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Abstract

Nowadays, web sites often play a key role in the commercial plan of companies.
It is therefore crucial, to design them in the best possible way in order to satisfy
the needs of their visitors. One of the major causes of visitor dissatisfaction is
the overwhelming amount of available information on large web sites. Users get
lost in the maze of information, get annoyed and give up their search for infor-
mation. To cope with this problem, web sites can adapt themselves to the needs
of each user separately in order to guide them in their search. More specifically,
link recommendations can be provided. These link recommendations are links
to pages which could possibly interest the user and are based on information
about the user (e.g. his goals, characteristics, preferences, ...). This information
is mostly stored in a user model which is maintained for each visitor. This user
model however has the disadvantage that it requires many efforts from both the
designer and the visitor. The efforts of the designer include finding out which
user information is needed, keeping the user model up to date and specifying
how this information should be processed. The user, on the other hand, needs
to supply feedback such as giving ratings or filling in long forms, and often
needs to log in. In this dissertation we propose session-based link recommen-
dations which do not require a user model and therefore avoid the efforts that
arise when such a user model has to be constructed and maintained. The link
recommendations techniques which generate the link recommendations take the
session data of the active visitor as input and analyze the session data of previ-
ous visitors to make recommendations for this visitor. Providing personal link
recommendations for each visitor therefore results in session-based adaptation
which personalizes the web site for each user session.

The framework for this thesis is WSDM, a web site design method which al-
ready provides a language (ASL) to specify adaptation strategies. These strate-
gies aim at improving the web site for all visitors and thus not specifically for in-
dividual visitors. To be able to specify link recommendation algorithms, WSDM
and ASL are extended with design time support for session-based adaptation
which aims at tailoring the web site separately for each visitor. Using these ex-
tensions, two session-based link recommendation techniques are proposed and
specified in ASL. Both techniques are extensively discussed and validated using
an experimental web site, designed and implemented using WSDM, on which
both algorithms are tested.



Samenvatting

Tegenwoordig spelen web sites vaak een belangrijke rol in het commerciéle plan
van bedrijven. Daarom is het cruciaal om ze op de best mogelijke manier te
ontwerpen met als doel te voldoen aan de noden van hun bezoekers. Een van
de belangrijke redenen waarom bezoekers ontevreden raken is de overvloed aan
informatie aanwezig op omvangrijke web sites. Gebruikers raken verloren in
het web van informatie, raken geérgerd en geven hun zoektocht naar informatie
op. Om dit probleem aan te gaan kunnen web sites zichzelf aanpassen aan de
noden van elke gebruiker afzonderlijk met als doel hem te helpen in zijn zoek-
tocht. Meer specifiek kunnen navigatie suggesties worden aangeboden. Deze
navigatie suggesties zijn links naar pagina’s die de gebruiker mogelijk kunnen
interesseren en zijn gebaseerd op informatie over de bezoeker (bvb. zijn doelen,
karakteristieken, voorkeuren, ...). Deze informatie is meestal opgeslagen in een
model van de gebruiker dat wordt bijgehouden voor elke bezoeker. Dit model
heeft echter het nadeel dat het veel inspanningen vraagt van de ontwerper en de
bezoeker. De inspanningen van de ontwerper zijn onder meer het uitpluizen van
welke informatie er moet worden bijgehouden, het model up-to-date houden en
het specificeren hoe deze informatie verwerkt moet worden. De gebruiker moet
van zijn kant voor feedback zorgen in de vorm van het geven van scores of het
invullen van formulieren, en moet vaak ook inloggen. In dit proefschrift stellen
we sessie-gebaseerde navigatie suggesties voor die geen model van de gebruiker
nodig hebben en daardoor de inspanningen vermijden die ontstaan wanneer zo
een model geconstrueerd en onderhouden moet worden. De navigatie suggestie
technieken die de navigatie suggesties genereren nemen de sessie data van de
actieve bezoeker als input en analyseren de sessie data van eerdere bezoekers om
suggesties te maken voor deze bezoeker. Het verschaffen van deze persoonlijke
navigatie suggesties voor elke bezoeker resulteert daardoor in sessie-gebaseerde
adaptatie die de web site personaliseert voor elke gebruikerssessie.

Het framework voor deze thesis is WSDM, een ontwerp methode voor web
sites die reeds een taal (ASL) heeft om adaptatie strategieén te specificeren.
Deze strategieén zijn gericht op het verbeteren van de web site voor alle be-
zoekers en dus niet specifiek voor individuele bezoekers. Om in staat te zijn
navigatie suggestie algoritmes te kunnen specificeren, moeten WSDM en ASL
uitgebreid worden met ontwerp ondersteuning voor sessie-gebaseerde adaptatie
met als doel de web site op elke gebruiker afzonderlijk af te stemmen. Met
deze uitbreidingen worden twee sessie-gebaseerde navigatie suggestie technieken
voorgesteld en gespecificeerd in ASL. Beide technieken worden uitgebreid be-
sproken en gevalideerd door een experimentele web site, ontworpen en geimple-
menteerd door middel van WSDM, waarop beide algoritmes getest worden.
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Chapter 1

Introduction

1.1 Introduction

Since the birth of the World Wide Web in 1990, its usage has increased from
0.4 % in 1995 to 13,9 % of the world population at the moment of writing?!.
Along with this enormous growth of users, millions of web sites have been cre-
ated which all serve information or services upon request of these users. The
numbers mentioned above show that qualitative web design can be beneficial
for almost a billion of people and can thus be considered as being a very hot
topic in the world of hypermedia. Besides being a hot topic it is also a juvenile
topic which is waiting to be further explored and enriched by researchers.

Many professional businesses nowadays depend heavily on their web sites.
Users can buy products, hire services or simply find information via the World
Wide Web. The goal of almost every web site is to keep the user satisfied and
interested. This is, however, a very difficult task considering the information
overload which is available on most web sites. One of the main reasons why users
get annoyed and leave a web site, is because of not finding the information they
are looking for. Even if they are satisfied, it can be advantageous to identify and
recommend pages that could interest the user. For businesses exploiting profes-
sional web sites, for example, this can increase their revenues because users will
buy recommended products which they would not have bought otherwise.

This recommendation of interesting pages or even products is already widely
used on the Internet. When buying a book on Amazon.com, for example, cus-
tomers get recommendations of other books or products which are commonly
bought by customers who bought the same book. Whereas, in daily life, people
tend to get recommendations by friends which are equally minded, the Internet
gives the opportunity to provide recommendations by some kind of collective
intelligence of unknown people which behave alike in some particular way. This
is what makes the use of recommendations in web sites a very interesting study
subject.

Internet world stats: http://www.internetworldstats.com

11
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1.2 Problem Statement

As stated in the introduction, it is crucial to have some techniques which identify
pages which are possibly interesting but unknown or unavailable for the user in
his current browsing context. We will call the identification and recommenda-
tion of links to possible interesting pages for web site users link recommendations.
These link recommendations are the main subject of this thesis. The kind of link
recommendations that are considered in this dissertation are recommendations
generated at runtime. Because of this runtime generation which is dependent on
the current user, we can speak of user dependent web site adaptation. We will
integrate this specific web site adaptation method into WSDM, which stands for
Web Site Design Method. This is an approach for designing web sites developed
by the Web & Information System Engineering (WISE) research group of the
Vrije Universiteit Brussel.

In WSDM the focus of the design is not on the data of the organization but
on the audience of the web site. This audience is split into different audience
classes which each have their own characteristics and requirements. Using this
information for every audience class, the needed data to fulfil these requirements
is retrieved and a conceptual model is build. We will discuss WSDM in detail
in the chapter 2.

The purpose of this thesis is to integrate link recommendations into WSDM
so that web sites designed using WSDM can support this type of adaptation
which is a valuable added feature for the web sites and its users. There are many
different kinds of link recommendations. The one that will be integrated into
WSDM will be based on the browsing behaviour of the users and will not require
any additional tasks to be performed by the users. We will look a bit closer at
the objectives and the motivation for the integration in the next sections.

1.3 Motivation

The importance of link recommendations was already mentioned in the intro-
duction. They can be an important extra help for the users to find pages that
they might not have found by themselves and can be a boost for electronic com-
merce web sites.

Note that there is a relation between the size of the web site and the need
for link recommendations. When a web site is relatively small so that each piece
of interesting information is only a few clicks away, link recommendations may
seem unnecessary. For large data intensive web sites, where the web site seems to
be never ending, link recommendations become much more appropriate. When
there are thousands of pages of information about a specific subject, the user
would not know where to start and would give up his quest for information. If,
instead, the user would be offered some interesting recommendations as starting
points he would be guided in the good direction.

It’s obvious that the recommendation system stands or falls with the tech-
nique it uses to recommend links. When recommended links appear not to be as
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interesting as was estimated for the user, they are totally needless and can even
have a negative impact on the satisfaction of the users. Hence it’s crucial to
develop a system which imposes high demands and requirements on the quality
of these recommended links.

Although providing link recommendations can be considered as an individ-
ual feature which is not dependent of a web site design method, any web design
method supporting this adaptation method at design time certainly has an ad-
vantage over web design methods that do not support it. The integration of
recommendations into WSDM will show the advantages of WSDM over other
web design methods which do not provide the design support for link recom-
mendations and other web site adaptation methods.

The biggest difference with existing link recommendations systems is that
the link recommendations can be specified at design time. Existing link recom-
mendation systems add the link recommendations at the implementation level
and are not reusable as they are designed and implemented for a specific web
site. The link recommendation algorithms that will be introduced in this disser-
tation can be reused by each web designer that uses WSDM and the algorithms
to compute the link recommendations can be easily altered.

1.4 Objectives

The main objective of this thesis is to incorporate link recommendations into
WSDM in such a way that they can be easily enabled or disabled by the web
designer. We will explore the field of adaptive web sites and more specifically
the already existing techniques for link recommendations. Furthermore, two
techniques of computing link recommendations will be presented and evaluated.
There are many ways of computing link recommendations, based on the con-
tents, user ratings or just browsing behaviour of other users. The techniques
that we will elaborate will be based on the browsing behaviour of the users
and should not require a user model as this would be not consistent with the
philosophy of adaptation in WSDM which is based on user access information.

The two techniques are each based on two well known techniques in the field
of machine learning: Bayes’ Theorem and the k-Nearest Neighbour algorithm.
These techniques are already frequently used on the level of content-based link
recommendations but rarely on the level of user-based link recommendations.
We will implement these algorithms and evaluate their performance and impact
in the last sections of this dissertation.

WSDM already supports adaptive behaviour to rearrange and re-organize
the content and/or structure of the web site. This adaptive behaviour can be
specified at design time using a dedicated language called ASL which is the ab-
breviation for Adaptation Specification Language. The current version of ASL
already supports web site adaptation which aims at accommodating all visitors,
also known as optimization. An example of this kind of adaptation is linking
popular pages directly from the homepage of the web site. This kind of adap-
tation is thus visible to all visitors of the web site.
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The adaptation supported by ASL is in contrast to the kind of adaptation
which is the goal of this dissertation: generating visitor-specific links which are
only visible to the visitor for which the links are generated. We will use ASL
and adapt it to be able to allow dynamical adaptation at session level. This way
information of past sessions can be used to recommend interesting links to new
visitors. The session information will be used in the two link recommendation
algorithms and can be used in all other link recommendation algorithms which
are based on session data of previous visitors. Besides additions to the ASL
language, WSDM will be extended at the design level so that link recommenda-
tions can be specified during the conceptual design phase. Before we delve into
the world of WSDM and adaptive behaviour, we will first give an overview of
the structure of this thesis.

1.5 Thesis Structure

This thesis is structured into 8 chapters including this short introduction. The
following chapters are divided into a part covering all the background informa-
tion (chapters 2, 3 and 4) and a research part (chapters 5, 6, 7 and 8). These
chapters can be summarized as follows.

Chapters 2 covers the necessary background information about WSDM, the
design method in which the link recommendation techniques will be integrated.
A brief overview of all the design phases of WSDM is given and the syntax and
semantics of ASL is introduced. It also shows how ASL can be used to specify
at design time, possible adaptive behaviour at runtime. This chapter should be
read by readers which are not familiar with WSDM and its adaptation language.

Chapter 3 introduces three machine learning techniques needed in the subse-
quent chapters: Bayes’ Theorem, the Naive Bayes Classifier and the k-Nearest
Neighbour Classifier. Readers which already know these techniques can skip
this chapter.

Chapter 4 gives an overview of the existing web site adaptation methods
with a special focus on the existing recommendation systems. The first part of
this chapter discusses other adaptation methods and situates link recommenda-
tions in the context of web site adaptation methods. The reader can skip this
part as all of these adaptation methods, except for the link recommendations,
do not return in the subsequent chapters of this dissertation. The remainder of
this section explores the existing recommendation systems and their link recom-
mendation techniques. It’s advisable to read this part in order to get familiar
with all aspects of link recommendation techniques.

Chapter 5 is the core chapter of this thesis as it discusses the link recom-
mendation techniques and their integration into WSDM. First, the extensions
to WSDM needed for supporting the link recommendation techniques are dis-
cussed. Using these extensions, two link recommendation techniques are pro-
posed and described in ASL.
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Chapter 6 takes the theoretical discussion of chapter 5 to the practical
level and describes the implementation of a WSDM web site. This includes
an overview of the design process for the target web site, an overview of the
actual implementation and a discussion of the implementation of an ASL inter-
preter.

Chapter 7 evaluates the proposed link recommendation algorithms, more
specifically their impact on the browsing behaviour of the visitors. This evalu-
ation is based on tests with a WSDM web site which provides link recommen-
dations.

Chapter 8 makes a round-up of the achievements and discusses further ex-
tensions.



Part 1

Background
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Chapter 2

Web Site Design Method

2.1 Introduction

In this chapter, an overview of WSDM [15, 18, 26, 27, 28, 29, 48] is given. This is
an audience driven web site design method which was already briefly mentioned
in chapter 1. WSDM is still under development at the WISE research group of
the Vrije Universiteit Brussel. The last years, support for adaptive behaviour
has been added to WSDM. For the incorporation of this adaptive behaviour
into WSDM ASL was created. ASL is a language that enables the designer to
formulate adaptive behaviour at design time [16, 17, 18]. In the second part of
this chapter we will let our light shine on this language and see how it can be
used to specify adaptive behaviour.

2.2 WSDM Overview

The Web Site Design Method is audience driven which means that it takes the
potential visitors of the web site as a starting point for the design. This in
contrast to data driven design methods such as WebML [19]. The weak point
of these methods is that they tend not to pay enough attention to the require-
ments of the visitors. WSDM tries to overcome the shortcomings of data driven
design methods by dividing the visitors into audience classes in order to better
tailor the website to the particular needs of the different kind of visitors, and
thus increase the overall usability of the web site.

WSDM consists of 5 phases which will be described in detail below. Some of
these phases contain sub-phases as can be seen on figure 2.1 which visualizes the
overview of the different phases of WSDM. The 5 main phases are the Mission
Statement Specification phase, the Audience Modeling phase, the Conceptual
Design phase, the Implementation Design phase and the Implementation phase.
Let’s take a look at each of these phases and their sub-phases in the following
sections.

17
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Mission statement
Specification

Audience Modeling

Audience
Classification
Audience Class
Characterization

Conceptual Design

Task & Information Modeling

[Task Modeling] Ef""“am';:‘":;"c"mﬂ
Navigational
Design

Implementation design

Site Structure
Design

Presentation Design

Style & Template
Design

Page Design
Implementation '

Figure 2.1: An overview of WSDM.

2.2.1 Mission Statement Specification

The Mission Statement Specification phase is a very short but nonetheless cru-
cial phase that should be well-thought out. In the Mission Statement Specifi-
cation phase the subject and the purpose of the web site should be identified.
The last step of this phase is to declare the target audience. The output of this
phase will serve as input for the Audience Modelling phase.

2.2.2 Audience Modelling

The second phase is the Audience Modelling phase which is totally focused on the
potential visitors. This phase has two sub-phases: the Audience Classification
and the Audience Class Characterization phase. The Audience Classification
phase identifies and classifies the different types of visitors of the web site. This
results in audience classes where each user belonging to the same audience class
has the same informational and functional requirements. These audience classes
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are then characterized in the Audience Class Characterization phase. Examples
of such characteristics are the language, knowledge level and age of the audience
class.

The Audience Modelling phase therefore returns a set of audience classes for
which their functional- and informational requirements, their navigational- and
usability requirements and their characteristics are provided. Note that audience
classes can be structured as a hierarchy with one super audience class called
visitor which is then subclassed. These subclasses inherit the same requirements
and extend them with extra requirements. The characteristics are however not
inherited by the subclasses. Subclasses can on their turn be subclassed too if
they are not specific enough.

2.2.3 Conceptual Design

When the audience classes and their requirements and characteristics are iden-
tified, we can start with the conceptual design which is free from any implemen-
tation details. The Conceptual Design phase also has two sub-phases: the Task
& Information Modeling phase and the Navigation Design phase.

The Task € Information Modeling phase can be divided into two phases.
First, during the Task Modeling phase, a Task Model is defined for each re-
quirement of each audience class. Every Task model is then further elaborated
into elementary tasks. The goal of the second sub-phase, the Information and
Functional Modeling phase, is then to define a data model or chunk for each
of these elementary tasks. This chunk models the information and functionali-
ties required to fulfil the elementary task. To conclude this phase, the chunks
need to be integrated into a single model called the Business Information Model.

The second sub-phase is the Navigation Design phase in which we design
the conceptual structure of the web site. This structure defines how the users of
the different audience classes will navigate through the web site. It consists out
of nodes that group chunks, which were identified in the previous sub-phase,
together. These nodes are then connected by means of links which form the
navigation paths between the nodes. WSDM distinguishes four types of links:

e Structural links: links which provide the actual conceptual structure of
the information and functionality available the web site.

e Semantic links: links which represent existing semantical relationships
between concepts represented by the nodes. An example of a semantical
link is the semantical relationship between a movie and its director, which
results in a semantic link between both concepts.

e Navigation aid links: links which are added on top of the conceptual
structure to ease the navigation through the web site and to enhance the
usability of the web site. The home link which appears on most web sites
is a good example of a navigation aid link.

e Process logic links: links which express the workflow between two or
more nodes. Buying products online often requires multiple steps such
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as choosing the products, filling in personal information and selecting the
payment method. The nodes contain this information are connected to-
gether by process logic links.

Using links between nodes, a navigation track for each audience class is created.
All these navigation tracks together form the Navigation Model. The notion of
having a navigation track for each audience class is in fact exactly that what
makes WSDM audience driven. This in contrast to the Navigation Models of
the data driven design methods which are purely based on the available data.

2.2.4 Implementation Design

The next phase is the Implementation Design phase which adds implementation
related aspects to the conceptual design. It consists of two sub-phases: the Site
Structure Design phase and the Presentation Design phase which also consists
of two sub-phases.

In the Site Structure Design phase we decide how the nodes which are de-
fined in the Navigation Design phase are grouped into pages. It is thus possible
to have more than one node per physical page, nodes are not the same as pages.
It’s up to the designer to decide whether a page contains one node or multiple
ones.

The Presentation Design phase defines the layout for all the pages on the web
site. It consists of two sub-phases: the Page Design phase and the Template &
Style phase. The goal in the Template € Style sub-phase is to create templates
which specify the layout of the pages for all the types of pages in the web site.
During the Page Design sub-phase, we describe how the chunks on a page should
be positioned and how the page layout should be.

2.2.5 Implementation

The Implementation phase is the last phase of WSDM in which the actual im-
plementation of the web site takes place. This implementation is based on the
previous phases and the implementation environment is totally in the hands
of the designer. The web site can be generated automatically using a pipeline
transformation process which takes the chunks, the Navigation Model, the site
structure design, the template design and the page design as input and outputs
the web site in the desired implementation language.

In chapter 6, we will view an example of a web site which is designed using
WSDM. This example will show how WSDM is used in practice.

2.3 Adaptation Specification Language

The Adaptation Specification Language (ASL) is designed to let the designer
specify at design time which adaptive behaviour will be allowed at runtime.
ASL is a high level rule specification language which provides the designer with
an easy formalism to specify complex adaptation strategies on a WSDM web
site at design time. We will discuss ASL in the context of WSDM for which it
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is developed.

The language is event-based: it specifies which conditions should be satisfied
and which actions should be performed when these conditions are met. The ac-
tions which are then performed can only influence the Navigation Model of the
web site which was already discussed in section 2.2.3. Some examples of ASL
operations are adding a link between two nodes or disconnecting a chunk from
a node.

First, we will discuss the Navigation Model in section 2.3.1 because it is
essential to fully grasp it in order to understand the semantics of ASL. We will
then take a closer look at the syntax and semantics of ASL in section 2.3.2 and
give some examples of how it can be used in practice in section 2.3.3.

2.3.1 The Navigation Model

Recall from section 2.2.3 that the Navigation Model is composed of a set of
nodes which are connected by links. Information and/or functionality can be
added to nodes by connecting chunks to the nodes. Note that a connection
between a node and a chunk is called a connection and is not the same as a link.
Hence, users can browse through the web site using the links between nodes and
can view the information encapsulated in the chunks connected to these nodes.

Figure 2.2 shows an example of a simplified Navigation Model for the WISE
web site which is designed using WSDM!. The ellipses denote chunks, the rec-
tangles nodes. The arrows between the nodes are the (structural) links, the lines
between the nodes and the chunks are the connections. The rectangles which
are double lined are the root nodes of their audience track (the navigation track
of an audience class).

In this example there is a visitor audience track which represents the audi-
ence track for the super audience class Visitor. For this audience class, there are
two nodes available which means that the information (in the form of chunks)
belonging to the nodes is considered as being relevant for all visitors. There
are also two subclasses of the Visitor audience class: the Researcher audience
class and the Student audience class. They each have their own navigation
track which was identified by the designer during the Conceptual Design phase.
Not to overload the figure, the elaboration of the Researcher and Student au-
dience track has been omitted. Now that we have a more profound view of the
Navigation Model we can go to the main issue of this section which is ASL.

2.3.2 Operations on the Navigation Model using ASL

In this section we discuss the syntax and semantics of ASL. ASL gives the de-
signer the chance to perform runtime operations on the Navigation Model which
is defined at the conceptual level. We will give a summary of the operations,
functions and control structures that are included in ASL2. This overview is

IThe web site of the WISE research group of the Vrije Universiteit Brussel is available at
http://wise.vub.ac.be.
2Note that ASL is currently still under development and is therefore still subject to changes.
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Figure 2.2: Example of a simplified Navigation Model.

however not exhaustive but only includes the most relevant operations which
show how adaptive behaviour can be achieved and which we will need in chapter
5 of this dissertation. The operations that are omitted include logical, arith-
metic and some statistical operators which are included in most programming
languages but which are not relevant for this dissertation. Appendix A pro-
vides a complete overview of the syntax ASL in BNF notation which stands for
Backus Naur Form [4].

2.3.2.1 Basic program structure

Each ASL program is considered as an adaptation policy. Such a policy consists
of one or more script specifications (see section 2.3.2.7) followed by one or more
adaptation specifications. An adaptation specification specifies an adaptation
strategy which should be executed whenever it is triggered. This trigger is based
on some kind of condition which should be met (e.g. a certain time or a user
event). An adaptation specification can be specified as follows:

when <trigger> do <adaptationStrategy>

The adaptation strategy can be specified by either a rule or a rule sequence.
A rule is either a simple rule or a forFach construct (see section 2.3.2.2). A
simple rule is exactly what it says and is only one rule (such as an operation, a
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monitor statement or an if statement). A rule sequence is a sequence of rules
and should be enclosed with a begin and end statement as follows:

begin
<rule>*
end

2.3.2.2 Control structures

ASL has two control structures: the forEach construct and the if statement.
The forEach control structure can be solely used to iterate over a set. The
syntax of the forEach construct is as follows

forEach e in set:
<apply adaptation strategy>

The if statement is probably the most used control structure ever and can not
be missed in any programming language. The syntax of the if statement is

if condition
then <apply adaptation strategy>

The condition should return a truth value which triggers the body of the if state-
ment when true. Now that we’ve seen the basic program and control structures
of ASL, we can take a look at its more complex features.

2.3.2.3 Native operations and functions

ASL provides several native operations and functions. The native operations
are elementary operations which means that they only exist out of one single op-
eration. These operations manipulate either nodes, chunks or links. Nodes can
be added and deleted, chunks can be connected and disconnected from nodes,
and links can be also added and deleted. Aside from the two add operations
which create a new node and link respectively, all other operations take existing
nodes, chunks or links as input. Note also that there are no operations to add or
delete chunks, this is because chunks contain bits of information or functionality
created by the designer during the Conceptual Design phase. Deleting chunks
at runtime would throw away this information or functionality. This is not the
case for nodes, which serve to group information, and can thus be added or
deleted in order to re-group information. An overview of the native operations
is given in table 2.1.

| Operation Semantics | Syntax |
Adding a node n addNode(n)
Deleting a node n deleteNode(n)
Connecting a chunk ¢ to a node n connectChunk(h, n)

Disconnecting a chunk ¢ from a node n | disconnectChunk(h, n)
Adding a link of type ¢ from node ng addLink(t, nq, n9)

to node no
Deleting a link of type ¢t from node ny | deletelink(t, n1, ng)
to node no

Table 2.1: The native operations of ASL.
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The native functions provided by ASL return values, in contrast to the native
operations which only cause a side-effect. Some of these native functions of ASL
can be seen in table 2.2.

| Operation Semantics | Syntax |
Returns the audience class of a node n audienceClass(n)
Returns the audience class of the current user | currentAudienceClass()
Returns the source node of link [ source(l)
Returns the target node of link [ target(l)

Table 2.2: Some native functions of ASL.

2.3.2.4 Set expressions

ASL makes use of sets to collect elements like nodes and chunks. To iterate
over these sets, ASL provides a set iterator. There are also set comparators and
statistical operators which we will not discuss here as they will not be used in
this dissertation. Table 2.3 contains the basic native sets and set creators which
all return a set.

| Operation Semantics | Syntax |
Returns all nodes in the web site Nodes
Returns all chunks in the web site Chunks
Returns all links in the web site Links
Returns all connections in the web site Connections
Returns all pages in the web site Pages

Returns all audience classes in the web site | AudienceClasses
Returns all nodes in the audience track ac | nodeslnAudienceTrack(ac)
Returns all chunks in the audience track ac | chunkslnAudienceTrack(ac)

Returns all chunks connected to node n chunksFromNode(n)
Returns all nodes linked to node n nodesLinkedTo(n)
Returns all nodes linked from node n nodesLinkedFrom(n)

Returns all nodes connected from chunk ¢ nodesFromChunk(c)

Table 2.3: The set creators and set operators in ASL.

To iterate over a set, the forFach loop introduced in section 2.3.2.2 should
be used. In section 2.3.3 which shows some simple applications of ASL, we will
see how this construct can be used.

2.3.2.5 Assignment operator

An assignment operator is used in almost every programming language and
makes it possible to store values into variables and to retrieve these values later
on. The syntax of the assignment operator is straightforward:

variable := expression

ASL also provides the possibility to store new added elements into a variable
using the following syntax:
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addLink(linkType, nodel, node2) as newLink

This puts the newly created link into the newLink variable and therefore has a
similar effect as an assignment operation.

2.3.2.6 Tracking variables and monitors

ASL also provides tracking variables. A tracking variable is a variable that can
be attached to elements of the design like nodes, chunks and links. To attach a
tracking variable to each node in the web site for example, the following code
should be executed:

forEach node in Nodes:
addTrackingVariable node.amountOfAccesses

The lifetime of a tracking variable is the same as the lifetime of the web site.
Once a monitor is constructed, it can not be deleted unless the element to which
it is attached is deleted. Now that we have defined a tracking variable for each
node of a web site, let’s see how can it be used to store the number of accesses
to the node.

Tracking variables can be updated by monitor statements. Monitors are
used to specify which events on which design elements require tracking of their
use. This tracking then results in updating tracking variables whenever the
events occur. Optionally, a condition can be specified which triggers the update
process when it is met. There are four kind of events integrated in ASL:

1. A click event which occurs when a link is activated, i.e. when it is followed
by a visitor.

2. A load event which occurs when a node is loaded, i.e. when the page
containing the node is loaded.

3. A sessionStart event which occurs at the start of a new user session.

4. A sessionEnd event which occurs at the end of a new user session.

Instead of just listing the syntax like in the previous sections, an example of
a monitor statement is given below. In this example, the tracking variable
amountOfAccesses defined above is increased whenever a node is loaded.

forEach node in Nodes:
begin
monitor load on node
do node.amountOfAccesses := node.amountOfAccesses + 1
end

ASL also provides a mechanism to sort sets based on the value of a monitor.
Using this sorting construct we can, for example, sort the Nodes set according
to the number of accesses as follows:

Nodes[SORT on element : element.amountOfAccesses];

This sorting is standard in ascending order, i.e. from low to high values.
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2.3.2.7 Scripts

Scripts are a mechanism to define an operation once and to reuse it several times.
This resembles much to macros available in high level programming languages.
A script has a name and an arbitrary number of parameters. The following code
is an example of a script:

script addTwoWayLink(linkType, nodel, node2):
begin
addLink(linkType, nodel, node2);
addLink(linkType, node2, nodel);
end

This script makes nodel reachable from node2 and vice versa. The script can
easily be called as follows:

call addTwoWayLink(linkType, nodel, node2)

2.3.3 Specifying adaptive behaviour using ASL

Now that we have seen the syntax and semantics of ASL, a few simple applica-
tions which show how ASL can be used to specify adaptive behaviour at design
time will be given. An example application is to discard nodes which are not
visited at all. We will use the amountOfAccesses tracking variable that was
defined in the previous section. The code that should be included to discard
unvisited pages can be seen below:

forEach node in Nodes:
if node.amountOfAccesses ==
then deleteNode(node)

Note that this particular adaptive behaviour introduces a problem. When a
script containing this ASL code is executed each hour after launching the web
site, many nodes will be deleted because initially no nodes are visited. An easy
solution is to manually run the script. This way the designer can wait until the
site has been visited enough. A better solution is to let the designer specify at
design time when it should be executed. This can be done by tracking the total
number of sessions and then setting a threshold for the activation of the code.
We will use a monitor which tracks the total number of sessions on the web site
as follows:

begin

addTrackingVariable website.amountOfSessions;

monitor load on website

do website.amountOfSessions := website.amountOfSessions + 1
end

Notice how a new element, called website, is introduced. First of all, a tracking
variable is attached to the website element. The monitor then updates the
tracking variable whenever the web site is loaded, i.e. whenever a new visitor
session starts. We can now use this new tracking variable and compare it with
a threshold value to check if the code can be executed.
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if website.amountOfSessions > threshold
forEach node in Nodes:
if node.amountOfAccesses ==
then deleteNode(node)

It is clear that it is easy to specify this form of adaptive behaviour as it takes
only a few lines of ASL code. Instead of deleting a node we can also decide
to link nodes which are visited “often” to the root node of the audience track
where the nodes are part of. In the code below, some new syntax is introduced.
The audienceTrack operation takes a node or chunk as input and returns the
audience track to which it belongs. The root operation then returns the root
node of that audience track.

forEach node in Nodes:
if node.amountOfAccesses > 100000
then addLink(structural, root(audienceTrack(node)), node)

Of course much more complex operations can be specified in ASL. This will be
shown chapter 5 where 2 complex algorithms will be specified in ASL.



Chapter 3

Machine Learning Techniques

3.1 Introduction

The background information in this chapter is situated in the field of statistics
and machine learning. We will introduce some well known concepts and algo-
rithms used in these two fields which we will need for the rest of this dissertation.
It’s not the intention to cover the whole field but only the techniques which are
relevant for this thesis.

We will take a look at two easy to implement and frequently used machine
learning algorithms which are mainly employed for classification: the Naive
Bayes Classifier and the k-Nearest Neighbour Classifier. These algorithms are
often used by link recommendation techniques to classify pages or other web
items like products (either based on text or on access logs as we will see in
chapter 4) as being interesting or not for the user. To be able to classify new
pages, a training set of already classified pages is needed. Based on this train-
ing set new unseen pages can be classified using a classification algorithm. It’s
evident that the representability of the training set is crucial and therefore a
solid training set is needed. We will show in detail how these two classification
algorithms can be used in practice to classify web pages or documents into pre-
defined classes in chapter 4.

There are many other classification methods such as decision trees [41], Sup-
port Vector Machines [23] and neural networks [41] which we will not discuss
extensively here as they fall beyond the scope of this thesis. Some of these will
however be briefly listed in section 4.3.3 of chapter 4. Note also that we will
only discuss classification methods for classifying instances to discrete classes
and ignore continuous valued target functions.

Before we start with explaining how the Naive Bayes Classifier works we will

introduce Bayes’ Theorem which is named after the eighteenth-century British
mathematician Thomas Bayes.

28



3.2. Bayes’ Theorem 29

3.2 Bayes’ Theorem

Bayes’ Theorem is a simple but powerful theorem which is well known in the
world of probability theory, statistics and machine learning [41]. Bayes’ Theorem
calculates the posterior probability P(A/B). This denotes the probability that
A occurs given the fact that B occurs. This probability can be calculated as
follows:

P(B|A)P(A)
P(B)
The theorem uses the prior probability P(A4) (the probability that A occurs) to-
gether with the conditional probability P(B/A) and the prior probability P(B)
which serves as a normalization factor so that the probabilities sum to 1. These

probabilities should thus be known in order to be able to computer the posterior
probability P(A/B).

P(A|B) = (3.1)

The best way to illustrate Bayes’ Theorem is by means of an example. The
example of Tom Mitchell in [41] will be used which shows how important Bayes’
Theorem can be for a wide range of fields. The example is situated in the med-
ical world and addresses a diagnoses problem with two hypotheses: the patient
is diagnosed with cancer or the patient is not diagnosed with cancer. It’s obvi-
ous that a solid diagnosis is crucial as live or dead are depending on it.

Given that a test of a patient results as positive, should we diagnose the
patient as being positive? At first sight almost all people would say yes because
they forget a very important aspect of tests: most of the tests are not 100%
certain. To diagnose the patient we have to know how good the test is and how
large the chance is of having cancer. If we are supplied with these values we
can calculate the probability P(cancer/positive). This is the probability that a
patient has cancer given the fact that the test gave a positive result. Suppose
the following probabilities are given:

e P(cancer) = 0.008

P(—cancer) = 0.992

P(positive[cancer) = 0.98

P(negative/cancer) = 0.02

P(positive[~cancer) = 0.03

P(negative/-cancer) = 0.97

Knowing these probabilities we can calculate P(cancer/positive) using Bayes’
Theorem. This gives:

P(positive|cancer)P(cancer)

P itive) =

(cancer|positive) P(positive)
It might seem as if P(positive) is missing, but this probability can be easily
calculates by summing up P(positive N\ cancer) and P(positive N —cancer) .
These two probabilities can be calculated using the product rule:
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P(positive A cancer) = P(positive A cancer)P(cancer) = 0.0078
P(positive A\ —cancer) = P(positive A —cancer)P(—cancer) = 0.0298

These values can now be substituted into the formula and calculate P(cancer/positive):

P(positive|cancer)P(cancer)

P it =
(cancer|positive) P(positive A cancer) + P(positive A —cancer)

0.98 % 0.008

0.0078 4 0.0298
0.0078

0.0376
= 021

This leads to the conclusion that although the test was positive, the probability
that the patient has cancer is “only” 21%. This example shows that Bayes’
Theorem can be very useful for calculating unknown probabilities when the
prior and class conditional probabilities are given. We will now introduce an
algorithm based on Bayes’ Theorem that is frequently used for classification:
the Naive Bayes Classifier.

3.3 Naive Bayes Classifier

In this section we explain how the Naive Bayes Classifier works [41, 51]. This
is a statistical technique that can be used to classify documents into predefined
classes using the words in the document as features. As the name indicates, this
classifier uses Bayes’ Theorem to perform this classification. The reason why it
is called naive is because it makes the simplifying assumption that all features
are conditionally independent given the class. Even though this assumption of
independence is often not met, it has been shown that the Naive Bayes Classi-
fier gives very good results in practice[31]. Especially compared to much more
complex classification methods it performs remarkably well.

The formalization of the simplifying assumption which is made for computing
the Naive Bayes classifier is as follows:

pPxic) = [[Pxilo) (32)

i=1

In this formula, X is a feature vector containing the features (Xy, ..., Xp) and
C is a class. It states that that the probability of observing the conjunction
of features Xy, ..., Xp is the product of the probabilities of the individual
class conditional probabilities of these features. This assumption makes it much
easier to compute P(X/C). We can now use this assumption to calculate the
probability that given a feature vector, an instance belongs to a certain class.
This can be done using Bayes’ Theorem:
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P(X|C)P(C)
P(X)
PO [1i-, P(X:|C)
P(X)

P(C]X)

= PO)]]PxiIC) (33)

Note that in the last line, the denominator P(X) is dropped. This is because
P(X) is invariant across all classes. To assign an instance to a class we have to
compute the probability P(X/C;) for each predefined class C;. We can write
this as

NBC = argmaxcjinc P(C P(X;|C (3.4)
Jj
i=1

This formula is the Naive Bayes Classifier. The instance is assigned to the class
with the maximum probability. We will see how this classifier can be applied
in practice in chapter 4. We now turn our attention to the second classification
algorithm which is the k-Nearest Neighbour Classifier.

3.4 k-Nearest Neighbour Classifier

After introducing the Naive Bayes Classifier, this section discusses the k-Nearest
Neighbour Classifier (KNN Classifier) [41]. This algorithm bases its classifica-
tion on the most common class of the k nearest neighbours in the training set.
It is an instance-based classification approach which means that classification
is performed by measuring the similarity of new instances to training instances.
There are three main aspects which characterize a k-Nearest Neighbour Classi-
fier:

1. A distance metric needed to define the concept "nearest”.
2. The number of neighbours which is the &k value.

3. A strategy to decide the class of the new instance.

Choosing a good distance metric is crucial for the algorithm as it will define
which training instances will be selected as neighbours. We will show an exam-
ple of choosing a metric for text classification in the the next chapter. Another
important aspect is choosing the value for k. If the value of k is too low, not
enough neighbours will be considered and important information can be lost.
On the other side, a large value for k£ will result in including instances which are
further away and thus not similar enough. The value of k£ should therefore be
fine-tuned and is totally application dependent. The third aspect is the strategy
which is used to decide the class using the classes of the k nearest neighbours.
The standard way to do this is to let the neighbours vote (each neighbour votes
for his own class) and classify the instance to the class which receives the most
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votes. Another more advanced way of determining the class is called distance
weighting. This strategy uses the inverse of the distance as a vote weight so
that the neighbours which are near to the instance have greater influence on the
classification than neighbours which are further away from the instance.

Once these three aspects have been identified, the algorithm can be executed
as follows:

1. Measure the distance of the training instances to the new instance with
the distance metric.

2. Retrieve the k nearest training instances based on the measured distances.

3. Apply the strategy to classify the new instance given these k nearest neigh-
bours.

In the next chapter we will see how these 2 algorithms are being used in the
context of adaptive behaviour. In the research part of this dissertation, the
foundations of these two algorithms will be used as a basis for two similar algo-
rithms. They will however not be used for classifying pages but for determining
the interestingness of pages.



Chapter 4

Adaptive Behaviour for Web
Sites

4.1 Introduction

In this chapter an overview will be given of the existing adaptive behaviour
methods for web sites and, in a broader context, hypermedia. Hypermedia is
a style of building systems for organising, structuring and accessing informa-
tion around a network of multimedia nodes connected together by links [21].
The term hypermedia is actually derived from hypertext which is text that con-
tains links to other texts. It extends the notion of hypertext to also include
links to any kind of multimedia such as graphics, sound and video. The World
Wide Web is the most well known and biggest hypermedia system containing
structured information in the form of pages which are connected together with
hyperlinks. When we talk about adaptivity in this dissertation, it will be in the
context of web sites although both concepts of web sites and hypermedia are
interchangeable in this chapter.

Adaptive behaviour is the process of adapting the content and /or structure
of a web site in order to increase the usability of the web site and the satisfaction
of the visitors. This adaptation is mostly based on some kind of user profile or
browsing behaviour of the visitors and comes in many different flavours.

There are many user characteristics to which a web site can adapt itself to.
These are characteristics like knowledge, interests, goals, preferences and behav-
iour which are all user dependent. Almost all adaptation is based on these kinds
of user or group dependent characteristics. To adapt to the users’ knowledge for
example, a web site can “choose” to only show some kind of information if the
user has the background knowledge to grasp this information. Adaptation to
the users’ interests can be done by maintaining a user profile and giving recom-
mendations based on this user profile. When the goals of the users are known,
the web site can adapt itself in such a way that it shows only the information
relevant to these goals. Users can also have preferences to which the web site
can adapt itself. An example of this kind of adaptation is when a user on a news
site likes to read the sport headlines before the cultural headlines. A web site
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can adapt itself to this preference by showing the cultural headlines beneath the
sport headlines. Another kind of adaptation is behaviour adaptation. By stor-
ing the browsing behaviour of the user, the web site can, for example, provide
links to frequently accessed pages on the home page.

The overview that follows will discuss existing adaptation methods. Note
that there is a difference between adaptation methods and adaptation tech-
niques. Adaptation methods are more conceptual abstract adaptation ideas
whereas adaptation techniques are specific adaptation algorithms for a particu-
lar adaptation method. Instead of using characteristics like the ones identified
above as a guide throughout this chapter, we will follow the taxonomy of adap-
tive hypermedia technologies which is proposed by Peter Brusilovsky [10, 11, 12].
Brusilovsky defines adaptive hypermedia systems as follows:

By adaptive hypermedia systems we mean all hypertext and hy-
permedia systems which reflect some features of the user in the user
model and apply this model to adapt various visible aspects of the
system to the user.

A consequence of this definition is that this taxonomy is only applicable to web
sites which have some kind of user model of its visitors. This user model doesn’t
need to be some accurate description of the user or the group of users it belongs
to and be can be, for example, solely based on the browsing history of the user.
As can be seen on figure 4.1 taken from [12], the taxonomy is based on adap-
tation at two levels: content or presentation based adaptation and navigation
or link based adaptation. We will take a look at each of these methods in the
following section and in particular link recommendations which can be classified
as an adaptive link generation technique.

Besides the classification by Brusilovsky, another classification by Perkowitz
[46] identifies two kinds of web site adaptation: customization and optimiza-
tion. Customization or personalization adapts the presentation of the web site
in order to give personalized views. Note that this presentation adaptation not
only includes layout changes but also the generation of interesting links. This
in contrast to the classification of Brusilovsky where the generation of links is
classified as an adaptation method at the navigational level. In fact almost all
navigation and presentation level adaptation methods proposed by Brusilovsky
are customization methods as they provide personalized views on the web site
and do not change the web site structure. Methods that do change an aspect
(e.g. structure or presentation) of the site permanently so that these changes are
visible for each visitor are classified as optimization methods by Perkowitz. We
will discuss some of these optimization techniques described by Perkowitz sep-
arately in section 4.2.3. The last section (section 4.3) of this chapter generally
describes recommendation systems and discusses some existing link recommen-
dation techniques.

4.2 Overview of Existing Adaptation Methods

We will break this section down into three subsections: adaptation on the pre-
sentation level, adaptation on the navigation level and web site optimization.
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Figure 4.1: Taxonomy of adaptive hypermedia technologies.

The first two subsections (sections 4.2.1 and 4.2.2) give an overview of the adap-
tation methods that are well known in the field without going too much into
detail. The structure of these two sections follows the classification of adap-
tation methods by Brusilovsky. The third subsection (4.2.3) discusses some
web site optimization techniques which are not included in the classification of
Brusilovsky.
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4.2.1 Adaptation at The Presentation level

In this section we will take a look at the various methods available to adapt the
content of a web site based on user characteristics. These methods often take in
account the knowledge of the users and give personalized views of the available
information based on this knowledge. It’s obvious that someone who is familiar
with a certain subject wants more detailed information about the subject than
someone who isn’t. The person who isn’t familiar with that subject only wants
to read the relevant and trivial information because it is new ground for him.
This is an example of the adaptation which occurs at the presentation level and
which can be used in instructional web sites or any other web sites which use
some kind of knowledge level representation for its users. We will now take a
closer look at the three categories of content based adaptation methods defined
by Brusilovsky.

4.2.1.1 Adaptive multimedia presentation

In adaptive multimedia presentation only the content in the form of multimedia
is adapted to the characteristics of the user. This is one of the least used and
studied methods in the field of adaptive behaviour. The reason why is because
it is much easier to adapt textual information than multimedia information such
as video and sound. On the other hand, an image or video can say more than
1000 words. This is the power of multimedia and the reason why this adaptation
method will be used more and more in the future when new techniques to adapt
multimedia arise.

Most of the multimedia adaptation nowadays is based on technical device
details and user preferences and not on the knowledge of the user. Multimedia
can for example be adapted to the screen size, Internet connection type and
language of the client device. It’s obvious that a user who visits a web site
using an old computer with a 486 processor and a 56K modem doesn’t wants to
wait for large multimedia information to load. On the other hand, a user with
a Pentium 4 processor and a cable modem doesn’t want mediocre multimedia
quality. For these kinds of problems multimedia adaptation can make sure
that the multimedia is adapted to the users’ needs. A well known language to
achieve this kind of adaptation is SMIL (Synchronized Multimedia Integration
Language) [3]. More information about adaptive multimedia presentation can
be found in [30, 49).

4.2.1.2 Adaptive text presentation

The most explored and used adaptation method is without any doubt adaptive
text presentation. In adaptive text presentation users get, based on their user
model, different text fragments for the same pages. Adaptive text presentation
can be decomposed in natural language adaptation and canned text adaptation.

Natural language adaptation

Natural language adaptation uses natural language processing and generation
techniques to provide some form of textual adaptation. These techniques are
mostly situated in the field of artificial intelligence and are at the moment rarely
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used in web sites. Natural language adaptation is however promising because it
can be used to analyze and construct text at runtime. This way virtual pages
can be constructed and tailored to the user models of the visitors [25]. More
information about these natural language techniques can be found in the field
of artificial intelligence .

Canned text adaptation

The most used form of adaptive text presentation is canned text presentation.
Canned text adaptation uses predefined text fragments which are used to gen-
erate a page at runtime based on the user model. In contrast to the previous
method where text is generated, the text fragments are static. The key issues
are the inclusion or exclusion and the place of the fragment. An example of this
kind of adaptation is when different text fragments are stored for some piece of
information, and each text fragment is in another language. By retrieving the
language of the user, the correct fragment can be shown. We will discuss the
following five methods of canned text adaptation as defined by Brusilovsky:

e Inserting/removing fragments

Altering fragments

Stretchtext

Sorting fragments

Dimming fragments

The first method of canned text adaptation is inserting and removing fragments.
The insertion or removal of fragments is conditionally which means that some
conditions have to be satisfied in order that the fragment is being removed or
inserted. These conditions are mostly based on the user model but can also
be based on some other context (e.g. time based conditions which only show
fragments at a certain time [7]). This adaptation method can be used to give
extra explanation at runtime to users who need it. A drawback of this method
is that identifying the user model is crucial as it determines which fragments
are shown and which are not. If the user model is not correctly identified, the
user can get a page containing fragments which don’t suit his needs.

The next canned text adaptation method up in the list is altering fragments
and is also known as fragment variants [37, 36]. This method selects a fragment
out of a set of alternative fragments at runtime. It is, like the previous method,
also based on conditions which determine which fragment is selected. A good
example of this method is selecting a fragment based on the expertise of the
user. Hence, expert users can get a more in-depth fragment then novice users.
This method suffers from the same drawback as the previous one, i.e. identify-
ing the user model is extremely vital.

Another method, which is called stretchtext, uses hot words which can be
used in the same fashion as hyperlinks. The only difference is that instead of
directing the user to a new page when clicked, the clicked hot word is being
replaced by a fragment. It is also possible to roll back this operation so that
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only the hot word is showed. By taking in account the user model and especially
the user’s knowledge, unknown hot words can be collapsed and known words
uncollapsed when a page is accessed. A very interesting feature of stretchtext is
that the user can still collapse words that were uncollapsed. When he performs
this action, he actually unconsciously shows that the user model is incorrect
because it estimated that he knew the concept behind the hot word. This is
a major benefit as the user model can be updated accordingly and hence be
optimized at runtime. This method also gives control to the user in contrast to
the previous methods where the user just had to sit back and be complacent
with whatever information was offered to him.

Sorting fragments is the following method that we will discuss. Just like the
name says, fragments are sorted according to the knowledge, interests or pref-
erences of the user. Fragments which are most related to these characteristics
are placed above those which are not. There is however some weak point for
this method. This method can only be applied to a set fragments which are
semantically unrelated. When one concept is introduced in a fragment and is
repeated in another fragment, it is not possible to reverse their order. Aside
from this restraint, it can be a helpful method for the user in his pursuit of
information.

The last canned text adaptation method is dimming fragments. This method
dims fragments which are estimated as being not relevant for the user. This can
be done by changing the font color or decreasing the font size for example. The
advantage of this method is that the fragment is not totally hidden and that
the user can still read it if he is interested.

4.2.1.3 Adaptation of modality

The third adaptation method at the presentation level is called adaptation of
modality. This adaptation is based on the fact that some single piece of informa-
tion can be represented by different types of media. Based on the user model,
it can be for example better to represent information with a video (children
tend to grasp information better by means of video than by plain text for exam-
ple). Notice also the similarity with the altering fragments adaptation methods.
The only difference is that the altering fragments method only considers text
fragments whereas this method considers all types of media.

4.2.2 Adaptation at the Navigation Level

After the discussion of adaptation at the presentation level, we now focus on
adaptation at the navigation level which manipulates links on the web site at
runtime. There are 6 methods of this kind of adaptation as can be seen on figure
4.1: direct guidance, adaptive link sorting, adaptive link hiding, adaptive link
annotation, adaptive link generation and map adaptation. We will discuss each
of them in the following sections.
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4.2.2.1 Direct guidance

We begin this overview of adaptation methods at the navigation level with direct
guidance. In direct guidance, the user is offered a dynamical link to the next
best page. This next best page is based on the user model and/or browsing
behaviour of the user. This method is good practice for tutoring web sites or
web sites which know the goals of their users. It’s however not a good idea to
use this method solely without any other navigation options because most of
the users want to explore a web site and don’t like it when they are given only
one option.

4.2.2.2 Adaptive link sorting

A method which is similar to the fragments sorting method but on the link
level is adaptive link sorting. Just as with sorting fragments, links are sorted
according to the user model (at least according to a characteristic embedded
in the user model). Using this method, the most relevant links will be placed
on top and the less relevant on the bottom of the page. This method is also
used in link recommendation lists such as a recommendation list of movies that
relate to another particular movie. It’s obvious that this method can only be
used for non-contextual links as it would otherwise remove links out of their
context. Another drawback for this method is that it may disorientate users
which frequently visit a web site because links can have a different place on
every visit.

4.2.2.3 Adaptive link hiding

Another method which resembles to one of the canned text adaptation methods
is the adaptive link hiding method. All links that lead to non-relevant infor-
mation for a given user are hidden by this method. This method has three
variants:

e Adaptive link hiding
e Adaptive link disabling

e Adaptive link removal

Adaptive link hiding is already defined above but some additional explanation
to the “hiding” principle is necessary. Hiding links does not mean that the links
are physically unreachable. The purpose of link hiding is to hide the fact that a
certain word is actually a link. This is mostly done by making the linked word
look exactly the same as the text surrounding the word. Users will see the word
and if they understand the linked word, they will not notice anything. Other
users which ask themselves questions when encountering that word, can still
discover that this word is actually a link and follow the link. This method can
be used for both contextual and non-contextual links as no page information is
removed and links can still be followed.

Adaptive link disabling goes a step further and totally disables the link so
that it can not be followed. Although the link is disabled, its visual represen-
tation does not. This is a bit awkward as it is in contradiction with the user’s
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expectation which expects that the link can be followed. This method can also
be used for both contextual and non-contextual links but unlike the previous
method, the links can not be followed anymore. This method should be used
together with the previous one because links that can not be followed is against
all laws of usability.

The last method is the least used one and can only be used for non-contextual
links. Adaptive link removal totally removes the link and can thus not be used in
running text. This method is most sensitive to faults in the user model because
all non-relevant links are removed. This means that even if some of the removed
links turn out to be relevant after all, the information is gone and the user may
miss some interesting information. This method can be beneficiary for link lists
in cooperation with a solid user model as it shrinks down the navigation space
to the links which are most relevant.

4.2.2.4 Adaptive link annotation

The fourth method of adaptation methods on the navigation level is adaptive
link annotation. This methods adds some kind of annotation to the links in
order to show the relevance of the links. This can be done by giving the links
different colours where each colour stands for a different kind of relevance. As
an example, Wu [61] identifies three kinds of annotations: relevance, knowledge
and understanding. They are based respectively on the relevance of the links,
whether the user already knows the concepts described in the pages the links
point to and whether the user is ready to understand the information on the
linked page. Of course other criteria can be used and they can also be com-
bined together. This method can be used for any kind of links without loosing
contextual information.

4.2.2.5 Adaptive link generation

This is the method which is most interesting for this thesis because it includes
the link recommendations. Adaptive link generation generates new links for a
page and includes three cases:

e Discovering new links between pages and adding them permanently to the
set of existing links.

e Generating links for similarity-based navigation between pages.
e Dynamic recommendation of relevant links.

The first case of link generation is based on visitor patterns of all users and
creates new links between pages which were not related at design time. For a
large web site, it is not exceptional that the designer fails to relate pages which
the users see as related. To overcome this design problem, the adaptive link gen-
eration method can be used to detect and solve these kinds of problems. This
method changes the structure of the web site permanently and thus influences
the browsing behaviour of all future users.

The second case is similarity-based navigation which uses a similarity met-
ric and links each page to a set of most similar pages [59]. This can be a very
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helpful guide when navigating through a web site if the similarity metric is well-
thought-of.

The last case is the dynamic recommendation of relevant links or, as we
called it in the first chapter, link recommendations. This is either based on the
content of the pages (content-based recommendations), on the web site access
patterns of the users (collaborative recommendations) or on a combination of
both content and web site access patterns. We will discuss recommendation
systems and the existing techniques of this method in section 4.3.

4.2.2.6 Map adaptation

The last method of adaptation at the navigation level is map adaptation. Some
web sites offer a site map to the users which give a view on the link structure of
the web sites. The idea of map adaptation is to personalize this map for each
user. Some of the other methods such as link removal, link annotation and link
sorting can be used on this map to adapt it.

4.2.3 Optimization Techniques

All methods discussed in sections 4.2.1 and 4.2.2 are used to customize the web
site to the personal needs of its visitors. The type of adaptation offered by
these methods is temporal, i.e. it does not affect the structure or presentation
of the web site permanently. There is only one method in the previous sections
that does affect the structure permanently: the discovery of new links between
pages and adding them permanently to the set of existing links (section 4.2.2.5).
Perkowitz defines some other optimization techniques which alter the web site
structure in [47]. These techniques, which are transformations on the site, are
promotion and demotion, highlighting, linking and clustering. We will discuss
each of these transformations briefly in the next sections.

4.2.3.1 Promotion and demotion

Promotion and demotion of web pages and links is based on the popularity of
the pages and links. It uses user access logs to calculate the popularity of pages
and links. The promotion of a page is the process of moving a page closer to
the root page of a web site. This way, the page is easier to find for the visitors.
Promotion of a popular link occurs when a link is moved closer to the top of
the page.

Demotion is the opposite of promotion as it moves nodes which are not
accessed frequently further away from the root node of the web site. For the
demotion of links, links are placed closer to the bottom of the page as they are
not popular.

4.2.3.2 Highlighting

Highlighting occurs when popular links are highlighted for each visitor in the
same way. This seems to be the same as the adaptive link annotation in section
4.2.2.4 but it isn’t. The difference is that here, the highlighting is permanent
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and the same for every visitor whereas the adaptive link annotation is dynamic
and user dependent.

4.2.3.3 Linking

Large web sites sometimes have the problem that pages which are frequently
accessed together in one visitor session, are unrelated in the site structure. To
solve this problem, two pages can be linked when the access logs reveal that
these pages are considered as being related by the visitors. The designer should
therefore write an algorithm which discovers unlinked related pages at runtime
and links them together when this is detected. This linking can result in much
less time to find and visit both the related pages and thus increases the users’
satisfaction. Unlinking, on the other hand, deletes links which are almost never
used by the visitors.

4.2.3.4 Clustering

Clustering is the grouping of related pages on a single page so that these re-
lated pages are accessible from the same pages. When a group of related pages
is detected at runtime, an index page for these related pages is created. This
can drastically reduce the time to browse through related pages which are not
grouped together by the designer.

We have now seen many different ways of incorporating adaptive behaviour
into web sites. In the following section we will take a closer look at the most
relevant adaptation method for this dissertation: link recommendations.

4.3 Recommendation Systems

4.3.1 Introduction

This section discusses recommendation systems (also known as recommender
systems) and gives an overview of the existing link recommendation techniques.
To avoid unclearness about what a recommendation system precisely is we will
use the following definition of Brusilovsky[12]:

Adaptive recommendation systems attempt to deduce the user’s goals
and interests from his or her browsing activity, and build o list of
suggested links to nodes that usually can not be reached directly from
the current page, but are most relevant to that user.

This definition states that the recommendations are only based on the browsing
activity but it can also be based on the user model and therefore we will extend
the definition as follows:

Adaptive recommendation systems attempt to deduce the user’s goals
and interests from his or her browsing activity and/or user model,
and build a list of suggested links to nodes that usually can not be
reached directly from the current page, but are most relevant to that
user.
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All systems corresponding to this definition are recommendation systems. Most
recommendation systems differ in the way that they deduce the goals and inter-
ests and in how relevance is computed. The techniques to compute this relevance
can be divided into three main types: content-based recommendations, collabo-
rative recommendations and a hybrid approach which is a combination of these
two types [5]. We will take a closer look at these recommendation types sepa-
rately in the section 4.3.3. There we will see how the algorithms which we saw
in chapter 3 are used in recommendation systems to generate link recommen-
dations. To conclude the chapter, an example of how recommendation systems
are used in practice is given. This example is the recommendation system of
the well known online megastore Amazon.com!. Let’s first take a look at some
of the characteristics of recommendation systems.

4.3.2 Characteristics of Recommendation Systems

In this section, some of the main characteristics which define recommendation
systems are given. This is not an all-encompassing list and is based on some of
the features described in existing recommendation system literature.

e Open or closed corpus: open corpus recommendation systems are not
bound to one web site or a group of web sites and recommend links to pages
in the seemingly unbounded WWW. Closed corpus recommendation sys-
tems on the other hand, recommend only links to pages in a certain area,
typically a single web site or a group of web sites. In fact, recommendation
systems are still the only adaptive systems which achieve some success in
open corpus[13].

e Content-based and/or collaborative recommendations: as was al-
ready mentioned, the recommendations are either based on the content
of the pages or on the browsing behaviour of similar users. There are
also some hybrid techniques which use both recommendations techniques
together [5] and which we will see in section 4.3.3.3.

e Implicit feedback or explicit feedback: many recommendation sys-
tems use explicit feedback such as user ratings to recommend items to
users. The disadvantages of this approach are that it requires users to
spend additional effort and that they may stop providing feedback when
they don’t notice any benefits. Implicit feedback methods don’t have these
disadvantages because users are not aware of providing feedback just by
browsing the web site. A simple way of inferring implicit feedback is by
viewing the visited pages as positive ratings. Other ways to do this is by
examining the duration of page views and observing the retention of pages
(i.e. observing which pages the visitor has bookmarked or saved) [43].

e Exploitation or exploration: does the recommendation system strictly
generates pages which are similar to pages the users liked in the past or
does it also recommends other pages which are less similar [58]? Using
exploration, users can be introduced to other popular information which
is not heavily related with their interests but which can be interesting

IThe web site of Amazon.com is available at http://www.amazon.com.
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once they have detected this information. When a recommendation sys-
tem only exploits its knowledge, users can get stuck in the same limited
area of the web site. The best solution is to use a mix of both approaches:
starting with exploitation for example, and gradually switching to explo-
ration when the user gets recommendations to the same information over
and over again.

e Detecting drifting user interests: some recommendation systems are
able to detect changes in user interests. When user interests change
quickly, systems which detect this change obviously have an advantage
over those that don’t. In [38], Koychev and Schwab present a method
for dealing with drifting interests by introducing the notion of gradual
forgetting.

e Editable user model: enabling users to edit their user model can lead
to better recommendations. By editing their user model users can, when
a model is based on a set of weighted keywords for example, change the
weights of the keywords and add keywords which should be taken into
account when recommendations are generated [6]. An editable user model
is also a solution for the drifting user interests problem. Note that a user
model is not compulsory for recommendation systems although a user
model can certainly lead to more personalized recommendations.

We will see some examples of existing recommendation systems in section 4.3.4
and show which characteristics they exploit.

4.3.3 Link Recommendations Techniques

This section describes the three main types of link recommendations: content-
based recommendations, collaborative recommendations and a hybrid approach
based on a mix of both types. Once these three types have been described,
the existing link recommendation techniques for each type will be discussed in
sections 4.3.3.1, 4.3.3.2 and 4.3.3.3.

Content-based recommendations are based on content level similarities be-
tween pages. These recommendations generate links to pages which are in terms
of content similar to the pages that the specific visitor liked in the past. A com-
mon way to do this is by extracting keywords out of the pages which are visited
by the users and maintaining these keywords in their user model. When a user
likes a page and gives it a good rating, the weights of the keywords related to
the page are increased in his user model. This way pages which contain multiple
occurrences of the keywords which have a high weight value in his user model
can be recommended. Other ways of generating content-based links, including
the ones based on the algorithms described in chapter 3, will be discussed in
the next section.

The second type of recommendation techniques are collaborative recommen-
dations and are also known as collaborative filtering techniques. These are based
on the browsing behaviour of similar users and don’t take into account the con-
tent of web pages. They draw on the idea that people who agreed in their
subjective evaluation of past items are likely to agree again in the future [50].
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This similarity between the users is mostly based on ratings or purchases of
items. Users which give similar ratings for the same items are considered to be
similar. Note that we are talking about items instead of pages because ratings
are mostly given to items on the web pages (e.g. movies like on the Internet
Movie Database 2) instead of on the pages themselves.

Both types have their pros and cons [5]. Content-based recommendation
techniques are good at representing the interests of a single user. A shortcom-
ing is that the textual feature extraction procedure is not capable of detecting all
aspects of web pages like for example the available non-textual multimedia in-
formation. It is also bound to the restriction that it will only recommend pages
similar to the ones the user liked before. Furthermore, the need of feedback
from the user is crucial. A user has to specify his interests and/or give ratings
in order to have a set of pages to which new pages can be compared for similarity.

Almost all of these shortcomings are solved by collaborative recommenda-
tion techniques which are good at representing the common interests of a group
of similar users. These techniques don’t use textual representation of pages and
can therefore deal with any kind of information. Because collaborative recom-
mendations are based on the likings of a group of similar users, this should not
restrict the recommended pages to being strictly similar to the ones the user
liked before. The third problem of content-based recommendation techniques is
partially solved because the recommendations are depending on the ratings of
a group of users and therefore fewer ratings per individual would be sufficient
in order to give recommendations.

On the other hand, there are also some cons when using collaborative rec-
ommendation techniques. The first problem is known as sparsity: if the number
of users is small relative to the amount of available information, collaborative
recommendations tend to cover only a small area of the web site. The second
problem is the first-rater problem: pages can not be recommended until a cer-
tain amount of users have visited them, if they ever discover the new pages at
all. Another problem is that group similarities are rather general and can not
lead to user specific recommendations. As you probably noticed, content-based
recommendation systems don’t have these shortcomings. This observation has
lead to new hybrid approaches which combine both ways of recommending in-
teresting pages.

Hybrid recommendation systems combine the advantages of the content-
based and collaborative recommendation methods. By combining both meth-
ods, recommendations can represent common interests and can at the same time
deal with personalized interests. This hybrid approach is a rather new approach
which is being used more and more recently. We will see some techniques of
combining both methods in section 4.3.3.3.

2IMDb is the world biggest online movie database which uses a specific recommendation
system itself. It is available at http://www.imdb.com.
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4.3.3.1 Content-based recommendation techniques

There are many techniques available for content-based recommendations. Al-
most all of them are machine learning techniques for classifying pages into cate-
gories. We have already seen two of the most frequently used machine learning
techniques in the previous chapter: the Naive Bayes Classifier and the k-Nearest
Neighbour Classifier. We will now show how these two techniques are used and
briefly discuss some other frequently used techniques.

Content-based recommendations using the Naive Bayes Classifier

In chapter 3, we introduced the Naive Bayes Classifier. Here we will show how
the Naive Bayes Classifier can be used in practice to classify pages as being
interesting or not for a particular user. We will use the word “page” throughout
this section for easy comprehension but it could also be any other web item
having some textual description (e.g. meta data).

When a user visits pages and rates them as interesting they are classified to
the class of interesting pages. Pages which get low rates are classified to the class
of uninteresting pages. The most standard way to classify new pages using the
Naive Bayes Classifier is by using the words on these pages as features (another
way is to use meta data containing descriptive keywords). This is known as doc-
ument or text classification. Using the words on the pages which are classified
as being interesting or not, the Naive Bayes Classifier can be used to predict
the classes of not yet visited pages. Note that the representative set of training
pages are in this case the pages which are rated by the user. The simplifying
assumption which is made by the classifier means that, for this example, words
are considered as being independent of each other. This is of course not true as
a page is not a bag of words where order is of no importance. Even though this
assumption is illegal, the algorithm gives good results [31].

To classify a page, we use the occurrences of the words (of course omitting
trivial words like “and”, “in”, “the”, etc) on these pages as features. Let’s, for
example, say that a user has rated a page containing the words “PHP”, “HTML”,
“browser” and “design” as being interesting. This will increase the probability
that not yet visited pages with the same words will be classified as being inter-
esting. To compute the probability that a page belongs to a certain class, we
have to calculate the probabilities that each word in the page belongs to this
class. Following equation 3.2 from chapter 3, the probability that a page which
contains the bag of words W belongs to the class C' can be computed as follows:

pwiC) = []P(wic)

i=1

But how can the probability P(w;/C) be computed? There are many ways to
estimate this probability. In [41], this is done by maintaining a vocabulary which
contains all words that occur in the pages rated by a specific user. P(wz-/()'j )
can then be estimated as follows:
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P(w;|C}
(w:C5) n + |Vocabulary|

In this formula, n is the number of words in the pages of class Cj, n; the
number of times w; occurs in the pages with class Cj and [Vocabulary/ the size
of the vocabulary [41]. The reason why 1 is added to the numerator® is because
otherwise unseen words will lead to a zero probability of P( wi/C’j ) and therefore
also a to zero probability of P(C/X). To determine the class to which the page
belongs, the formula of the Naive Bayes Classifier should be used:

NBC = argmaxcjinc P(C) H P(w;|C)
i=1

For P( Cj ), the percentage of pages belonging to this class is a good estimator.
Note that these class conditional and posterior probabilities are all generated
during the training phase of the algorithm.

Using these estimators, pages can be classified by the Naive Bayes Classifier
in a fairly easy way. This is the main advantage of the algorithm. When one can
find a reliable estimator which is easy to compute, the algorithm requires much
less computational power than other more complex classification algorithms. A
disadvantage of this classifier is that it can give distorted results for features
which are heavily interrelated and thus dependent on each other.

Content-based recommendation using the KNN Classifier

The second content-based recommendation technique which we discuss uses the
KNN Classifier. Recall from section 3 that this classifier needs a distance metric,
a number of neighbours and a classification strategy. This technique determines
the class of an unseen page based on the most common class of the k¥ most sim-
ilar pages which have already been classified. The only thing which is needed
specifically for this content-based recommendation technique is a distance met-
ric for computing the similarity between pages. Once we have this metric, the k
most similar pages can be used as the input for a classification strategy such as
one of those mentioned in section 3. Let’s choose the standard strategy where
the vote of each page is equally weighted as the strategy that we will apply in
this example.

An example of a well-known and frequently used distance metric to compute
the similarity between pages is the Term Frequency-Inverse Document Frequency
(TF-IDF) algorithm [33, 36, 52]. This algorithm is one of the most successful
weighting schemes for documents. The main reason why is because it considers
words that appear in one page and rarely in others as being more relevant to the
class of the page than words which appear frequently. This way prepositions,
adjectives and conjunctions don’t need to be filtered out of a document.

3This is called Laplace smoothing.
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TF-IDF uses a Vector Space Model to represents a page: a vector relative to
some dictionary vector where each element in the vector is a weight representing
each word in the dictionary. These weight elements are used to express the
importance of the words in the page. They are calculated by multiplying the
Term Frequency (TF) with the Inverse Document Frequency (IDF). The Term
Frequency is the number of times the word represented by the element occurs
in the page. The Inverse Document Frequency is the inverse of the number
of pages in which the word occurs at least once. The formula to compute the
element e which represents the weight of word w in page p is:

e; = TF(w;, p) - IDF(w;)

The Inverse Document Frequency can be computed as follows:

IDF(w;) = log (#(luﬁ)

The DF stands for Document Frequency which is the number of pages in which
word w;occurs. The [P/ denotes the number of pages compared and is in the
case of measuring the distance between two pages obviously always 2. Using
the above formulas, a vector can be constructed for both pages. The distance
between both vectors then can be measured using the cosine similarity which
is frequently used in combination with the TF-IDF algorithm*. The cosine
similarity is calculated as follows:

Zw ew (ephw : epzxw)

\/Zw ew 612)1,111 ’ \/Ew cew 61272;1”

The greater the value of the cosine similarity, the more similar the pages are.
To be able to use this as a distance metric the inverse should be taken so that
similar pages have a small distance instead of a large distance. Having defined
this distance metric, the k¥ most similar pages can be retrieved. Using the pro-
posed classification strategy the class can be easily determined. An advantage
of the KNN algorithm is that no additional data structures are needed. This
is in contrast to the Naive Bayes Classifier where a vocabulary of all words is
constructed for each user which results in higher memory requirements. An-
other advantage is that there is no training time required for this algorithm.
A disadvantage is the categorization time being linear to the amount of train-
ing pages because each training page should be compared with a new unseen
page. We will now briefly discuss some other techniques which are also used in
content-based recommendation.

Similarity(py,p2) =

Other techniques for content-based recommendations

Some other frequently used techniques used for generating content-based rec-
ommendations are:

4This is called cosine similarity because it computes the cosine of the angle between two
vectors.
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e Support Vector Machines: this technique separates positive from neg-
ative examples in the best possible way. It does this by searching the
hyperplane which separates the positive from the negative training ex-
amples by the widest margin. When this hyperplane is constructed at
training time, new items can be classified according to which side of the
hyperplane they fall onto. Support Vector Machines can handle high di-
mensional input which is certainly needed for text classification as it uses
the words on the pages as features. They are considered to be the most
accurate classification method but are very slow to train [34].

e Decision Trees: a decision tree classifier uses a tree where the nodes are
terms (i.e. the words in the classified pages), the branches are tests on
the weight of the terms and the leafs are classes. Classification is done
by recursively testing the weight that a term of a node has in the feature
vector of the page until a leaf node is reached. The page is then assigned
to the class which labels the leaf node. The advantage of this technique
is that it is easy interpretable in contrast to other techniques such as the
Naive Bayes Classifier. It is a popular symbolic classification technique
used in text classification.

e Neural Networks: a neural network classifier is a network of units,
where the input units usually represent words, the output units represent
classes, and the weights on the edges between the units represent condi-
tional dependence relations. For classifying a page, its word weights are
first assigned to the input units. Then the activation of these units is
propagated forward through the network and the resulting output units’
value determines the class of the page. Neural networks work very well in
complex domains and classification of new pages can be done fast. The
drawbacks are that the training phase is slow, and that results are difficult
to understand.

For a more comprehensive review of these techniques we refer to [54]. We will
now take a look at the existing collaborative recommendation techniques.

4.3.3.2 Collaborative recommendation techniques

Like in the previous section where we described some techniques used for content-
based recommendations, we will now describe some techniques used for collab-
orative recommendations. These collaborative recommendation techniques can
be divided into two main types [9]: memory-based collaborative recommenda-
tions and model-based collaborative recommendations.

The memory-based collaborative recommendation techniques are the classic
collaborative techniques which acts over the whole user database to predict
which items a user will like. These techniques are characterized by the fact that
they have no learning phase. Memory-based collaborative recommendation tech-
niques are based on the k-Nearest Neighbour algorithm which we saw in chapter
3: they select a set of k most similar users, which is called a neighbourhood, and
recommend items which these users liked. Another way of selecting a neighbour-
hood is by using a correlation threshold but we will not consider this approach
here as it is just another way of computing the neighbourhood. In chapter 3 we
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mentioned the importance of the distance metric for the KNN algorithm which
will be used here to determine the similarity between users. We will therefore
explore some distance metrics used to select the nearest users. These distance
metrics determine whether a user will like a certain item (prediction problem)
or recommend the N most interesting items (top-N recommendation problem)
[35]. Memory-based collaborative recommendation techniques have the advan-
tage that they are very simple, incorporate up-to-date information because the
database is used for every new recommendation, and that they are relatively
accurate [9]. The drawbacks of these techniques are the poor scalability when
there are many users. These users have to be compared every time when a new
prediction is made which results in a slow recommendation process.

On the other side we have model-based collaborative recommendation tech-
niques which use the user database to learn a model offline which is then used
for prediction. These techniques are mostly probabilistic based techniques such
as Bayesian Networks which make a guess of the expected value. Other model-
based techniques include clustering and rule-based approaches which we will
describe later. Model-based techniques are much faster because they use a pre-
computed model and are as accurate as memory-based techniques [9]. They are
however not suited for quickly changing databases as this leads to an incorrect
model which is not up-to-date.

Model-based collaborative recommendation techniques are also called item-
based collaborative recommendation techniques [35] because the item similari-
ties are rather static and can thus be can be computed offline [53]. This is
not true for user similarities which are dynamic and require that the user has
rated or purchased several items before a recommendation can be made. Hence,
these similarities can not be computed offline but have to be computed on-
line. Therefore memory-based collaborative recommendation techniques are also
called user-based collaborative recommendation techniques [35]. We will give a
brief overview of these techniques shortly but will show first how memory-based
techniques work in practice.

Memory-based collaborative recommendation techniques

Memory-based collaborative recommendation techniques employ user-user sim-
ilarity to construct a set of similar users. We will now describe some of these
techniques based on user-user similarity. Note that although the memory-based
techniques are called user-based techniques because they use user-user similar-
ity, it is also possible to use item-item similarity. By using item-item similarities,
we seek the items which are similar to the items the active user has liked, based
upon the ratings of other users on these items. In [53], an item-item similarity
is used but they call the technique model-based because these similarities are
computed offline. If these similarities are computed online, the technique would
be memory-based. The techniques that we will introduce here are therefore also
applicable for item-item similarities.

There are two important aspects in the KNN approach of memory-based
techniques:
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1. A distance metric algorithm: this is needed for computing similarities
between users. This class of algorithms takes two users as input (rep-
resented by vectors containing their ratings for items for example) and
outputs a value which determines how similar the two users are.

2. A prediction strategy: once we have calculated the neighbourhood of
most similar users, we need a prediction strategy to make predictions upon
this neighbourhood.

We will now list some metrics and strategies which are frequently used in collab-
orative recommendation systems. Many algorithms have been used in practice
to compute similarities; we will describe some of the ones which are frequently
used. Any mathematical formulas will be omitted because they lie beyond the
scope of this dissertation and therefore we refer to [53, 55, 56| for a more in dept
discussion of these algorithms.

e Correlation using the Pearson Algorithm: this algorithm considers
only the items which are rated by both the users, and calculates a weighted
average of the deviations from the neighbours’ mean. This is probably the
most used algorithm to compute similarity and it has been shown that it
performs better than the other algorithms listed below [9, 56].

e Mean Squared Differences Algorithm: the Mean Squared Differ-
ences Algorithm does exactly what its name says and computes the mean
squared difference between two rating vectors of the users. This is an ob-
viously simple and fast technique but it is not as accurate as the Pearson
Algorithms.

e Cosine-based vector similarity: we already encountered this technique
in section 4.3.3.1. It can be used in exactly the same as we showed there
but this time by using the user rating vectors as the input.

When we have constructed a neighbourhood using a distance metric algorithm,
we need to make a prediction and thus choose for a strategy to make this
prediction. We will now list some prediction strategies which are commonly
used among recommendation systems [42].

e Most-frequent item recommendation: this strategy scans through all
the users in the neighbourhood and retrieves the most frequently selected
items. When the most frequent items are retrieved, they are sorted by
frequency and the most frequent items not yet selected by the active user
are recommended. This strategy does not consider ratings and can only
be used on binary valued choices such as purchases or like/dislike votes.

e Weighted-average recommendation: this is the standard strategy
which just uses the weighted average of the user ratings in the neigh-
bourhood. It is called weighted average because the average of the ratings
is weighted using the similarity value of the users.

e Average-deviation recommendation: this strategy computes the av-
erage deviation of a neighbour’s rating from that neighbour’s mean rating
over all items the neighbour has rated. This is then converted to a pre-
dictive distribution by adding it to the active user’s mean rating. This
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algorithm is based on the fact that users center their ratings at different
points. On a scale from one to ten, for example, some users may find 6
already a high vote while others find it rather low and find 10 a high vote.

Now that we have seen how the memory-based collaborative recommendation
techniques work, we will take a look at some of the existing model-based col-
laborative recommendation techniques.

Model-based collaborative recommendation techniques

We will describe 4 model-based algorithms which learn a model which is then
used for prediction. The four algorithms are Bayesian Networks, association
rules, clustering and horting. We will give short overview of these algorithms
because they are too complex to go too much into detail.

A Bayesian Network [9] is a graphical model for probabilistic relationships
among a set of variables. Bayesian Networks are also known as Belief Networks
and also have their roots in the field of machine learning. A Bayesian Network
for collaborative recommendations exists out of nodes which represent all the
possible items that can be recommended. The edges in the graph are direct
edges between the nodes which are the items. The network defines probabilistic
relationships between the nodes: to each node conditional probabilities tables
are attached encoded in the form of a decision tree which predicts the rating of
the item given the ratings of its parent items. An edge from item I7 to I, in
a Bayesian Network means that Iy causes I, which is equal to saying that I,
is conditional dependent on I,. The drawbacks of this technique are that the
building phase of the model can take a few hours or days and that it is not
suitable when relationships among items change quickly. On the other hand, it
is very small, fast and as accurate as memory-based methods.

The second model-based technique that we will describe is a rule-based ap-
proach and is called association rules [2]. Association rules construct a set of
rules which describe the relationships or associations between a number of items,
i.e. the likelihood that a set of things will happen at the same time. Association
rules are used to analyze the co-occurrence of transactions within a session and
make recommendations based on the strength of the associations. An example
of an association rule for a movie recommendation system is the following: if
a user likes the movies “The Godfather” and “Scarface” he will like the movie
“Goodfellas”. The pros of this technique are that it is fast, easy to implement,
does not require much storage and is not user-specific. It however suffers the
same drawback as the previous technique and is not suitable when relationships
change quickly.

The next technique which has a model-based approach is clustering. Clus-
tering constructs groups of users which have similar interests and assign a class
to each group. Determining to which cluster a user belongs is therefore a classi-
fication problem [9]. The class can be determined by estimating the probability
that a particular user belongs to a particular class given its item ratings, and
from there on predictions can be made by averaging the ratings of other users
in that class or cluster. Clustering techniques usually produce less personal rec-
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ommendations than other methods, and in some cases, the clusters have worse
accuracy than nearest neighbour algorithms [9]. Just like the other model-based
techniques, performance is usually very good. This is because the size of the
group that must be analyzed is reduced heavily by using clusters. Some new
clustering techniques [57, 60] have been proposed which try to solve the prob-
lem of sparsity where all collaborative recommendation systems deal with, i.e.
the number of ratings already obtained is very small compared to the number
of ratings that need to be predicted. These techniques cluster both users and
items to handle this problem.

To conclude this overview of model-based techniques we will take a look at
horting. Horting [1] is a graph-based technique in which nodes are users, and
edges between nodes indicate the degree of similarity between two users. Pre-
dictions are made by walking the graph and combining opinions of similar users
which are connected to each other by the nodes. The advantage of horting is
that it is not a requirement that two users rate the same item to be used in
predictions.

Now that we have described both memory-based and model-based collabo-
rative recommendation techniques we will look at the third form of recommen-
dation techniques which are hybrid recommendation techniques.

4.3.3.3 Hybrid recommendation techniques

Hybrid recommendation techniques have emerged during the years based on
the fact that both content-based and collaborative recommendation techniques
have methods have complementary strengths and weaknesses. Hence, combin-
ing their strengths and discarding their weaknesses leads to a new and better
hybrid approach. In this section, some of these hybrid techniques which combine
both content and collaborative recommendation techniques will be addressed.

The first approach we will discuss is collaboration via content [5, 45]. This
method maintains user profiles based on content analysis. These user profiles
are closely compared to determine users with similar preferences for collabora-
tive recommendation. This way items are recommended to a user when they
score highly against their own profile, and when they are rated highly by a user
with a similar profile. The consequence of this approach is that we make use of
the experiences of other users and are also able to recommend items which are
unseen by these users.

Another approach is called content-boosted collaborative filtering [40]. In
content-boosted collaborative filtering a pseudo user-ratings vector is created for
every user u in the database. This vector contains the ratings of the user for
all items. When a user has not rated an item, the rating is predicted using
a content-based recommendation technique. Putting all pseudo user-ratings
vectors of all users together gives a pseudo ratings matrix which can then be
used as input for a collaborative recommendation technique. The main idea
in this in this approach is that it predicts the ratings of unrated items using a
content-based recommendation technique and then uses these ratings to perform
collaborative filtering. It has been shown that this technique performs better
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than pure content or collaboration approaches and that it overcomes problems
like the sparsity and the first-rater problem[40].

In [14], Burke lists some other hybrid recommendation techniques which
basically combine the results of both recommendation types in some way. A
weighted hybrid recommender computes the predictions of both approaches sep-
arately and then uses some weighted approach to mix the predictions. Using
weighted mixing, one approach can be given a higher weight and thus higher
impact, or each approach can be equally weighted so that the prediction is just
a linear combination of both predictions. Another combination of both recom-
mendation types is the switching hybrid recommender. Based on some condition,
the recommendation system switches between both recommendation types and
therefore they are never used together. One way to switch is by using some con-
fidence value for both types and use the type which has the highest confidence
value. The last approach that we will describe is the mized hybrid approach.
This approach presents the recommended items of both types together. This
approach can only be used to recommend items and not to make predictions
about ratings because only one rating can be offered for one item and combining
both weights would results in a weighted approach.

4.3.4 Example of a Recommendation System: Amazon.com

In this last section of our overview of recommendation systems we show how
the famous online store Amazon.com makes use of a recommendation system to
increase their revenues and the satisfaction of their customers. Amazon.com is
the largest online retailer with more than 30 million customers and has thus all
the power to build the best possible recommendation system for their business.
That’s the reason why we will take a look at how Amazon.com brings the theory
of recommendation system into practice.

4.3.4.1 Amazon.com’s user models

Amazon.com enables users to create an account so that their feedback can be
used to construct a user model. This user model is then used by Amazon.com to
generate personal recommendations. The user model is based on both implicit
and explicit feedback from the user. The three principal forms of feedback are
the following ones:

e The items purchased by the user (implicit feedback).
e The items rated by the user (explicit feedback).

e The items the user viewed (implicit feedback).

Using all this feedback, Amazon.com manages to build a solid user model that
doesn’t require much or any explicit feedback. Of course it’s evident that ex-
plicit feedback from the user will lead to a better, more precise user model and
therefore also better recommendations. But even if a user does not provide
ratings for items, Amazon.com’s recommendation system still succeeds to rec-
ommend interesting items to the user by using the implicit feedback that “fed”
his user model.
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4.3.4.2 How Amazon.com recommends items

Now that we’ve seen how the user model of Amazon.com’s customers is con-
structed we will take a look at how this user model is used to recommend items
to the customers. Amazon.com uses recommendations all over their web site.
When a registered user visits the home page of the Amazon.com web site, the
user already encounters some items which are similar to the ones he purchased,
viewed or gave high ratings. The home page of the Amazon.com web site is thus
tailored to each single registered user: each user has its own personalized online
shop. On the top of the page, there is also a link to a personal “recommendation
shop™

Hello, Stijn Coolbrandt. We have recommendations for you.

This personal recommendation shop lists all kinds of recommendations for the
user and is browsable per area. Hence users can view recommendations in areas
like DVD’s, books and music. Amazon.com not only explicitly tells the user
which items are recommended, but even offers the user the possibility to discover
why these items are recommended. When a user “asks” for the reason why an
item is recommended, a popup window opens with the following information:

Recommended for you ... because you were interested in: ...

This window shows the user a list of similar items which he found interesting
and which form the basis of the current recommendation. It gives the user
the opportunity to tell the recommendation system that he is not interested in
the product or that he already owns it. These are two other kinds of feedback
we didn’t mentioned before. When a user indicates that the product doesn’t
interests him, it will not be recommended anymore. If he tells the system that
he owns it, it will get the same recommendation value as a purchased item and
will also not be recommended anymore.

Another form of recommending items used by Amazon.com is the list of sim-
ilar items which can be viewed on an item page. For each item, a list of items
which are commonly bought by the users who bought the item is recommended.
This can be seen on figure 4.2 which is a snapshot of such a list of similar items.

A user also gets the chance to explicitly improve his recommendations. Ama-
zon.com offers three ways to do this:

e By editing his history. This includes items he owns, items he rated and
items he didn’t found interesting.

e By selecting favorite areas and items in these areas.
e By rating a list of products generated by the system.

The difference with the feedback described earlier is that in this case the user
takes the initiative to give feedback. Editing his history or selecting his favorite
areas and items takes much more time than giving a single rating while browsing
through the web site. When a system can convince a user of the importance of
recommendations, it takes control of a powerful position which can be favorable
for both sides.
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Customers who bought this item...

Machine L earning

by Tom M. Mitchell

Average Customer Review: ¥
Usually ships in 24 hours

This item ships for FREE with Super Saver Shipping. See details.

From Book News, Inc.

An introductory text on primary approaches to machine learning and the study of computer algorithms that
improve automatically through experience. Introduce basics concepts from statistics, artificial intelligence,
information theory. and other disciplines as need arises, with balanced coverage of .. Read more

Also bought these items...

Show items from:
] All Products

Books (zo)
DVD (=) Pattern Classification (2nd
Edition)
by Richard O. Duda, et al
| More like this (. More like this |

Figure 4.2: A snapshot of the recommendation system of Amazon.com

4.3.4.3 Amazon.com’s recommendation technique

To conclude our view at the Amazon.com recommendation system we will de-
scribe which technique is used to generate recommendations. Because Ama-
zon.com has millions of customers and items in their product catalog, scala-
bility is a very important issue. Most of the collaborative techniques have a
computing time which scales with the number of customers and items. Using
these techniques requires heavy computational power and long processing time
to compute online recommendations for such a huge store like Amazon.com.
Therefore Amazon.com developed an own technique which scales much better
than the techniques mentioned in the previous sections. This technique is called
item-to-item collaborative filtering and is described in [39]. It is a model-based
collaborative recommendation technique and uses item-item similarity instead
of user-user similarity. This means that rather than comparing users for simi-
larities, items which the user purchased and rated are compared to other items
for similarities and the most similar items are then used for making recommen-
dations.

For computing similarities between items, a similar-items table is constructed
[39]. This table is constructed as follows:

For each item in product catalog Ij
For each customer C who purchased product Iy
For each item Iy purchased by customer C
Record that a customer purchased I and Iy
For each item Ioy
Compute the similarity between I and Iy

How the similarity between items is computed by Amazon.com is unknown. In
[39], they suggest to use the cosine measure but they do not explicitly state that
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it is this distance metric which Amazon.com uses. The dimensions of the vector
which represents an item correspond to the users who purchased that specific
item. Computing the similar-items table is very time consuming but because
it considers the relationships between items, this can be done offline (that’s
why this technique is model-based). Recall that this is due to the fact that the
relationships between items is relatively static in contrast to the relationship
between users. Once this table is constructed offline, looking up items similar
to the items purchased and rated by the users can be done very fast. This
lookup process is furthermore only dependent on the number of items the user
purchased and rated which makes it more scalable than any other technique we
have seen.

To underline the force of the technique developed by Amazon.com we list
the advantages of this collaborative recommendation technique:

e Similarities can be computed offline. This is really a must when a large
amount of data is available.

e Because of computing similarities offline, its performance is extremely well.
This is because the online process only needs to lookup items similar to
the ones the user purchased and rated.

e It scales very well because the online recommendations process is only
dependent on the number of items the user purchased and rated.

e The recommendation quality is excellent because it only recommends
highly similar items.

e The technique also works very well when limited user data is available.

The description of this technique concludes this chapter. We will now turn
theory into practice in the research part of this dissertation.
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Chapter 5

Integrating Link
Recommendations into
WSDM

5.1 Introduction

This chapter describes how link recommendations will be integrated into WSDM.
We will propose extensions to WSDM and ASL such that they are able to sup-
port dynamic adaptation at the user session level. Once that we have proposed
these extensions we will use these extensions to build a recommendation system
using ASL.

The current version of ASL already supports web site optimization, i.e. adap-
tation which aims at accommodating all visitors. This optimization adapts the
structure of the web site based on its usage in order to improve the web site
for all users. We have already seen examples of such kind of adaptation in sec-
tion 4.2.3 of chapter 4. These examples include promotion, demotion, linking
and clustering of nodes and can already be easily implemented using ASL. In
contrast to the optimization techniques which adapt the structure of the web
site permanently for all users, we want to adapt the structure of the web site
temporally and separately for each user. The extensions to both WSDM and
ASL needed for this adaptation at the user session level will be described in
section 5.2.

A big advantage of the audience driven design of WSDM is that no user
model is needed. Because the web site is designed with the target audience
in mind, a visitor should be able to find all the necessary information in the
audience track of the audience class to which he belongs. When the web site is
designed in a proper way, there is thus no need for a user model. A user model
is often used by web sites which are designed in a data driven way. These web
sites don’t take in account the target users and don’t structure their web site
according to the needs of the target users. Because of this data driven design,
user models are frequently used to determine the preferences of the users and to
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personalize the web site to the users’ needs, something which is done in WSDM
at design time in the Audience Modelling phase.

Undoubtedly, using a user model for each visitor often leads to more specific
characteristics for each visitor then the division of users into audience classes
which leads to general characteristics for the users in each audience class. This
minor drawback is however compensated by the fact that WSDM avoids the
problems which arise when building and updating a user model. Maintaining a
user model is often a demanding task for both the designer and the user of the
web site.

The designer first has to design a user model which is capable of representing
the user properly. This gives rise to many questions. Should the user’s interests
be stored in the user model? What about his specific preferences? How will all
information such as preferences and interests be retrieved? Even when a good
user model is constructed, the designer also has to specify how this information
will be used. This can be by providing links to pages which are interesting ac-
cording to his user model, or by altering text fragments based on the knowledge
level of the visitor. There is a wide range of personalization methods as we have
seen in chapter 4. This troublesome task of designing and processing a user
model is nonexistent for the WSDM designer which obviously saves him a lot
of work.

What is even more important is that visitor is not saddled with the user
model. The utilization of a user model often implies that visitors need to log
in to the web site and need to provide information and feedback. Users often
don’t want to provide feedback and get dissatisfied when they don’t notice any
benefits. Filling in large forms with personal information is not something all
user like to do, either because of the effort it requires or because of privacy
issues. When WSDM is used, users don’t have to spend all these additional
efforts like logging in or providing feedback.

The fact that there is no real user model which can be used across sessions
poses an interesting challenge: how can we generate useful link recommenda-
tions at the session level? To be able to generate personal link recommendations
for each visitor, we will extend ASL with the ability to track node accesses sepa-
rately for each session. We can then use this session information to generate link
recommendations based on the nodes a visitor accessed in his current session
and relate this information to the information of previous sessions.

Both link recommendation techniques which we will present are collabora-
tive link recommendation techniques because they are based on the browsing
history of other similar users. Pages are recommended which are commonly
visited by visitors with a similar browsing history. Because the recommenda-
tions are only based on the pages the visitors viewed, no explicit feedback is
required which is a big advantage. The link recommendation techniques also
act in a closed corpus and therefore recommend only links to pages within the
web site. These recommendations will be generated separately for each visitor
by taking his session information as input and comparing it to the available
session data of the other sessions. When a visitor accesses a page on the web
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site, link recommendations are generated and presented to the visitor. These
link recommendation are generated by computing an interestingness value for
each unvisited page. Whenever this value is larger than a certain threshold, the
page is recommended.

The two techniques which we will present, generate new link recommenda-
tions whenever a page in the web site is requested by the user. This can be
seen as a refreshment of the link recommendations which is justified by the
change in the session information of the current user, i.e. a new page view is
added to the session information. To clarify this refreshment strategy, imagine
browsing through a news site. When we are viewing a news page in the world
news section, links will be recommended which are related to this page. When
a new page is accessed, for example in the sports section, many new link rec-
ommendations related to sports will be generated. Every new page which is
accessed can therefore lead to new different link recommendations. That’s why
link recommendations are generated every time a new page is visited. Both of
the link recommendations techniques which we will describe, follow this refresh-
ment strategy. The only thing that distinguishes them is in how they determine
which pages are interesting.

We will first propose the needed extensions to WSDM and ASL in section
5.2 such that the link recommendation techniques can be implemented in ASL.
In section 5.3, we will propose our two collaborative link recommendation tech-
niques based on Bayes’ Theorem and the k-Nearest Neighbour algorithm.

5.2 Extensions to WSDM

To be able to specify at design time which dynamic adaptation should occur at
the user session level we need make some extensions to both WSDM and ASL.
These are not major extensions but nonetheless crucial in order to implement
link recommendation techniques. The extensions to WSDM in section 5.2.1 are
situated on the Conceptual Design level or are more specific, extensions to the
Navigation Model. ASL will be mainly extended with operations that track and
access session specific information. These extensions will be proposed in section
5.2.2.

5.2.1 The Navigation Model

We now return to the Navigation Model which was already discussed in section
2.3.1 of chapter 2.1. The Navigation Model is constructed during the Navi-
gation Design phase which is the second sub-phase of the Conceptual Design
phase. It is a graph which defines the conceptual structure of the web site and
which consists of nodes and chunks. Recall that the edges between the nodes
in the graphs are called links, and the edges between the nodes and chunks in
the graph are called connections. All these links and connections are static and
the links are traversable by each visitor. When we want to generate personal
recommendation links for each visitor, we can not do this by just adding a new
link because then all other visitors would see this new link too. This is the
reason why we need to extend the Navigation Model so that we are able to add
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links which are only visible for one visitor.

We will extend the Navigation Model with a new kind of links which are
temporal and bound to a specific user session. The lifetime of these links is the
same as the lifetime of the session to which they are bound, unless they are
deleted explicitly. When the session ends, all links belonging to this session will
be deleted. We will therefore call these links session links. The session links are
almost identical to the normal permanent links, the only difference is that they
are only visible within the session to which they are bound. Using the extended
version of ASL which will be proposed in the next section, the designer will be
able to specify at design time which session links should be constructed at run-
time during each session. Note that the introduction of these session links does
not alter the Navigation Model at design time but only temporally at runtime
for each visitor separately.

On figure 5.1, we can see an example of an extended Navigation Model. It
extends the simplified Navigation Model of the WISE web site we saw earlier
in chapter 2.1 with some session links. The dotted lines with the hollow arrows
are the session links. They are labeled by the sessions to which they are bound
to. We can see that for session 1, there are two session links from the root node
of the Researcher Track to respectively the Members and the About Wise node.
Notice that there are two session links from the root node of the Researcher
Track to the Members node, each bound to a different session.

By extending the Navigation Model with session links, we are now able to
present personalized links to each visitor. Session links can be added and deleted
during a browsing session of a visitor. The explicit deletion of session links is
necessary for the refreshment strategy that we will employ in our link recom-
mendation techniques. When these links would be permanent across a session
it would be only possible to generate link recommendations once for each node,
or to add link recommendations incrementally.

Just as for the normal permanent links, there will be four types of session
links. For providing link recommendations, we will add navigation aid session
links which is obvious as the recommendations are meant as an additional aid for
the users. Now that we have proposed the extensions to the Navigation Model
we will show how these session links can be added and deleted using ASL.

5.2.2 ASL

As we have seen in section 2.3.3 of chapter 2.1, ASL makes it possible to perform
operations on the Navigation Model at runtime. We have seen how the struc-
ture of the site can be changed using operations like deleting and adding links.
Because we have extended the Navigation Model with the notion of session
links, we have to extend ASL too so that it provides the necessary operations to
add and remove session links. Another extension which we will propose include
operators which serve to access stored session information.
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Figure 5.1: An example of an extended Navigation Model.

5.2.2.1 Extension 1: new native operations

We will start with describing the new native operations which will act upon
session links. The existing native operations are extended with three new ones:
adding a session link to a session, deleting a session link from a session and
clearing all session links of a given session. The addition of session information
to ASL is a new extension that will be introduced in section 5.2.2.3. For now,
the only thing we need to know is that referring to a session can be done in the
same way as referring to nodes or chunks. In section 5.2.2.3, we will see how
the session argument of these new elementary operations can be retrieved.

The first operation which adds a session link to a session has four arguments:
the type of link, the target session to which the link should be added and the
source and target node of the link. The second new native operation deletes a
session link and requires four arguments: the type of link, the target session and
the source and target node of the link. To be able to clear all the session links
of a given type and belonging to a certain session with only one operation we
have also added an operation which takes the given type and session as input.
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A summary of all these new native operations can be seen in table 2.1.

| Operation Semantics | Syntax

Add a session link of type ¢t from node nj to addSessionLink(t, s, nq, ng)
node ng, for session s.

Delete a session link of type ¢ from node ny to | deleteSessionLink(t, s, n1, ng)
node no, for session s.

Clear all session links of type ¢ for the given clearSessionLinks(t, s)
session s with the given ID.

Table 5.1: The new native operations added to ASL.

5.2.2.2 Extension 2: new native functions

We have already seen the currentAudienceClass() native function provided by
ASL. We will add another native function called currentSession() which returns
the session of the current user session. This new function returns a session ob-
ject holding session information. Using this new function we can, for example,
attach session dependent tracking variables to nodes. We will now demonstrate
how this new function can be used to track all node accesses within a session
by using a tracking variable.

To track node accesses within a session we add a tracking variable accesses
to each node as follows:

forEach node in Nodes:
begin
currentSession := currentSession();
addTrackingVariable node.accesses;
monitor load on node
do node[currentSession].accesses := node[currentSession()].accesses + 1
end

This piece of code attaches a tracking variable called accesses to each node in
the web site. Instead of maintaining the node accesses or clicks of all visitors like
we did for the amountOfAccesses tracking variable in chapter 2.1, we will track
node accesses for each visitor session separately. Each time a node is loaded (ac-
cessed by a visitor), the body of the monitor statement is executed. Whenever
a node is loaded by a visitor, the accesses variable relative to the session of the
visitor is increased. This can be interpreted as follows: the number of accesses
by session s to node n is equal to nfs].accesses. Notice that the currentSession()
function can only have a valid value when it is used within the control flow of a
monitor statement which specifies an action on a certain event. When the cur-
rentSession() is used outside a monitor statement, it is not possible to resolve
to which session it is bound as no event is specified. Using the above tracking
variable we are now able to check how many times a node is accessed in a session.

Another native function which is added is currentNode(). This function
returns the currently loaded node in an active session. This function is however
only available when a script is attached to a node and is executed when that
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node is loaded. When this script is loaded, the node to which the script is
attached is available within the script using the currentNode() function.

5.2.2.3 Extension 3: a new native set

The next extension which we will propose is a new native set called Sessions
which contains all the sessions of the web site. This set contains all the sessions
which have been tracked during the lifetime of the web site. By iterating over
these sets we can access session dependent monitors.

The following code gathers the total amount of accesses by using the accesses
monitor defined above:

begin
totalAmountOfAccesses := 0;
forEach node in Nodes:
forEach session in Sessions:
totalAmountOfAccesses :=
totalAmountOfAccesses + node[session].accesses;
end

This example shows that we use the elements in the Sessions set to retrieve
session dependent monitor values such as the accesses monitor. Note that the
sessions in the Sessions set are ordered sequentially which means that they are
ordered according to the time on which they started.

Along with this new native set we extend the audienceClass function so that
it can also take a session as input and return the audience class of this session.

5.2.2.4 Extension 4: a new set creator

Another extension to ASL is a set creator called subset which takes a set as
an argument and returns a subset of the set. The subset operator needs two
numbers which indicate which subset of elements should be selected out of the
set. We will again demonstrate this new set creator with the following example:

begin

sortedNodes := Nodes[SORT on element : element.amountOfAccesses];
fiveMostPopularNodes := subset(sortedNodes, 1, 5);

end

The example constructs a set with the 5 most popular nodes by first sorting the
nodes on the amount of accesses and then taking the 5 first elements of this set.

5.2.2.5 Extension 5: revising the monitor statement

Our last extension involves the monitor statement. The current version of ASL
only allows to update tracking variables. Because we want to be able to exe-
cute more complex operations whenever some event occurs, we will allow any
adaptation strategy to be specified.

All these new extensions will be used in the next section in which two link
recommendation techniques will be proposed. They can also be found in the
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appendix A which contains the ASL BNF specification. These extensions are
emphasized in italics.

5.3 Proposed Recommendation Techniques

5.3.1 Link recommendations using a KNN algorithm
5.3.1.1 Introduction

The first link recommendation algorithm is a KNN like algorithm and is similar
to the memory-based recommendation techniques which is described in section
4.3.3.2 of chapter 4. This k nearest neighbour link recommendation algorithm
will determine the k£ most similar visitors using some distance metric and will
then recommend the pages which are most commonly visited by these k nearest
visitors.

As an introduction to the algorithm, we will briefly discuss the main struc-
ture of the algorithm using pseudo-code. The algorithm can be summed up as
follows:

FETCH_INTERESTING_LINKS(WSP, t, S, k, DM)
VP = get visited pages of current session using S
UP = {WSP / VP}
KNearestSessions = Get the k nearest sessions to
current session using DM and S
For each up in UP do:
p = Calculate percentage of sessions in
KNearestSessions which visited up
Ifp>t
Recommend up

There are five input arguments for this algorithm. The first one, WSP, contains
the set of all pages in the web site. The second argument, ¢, is the threshold that
should be reached to recommend a page to the visitor and the third argument,
S, contains the session data. A simple session matrix like the one illustrated in
table 5.2 is sufficient for the algorithm as we only need to know which sessions
accessed which pages. In this table, visited and unvisited pages are marked in
their corresponding cells by a 1 and a 0 respectively. The fourth argument, k, is
obviously the k£ value which determines how many neighbours will be considered
for recommending nodes. The last argument, DM, is the distance metric that
will be used to determine the k nearest visitor sessions. By taking this metric
as an input argument, we can easily change the used metric in a plug and play
kind of way. We will see shortly how this is done in practice.

Let’s take a look at the pseudo-code. First, we need to know which pages
were accessed in the current session. This information can be easily retrieved
from the session matrix S. On the second line, the pages which are not yet
visited are retrieved and stored into UP. The next line retrieves the k nearest
visitor sessions using the distance metric DM. The forEach loop which follows
calculates how many of the k nearest sessions visited the unvisited page and
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| || Web site pages |
| Sessions || Py | Py | P3 | Py | Ps | Ps |

St 1]0J]O0]1]1]1
S 11 ]1]0]0]0
S3 10 |1]1]0]0
S, 1[0]0]0]1]1

Table 5.2: An example of a simple session matrix.

recommends the page to the current visitor if that percentage is above the pre-
defined threshold. This is done for each page which is not yet visited by the
given visitor.

The value which determines the interestingness of the page is easy to calcu-
late as it is the percentage of sessions which accessed the page, i.e. the number
of sessions which accessed the page divided by the total number of sessions
which is in this case k as only k sessions are considered. This interestingness is
the popularity of the page among the k nearest sessions. Note that the way of
selecting the most interesting page resembles much to the most frequent-item
recommendation techniques which we saw in section 4.3.3.2 of chapter 4. Both
techniques select the pages or items which are frequented the most by the k
nearest sessions.

The recommendation process only considers pages which are not yet visited
by the user in the current session. This is an obvious choice as we would oth-
erwise recommend the same visited pages multiple times throughout one session.

Notice also that we are talking about pages and not about nodes. When we
will discuss the algorithm expressed in ASL however, we will talk about rec-
ommending nodes because links in WSDM are between nodes and not between
pages. Because we don’t want to narrow this technique down to the context of
WSDM we will, for now, talk about recommending pages which is more general.

5.3.1.2 Using the KNN algorithm to determine interesting pages

This section explains some aspects of the algorithm more in detail and shows
how it works using an example. First we need to clarify an important aspect:
which metric is used to determine the distance between two sessions?

The distance metric is the most important aspect of the algorithm as it
resolves which sessions will be used to make recommendations. The goal is to
identify sessions which are most similar to the current session. Because we want
to keep the session data simple and small, the same simple session matrix as the
one that was shown earlier on in table 5.2 will be used. The fact that we use
such a simple session data format, diminishes the number of ways of comparing
sessions to each other somewhat. We can not, for example, use the time visitors
spent on pages to compare sessions against each other. We can only use the
information that a page is visited or unvisited within a session. This leads us to
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an uncomplicated distance metric which places visitors which have visited the
same pages close together. The following pseudo-code shows how the chosen
distance metric works:

MEASURE_DISTANCE(S1, S2)
VP = get pages visited by S1
d=20
For each wp in VP do:
If vp is not visited by S2
d=d4d+1
Return d / LENGTH(VP)

This function is the DM argument of the k nearest neighbour link recommen-
dation algorithm and computes the distance by taking two sessions as input
arguments and outputting the distance between these two sessions. These ses-
sion arguments can be seen as the rows of a session matrix like the one we saw
earlier on. Note that the first argument needs to be the target session, the
one for which we want to recommend pages. This is important because, for
the computation of the distance, we are only interested in the pages which the
current visitor has visited. If this current visitor has visited 3 pages so far and
its session is compared to an old session in which 15 pages were visited, we are
only interested in whether the old session visited these same 3 pages too. In the
other case, when the old session would be the first argument, we would check
if these 15 pages have been visited by the target session. This can only lead to
a low distance because only 3 of these 15 pages can possibly have been visited.
Therefore, the order of the arguments is very important for this function.

On the first line of the body of the function, all the pages visited by the first
session are retrieved. Then, the distance is initialized using the variable d to
store this value. On line three to five, a forEach construct computes the distance
between the sessions. For each page that is visited during the first session, we
test if it is also visited in the second session. If this is not the case, the distance
is increased. When the forEach construct ends, the distance is returned and
divided by the number of pages which are compared in the forFach construct.
This way the distance will always be between 0 and 1. Sessions which visited
exactly the same pages as the first session will get 0 as distance and sessions
which have no visited pages in common will have 1 as session distance.

When the proposed distance metric is used, it is easy to retrieve the k nearest
sessions by selecting the k sessions with the smallest distance to the target
session. These k nearest sessions are then used to determine the page popularity
(or interestingness) for each page which is not yet visited in the current session.
We will again use pseudo-code to show how this popularity is determined. The
function which calculates this popularity is as follows:

MEASURE_POPULARITY(p, KNS)
pop = 0
For each s in KNS do:
If p is visited by s
pop = pop + 1
Return pop / LENGTH(KNS)
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The two input arguments of this function are the page p and the session data
matrix KNS containing the k nearest sessions. What we are interested in, is
the popularity of this page among these k sessions. We measure this popularity
simply by counting the number of sessions which visited p and dividing this
number by the number of sessions, which is the k value. The first line of the
function initializes the pop variable which is then incremented each time a ses-
sion visited the page in the next three lines. The last statement returns the
popularity but divides it by the total number of sessions first. A page which is
visited by all sessions will get a popularity of 1 and a page which is visited by
none of the sessions will get a popularity of 0.

We now have all ingredients for this algorithm. During the design of the
algorithm, two important choices were made:

1. How are the k nearest sessions selected, or which distance metric is used?

2. How is the popularity of pages in these k nearest sessions determined?

We have chosen for very simple answers to these questions. There are many
other plausible answers which will give good results. The goal of this dissertation
is however not to find the best answer because there is simply not enough time
and space to test all possible combinations of answers. That’s why we opted
for two simple answers which are solid enough to achieve the real goal of this
dissertation: incorporating link recommendation techniques into WSDM.

Example of a popularity computation

We will now show how this algorithm works in practice using an example. The
purpose of the example is not to evaluate the k nearest neighbour link recom-
mendation algorithm but only to give the reader a chance to better grasp the
technical side of the algorithm. This is why we opted for an imaginary web site
and imaginary visitor sessions. Because less is more in this case (less data to
absorb will result in a higher comprehensibility), the size of the web site is very
small (i.e. there are few pages in the web site) and the number of sessions is also
very low. A map of this non-existing web site can be seen on figure 5.2. This is
a simple web site of an imaginary musical trio called “The Recommenders”. The
web site of “The Recommenders”, for simplicity, only contains typical basic in-
formation about their musical career. Note that this web site is not constructed
using WSDM because the design method used to design this web site is not
relevant for clarifying this algorithm.

As can be seen on figure 5.2, there are 12 pages represented by rectangles.
The edges between the pages are the links between pages. To have a shorter
reference to each of the pages, they are labelled by the diamonds in the top left
corner of each rectangle.The labels of the pages will now be used in the session
data table. Table 5.3 shows some session data for 9 visitor sessions. For each
session, we can see which pages are visited and which are not. Visited pages are
checked, unvisited pages are obviously unchecked. The last session, session 9,
will be used to demonstrate the popularities of the unvisited pages are computed.
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Figure 5.2: Map of the web site of “The Recommenders”.

| || Web site pages |
|Sessi0ns||HP|N|B|D|P|T|BJ|BM|BP|PJ|PM|PP|

1 vV  VIVIY v Vv

2 i i v

3 VR VAR v

4 vV IVIVIVIVIY v |V v |V

5 Vv v

6 vV VIV VvV v |V v

7 VR VAR, VIV ]V

8 vV VIV Vv vV |V v |V
L9 IvivIvI?[vIz[?r ][ 2 [2][2]?]7]

Table 5.3: The session data for the web site of the “The Recommenders”

We will demonstrate the algorithm by computing the page popularity of
the “Tour” page for session 9. For the other pages, we will just give the result
of this computation and replace the question marks in the table below by their
respective values. Note that these sessions all entered the web site via the “Home
Page” page and that the table thus not includes sessions which entered the web
site using search engines or bookmarked pages for example. This is a minor
simplification that doesn’t have any effects on the computation whatsoever.

The value of k is the first thing we need to choose. Because the number of
available sessions is small, we will choose a small k value: 4. Now that we have
set this value it’s time to measure the session distance of session 9 to each of the
other 8 sessions. Four pages are already visited in the ninth session: the “Home
Page, “News”, “Biography” and the “Photography” page. To measure the session
distance of session 9 to the others, we have to test which of these other sessions
visited these pages too and compute the distance using the metric we have seen.

The session distance to session 9 for all other sessions can be seen in the last
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| || Web site pages || Distance |
| Sessions || HP | N | B | P || To session 9 |

1 NARVARY 0.25
2 V v 0.50
3 VARV V 0.25
4 vV |V Vi 0
5 V 0.75
6 vV IVIVIY 0
7 VARV v 0.25
8 VI IVIVIY 0

Table 5.4: The session distances to session 9.

column of table 5.4. Only the columns of the relevant pages are shown in this
table so that it’s not overloaded with the redundant information of the other
pages. The distance of session 1 to session 9, for example, can be computed as
follows: only the “Photography” page is not visited in this session and thus is
the session distance 1 divided by the number of pages which is 4. This results
in a distance of 0.25.

Selecting the 4 nearest neighbour sessions is now quite easy using table 5.4.
Sessions 4, 6 and 8 have a session distance of 0 and have thus each visited all
the pages which are visited by session 9. For the fourth nearest session we have
three sessions with the same session distance: session 1, 3 or 7. The distance
metric does not really provide a solution for choosing a session out of these three
sessions. The algorithm simply sorts the sessions using the session distance from
0 to 1 into a list and then takes the first k£ sessions. When there are multiple
sessions left with same session distance, the choice among these sessions is at
random. Keeping in mind that the we have to select one of the three sessions
at random we will select session 7 at random. The four nearest sessions which
will be used in this example are therefore session 4, 6, 7 and 8.

Now that the 4 nearest sessions have been selected, our next task is to
compute the popularity of the “Tour” page. To compute this popularity we only
have to look up in table 5.3 which sessions visited the “Tour” page and divide
this number by the total number of sessions. In table 5.3, we can see that the
“Tour” page has been visited during session 4, 6 and 7 but not during session 8.
This leads to a popularity of 75% as 3 out of the 4 sessions visited the “Tour”
page. Doing this for all other pages which are not yet visited by the ninth
session we get the page popularities listed in table 5.5. This table only shows
the 4 nearest sessions which have been used to determine the popularity of the
pages. The popularity of each page can be easily verified by counting in each
column the number of cells that are checked and by dividing this number by 4.

To emphasize the impact of the value of k, table 5.6 shows the page popu-
larities when we only consider the three nearest neighbours for determining the
page popularity. This gives slightly different values for the page popularities.
In this case, the difference is not really big but when thousands of sessions are
available, the choice between a k value of 20 and a k value of 100 can lead to
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| || Web site pages |
|Sessi0ns||HP|N|B|D|P|T|BJ|BM|BP|PJ|PM|PP|

4 VIVIVIVIVIY vV |V vV |V
6 vV VIV VIiV]V vV |V v
7 vV |V VAR VI iV |V
8 vV IVIY v vV [V vV |V
5 |V IVIVI%]/]75]2%]50]7 [50]7 0]

Table 5.5: The session data extended with page popularities for k=4.

| || Web site pages |
| Sessions |[HP [N [B | D |P | T |[BJ[BM | BP [PJ[PM | PP |

4 VI IVIVIVIVIY VY VY
6 vV IVIY VIV vV IV A
8 vV IVIV v V1V V1V
9 [T VvIvIv]3]y]66]33] 66 [100]33] 66 | 100 ]

Table 5.6: The session data extended with page popularities for k=3.

very distinctive page popularity values. Determining a suitable k value is a very
difficult task. We will return to this subject in section 5.3.1.4.

5.3.1.3 The algorithm expressed in ASL

In this section we will express the k nearest neighbour link recommendation
algorithm in ASL. The algorithm itself will be implemented as a script which
can then be used in an adaptation policy. Recall from the pseudo-code that
the algorithm takes the distance metric as an input argument. An advantage
of taking the distance metric as an input argument is that it can be changed
independently of the algorithm. A minor drawback is that the distance metric
needs to specified outside of the algorithm to make the algorithm work.

Before we can discuss the algorithm, we have to set up a tracking variable
which monitors the accesses of a session to a node. We will use the accesses
tracking variable which we already defined in section 5.2.2:

forEach node in Nodes:
begin
addTrackingVariable node.accesses;
monitor load on node
do begin
currentSession := currentSession();
node[currentSession].accesses :=
node[currentSession].accesses + 1
end
end

The problem with ASL is that it is not possible to write a function which mea-
sures the distance between sessions. A script could be used to measure the
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distance between sessions but scripts can not return values. A solution for this
problem is the use of a session tracking variable which holds the distance be-
tween a session and the other sessions. Every time that a session loads a new
node, the session distance from that session to all other sessions is computed.
By computing the distance only when nodes are loaded, the distance is only up-
dated for active sessions. This session distance tracking variable is not needed
for terminated sessions because these sessions obviously do not require any rec-
ommendations anymore. The ASL code shown in algorithm 1 creates a tracking
variable and monitor which updates the session distance for the active sessions.

The script shown in algorithm 1 can be explained as follows:
e Line 1: the algorithm is declared with as name trackSessionDistance.

e Line 3 to 7: a tracking variable called sessionDistance is added for each
new session which starts. The currentSession function returns the started
session as it is bound to the monitored session.

e Line 9 to 29: these lines specify what happens when a node is loaded
within a session. Whenever a node is loaded within a session (line 8), this
code is executed.

o Line 10: the output of the currentSession function is assigned to a
variable in order to avoid calling the currentSession function more
then once.

o Line 11 to 16: all the nodes which are visited in the session which
loaded the node are collected. The browsing history of this visitor
is thus constructed and maintained in the list of visited nodes. It
is quite straightforward how this happens: a node which is accessed
once or multiple times is added to this list.

o Line 17: initializes a variable that holds of the number of visited
nodes by the given session.

o Line 18 to 28: this forEach construct computes the session distance
to all other sessions.

o Line 20: the variable countPages is initialized. This variable
will hold the number of pages that are also visited by the session
to which the current one is compared.

o Line 21 to 25: the computation of the value of the countPages
variable happens in this forEach construct. These lines increase
the value of the countPages variable for each node which isn’t
accessed (lines 23-24).

o Line 26: the countPages variable is divided by the number of
visited nodes and is assigned to the distance variable. This vari-
able now holds the distance between the two compared sessions.

o Line 27: assigns the value of the distance variable to the ses-
sionDistance tracking variable from session currentSession to
session s.

This distance metric script should be loaded in the main ASL script which will
also load the k nearest neighbour link recommendation algorithm. The following
code enables the execution of the distance metric algorithm:
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Algorithm 1 The distance metric script.
1: script trackSessionDistance():

2: begin
3: monitor sessionStart
4: do begin
5: currentSession := currentSession();
6: addTrackingVariable currentSession.sessionDistance;
7: end;
8: monitor load on node
9: do begin
10: currentSession := currentSession();
11: visitedNodes := {};
12: forEach n in Nodes:
13: begin
14: if n[currentSession].accesses > 0
15: then visitedNodes := visitedNodes + {n}
16: end;
17: numberOfVisitedNodes := length(visitedNodes);
18: forEach s in Sessions:
19: begin
20: countPages := 0;
21: forEach visitedNode in VisitedNodes:
22: begin
23: if visitedNode[s].accesses = 0
24: then countPages := countPages + 1
25: end;
26: distance := countPages / numberOfVisitedNodes;
27: currentSession[s].sessionDistance := distance;
28: end
29: end
30: end

call trackSessionDistance()

We can change the body of algorithm 1 easily without changing the k nearest
neighbour link recommendation algorithm. This is the strength of separating
the distance metric from the rest of the code of the algorithm. Another advan-
tage is that the distance metric can also be reused by any other algorithm which
needs this distance between sessions.

Now it’s time to move to the k nearest neighbour link recommendation algo-
rithm itself which can be seen on algorithm 2. The algorithm is implemented as
a script with as name KNNLinkRecommendations. The script will be executed
each time a node is loaded so that link recommendations are generated for each
node visit. This is done as follows:

forEach node in Nodes:
monitor load on node
do call KNNLinkRecommendations(10, 0.50)

The code of the k nearest neighbour link recommendation algorithm can be
explained as follows:
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Algorithm 2 The k nearest neighbour link recommendation algorithm.
1: script KNNLinkRecommendations(k, threshold):

2: begin

3: currentSession := currentSession();

4: clearSessionLinks(navigationAid, currentSession);

5: visitedNodes := {};

6: forEach n in Nodes:

7: begin

8: if n[currentSession].accesses > 0

9: then visitedNodes := visitedNodes + {n}
10: end;
11: numberOfVisitedNodes := length(visitedNodes);
12: sortedSessions := Sessions[SORT on element :
13: currentSession[element].sessionDistance];
14: KNearestSessions := subset(sortedSessions, 1, k);
15: unvisitedNodes := Nodes DIFFERENCE visitedNodes;
16: forEach u in unvisitedNodes:

17: begin

18: popularity := 0;

19: forEach s in KNearestSessions:
20: begin
21: if u[s].accesses > 0
22: then popularity:= popularity + 1
23: end;

24: popularity := popularity / k;

25: if popularity > threshold

26: then addSessionLink(nA, currentSession, currentNode(), u)
27: end

28: end

e Line 1: the algorithm is defined as a script which takes the value of £ and
the threshold value as input arguments. This threshold value determines
when a node should be recommended: a session link to this node will be
created when the popularity of the node is larger than this threshold value.
Note that the pseudo-code required five input arguments in contrast to
the two input arguments of the ASL version. The reason why is because
the distance metric, session data and nodes in the web site are already
available in ASL.

e Line 3: stores the output of the currentSession function into a variable.

e Line 4: indicates that all navigation aid session links (which are the link
recommendations) belonging to the visitor session which invoked the node
load should be cleared. To clarify why this operation is necessary consider
the following example scenario of a visitor session on the web site of “The
Recommenders”™

1. A visitor enters the web site via the “Home Page” page.

2. He accesses the “Biography” page and gets “Bio Paul” page as rec-
ommendation.

3. He loads that “Bio Paul” page.
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4. He returns to the “Biography” page.

When the recommendations which the visitor received at the second step
at the “Biography” page would not be cleared, he would get again the
“Bio Paul” page as a recommendation. Therefore this recommendation
or session link should be cleared, which goes for all other session links
too. Even when there is a session link to a page which is not yet visited,
the probability would not match the current probability as the browsing
history has changed due to the fact that the “Bio Paul” page was visited.
This explains the necessity of the clearSessionLinks operation.

e Line 5 to 11: these lines are exactly the same as lines 11 to 17 of al-
gorithm 1, the distance metric script. During these lines, all the visited
nodes are fetched.

e Line 12 and 13: all the available sessions are sorted according to the
distance of the current session to these sessions. This sort operation relies
on the sessionDistance tracking variable which has to be initialized before
the execution of this code. The result of this sort operation is the same
set of sessions but this time sorted ascending according to the value of
the sessionDistance tracking variable. This result is then stored into the
sortedSessions variable on the same line.

e Line 14: now that we have sorted the sessions according to their distance
to the current session, we have to select the k sessions with the smallest
distance. Retrieving these k sessions can be done by using the subset
set creator which will take the first k£ elements of the sortedSessions set.
This set is then stored into KNearestSession variable which we will use to
calculate the page popularities in the remainder of the algorithm.

e Line 15: all the nodes which are not yet visited in the current session are
retrieved and stored in the unvisitedNodes variable.

e Line 16 to 27: this forFach construct computes the page popularities
for each of the unvisited nodes retrieved on line 15.

o Line 18 to 24: these lines are the ASL version of the pseudo-code
function MEASURE POPULARITY which we saw earlier on. The
popularity is calculated by testing for each session (line 19) if it has
visited the node (line 21) and by increasing the popularity (line 22)
when the test is passed. When this is done for all sessions, the pop-
ularity is divided by the number of sessions which is &k (line 24).

o Line 25 and 26: the last thing which happens is checking whether
the page popularity is larger than the threshold (line 25). When this
condition is met, a navigation aid session link is added to the unvis-
ited node u and is therefore recommended (line 26). For esthetical
reasons we have abbreviated navigationAid as nA on line 26, oth-
erwise the line would be spread over 2 lines of code. Note that the
currentNode function returns the loaded node that evoked the exe-
cution of the script.
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Algorithm 3 The main adaptation specification calling both scripts.
1: when initialization do

2: begin

3: forEach node in Nodes:

4: begin

5: addTrackingVariable node.accesses;

6: monitor load on node

7: do begin

8: currentSession := currentSession();
9: node[currentSession].accesses 1=

10: node[currentSession].accesses + 1
11: end

12: end;

13: call trackSessionDistance();

14: forEach node in Nodes:

15: monitor load on node

16: do call KNNLinkRecommendationScript(10, 0.50)
17:  end

Algorithm 3 shows how both algorithms should be called in the main ASL script
which is a script on the web site server that can be run by the administrator.
Note that this is not a real script but an adaptation policy which triggers the
execution of the other algorithms. Both scripts should be inserted before this
adaptation specification. This adaptation specification first sets up the tracking
variable for the node accesses, then calls the trackSessionDistance script and fi-
nally monitors every node and calls the KNNLinkRecommendations script when
a node is loaded.

5.3.1.4 Analysis and extensions

Having described the k nearest neighbour link recommendation algorithm in
detail, its nature will be discussed in this section. This includes an analysis
of its complexity and a description of possible changes and extensions to the
algorithm.

Our analysis starts with determining the time complexity of the algorithm.
Time complexity is the amount of computer time or number of steps a program
needs to run. This complexity is usually described using big-O notation which
expresses a proportional upper bound on the running time. More detailed in-
formation about complexity can be found in [22].

The complexity of the trackSessionDistance script is O(N) + O(S-VN)
where N is the number of nodes in the web site, S is the number of sessions and
VN the number of visited nodes. O(N) is the complexity of the forEach loop
from lines 12 to 16 and O(S-VN) is the complexity of the forEach loop from
lines 18 to 28. Taking in account the additive property of complexity which
says that the complexity of two statements is the larger complexity makes that
the total complexity is max(O(N), O(S-VN)). Because the number of sessions
will be many times larger than the number of nodes in the session, the total
complexity is O(S- VN). The worst case upper bound for this complexity is thus
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O(S-N) as a user can at most visit N nodes. When the number of available
sessions is high, this can be a very time consuming operation.

A way to reduce the complexity of the script is by computing the session
distance to the last z! sessions. Because the Sessions set is sorted sequentially,
this can be done as follows:

numberOfSessions := length(Sessions);
lastXSessions := subset(Sessions, numberOfSessions - x,
numberOfSessions);

These lines can be inserted at the begin of the script and z can be added as an
input argument of the script. The Sessions set on line 18 should also be replaced
with the lastXSessions set. Note that we have to include the same lines and
use the same z value for the KNNLinkRecommendations script. Otherwise the
script would try to retrieve the session distance to sessions for which this session
distance has not been computed. The complexity is now reduced to O(X-N).
It’s obvious that the value of z should be still high enough, for example a tenth
of the number of total sessions. A result of this new approach is that drifting
user interests can be detected faster. The reason why is because it only con-
siders the last z sessions and discards all older sessions. When visitors tend
to visit certain nodes more during the last z sessions than in the past, these
nodes will get a higher popularity when only these last z sessions are considered.

Another way to reduce the number of sessions is by only tracking the session
distance to sessions with the same audience class. It can not only reduce the
computational time but also the quality of the link recommendations as it con-
siders only sessions with the same audience class as the session which gave rise
to the execution of the script. This is an improvement of the quality because in
WSDM, visitors with the same audience class are considered to be alike. The
ASL code for this extension is as follows:

forEach session in Sessions:
begin
if audienceClass(session) = currentAudienceClass()
then audienceClassSessions := audienceClassSessions + session
end;

These lines should be added to both scripts and the audienceClassSessions set
should be used instead of the Sessions set. Another possible change is to take
into account the number of nodes a session visited for the computation of the
session distance. This way, sessions which visited more nodes can be placed
closer to the target session. This can be done by multiplying the session dis-
tance by the number of nodes accessed by the session to which the target session
is compared to.

Let us now analyze the complexity of the KNNLinkRecommendations script.
This complexity is O(N) + O(S-Log S) + O(K-UN). O(N) is the complexity of

INote that z should always be larger than k. Otherwise it is not possible to select k
sessions.
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the first forFach loop from lines 6 to 10. O(S-Log S) is the worst case complex-
ity of the sort operation which can be achieved using a merge sort algorithm.
O(K-UN) is the complexity of the forEach loop from line 16 to line 28, where
K is the k value and UN denotes the number of unvisited nodes. A worst case
upper bound for this complexity is O(K-N). All other statements and opera-
tions have a complexity of O(1) and therefore don’t need to be considered. We
can also eliminate O(N) which is certainly smaller than the other complexities.
The largest complexity is dependent on the size of the web site. O(S-Log S)
will be the largest complexity for a web site with thousands of visitors each day.
When the value of £ is large, for example half of the number of sessions, and
there are many nodes in the web site, O(K-N) will be the largest complexity.
We can now use this knowledge to improve the performance of the algorithm.

As we’ve already discussed for the trackSessionDistance script, the complex-
ity of the algorithm can be improved by only considering the last z sessions or
by only considering sessions with the same audience class as the given visitor.
Instead of cutting down the size of the Sessions set, we can also shrink the
size of the unvisited nodes set by only considering nodes which belong to the
audience class of the visitor. The following code shows how this can be done:

unvisitedNodesInAC := {};
forEach u in unvisitedNodes:
begin
if audienceClass(u) = currentAudienceClass()
then unvisitedNodesInAC := unvisitedNodesInAC + u
end;

This code should be inserted after line 15 and the unvisitedNodes set should be
replaced by the unvisitedNodesInAC set on line 16. Using this code, only nodes
within the audience class of the user will be recommended. This narrows down
his navigation space and can be seen as an exploitation strategy which exploits
the fact that the user belongs to an audience class, i.e. no nodes belonging to
an other audience class can be recommended.

So far, the main drive for the modifications was to reduce the computa-
tion of the algorithm. In addition to these computational improvements, we
can also take the quality of the link recommendations as a starting point for
improvements. A possible change which will improve the quality of link recom-
mendations is to only start the recommendation process when a certain number
of nodes have been visited. By doing this, we avoid generating the general rec-
ommendations which a visitor receives during the first few nodes he accesses.
These recommendations at the begin of a session are mostly the most popular
nodes on the web site and could lead the visitor to the information for which
he is not looking for. To implement this, lines 13 to 15 in algorithm 3 should
be replaced by the following code:

forEach node in Nodes:
monitor load on node
do begin
accesses := 0;
currentSession := currentSession();
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forEach node in Nodes:

begin
if node[currentSession].accesses > 1
then accesses := accesses + 1
end;

if accesses > 5
then call KNNLinkRecommendationScript(10, 0.50)
end

When a node is loaded, the above code first tests if the number of nodes ac-
cessed in the session which loaded the node is greater than 5, and only calls the
KNNLinkRecommendations script when this test is passed.

Another extension which will be discussed is a change in the popularity
computation. Until now, we have ignored the distance from the nodes to each
other. With distance, we mean the minimal number of links which need to be
traversed in order to reach a node. Do we want link recommendations to nodes
which are located far from the current node or which are just a few clicks away?
There is no real standard answer to this question, it all depends on what kind of
recommendations we want to offer. Nodes which are located further will prob-
ably be less related to the current node than the nodes which lie closer to the
current node. It’s a difficult choice for the designer to answer this question for
all visitors. Some visitors like to discover new subjects while others are more
conservative and are only interested in closely related nodes. The best choice
would therefore be to let the visitor decide individually about the kind of link
recommendations he wants.

In practice, we need a new ASL native function which measures the distance
between nodes. This distance can then be multiplied by the popularity to give a
higher popularity to more distant nodes. By multiplying the popularity with the
inverse of the distance, the opposite can be achieved (i.e. neighbour nodes will
get a higher popularity then nodes which lie far away). Note that this distance
has to be between 0 and 1, otherwise we will get popularities which are larger
than 1. We will not include any ASL code as it is clear that the popularity only
needs to be multiplied with the distance or the inverse of the distance between
the two nodes.

A pure visual enhancement is to add a tracking variable to a session link
holding the popularity of the target node of that session link. This tracking
variable can then be used to adaptively sort the session links according to the
popularity. This can be done by replacing lines 25 and 26 by the following code:

if popularity > threshold
then begin
addSessionLink(navigationAid, currentSession, currentNode(), u)
as newSessionLink
addTrackingVariable newSessionLink.popularity
initialized on popularity
end

To conclude the analysis of the algorithm, we discuss how the values of both in-
put arguments influence the generated link recommendations. The value of the
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first input argument, which is k, heavily depends on the web site traffic. When
there are thousands of visitors each day, k should be set larger than when there
are only hundred visitors each day. A good guideline to set the value of k is
to fix it to some percentage of the average number of visitors each day. When
doing so, we still have to decide to which percentage it should be set. A large
percentage will lead to more general recommendation whereas a small percent-
age will lead to more specific recommendations. This is because, for a small
percentage, only the visitors which are the most similar are considered. When
lots of visitors are considered, there will be many visitors which are not at all
similar to the current visitor. The value of k should therefore be chosen carefully
depending on what kind of recommendations the designer wants to offer.

The second input argument, which is threshold value, determines how pop-
ular a node should be in order that it will be recommended. A low threshold
value results in many link recommendations to less popular nodes while a high
threshold value results in recommending less but more popular nodes. This is
another choice the designer should make. It’s advisable to set this threshold
value not to low as this would lead to many link recommendations including
links to less relevant nodes. Many link recommendations can also overwhelm
the visitor with too many choices which is not what we want.

5.3.2 Link Recommendations using Bayes’ Theorem
5.3.2.1 Introduction

The second link recommendation technique which will be proposed makes use
of Bayes’ Theorem. In chapter 3, we already discussed Bayes’ Theorem and
showed that it can be used to calculate the probability that a certain hypothe-
sis holds.

Instead of computing the popularity of pages like in the previous algorithm,
we will calculate the probability that a certain page is interesting for a visitor.
For each page in the web site which the visitor has not yet viewed, we will try
to determine its interestingness by taking into account the pages the visitor al-
ready visited. Bayes’ Theorem will be used to determine this interestingness by
calculating the posterior probability P(up/up) that a visitor will view an unseen
page up given the pages vp he has already visited. Note that vp is a set of pages
and is thus a conjunction of all the pages which the current visitor already vis-
ited. In the next section, we will see how P(upfvp) is computed.

The following pseudo-code briefly sums up the algorithm which we will call
the Bayesian link recommendation algorithm:

FETCH_INTERESTING_LINKS(WSP, t, S)
VP = get visited pages of current session using S
UP = {WSP / VP}
For each up in UP do:
Calculate p = P(up |VP) using Bayes’ Theorem
Ifp>t
Recommend up
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The three input arguments are the same as the first three arguments of the
previous algorithm: WSP contains the set of all pages in the web site, ¢ is the
threshold that should be reached to recommend a page to the visitor and S
contains all session information. The format of this session information is the
same as for the previous algorithm. The first two lines are the same as for the
k nearest neighbour link recommendation algorithm: they compute the set of
visited pages. This retrieved set of visited pages is stored in VP which is then
used for the computing the interestingness of all pages the visitor has not yet
visited. This set of unvisited pages is stored in UP. The next two lines calculate
the posterior probability p for each unseen page up in the set of unseen pages
using Bayes’ Theorem. When the probability of an unseen page is larger then
the threshold, the page is recommended to the visitor. Note that the session
data S is also used for the calculation of the posterior probability by Bayes’
Theorem as we will see in a short while.

The above pseudo-code is an over-simplified version of the algorithm as it
doesn’t specify how the probabilities are calculated and merely shows the base
structure of the algorithm. This pseudo-code shows that this base structure is
very simple and that all of the computation lies within the calculation of the
probabilities using Bayes’ Theorem. Hence, all our concentration will be focused
on the calculation of the page view probabilities using Bayes’ Theorem in the
next section.

5.3.2.2 Using Bayes’ Theorem to calculate page view probabilities

In this section we will show how Bayes’ Theorem can be used to calculate page
view probabilities which will be used as an indication of the interestingness of
pages. The technique which we will describe is a memory-based collaborative
recommendation technique in the sense that it uses the session data of previous
visitors stored in memory to calculate the interestingness of pages.

In the introduction, we already mentioned that we will calculate the posterior
probability P(up/vp) using Bayes’ Theorem. This posterior probability can be
written more precisely as follows:

P(uplvp) = P(uplvpr Avpz A ... Avpn) (5.1)

This expresses the probability that the unvisited page up will be visited given
the set of visited pages (vp1 A vp2 A ... A vp,). Notice that we use vp as a
shorthand notation for this set of visited pages. Using the formula of Bayes’
Theorem, the posterior probability can be calculated in the following manner:

P(uplop) = P(uplvpt Avp2 A ... Avpn)
_ P(vp1 Avpa A ... Avpy|up) - P(up) (5.2)
P(vpy Avpa A ... Avpy) '

To compute of the posterior probability P(up/up), we have to estimate the fol-
lowing three probabilities:

1. P(vp1 Awvps A ... A vpp|up) which is the probability that the pages vpy A
vpa A ... A vp, will be visited given the fact that page up is visited.
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2. P(up) which is the prior probability that page up will be visited.

3. P(vp1 A wpa A ... A vp,) which is the prior probability that the pages
vp1 A vps A ... A vp, are visited together.

Once we know these three probabilities, we know the posterior probability. The
last two probabilities are fairly easy to compute using the available session data
and therefore we will start with explaining how they are computed before we
take on the first probability.

The prior probability P(up) expresses the probability that this page will be
visited by a user who visits the web site. For the home page of a web site,
this probability will be very high as almost all users enter a web site via its
home page. Other pages which are buried deep in the web site will be visited
rarely and have an accordingly low probability. How can this probability be
computed? The answer is simple: count by how many visitor sessions the page
was accessed and divided this number by the total number of visitor sessions.
This gives the percentage of sessions in which the given page was accessed. If a
page is accessed in all previous sessions, we may conclude that the probability
that the page will be accessed in the new session is 100%. More formally, we
get:

Plup) count(sessions which visited up) (5.3)
up) = .
P count(sessions)

The next prior probability is a little bit harder to compute as several pages
are involved in the computation. The computation is however similar to the
previous one. To estimate this probability, we count the number of sessions
in which these pages are accessed together and divide this number again by
the total number of visitor sessions. This will result in lower probabilities and
serves as the normalization factor for the posterior probability. This leads to
the following “formula’

P(vp) = P(up1 Avpa A ... ANupy,)
count(sessions which visited all pages in vp)

= 5.4
count(sessions) (54)

The first probability in the above list is the hardest one to compute. To compute
the probability P(vp; A vpa A ... A vp,|up), which is also called the likelihood,
we will assume that page visits are independent of each other. This is the same
naive assumption which we used for the Naive Bayesian Classifier in chapter 3.
It’s clear that this is a false assumption as page visits are definitely related to
each other. Each page which a user visits is dependent on the current page as he
can only visit the pages which are reachable from the current page (i.e. for which
a link exists from the current page). We already mentioned in chapter 3 that
although this naive assumption often doesn’t hold, it gives good results. Using
this naive assumption, calculating the probability P(vp; Avpa A ... Avp,|up) can
now be written as:

P(vpy Avpa A ... Nvpplup) = P(upi|up) - Pups|up) - ... - P(vpn|up)(5.5)
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The calculation is therefore reduced to finding a good estimator of P(vp,|up)
or the probability that page vp, will be visited given that page up is visited.
We can use the available session data to estimate this value as follows:

count(sessions which visited both vp, and up)

(vpe|up) count(sessions which visited up) (56)

We have now gathered all probabilities needed to compute P(upfvp). They are
all based on evidence, the available session data, which is then used to make a
prediction about an unvisited page in the web site.

Example of a posterior probability computation

To give a deeper insight in how the posterior probability is computed in practice
we will now give a simple example. We will again use the web site of “The Rec-
ommenders” and its session data to illustrate the computation of the posterior
probability. The posterior probability will be computed in detail for the “Tour”
page of the web site.

For the computation of the posterior probability of the “Tour” page, we need
to take in account the pages which have already been visited by the user in the
current session. For the visitor of session 9 this are the “Home Page, “News”,
“Biography” and the “Photography” pages. We therefore need to compute the
probability that the “Tour” page will be visited given his browsing history (i.e.
the 4 notes already visited in this session). By substituting these pages into
equation 5.2 we get:

P(HP AN ABAP|T)- P(T)

P(T'THPANABAP) = PUHPANABAD)

To compute the posterior probability, we will first calculate the three proba-
bilities in the formula separately. We will start with the easiest one: P(T) or
the probability that the “Tour” page will be visited. Recall equation 5.3 which
calculates this probability:

count(sessions which visited T')

P(T) =

count(sessions)

When we substitute the available information we find in table 5.2, we can com-
pute the value of P(T) easily:

count(sessions which visited T')

P(T) =

count(sessions)

=No J I

5

The next probability which we will compute is P(HP A N A B A P) or the
probability that these 4 pages will be visited together in one session. The formula
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to compute this probability is as simple as the previous one. Substituting the
session information into equation 5.4 gives:

P(HPANABAP) = P(vp)

The last missing piece is the probability that these 4 pages will be visited given
the fact that the “Tour” page is already visited. Using the formula we have seen
to compute the probability P(HP A N A B A P|T'), which is equation 5.5, we
get:

P(HPANABAP|T) = P(HP|T)-P(N|T)-P(B|T)- P(P|T)

We can now use the formula P(vp,|up) to compute each of the 5 remaining
probabilities. We will only show how it is computed for the first one of the list
because it is always the same process. Computing P(H P|T) using equation 5.6
gives:

count(sessions which visited both HP and T')
count(sessions which visited T')

P(HP|T)

NN

Retrieving this info is simple: table 5.3 shows that there are 4 sessions which
have visited both the “Home Page” page and the “Tour” page. There are also 4
sessions which visited the “Tour” page and therefore every session that visited
the “Tour” page also visited the “Home Page” page. This make sense as we
stated earlier on that each visitor enters the web site via the “Home Page” page.
Doing the same for all other 4 probabilities we get the following values:

4

PINIT) = 5

=1

3

PBIT) = %
= 0.75

3

PPIT) = 5
= 0.75

Computing P(HP AN A B A P|T) is now easy:

P(HPANABAPIT) = 1-1-0.75-0.75 = 0.5625

We now have the values of all three probabilities needed to compute the posterior
probability, all we need to do is to substitute these values into Bayes’ Theorem.
That results in:
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| || Web site pages |
|Sessi0ns||HP|N|B|D|P|T|BJ|BM|BP|PJ|PM|PP|

T [V VIV /] [V v
2 |V v v
3 VAR VIV v
4 VIVIVIVIVIY vV |V vV |V
5 v v
6 VAR VIiVIV vV IV v
7 YR VAR VI Vv |V
8 VAR v vV IV vV IV
9 [ VIVIvI%|[J]m 5] 6 [100]3] 67 |83]

Table 5.7: The session data extended with posterior probabilities.

P(HP AN ABAP|T)-P(T)
P(HPANABAP)
0.5625 - 0.5

0.375
= 0.75

P(T'THPANANBAP) =

The probability that the “Tour” page will be visited given the 4 visited pages is
thus 75%. When we do the same for all other unvisited pages, we can replace
the question marks in table 5.3 with the posterior probabilities that these pages
will be visited. The session data for the web site of the “The Recommenders”
extended with the posterior probabilities expressed in percentages for each un-
visited page in the ninth session can be seen in table 5.7.

This table shows that the “Bio Paul” page gets a probability of 100% percent.
This is because the visitor sessions which also visited the same pages as the ninth
visitor session, all visited the “Bio Paul” page. We will examine the nature of
this algorithm more profoundly in section 5.3.2.4.

5.3.2.3 The algorithm expressed in ASL

In this section we will express the Bayesian link recommendation algorithm in
ASL. Because, in ASL, the algorithm operates on nodes and not on pages we
will talk about recommending nodes instead of pages just as for the previous
algorithm. We will adjust the formula of Bayes’ Theorem which we have seen
before because we consider nodes instead of pages. Therefore we will use un
and vn to denote unvisited and visited nodes respectively. The equation 5.2 is
now written as:

Plunjon) = P(vny Avng A ... Avnglun) - P(un) (5.7)
- P(vny Avng A ... Avny,) )

Just as for the previous algorithm, we need the accesses tracking variable along
with the semantic ASL extensions we proposed in section 5.2.2 to express the
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Algorithm 4 The Bayesian link recommendation algorithm.

1: script BayesianLinkRecommendations(threshold):

2: begin
3: currentSession := currentSession();
4: clearSessionLinks(navigationAid, currentSession);
5: visitedNodes := {};
6: forEach n in Nodes:
7: begin
8: if n[currentSession].accesses > 0
9: then visitedNodes := visitedNodes + {n};
10: end;
11: numberOfVisitedNodes := length(visitedNodes);
12: priorProbability := 0;
13: forEach s in Sessions:
14: begin
15: accessedNodes := 0;
16: forEach visitedNode in visitedNodes:
17: begin
18: if visitedNode[s].accesses > 0
19: then accessedNodes:= accessedNodes + 1
20: end;
21: if accessedNodes = numberOfVisitedNodes
22: then priorProbability := priorProbability + 1
23: end;
24: priorProbability := priorProbability / length(Sessions);
25: unvisitedNodes := Nodes DIFFERENCE visitedNodes;
26: forEach u in unvisitedNodes:
27: begin
28: P:=0;
29: PHu := 1;
30: countu := 0;
31: forEach s in Sessions:
32: begin
33: if u[s].accesses > 0
34: then countu := countu + 1
35: end;
36: Pu := countu / length(Sessions);
37: forEach v in visitedNodes:
38: begin
39: countvu := 0;
40: forEach s in Sessions:
41: begin
42: if (uls].accesses > 0) AND (v[s].accesses > 0)
43: then countvu := countvu + 1
44: end;
45: PHu := PHu * (countvu / countu);
46: end;
47: P := (PHu * Pu) / priorProbability;
48: if P > threshold
49: then addSessionLink(nA, currentSession, currentNode(), u)
50: end

51: end
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algorithm in ASL.

Algorithm 4 shows all the ASL code of the bayesian link recommendation
algorithm. This algorithm will be added as a runtime script to each node as
follows:

forEach node in Nodes:
monitor load on node
do call BayesianLinkRecommendations(0.50)

This means that every time when a node is loaded by a visitor, this script is
executed. As a result, the currentSession constant will be bound to the session
of the visitor who loaded the node and is therefore accessible from within the
script. This code should be put in the main ASL script. The ASL code of the
Bayesian link recommendation algorithm can be explained as follows:

e Line 1: the script is named BayesianLinkRecommendations and takes the
threshold value as an input argument.

e Line 3 to 11: these are exactly the same lines as in the k nearest neigh-
bour link recommendation algorithm. They mainly retrieve the nodes
visited in the session which loaded the node.

e Line 12 to 24: during these thirteen lines, the prior probability P(vni A
vng A ... Avny,) that all nodes in the browsing history are visited together
is computed and stored into the priorProbability variable. Recall from
section 5.3.2.2 that the prior probability can be calculated by counting
all sessions in which all these nodes are accessed together and by dividing
this number by the total number of sessions. The total number of sessions
is easy to retrieve in ASL by using the length operator on the Sessions
set. The other value, the number of sessions in which all these nodes are
accessed together, is a little bit harder to compute.

o Line 12: the prior probability is initially set to 0.

o Line 13 to 23: this forFach construct computes the number of
sessions in which all the nodes are accessed together. This is done
by iterating over the set of sessions and verifying for each session if
all nodes in the browsing history are also visited in that session.

o Line 16 to 20: these lines count how many nodes from the
browsing history are visited by the given session.

o Line 21 and 22: when the value of the accessedNodes variable
computed during line 16 to 20 is equal to the number of nodes
in this browsing history, the prior probability is increased.

o Line 24: the result of the forEach loop from line 13 to 23 which
is stored in the priorProbability variable is then divided by the total
number of sessions.

e Line 25: Before we can compute the posterior probabilities for the nodes
which are not yet visited, we have to retrieve this set of unvisited nodes.
As can be seen on this line, this is done using the DIFFERENCE operator
which takes the difference between all nodes in the web site and the visited
nodes.
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e Line 26 to 50: we now arrive at the main part of the algorithm which is
the computation of the posterior probabilities for each unvisited node. The
forEach construct computes the posterior probability for each unvisited
node (lines 27-46) and recommends the node if its probability is larger
than the threshold (lines 47-48) . Let’s first analyze how the posterior
probability is computed.

o Line 28 to 30: during these three lines, three variables are initial-
ized. The variable P denotes the posterior probability P(un|vn) of
the unvisited node and is set to 0. The next variable PHu is the
one which will hold the probability P(vnq Avng A ... Avnglun). The
countu variable will be used to hold the number of sessions which
accessed the unvisited node.

o Line 31 to 36: these lines computes the next probability which is
the prior probability P(un) that the node u will be visited.

o Line 31 to 35: this forFach loop computes the value of the
countu variable by testing for each session if the node u was
visited (line 33) and incrementing the countu value when this
test is passed (line 34). Using this variable, we can compute the
prior probability P(un).

¢ Line 36: the prior probability is computed by dividing the
countu variable by the total number of sessions and the result is
then stored in a new variable Pu.

o Line 37 to 46: so far, we have computed two probabilities: P(vnq A
vng A ... Avny,) and P(un). When we take a look at equation 5.7, we
see that we still need to compute P(vng Avng A ... Avny,|un). This is
what happens in this forFach construct. Recall that this probability
will be stored in the PHwu variable and that we will compute its
value using equation 5.5. This equation computes, for each node vn,,
the probability that it will be visited given the fact that node un is
visited. Multiplying these probabilities then gives the conditional
probability P(vny A vng A ... Avnylun). This is the reason why this
forEach construct iterates over every visited node.

¢ Line 39 to 44: for each visited node vn,, the number of sessions
that visited un and vn, together is calculated and stored into the
variable countvu.

¢ Lines 42 and 43: the countvu variable is increased whenever a
session accessed both nodes, un and vn,, together.

¢ Line 45: the value of the countvu variable is needed as the
numerator of equation 5.6. This equation computes the proba-
bility P(vng|un) by counting the number of sessions which ac-
cessed both nodes (the countvu variable computed on lines 39-
44) and by dividing this value by the number of sessions which
accessed un (the countu variable which was computed on lines
31-35). This is done on line 45. The result of the quotient com-
puted on the previous line is multiplied by the PHu variable and
stored into the PHu variable which represents the probability
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Algorithm 5 The main adaptation specification which loads the Bayesian link
recommendation algorithm.

1:

11:
12:
13:

0 ~NO O WN

when initialization do
begin
forEach node in Nodes:
begin
addTrackingVariable node.accesses;
monitor load on node
do node[currentSession()].accesses :=
node[currentSession()].accesses + 1
end;
forEach node in Nodes:
monitor load on node
do call BayesianLinkRecommendations(0.50)
end

P(vny Awvng A ... A vng|un). This probability is thus incremen-
tally computed: for each visited node vn,, P(vn,|un) is com-
puted and multiplied by the value of the PHu variable which is
initially 1. When the forEach loop ends, we have the correct
value of PHu.

o Line 47: we now have all three probabilities required to compute

the posterior probability. This posterior probability is then finally
assigned to P on this line using equation 5.7. When we replace the
probabilities in this equation with the variables used in algorithm 4
we get:

PHu - Pu
prior Probability

P =

This concludes the computation of our target posterior probability.

Line 48 and 49: the only thing left to do is to determine whether
the node un is interesting enough to be recommended. To do this,
its probability has to be compared with the threshold value and to
recommend the node when it is bigger than the threshold. This is
what happens on these lines which conclude the algorithm. Keep in
mind that this is done for every node which is not yet visited. For
the same esthetical reasons as for algorithm 2 we have abbreviated
the type of navigationAid as nA on line 49.

The main script which enables the algorithm can be seen on algorithm 5. This
code sets up the accesses tracking variable and the monitors which update the
tracking variable and call the Bayesian link recommendation script whenever a
node is loaded.

5.3.2.4

Analysis and extensions

Just as we did for the k nearest neighbour link recommendation algorithm, we
will now analyze the Bayesian link recommendation algorithm. We will also dis-
cuss how most of the extensions which we proposed for the k nearest neighbour
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link recommendation algorithm can be applied on the Bayesian link recommen-
dation algorithm.

We start this section with an analysis of the time complexity of the Bayesian
link recommendation algorithm. We will first determine the complexity of the
three main forFEach loops, all other statements used such as assignments and
functions have a complexity of O(1). The complexity of the first forEach loop
from lines 6 to 10 is O(N) where N is the number of nodes in the web site. The
second forFEach loop ranging from line 13 to line 23 has a complexity of O(S-VN)
where S is the number of sessions and VN the number of visited nodes. The last
forEach loop (lines 26-50) is largest one and includes two other forEach loops.
The first inner forEach loop (lines 31-35) has a complexity of O(S), the second
one has a complexity of O(S-VN) . Taking into account the additive rule for
sequential statements, the complexity of the body of the forFEach loop on lines
26 to 50 is max(O(S), O(S- VN)) which is obviously O(S- VN). This results in a
complexity of O(UN-S-VN) where UN is the number of unvisited nodes. This
is also the largest complexity of the three main forFEach loops and is thus the
total complexity, at least an upper bound on the running time of the algorithm.
We can even bring down the number of involved variables as follows:

UN-VN < g

[ wiz

The value of both UN and VN can be at most 5. This is the case when the
number visited and unvisited pages is equal. Whenever these values are un-

equal, the product of both values will be less than & - & The complexity is

2 2
therefore reduced to O(S-N 2) because the division by two is irrelevant for the
upper bound. This worst case upper bound means that the running of this algo-
rithm is more dependent on the number of nodes than the running time of the
k nearest neighbour link recommendation algorithm which was more dependent

on the number of sessions.

We will now discuss some extensions and changes which can reduce the run-
ning time of the algorithm and increase the quality of the offered link recom-
mendations. All the extensions which we proposed for the k nearest neighbour
link recommendation algorithm are also applicable on this algorithm. We will
not list the same code and advantages of these extensions again in this section
because that would be redundant. We will only discuss how the algorithm can
be extended with these changes.

In section 5.3.1.4, the following extensions were proposed:
1. Cutting down the number of sessions.

(a) By only considering the last z sessions.

(b) By only considering the sessions with the same audience class.

2. Cutting down the number of recommendable nodes by only considering
nodes which lie in the audience class of the visitor.
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3. Suspending the recommendation process until a certain number of nodes
is visited.

4. Adaptive link sorting.

5. Taking into account the distance to nodes for the computation of the page
interestingness value.

The two ways of cutting down the number of sessions can easily be used in the
Bayesian link recommendation algorithm by replacing the Sessions set with the
set containing either the last z sessions (a) or the sessions with the same audi-
ence class (b). This will improve the performance of the algorithm because the
number of sessions is an important factor in the complexity of the algorithm.
The quality of the link recommendations will also improve like we described in
section 5.3.1.4. This includes better detection of shifting user interests (for a)
and recommendations of more alike visitors (for b).

Cutting down the number of recommendable nodes can also lead to a better
performance as the complexity is partly determined by the number of nodes in
the web site. This can be realized by replacing the unvisitedNodes set on line
26 by the unvisitedNodesInAC set.

The third change which suspends the recommendation process will be as
useful for the Bayesian link recommendation algorithm as for the k nearest
neighbour link recommendation algorithm. Replacing lines 9 to 11 of 5 by the
appropriate code in section 5.3.1.4 is the only thing which needs to be done.

Adaptive link sorting can be done in the same way as for the previous algo-
rithm. The only thing which is needed is a tracking variable holding the prior
probability.

The last change which takes in account the distance to nodes for the compu-
tation of the interestingness value will have the same effects as on the k nearest
neighbour link recommendation algorithm. This can be easily done by multi-
plying the prior probability that a node will be visited with the inverse distance
to this node.

Unlike the k nearest neighbour link recommendation algorithm, the Bayesian
link recommendation algorithm only has one input argument which is the thresh-
old value. Determining a suited threshold value is quite the same task as for the
previous algorithm. The designer has to make a choice about whether he wants
to offer many link recommendations, including less relevant recommendations,
or few more interesting recommendations.



Chapter 6

Implementation

6.1 Introduction

In the previous chapter of this dissertation, we introduced two link recommenda-
tion algorithms: the bayesian link recommendation algorithm and the k nearest
neighbour link recommendation algorithm. To be able to actually test and eval-
uate these algorithms, we need to design and construct a web site using WSDM.
When this web site is available for use, an ASL interpreter needs to be writ-
ten in order to be able to execute ASL scripts such as the ones containing the
algorithms. This chapter will discuss the design and the implementation of a
WSDM web site along with the implementation of an ASL interpreter.

The implementation is based on the web site which was constructed during
my apprenticeship together with my fellow student Tom Vleminckx. The main
goal of the apprenticeship was to transform the WISE web site into a web site
which supports adaptive behaviour. This included annotation of the web site,
creation of an at runtime changeable graph structure mirroring the Navigation
Model and the implementation of an ASL interpreter. These assignments all
deal with adaptivity and are mainly focused on the last two phases of WSDM:
the implementation design phase and the implementation phase. By annotating
the web site, the information can be much easier adapted and retrieved. The
creation of an at runtime changeable graph structure permits applying adaptive
techniques which change the structure of the web site. Using the ASL inter-
preter, the designer should be able to specify at design time certain kinds of
adaptive behaviour that changes the graph structure at runtime.

Because the WISE web site was already designed using WSDM, we didn’t
need to design the web site ourselves. We only had to use all the available
information which was already identified during these first three phases of the
design process, with the Navigation Model as the most important result of these
three phases.

The WISE web site which we will transform into an at runtime adaptable

web site is a rather small web site containing only 17 nodes and links, 24 chunks
and connections and only 2 real audience classes. The existing WISE web site
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was designed using WSDM, but there was no separation between nodes and
chunks. There were only 17 static HTML pages which had to be reconstructed
into a dynamic graph containing nodes, chunks, links and connections.

Figure 2.2 in section 2.3.1 of chapter 2 shows the simplified Navigation Model
of the WISE web site. There are 3 audience classes: the Visitor, Student and
Researcher audience class. The audience track of the Student and Researcher
audience class can not be seen on the figure 2.2 as the whole structure of the
web site would overload the figure.

The remainder of this chapter is structured as follows. In section 6.2, we will
briefly go through the design phases that have lead to the current structure of
the WISE web site in order to be able to identify important design elements like
chunks and nodes. The next section, section 6.3, discusses the implementation
of a WSDM web site and section 6.4 discusses the implementation of an ASL
interpreter. A global view on the implemented web site is then served in the
last section, section 6.5.

6.2 Designing a Web Site using WSDM

6.2.1 Introduction

The web site graph structure which we want to create depends totally on the
Navigation Model identified during the Conceptual Design phase. This is the
reason why we will discuss the design of the WISE web site briefly in this sec-
tion. Doing this will indicate which design elements are needed to create the
graph structure.

We use the WISE web site as an example throughout this chapter because
it was the web site for which we implemented the graph structure. It’s obvious
that the implementation discussed here is applicable for all web sites designed
using WSDM. The purpose of this section is to show how the WSDM design
phases, which we saw this already in chapter 2, are performed in practice, and
to identify the design elements needed to implement a graph structure for any
given web site designed using WSDM. Discussing the WSDM phases for the
WISE web site briefly, will help us in understanding WSDM better. We will
discuss each phase by using some examples of the WISE web site.

6.2.2 Mission Statement Specification

For the WISE web site, the Mission Statement Specification phase identifies the
activities of the WISE research group as the subject of the site, and giving infor-
mation about the WISE research group, their courses, research topics, research
projects and publications as the purpose of the web site. Furthermore, students
and researchers are identified as the target audience of the web site. This phase
does not reveal any information which we will need to create the graph but it
is nevertheless an essential phase.
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6.2.3 Audience Modelling

Recall that the Audience Modelling phase has two sub-phases: the Audience
Classification and the Audience Class Characterization phase. The first sub-
phase uses the target audience identified in the previous phase and classifies this
target audience into audience classes. This results in a Student, Researcher and
Visitor audience class. This last one is the standard audience class which spec-
ifies the requirements that all visitors of the web site share. For each audience
class which is a subclass of the Visitor audience class, additional informational,
functional requirements and optionally navigation requirements are specified.
For the Student audience class of the WISE web site, for example, this leads to
the following requirements:

e General information about WISE

e Information about the WISE members

e Information about the courses offered by the WISE research group
e Information about apprenticeship and thesis proposals

e Information about the current thesis students and the past theses per-
formed at WISE

Doing this for all audience classes of a web site outputs an audience class hier-
archy containing all the requirements for every possible visitor of the web site.
In the second sub-phase of the Audience Modelling phase we identify character-
istics for each audience class. For the Researcher audience class of the WISE
web site, for example, we can identify the following characteristics:

e English speaking
e Have much experience with web sites
e Older than 20

e Experts in their research field

The audience class hierarchy together with all the requirements and character-
istics is the input for the next phase which will produce all the design elements
needed to create the graph structure.

6.2.4 Conceptual Design

The Conceptual Design phase is the most important phase for the implementa-
tion of the web site because the Navigation Model is constructed in this phase.
During the first sub-phase, the Task & Information Modelling phase, a task
model needs to be defined for each requirement. This task is then elaborated
further into more detail and decomposed into elementary tasks. For the WISE
web site, there are no functional requirements such as buying items and filling
in forms. These are functional requirements which require large task models in
contrast to the task model of the following functional requirement of researchers:

Retrieving a list of publications and selecting a publication.
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This functional requirement results in the simple task model shown on figure
6.1. The notation of this task model is the Concurrent Task Tree notation
(CTT) [44]. This technique is used in WSDM for task modeling because it al-
lows, besides the task decomposition, to specify temporal relationships between
different subtasks. The cloud icon on the figure indicates that the task is an
abstract task which is a task consisting of complex activities, the computer icon
indicates that the task is an application task executed by the application and
the last icon denotes an interaction task which has to be performed by the user
by interaction with the system. The abstract task is in this case the “Retrieve
A Publication” task which is decomposed in two sub-tasks: the “Show Publi-
cations” task where the system should show the publications to the user and
the “Select Publication” task which should be performed by the user. The > >
operator means that the “Show Publications” task enables the “Select Publica-
tion” task. More extensive examples of how this task modelling is done for more
complex tasks can be found in [29].

e

Retrieve blication

- i o |
v T > E—f

Show Publications Select Publication

Figure 6.1: The task model for retrieving a publication.

In the next sub-phase of the Task & Information Modelling phase, the In-
formation and Functional Modelling phase, objects chunks are created for each
elementary task. For the task “Show Publications” the information that needs
to be displayed about the publications should be modelled. For the modelling
of this task into an object chunks, ORM is used. ORM stands for Object Role
Modelling and is a widely used method for designing objects. More information
on ORM can be found in [32]. The object chunk of the “Show Publications”
task can be seen on figure 6.2.

This figure shows that a publication has a title, a year, optionally a location,
one or more authors, and also optionally comments, an URL and a description.
Such an object chunk has to be constructed for all elementary tasks. We will
soon see that we need all this information of the object chunks to annotate the
chunks in the WISE web site. When all object chunks are identified, they are
linked together into a Business Information Model. The purpose of the Business
Information Model is to describe and control possible redundancy by defining
information chunks as views on this model. The Business Information Model of
the WISE site will not be displayed here as it is quite large and not relevant.
The model itself will have its use for the annotation process as we will see in
section 6.3.
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Figure 6.2: The publication object chunk.

The second sub-phase of the Conceptual Design phase is the Navigation De-
sign phase in which the Navigation Model of the web site is designed. The first
thing which needs to be done is creating a navigation track for each audience
class. The task models and objects chunks are the input for this phase. For
each task model, a Task Navigation Model is constructed using components and
project logic links. For each elementary interaction task, a component is de-
fined in the hierarchical decomposition of the task. Between these components,
process links are used to express the workflow or process logic expressed in the
task model by means of the temporal CTT relations (i.e. CTT relations are
translated to links). Because none of the task models of the WISE web site
are complex enough to transform to a Task Navigation Model with two compo-
nents, we will not illustrate this process for the WISE web site. For an in-depth
explanation of this process including examples, I refer to [29].

When all Task Navigation Models are created, they are linked together by
means of structural links to form navigation tracks. The components of each
Task Navigation Model which represent tasks are connected to the object chunks
for the tasks which they represent. A component is in fact, conceptually the
same as a node, which brings us to the Navigation Model. When we put all
audience tracks together we get the Navigation Model containing the nodes
(or components) and the object chunks. We have already seen a part of the
Navigation Model of the WISE web site in chapter 3 so it would be redundant
to include it again in this section.

6.2.5 Implementation Design

In the implementation design phase nodes are mapped to pages and the posi-
tions of chunks on pages are laid out. This is of great importance for the graph
structure as we need to define this mapping and positioning in the graph struc-
ture. In the implementation design phase, layout templates are also created
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and mapped to pages. These are all very important decisions which have to be
mirrored in the graph structure which will be designed. For the WISE web site,
all nodes map to one page.

6.2.6 Implementation

In this last phase, the web site is constructed using all the output data acquired
in the previous phases. For the visitors of the web site, the implementation has
no importance whatsoever. Of course some technologies are better suited for
certain web sites than others but the key issue is that every detail of the web
site is already defined in the previous phases.

So why not choose for the easiest implementation and go for manually cre-
ated static HTML pages? Because HTML encapsulates the information on the
level of pages. A HTML page does not reveal the nodes and chunks it contains,
it is an indivisible unit. For a static web site which does not change often, the
simplest straight on implementation might be the best. But even when the web
site is small, it will be easier to maintain by the web master when he can work on
the finest level, i.e. on the level of nodes and chunks instead of pages. When an
information chunk which appears on multiple pages needs to be edited, the web
master needs to edit each HTML page containing the chunk page separately.
When pages are created at runtime and chunks are editable separately out of
their page context, only one chunk needs to be edited.

The main reason for choosing for the graph structure is to be able to support
adaptive behaviour. Adaptive behaviour requires that all design elements (e.g.
nodes and chunks) need to be separately manipulatable. This will give the de-
signer the chance to, for example, create links between nodes and to disconnect
chunks from nodes at runtime. In the next section, we will introduce the first
graph structure based implementation of a WSDM web site. All design elements
will be reflected in the underlying graph structure of the web site. The result
will be the same HTML web site as the original one, but this time generated at
runtime using the information about nodes and chunks in the graph structure.

6.3 Implementing the WSDM Web Site

6.3.1 Introduction

This section will discuss the implementation of a WSDM web site as a dynamic
graph structure mirroring the Navigation Model. The graph structure will be
dynamic because its structure will be alterable at runtime using the ASL inter-
preter we will discuss in section 6.4. Prior to writing such an ASL interpreter,
we first need to define the graph structure upon which it will act. The imple-
mentation process will be described in a bottom-up manner from the smallest
design elements to the largest one comprising all others. The smallest design el-
ements are the chunks containing information and functionality and the largest
design element is the Navigation Model.
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6.3.2 Annotation

During the Conceptual Design phase, more precisely the Information and Func-
tional Modelling phase, object chunks have been created. The publication chunk
ORM diagram on figure 6.2 contains some very important information. When
all the chunks are inserted in HTML pages, all this information disappears into
HTML code which only indicates how text should be rendered. A much better
approach is to annotate the chunks, which is the process of adding a mean-
ing to the content of a text using tags. The information identified during the
Conceptual Design phase can be used to add semantic tags to the text. The
publication chunk ORM diagram tells us of what a publication consists. All the
objects and the relationships on this diagram are the only thing needed to anno-
tate the publication chunk. The annotation process can therefore be described
as tagging the chunk information with the object and relationship information
of the conceptual design model of an object chunk.

For the annotation of the chunks of the WISE web site, the following tech-
nologies were used:

e XML. A markup language which stands for eXtensible Markup Language
[8] and is designed to describe data. This language is used to annotate
the chunks.

e DTD. A Document Type Definition language used to declare the legal
structure of an XML document. DTD is used to validate the annotated
XML chunks.

e XSLT. A language which stands for Extensible Stylesheet Language Trans-
form [20] and is used for transforming XML documents into other XML
documents. This technology transforms the annotated chunks to HTML.

These technologies are perfectly suited for the annotation of chunks. The XSLT
language transforms the annotated XML chunks to HTML and therefore hides
the XML for the visitors of the web site.

The implementation itself was pretty straightforward. The first thing we
did was creating a global DTD containing all possible tags used to describe
the data on the web site. These tags are retrieved by analyzing the Business
Information Model which is constructed during the Conceptual Design phase.
This model contains all the data objects and the relationships between the data
of the whole web site and is thus exactly what we need for the construction of
the DTD. When the DTD is defined, the object chunks can be annotated using
the appropriate XML tags defined in the DTD. The last step is to write XSLT
code to transform the XML chunks into HTML code.

Let’s turn theory into practice with an example of an annotation process.
This process will annotate a new object chunk: the member object chunk. This
chunk contains information about a member of the WISE research group. We
introduce this new object chunk because it contains less objects than the pub-
lication object chunk and is therefore a better choice for the demonstration of
the annotation process.
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Figure 6.3: The member object chunk.

The first step of this annotation process is to analyze the ORM diagram
of the member object chunk. From this ORM diagram, we can derive a DTD
which defines the structure for this object chunk. This diagram can be seen on
figure 6.3. Normally, the DTD is defined for the complete Business Information
Model. For simplicity however, we only consider this fragment of the Business
Information Model. The next step in the annotation process is the creation of
the XML file, the creation of the content. This is an uncomplicated task where
the member data is annotated with the corresponding XML tags defined in the
DTD. Defining the XSL transformation of XML to HTML ends the annotation
process. This step defines the output format of the chunk which is in this case
HTML. The XML file containing the annotated object chunk and the XSLT file
are then processed by an XSLT processor into a HTML page. The whole process
of annotation, structuring and transformation of this member object chunk can
be seen on figure 6.4. The arrow from the XML file to the DTD file denotes
that the XML data is validated by the DTD.

In this section, we have seen the importance of the ORM diagrams of the
object chunks. The annotation process can be summed up as follows:

1. Define the structure of the object chunk by deriving a DTD from the ORM
diagrams.

2. Annotate the content using XML tags.
3. Create an XSL transformation which defines the output format.

4. Generate the output by processing the XML and XSLT files by an XSLT
processor.

6.3.3 Graph structure implementation

The next step in the implementation process is designing a dynamic graph struc-
ture which mirrors the Navigation Model defined during the Conceptual Design
phase. For the implementation of the WSDM graph structure, we used Java
version 1.5. The reason why Java is chosen as implementation language is be-
cause Java provides Java Servlets. A Java Servlet is an application which runs
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DTD

</[ELEMENT member (room, telephone, fax, email, homepage)>
<IATTLIST member name CDATA #REQUIRED>

<!ELEMENT room (#PCDATA)>

<|ELEMENT email (#PCDATA)>

<IELEMENT telephone (#PCDATA)>

<!/ELEMENT homepage (link)>

<!|ELEMENT link (#PCDATA)>

<IATTLIST link linktext CDATA #REQUIRED>

pal STRUCTURE

XML
X
S
<member name="Sven Casteleyn"> L HTML
<room> 6 G 305 (C) </room>
<telephone> +32 2 629 35 54 </telephone>L T —‘l
<fax> +32 2 639 37 54 </fax> Sven Casteleyn
<email> Sven.Casteleyn@vub.ac.be </email> P
<homepage> R #
<link linktext="Sven Casteleyn’s homepage"> o Room: 6 G 305 (C)
http://wise.vub.ac.be/Members/Sven c Telephone: +32 2 629 37 54
</link> E Fax: +32 2 639 37 54
</homepage> s Email: Sven.Casteleyn@vub.ac.be
</member> CONTENT s Homepage: Sven Casteleyn’s homepage
(e}
XSLT R
<xsl:template match="member">

<b> <xsl:value-of select="@name"/> </b> </br> </br>
Room : <xsl:value-of select="room"/> <br/>
Telephone: <xsl:value-of select="fax"/> <br/>
Email: <xsl:value-of select="enf3il"/> </br>
Homepage:
<a href="{homepage/link}">
<xsl:value-of select="homepage/link/@linktext"/>

</a>
</xsl:template> FORMAT

Figure 6.4: The annotation/transformation process for the member chunk.

on a web server and interacts with web clients, in this case the browser of the
visitors. By using Java to implement the graph structure, Java Servlets can be
used to handle HTTP requests and to retrieve the requested nodes and their
chunks out of the graph structure holding the web site.

Recall that a Navigation Model contains nodes, chunks, links between nodes
and connections between nodes and chunks. For the design of the graph struc-
ture, we initially designed three simple classes: a Graph class, a Node class and
an Fdge class. This graph structure encapsulated a graph containing nodes con-
nected together by edges. The graph structure of the Navigation Model is more
complex as there are two kind of edges (links and connections), and two kind
of nodes (nodes and chunks). This more complex graph structure is modelled
by subclassing the three base classes. This way, six new classes are designed:
the WSDMGraph class which is a subclass of the Graph class, the WSDMNode
and WSDMChunk classes which are subclasses of the Node class, the WSDM-
Link and WSDM Connection classes which are subclasses of the Edge class, and
the WSDMSessionLink class which encapsulates the session links needed for



6.3. Implementing the WSDM Web Site 102

WSDMPage

public getLabel() WSDMPages
public getNodes()
public getTemplate().
public addNode()
public deleteNode()

1. 1 public getPages()
public_getPageWithNode()|

Graph

public setLabel()

ublic_setTemplate
public addNode()
public addEdge() 1

. ! o Edge
public deleteNode()‘
public deleteEdge()| 1.*
public getEdges() 1 0." Nodo public getSourceNode()
public_getNodes() @{Pu0lic getTargetNode()
2 0. public setSourceNode(),
public getLabel() public setTargetNode()
public_setLabel(
WSDMGraph
public addWSDMNode()
public: addWSDMChUnk() WSDMNode WSDMChunk WSDMLink \WSDMConnection
public addWSDMLink()
public addWSDM ionLink()
public addWSDMConnection() public getAudienceClass() public: getChunkFile() public getLinkText()| ~ [Public getChunk()
public deleteWSDMNode() public_setAudienceClass() public getXSLFile() public_setLinkText() public getNode()
public deleteWSDMLink() public setChunkFile() public setChunk()
public deleteWSDMSessionLink() public_setXSLFile() public_setNode()
public deleteWSDMConnections() WSDMSessionLink
public getWSDMNodes()
public getWSDMChunks() public getSessionID()|
public getWSDMLinks() public getRank()
public getWSDMConnections() public setSessionlID()
public ...() public_setRank()

Figure 6.5: The design of the graph structure.

the link recommendations. These are all the classes needed to encapsulate the
Navigation Model. To know which nodes map to which pages, classes for the en-
capsulation of pages have to be created. We created two classes for this purpose:
a WSDMPage class which contains references to the nodes the page contains
and a WSDMPages class which is a set containing all pages in the web site. A
simplified UML diagram of these classes can be seen on figure 6.5.

Storing and initializing the graph structure

The graph structure described above has to be initialized and stored on per-
manent storage in some way. This permanent storage is necessary in case of
a server crash and to be able write a new adapted web site to disk. The per-
manent storage used is an XML file containing the whole web site structure in
XML format. When the web site is launched, the XML file is read and the graph
structure is initialized. Whenever the graph structure changes at runtime, it is
written back to the XML file so that the changes can not be lost when the server
crashes. Note that this is evidently only done for permanent changes such as the
addition of new links and not for temporal changes such as session links. The
following shortened XML code shows how the graph structure can be stored in
an XML file:
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<graph>
<node label="’Root’’ audienceClass="’Visitor’’ page="’RootPage’’>
<link linktext="’About WISE’’>
<node label="’About WISE” page="’AboutWISEPage’”>
</node>
</link>
<link linktext="Members">
<node label="Members" page="’MembersPage’’>
</node>
</1link>
<link linktext="Information for Students">
<node label="Students" audienceclass="Students"
page="’StudenstPage’™>
</node>
</link>
<link linktext="Information for Researchers'">
<node label="Researchers" audienceclass="Researchers"
page=""ResearchersPage’”>
</node>
</link>
<connection>
<chunk label="’Coordinates’’ xslFile="’coordinates.xsl’>>
<url>coordinates.xml</url>
</chunk>
</connection>

</node>
</graph>

6.3.4 Running the web site

To run the web site, Java Servlets are used, as was already mentioned in section
6.3.3. To understand how the pages are constructed, let’s take a look at the
URL of the homepage of our experimental version of the WISE web site:

http://wilma.vub.ac.be:8080/ts/servliet/MainServlet?label=Root

MainServlet is the name of the Servlet which controls the web site. The question
mark followed by label=root is a parameter mechanism that is used to select a
node in the graph which is in this case the Root node. The Servlet then looks
up the page which contains this node and constructs this page. This page
construction can summarized as follows:

1. All nodes on the page are retrieved.
2. All the chunks belonging to the retrieved nodes are collected.

3. Using an XSL transformer to process the chunks and their corresponding
XSLT file, HTML code is constructed for each of these chunks.
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Figure 6.6: The homepage of the WISE web site.

4. All links from the nodes of the page to other nodes are converted to hy-
perlinks.

5. The session ID of the visitor session which requested the page is retrieved
and the session links for the session are fetched.

6. The whole HTML page is constructed by inserting chunks and links on
their corresponding position! in the template for the page. The session
links are inserted in a predefined area on the page.

The result of this process can be seen on figure 6.6 which shows the homepage
of the WISE web site. This page contains one node, the Root node, and contains
links to four other nodes and a connection to a chunk which is shown in the
page. On the right of the page, the session links can be seen. Notice how the
page structure exactly mirrors the structure of the XML code which we saw
earlier on.

6.4 ASL Interpreter Implementation

The purpose of the ASL interpreter is to read ASL scripts and to execute the
ASL statements in the scripts. These statements then act upon the graph
structure so that ASL can be used to manipulate the structure of the web site.
The implementation of the ASL interpreter can be divided in three parts:

I This position of a link and chunk on the page is the same as its position in the XML file
which contains the graph structure.
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1. Construction of an ASL syntax in Backus-Naur Form. This is a widely
used notation for describing exact syntax and grammar of a language.

2. Generation of an ASL lexer and parser with an ANTLR program, starting
from the syntax constructed in the previous step. ANTLR ? is a parser
generator for Java.

3. Implementation of an ASL evaluator.

The second step outputs an Abstract Syntax Tree (AST). An Abstract Syntax
Tree is a data structure which holds parsed data. Such an AST is then used by
the evaluator which maps these AST’s to their corresponding operations on the
graph structure.

Elementary operations such as addlink() or set expressions such as Nodes
can be easily mapped to their corresponding operations in the graph structure
classes. The biggest challenge for the implementation of the interpreter how-
ever, is the evaluation of tracking variables. For the implementation of the ASL
interpreter for the WISE web site, a tracking mechanism was used to store ses-
sion information into a MySQL relational database. Two tables are used to
store this session information. In the first table, session related information is
stored such as the session ID and the audience class. The second table contains
information for each page view, i.e. every time when a page is viewed informa-
tion about the page, the referrer page, the followed link and the session ID of
the session which visited the page is stored. This session information is used
to evaluate the accesses tracking variable defined in section 5.2.2 of chapter 5.
For the evaluation of this tracking variable, SQL was used to query this page
information out of the database.

6.5 Integration

This chapter will be concluded with a global view on the integration of all com-
ponents used to construct the adaptive WISE web site. Figure 6.7 shows the
integration of all the components which make up the web site. The two com-
puters on the figure indicate the view points of respectively the web master and
a visitor to the web site.

For the web master, an ASL editor is created. This is a password protected
web page which makes it possible to edit and evaluate the main ASL script.
When the web master presses the designated evaluation button in the ASL ed-
itor, the script is sent to the interpreter for evaluation. For this evaluation, the
interpreter sends queries to the relational database for the retrieval of session
data. The ASL script evaluated by the interpreter also acts upon the graph
data structure as can be seen on the figure.

On the other side of the web site we have the visitors. When a visitor visits
the web site and sends a HTTP request, session and page view data is send to
the tracker which stores this session data in the relational database. The next
thing which happens is the page construction. The requested web site data is

2ANTLR is available at http://www.antlr.org
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Figure 6.7: The integration of all components.

retrieved out of the graph structure as we have seen in section 6.3.4. This web
site data includes the annotated chunks which are stored in XML files and which
are referenced by the graph.



Chapter 7

Evaluation of the Algorithms

7.1 Introduction

In this chapter, we will evaluate and compare the two algorithms described
in chapter 5: the k nearest neighbour link recommendation algorithm and the
Bayesian link recommendation algorithm. By performing experiments with vis-
itors, the usefulness of the proposed link recommendation techniques will be
determined. This usefulness is determined by counting the number of clicks and
the amount of time needed to find the information for which a visitor is looking
for. Our goal is to show that the use of link recommendations heavily decreases
the number of clicks and amount of time needed to find the information the
visitor needs.

The remainder of this chapter is organized as follows. Section 7.2 describes
the performed experiments in detail. Section 7.3 lists the results of these tests
and in the last section, section 7.4, the results are interpreted and evaluated.

7.2 Performed Experiments

The experiments were performed on the WISE web site which is implemented as
described in the previous chapter. To test the algorithms, we constructed some
related tasks which had to be performed by test groups. The following three
experiments were performed by three different test groups of 6 people each:

1. The first group performed the tasks without link recommendations.

2. The second group performed the tasks with link recommendations gener-
ated using the k nearest neighbour link recommendation algorithm.

3. The third group performed the tasks with link recommendations generated
using the Bayesian link recommendation algorithm.

The three groups of 6 people were made up out of 18 people which were all
unfamiliar with the WISE web site. The first experiment results in 6 sessions
which are added to the already available session data which already contained
20 standard sessions which were not lead by means of predefined tasks. The
purpose of this first experiment is two-fold:
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e Monitoring the number of clicks and time needed to perform the tasks
without link recommendations.

e Providing session data about the related tasks on which the link recom-
mendations will be based.

Monitoring how long it takes to perform the tasks without link recommenda-
tions is needed to be able to determine if link recommendations reduce the effort
to find the needed information. The session data of the tasks is also needed,
otherwise no recommendations can be made. When the link recommendation
algorithm “detects” that these six sessions browsed for the same information,
it will recommend the pages which were accessed during these sessions but not
yet accessed during the current session. The second and the third experiment
are obviously necessary in order to be able to measure the impact of link rec-
ommendations.

We already mentioned in the previous chapter that the WISE web site is
rather small and contains only 17 pages. The Student and Researcher audience
track consist of respectively 11 pages and 5 pages. Add to these numbers the 2
pages which are part of the Visitor audience track and thus also meant for both
audience class, each student or researcher visiting the web site should find his
information respectively 13 pages and 7 pages. To follow the audience-driven
character which places related pages into an audience track, the tasks should
actually be situated in one audience track. Because we wanted to compose tasks
which involved seeking information on more than 5 pages, the information which
had to be found for the experiments was situated on pages in all audience tracks.

For each experiment, the following tasks were given:

1. Find the page containing information about the course entitled “Design
Methods of Internet-based Systems”.

2. Find the page on which all publications of the WISE research group are
listed.

3. Find the page containing information about the course entitled “Inleiding
tot Databanken”.

4. Find the page containing general information about the WISE research
group.

5. Find the page which lists all current thesis students at the WISE research
group.

6. Find the page containing the coordinates of Sven Casteleyn, a member of
the WISE research group.

All these tasks lead to a specific page. By performing the first experiment, six
sessions are created with a like-minded purpose. Without link recommenda-
tions, the minimum number of clicks needed to find all this information is 25.
Note that the monitored clicks include both normal link clicks and “back but-
ton clicks” which are the clicks which bring a user to the previous page he visited.
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Figure 7.1: A scatter plot of the experiments’ data.

The threshold of both algorithms was set to 0.49. This means that only
pages with an interestingness value of 50 % or more are recommended. For the
k nearest neighbour algorithm, the value of £ was set to 4 because of the small
size of the session data.

7.3 Results of the Experiments

The results of the experiments are presented on figure 7.1 which is a scatter plot
of the time versus the number of clicks needed for all 18 sessions. The legend
shows which sessions belongs to which experiment. It’s already obvious that
there is a big difference between the number of clicks and time needed with and
without the aid of link recommendations.

A numerical summary of these results is provided in tables 7.1 and 7.2. Table
7.1 shows the mean number of clicks needed by each of the three experiments
along with its standard deviation. Table 7.2 does the same for the time needed
to find all the information.
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| Experiment || Mean | Standard Deviation |
Without Link Recommendations 35,67 6,22
With KNN Link Recommendations 10 2,10
With Bayesian Link Recommendation 9 1,10

Table 7.1: The number of clicks needed for each experiment.

| Experiment || Mean | Standard Deviation
Without Link Recommendations 8.02 min. 3.31 min.
With KNN Link Recommendations 2.25 min. 0.56 min.
With Bayesian Link Recommendation || 2.19 min. 0.43 min.

Table 7.2: The time needed for each experiment.

7.4 Interpretation of the Results

Both tables show that the effect of providing link recommendations is astonish-
ing. The people who performed the tasks with the aid of link recommendations
required only a quarter of the amount of clicks and time needed by those who
performed the tasks without link recommendations. To test if this difference
is significant, we will compare the results of the experiments with and without
link recommendations. We will only compare the results of the link recommen-
dation algorithm which gave the worst results of both algorithms, which is the k
nearest neighbour link recommendation algorithm, to the results of the experi-
ment without the aid of link recommendations. The reason why is because when
this difference turns out to be significant, the difference to the other algorithm
which performs better will be even more significant. To test if the experiment
with the k nearest neighbour link recommendation algorithm gives significantly
better results than the experiment without link recommendations we will use a
widely known statistical test.

The statistical test which we will use is the independent samples ¢-test [24].
This statistical test compares the means of two independent normally distrib-
uted data sets and determines if the distance between the means is significant.
Both data sets should thus be independent, which is the case for both data sets
of experiments 1 and 2 as no people took part in both experiments. We will
perform this test on both the clicks and time data sets.

When a statistical test is performed, a null hypothesis is tested. This null
hypothesis is the antithesis of whatever hypothesis we want to test. The hy-
pothesis which we want to test is the following:

There is a significant difference in the number of clicks and the
amount of time required to find information between finding the in-
formation with the aid of link recommendations generated using the
k nearest neighbour link recommendation algorithm and finding the
information without the aid of link recommendations.
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The null hypothesis states the contrary, that there is no significant difference
between both.

We will not list the whole statistical process but show the results of both
tests. Note that we first successfully tested if the data is normally distributed
because the t-test is only valid for normally distributed data. The SPSS statis-
tical package is used to perform the ¢-test. Before we can run the t-test, we need
to set the value of p. This value of p is the probability that the difference be-
tween means in a sample occurred purely by chance, and that in the population
from which the sample was drawn, no such relationship or differences actually
exist. In literature, researchers usually conclude that a real difference exists if
p < 0.05. We will therefore also set the value of p to 0.05. If the significance
of the test is smaller than p, we can reject the null hypothesis. The results of
both tests are displayed in table 7.3 and table 7.4.

| Levene’s Test || t-Test |
F Sig. t Sig.
3,971 0,074 9,207 | 0,000

Table 7.3: The results of the t-test for the number of clicks (exp. 1 vs. 2).

| Levene’s Test || t-Test |
F Sig. t Sig.
4,188 0,068 5,108 | 0,000

Table 7.4: The results of the ¢-test for the amount of time (exp. 1 vs. 2)..

These tables show the results of two tests. The first test, Levene’s test, is
used to test if equality of variances can be assumed. If the significance value
is larger than p, the variances are not significantly larger. This enabled us to
perform the t¢-test which assumes equal variances. Note that the F' value is
the ratio of the variance between the two groups to the variance within each
individual group. This is of no further importance.

The significance value of both t-tests tells us that we can reject the null hy-
pothesis as both values are equal to 0. This is true for both link recommendation
algorithms as the Bayesian link recommendation algorithm performs even bet-
ter than the k nearest neighbour link recommendation algorithm. Therefore,
we can state that the ¢-test shows that the aid of link recommendations sig-
nificantly increases the task performance (which is measured by the number of
clicks and the amount of time).

The difference between both algorithms seems to be much less significant.
We can see that the Bayesian link recommendation algorithm has the lowest
mean and standard deviation for both the number of clicks and the amount
of time needed. To test if the Bayesian link recommendation algorithm gives
significantly better results than the k nearest neighbour link recommendation



7.4. Interpretation of the Results 112

we will use the same t-test.

This time, the hypothesis we want to test is the following one:

There is a significant difference in the number of clicks and the
amount of time required to find information between finding the in-
formation with the aid of link recommendations generated using the
Bayesian link recommendation algorithm and finding the informa-
tion with the aid of link recommendations generated using the k near-
est neighbour link recommendation algorithm.

Recall that the null hypothesis says the contrary, that there is no significant
difference between both algorithms.

The results of both t-test are listed in table 7.5 and table 7.6.

| Levene’s Test || t-Test |
F Sig. t Sig.
3,462 0,092 1,035 | 0,325

Table 7.5: The results of the t-test for the number of clicks (exp. 2 vs. 3).

| Levene’s Test || t-Test |
F Sig. t Sig.
0,649 0,439 0,219 | 0,831

Table 7.6: The results of the t-test for the amount of time (exp. 2 vs. 3).

First of all, we can assume equal variances according to Levene’s Test. The
significance value of both t-tests tells us that we can not reject the null hypoth-
esis as both values are much larger than 0,05. Therefore, there is no significant
difference between the impact on the task performance of both link recommen-
dation algorithms.

We can conclude that both link recommendation algorithms have no signif-
icant different impact on the amount of time and the number of clicks needed
to find the information. What is most important is that the use of link recom-
mendations heavily reduces the visitors’ effort to find information. Based on
the experiments, it takes 4 times less effort which is a big improvement.

Although the results are spectacular, we need to keep in mind that the WISE
web site is small and that the experiments are performed with small groups. It’s
questionable if we would have obtained the same impressive results with groups
of more than 100 people, a web site containing 200 pages and multiple experi-
ments consisting of different tasks. Although the small scale of the experiments,
we believe that large experiments will show that both algorithms will strongly
reduce the number of clicks and amount of time needed to search information.



Chapter 8

Conclusions

8.1 Introduction

To conclude this dissertation, an overview of the achievements will be given on
which we will draw the conclusions. We will also discuss possible future work
closely related to the subject of this thesis.

The main goal of this thesis was to incorporate design time support for
session-based adaptation into WSDM with which it should be able to specify
link recommendation algorithms. Once this design time support was available,
our goal was to specify some link recommendation algorithms and to test and
evaluate them. An additional requirement was that the link recommendation
techniques had to be based on user access information instead of on a user
model. This was necessary in order to keep faithful to the philosophy of adap-
tation in WSDM.

In section 8.2, we recapitulate how we achieved the goal of this thesis with
a summary of all chapters. The next section, section 8.4, lists the achievements
of this dissertation. Section 8.4 presents possible future work.

8.2 Summary

In chapters 2, 3 and 4, the reader was introduced to the necessary background
information needed for the research part of this thesis. Chapter 2 introduced
WSDM and its adaptation specification language ASL, which both served as
the framework for our work. In chapter 3, Bayes’ Theorem, the Naive Bayes
Classifier and the k-Nearest Neighbour Classifier were introduced. These ma-
chine learning techniques have been used as the foundation for the link recom-
mendation techniques which we proposed later on in the research part. The last
background chapter, chapter 4, gave an overview of the existing web site adapta-
tion methods and more specifically the existing link recommendation techniques.

The most important chapter of this dissertation was chapter 5 in which we

first extended WSDM and ASL to provide design time support for session-based
adaptation. Using these extensions we then proposed two link recommendation
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algorithms: the k nearest neighbour link recommendation algorithm and the
Bayesian link recommendation algorithm. These were both discussed in detail
and expressed in ASL. To be able to test these algorithms, we implemented
a web site designed using WSDM which was described in detail in chapter 6.
This description included an overview of the design process and the implemen-
tation process of all the elements of the web site and the ASL interpreter. The
evaluation of both algorithms was carried out in chapter 7. In this chapter, we
described the performed experiments and interpreted the results.

8.3 Achievements

In this section we list the achievements which are the result of this thesis. The
achievements can be summed up as follows:

e Design support for session-based adaptation in WSDM: WSDM
and ASL are extended with design time support for session-based adapta-
tion. These extensions include the ability to access session information of
all previous sessions and to add session links at design time. Using these
extensions, it is possible to personalize the web site for individual users in
addition to the already available support for providing customization for
all users.

e Two reusable link recommendation algorithms: the two link rec-
ommendation algorithms first of all show how session-based adaptation
techniques can be expressed in ASL. They both only need a very simple
format of session information and don’t require any user model or feed-
back from the user. We have also shown that both the number of clicks
and time needed to search information can be reduced significantly when
link recommendations are provided.

e A prototype implementation of a WSDM web site and ASL eval-
uator: we implemented the WSDM web site and ASL evaluator in such a
way that they can be re-used easily. The same implementation process can
be applied to another web site designed using the WSDM approach. The
ASL evaluator can also easily be adapted to changes in the ASL syntax
and semantics.

8.4 Future Work

Based on the session-based adaptation idea which is explored throughout this
dissertation, some interesting future work can be done. Possible future work
includes the following issues:

e More advanced experiments: to get a better view of the real impact of
both link recommendation algorithms, more advanced experiments should
be conducted. This includes extending the number of users which perform
the experiments, increasing the size of the web site and performing more
than one experiment. Other future experiments can test the algorithms
with different threshold values and with the extensions discussed in sec-
tions 5.3.1.4 and 5.3.2.4.
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e Other link recommendation techniques: both link recommendation
techniques use a simple session matrix. A big challenge would be to specify
more advanced link recommendation techniques such as content-based link
recommendation techniques and hybrid techniques. This would require
many extensions to ASL such as the ability to compare nodes on the
content level.

e Specifying other session-based adaptation methods: the link rec-
ommendation techniques are both a adaptive link generation methods.
This is only one of the web site adaptation methods which we have seen
in chapter 4. In the future, other personalization methods could be in-
tegrated into WSDM. The biggest problem is that most of these other
methods rely on a user model. Specifying a user model and making it
accessible in ASL will make it possible to specify these methods. Incorpo-
rating some of these other adaptation methods without a user model can
also be a very challenging task.

It’s obvious that there are many possible extensions which can be investigated
in the future. We think that the biggest future challenge among the ones listed
above is the incorporation of the other web site adaptation methods. When
these are all specified in ASL, WSDM will offer a large library of re-usable web
site adaptation methods which are a very valuable tool for every web designer.



Appendix A

ASL BNF Specification!

<adaptationPolicy> ::= (<script> ';')*
(<adaptationSpecification> *;")*

<adaptationSpecification> ::= ‘when’ <trigger> ‘do’ <adaptationStrategy>

<trigger> 1= <timeEvent>

<trigger> 1= <systemEvent>

<trigger> ::= <userEvent> [‘on’ <reference>]

<trigger> ::= <condition>

<userEvent> ::= ‘click’ | ‘sessionStart’ | ‘sessionEnd’ | ‘load’
<systemEvent> ::= ‘initialization’

<timeEvent> 1= <dateSpecifier> | [‘every’] <timeExpression> [‘from now’]
<dateSpecifier> ::= <number> <month> <number>

<month>::= ‘January’ | ‘February’ | ‘March’ | ‘April’ | ‘May’ | ‘June’ | ‘July’
‘August’ | ‘September’ | ‘October’ | ‘November’ | ‘December’

<timeExpression> ::= <timePrimitive>*
<timePrimitive> ::= <number> <timeUnit>
<timePrimitive> 1= <day>
<timePrimitive> ::= <month>

<timeUnit> ::= ‘seconds’ | ‘minutes’ | ‘hours’ | ‘days’ | ‘weeks’ | ‘months’ | ‘years’

<day> == *Monday’ | ‘Tuesday’ | ‘Wednesday’ | ‘Thursday’ | ‘Friday’ |
‘Saturday’ | ‘Sunday’

<adaptationStrategy> ::= <ruleSequence> | <rule>

<ruleSequence> ::= ‘begin’ <rule> [ ;" <rule> |* ‘end’

IThe changes to ASL are emphasized in italics.
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<rule> ::= <foreachRule> | <simpleRule>

<foreachRule> ::= ‘forEach’ <setlterator> [<setlterator>]* '}’
(<adaptationStrategy>)

<setlterator> ::= <reference> ‘in’ <setExpression>
<simpleRule> ::= <ifStatement> | <trackingVariableStatement> |
<letStatement> |<assignment> |
<setLetStatement> | <setAssignment> |
<nativeOperation> | <callStatement>
<ifStatement> ::= ‘if’ <condition> ‘then’ <adaptationStrategy>
<letStatement> ::= ‘let’ <variable> [‘be’ <expression>]

<setLetStatement> ::= ‘let’ <setVariable> ['be’ <setExpression>]

<addTrackingVariable> ::= ‘addTrackingVariable' <trackingVariable>
['initialized on’ <expression>]

<monitorStatement> ::= ‘monitor’ <userEvent> [‘on’ <reference>]

['if’ <condition>] ‘do’

<adaptationStrategy>
<trackingVariableAssignment> ::= <trackingVariable> ‘:=" <expression>

<assignment> ::= < trackingVariableAssignment>
<assignment> 1= <variable> “=" <expression>

<setAssignment> 1= <setVariable> “:=" <setExpression>

<script> 1= 'script’ <reference> ‘(" (<parameter> [‘," <parameter>]* ‘)
<adaptationStrategy>

<parameter> ::= <variable> | <setVariable>

<callStatement> ::= ‘call’ <reference> ‘(" ( <expression> | <setExpression )* )’

<condition> 1= <expression>
<expression> ::= <comparand> [<comparator> <comparand>]*
<comparand> = <term> [<adder> <term>]*

<term> ::= <factor> [<multiplier> <factor>]*

<factor> ::= <primitive>
<factor> ::= <not> <primitive>

<primitive> ::= <number>
<primitive> ::= <boolean>
<primitive> ::= <reference>
<primitive> ::= <variable>
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<primitive> ::= <trackingVariable>
<primitive> ::= <nativeFunction>
<primitive> ::= <runtimeConstant>
<primitive> ::= <statisticalOperator>
<primitive> ::= ‘("<expression>*)’
<primitive> ::= projection(<setExpression>)

<comparator> = ‘<" | ‘=" | > | k=" | ‘>="| 1=

<adder> ::= ‘OR’

SRIRE
<multiplier> ::= ‘AND’ | */" | ¥

<not> = ‘NOT’

<trackingVariable> ::= <reference> [ ‘['<reference> ['," <reference>*]]"]. <reference>
<variable> ::= <reference>

<setVariable> ::= <capitalizedLetter> [<letter> | <digit>]*

<reference> = [<nonCapitalizedLetter> | <digit>]* <letter> [<letter> | <digit>]*

<nativeSet> ::= ‘Nodes’ | ‘Chunks’ | ‘Links’ | ‘Connections’ | ‘Pages’ |
‘AudienceClasses’ | ‘Sessions’

<setCreator> ::= ‘nodesInAudienceTrack(’<expression>*)" |
‘chunksInAudienceTrack(' <expression >*)" |
‘chunksFromNode(’ <expression >‘)" |
‘nodesLinked To(’<expression>, <expression >*)" |
‘nodesLinkedFrom('<expression>, <expression >‘)" |
‘nodesFromChunk(’<expression >*)" |
‘ALL’ < expression > |
‘addElement(’ <setExpression>'," <expression>‘)" |
‘addElementAtindex(’<setExpression>'," <expression>*,’

<expression>*)" |

‘subset('<setExpression>",” <expression>"," <expression>")’

<setOperation> ::= <setSorter> | <setFilter> | <setMap>

<setSorter> ::= ‘SORT ON’ <reference> ‘" <trackingVariable>

<setFilter> ::= ‘FILTER ON’ <reference> ‘" <condition>

<setMap> ::= ‘MAP ON’ <reference> ':" <expression>

<setExpression> ::= <setComparand> [<setComparator> <setComparand>]*
<setComparand> 1= <setTerm> [<setAdder> <setTerm>]*

<setTerm> ::= <setPrimitive> [<setMultiplier> <setPrimitive>]*
<setPrimitive> 1= <set>

<setPrimitive> ::= (<setExpression>)
<setPrimitive> 1= <setExpression> ‘['<setOperation> [‘;" <setOperation>]*‘]’
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<set> = <nativeSet> | <setCreator> | <setOperation> |
{" <expression> [',” <expression>]* ‘}’

<setComparator> 1= ‘=
<setAdder> ::= ‘DIFFERENCE’ | ‘+' | ‘-’
<setMultiplier> ::= ‘UNION’ | ‘INTERSECT’ | ‘*' | */'

<nativeOperation> ::= ‘deleteNode(’'<expression>*)" |
‘addNode('<expression>‘)" |
‘connect('<expression>‘," <expression>')" |
‘disconnect(’<expression>'," <expression>")" |
‘deleteLink(’<expression>*," <expression>‘," <expression>‘)" |
‘addLink(’<expression>’," <expression>*," <expression>*)’
[‘as’ <reference>] |
‘addPage(’<expression>")" |
‘deleteNodeFromPage(’ <expression>',” <expression>‘)" |
‘addNodeToPage('<expression>‘,” <expression>*)" |
‘alert('(<expression> | <string> )* )" |
‘deleteSessionLink(’<expression>',” <expression>',’
<expression>*," <expression>')’ |
‘addSessionLink(’<expression>'," <expression>",’
<expression>',” <expression>')’
[‘as’ <reference>] |
‘clearSessionLinks(’<expression>',” <expression>')’

<nativeFunction> ::= ‘root('<expression>‘)" | ‘audienceClass(’<expression>‘)" |
‘audienceTrack('<expression>*)" | ‘currentAudienceClass()’ |
‘inAudienceTrack?(’<expression>‘,” <expression>*)" |
‘linked?('<expression>"," <expression>',” <expression>*)’ |
‘project(’<setExpression>',” <expression>')" |
‘target('<expression>‘)" | ‘source(’<expression>‘)" |
‘linktype(’<expression>")" | ‘currentSession()" |
‘currentNode()’

<statisticalOperators> ::= ‘average(’'< setExpression>*)" | ‘max(’ setExpression>")" |
‘min(’<setExpression>')" | ‘range(’< setExpression>‘)’ |
‘mad(’<setExpression>*)’ | 'median(’< setExpression >') |
‘middle(’< setExpression>*)" | 'stdev(’<setExpression>‘)" |
‘length('<setExpression>‘)" |

<boolean> ::= ‘false’ | ‘true’

<string> = " [<letter> | <digit>]* <letter> [<letter> | <digit>]*

<letter> ::= <nonCapitalizedLetter> | <capitalizedLetter>

<nonCapitalizedLetter> ::= ‘a’ | ‘b’ | ‘¢’ | 'd" | ‘e | ‘F | ‘g | ‘W | V| | 'k’ |
IIY | le | lnY | lol | lp’ | ‘ql | lrl | ‘s’ | ltY | lul lv’
lwl | lxl ly’ | lzl

<capitalizedLetter> == ‘A’ | ‘B' | ‘C’ | 'D' | 'E' | 'F' | ‘G’ | 'H' | T | ' | 'K’ |
lLl | IM! | INI | lo! | IPY | IQI | IR! | lsl | ITY | IUI |
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IVI | ‘W, | ‘X, | ‘Y, | lZl

<number> = <digit> [<digit>]*
<digit> = 0| 1| 2| 3| 4|5 |6 | T |8 |
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