

FACULTY OF SCIENCE
Department of Computer Science

Web & Information Systems Engineering
MASTER AFTER MASTER OF COMPUTER SCIENCE

An Approach for Experimenting
with Website Designs

A thesis presented in fulfillment of the thesis requirement for
Master after Master of Computer Science degree

by

Sanaa Alsarraj

Student ID: 88449

Promoter: Prof. Dr. Olga De Troyer

August 2009

 2

Abstract

Nowadays, Internet marketing is more widely spread and more competitive. This
brought new challenges to developers in creating good web interfaces that would
increase the sales or improve the marketing. Many experiments show that
different designs can influence the customer’s behavior. Therefore an
environment for testing and studying customer interactions with different designs
would be highly welcome. In this thesis we present an approach for facilitating
the achievement of such web experiments. The approach allows us to produce
different variants of webpage’s interface. The variants share some common
features but differ in other parts. In addition to that, the approach allows us to
modify it to be adapted with some cultures of different clients. All this is done by
reusing the core assets of the primary design and reusing the original code. The
approach is based on two main technologies: software product line engineering
and the aspect-oriented programming. The combination and integration of those
two technologies allow us to generate a family of web applications while reducing
time and efforts and achieving good performance. This is obtained by following
several stages, including feature modeling to specify the common and the
variable features between the different web interfaces, and capturing the variable
features by aspect codes that modify the original implementation.

 3

Acknowledgements

This research project would not have been possible without the support of
many people.

I wish to express my deepest gratitude to my supervisor, Prof. Dr. Olga De
Troyer who was abundantly helpful and offered invaluable assistance, support
and guidance.

My large gratitude are also due to the members of the research group WISE.

I wish to express my love and gratitude to my husband; for his understanding
and support through the duration of my studies.

I would like to express my special thanks to my parents for their
encouragement and support they gave me during my study.

 4

Table of Contents

Abstract………………………………………………………………………………. 2
Acknowledgment……………………………………………………………………. 3
Table of contents……………………………………………………………………. 4
List of figures………………………………………………………………………… 5
List of tables…………………………………………………………………………. 6
Chapter 1: Introduction…………………………………………………………….. 7

1.1 Internet marketing……………………………………………………… 7
1.2 Culture customization on the Web.…………………………………… 9

1.2.1 Website globalization……………………………………….. 9
1.2.2 Cultural values framework ………………………………….. 10

 1.3 Websites development and test……………………………………… 12
1.4 Problem statement……………………………………………………... 14
1.5 Approach………………………………………………………………… 15

Chapter 2: Background…………………………………………………………….. 17
2.1 Feature modeling………………………………………………………. 17

2.1.1 Product line software engineering…………………………. 17
2.1.2 Feature Modeling …………………………………………… 19

2.1.2.1 Overview……………………………………………. 19
2.1.2.2 Notations …………………………………………… 20
2.1.2.3 Approaches of feature modeling…………………. 22
2.1.2.4 Verification…………….……………………………. 22
2.1.2.5 Feature modeling tools……………………………. 24

2.2 Object Oriented Programming (AOP)………………………………... 26
2.2.1 Aspect Oriented Programming for Java: AspectJ………… 28

2.3 Java servlets……………………………………………………………. 35
Chapter 3: An Approach for experimenting with website designs …………… 39

3.1 Our approach…………………………………………………………… 39
3.2 Case studies……………………………………………………………. 40

3.2.1 Applying small changes on the checkout screen of a
shopping cart………………………………………………………...

40

3.2.2 Applying some features on CD shop screen to adapt
some cultural dimensions…………………………………………..

46

Chapter 4: Related work…………………………………………………………… 54
Chapter 5: Conclusion……………………………………………………………… 60

References ………………………………………………………………………….. 62

 5

List of Figures

Figure 1. amazon.com…………………………………………………………....... 8
Figure 2. Summary of process of web site development……………………….. 13
Figure 3. Principle of modularity in programming……………………………….. 16
Figure 4. The cost for developing N kinds of systems as single systems
compared to the product line software engineering……………………………..

18

Figure 5. Phases and Products of Domain Analysis………………………........ 19
Figure 6. A feature diagram representing a configurable e-shop system…… 23
Figure 7. Feature Model DSL……………………………………………………… 24
Figure 8. XFeature Tool…………………………………………………………… 25
Figure 9. Feature Modeling Tool………………………………………………….. 26
Figure 10. Aspect Weaver…………………………………………………………. 27
Figure 11. Illustrates Aspectj model for representing join points………………. 29
Figure 12. The relationship between aspects, pointcuts, and advice…………. 34
Figure 13. Servlet Lifecycle………………………………………………………... 36
Figure 14. Servlet output: Hello World example………………………………… 37
Figure 15.The deployed web application and file structure…………………….. 38
Figure 16 The Stages of our approach…………………………………………… 40
Figure 17. Checkout screen variant A……………………………………………. 41
Figure 18. Checkout screen variant B……………………………………………. 41
Figure 19. The feature diagram of checkout screen…………………………….. 42
Figure 20. Feature model configuration for specific variants……………........ 44
Figure 21. CD screen variant A…………………………………………………... 47
Figure 22. CD screen variant B…………………………………………………… 47
Figure 23. The feature diagram of CD screen (part 2)…………………………. 49
Figure 23. The feature diagram of CD screen (part 1)………………………….. 50
Figure 24. Associations among the assets in a product………………………... 54
Figure 25. Feature diagram for a News component…………………………….. 55
Figure 26. Koriandol system……………………………………………………….. 55
Figure 27. General and specific changes with realization……………………… 56
Figure 28. Aspect-Oriented Product Line Framework…………………………... 58
Figure 29. Fragment of the sequence diagram for the use case “Input
Service”…...

59

 6

List of Tables

Table1. Features types…………………………………………………………….. 21
Table 2. Feature model relations and the equivalent formal definitions………. 23
Table 3. Kind of join points of AspectJ…………………………………………… 30
Table 4. Execution of methods and constructors pointcuts……………………. 32
Table 5. Features of the checkout screen...……….……………………………. 42
Table 6. Features of the CD screen………………………………………………. 51
Table 7. Kernel concerns vs. crosscutting concerns with variants……………. 59

 7

Chapter 1: Introduction

The most influence of the ICT evolution is the Internet and the World Wide Web.
In the economical field the Internet has opened new opportunities for business
and commerce. Thousand of people are connected to the Internet from all
around the world, mostly using search engines and surfing shopping websites.
Internet can facilitate the communication and exchanging information among
individuals and companies and has become an economic tool for both peoples of
developed and developing countries.

In practice marketing over the Internet brought many challenges to websites
developers, as the web page interface is the transmission medium and the
message between sender (producer/company) and the receiver (customer/web
user). Our main objective in this research work is to produce an approach for
experimenting with website design to get the user interface that maximizes sales.

This section is divided as follow: first we give an overview of Internet marketing
and its challenges, second we present culture customization concepts for the
web and reviewing the culture values framework, third we talk about websites
development and testing and finally in subsections four and five we address our
research problem and our approach to perform a subjective steps of action to the
solution of the research problem.

1.1 Internet marketing

Internet marketing can be defined as ”the use of the Internet and related digital
technologies to achieve marketing objective” [1].
The term e-commerce is used in the same context including e-commerce
transactions. Internet marketing is usually associated with buying and selling
over the Internet, actually there are many success stories about companies on
the Internet one of them is the amazon.com for online shopping (website
depicted on figure 1).

Indeed Internet represents many benefits for the marketing field [1], both for the
customer and for the organization. For the customer it gives wider choices of
products, services and prices from different suppliers. For the organization it
gives the opportunity to expand into new markets, compete on larger business
and develop new product and services, in addition to the improvement of the
communication channel between the customer and the organization and
providing control by better marketing research through tracking the customer
behavior.

 8

Figure1. amazon.com

Many people think that Internet marketing is just only access to a Website, but it
is more than that. The Internet brings many and big challenge for the
organizations in order to have effective Internet presence and the important thing
is how this effective Internet presence is achieved. One of the key elements here
is effective website design. Website design is considered as one of the key
success factors because it can impact the buying process for a new purchaser.
For example, one of the most powerful features of the websites is their facility to
the purchase process, or in other words how to influence the customer to decide
to purchase and how to not lose him if he decide.
The term conversion rate describes the percentage of success of the purchase
process. The conversion rate is defined as the “percentage of visitors who take a
desired action” [2] or usually the percentage of site visits that result in purchase,
a simplified calculation of the conversion rate might be:
Number of orders / Number of visitors x 100 = Conversion Rate Pct.

Achieving a high conversion rate depends on many factors, one of them is the
website interface design: how much is it attractive, well presented and usable.

 9

Small changes in the web interface can affect the conversion rate and increase
or decrease the percentages of sales. For example one small change could
account for a 1,000 percent increase in volume [3]. These changes are
considered as the variables visible on the web interface. There are thousands of
such variables on a site, some of these variables have a major impact on
increasing the conversion rate, but this is also depend on the target customers.

1.2 Culture customization on the Web:

The Internet and the World Wide Web provide global commerce without any
national boundaries. However an important aspect that must be taken into
account when designing e-commerce site is the culture of the target customers
because it may widely affect their behavior.
Many researches shown that the culturally adapted web content enhance the
usability, accessibility and website interactivity. Many companies realize this
point and build their sites sensitively to the demographic profile of their
customers.

1.2.1 Website globalization

Entering the global market has brought significant challenges to companies in
order to expand their market and to keep the largest amount of customers.
Customers satisfaction is the key factor here. Customers prefer to view content
relevant to their market. From this point of view the idea of Website Globalization
came.

Website Globalization enhances and facilitates visitor experiences on the site
and motivates them to purchase or perform any other desired activity.

Website globalization is achieved by providing access to the site's content and
functionality to visitors in different target markets and in their own languages.

According to the explicitly exhibited global or local features on the website,
website globalization can be classified into five categories [4]:

1- Standardized websites: have the same content for all customer segments
(domestic and international); there is no tend for translation or localization.

2- Semi-localized websites: have the same content for all customers, but
provide contact information about foreign subsidiaries to address the
needs of their international customers.

3- Localized websites: offer country-specific web pages with translation,
wherever relevant.

4- Highly localized websites: offer country-specific URLs with translations,
and include relatively high levels of localization by providing country-

 10

specific information such as: time, data, zip code, number formats and so
on.

5- Culturally customized websites: provide a complete immersion of the
culture of the target market.

1.2.2 Cultural values framework

The authors in [4] introduced a framework for the cultural values (dimensions)
that addresses the behavioral component of culture. Each country is a blend of
all of the relevant cultural values: as such, for true cultural customization, all
relevant values must be included. So if one of these cultural values is
emphasized in a website, this make the site more closely customized to that
cultural value. However, it is not the mere presence of these values that matters,
but the degree to which they are emphasized in a website.
Here we present the five cultural values and describe how to emphasized them in
the design.

1- individualism-collectivism

This cultural dimension focuses on an individual’s relationship. Individualist
societies have some characteristics like: no much ties between individuals,
confirm on personal freedom, population are independent and individual
decision-making is encouraged.
If the country of interest is toward individualistic, the following can be
incorporated into a website: good privacy statement, independence theme,
images with a single person, product uniqueness, and personalization features.

While in collectivist societies individuals are connected with strong relations, they
believe in the importance of the goals of the group as a whole, there is emphasis
on group decision-making, and group obligations, and have extended family
structures. If the country of interest is toward collectivist a website can be
adapted to conform to this value by incorporating the following: community
relationships, clubs/chat rooms, newsletter, family themes, symbols and pictures
of national identity, loyalty programs, and links to local websites.

2- Uncertainty Avoidance

This dimension focuses on how cultures adapt to changes, cope with uncertainty,
ambiguity and have predictability and willingness for risk.
People from cultures high on uncertainty avoidance tend to have low tolerance
for uncertainty and avoid ambiguous situations, have more formal rules, prefer
details, put emphasis on security and risk avoidance, and view conflict and
competition as threatening. While people from cultures low on uncertainty
avoidance accept generalization, prefer fewer rules, approve of risk, tend to be
modern and accept competition and conflict. To customize websites on this
value, the following features can be incorporated: To emphasize high on
uncertainty avoidance: a strong customer service section including customer
service options, contact information (including phone numbers and email), link to

 11

frequently asked questions (FAQ) page, and providing simple navigation manner.
While to emphasis low on uncertainty avoidance, the above website features are
not important and complex navigation with a multitude of link choices is
acceptable.

3- Power distance

This dimension is related to how the society accepts the social hierarchy, social
inequalities, and authority.
People in societies high on power distance dimension emphasize on the
hierarchical social structure and status, refer to the power and authority. While
people in societies low on power distance accept less social hierarchy, and tend
to have egalitarian and equal rights for all.
To customize websites on this value, the following can be incorporated: To
emphasize high power distance: company hierarchy information, quality
assurance and awards, vision statement, pride of ownership, appeal, and proper
titles. While for those countries that are low on power distance, the above
website characteristics are not important.

4- Masculinity- femininity

The masculinity- femininity dimension describes the gender roles in different
cultures, Masculine cultures emphasis on values like assertiveness, ambition,
success, and performance. In such culture, there are clear gender roles,
masochism is acceptable, people are direct and decisive. While in a country with
feminine cultures people emphasis on values like: beauty, modesty, harmony
and nature, and, they are less inclined toward fantasy and imagery.
To customize websites on this value, the following can be incorporated: To
emphasize masculinity: quizzes and games, realism theme, product
effectiveness, and clear gender roles, depiction of women in traditional roles,
such as models, wives, and mothers; depiction of men as macho, strong, and in
positions of power. While to emphasize femininity, websites must incorporate
aesthetics and harmony and a soft-sell approach to marketing their products.

5- High-low context

People act and communicate within a context, this context gives the meaning for
the words and symbols and other elements we use, some symbols or signs have
different meaning in different cultures.
The high-low context diminution help us to understand how people in different
cultures communicate in their daily live, with the correct level of context that must
be followed. In high context cultures most information is embedded in the
context, they use symbols and indirect verbal expressions. On the other hand in
low context cultures, messages are straightforward and detailed, people use
precise word to convey meanings and they rely on the spoken context.

 12

If the country of interest is toward high-context, a website can be adapted to
conform to this value by incorporating the following: politeness and indirectness
and aesthetics. While If the country of interest is toward low-context, a website
can be adapted to conform to this value by incorporating the following: a hard-sell
approach, emphasize on clarity and directness.

1.3 Websites development and test

Websites development
Websites development passes many phases, figure 2 summarizes them [1]. The
main phases are:

1. Domain name registration, more usually referred to as web
addresses or URLs.

2. Selecting the right partner to host content: this will usually be
an Internet service provider (ISP) for small and medium
companies, but for larger companies the web server may be
inside the company itself.

3. Analysis for website development: this includes the analysis
and design activities. Analysis includes understanding the
requirements of the audience of the site and the requirement
of the business.

4. Test review and revise content: this is very critical phase and
the results of the tests should be analyzed carefully.

5. Publish the website.
6. Promote the website.

 13

Figure 2. Summary of process of website development

 14

Experiments on websites

It may be hard for a designer to decide which suitable button, background color
or any other interaction component to choose for their webpages. They also need
to continuously improve and evolve their sites by making frequently small
adjustments. But how does he knows which change will have the highest impact
on the customer experience or in other word which choice/change will impact the
conversion rate? For this reason, several techniques have been developed to
measure the reaction of the user and the benefits of design modification. These
techniques are known as A/B test [6][28].

 A/B, A/B/C, …,A/../N testing is a way of finding out which changes help your
users' performance. It provides a controlled method of measuring the
effectiveness of the alternatives of the interface design. The idea behind this test
is to create one or more versions of the web interface, each one have different or
modified features (changes), and then presenting it to randomly selected subset
of users (for example the original version of the interface is presented to 50% of
the users and the modified version is presented to the other 50%) in order to
analyze their reactions. The user responses will determine the performance of
the different versions or variants.

Usually the test compares one or more variants of a single site element or factor.
For more factors / variations, we need to deploy multivariate testing which can be
viewed as a combination of many A/B tests.

1.4 Problem statement

As experiences have shown that small changes to the interface of e-commerce
websites (including culture customization) may cause big differences in the
amount of purchases, the modifications on web interfaces, as well as the
interface itself, should be carefully planned and evaluated.

Researchers have developed techniques to measure the user reactions to the
modifications like the previous discussed A/B test, which is built on developing
more than one web interface to be used in an experiment. However, the problem
is how to development quickly different versions of a specific website interface
and how to choose the components to vary. This is also the problem of website
customization where there is a necessity for small modifications in some part of
the interface in order to adapt the website to a specific culture. We don’t want to
create a complete new website to produce the different variants of the interface;
it would be less costly and more efficient if we can use the original one to obtain
a new version that has some additional or modified features.

 15

1.5 Approach

The underlying idea behind our approach for website experimenting is to create
one or more different versions of a web interface by incorporating new or
modified features with reuse of the original interface. For this purpose we rely on
two different techniques:

1- Software product line engineering which enables us to describe the
commonality and the variability features of a system (in our case a web
interface) by using feature modeling.

2- Aspect oriented programming, which enables us to express the cross

cutting concerns (in our case, the actual implementation of the modified
features) and allows to automatically weave them into the original code of
the system.

Therefore, the first step in our approach is to define a feature model. This feature
model will consist of some common and variable features in the web interface.
Once we have build the feature model we can configure it to produce different
variants, one of these variants will be considered as the original web interface for
the application.

Then we associate each variable feature with an aspect. Defining these aspects
will allow us to modify or replace a specific module in our program in order to
produce the website with the desired feature. This is achieved by means of join
points. Once a join point has been matched, the program can run the code
corresponding to the new advice (before, after, around). The weaving process of
the original code and the aspect will happen at compile time.

This approach has many advantages:

• It reduces the costs and the efforts by better code reusability;

• The original source code does need to be modified, and the designer does
not have to develop new variant implementations;

• The code for the aspects can add or modify some component in our
interface to produce new features.

As a proof-of-concept implementation, we have used Java Servlets to build the
web application. This technology is easy to learn and widely used for building
dynamic web applications. We have selected AspectJ as aspect oriented
programming language, which is an extension to java and work with all java
programs.

In addition, the proof-of-concept implementation should meet the modularity
principle in programming [24], which means breaking down the design of a
program (here our web application) into individual components (modules). Each

 16

module can perform a function or an implementation of a specific component in
our web interface and then returns control back to the main program. This
principle is a requirement in our approach for allowing more control over our
interface components when modified or replaced by the aspects (in practice
aspects will modify or replace these modules). Figure 3 shows the idea of
modularity principle in programming.

Figure 3. Principle of modularity in programming

 17

Chapter 2: Background

In this chapter, we describe the main foundations on which our approach relies.
This chapter is divided as follow: section 1 gives an introduction about feature
modeling and the associated notations, section 2 gives backgrounds about
object-oriented programming and introduces AspectJ as aspect oriented
programming tool, and finally in section 3 we present Java Servlet as a
programming environment for building dynamic web applications.

2.1 Feature modeling

2.1.1 Product line software engineering

It has become necessary in the field of software development implement or
update software systems using existing software assets.
Product line software engineering (PLSE) is “an emerging software engineering
paradigm, which guides organizations toward the development of products from
core assets rather than the development of products one by one from scratch”
[7]. This is achieved by the modeling of commonalities and variabilities between
product variants. Exploiting the commonalities allows reusing the core assets,
which implement most product functionality, where the variabilities are the new
features. The commonalties are some requirements or features of a specific
product in the product line that are the same in all product variants. So the
process of developing and implementing these variants is by reusing the shared
features. The main benefit of the technique is reducing the cost and the time of
developing multiple, similar software products. It provides an effective way to
benefit from code reuse in software application development. Also another
benefit is the improvement of product quality of all product variants by
improvement the quality of the core assets.
Figure 4, presented in [8], shows the cost for developing N kinds of systems as
single systems compared to the product line software engineering where the
second one provides lower development cost.

 18

Figure 4. The cost for developing N kinds of systems as single systems
compared to the product line software engineering

The so-called paradigm domain engineering (DE) is used to capture the common
and variable properties of an application from a "domain" perspective,

Domain engineering is defined as “the process of producing, maintaining and
cataloging reusable assets which includes domain analysis and the subsequent
construction of components, methods, and tools that address the problems of
system/subsystem development through the application of the domain analysis”
[9].

The domain analysis has several phases, domain modeling being one of them. In
the domain modeling, we address the features of software in the domain. Figure
5 depicts the three phases of the method and lists the products of each [9] .

 19

Figure 5. Phases and Products of Domain Analysis

2.1.2 Feature Modeling

2.1.2.1 Overview

The basic entity in a feature model is the feature. A feature is considered as a
key distinctive characteristic of a product. Different domain analysis methods use
the term “feature”, for example FODA [9] defines a feature as « a prominent and
user-visible aspect, quality, or characteristic of a software system or systems. »

In general, three categories of features [11] are distinguished in an application:

Functional features: services that are provided by the applications.
Interface features: features that are related to what and how information is
presented to the users.
Parameter features: Properties that represent environments in which applications
are used.

Feature modeling is defined as “the activity of modeling the common and the
variable properties of concepts and their interdependencies and organizing them
into a coherent model referred to as a feature model “ [12].

 20

A feature model represents the common and the variable features of a concept
or product and the relationships between the variable features by a hierarchical
structure of the features. The root of the hierarchy always represents a concept
feature.

It is important to note that the feature modeling must focus on identifying external
visible characteristics of products in terms of commonality and variability, rather
than describing all details of products such as other modeling techniques (e.g.,
functional modeling, object-oriented modeling, etc.) do [7].
The main benefits of the feature models are using them for the development of
an application of software systems, by describing the possibilities of the system
characteristics and properties.

A feature model consists of:

• Feature diagram: a graphical AND/OR hierarchy of features, that captures
structural or conceptual relationships among features.

• Features definitions: describe all the features such that each feature has a
well-defined meaning, or semantics. It contains a short description about
the feature’s semantic. This is helpful when the feature is implemented by
other models.

• Composition rules for features: describe which combinations of features
are valid or invalid.

2.1.2.2 Notations

The variability in feature model or the parental relationships between features
is/are expressed through different notations like notations for:

Mandatory features: theses are common features among different products.

Optional Features: these are the different features among products.

Or features group: this is group of features indicates that at least one of the
sub-features must be selected.

Alternate features group (xor): this is a group of features that indicates that no
more than one feature can be selected for a product.

In addition to the parental relationships between features, there are also cross-
tree constraints. The most common are:

• A requires B: this means that the selection of feature A in a product
implies the selection of feature B.

 21

• A excludes B: this means you cannot select the feature A and the feature
B at the same time.

Table 1 provides an overview of some commonly features relationships types

[13].

Cardinality-based feature notation

Some authors propose to use the form [n,m] with n being the lower bound of
features and m the upper bound of features that can be selected in order to
express how many features there should be. For example the cardinality [2…5]
means at least 2 features and at most 5 can be selected for a product. In this
case, mandatory and optional features are special cases of features with
cardinalities [1…1] and [0…1] respectively [14].

 22

Also there is a group cardinality to express both alternative features group and or
feature group. In order to know how many features could be chosen in a feature
group, this is expressed as <n-m>.

2.1.2.3 Approaches of feature modeling

In the literature, there exist a number of approaches for feature modeling:

FODA [9]: Feature Oriented Domain Analysis is a method for analyzing and
representing commonality and variability of applications in a domain. FODA
models are often expressed as diagrams consisting of a set of graphical symbols
forming a configuration tree. There are four types of features in feature model:
Mandatory, Optional, and Alternative features, in addition to the Or groups of
features and cardinality aspects. Besides that there are two types of cross cut
relations between features: require and excludes relations which are expressed
in textual form.

FORM [15]: Feature Oriented Reuse Model is as an extension of FODA. It is a
method for analyzing the commonality among applications in a domain during
application development. This commonality includes services, operating
environments, domain technologies, and implementation techniques. A reusable
feature model is used to represent the commonality as an AND/OR graph, where
AND nodes indicate mandatory features and OR nodes indicate alternative
features selectable for different applications.

FeatuRSEB [16]: The FeatuRSEB method is a combination of FODA and the
Reuse-Driven Software Engineering Business (RSEB) method [10][35]. RSEB is
a use-case driven systematic reuse process, where variability is captured by
structuring use cases and object models with variation points and variants.
FeatuRSEB feature diagrams are directed acyclic graphs (DAGs), with the
decomposition operator ‘or’, ‘xor’ and ‘and’. Variation points are features whose
sons are decomposed through ‘or’ or ‘xor’ while those sons are called variants. In
addition, the constraints ‘requires’ and ‘mutex’ are represented by dashed
arrows.

2.1.2.4 Verification

To capture the valid combinations of feature in a feature diagram, the most
common approach is to use mathematical logic. The feature model can be easily
translated into a logical expression. By substituting all the selected features in the
expression by true, and by false if unselected, we can generate the set of
possible variants and test the validity of each variant within the product line.

The following table, table 2, describes all the feature model relations and the
equivalent formal definitions [27]:

 23

Table 2. Feature model relations and the equivalent formal definitions

As an example we use an online shopping system. The feature model for this
system is shown in figure 6. The root feature represents the concept of the E-
shop. The system implements a catalogue, payment, and has the modules
security and optionally a search feature. Providing a catalogue is mandatory. The
payment process is an “or group” of two features (bank transfer or credit card). At
least one of them must be selected in the implementation, while the security
polices has the alternative between high or standard implementation and only
one of them must be selected. In addition to that, there is a require (implies)
cross tree relationship between the credit card feature and high security policy
feature which means if we select the payment process to be credit card, this
requires to select the high security policy. It must be noted that each approach of
feature modeling has its own symbols and notation in the feature model diagram.

Figure 6. A feature diagram representing a configurable e-shop system

 24

2.1.2.5 Feature modeling tools

There are number of tools supporting the creation of feature models:

1- Feature Model DSL [36]: makes it possible for a user to design feature
models using Visual Studio 2008. See figure 7 for a screenshot.

Figure 7. Feature Model DSL

2. XFeature [37]: is a feature modeling tool which supports the modeling of
product families and allows instantiating them to create configurations
(applications). The tool is provided as a plug-in for the Eclipse platform. See
figure 8 for a screenshot.

 25

Figure 8. XFeature Tool

3. Feature modeling tool:
This is a tool to design feature modeling and also allows managing the variability
of product lines [38]. It is using Visual Studio. See figure 9 for screenshot.

 26

Figure 9. Feature Modeling Tool

2.2 Object Oriented Programming (AOP)

Object-oriented (OO) programming is considered as the main programming
paradigm. In OO application, the software system consists of a number of objects
(defined using classes), which cooperate to achieve the objective of the system.
However, OO has its limitations. For example, if there are crosscutting concerns
that affect sections of many classes in the whole application, adding the code
that handles these concerns will result in very complex tangled code that is
repeated in many places, making the program difficult to reason about and
difficult to change.

Aspect-Oriented Programming (AOP) provides a solution to this problem The
idea is by providing a mechanism (the aspect), for expressing the cross cutting
concern and automatically weave them into the code of the system resulting into
an easier, more understandable program, which is easier to develop and
maintain.

 27

An aspect encapsulates behaviors that affect multiple classes. Using aspects
keeps the structure of the system's architecture the same, where a single aspect
can contribute to the implementation of a number of methods, modules, or
objects. With AOP, we start by implementing the project using an OO language
(for example, Java), and then we deal separately with crosscutting concerns in
the code by implementing aspects. Finally, both the code and aspects are
combined into a final executable form using an aspect weaver.

The weaving process is achieved by linking aspects with other application types
or objects to create an advised object [17]. This can be done at compile time
(using the AspectJ compiler, for example), at load time, or at runtime. Note that
the original code doesn't need to know about any functionality the aspect
implements; it needs only to be recompiled without the aspect to regain its
original functionality. Figure 10 shows how the weaving process works compared
to a normal compilation process.

Figure 10. Aspect Weaver

 28

2.2.1 Aspect Oriented Programming for Java: AspectJ

AspectJ is an aspect-oriented extension to Java. It provides flexibility to java
programmers as it has the following compatible properties [20]:

• All legal Java programs are considered as legal AspectJ programs.

• All legal AspectJ programs run on standard Java virtual machines.

• The existing tools for java can be extended to work with AspectJ.

Component of AspectJ

1- Join Points

Join points are certain well-defined points (places) in the execution of the
program, for example points at which an object receives a method call and points
at which a field of an object is referenced. Table 3 summarizes the different kinds
of join points of AspectJ [18].

Actually any aspect-oriented language has a join point model in order to
coordinate between the aspect and the non-aspect code. The AspectJ model is
considered as a graph:

• The nodes represent the join points.

• The edges are control flow relations between the nodes.

• Each join point is reached twice: before the action described begins
executing and when it returns.

Figure 11 shows the idea of the AspectJ join point model:

- Large circles represent objects.
- Square boxes represent methods.
- Small numbered circles represent join points.

The first three lines of code build the objects below, executing the last line starts
a computation that proceeds through the labeled join points.

 29

Figure 11. Illustration of AspectJ model for representing join points

The list below describes some of the labeled join points of figure 8:
 1. A method call join point corresponding to the incrXY method being called on
the object ln1.
2. A method call reception join point at which ln1 receives the incrXY call.
3. A method execution join point at which the particular incrXY method defined in
the class Line begins executing.
4. A field get join point where the _p1 field of ln1 is read.
5. A method call join point at which the incrXY method is called on the object pt1.
8. A method call join point at which the getX method is called on the object pt1.
11. A field get join point where the _x field of point pt1 is read.
Control returns back through join points 11, 10, 9 and 8.
12. A method call join point at which the setX method is called on p1. And so on,
until control finally returns back through 3, 2 and 1.

 30

Table 3. Kind of join points of AspectJ

Kind of join point Points in the program execution at
which…

method call

constructor call*

A method (or a constructor of a class)
is called.
Call join points are in the calling object,
or in no object if the call is from a static
method.

method call reception

constructor call reception

An object receives a method or
constructor call.
Reception join points are before
method or constructor dispatch, i.e.
they happen inside the called object, at
a point in the control flow after control
has been transferred to the called
object, but before any particular
method/constructor has been called.

method execution*

constructor execution

An individual method or constructor is
invoked

field get A field of an object, class or interface is
read

field set A field of an object or class is set.

exception handler execution An exception handler is invoked
class initialization Static initializers for a class, if any, are

run.
object initialization When the dynamic initializers for a

class, if any, are run during object
creation.

2- Pointcut

Pointcuts are the AspectJ mechanisms for declaring set of join points. AspectJ
includes two kinds of designator:

1- Primitive pointcut designators
such as
 calls(signature)
 receptions(signature)
 executions(signature)

 31

Example:
The pointcut designator

This matches all method call reception join points at which the Java signature of
the method call is “void Point.setX(int)” that happens every time a Point instance
receives a call to change its x coordinate.

Pointcuts also can be combined using and, or and not operators (‘&&’, ‘||’ and ‘!’).
For example the following code for the compound pointcut designator matches to
all receptions of calls to a Point instance to change its x or y coordinate.

2- User-defined pointcut designators

User-defined pointcut designators are defined with the pointcut declaration.
Example:

This defines a new pointcut designator called moves(), that identifies a set of
primitive pointcut designators, which is matched whenever a figure
element receives a call of a method that can move it (changing the x or y by any
way). The user-defined pointcut designators can be used wherever a pointcut
designator can appear.

The following table (table 4), presented in [34], shows examples of pointcuts that
capture the methods and constructors execution in a program.

receptions(void Point.setX(int)) ||
receptions(void Point.setY(int))

pointcut moves():
receptions(void FigureElement.incrXY(int, int)) ||
receptions(void Line.setP1(Point)) ||
receptions(void Line.setP2(Point)) ||
receptions(void Point.setX(int)) ||
receptions(void Point.setY(int));

receptions(void Point.setX(int))

 32

Table 4. Execution of methods and constructors pointcuts

Pointcut Description

execution(public void MyClass.myMethod(String)) Execution of myMethod() in MyClass
taking a String argument, returning
void, and with public access

execution(void MyClass.myMethod(..)) Execution of myMethod() in MyClass
taking any arguments, with void
return type, and any access
modifiers

execution(* MyClass.myMethod(..)) Execution of myMethod() in MyClass
taking any arguments returning any
type

execution(* MyClass.myMethod*(..)) Execution of any method with name
starting in "myMethod" in MyClass

execution(* MyClass.myMethod*(String,..)) Execution of any method with name
starting in "myMethod" in MyClass
and the first argument is of String
type

execution(* *.myMethod(..)) Execution of myMethod() in any
class in default package

execution(MyClass.new()) Execution of any MyClass'
constructor taking no arguments

execution(MyClass.new(..)) Execution of any MyClass'
constructor with any arguments

execution(MyClass+.new(..)) Execution of any MyClass or its
subclass's constructor. (Subclass
indicated by use of '+' wildcard)

execution(public * com.mycompany..*.*(..)) All public methods in all classes in
any package with com.mycompany
the root package

3-Advice

An advice is the code that is executed at each match of the join point in a
pointcut. It is the actual implementation at join points (what to do at the join
points), Each piece of advice is associated with a pointcut (named or
anonymous) and specifies behavior that it wants to execute before, after, or
around, the join points that the pointcut matches. An advice declaration may
contain parameters whose values can be referenced in the body of the advice.
The three kinds of advice are:

• before advice runs at the moment the join point is reached, for example
before the method runs.

 33

• around advice runs when the join point is reached and has control over
whether method itself runs at all, in other words it can decide whether the
original join point should be executed or not (the advice code runs instead
of the original code of the method in this case).

• after advice runs at the moment the control returns through the join point,
for example just after the method is ended.

The following code illustrates an after advice that runs some code after
returning from the matched joinpoints of the pointcut accountUpdate.

4- Inter-type declarations

When an aspect takes complete responsibility on behalf of other types (for
example other classes), this is called inter-type declaration. An inter-type
declaration inside an aspect looks just like the definition of a normal method or
field in the aspect, except that the method or field name is preceded by a type
name. Here's a simple example [29]:

The AccountSession will manage a SessionContext context on behalf of the
Account class, and that it provides getSessionContext() and setSessionContext()
methods on behalf of the Account class.

public aspect AccountSession{
 private SessionContext Account.context;
 public SessionContext Account.getSessionContext() {
 return context;
 }
 public void Account.setSessionContext(SessionContext ctx)
 {
 context = ctx;
 }
}

pointcut accountUpdate(Account acc, Money amount) :
 execution(void Account.*(Money)) &&
 args(amount) &&
 this(acc);

after(Account acc, Money amount) returning :
 accountUpdate(acc,amount) {
 acc.getStatement().recordTransaction(
 thisJoinPointStaticPart, amount);
}

 34

5-Aspect

Aspect is a new class-like language element that allows developers to
encapsulate across cutting concerns. Aspects are defined by aspect
declarations, which have a form similar to that of class declarations. Aspect
declarations may include pointcut declarations, advice declarations, as well as all
other kinds of declarations permitted in class declarations.
Figure 12 shows the relationship between join points, aspects, pointcuts, advice
and our application classes [19].

Figure 12. The relationship between aspects, pointcuts, and advice

To put it all together let's consider the following simple example.

public class HelloWorld {

public static void main(String[] args) {

 printHello ();

}

public void printHello () {

 System.out.println ("Hello world");

 }

 }

 35

Now, we have our existing Java code in HelloWorld.java. Let's assume that we
would like to print a message after executing the printHello method

The following code is the AspectJ implementation.

First we define an aspect in the same way we define a Java class. Like any Java
class, an aspect may have member variables and methods. Then we define a
pointcut, named afterPrint that picks out the execution of the
HelloWorld.printHello method. This pointcut is used in the definition of the advice
that will be executed after the pointcut afterPrint. Finally we implement the
advice.

2.3 Java servlets

Java servlets is a technology used to develop dynamic content for web-based
applications. It receive all the benefits of the mature Java language, including
portability, performance, and reusability, and the ability to access the entire
family of Java APIs, including the JDBC API to access databases.

Servlets do not face any of the problems faced by the classical Common
Gateway Interface CGI programming. CGI creates a process for every request
which limits the number of requests the server can handle, while in Servlets,
once a servlet is loaded, the server only makes simple method calls and does not
need to create a new process for each request.

Java Servlets are used to generate HTML response dynamically based on the
user request. The dynamic response generation is achieved by HTTP request-
response process. When the servlet receives a request to be processed, the web
server creates the objects of the classes HttpServletRequest as HTTP request
and HttpServletResponse as HTTP response and passes these two objects to
the Servlet instance in order to handle the incoming HTTP request information
and execute the application logic, and then generates the response, once the
response has been completed it is returned to the client by writing it to the
HttpServletResponse.

public aspect HelloFromAspectJ {

 pointcut afterPrint() : execution(public void

Helloworld.printHello());

 after(): afterPrint() {

 System.out.println("Hello from AspectJ");

 }
}

 36

Servlet Life Cycle

The servlet life cycle is one of the most exiting features of the servlets. The life
cycle of a servlet is controlled by the web server or web container (one example
of the container is Apache Tomcat which is an open source container) in which
the servlet has been deployed. When a request is mapped to a servlet, the
container performs the following steps [21].

1. Create and initialize the servlet: If an instance of the servlet does not exist,
the web container loads the servlet class, creates an instance of the
servlet class and then initializes the servlet instance by calling the init
method.

2. Handle zero or more service calls from clients: The server invokes the
service methods, passing a request and response objects.

3. Destroy the servlet and then garbage collects it: If the container needs to
remove the servlet, it finalizes the servlet by calling the servlet's destroy
method.

The servlet lifecycle is illustrated in the figure 13.

Figure 13. Servlet Lifecycle

 37

Sending HTML Information:

The HTTP servlet can return three kinds of things to the client:

1- A single status code: to indicate success or failure.
2- Any number of http headers.
3- A response body.

The response body is the main content of the response. For an HTML page, the
response body is the HTML itself, also it can be of any type and of any length.
The servlet is provided with a set of classes that treat HTML as just another set
of java objects, this approach can greatly simplify the task of generating HTML
and make the servlet easier to write, easier to maintain, and more efficient.

The following code will show the more usual case where HTML is generated.
The first step is done by setting the Content-Type response header, we need to
set response headers before returning any of the content via the PrintWriter.

The following figure, figure 14, is the output

Figure 14. Servlet output: Hello World example

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class Myservlet extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<HTML>\n" +

"<HEAD><TITLE>Hello World</TITLE></HEAD>\n" +

"<BODY>\n" +

"<H1>Hello World</H1>\n" +

"</BODY></HTML>");

}

}

 38

Deploying a Java servlet that uses AspectJ

As proposed, we will use java servlet to build our web application and AspectJ as
aspect oriented programming language. Assume that we are using Eclipse
AspectJ project and Apatche Tomcat as web server, then we need to do the
following steps [19]:

1- Compile the java servlet and aspect as normally.
2- Create a new web application directory in Tomcat by creating a

subdirectory in the webapps directory of the Tomcat called
mywebapplication.

3- Inside mywebapplication create a subdirectory called WEB-INF that
contains classes and lib directory.

4- Copy the class files generated from the compilation of java servlet and
aspect to the above classes directory.

5- Copy the aspectjrt.jar from the aspectj installed directory to the above
lib directory.

6- Then restart your web application.

The directory structure for the deployed web application should be as in figure
15.

Figure 15.The deployed web application and file structure

 39

Chapter 3: An Approach for experimenting with
website designs

3.1 Our approach

Our work proposes an approach for experimenting with website designs. As
already explained in the introduction, it is based on the core asset development
of software product lines (SPL) and aspect-oriented software development
(AOSD). The approach can be used for identifying, and managing variability of
web application for example in the case of website design testing but also for
website customization.

The contribution of this approach is that the construction of two or more different
versions of the website interface can be done by reusing the core assets of the
original one.

As we stated before we relay onto two techniques: software product lines and
aspect oriented programming:

• Software product lines allow us to capture the commonality and the
variability between products family. Since different versions of a Web
application will share similar behaviors, designing these applications by
reusing the common features between them is more efficient as it reduce
the time and effort and improves the consistency among all them. Feature
modeling is used for specifying and modeling the variability among the
different versions of our applications.

• Aspect oriented programming allow us to capture the variable features in
the stage of variants implementation by defining aspects that modify the
original code. In this case, the desired variants are achieved by reusing
the original code. So, there is no need for new implementation; aspects
can add or modify the variable features among the different versions of the
web interface.

However, for this approach to be effective, as mentioned before, the
implementation of the original interface should meet the modularity principle in
programming. The benefit of this lays into facilitating the achievements of the
modifications and changes on the originals components (modules) by aspects.

Our approach consists of a number of stages depicted in figure 16:
1- Specifying the feature model of the web interface. As already pointed out,

several tools are available for feature modeling.
2- Defining the different variants of the interface. This includes feature model

configuration by selecting the variable features.
3- Developing the original system code (if it is not yet existing): Here, we

have used the Java servlet technology, one of the popular programming
languages for Web application development. It is an easy to learn and has

 40

excellent capabilities. However, the approach itself is not limited to this
technology.

4- Writing aspect code for the variants and variable features: we have select
AspectJ as aspect oriented programming tool to write the aspect code for
our application. Each variable features that does not exist in the original
interface has to be associated with an aspect that modify the original code
in order to get the desired new feature.

5- Collecting all the aspects associated with the features that were selected
for the variant; and compile the java servlet and aspect as normally.

6- The aspect tool then invokes the weaver to produce the actual variant
code by weaving the original system code with the collected aspects.

Figure 16. The Stages of our approach

Figure 16. The Stages of our approach

3.2 Case studies

3.2.1 Changing the checkout screen of a shopping cart.

We introduce an example to illustrate our approach. It is a simplified checkout
screen of a shopping cart for a CD shop. Assume we want to test how small
changes could affect the purchase process. We aim to be able to produce
different versions /variants of this interface. One variant is treated as the original
(and has the core features) and we also want another variant that has small
modifications of some component or factors.
Figure 17 shows the original interface, called variant A, and figure 18 shows the
modified interface, called variant B. There are two main differences: variant B

Specifying

feature model of

the web page

Define variants

(By selecting

features)

Original system

code

Aspect code for

variable

features

Collecting

aspects

Weaving code

and aspect

Feature modeling Writing code and aspect Weaving aspect

Diffe

rent

Web

Different

web page

 41

includes checkout button twice placed at top and at bottom, and the “total” text
presented in different color.

Figure 17. Checkout screen variant A

Figure 18 .Checkout screen variant B

Specifying the feature model:

The first step in our approach is to build our feature model of our screen.
We use the future modeling tool as tool to build and configure our feature model
[38].

 42

Our feature diagram is depicted in figure 19. The root feature represents the
concept checkout screen. The screen has a checkout button, continue button,
total display and optionally discount offer, and recalculate button. Providing a
checkout button is mandatory, the position of the button on the screen is an “or
group” of two features (“placed at top” or “placed at button”). At least one of
them must be selected in the implementation while the total display has two
alternative for being displayed: either using “same color” (as the rest of the table
elements) or in “different color”, and only one of them must be selected. In
addition to that, there is a require (implies) cross tree relationship between the
“discount offer” feature and “recalculate button”; this means that selecting the
discount offer in the interface (variant) also requires to select the “recalculate
button” in the interface (variant).

Figure 19. The feature model diagram of the checkout screen

Here in table 5 we summarize all the features of our feature diagram with a
description of each feature and its existence on the original interface. The
features that exist in the original interface will be treated as the core features and
contains all the common features (all mandatory features) in addition to some
variable features which represent the variability between the variants.

Table 5. Features of the checkout screen

Feature
name

type description Existence in the
original interface

F1 Root
feature

Checkout screen yes

F1.1 Mandatory Checkout button yes

F1.1.1 Or group Checkout button placed at top Modified

 43

F1.1.2 Or group Checkout button placed at
bottom

yes

F1.2 mandatory Continue button yes

F1.3 mandatory Display total yes
F1.3.1 Alternative

group
Display total in the same color yes

F1.3.2 Alternative
group

Display total in different color Modified

F1.4 optional Discount offer yes

F1.4.1 mandatory Text field for promotion code yes

F1.4.2 optional Display discount yes
F1.5 optional Recalculate button yes

Selecting the variants:

After building the feature diagram we have to configure it to produce our variants.
Different combinations of interface features will result in different interface
variants.
For our example, we want to have two variants, variant A as the core variant (will
be implemented as the original interface) and variant B as a modified interface.

Variant A (Original interface): has the following features:
- Checkout button placed at bottom.
- Continue button.
- Total displayed with the same color.
- Presenting discount offer.
- Presenting recalculate button.

Variant B (Modified interface): has the following feature:
- Checkout button placed at bottom and placed at top.
- Continue button.
-Total displayed with the different color.
- Presenting discount offer.
- Presenting recalculate button.
The tool we use in building our feature diagram allow us to configure our feature
diagram manually to produce correct combination of features as a particular
variants. Figure 20 shows the feature configuration screen.

 44

Figure 20. Feature model configuration for specific variants

Implementing the variant:

Variant A: Original interface
This variant is developed as any dynamic web application. As proposed before
our implementation technology for it the Java servlet technology. We have
defined a class ShoppingCart that allows for the addition and removal of different
items. This class contains a number of methods that render the different
elements in the web page interface, such
as:

• addLogo();
• addItemList();
• addPromoCode();
• checkoutButton();
• continueButton();
• recalculateButton();
• addFooter();
• getTotal();
• getDsicount();
• printTotal();
• remove();

It is left to the programmer if he/she want to add additional methods, but as
mentioned before, in our approach we followed the modularity principle in
programming when implementing our interface. This means each element (part)

 45

presented in the interface should have its own method that implements it
separately.
Separating the implementation of the components makes it easier later to apply
changes and modifications to individual components and decreases the chance
that modifying one component will adversely impact the other.

Variant B: Modified interface

This variant has two different features selected:

• Placement of checkout button at top as well as bottom.

• Displaying total in different color.
The rest of the features is common with the original interface.

Now, realising these two variable features is done by defining two aspects for
each of them. In this case the original source code does not need to be modified;
all the specification of the modification is included in the defined aspects which
modify the original system in a particular way.

- In order to implement the feature “checkout button at top” (F1.1.1 in the feature
diagram), we define an aspect called checkoutOnTop, which has a pointcut that
intercepts the execution of the method that prints the tables of the items
(addItemList), and applies an before-type advice which will execute the method
checkoutButton and print the button in the screen before execution of the method
addItemList, and by this we realize our feature.

The following code is the AspectJ implementation:

 Regarding the feature of displaying the text “total” in a different color (red color
for example) we define an aspect called replaceTotal, which has a pointcut that

public aspect checkoutOnTop {

public pointcut Topcheckout(HttpServletRequest request,

HttpServletResponse response) :

 execution(private void

ShoppingCart.addItemList(HttpServletRequest, HttpServletResponse))

&& args(request, response);

before(HttpServletRequest request, HttpServletResponse response)

throws IOException : Topcheckout(request, response)

 {

 ShoppingCart.checkoutButton(request, response);

 }

}

 46

intercepts the execution of the PrintTotal method, and by applying an around-
type advice, that replace the code of the method as we want, we apply a simple
change which is changing the text color. The following code is the
implementation:

Here the implementation of the application by java servlet offer us great flexibility
in adding changes to the interface elements by aspects declarations because
most of these changes could be a matter of arranging the HTML code in a
specific way to get the desired look, in addition we can also add additional
functionality to some components and elements. And here the importance of
following the modularity principle in programming appears, as each element
could be treated separately without affecting the other elements.

Weaving process:

The waving process is done automatically at the compile time, so we collect all
the related classes and aspects and compile them as usual (we use Eclipse as
tool for building our application with Java servlet), and then follow the steps of
deploying Java servlet that uses AspectJ to deploy our application.

3.2.2 Adapting a CD shop page to some cultural dimensions

In this case study we illustrate how that our approach can be used to customize
websites to specific cultural dimensions, we aim to produce different versions of
the website interface where each version differs in presenting some parts or

public aspect replaceTotal {

public pointcut recolortotal(HttpServletRequest request,

HttpServletResponse response) :

 execution(private void

ShoppingCart.PrintTotal(HttpServletRequest,

HttpServletResponse)) &&

 args(request, response);

void around(HttpServletRequest request, HttpServletResponse

response) throws IOException : recolortotal(request, response)

 {

 PrintWriter out = response.getWriter();

 out.println("<tr><td width=255 height=44></td><td

height=44><td height=44><p align= center ><font

color=#FF0000>Total :</td>");

}

}

 47

components according to culture of the target customers (for example adding
additional components, using specific pictures or providing additional links).
As we have seen before, the cultural values framework presents the five cultural
values and describes how to emphasize a specific one on the design of the
website interface.

We apply our approach on a simple CD screen (figure 21) for an online CD shop.

Figure 21. CD screen variant A

Figure 22. CD screen variant B

Before starting specifying the feature model, we want to illustrate how
emphasizing some components in the design customize the website on specific
cultural values. We follow the guidelines of the cultural values framework for the

 48

adaptation of the website to conform to specific cultural dimension. Below we
give some examples to be included in the interface for each dimension. Note that
these are just some examples; the interface could include additional component
to emphasis specific cultural value.

1- individualism-collectivism
Individualism requires:

• Picture of people (customers, models) as individuals.

• Slogan referring to freedom.
Collectivism requires:

• Link to subscribe to newsletter that is providing info on new
releases of favorite artist.

• Picture of people (customers, models) as group.

• Slogan referring to team work.

2- Power distance
High power distance requires:

• Mentioning of awards won.

• Quality certification label.
Low power distance requires:

• No mentioning of the awards or the certifications.

3- Masculinity- femininity
 Masculinity requires:

• Link to music/media quiz.

• Pictures of female posing with typical female CDs.
Femininity requires:

• Pictures of females and males

4- High-low context
High context requires:

• Slogan referring to the best choice.

• More and bold colors in the site.

Low context requires:

• Slogan referring to leader in quality.

• Link to price-comparison sites.

5- Uncertainty avoidance:
High on uncertainty avoidance requires:

• Link to frequently asked questions page.
Low on uncertainty avoidance requires:

• No such links.

 49

Specifying the feature model:

When specifying the feature model of the webpage interface we include all the
feature and components (buttons, menus, pictures) the page could include
(mandatory, optionally, Or group, Alternative, …) in addition to specifying the
cultural values as optional features.
Linking the cultural values with some features is done by means of a require
(implies) cross tree relationship between the specified cultural value and the
features related to it. This implies that selecting a specific cultural value requires
to select the specific features. The relation between two opposite cultural values
is expressed by an exclude relationship between the two features of these
values. The feature model diagram is depicted in figure 23.

Figure 23. The feature model diagram of the CD screen (part 1)

 50

Figure 23. The feature model diagram of the CD screen (part 2)

Selecting the variants:

In fact, each country has its own mix of the culture values, thus all cultural values
must be included and presented in website to be culturally customizable,
However, it is not the mere existence of these features on the page that makes it
customized, but the degree of emphasising it.
So to see which features should be included in the websites to be culturally
customized, we start by selecting the desired cultural value and then see what
features are required to be included in our webpage to be customized to that
culture value. And then we can add other features if we want. In this stage, when
configuring the feature model, it helps us to discover the conflicts between some
features. Example conflicts are for instance, if we try to add a specific feature in
the interface but we have selected a cultural value that exclude that feature, or if
a feature relate to more than one cultural value but one of them should be
selected. In these cases we have to solve the problem by discarding some
features.

Variant A: Original interface
In our case study the original interface is customized to the following cultural
values: Individualism, low on power distance, masculinity, low context, low on
uncertainty avoidance.

 51

So all the required feature related to these values are:

• Picture of people (customers, models) as individuals.

• Slogan referring to freedom.

• Link to music/media quiz.

• Pictures of female posing with typical female CDs.

• Slogan referring to leader in quality.

• Link to price-comparison sites.

Variant B: Modified interface
This interface is customized to adapt the following cultural values:
Collectivism, high on power distance, femininity, low context, low on uncertainty
avoidance.
So there are some features that should be added or modified in the original
interface according to the selected cultural values.
Actually a conflict between the two features (slogan referring to team work,
Slogan referring to leader in quality) occurs because they are in an alternative
group of features and only one can be selected. To solve this conflict we discard
the slogan referring to leader in quality, and are satisfied with the slogan referring
to the team work.
Table 5 describes all the features depicted in the web interface of the page and
mentions which ones are included in original interface and which ones are
modified in the other variant.

Table 6. Features of the CD screen

Feature name type description Existence

in the
original
interface

F1 Root feature CD screen

F1.1 Mandatory Logo Yes
F1.2 Optional Slogan Yes

F1.2.1 Alternative Team work Modified
F1.2.2 Alternative Freedom Yes

F1.2.3 Alternative Quality

F1.2.4 alternative Best choice
F1.3 Mandatory Top menu

F1.3.1 Or group Home Yes
F1.3.2 Or group CD Yes

F1.3.3 Or group DVD Yes

F1.3.4 Or group Video games Yes
F1.4 optional Search Yes

F1.5 mandatory Main menu Yes
F1.5.1 Or group Top CD Yes

 52

F1.5.2 Or group Top DVD Yes

F1.5.3 Or group Top video Yes
F1.5.4 Or group Shopping cart Yes

F1.5.5 Or group My account Yes
F1.5.6 Or group About us

F1.5.7 Or group Awards Modified
F1.5.8 Or group Price comparison site Yes

F1.5.9 Or group Music quiz Yes

F1.5.10 Or group News letter Modified
F1.5.11 Or group FAQ link

F1.6 Optional Offers Yes
F1.6.1 Or group Points Yes

F1.6.2 Or group Cards

F1.7 Optional Advertisement Yes
F1.7.1 mandatory Type Yes

F1.7.1.1 Alternative Group of people Modified
F1.7.1.2 Alternative individual Yes

F1.7.2 Mandatory Gender Yes
F1.7.2.1 Alternative Female Yes

F1.7.2.2 Alternative Female and male Modified

F1.8 Mandatory List of CDs Yes
F1.8.1 Alternative All CDs

F1.8.2 Alternative Top selling CD’s Yes
F1.9 Mandatory Appearance Yes

F1.9.1 Alternative Many colors
F1.9.2 Alternative Single color Yes

F1.10 Optional Certification Yes

F1.10.1 Or group Quality certification Modified
F1.11 Optional Cultural values Yes

F1.11.1 Or group Individualism Yes
F1.11.2 Or group Collectivism Modified

F1.11.3 Or group High on power distance Modified

F1.11.4 Or group Low in power distance yes
F1.11.5 Or group Masculinity Yes

F1.11.6 Or group Femininity Modified
F1.11.7 Or group High context

F1.11.8 Or group Low context Yes
F1.11.9 Or group High on uncertainty avoidance

F1.11.10 Or group Low on uncertainty avoidance Yes

Implementing the variant:

The original interface is implemented as usually. For the modified one we have to
write aspects for all of the modified features listed in table 5.
For example the following code will replace the slogan of the company:

 53

public aspect TeamWork_slogan {

public pointcut replace_slogan(HttpServletRequest request,

HttpServletResponse response) :

execution(private void CdScreen.Freedom_slogan(HttpServletRequest,

HttpServletResponse)) && args(request, response);

 void around(HttpServletRequest request, HttpServletResponse

response) throws IOException : replace_slogan (request, response)

 {

// alternative code here to replace the slogan

 }

}

 54

Chapter 4: Related work:

There is several related work based on Software product lines, aspect-oriented
programming and on a combination of them applied on some software
development. For example in [30] they present Koriandol, a product line
architecture designed to develop, deploy and maintain families of web
applications which often share similar behaviors and components
(commonalities) and a number of variant points (often referred to the delayed
design decisions). Their definition of a web application involves the selection of
components, which are assembled in a prescribed way, as depicted in the UML
class diagram of figure 24. These components have some variable features.
Variation in Koriandol is accomplished by means of selecting components with
different features in order to put them to use in specific products, rather than
writing code and keeping the variants distinguished. Producing any system within
that scope becomes a matter of exercising the variation of the components and
architecture that is, configured and then assembled and tested. The main benefit
is maximizing code reusing and minimizing code writing.

Figure 24. Associations among the assets in a product

In this work feature models are used to represent common and variable features
of the components, figure 25 shows an example of the News component. After a
feature has been identified and modeled, a reusable component which
implements it is developed (in the previous example a mapping between the
notation of feature diagrams and HTML widgets (e.g., check boxes, radio button
and so on) has been defined), When completed, the component is registered into

 55

the repository and becomes available to all applications. Figure 26 shows the
architecture of the Koriandol system

Figure 25. Feature diagram for a News component

Figure 26. Koriandol system

When a client request (HTTP Request) is sent from the browser to the run time
module, it interprets it according to the correspondent page specification and
identifies which components have to be invoked to serve that particular request,
then feature request action is sent to the component that was selected and
configured during the variability determination for the instantiation of the

 56

requested page. The method returns XML data which is passed to the rendering
engine which generates HTML fragment by means of transformation stylesheets.
Once all component requests are realized the obtained HTML segments (HTML
contents) are put together and returned to the user (HTML Page).
This work is related to ours in the area of exploring the commonalities and the
variabilties of the systems by using feature modeling, but they have their own
implementation, “the Koriandol system”, which supports variability determination
through built-in reflective mechanisms. While in our work achieving the variability
is realized through defining aspects that cross cut some modules of the original
system code and modify or replace them.

Using aspect oriented programming to achieve web changes is described in [31].
The authors proposed an approach to web application evolution in which
changes are represented by aspect-oriented design patterns and program
schemes. These changes could be kind of integration changes, grid display
changes, input form changes…etc, change realization they have proposed
actually is accompanied by its own specification. This means that the initial
description of the changes to be applied is application specific, each application
specific change can be seen as a specialization of some generally applicable
change, this is depicted in figure 27 in which a general change with two
specializations is presented. Thus, they determine the generally applicable
change whose specialization is the application specific change and adapt its
realization scheme.

Figure 27. General and specific changes with realization.

The main difference between our work and their work is that we rely on feature
modeling to describe the commonalties and the variabilites of the different
versions of our web application interface and they specify changes in general as
application specific, so a catalogue of the changes is developed, in which the
generalization specialization relationships between change types is explicitly
established.

 57

The idea of combining software product lines and aspect-oriented software
development techniques already exists in software engineering. The author in
[32] presented detailed guidelines on how FOA (Feature-oriented analysis), and
AOP (aspect-oriented programming) can be combined. He saw that one-to-one
mapping between features and aspects is not a practical solution because if
aspects implementing features are dependent on each other their variation may
cause changes to other parts of the assets. To address the problems, he has
proposed a product line engineering method that combines FOA and AOP to
enhance reusability, adaptability, and configurability of product line assets. He
proposed that commonalities must be decoupled from variabilities in product line
asset development, That is, common features are used to design base modular
components, and variable features are used to define aspectual components,
which adapt or extend the base modular components. This does not mean that
all common features have to be designed as base modular components.
Common features can also be defined as aspectual components, if they have
crosscutting concerns. Here crosscutting concerns can be classified into two
categories: homogeneous and heterogeneous. Homogeneous crosscuts (e.g.,
logging) add the same code fragments at different join points of multiple
components, they can be effectively defined as separate aspects using AOP,
whereas heterogeneous crosscuts (e.g., services) add different code, and they
can be incorporated into existing modular components or defined as separate
aspectual components. This work provides us with guidelines when implementing
the commonalities and the variabilities in our work especially when implementing
the part of variabilities between the different versions of the web interface with
aspects.

Also another contribution in managing variability of SPL of web applications using
AOSD is presented in [33]. They propose an aspect oriented framework to
manage variability in software product lines, figure 28 shows the two main
activities of the proposed framework: 1- Domain Engineering activity in which the
commonality and the variability of the product line are created. 2- Application
Engineering activity in which the applications of the product line are built by
reusing assets.

 58

Figure 28. Aspect-Oriented Product Line Framework

In domain engineering activity they propose for capturing the commonality and
variability “the use cases” where use cases are categorized as kernel, optional,
or variant, and mapping rules are used to establish relationships between them.
For this mapping they create table 6 which works as ”a production plan”, as it
describes how the products can be created from the core assets, and shows
which concerns are involved in the architecture. The next step is defining aspects
from the established crosscutting concerns, creating a refined use case diagram
with them (figure 29) and following proposed mapping rules. Several phases
followed then as shown in figure 28. Finally in the application engineering activity,
the developers follow the production plan, in order to recognize the variation
points of specific product depending on the variabilities that were defined as
aspects in every stage of the domain engineering activity.
We share the basic idea with this work by combining SPL with AOSD but we use
feature models to specify the variabilities between the applications(web
interfaces) while they build a table to describe the different variants and then
translate it into a use case sequence diagram and defined aspects.

 59

Table 7. Kernel concerns vs. crosscutting concerns with variants

Figure 29. Fragment of the sequence diagram for the use case “Input Service”

 60

Chapter 5: Conclusion

During the last years Internet marketing has experienced a remarkable growth,
however it also brought many challenges to websites developers as website
design is considered as one of the key success factor of the business because it
can impact the buying process for new purchasers. Also experiences have
shown that small changes to a website interface including adding small
modification in order to adapt the website to a specific culture affect the
percentage of site visits that result in purchase (conversion rate). Many
techniques have been developed to measure the user’s reactions to the
modifications of the site interface like the known A/B test, in which the designers
develop more than one version of a web interface and present it to randomly
selected subset of users in order to analyze their reactions, and determine which
version has the highest performance. However, the problem was how to develop
quickly different versions/variants of a specific website interface, and how to
choose components of the interface elements (features) to vary. Since these
variants share common features, designing these variants by reusing the
common features between them is more efficient as it reduces the time and effort
and improves the consistency among all them.

 In this thesis we present an approach for website experimenting that enable us
to create one or more different versions of a web interface by incorporating new
or modified features with reuse of the original code. In this case we don’t need to
create a complete new website to produce a different variant of the interface; we
simply can use the original one to obtain a new version that has some additional
or modified features. To achieve this, we mainly rely on two techniques:1-
Software product line engineering and Aspect oriented programming. Software
product lines allow us to capture the commonality and the variability between
products family throw feature modeling, in our case feature modeling is used for
specifying and modeling the variability features of the website interface and then
by selecting different sets of features from the model we can produce different
variants of the interface. One of these variants will be considered as the original
web interface for the application and the others are modified ones that can be
used in the tests. Aspect oriented programming allow us to capture the variable
features of the variants by defining aspect codes for each of the variable features
that does not exist in the original website. Then the weaving process of the
aspect code and the original code will produce new modified code that creates a
new web interface variant. So there is no need for a complete new
implementation of an application or for modifying applications manually, which
may lead to cumbersome maintenance problems. Aspects can add or modify the
variable features among the different versions of the web interface. There is
however one requirement for being able to apply this approach, the
implementation of the original code should meet the modularity principle in
programming. i.e. the program should be divided into modules to represent the
interface components. This is needed to allow the aspects to effectively change
the modular components (interface features).

 61

Our approach includes the following stages: building the feature model,
configuring it to produce different variants where one of these variants must be
considered as the original web interface for the application and should be
developed as any web application (we have proposed Java servlet as
programming tool). Then achieving the other variants is by incorporating aspects
in the original code. Each variable feature in these variants is associated with an
aspect (we have used AspectJ as aspect oriented implementation language) that
add or modify a specific feature in the original interface. Once all the aspects
related to the variant interface have been defined, we collect them with the
original code; the weaving process of the original code and the aspect will
happen at compile time.

To illustrate our approach we have applied it on two case studies. In the first
case study, we have seen how we can apply small changes in a checkout page
of a shopping cart. We have defined the feature model of the page and then
configured two variant. We have considered the first one as the original interface
and for the other one we have defined aspect code for each of the variable
features and thus the other variant can be produced easily.

In the second case study, we have shown how we can apply our approach in the
case of producing culturally customized websites. These sites reflect the culture
of the target market. By often small modifications in some part of the interface we
can adapt the website to a specific culture. Our feature model in this case study
include the five cultural values presented in [4], together with a set of required
features for each cultural value to be added to the interface to customize it.
Configuring the feature model by selecting different features allow us to produce
a mix of different culture values and thus producing different variants of the web
interface each of them can serve a particular target society. The implementation
of these variants is as described before and is also reusing the original interface
code and defines aspects for each of the modified features.

The main benefit of applying our approach is maximizing code reusing by reusing
the code of the core assets of the original application, in this way we just need to
write some aspect to obtain the desired new features.

Future work could include the development of a software environment to support
our approach, as well as more experiments with different use cases to validate
the approach.

 62

References

[1] Dave Chaffey, Richard Mayer, Kevin Johnston, Fiona Ellis-Chadwick, Internet
Marketing Strategy, Implementation and Practice, Pearsoneduc 2000.

[2] Randy Duermyer, How to Convert Your Web Site Traffic to Cash – Intro:
<http://homebusiness.about.com/od/yourbusinesswebsite/a/conversion.htm>.

[3] Bryan Eisenberg, How to Increase Conversion Rate 1,000 Percent:
< http://www.clickz.com/1756031>.

[4] Nitish Singh, Arun Pereira, The culturally customized Web site: Customizing
Web Sites for the Global Marketplace, Butterworth-Heinemann, 2005.

[5] Bryan Eisenberg, How to Improve A/B Testing:
<http://www.clickz.com/3500811>.

[6] Split A/B testing:
<http://www.webcredible.co.uk/user-friendly-resources/web-usability/ab-
testing.shtml>.

[7] Kwanwoo Lee, Kyo C. Kang and Jaejoon Lee, Concepts and Guidelines of
Feature Modeling for Product Line Software Engineering , IEEE Software, 2002

[8] Pohl, Klaus, Böckle, Günter, Linden, Frank J. van der, Software Product Line
Engineering Foundations, Principles and Techniques, Springer, 2005.

[9] Kang, K. C., S. Cohen, J. Hess, W. Nowak, and S. Peterson. Feature
Oriented Domain Analysis (FODA) Feasibility Study, Software Engineering
Institute (Carnegie Mellon), 1999.

[10] Rubén Fernández, Miguel A. Laguna, Jesús Requejo, Nuria Serrano,
Development of a Feature Modeling Tool using Microsoft
DSL Tools, < http://www.giro.infor.uva.es/fmt.pdf>.

[11] Matthias Riebisch: Towards a More Precise Definition of Feature Models.
Position Paper. In: M. Riebisch, J. O. Coplien, D, Streitferdt (Eds.): Modelling
Variability for Object-Oriented Product Lines. BookOnDemand Publ. Co.,
Norderstedt, 2003.

[12] László Lengyel, Tihamér Levendovszky, Hassan Charaf, Constraint handling
in Feature Models, 5th International Symposium of Hungarian Researchers on
Computational Intelligence, 2004.

 63

[13] Hai Wang,Yuan Fang Li, Jing Sun3 Hongyu Zhang and Jeff Pan, A Semantic
Web Approach to Feature Modeling and Verification, Workshop on Semantic
Web Enabled Software Engineering (SWESE'05), 2005.

[14] Krzysztof Czarnecki, Chang Hwan Peter Kim , Cardinality-Based Feature
Modeling and Constraints: A Progress Report, ACM 1-59593-193-7/05/0010.,
2005.

[15] Kyo C. Kang, Sajoong Kim , Jaejoon Lee , Kijoo Kim , Euiseob Shin and
Moonhang Huh , A feature-oriented reuse method with domain specific reference
architectures, Annuals of Software Engineering, 5, 1998.

[16] Griss, M.L., Favaro, J., d'Alessandro, M., Integrating feature modeling with
the RSEB, Proceedings of the Fifth International Conference on Software Reuse,
1998.

[17] Yasser EL-Manzalawy , Aspect Oriented Programming:
< http://www.developer.com/design/article.php/3308941 >.

[18] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kerste2, Jeffrey Palm and
William G. Griswold, An Overview of AspectJ, ACM, 2001.

[19] Russ Miles, AspectJ Cookbook, O'Reilly Media, 2004.

[20] AspectJ: Frequently Asked Questions:
<http://www.eclipse.org/aspectj/doc/released/faq.php>.

[21] Jason Hunter, William Crawford, Java Servlet Programming, O'Reilly, 1998.

[22] Stefan Kuhlins and Axel Korthaus, Java Servlets versus CGI
Implications for Remote Data Analysis, 23rd Annual Conference of the
Gesellschaft fur Klassifikation, 1999.

[23] Java servlet life cycle:
 < http://www.javaonnet.com/2005_04_01_archive.html>.

[24] Modular programming: <http://www.answers.com/topic/modularity>.

[25] Improve modularity with aspect-oriented programming
<http://www.ibm.com/developerworks/java/library/j-aspectj/>.

[26] Modular programming:
<http://www.pcmag.com/encyclopedia_term/0,2542,t=modular+programming&i=4
7184,00.asp>.

[27] Feature model: <http://en.wikipedia.org/wiki/Feature_model>.

 64

[28] Conversion Rate Optimization:
 <http://www.maximize-conversion-rate.com/conversion_optimization/2009/01/-
conversion-rate-optimization-101-.html>

[29] Adrian Colyer, Andy Clement, George Harley, Matthew Webster,
Eclipse AspectJ: Aspect-Oriented Programming with AspectJ and the Eclipse -
AspectJ Development Tool, Addison-Wesley Professional, 2004.

[30] Luca Balzerani, Davide Di Ruscio, Alfonso Pierantonio, Guglielmo De
Angelis, Supporting Web Applications Development with a Product Line
Architecture, Journal of Web Engineering, Vol. 5, No. 1, 2006.

[31] Michal Bebjak, Valentino Vrani´c, and Peter Dolog, Evolution of Web
Applications with Aspect-Oriented Design Patterns, proceedings of 2nd
International Workshop on Adaptation and Evolution in Web Systems
Engineering, AEWSE 2007, in conjunction with 7th International Conference on
Web Engineering, ICWE 2007.

[32] Kwanwoo Lee, Kyo C. Kang, Minseong Kim, Sooyong Park, Combining
Feature-Oriented Analysis and Aspect-Oriented Programming for Product Line
Asset Development, Software Product Line Conference10th International, 2006 .

[33] Germán Harvey Alférez Salinas, Poonphon Suesaowaluk, An Aspect-
Oriented Product Line Framework to Support the Development of Software
Product Lines of Web Applications, Proceedings of the 24th South East Asia
Regional Computer Conference, 2007.

[34] Learn AspectJ to better understand aspect-oriented programming:

<http://www.javaworld.com/javaworld/jw-03-2002/jw-0301-aspect2.html?page=3>

[35] Yves Bontemps, Patrick Heymans, Pierre-Yves Schobbens, and Jean-
Christophe Trigaux, Semantics of FODA Feature Diagrams, The 8th international
Conference on Software Product Line Conference (SPLC'04), 2004.

[36] Feature Model DSL: <http://featuremodeldsl.codeplex.com/>.

[37] XFeature Tool : <http://www.pnp-software.com/XFeature/Home.html>.

[38] Feature modeling tool : <http://www.giro.infor.uva.es/FeatureTool.html>.

