step, from the versions of the ver-
sion log that satisfy the definition of the detected change (in this example ‘move-
UpDomain’), we select those versions that satisfy the conditions in the change
definition that form the post-condition (Figure 6(2b + c)).

2. In a second step, all versions that are caused by one of the selected versions are
undone. In our example, this means undoing the remove of property instantiation p
for i. This is possible by following the ‘causes’ property from the selected versions
in the version log. In this way, we undo all deduced changes. Undoing changes is
trivial as we can easily return to the previous version (found in the version log).

3. The version log is checked for inconsistencies. If it appears to be consistent, the
changes will be applied to the ontology. If not, additional changes need to be for-
mulated by the ontology engineer to solve any inconsistency. This step is repeated
until consistency is reached. Note that this step is similar to the process described
in section 5. In our example, the ontology is consistent as the property instantiation
p of individual i became valid by adding the subtype.

9 Discussion and Conclusions

The change detection mechanism as presented here has a number of advantages:
1. Implicitly detection of changes. It is not always easy for ontology engineers to se-

lect the correct, intended composite change that reflects the modifications they
have in mind. Therefore, they will opt for basic changes to achieve step by step the
desired result. In the end, they might have applied a composite change, not realiz-
ing they did. The detection mechanism proposed is able to automatically detect
these implicitly executed composite changes.

2. Allowing different levels of granularity. Several composite changes, with different
levels of granularity (and also different semantics), may result in the same ontol-
ogy modification. Consider for example the composite changes ‘moveClasses’ and
‘moveSiblings’. ‘moveSiblings’ provides more semantics than ’moveClasses’ (dif-
ference in granularity). The same modification can be achieved using either of
these changes. When an ontology engineer opts for the ‘moveClasses’ change to
actually execute a ‘moveSiblings’ change, valuable information is lost because the
most accurate change is not registered. The change detection mechanism over-
comes this problem, as the more accurate change will be detected.

3. Meta-changes are automatically detected. Meta-changes are not useful for ontol-
ogy engineers to specify change requests as they don’t define ‘what’ has to change.
Furthermore, ontology engineers don’t want to be burden with the task of manually
specifying them. However, these meta-changes are definitely valuable for under-
standing occurred ontology changes. The change detection mechanism is able to
detect such meta-changes.

4. Different sets of change definitions. Ontology engineers may use a fix set of com-
posite change definitions to specify their change requests, although an infinite

number of composite changes may exist. Our approach makes it possible for main-
tainers of depending artifacts to define additional composite change definitions,
which are more appropriate for their purpose. The occurrence of these additional
changes can be detected using our change detection mechanism.

As a conclusion, we summarize the contributions of this paper. We have presented

a new ontology evolution approach that includes an automatic change detection
mechanism. The key element of our approach is the version log, which maintains the
different versions of the ontology concepts. Change definitions as well as the consis-
tency model are defined in terms of this version log. Because the version log is inde-
pendent of the ontology language used, also change definitions are defined independ-
ently of the used ontology language. Different ontology languages are supported by
defining a proper consistency model and specifying a mapping between the version
ontology and the ontology language used.

References

1. Berners Lee, T., Hendler, J., Lassila, O.: The semantic web: A new form of web content that
is meaningful to computers will unleash a revolution of new possibilities. Scientific Ameri-
can (2001) 5(1)

2. Gruber, T.: A Translation Approach to Portable Ontology Specifications. Knowledge Acqui-
sition 5(2) (1993) 199-220

3. Klein, M., Fensel, D.: Ontology versioning for the Semantic Web. In Proceedings of the First
International Semantic Web Working Symposium (SWWS), Stanford University, Califor-
nia, USA (2001) 75-91

4. Klein, M., Fensel, D., Kiryakov, A., Ognyanov, D.: Ontology versioning and change detec-
tion on the web. In 13th International Conference on Knowledge Engineering and Knowl-
edge Management (EKAW02), Sigüenza, Spain (2002)

5. Klein, M.: Change Management for Distributed Ontologies. PhD Thesis (2004)
6. Maedche, A., Stojanovic, L., Studer, R., Volz, R.: Managing multiple ontologies and ontol-

ogy evolution in OntoLogging. In Proceedings of the Conference on Intelligent Information
Processing (IIP-2002), Montreal, Canada (2002) 51-63

7. Maedche, A., Motik, B., Stojanovic, L., Managing multiple and distributed ontologies on the
Semantic Web. TheVLDB Journal - Special Issue on Semantic Web 12 (2003) 286-302

8. Maedche, A., Motik, B., Stojanovic, L., Studer, R., Volz, R.: An Infrastructure for Searching,
Reusing and Evolving Distributed Ontologies, In Proceedings of the Twelfth International
World Wide Web Conference (WWW 2003), Budapest, Hungary, ACM (2003) 439-448

9. Plessers, P., De Troyer, O., Casteleyn, S.: Event-based Modeling of Evolution for Semantic-
driven Systems. In Proceedings of the 17th Conference on Advanced Information Systems
Engineering (CAiSE'05), Publ. Springer-Verlag, Porto, Portugal (2005)

10. Stojanovic, L., Maedche, A., Motik, B., Stojanovic, N.: Userdriven Ontology Evolution
Management. In Proceeding of the 13th European Conference on Knowledge Engineering
and Knowledge Management EKAW, Madrid, Spain (2002)

11. Stojanovic, L.: Methods and Tools for Ontology Evolution. Phd Thesis (2004)
12. Tallis, M., Gil, Y.: Designing scripts to guide users in modifying knowledge-based systems.

In Proceedings of the 14th National Conference on Artificial Intelligence (AAAI/IAAI
1999), Orlando, Florida, USA (1999) 242-249

