A Reusable Personalization Model in Web Application Design

Irene Garrigos, Jaime Gomez
Universidad de Alicante
Campus de San Vicente del
Raspeig, Apartado 99 03080
Alicante, Spain
{igarrigos,jgomez}(@dlsi.ua.es

Abstract

Personalization of web sites has become an important
issue in web modeling methods. Many of these methods
use similar approaches to specify personalization.
However, even with similar (personalization)
requirements the resulting implementations differ. The
consequence is that we cannot reuse the same
(personalization) specification. This paper presents a
generic extension for existing conceptual modeling
approaches to address the particulars associated with the
design and specification of dynamic personalization. We
allow the designer to specify, at design time, how the
website will be personalized (at runtime). We claim that
the personalization specification can be mapped to
different web modeling methods so we can define this
specification once and reuse it for different (development)
environments. For this purpose, a high level (generic)
language based on rules (Personalization Rules Modeling
Language) is presented. Finally, we describe how PRML
rules can be easily mapped to the rule representation for
a commercial rule engine.

1. Introduction

Web idiosyncrasy introduces new challenges for the
design process that go further than the specification of the
navigation map, and that include aspects like the need for
continuous evolution, and the treatment of a
heterogeneous audience (that implies different user’s
needs, goals, preferences, capabilities etc. in our website).
In this context the personalization of websites has become
an important issue in web modeling methods [6] [8] [9]
[11] [12] [15], due also to the effect of the diversity of
personalization policies over all the development cycle of
applications. Many of these methods tackle very similar

Peter Barna, Geert-Jan
Houben
Techniche Universiteit
Eindhoven
PO Box 513, NL-5600 MB
Eindhoven, The Netherlands
{P.Barna, G.J.Houben }@tue.nl

problems and use conceptually similar techniques
(personalization model based on rules, user model, etc).
Despite of this, even with the same (personalization)
requirements the final implementations differ. This is why
we cannot reuse the same (personalization) specification.
When adaptation rules (from personalization model) are
specifically defined for an application environment the re-
usability of rules is a big challenge [14]. Only when rules
management is separated from application development
personalization will achieve maximum flexibility.

It is obvious that many existing approaches offer
powerful specification means and tools for
personalization. However, in most cases they are not
portable, typically use different specification techniques
and are aimed and implemented for different design
methods. In this paper we offer a solution that preserves
the advantages of the existing approaches, and in our
opinion it also shows a good balance of expressive power
(aimed to personalization) and portability — its ability to
be (automatically) mapped to rather different conceptual
modeling methods wusing different specification
techniques. This solution is based on a high level rule
language called PRML (Personalization Rules Modeling
Language) that the designer can use to specify (at design
time) the personalization to be performed at runtime. The
specification of personalization is separated from any
other application functional specification, so it can be
specified once and used for different (development)
environments. The personalization specification can be
mapped (implemented) to different existing web design
approaches. To demonstrate our claims, we discuss its
mapping to OO-H [7] [8] and Hera [9] [18] representing
rather different approaches to web design.

The paper begins describing backgound in section 2.
Section 3 explains how, in a web design model context,
personalization is applied. An example specified in the
methods studied in the paper demonstrates two different

modeling techniques where personalization is modeled. In
section 4 the PRML language is presented and the
mapping from PRML to OO-H and Hera is described. In
the next section we show how PRML rules can be easily
mapped to the rule representation for a commercial rule
engine. Finally we present conclusions and further work.

2. Background

Adaptation rules are widely used in the literature for
specifying adaptive websites. There are different kinds of
adaptation rules depending on the object of the
adaptation: we focus on the user-related adaptation rules
(personalization rules). A personalization rule will state
when concrete users see certain pieces of content and how
specific functionality is presented. Some modeling
approaches have their own language for defining rules.

For example, for describing navigation goals WebML
[6] uses the WBM formalism based on a timed state-
transition automata. This formalism combined with
WebML form a high-level Event-Condition-Action
paradigm. In WebML an event consists of a page request,
the condition is expressed as a WBM script and represents
a set of requeriments on the user navigations, and the
action is expressed as a WebML operation chain and can
specify adaptivity actions. In WSDM [3][4], in the
context of audience driven design, a language is provided
to help the designer to define adaptive behavior, focusing
on the adaptation for a group of users by adapting the
structure of and the navigation possibilities in the website.
WSDM doesn’t support personalization, but this language
could be used to personalize. UWE [11] in the context of
an OO method, define adaptation rules as OCL
expressions. A rule is modeled as a class Rule that
consists of one condition, one action and attributes. Rules
are classified according to their objectives into:
construction rules, acquisition rules and adaptation rules.

In WUML[10], in the context of ubiquitous computing,
customization rules allow the designer to specify the
adaptation to perform when a certain context is detected.
These rules are specified within an UML annotation,
using the stereotype <<CustomizationRule>>. The
specification of such a rule comprises a unique name, a
reference to one or more requirements, and an ECA
triplet. The annotation is attached to those models
elements being subject to customization. Thus the
customization rules can be attached to any web
application modeling using UML as the basic formalism.

However, when personalization rules are specifically
defined for an application environment we find some
problems: the re-usability (in different approaches) of the
personalization strategy is (almost) impossible. Moreover,

due to the heterogeneous ways to personalize in the
different methods, it is difficult to compare them by the
(level, kind of) personalization they support.

Also, there is a big number of commercial tools (e.g.
ILog JRules, LikeMinds, WebSphere, Rainbow..) that
make easier the use of the personalization techniques and
strategies and give support to many personalized web
applications. These tools are oriented to the
implementation of personalization strategies. Some of
them also allow to personalize in basis of rules The main
problem of these approaches is the low abstraction level
that causes reuse problems and a difficult maintenance
and scalability of the resultant personalized applications.

3. Contextualization of Personalization in
Web Design Methods

In the context of web design methods, the existence of
conceptual models independent of the final
implementation language makes easier the personalization
(adaptation) of the web applications to the environment
changes, reusing the information captured during the
process of analysis and design. Focusing on the
conceptual modeling phase, every design method has
three main layers: a Domain model, in which the structure
of the domain data is defined, a Navigation model which
defines the structure and behavior of the navigation view
over the domain data. Finally, the Presentation Model
defines the layout of generated hypermedia presentation.
To be able to model adaptation/personalization at design
time two new models are added (to the set of models): (1)
A Personalization Model, in which personalization rules
are defined to store information needed to personalize and
to specify different personalization policies. (2) A User
Model, which allows to store data needed for
personalization besides the beliefs and knowledge the
system has about the user. This information builds the
user profile and it is needed to base the personalization
on.

As already mentioned, we propose to create a reusable
personalization model. In this paper we are going to focus
on two modeling methods different enough to show the
generality of our proposal. The OO-H Method [7] [8] is
based on the OO paradigm that provides the designer with
the semantics and notation necessary for the development
of web-based interfaces. Hera [9] [18] is a model-driven
methodology for designing web applications. Both
methods have three layers for designing a web site. In this
paper we (only) focus on the personalization of the
structure of the website (not in presentation details). In the
next subsections we define the models of the conceptual
modeling phase, and compare these two methodologies.

We study a (simplified) book store shopping basket
system as a running example. Consider the following
personalization requirement: we want the user to be
offered a list of books written by authors in which user
has certain interest degree.

3.1 Domain Model and User Model

In figure 1 we see the DM and the UM for OO-H for
the running example. The UM is represented as part of the
DM. These models are defined (in OO-H) as UML
compliant class diagrams. Concepts are represented by
classes with attributes. There are associations between
them representing Concepts relationships. We can store or
update the information of this model by means of ECA [5]
rules as we will show in section 4.

Store |
D * iptérestToAuthor

bookToAuthor Author
ID
\h stores thorToBook| jnome

Interest

Book degree
D I
bname * authorTcrInte t I userTolnterest
summary |
price \ Orders
contains D
Buy amount

|
|
|
|

orders I * interestToUser
I User (from framework)
|

Basket D
D numberOfSessions
login
password

Figure 1 DM-UM for OO-H (expressed in UML)

bname Float l

° summary -
priﬁ‘e »| String
books bookToAuthor
Store Book Author P22™p! String
contains authorToBook AinterestToAuthor

authorTolnterest

userTolnterest
Interestl—

interestToUser

Figure 2 DM-UM for Hera (expressed in RDFS)

In figure 2 we can see the Hera DM and UM for the
same example. In Hera, all models are represented with
RDFS[2]. Ovals represent Concepts and rectangles
represent literal Attributes. In both methods, for the
purpose of the personalization requirement defined, we
store in the updatable UM the user’s interests on authors.

3.2 Navigation Model

A generic Navigation Model (NM) will be composed
of Nodes and Links. Nodes are (restricted) views of
domain Concepts. Each Node has associated a (owner)
Root Concept from the DM. Browsing Events are
associated to the Links of the NM. A NM describes a
navigation view on data specified by DM (and possibly
also UM). Moreover it also captures the functionality
(personalization) of the designed application.

Recommendations: Book

bname

osn juiod Alug

Personalization

Rule f

Recommendations (ShowAll)

o
o
2 Author: Author
S
; aname
S BookDetails: Book
N
i”\ summary
[price
=~
3 B >
> S BuyBook\"
A
Book: Book Acquisition Rule
brame W rnperms

Figure 3 OO-H Navigation Model

Consult Books
Recommendations

Viewpetails

Acquisition Rule [----*
""" Personalization Rule

Recommendations

Figure 4 Hera Navigation Model

In figure 3 we can see the NM for OO-H, and in figure
4 for Hera for the running example. In both cases, the
final website will have as a starting point: the home page
where we can find a collection of links: “Consult Books”
and “Recommendations” in this example. If the user
navigates through the first link (Consult Books), he will
find a list with all the books in a new page. This set of
books is an indexed list, so the user can click in one of the
books names to view the details of each of the books.
When the wuser clicks on “Recommendations”

personalized book suggestions should appear (based on
the information from UM). To fulfill this personalization
requirement (Users will see recommendations of books
based on their interests in authors) we need to define a
personalization model to adapt this NM. It will be
explained in section 4.

The OO-H NM is composed by navigational classes,
which represent views of the classes of the domain model
(the above defined Nodes). In each Node we have defined
the Root Concept from DM (or UM) attached to it by the
notation: “RootConcept:Node”. In the Hera NM the ovals
with the slice shapes represent navigation Nodes. Every
slice is based on a DM (or UM) Concept (Root Concept)
indicated by the title on appropriate oval. Overlaying
areas of slices and ovals contain attributes of the (root)
concept (e.g. price in Books.Detail) and attributes of
related concepts are located in the slice areas not
overlapping with ovals (e.g. aname in Book.Details).
Arrows represent links that have attributes as anchors and
slices as targets. For a more extensive description of OO-
H and Hera NM we refer the reader to [8] and [9]
respectively.

In the next section we introduce the Personalization
Rules Modeling Language to specify a personalization
strategy and explain how it can be mapped to OO-H and
Hera methods.

4. Personalization Rules

Language

Modeling

The rules of the personalization model will be defined
using an effective, simple and easy to learn language. As
already mentioned, the purpose of this language is to help
the web designers to define all the rules required to
implement a personalization strategy. The basic structure
of a rule defined with this language is the following:

When event do
If condition then action endIf
endWhen

The rules we can define with this language are ECA
[5] rules. A rule is formed by an event, the body of the
rule, a condition (optional) and an action to be performed.
For satisfying a personalization requirement we have to
define how to obtain the required knowledge to
personalize (acquisition rule). This information will be
stored in the UM. Also, we have to define the effects this
personalization causes in the system (personalization
rules). These rules use the information from the UM to
describe adaptation actions. Depending on the object of
the adaptation two kinds of personalization rules are

considered: navigation rules (to alter navigation), and
content rules (to add/remove/adapt content). Due to space
limitations we can only show an excerpt of the BNF
specification of PRML. Symbols and words in bold
denote keywords. (In the paper for clarity reasons rules
have been simplified omitting the features of the rule, e.g.
priority, expiration date, etc.).

<rule>::= <features> When <event>do <body>
endWhen

<body>::= [<periocity>] [If (<condition>) then]
<action> [endIf]

<event>::= (Start | <navigation> |
<methodInvocation> | End)

<navigation>::= Navigation. <link>
<methodInvocation>::= MethodInvocation. <link>
<periocity>::= SetPeriocity <operator> (always |

everyday | eachmonth | <userdefined>) !

<condition>::=(<relexpression> [<booloperator>]
{<relexpression>})

<relexpression>::= <operand> <operator>
(<value>|<operand>) | not <relexpression>
<operator>::= < | > | = | <= | >= | <>

<action>::= <SetContent> | <Show> | <Hide> |
<Sort> | <SortLinks>

<SetContent>::= SetContent (<attribute>,
<content>)

<attribute>::=<attname>

<attname>::=<class> . <attrib>
<content>::=<attname> | <value>

<Show>::= Show (<attname>)

<Show>::= Show(<link>)

<Hide>::= Hide (<link>)

<Sort>::= Sort <class> orderBy ASC | DESC |
<attname>

<SortLink>::= SortLinks <link> orderBy ASC |
DESC | <link>

For the requirement considered in the running example
we need the following rules: We need an acquisition rule
to update the user’s interests (in the UM) when the user
consults a specific book. We also need a personalization
rule that will do the following: “When the user clicks on
the link ’Recommendations‘ we show the books of
authors with an interest degree > 100” (checking the
updatable value from UM).

The three parts that form a rule (event, condition,
action) are explained in next subsections, by means of the
running example, to illustrate the use of the PRML

4.1 PRML: Event Specification

First, we consider the events. We want an active
system that monitors situations of interest to personalize
and to trigger the proper response when one of these

! Periocity states a certain interval of time in which the rule condition
has to be checked.

situations occurs. This response is specified by an action
in a rule, so to trigger that action we need events. Each
time the user activates a link (activelink), the associated
event is launched causing the evaluation of a rule. When a
link is clicked a node is also activated (activenode). We
consider the following types of browsing events:

* Navigation event: implies the activation of a
navigational link and the activation of a node (i.e. the new
page resulting of the navigation). Links have a parameter
indicating the instance or set of instances that are going to
be shown (and the navigation pattern, i.e. showall, index..)
in the activated node. When the link is activated the rule/s
attached to this event is/are triggered passing to the rule/s
this parameter to build, in basis of this information, the
active node. We need the data before the node resulting
from navigation is generated (in order to use those data in
the rules and build the adaptive web page). This
information is passed in the navigation event (when
possible and needed) as a parameter’. This parameter can
be a simple parameter (when the data on the webpage is
the instance of a concept of the domain model) or a
complex parameter (when the data of the webpage is a set
of instances of a concept of the domain model). In PRML
we can write: When
Navigation.activelink(NM.activenode parametername) do
to express this event passing a single parameter, and
When Navigation.activelink(NM.activenode*
parametername) do when we pass a complex parameter.
In the running example we could express: When
Navigation.ViewDetails(NM.Book book) do to specify the
event of a rule triggered when the user browses the link
“ViewDetails”. As a parameter we add the active node
“Book”. In the following case we pass a complex
parameter when the user clicks on the “ConsultBooks”
link: When Navigation.ConsultBooks(NM.Book*
bookset) do.

* Method Invocation event implies the invocation of a
method defined in the website. To express this event in
PRML we can write When
MethodInvocation.activelink(NM.activenode) do. In the
Method Invocation event we also pass a parameter
containing the instance of the root concept of the node
containing the invocation to the method, this parameter
can be also simple (i.e. an instance) or either complex (i.e.
set of instances). If we would like to add a rule when the
user invokes the service Buy Book in PRML we would
express it as follows (simple parameter): When
MethodInvocation.BuyBook(NM.Book) do.

* Start event is associated with the entrance of the user in
the website (i.e. the start of a session). In PRML this
event is expressed as follows: When SessionStart do.

2 All the parameters have the prefix NM to indicate that they come from
the Navigation Model.

* End event implies the exit of the user from the website
(i.e. end of a session). In PRML we can express this event
as follows: When SessionEnd do .

Mapping Events to OO-H and Hera

In OO-H the events are associated with the different
types of link in the NM. Navigation events are associated
with navigational links in the navigation diagram (see fig.
2, e.g. View Recommendations, Consult Books). Method
invocation events are launched when the user clicks on
links that invoke a service (service links, e.g. Buy Book).
The Start event is associated with the Entry point link in
the navigation diagram. The End event is triggered after
certain inactivity of the user in the system or when the
user clicks activates an exit link.

In Hera events are associated either with links or with
processing of forms (user inputs). A concrete link event
corresponds to the instantiation of its target slice, and a
form processing event corresponds to the execution of a
data (manipulation) query. Another events are associated
to the instantiation of a browsing session (for a single
user), and its expiration. Hence, we can consider the
following event types analogous:

- Start event is Session instantiation in Hera,

- End event is Session expiration in Hera,

- Navigation event is Slice instantiation, here the type
and data instance of the source slice (the slice where
the link anchor was activated) are default session
parameters (sliceid, conceptid), and

- Method invocation event is Form processing in Hera,
since the application logic is in Hera provided by
form processing queries.

4.2 PRML: Condition Specification

Once rules are triggered, only if a condition is satisfied
an action is performed. In the case of personalization rules
the condition is based on information stored in the UM. In
PRML to indicate that we are accessing data of that
model, we add the prefix “UM” before the path to access
that information. Conditions can be based on user-specific
information (independent of the domain, e.g. we consider
user characteristics, user context, etc) or on domain
dependent information (e.g. number of clicks on a certain
link). In the example, in the condition of the
personalization rule (once the rule has been triggered) we
check the interest degree in a certain author (i.e. greater
than 100, the condition is based on domain dependent
information). For this purpose we need to check all the
instances of the UM concept “interest”. In PRML it is
expressed as follows “If (UM.userTolnterest.degree>100)

then™. We use path expressions to access the data of the
condition of a rule of the type:
“ConceptRelationship4.Attribute”. (In the case of
accessing the information of the UM, the path expression
will start with the User concept, if we have to start from
any other class the path expression will start with the
name of that class).

Mapping Conditions to OO-H and Hera

The mapping of the conditions to OO-H and Hera
methods will be done in conjunction with the mapping of
the actions. The reason for this is that PRML rules may
contain implicit bindings of expressions in the condition
and action parts. For instance in the excerpt of a rule:

If (UM.userTolnterest.degree>100) then

Show(UM.
userTolnterest.interestToAuthor.authorToBook.bname)
endIf

only these instances of the Interest class given by the
condition expression are taken into account in the action
part (are shown). This is a powerful mechanism, but it
also means that we need to consider mapping of whole
condition-action parts into different methods rather than
to map the conditions and actions separately. We will see
it at the end of the next subsection.

4.3 PRML: Action Specification

The action part of a rule specifies the operations to be
performed when the rule is triggered and its condition is
satisfied. The action, in case of the personalization rules,
will specify the adaptation action to perform. In the
acquisition rules, we will specify which information is
stored in the UM. We show now how to adapt the content
and the navigation using this language in the context of
the running example.

2 CONTENT

For adapting the content we can perform several actions
on it. We can, for example, set new content to an attribute.
For instance, the acquisition rule needed for the shopping
basket example is going to change the content of an
attribute from the UM.

When navigation.ViewDetails (NM.Book book) do

3 The loop to check all the instances is not expressed in the rule, it is
done implicitly.

4 The ConceptRelationship statement can be repeated 1 or more times
depending on what we need to access.

If (book.bookToAuthor.aname=UM.userToInterest.Ito
Author.aname) then
SetContent (UM.userToInterest.degree, UM.userToInt
erest.degree+l0)

endIf
endWhen

This rule is triggered when the user activates the link
“ViewDetails”. It updates the interest degree on the author
of the consulted book using the SetContent statement in
which we specify the attribute that we want to modify, and
the value or formula that calculates the new value. This
rule compares implicitly each of the instances of the class
interest with the consulted instance (to properly update
the value).

As explained before, we need to keep the data from the
navigation previous to trigger the event, to use that
information in the rules. For this purpose, in this example
in the event of the rule we pass as a parameter the visited
instance of the class Book (from the NM). That is why
this parameter has the prefix “NM”. The rest of the data
of this rule have the “UM” prefix, indicating that
information is stored in the UM.

*To adapt the content, we could also select the content
to show from a class, or depending on a certain condition.
The personalization rule of our running example shows
this type of content personalization.

When navigation.Recommendations (NM.Book* books)
do

If
(books.booktoAuthor.authortoInterest.degree>100)
and (UM.userTolnterest.interestToAuthor.ID=
books.booksToAuthor.ID) then

Show (books .bname)

EndIf

endWhen

This rule is triggered also by a navigation event, when
the user clicks on the link “Recommendations”. When the
user activates that link, book titles of the authors with
interest degree greater than 100 (specified condition) are
shown.

We could also sort the content by a certain value,
(specifying if the order is ascendant or descendent), as an
example we could sort the books by book name:

When navigation.ConsultBooks (NM.Book* books) do
Sort books orderBy ASC books.name
endWhen

The rule is triggered when the user goes through the
link “ConsultBooks” and sorts the books ordered by book
name in an ascendant way. This rule has no condition so
when the user activates that link, book titles are sorted.

2 NAVIGATION

For adapting the navigation we can perform diverse
actions over the links. We can sort the links on a page,
and we can show or hide links. For example we could

hide the link “ViewRecommendations” for users that have
not consulted any book yet.

When navigation.ViewRecommendations (NM.Book*
books) do
If (NM.ViewDetails.nclicks>0) then
Show (NM.ViewRecommendations)
endIf
endWhen

Mapping Conditions and Actions to OO-H and Hera

As already explained in previous section, the mapping
of the conditions and actions is done together. The
specification of conditions and actions in PRML can be
seen as a declarative query language designed for
personalization purposes. This approach allows for
transformation of PRML rules to different query
languages ranging from OO (like OCL) to relational (like
SQL), or Semantic Web query languages (like RQL,
SeRQL).

To avoid possible problems with automatic translation
of PRML rules (condition and action parts) to methods
relying on declarative query languages (OO-H and Hera
among others) we apply to PRML rules the following
restrictions:

- Action parts can contain only one operation, because
is not always possible to implement an arbitrary
sequence of operations by a single query or
automatically derive a postcondition of such a
sequence, and

- Action parts cannot activate other rules (they don’t
trigger events); this restriction would facilitate the
deployment of PRML and would avoid risks of
infinite loops and deadlocks.

In general, PRML actions contain instance selection
(filtering), instance sorting, and instance modifications.
Let’s see how PRML mapping is done to OO-H and Hera
methods. In case of OO-H, conditions are going to be
mapped to OCL [17] expressions. PRML actions are
translated into methods of OO-H action classes of the
Personalization Model (represented as a class diagram).
In this diagram rules are implemented as subclasses of the
Rule class, including specializations for different kinds of
actions like SetContent for modification, or Sort,
SortLinks for sorting. All these OO-H PM classes inherit
of the main class Rule, which has an abstract action()
method which must implement the PRML actions. The
concrete PRML operations specified by the designer are
then converted to OO-H (plus OCL) specification as it is
described in Table 1.

Table 1 Overview of implementing selected PRML
operations in OO-H and OCL

Operation
Show e PRML condition and action: applies
to precondition of the action() method
of the Show class.
Sort e PRML condition: precondition of the

action() method of the Sort (SortLink)
class.

e PRML action: postcondtion of the
action() method of the Sort (SortLink)
class.

SetContent | ¢ PRML condition: precondition of the

action() method of the SerContent

class.

e PRML action: postcondtion of the
action() method of the SetContent

class.

PRML | Implementation in 0O-H

An example of a more complete personalization rule
for presenting books in authors, in which the user is most
interested is next:

When navigation.Recommendations (NM.Book* books)
do

If (UM.userToInterest.degree > 100) and

(UM.userTolInterest.ItoAuthor.ID =

books.booksToAuthor.ID) then

Show (UM.userTolInterest.interestToAuthor.authorTo
Book.bname)

endIf

endWhen

The mapping to OCL code for this rule (action and
condition) is:

navigation.Recommendations (b:
Collection (NM.Book))

Context Recommendations_Show::action ()
pre: b->select(i : UM.userTolnterest |
> 100 and
i.interestToAuthor.authorToBook.bname-
>includes (b.bname))

i.degree

Each OCL expression is written in the context of a
specific instance, concretely of instances of UM/NM
classes appearing in expressions in condition and action
parts. In an OCL expression, the reserved word self is
used to refer to the contextual instance.

In this example, the precondition determines the
selection of the books instances satisfying the PRML rule
condition (based on the user interest degree). It applies to
the action() method of the appropriate Rule subclass.
Let’s see now an example of how to map to OCL an
acquisition rule:

When navigation.ViewDetails (NM.Book book) do

If (book.bookToAuthor.aname=UM.userToInterest.int
erestToAuthor.aname) then

SetContent (UM.userToInterest.degree, UM.userToInt
erest.degree+l0)

endIf
endWhen

the OCL code would be as follows:

navigation.ViewDetails (b: Book)

Context SetContent_VD::action ()

pre: b.author.aname =
UM.userToInterest.interestToAuthor.aname
post: UM.userTolInterests.degree =
UM.userToInterest.degreel@pre + 10

The precondition of the appropriate subclass of the
Rule class (representing the concrete rule) constrains the
action() method by applying the original PRML rule
condition, and the postcondition determines how the user
interest is updated.

In Hera PRML rules are implemented as (SeRQL[13])
queries that can manipulate or select data. Table 2 shows
an overview of few selected PRML operations and their
implementation in Hera.

Table 2 Implementation of selected PRML operations in
Hera

PRML Implementation in Hera

Operation

Show A selection query associated with an
appropriate slice.

Sort A selection query associated with an
appropriate slice containing an
ordering directive.

SetContent A data manipulation query attached to
a form submission. Most typically a
couple of REMOVE and
CONSTRUCT queries (SeRQL does
not support UPDATE yet).

In general,,in SeRQL, queries have the form:

SELECT | CONSTRUCT | REMOVE action-variables
FROM Path-expresions-with-variable-bindings
WHERE Transformed-condition

The first clause depends on the action part (e.g.
SELECT for filtering, for changing values first REMOVE
query followed by CONSTRUCT query, etc.) and the
action-variables part contains variables bound with path
expressions appearing in the action part of rules. The
Path-expresions-with-variable-bindings part contains path
expression appearing in action and condition parts and
variables. The WHERE clause provides the evaluation of
the condition part.

Let’s see a mapping to Hera for the following rule:
When navigation.Recommendations (NM.Book* books)

do
If (UM.userTolInterest.degree > 100) and

(UM.userToInterest.ItoAuthor.ID =
books.booksToAuthor.ID) then
Show (UM.userTolInterest.interestToAuthor.authorTo
Book.bname)
endIf
endWhen

in SeRQL the query is as follows:

SELECT BN
FROM
{UM:User}userToInterest{}degree({D};
interestToAuthor{}authorToBook {B}bname {BN}
WHERE
D > 100 AND B IN SELECT * from session:books

This simple query filters books from given selection
(stored in session variable session:books and retrieved by
the inner sub-query) that are written by authors in which
the user degree of interest is greater than 100.

5. Deploying PRML rules under rule engines

Rule engines (RE from now on) provide a
comprehensive set of tools for developing, deploying and
managing rules (resolve conflicts...). They provide for
clear separation of rules from the application code. We
claim that this is a good strategy to abstract our
personalization specification because we keep the
personalization orthogonal to the prime functionality of
the application. The idea of developing a RE perfectly
adapted to the whole system can seem an attractive
option, but the down side of this choice is the time needed
to develop it. Moreover, efficient REs rely on extremely
complex expertise and algorithms. To reduce efforts and
risks the most convenient option would be to use an
existing RE like [1] [10] to support personalization rules.
The only requisite for using them is to use the rule
language they process.

We claim that PRML rules can be easily translated into
the rule representation for commercial REs using XSLT
scripts. Every web design method with a proprietary rule
language would have to map its language to the rule
language of the RE. Specifying the personalization with
PRML also is an advantage in that sense.

For our purposes we have chosen the Simple Rule
Mark-up Language (SRML) [16], an XML-based rule
language format initiated by the ILog software vendor
company. This language can easily be executed on any
conforming RE. In a preliminary attempt to do a mapping
to SRML we have achieved the following conclusions:

= Events can be mapped to SRML only regarding event
parameters. Rules are identified by their names that are
transferred to SRML. The proper rule to be triggered
when an event arises is selected by the identifier of the

rule’s event in SRML that matches the identifier in an
executable script. The script invokes the rule engine
method passing in the rule name and event parameters.

= PRML Conditions can be mapped to SRML conditions
which are composed of test expressions, and can be
simple conditions or not conditions. Simple conditions
can be bound to variables while not conditions cannot.

= PRML Actions for updating the content (SetContent
statement) can be easily mapped to the modify statement
in SRML. The mapping to SRML of the actions for
updating the presentation and navigation in PRML
(filtering, sorting) are still under consideration.

As an example to map to SRML a content update we
consider the following PRML rule:

When navigation.Recommendations (NM.Book book) do
If (UM.userTolInterest.degree>100) then
SetContent (UM.userToInterest.degree, 10)

This rule can be mapped to the following SRML code:

<rule name="NRecommendations”>
<conditionPart>
<simpleCondition className="Interest"
objectVariable="i">
<binaryExp operator="gt">
<field name="degree"/>
<constant type="integer"
value="100"/>
</binaryExp>
</simpleCondition>
</conditionPart>
<actionPart>
<modify>
<variable name="i"/>
<assignment>
<field name="degree"/>
<constant type="integer" value="10"/>
</assignment>
</modify>
</actionPart>
</rule>

Mapping from PRML to SRML (or to other languages)
is still a subject of research and has still to be improved
and studied deeply.

6. Conclusions

In this paper we offer a general solution to the lack of
reusability of personalization specifications. This solution
is based on a high level rule language called PRML
(Personalization Rules Modeling Language) to specify at
design time the personalization. This specification can be
mapped (implemented) to different existing web design
approaches. The specification is independent from any
other application functional specification, so you can re-
use it for different (development) environments. Future
directions include the implementation of PRML in context

of other web design methods and situations of
personalization. Also a complete study of the integration
of a rule engine component with the development
platform is intended.

7. References

[1] Blaze Advisor. http://www.blazesoft.com/product/advisor

[2] Brickley, D., Guha, R... RDF Vocabulary Description
Language 1.0: RDF Schema. W3C Recommendation 10
February 2004

[3] Casteleyn, S., De Troyer, O., Brockmans, S.: "Design Time
Support for Adaptive Behaviour in Web Sites", In
Proceedings of the 18th ACM Symposium on Applied
Computing, ISBN 1-58113-624-2, Melbourne, USA (2003),
pp. 1222 - 1228.

[4] Casteleyn S., Garrigés I, De Troyer O.: "Automatic
Runtime Validation and Correction of the Navigational
Design of Web Sites", In Web Technologies Research and
Development - APWeb 2005. Springer-Verlag, ISBN 3-540-
25207-X, LNCS 3399. Shangai, China (2005), pp 453-463.

[5] Dayal U.: “Active Database Management Systems”, In Proc.
3rd Int. Conf on Data and Knowledge Bases, pp 150-169,
1988

[6] Facca F. M., Ceri S., Armani J. and Demaldé V., Building
Reactive Web Applications. Poster at WWW2005, Chiba,
Japan (2005).

[7] Garrigoés, 1. ,Casteleyn, S., Goémez, J.: “A Structured
Approach to Personalize Websites using the OO-H
Personalization Framework”. In Web Technologies Research
and Development - APWeb 2005. Springer-Verlag, ISBN 3-
540-25207-X, LNCS 3399. Shangai, China (2005), pp 695-
705.

[8] Gomez, J., Cachero, C., and Pastor, O.: Conceptual
Modelling of Device-Independent Web Applications, IEEE
Multimedia Special Issue on Web Engineering (2001) pp 26-
39.

[9] Houben, G.J., Frasincar, F., Barna, P, and Vdovjak, R.:
Modeling User Input and Hypermedia Dynamics in Hera
(ed.): International Conference on Web Engineering (ICWE
2004), Lecture Notes in Computer Science, Vol. 3140,
Springer-Verlag, Munich(2004) pp 60-73.

[10] ILog JRules,http://www.ilog.fr/products/jrules/features.cfm

[11] Kappel G., Retschitzegger W.,Kimmerstorfer E., Proll B,
Schwinger W. & Hofer Th. “Towards a Generic
Customization Model for Ubiquitous Web Applications”.
Proceedings of the 2nd International Workshop on Web
Oriented Software Technology (IWWOST), in conjunction

with the 16th European conference on Object-Oriented
Programming (ECOOP), Malaga, Spain, June 2002

[12] Koch, N.: “Software Engineering for Adaptive Hypermedia
Systems, Reference Model, Modeling Techniques and
Development Process”, PhD Thesis, 2001

[13] OpenRDF, The SeRQL query language, rev. 1.1, url:
http://www.openrdf.org/doc/users/ch06.html

[14] Rik Gerrits, "Business Rules, Can They Be Re-used?"
Business Rules Journal, Vol. 5, No. 9,
URL: http://www.BRCommunity.com/a2004/b203.html, 20
04

[15] Schwabe, D. and Rossi, G. A Conference Review System
with OOHDM. In First Internacional Workshop on Web-
Oriented Software Technology, 05 2001.

[16] Simple Rule Markup Language,
http://xml.coverpages.org/srml.html

[17] UML 2.0 OCL specification www.omg.org/docs/ptc/03-10-
14.pdf

[18] Vdovjak R., Frasincar F., Houben G.J., and Barna P.:
“Engineering Semantic Web Information Systems in Hera”
Journal of Web Engineering (JWE), Volume 2, Number 1-2,
pages 3-26, Rinton Press, 2003

