
FACULTEIT WETENSCHAPPEN EN BIO-
INGENIEURSWETENSCHAPPEN
DEPARTEMENT COMPUTERWETENSCHAPPEN

Ondersteunen van het gedrag van
smart entities op verschillende
virtuele-omgevingsplatformen.

Thesis met als doel de graad te behalen van Master in de Toegepaste Informatica.

Dominique Dierickx

Promoter: Prof. Dr. Olga De Troyer
Begeleider: Dr. Frederic Kleinermann

Academiejaar 2008-2009

FACULTY OF SCIENCE AND BIO-
ENGINEERING SCIENCES
DEPARTMENT OF COMPUTER SCIENCE

Supporting smart entity behavior
across virtual environment
platforms

Master thesis submitted in order to obtain a Master Degree in Applied Informatics.

Dominique Dierickx

Promoter: Prof. Dr. Olga De Troyer
Advisor: Dr. Frederic Kleinermann

Academic Year 2008-2009

Acknowledgements

I would like to express my gratitude to my advisor, Dr. Frederic Kleiner-
mann, for his personal guidance through the thought process that is behind
this work, for sharing his knowledge in the field of 3D computer graphics
and for his help with this document. I would like to thank my promoter,
Prof. Dr. Olga de Troyer for her assistance during this entire academic
year.

I would also like to take this opportunity to thank my parents for supporting
me and my choices in every possible way.

i

Samenvatting

De dag van vandaag wordt er steeds meer gebruik gemaakt van interac-
tieve driedimensionale omgevingen. Universiteiten bieden virtuele rondlei-
dingen aan van hun campussen, winkels gebruiken virtuele etalages en
sociale netwerkapplicaties laten gebruikers toe een virtuele hand te schud-
den met vrienden dichtbij of ver weg.

Het ontwerpen van zulke rijke virtuele omgevingen kan echter een zeer
tijdrovende en repetitieve taak zijn. De informatie over de objecten in zulke
omgevingen is vaak hard gecodeerd en dit zorgt ervoor dat hergebruik er-
van op eenzelfde of een ander platform niet vanzelfsprekend is.

In deze thesis zal een methode besproken worden die het toevoegen van
gegevens aan 3D modellen mogelijk maakt en die het uitvoeren van het
gedrag van deze modellen kan realiseren op verschillende platformen.

Een virtueel object dat informatie bevat die nodig is om het object visueel
voor te stellen alsook extra informatie over het object zelf wordt een Smart
Entity genoemd. Deze extra informatie kan de gebruiker vertellen wat
het object kan doen maar kan ook bijkomende gegevens over dat object
meedelen aan de gebruiker. Deze gegevens zijn niet beperkt tot tekstfrag-
menten maar kunnen ook multimedia-bestanden zijn (afbeeldingen, audio,
video, etc.).

Door deze informatie los te maken van de applicatie kunnen ontwerpers
reeds bestaande entiteiten hergebruiken en kunnen deze op verschillende
platformen en in verschillende werelden weergegeven worden, zonder dat
deze gegevens verloren gaan.

Een applicatie zal worden voorgesteld die gebruikers toelaat zelf deze
Smart Entities te creeëren en een prototype van een uitbreiding van een
bestaande VE speler, die gebruik maakt van onze methode, zal worden
besproken.

Kernwoorden: Virtuele omgevingen, smart entities, gedrag, animatie, in-
teroperabiliteit, annotaties

ii

Abstract

More and more, 3D virtual environments are used to deliver a rich user
experience on the computer screen. Universities are offering virtual tours
around the campus, shops are using virtual stores and social networking
applications let you shake virtual hands with friends nearby or far away.

From a virtual world designer’s point of view however, creation of content
can be a repetitive and time-consuming task. Furthermore, the semantics
of virtual entities are often hard-coded in the virtual environments, hinder-
ing reuse and interoperability.

In this thesis, a method is presented that allows adding semantics to a
3D entity and that allows invocation of the inherent behavior of these enti-
ties on different platforms.

Virtual entities that in addition to their geometric representation, also con-
tain data on their semantics have been called smart entities. These se-
mantics can state properties of the entity in question and can describe
what the user can do with an entity and how these actions are to be per-
formed. They can also contain more information on the entity, by providing
links to related resources or even media content.

By decoupling these semantics from the virtual environment application,
designers can reuse existing entities and port them to different platforms,
while maintaining the semantics of the entity.

An authoring tool is presented that supports the creation of Smart Enti-
ties and a proof of concept VR player extension is discussed that takes
advantage of the presented techniques.

Keywords: Virtual environments, smart entities, behavior, animation, in-
teroperability, annotations

iii

Contents

1 Introduction 1
1.1 Virtual Reality and Game engines 1
1.2 Anatomy of a VE application 3
1.3 Motivation . 6
1.4 Thesis aims and structure 9

1.4.1 Aims of this thesis 9
1.4.2 Thesis structure . 10

2 Related work 11
2.1 Background . 11

2.1.1 Virtual Environments 11
2.1.2 3D Computer Graphics 14
2.1.3 3D Model file formats 19
2.1.4 Digital Content Creation 21
2.1.5 VE players . 23

2.2 Related research . 27

3 The Smart Entity approach 28
3.1 Overview of the approach 28
3.2 Smart Entity file format . 31

3.2.1 Geometry Locators 33
3.2.2 Descriptors . 34
3.2.3 State . 36
3.2.4 Abilities . 37
3.2.5 Behaviors . 38
3.2.6 Behavior Locators 41
3.2.7 Members . 42

3.3 Framework . 43
3.3.1 The Engine Extension 45
3.3.2 Behavior Repository 50

iv

4 Implementation of the Authoring Tool and the Framework 53
4.1 Authoring Tool . 53

4.1.1 General design . 53
4.1.2 Implementation . 55

4.2 The XNA Engine Extension 56
4.2.1 XNA Smart Entity Engine 56
4.2.2 Smart Entity engine interface 59
4.2.3 Behavior implementation guidelines 60

4.3 Behavior Repository . 61

5 Case study 63
5.1 Outline . 63
5.2 3D Modeling . 64
5.3 Creating the Smart Entity file 65
5.4 VE design and programming 68
5.5 Result . 70

6 Future work 71

7 Conclusion 73

Bibliography 75

8 Appendix 80
8.1 Smart Entity file format XSD 80
8.2 Case study Smart Entity XML 84
8.3 Investigator Camera . 86

8.3.1 Camera . 86
8.3.2 InvestigatorCamera 88

8.4 TemplateBehavior . 90
8.5 RotationBehavior . 93
8.6 TranslationBehavior . 95

v

List of Figures

1.1 Creation of a living room using Google’s Sketchup. 3
1.2 Common real-time shading algorithms: flat-, Gouraud- and

Phong shading. 5

2.1 The CAVE system at the University of Michigan. 12
2.2 Paul Milgram and Fumio Kishin: The Virtuality Continuum . 13
2.3 The WikiTude application in action. 13
2.4 A scene graph describing a scene containing a car. 14
2.5 Depiction of the view frustrum. 15
2.6 The right-handed coordinate system. 18
2.7 Google’s O3D architectural overview. 25

3.1 Data model of the Smart Entity file format. 32
3.2 Conceptual overview of the architecture. 43
3.3 The Behavior Resolution process. 46
3.4 Conceptual overview of the interface. 48

4.1 Annotating a Smart Entity by using the Authoring Tool. . . . 55
4.2 The Smart Entity in the XNA Framework. 57
4.3 Propagation of updates in the game-loop. 58

5.1 The Nokia 5300 being modeled in 3ds Max. 64
5.2 The Authoring Tool’s Behavior Explorer. 65
5.3 Adding state variables in the Authoring Tool. 66
5.4 Specifying parameters of a behavior invocation. 66
5.5 Specifying post- and preconditions for the “Open” behavior. 67
5.6 The main window of the Authoring Tool. 67
5.7 The opened cellphone in our created environment. 70

6.1 A limited prototype of the approach using Google O3D. . . 72

vi

Glossary of terms
Behavior: The actions or reactions of an object or organism, in relation
to the environment.

Digital Content Creation (DCC): The creation and modification of digi-
tal content, such as animation, audio, graphics, images or video, as part
of the production process. To facilitate this process, a set of DCC tools are
available.

Interoperability: A property referring to the ability of diverse systems and
organizations to work together.

JavaScript: JavaScript is a scripting language used to enable program-
matic access to objects within other applications. It is primarily used in the
form of client-side JavaScript for the development of dynamic websites.

Mesh: A collection of vertices, edges and faces that define the shape
of a polyhedral object in 3D computer graphics.

Platform: A platform is a set of subsystems and technologies that pro-
vide a coherent set of functionality through interfaces and specified usage
patterns, which any application supported by that platform can use without
concern for the details of how the functionality provided by the platform is
implemented.

Reflection: The process by which a computer program can observe and
modify the structure and behavior of itself or other programs.

Rendering: The process of generating an image from a model using a
computer.

Serialization: A term for converting a data object into another structure
that can be stored on or transmitted over a medium. Deserialization inter-
prets such data structures and transforms them into data objects.

Serious games: A term used to refer to an application developed with
game technology and game design principles for a primary purpose other
than pure entertainment. The serious adjective is generally appended to
refer to products used by industries like defense, education [1], scientific

vii

exploration, health care, etc.

Smart Entity format: The Smart Entity file format is a platform-independent
specification of the entity and its abilities. It contains the semantics that are
attached to a 3D model as well as a reference to its visual representation.

SOAP (Simple Object Access Protocol): SOAP is a protocol specifi-
cation for exchanging structured information in the implementation of Web
Services in computer networks.

XML (eXtensible Markup Language): The XML is a general-purpose
specification for creating custom markup languages. It is classified as an
extensible language, because it allows the user to define the mark-up ele-
ments. .

URI (Uniform Resource Identifier): A URI consists of a string of char-
acters used to identify or name a resource on the Internet.

Virtual Environment Application: A software application which uses a
Virtual Environment Player to display and control a VE and contains the
logic of the VE.

Virtual Environment Player: A software application dedicated to the vi-
sualization of a VE.

Virtual Object (VO): A virtual representation of an object inside a virtual
world.

Virtual Reality (VR): A field of study that aims to create a system that
provides a synthetic experience to its user(s).

Virtual World (VW): A composition of virtual objects, the user(s) can nav-
igate and interact with the world.

Webservice: A software system designed to support interoperable machine-
to-machine interaction over a network.

WSDL (Web Service Description Language): The WSDL is an XML-
based language that provides a model for describing webservices.

viii

Chapter 1

Introduction

This chapter will start by introducing the main context of this thesis. There-
after, both the motivation and intention of this work will be stated and the
structure of the thesis will be discussed.

1.1 Virtual Reality and Game engines

Virtual reality (VR) is a set of technologies which allows users to interact
with a computer-simulated environment. The user should feel immersed
in this simulation, regardless whether the environment is completely imag-
inary or based upon the real world. Originally, the term VR referred only
to immersive VR. In immersive VR, the user is fully contained in the virtual
environment and all actions that the viewer performs are reflected in the
virtual environment. Needless to say, these kinds of systems are tech-
nically very complex to create. Later on, the definition of VR has been
widened to adopt both desktop VR and semi-immersive VR.

As opposed to what many people think, VR is used extensively nowadays
for all kinds of specific applications. Typical examples are computer games
and movies but several other fields have seen the benefits of using VR.

Surgeons use anatomic simulations to study or to prepare for complex op-
erations [2], while safety instructors can design and test fire prevention and
escape procedures using VR technology [3] [4]. VR has also been used
in psychological research, because experiments can be repeated exactly
and because each aspect of the testing environment can be fine-tuned.
Especially the field of phobia treatment [5] has benefited from using VR
technologies.

1

As computers are becoming more powerful, VR can be realized on nor-
mal desktop machines and even on mobile devices. During the last ten
years, game engines have been created in order to ease in the develop-
ment and deployment of games. Today, these game engines have most of
the features that are needed to develop VR-applications, except support
for high-end interaction and display techniques. Thanks to this evolution,
the Virtual World (VW), including its objects and their behaviors, can be
visualized and controlled by a game engine. This is the aim of the serious
games initiatives. This is a term used to refer to a software application, de-
veloped using game technology and game design principles for a primary
purpose other than pure entertainment. Examples of such purposes could
be education, science, health care, etc. For this reason, in this thesis, the
term Virtual Environment (VE) application will be used. This can be a VR-
application which is running on the desktop or even in the webbrowser, but
it can also be a game. Both of them can be developed by using (existing)
game engines.

The VE is made of a virtual world (VW), which contains a number of virtual
objects (VOs). These objects can have certain behaviors and can interact
with each other and with the user(s). Users can also navigate inside the
VW and can interact with the VOs by means of input devices such as the
mouse and keyboard, joysticks or other devices.

2

1.2 Anatomy of a VE application

A VR application is composed of a number of key components. The fol-
lowing is an enumeration of these components, according to [6]:

1. The scene and the objects: The scene (or world) is the environment
which hosts a set of VOs. These objects have their own boundaries,
textures and physical properties. The scene also contains additional
VOs like light sources and cameras, which are needed in order to
visualize it. A scene also contains some specific behavior that it
enforces upon its objects, i.e. the world’s physics. The creation of
VOs is typically done by using Digital Content Creation (DCC) tools,
such as AutoDesk 3ds Max [7] and Google’s Sketchup [8]. More
information on these tools can be found in section 2.1.4.

Figure 1.1: Creation of a living room using Google’s Sketchup.

2. Behavior: Behaviors are attached to VOs, they describe what an ob-
ject can do. The creation of realistic behaviors is one of the most dif-
ficult tasks in the design of VR applications. Most of the time, behav-
iors are implemented directly in the engine [9] by using a high-order
programming language like C#, C++ or Java. Another approach is
to use scripting languages [10] like Lua and Python [11] in order to
separate the behavior definition from the engine. Other approaches
have also been developed which allow a user to model behavior at a
higher level [12].

3

3. Interaction: Without allowing interaction, the user would find the Vir-
tual World (VW) uninteresting. Users need to be able to navigate
through the scene, manipulate and use the scene’s objects and re-
ceive feedback from their actions. At the same time, objects them-
selves need to interact with each other, for instance when two objects
collide, the physics engine needs to perform this collision in a realis-
tic way. It is also possible that the objects themselves respond to a
collision by exhibiting some behavior (ex. shrinking).

4. Sound: The use of sound in virtual environments greatly enhances
the credibility of the scene. It is the task of the sound engineer to pro-
vide realistic audio, given the state of the environment. To enhance
the illusion of immersion, the sound itself can also vary according to
the location of the user within the environment. For instance when
an avatar talks in a basement, an echo could be produced. Surround
sound techniques can be used to further enhance the credibility of
the scene.

5. Communication: While the first VE applications were mainly offline,
single-user systems, a lot of the contemporary solutions are being
used concurrently by a large set of users. As an example, consider
Second Life [13]. Tens of thousands of people are using the system
at the same time and want to communicate with each other. The
deployment of such a large collaborative environment involves tack-
ling classical network issues such as latency and synchronization but
also privacy and security problems.

An important aspect that influences the credibility of the scene is the way it
is rendered to the display. In essence, the rendering process generates a
picture, given the internal mathematical model of the scene. In the context
of VEs, this process needs to be performed at a rate which appears to
be fluid to the human eye (about 25Hz). Rendering is composed of a set
of features. Each feature results in part of the resulting rendering image.
One of the most important features is called shading. Shading attempts
to depict depth and lighting in 3D models by varying levels of darkness.
Since VE shading calculations need to be performed in real-time, complex
physical calculations need to be avoided. This is why shading techniques
often employ approximations and heuristics with little physical basis [14] in
order to gain a performance advantage.

4

Figure 1.2: Common real-time shading algorithms: flat-, Gouraud- and
Phong shading.

The creation of virtual environments and applications still remains a
cumbersome and time-consuming task. This is mainly because it relies on
so many different fields, including graphic design, sound authoring, artifi-
cial intelligence and of course software development. Luckily, the evolu-
tions in both hard- and software have eased the creation of VE applica-
tions.

Before any scene can be visualized, the geometry of the particular
scene needs to be modeled. A lot of different Digital Content Creation
(DCC) tools are available that allow modeling rich 3D models (see 2.1.4),
ranging from freeware applications such as Google’s Sketchup [8], to high-
end solutions like AutoDesk’s Maya [15] and 3ds Max [7]. However, no
DCC tool is the silver bullet. Each product has its own set of features, file
format exporters and interfacing style [9]. The chosen platform will restrict
the choice of compatible file formats and thereby also the set of appropri-
ate tools. Luckily, most DCC tools provide a plugin mechanism that allows
the addition of file formats. A large problem however is the quality of the
different exporters. Especially third-party exporters often do not work cor-
rectly or do not export some features of the 3D model, such as embedded
behaviors, annotations or parts of the model at all.

Many different platforms are available today (see 2.1) that take care of
the visualization of 3D environments and expose an interface (API) that al-
lows developers to control the virtual world. We will refer to these platforms
as VE players. The choice of the VE player will impose some restrictions.
For instance using Java3D [16] allows developers to target a large variety
of different operating systems, while using Microsoft XNA [17] allows the
creation of applications that run on the desktop, as well as the popular
Microsoft’s Xbox 360 console with a minimal amount of changes. Further-

5

more, several technologies are available which allow visualization of 3D
environments inside webbrowsers. Examples of these are the eXtended
3D (X3D) players (like Vivaty player [18]) and Google’s O3D framework
(see 2.1). Therefore both designer and developers need to decide care-
fully which platform will be used, keeping into account which audience is
to be targeted. This is not so easy, because they should also grasp all the
constraints that are associated to the VE player.

1.3 Motivation

The motivation for the work presented in this thesis came from three main
observations that were made at the beginning of the project and which
mostly relate to annotations. Annotating is the process of adding extra-
information to a Virtual Object (VO) and its behaviors. We will now explain
these observations.

Observation 1: Annotations are only made for the static part of the
VE and its VOs

Authoring tools are focusing mainly on the visual appearance of a VO and
its behaviors. In recent years, these authoring tools have also been ex-
tended with the possibility to add extra information about a VO through the
use of annotations, but this simple textual information is very basic and is
only about the static part of a VO, so not on its behaviors. Furthermore,
these authoring tools are storing the limited additional information in the
same file which also contains the geometry of the VO (i.e. its visual ap-
pearance) and its behaviors. This is not a good thing, because the same
VO could have different annotations attached to it, depending on the con-
text it is in. For instance in the context of a video-game, a building could be
annotated with text, stating that the enemies are inside this building. But
in the context of urban design, this same building could be annotated with
the text “IBM Office, no.9 Appleton Street, Boston”. To summarize: the
appearance of a VO will remain constant, but the annotations can change
depending on the context. Based on this, a number of research groups
(see chapter 2) have been working on improving this annotation process
by allowing designers to attach different types of content to a VO, such as
text, images over even media content. Nevertheless, VOs are dynamic in
nature, they can be interacted with and because they can have certain be-
haviors attached to them. For this reason, these annotations should also

6

be about the behaviors and interactions. Most of the works on annotations
have focused on the static structure of a VE and its VOs.

Observation 2: Most of the VE players do not exploit the annotations.

Although part of a VO has been annotated during the design, the VE play-
ers do not use these annotations, either to display to the end-users or to
reason about these annotations in order to facilitate for instance the user’s
navigation inside the VE. At this moment, these annotations still need to
be scripted or hard-coded. A good example is SecondLife (SL) [13] which
shows videos, images, text about a VO. These annotations are contained
with SL by means of a scripting language (the Linden Scripting Language
[13]). This means that the designer needs to have some knowledge on
programming. This may be one of the reasons why VEs still often lack in
terms of annotations as it is still too difficult for designer to use them.

Observation 3: Portability of VOs and their related behaviors across
different VE players is not well supported.

In the context of this work, the term portability will be used to indicate that
a VO can be used on different VE players, while its visual representation
and the behaviors that are attached to it remain the same. It is often the
case that a VO and its behaviors work perfectly on some VE players, but
not so well on others. As a result, the VO needs to be changed for different
VE players. As the authoring tools nowadays support different geometry
file formats, the static part of a VO can be generated in different formats.
The problem of portability across multiple VE players can then be solved at
least for the static part of the VO. But behaviors are often related to some
VOs and they are often VE player dependent. As a result behaviors must
be completely reimplemented into different languages in order for them to
be supported by different VE players.

To overcome this problem of portability, it was thought that having a
standard file format (like X3D [19] or COLLADA [20]) would overcome
these problems. But this is still not the case as the developers of VE
players do not always follow the specification of these file formats. As
a consequence, behaviors often need to be reimplemented. For the de-
signers of these VOs, this is really frustrating, because they often need to
figure out ways of making their VOs portable. This can take a lot of time.

7

Based on these three observations, the main motivation behind this
work is to explore a new research direction for supporting and using the
annotations on a VO in a more efficient way so that they can be used to
provide better feedback to end-users, resulting in higher user-satisfaction,
but also to support portability across VE players.

8

1.4 Thesis aims and structure

1.4.1 Aims of this thesis

There are three main aims for this thesis:

1. Designing an approach which allows annotating the VOs of a VE with
additional information. This could be information regarding the object
in question or information about how the VO can be interacted with.

2. Developing a framework that uses these annotations so that VOs and
their behaviors can be ported and used on VE players.

3. Based on our developed approach, an authoring tool will be devel-
oped with the aims of allowing non VR-specialists to annotate VOs
and their behaviors and which will provide all the necessary informa-
tion so that our framework can use it in order to support portability.

We will attempt to provide a methodology which will lift VOs from their
purely geometric function and into a more semantically rich role. This
lifting will promote the reuse and portability of these VOs on different VE
players and in different VEs. VE players will have knowledge on the VOs
which they use. This knowledge can be communicated to the users of the
VE, who will be able to know more about the VOs they encounter in the VE.
As a result, users will be more interested in the VE, because it will have
more to offer them. Furthermore, we will explore a way in which VE players
can exploit these additional semantics, so they will be able to perform the
behaviors that are associated to a VO. Suppose we are modeling a car.
VOs today only consist of their geometry, so we cannot annotate this car
with the name of its manufacturer, its type, its reference manual, some
real-life pictures, etc. There is also no way in which we can annotate a
VO, representing a car, with the abilities it can perform, like opening the
doors or trunk. Our approach will attempt to solve these two issues and will
elaborate on a method which will allow the car and its associated abilities
to be used on different VE players, without affecting the information that is
available on the VO and the way the abilities of the car are executed by the
VE player.

9

1.4.2 Thesis structure

Chapter 1 has introduced the context of this work as well as the motivation
and aims of the thesis.
Chapter 2 will provide some background information related to virtual real-
ity and 3D computer graphics and will explain related work in the scope of
this work.
Chapter 3 will describe our approach: the “Smart Entity approach”.
Chapter 4 will present the proposed framework and our Authoring Tool.
Chapter 5 will provide a case study and will discuss the results and bene-
fits of using our approach.
Chapter 6 will elaborate on future work
Chapter 7 will discuss the conclusions of this thesis.

10

Chapter 2

Related work

This chapter will start by providing some background regarding 3D com-
puter graphics and VR in general. This section can be skipped by readers
who are already familiar with VR. Later on, related work in the scope of
this thesis will be reviewed.

2.1 Background

The development of computer graphics is a hard task which relies on a
wide set of different fields, including graphic design, mathematics, physics,
etc. In this section, some important concepts which have been used in this
work will be briefly introduced. A more elaborate overview of computer
graphics can be found in [14].

2.1.1 Virtual Environments

Techniques

Several techniques are available in order to visualize computed 3D simu-
lations. A simple display can be used to show the simulation, this is called
Desktop VR, but these displays cannot represent depth differences in a
realistic and believable way. A number of companies, such as Philips [21]
and Mitsubishi [22] are working on a flat display that can create a three
dimensional illusion. Mitsubishi states that the next revolution of television
is 3D TV. This surely seems to be a credible statement and the first results
look positive, but it is not known when 3D TV will be available to the con-
sumer’s market.

11

Semi-immersive virtual reality takes things one step further. By using
head-mounted displays, the illusion of a 3D environment is created. This
is typically done using stereoscopic imaging. This technique consists of
presenting a slightly different image of a scene to each of the user’s eyes.
When applied correctly, the illusion of immersion within a 3D environment
will be perceived. The state of the art in the VR-world, however, is the

Figure 2.1: The CAVE system at the University of Michigan.

CAVE, or Cave Automatic Virtual Environment [23]. It is a fully immer-
sive VR-system, developed at the University of Illinois, which surrounds
the viewer with four projections: one floor- and three side-projections. A
CAVE-user wears a set of stereo shutter glasses. These glasses alter-
nately show images to each eye, synchronous with the refresh rate of the
projection, thereby creating the 3D illusion. This is a stereoscopic imag-
ing technique that is called alternate-frame sequencing. The movements
of the user are monitored by using tracking systems and the simulation is
updated according to these movements. Several universities around the
world have a CAVE system that is used for various kinds of research top-
ics. Some fields in which the CAVE system is employed include geology
[24], medical & chemical research and biology. Next to its academic value,
several projects have been created that use the immersive environment
of the CAVE for entertainment purposes. At Brown University, the CAVE
can be used by artists to make paintings and manipulate them using hand
gestures [25] and of course 3D action games have also been ported to the
CAVE system [26]. While the CAVE’s research and entertainment value is
obvious, the price of the system is still a large drawback.

12

Mixed reality

Figure 2.2: Paul Milgram and Fumio Kishin: The Virtuality Continuum

The merging of both real and virtual environments to produce a new
environment in which physical and virtual objects can co-exist and inter-
act is called mixed reality. There are two options, either the real world is
extended with aspects of the virtual world, or vice-versa. These two ap-
proaches are respectively named augmented reality and augmented vir-
tuality. An example of augmented reality are the head-up displays (HUD),
which are being used in military aircraft but also in luxury automobiles.
HUD’s increase safety and efficiency by allowing users to maintain their
original viewpoint on the real environment.

An interesting and practical example of augmented reality is the WikiTude
AR Travel Guide [27]. This is an application for the T-Mobile G1, which
runs on Google’s Android operating system. It allows a user to target any
landscape in the real world, using the built-in camera. The application will
lookup any landmarks on the landscape using Wikipedia and overlay in-
formation on the visible landmarks on the display. This is feasible because
the G1 phone has an embedded GPS chip and compass.

Figure 2.3: The WikiTude application in action.

13

2.1.2 3D Computer Graphics

The scene graph

A scene graph is an abstract data structure that represents the hierarchical
and relational organization of the objects in a virtual world. The structure
is typically represented as a graph or tree. The scene graph is composed
of nodes, the nodes are objects that can represent either a 3D shape, a
property or a node group. 3D Shape nodes are used to represent the ac-
tual visual objects and parts of objects in the virtual world. Property nodes
can be used to describe objects.

The main purpose of using a scene graph representation is to ease object
manipulation in the virtual world. For example consider a scene graph’s
fragment that represents a car. The car could have a node group called
“wheels” that groups the four 3D shapes that represent the wheels of the
car. By applying a transformation to the “wheels” node group, the transfor-
mation will also be applied recursively to the children of the group. Another
advantage of the scene graph representation is that it allows addition and
removal of nodes at runtime, so if any passengers would enter our car
(like Frank and Rose), we can attach the passenger node group to the
node group of the car and the passengers will move along with the car.
Another interesting feature of the scene graph is called “node switching”.
Suppose we would like to change the 3D shape of the car’s door when
it has been hit. We can simply switch the 3D shape that represents the
affected door, with a new 3D shape that is a visual representation of the
damaged door. The scene graph is a very powerful concept, but the spe-
cific implementation can vary among different platforms.

Figure 2.4: A scene graph describing a scene containing a car.

14

The camera system

A camera is essential to any virtual environments. Obviously, some sort of
viewpoint to the world has to be specified before anything can be seen in
that world. To define a simple camera in a 3D virtual world, we first need
the following properties of the camera:

1. Position: A vector that defines where the camera is positioned in the
world.

2. Target: A vector that defines which point the camera should be fac-
ing, the position and target vectors define the viewing direction of the
camera.

3. Up direction: A normalized vector that defines which direction is
up for the particular camera. Suppose we are looking at a chair in
the real world, with only the position and target vectors known, we
could still rotate our heads along the viewing direction, which results
in many possible camera poses. In a typical virtual environment, the
up direction would be (0, 1, 0).

If we have these, our camera is said to be “uniquely defined”. Before we
can actually draw a virtual environment on the screen, we need to know
how we should map the 3D system of our world to the 2D system of the
display. This transformation process is called “projection”. In order to draw

Figure 2.5: Depiction of the view frustrum.

the world, we define the view frustum (Latin for “piece cut off”). Anything

15

that is within the frustum will be drawn by the engine, everything else will be
clipped to increase performance (frustum culling). That is, anything further
than the near clipping plane and closer than the far clipping plane. These
planes are perpendicular to the camera’s direction. The use of these clip-
ping planes can result in reduced realism, because the viewer may notice
that everything further than the far clipping plane disappears or is only dis-
played partially. The addition of fog can help soften this transition. The
distance of the near and far clipping planes depends on the purpose of the
VE.

Transformations

A transformation in 3D space (R3) is defined by a 4x4 matrix. The trans-
formation of a single vector is performed by multiplying the matrix with the
vector. Applying a transformation to a complex object such as a model,
involves applying the transformation to each of its vertices. Transformation
matrices are used to define the view and projection settings of the scene
and to alter or animate the virtual world’s entities. The main transformation
matrices are the scaling, translation (moves a vector) and rotation matri-
ces. This is the standard translation matrix in 3D space:

v ′ = T .v =

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

 .

x
y
z
1

 =

x + tx
y + ty
z + tz

1

The vector v is the original vector, the one we wish to translate. The pa-
rameters tx , ty , tz are the coordinates we wish to add to the vector. Here is
an example of a translation:

v ′ = T .v

v ′ =

1 0 0 0
0 1 0 5
0 0 1 0
0 0 0 1

 .

1
2
3
1

 =

1
7
3
1

In the example, the vector v has been moved 5 units along the Y (up) axis,
resulting in v ′. 3D platforms often include a set of available operations
that allow the creation of translation, rotation and scaling matrices and the
manipulation of general matrices. Several transformation matrices can be
composed into one transformation matrix by multiplication. Matrix multipli-
cation is performed right to left and not generally commutative, so one has
to see to it that the used order is correct. Another thing to note is that one

16

transformation may influence another transformation. For instance when
two rotations around different axes are being combined, the axes of the
second rotation will have been rotated by the first rotation. This is called
“Gimbal lock”. A property of rotations is that two rotations can always
be combined into one single rotation. Furthermore, any rotation can be
represented by an axis (normalized 3D vector) and an angle of revolution
around that axis. To store these two properties, a quaternion is typically
used. A quaternion is an extension to the complex number system. The
set of quaternions, H, is equal to R4, a four dimensional vector space over
the real numbers. The first three components represent the x-, y- and z-
components of a vector in R3, these define the rotation axis. The fourth
component (referred to as w), denotes the angle of the rotation. Three op-
erations are defined on H: Addition, scalar multiplication and quaternion
multiplication.

H = {(x , y , z, w)|x , y , z, w ∈ R}

q = xi + yj + zk + w (q ∈ H)

Since quaternions are so heavily used in the field of 3D graphics to rep-
resent a rotation around an arbitrary axis, several platforms expose a set
of functions that allow users to handle quaternions without having to know
the full mathematical extent of the topic. For example, both Java and XNA
have classes (Quat4d , Quaternion) which have methods that perform
quaternion operations and allow instantiation using the four components
which were discussed above.

17

Coordinate system

In a virtual environment, all the contained objects have a position and an
orientation in the 3D space, these are defined in a global 3D coordinate
system. In the context of this thesis, the right-handed coordinate system
will be used. In this system, the positive x-axis is pointing right, the positive
y-axis is pointing up and the positive z-axis points towards the observer.
Along with the global coordinate system, each object and part of an object
can also have its own relative coordinate system. This coordinate system
can be adjusted according to the purpose of the part. For instance when
modeling a treasure chest, the designer could place the x-axis of the top
of the chest on the hinges, so that whenever a rotation around the x-axis
of the chest’s top is performed, the chest would open up in a natural way.

Figure 2.6: The right-handed coordinate system.

18

2.1.3 3D Model file formats

The creation and management of 3D virtual environments is overwhelmed
by tools and file formats. Hundreds of different file formats are used, each
with its ups and downs and dozens of high (and low) quality 3D authoring
tools are available to content creators. In this section, some of the most
relevant file formats that are available and used today are discussed.

X3D

The eXtensible 3D (X3D) standard was conceived by the Web3D
Consortium [28] in 2001. It is an open standards file format which allows
the creation of 3D scenes and objects by using an XML syntax. Since
2004, X3D became an ISO/IEC standard and it has become the leading
technology for 3D in the webbrowser. X3D is the successor of the Vir-
tual Reality Modeling Language (VRML) [29]. Along with the geometric
structure of an object, it also provides mechanisms to store behaviors, in-
teractions and meta-data, which are similar but more limited than the data
that will be presented in this work. X3D represents a 3D scene using a
scene graph (see 2.1) which contains primitive objects such as the Cube,
Box and Cone objects and geometric transformations on those primitives.
Some none-geometric objects, such as lights, cameras and even sounds
can also be defined using the X3D syntax. The X3D format was created in
order to deliver rich 3D content over the internet and into the webbrowser.
To accomplish this, an X3D-viewer needs to be installed on the host sys-
tem. Examples of such viewers are the Vivaty [18] and Octaga Player [30].
These players come with plugins for all popular webbrowser so that 3D
content can be displayed within the browser. To create X3D files, users
can use their favorite Digital Content Creation (DCC) tool to export to X3D
if this option is available or use Vivaty Studio [18], which is a freeware
authoring tool that was specifically designed for X3D development.

19

COLLADA

COLLADA is an attempt for establishing an interchange file format for in-
teractive virtual environments. COLLADA is defined in an XML Scheme
and was developed as a reaction to the various incompatible file formats
that are around today. It was originally conceived by Sony Computer En-
tertainment in October 2004 to be the official format for the PlayStation 3
and PlayStation Portable game consoles. During its development, several
other companies saw benefit in COLLADA and joined in, resulting in the
Kronos Group consortium [20]. Members of this consortium are some of
the biggest names in the (3D) entertainment sector, such as Blizzard, Dell,
Sony, Barco, Creative, Electronic Arts, Google and many more. The COL-
LADA format was originally intended to be an intermediate format, to be
used for transporting data from one digital content creation tool (DCC) to
the other (ex.: 3D Studio Max to Blender) but some applications have used
COLLADA as their native file format for storing 3D geometry. An example
of this is Google Earth, which allows users to populate a map with a 3D
object, using the COLLADA standard.

A standard such as COLLADA is a good thing for the digital entertain-
ment industry, because it enhances interoperability between different plat-
forms and because it can serve as the de facto standard for representing
3D objects. Support for COLLADA is available in almost any authoring
tool, either native or using a plugin, but support in 3D API’s is limited and
mostly unofficial. Both Java3D and XNA have an unofficial COLLADA im-
porter but these are far from production-ready and could not be used for
the proof of concept. Hopefully COLLADA will evolve further and gain even
wider acceptance in the future.

20

2.1.4 Digital Content Creation

Many different applications have been developed in order to ease the de-
sign of 3D models and animations. Each with its own ups and downs.
Choosing the right tool for the trade is essential in order to increase pro-
ductivity, especially for beginning 3D designers. In this section, some of
the DCC tool’s that have been used will be discussed briefly.

Sketchup

Google’s Sketchup [8] is an award winning 3D modeling application that
was developed by @Last Software. In March 2006, Google acquired this
company and continued development of the application. The main advan-
tage of using Sketchup is the low learning curve. Indeed, Sketchup boasts
an amazingly simple, yet powerful click-and-drag user interface that has
even been patented by Google. Best of all, Sketchup is completely free
and available for download. There is also a professional edition which
supports additional file formats and editing features. This version is re-
quired if the software is used for commercial purposes. Google Sketchup
enables any user to publish 3D models to Google Earth or to a community
repository called the Google Warehouse. This repository allows anyone
to search for VOs, allowing even the layman to create rich virtual scenes.
The application’s professional version also allows exporting 3D models to
a large set of different formats, including 3DS, OBJ, DAE (COLLADA) and
FBX [31]. Sketchup does not supply any animation support by default.

21

Blender

Blender [32] is a 3D modeling application that has been released as free
software under the GNU General Public License (GPL). Though it is cost-
less, it offers a plethora of professional features to the user that are other-
wise only available in high-end software. Blender is available for almost all
popular platforms and boasts a large community of users. As oppose to
Sketchup, Blender has a really steep learning curve. The use of keyboard
shortcuts is almost imperative to working with Blender but once these key-
board shortcuts have been mastered, modeling with Blender can be much
faster than with other commercial solutions. Blender offers export fea-
tures to a lot of different formats, including 3DS, OBJ, DAE (COLLADA)
and many more. Along with the creation of static models, Blender allows
user to create rich (physics) animations, involving skeletons and inverse
kinematics and even games.

3ds Max

For some time now, AutoDesk’s 3Ds Max [7] (formerly known as 3D Stu-
dio Max) has been the de facto standard in the 3D modeling world. The
application has a wide range of features, which seem overwhelming in
the beginning but many game-content creators have sworn by it. Luck-
ily a lot of free study material is available on the internet in order to help
new users. AutoDesk features one of the widest sets of exporters that are
available today, including 3DS, OBJ, DAE, X and FBX. Since the FBX for-
mat was created by AutoDesk [31], 3Ds Max’s FBX exporter is the best
available on any DCC tool. This makes the application an ideal DCC tool
for the XNA platform. Its user interface is also a revelation as oppose to
Blender, though some functionality is well hidden. It is also possible to
create animations using 3ds Max, but its sister-product AutoDesk’s Maya
is especially created for that purpose.

22

2.1.5 VE players

Several VE players are available for developing and visualizing 3D virtual
environments. In this section, a brief overview of the most used VE play-
ers will be given, along with some considerations with regards to ease of
development, speed and presentation.

Java3D

Java3D [16] is an open-source, low-level 3D API that was created by Intel,
Silicon Graphics, Apple and Sun Microsystems. It is not part of the Java
Developer Kit (JDK). Java3D is an abstraction layer that can run on top of
OpenGL or Direct3D and in the Java spirit, it is also platform-independent
(though not for mobile devices). An interesting feature is the ability to
create Java3D-applets. As all the other platforms, it supplies high-level
methods for creating and manipulating the 3D geometry (using a scene
graph representation). Any Java IDE can be used to develop Java3D ap-
plications, the only thing that needs to be done is adding the Java3D jar
file to the classpath. Importers are available for different formats, includ-
ing 3DS, OBJ, X3D and VRML [29]. Unfortunately DirectX, FBX or the
industry standard COLLADA (DAE) file format support is unavailable. In
January 2008, Sun announced that improvements to Java3D would be put
on hold to focus efforts on integrating support with JavaFX to complement
JavaFX’s 2D scene graph. Nevertheless, Java3D is being used a lot to-
day, though not that much information on it is available on the web (as
compared to Microsoft XNA [17]).

23

Adobe Flash-based platforms

Since both the availability of broadband and the power of graphics cards
have been increased during the last couple of years, the browser has
become an ideal platform for the delivery of rich VR applications to the
masses. Since Adobe Flash is one of the standards for creating Rich In-
ternet Applications (99% of the web’s users have Adobe’s Flash player
[33]), several third party attempts have been made to extend this platform
with easy to use 3D capabilities:

• Papervision3D [34]: Papervision3D is the preferred engine for now
because of its large userbase. Papervision3D delivers 3D virtual en-
vironments to every webbrowser with Flash support and has support
for COLLADA files (including animations). Both of these features
make Paperversion3D very attractive for web-based virtual environ-
ments.

• Alternativa3D [35]: A very impressive and performant Flash-based
engine that is free for non-commercial use is Alternativa3D. It excels
in the visualization of large, navigatable, environments and is already
compatible with Adobe Flash 10. Alternativa3D can import 3DS and
OBJ files, unfortunately COLLADA support is not yet available.

Since Adobe Flash 9 has no support for hardware acceleration, all of the
graphics calculations of these engines are performed on the CPU. Flash
10 however will support hardware acceleration. Being able to use the full
power the Graphics Processing Unit (GPU) will result in large speed ben-
efits. One large drawback however remains that all assets (textures, mod-
els, sound, ...) still need to be downloaded from a webserver, resulting in
longer loading times.

24

Google’s O3D

In April 2009, Google introduced the O3D Application Programming Inter-
face (API) [36]: a multi-platform solution that allows the visualization of 3D
virtual environments in the webbrowser. Developing these environments
is accomplished by using JavaScript. Programmers can manipulate the
VW by modifying the scene graph. O3D provides a browser plugin for al-
most all browsers on Windows, Macintosh and Linux system. This plugin
can either use Direct3D or OpenGL as its graphical layer, allowing it to
perform all graphics calculations on the Graphics Processing Unit (GPU).
O3D is capable of loading COLLADA models into the scene. These COL-
LADA models can be created using Sketchup Pro or any other DCC tool.
Because this technology is still new at the time of writing, little documen-

Figure 2.7: Google’s O3D architectural overview.

tation is available. Developing VEs using JavaScript is also a hard task,
since it offers limited debugging functionality. Nevertheless, this API has a
great potential and cooperates perfectly with Google’s Sketchup.

25

Microsoft XNA

Microsoft’s XNA [17] (XNA is not an acronym) was released in December
2006. The main intent of the framework was to provide easy, yet power-
ful features to game developers. The framework is based on the Microsoft
.NET framework and runs in a so called “managed execution environment”.
This means that the source code is first compiled to an intermediate code
format (called managed code, comparable to Java’s bytecode), this code
is executed by a virtual machine. Execution environments are available
for all popular Microsoft Windows versions and for the Xbox 360 gaming
console. This allows developers to create games for the desktop computer
and later on port them to the Xbox 360 console with little extra effort.

The XNA framework allows developers to have fine-grained control over all
aspects of a game. HLSL (High Level Shading Language) effects can be
used to program the graphics card’s pixel, vertex and geometry shaders.
Using HLSL, developers can add custom post-processing effects such as
blurs, color effects, etc. but also complex lighting effects such as Gouraud
and Phong shading. The power of XNA can be overwhelming to begin-
ners. Fortunately there is a lot of documentation [37] available, there is
community support [38] and a lot of great books [39] [40] have been pub-
lished. The framework also integrates seamlessly into Microsoft Visual
Studio, thereby enabling code completion, debugging and refactoring fea-
tures. The 3D model formats that can be used are FBX [31] (AutoDesk)
and X (Microsoft DirectX), unfortunately, only limited COLLADA support
was available at the time of writing. Custom content format importers can
be added by extending the Content Pipeline [41]. The Content Pipeline is
responsible for reading data from the filesystem, parsing it and loading it
into an XNA specific format such as the Model or Texture2D classes, so it
can be used by the application.

26

2.2 Related research

Several papers have investigated means of adding semantics to virtual
environments as a whole. In [42], the authors present means of creating
Points of Interest (POIs) in an environment. These POIs can be asso-
ciated with different kinds of content, including text, videos and images.
This approach was developed in order to annotate the environments and
the elements within this environment. The annotations are not bound to
the objects but to the context of the object within a scene. The notion of
Smart Objects has been used in [43], [44], [45] and [46] to denote objects
which contain information on how they can be interacted with and manip-
ulated. This information can be parts of the object which can be grasped
and can define how an avatar should be animated while interacting with
the object. In this work, some of the advantages of these added semantics
are presented: by separating the animation specific information from the
environment, the same model can be used in multiple applications. Fur-
thermore, this notion of attached semantics promotes an object-oriented
design, since each object encapsulates its own attributes and operations.

While in [43] and [44], the main purpose of the attached semantics is for
object manipulation purposes, this thesis will focus on attaching semantics
which describe the entity itself in more detail and which serve as a means
of communication to the visitor of the Virtual Environment, hence Smart
Entities. In [47], it is recognized that it is difficult to define a closed and
sufficient set of behaviors, therefore our approach suggests a technique
which allows the addition of new behaviors and even the modification of
existing ones.

In [48], a framework is presented which focuses on the creation of rich be-
haviors by using both a graphical and a textual modeling language. These
behaviors are instantiated by adjusting their parameters. This parameter-
ization is also used in the presented approach. In this thesis, techniques
will be presented which allow the attachment of parameterized behaviors
to an entity and which allow the invocation of these behaviors on differ-
ent VE players. In order to describe the semantics of our Smart Entities,
the definition of Smart Objects in [47] has been used as a reference. The
descriptions feature has been extended to include typing and visibility in-
formation and the focus is more on describing an entity’s abilities and be-
havior rather than on actor-object interaction.

27

Chapter 3

The Smart Entity approach

This chapter will first review some important points which will explain the
approach that was taken in this thesis. Thereafter, this approach will be
elaborated further.

Note that in the context of this work, the term behavior refers to behaviors
of levels zero, one and two in the behavior hierarchy which was proposed
in [49]. Level zero relates to the direct modification of an entity’s attributes
such as its location, size and color. Level one behaviors define the modifi-
cations of level zero over time, resulting in animations. Level two behaviors
are sequential calls to level one behaviors. The third and top-level behav-
iors are not in the scope of this thesis, as they involve high-level decision
making techniques such as deducing what a VO should do at a particular
time.

3.1 Overview of the approach

As discussed in chapter 1, there are three main aims of the presented ap-
proach. First, the approach should provide a way to express information
about a VO and should allow VE players to take advantage of this addi-
tional information. Second, the approach should define a framework that
facilitates portability of VOs and their behaviors by using this added infor-
mation. Third, an Authoring Tool will be developed which conforms to our
approach and enables designers to annotate VOs.

The Smart Entity approach is made up of two important elements. The
first element is a file format which captures all kinds of information related
to the VO through annotations. The need for this new file format originates

28

from the observation that all DCC tools store the geometric definition and
the behaviors related to VOs in a single file, but often in different formats
(FBX [31], COLLADA [20], X3D [19], etc.). Furthermore, the formats that
are used are often chosen in function of the VE player. Note that DCC
tools which support annotations in a limited way, also store this informa-
tion inside the file itself. They also store the behaviors that have been
created by a designer in that same file. To summarize: the geometry of
a VO and some limited semantics and behaviors are all bundled into one
file. Another observation is that many VE players, which parse these files,
were often developed before these file formats have been extended with
the possibility to store these annotations. Therefore this information is al-
most never processed by the VE player. This is one of the reasons why
VEs are still poor in terms of extra information other than information about
the geometry of a VO, its visual appearance and its behaviors.

Storing these annotations within the same file as the visual representa-
tion and behaviors of a VO provides another disadvantage. The creation
and maintenance of such VOs is not easy and needs to be done by ex-
perts that know their DCC tools well. Furthermore, the visual appearance
of an object may not change often, but the annotations that are attached
to it may change depending on the context the VO is in or even depending
on the background of the end-user (culture, language, education, etc.).

Based on this, we have developed an approach which specifies a new file
format which will facilitate the updates of this additional information and the
portability of the VO and its information on different VE players. In other
words, the VOs, which until now were only visual in nature, have been ex-
tended with relevant additional information. These VOs will be referred to
as entities. The annotations will later on also be used to achieve portabil-
ity of the VO and its associated behaviors across different VE players. The
annotations will also be used to provide rich information about the VO to
the user. By providing this information to users, they will be more attracted
to the VE, since it has more information to offer them.

Users will also be able to know what the abilities of a VO are. By abil-
ities, we mean that once a behavior is attached to a VO, the VO will have
an ability to do something. For instance, suppose that a VO representing
a door has two behaviors attached to it: opening and closing. We can
then say that the VO has the ability to open and close the door. Further-
more, the behaviors can annotated so that the VE player will know how
to invoke the abilities associated to that VO. This will also provide the ad-
vantage that VOs and VE users can know how to interact with each other.

29

For instance, the user represented by a human avatar, has clicked a door
in a VE. The VE player can then lookup which abilities the door can per-
form and show a menu to the user, stating that the door can be opened or
closed. This is the reason why we have extended the word entity with the
adjective smart. As a result, VEs will become richer and they can become
more useful and entertaining to their users because of the feedback users
will receive. This may be a motivation towards developers of VE players
to support this proposed format. Therefore, the second element in our ap-
proach is a framework that makes the assumption that existing VE players
have been extended to support the proposed format and it will show how
the promoted portability becomes feasible.

30

3.2 Smart Entity file format

As explained, our Smart Entity file format will contain information through
the use of annotations about the VO and its behaviors. The information
will be stated from both the users’ point of view and from the VE player’s
perspective. Because our file format should be platform-independent, we
have chosen an XML syntax to express its data. Most platforms have
parsers that are more than capable of parsing our file format. The structure
of the file format which has been formally captured by means of an XML
Schema (XSD) file. This XSD file can be found in the appendix (8.1). To
present an overview of the information that is contained into the format, the
data model of the Smart Entity file format is displayed in figure 3.1. Each
of the components in the data model will be described in more details now.

31

Figure 3.1: Data model of the Smart Entity file format.

32

3.2.1 Geometry Locators
Since the Smart Entity file relates to a 3D model, one of the first things that
are required is a link to such a 3D model in some specified 3D model for-
mat. Because different VE players often also use different model formats,
only linking to one model format may not suffice and may break down the
interoperability we are looking for. For instance if platform A uses Au-
todesk’s FBX format [31] as its format while platform B uses COLLADA
[20] and our Smart Entity file only links to an FBX model, then the Smart
Entity could only be used by platform A. This is why the presented format
provides the possibility to link to multiple model files, by providing multiple
URIs to the same 3D model, but in different formats. Designers can eas-
ily store the same model in different formats using the DCC tool of their
choice, either by default or by using a plugin. This approach allows for a
wider platform support of the created definitions. It is the task of the En-
gine Extension (see 3.3) to check which geometry locators are available
and to pick a model format which is compatible with the specific platform.
To summarize: our approach allows attaching the same 3D model in differ-
ent formats so that the VE player can decide which 3D model it will load.
These geometry locators are expressed in the XML file format based on
the XSD schema (see 8.1) as follows:

<GeometryLocators>
<GeometryLocator location="http://www.nokia.be/3d/nokia.X" />
<GeometryLocator location="http://www.nokia.be/3d/nokia.X3D" />
<GeometryLocator location="http://www.nokia.be/3d/nokia.DAE" />

</GeometryLocators>

Note that this example shows only a part of the Smart Entity file format.
The VE player which parses the Smart Entity file format can choose which
3D model it will load, depending on the format of the 3D model. In the XML
snippet, three URIs are available that point to a location on the network.
This means that a VE player needs to download a compatible model first.
Using URIs, we can also link to files on the local file system by using the
“file://” prefix.

33

3.2.2 Descriptors

A good way of describing properties of a VO would be by using a key/value
mechanism. For each VO, we can store a set of key/values that describe
its properties from the VE users’ perspective. Some examples are: (name,
“Dominique”), (age, “23”), (gender, “male”). A key/value pair that describes
a VO will be referred to as a descriptor. These descriptors are mainly
intended to be shown to users of the VE but could also be used by the
VE player itself. As an example of the use of these descriptors, consider
the following scenario: an avatar, controlled by a user, walks around in a
virtual museum. The user can click any painting in the environment and
a menu will pop up that gives a brief summary of the selected work. The
information shown is originated from the descriptors in a Smart Entity file,
which links to the 3D model of the painting. The main usage of descriptors
is to serve as a means of communication between the VO and a user, but
they could also be used by the VE player internally. This indicates that
there is a grouping that is needed. Some descriptors are to be exposed to
users while others are to be consulted only by the VE player. This requires
us to attach a visibility to a descriptor. Two types of visibility are needed:

• Public: A public descriptor is intended to serve as a communication
to the users of the VE. They state relevant properties of the entity,
such as a painting’s artist(s) and style.

• Private: Private descriptors are to be used by the VE application.
Examples are the entity’s meta-data such as the author and the used
DCC tool. Other examples could be points-of-interest (POIs) of the
entity, like the location of a door’s hinge.

From the examples that were stated above, we can deduce that simple
text-based key/values are not enough. The values of properties should be
typed, because the information they contain can be anything. It could be
primitive content such as text, numbers or vector, but it can also contain
links to resources (URIs), such as images, audio, video or documents.
In order to give the VE application an idea of what content it can expect
and to make the content machine-processable, some typing information is
needed for each descriptor. Furthermore, it is necessary to agree on a set
of common data types that are to be used.

34

Below is a list of the proposed data types.

• Text: Simple textual content such as the descriptors which were de-
scribed in the beginning of this section.
Example: (name = Dominique)

• Boolean: Represents a value which is either true or false.
Example: (male = True)

• Number: Represents any real number.
Example: (age = 23)

• Vector2: Represents a tuple of numbers.
Example: (size = (22.4 , 12.3))

• Vector3: Represents a triple of numbers.
Example: (hinge location = (2, 4, 0))

• Resource: Represents a URI which links to a resource of an unde-
fined type.

• Image: Represents a URI which links to an image.

• Audio: Represents a URI which links to a video file.

• Video: Represents a URI which links to an audio file.

The fact that the VE application is aware of these types allows different
ways of communicating them to a user. For instance, a virtual showroom
can contain various Smart car Entities. A user can select a car, upon
which the descriptors of the car can be presented on the display. The user
can view pictures of the car in various poses, watch a promotional video,
open the car’s reference manual in the webbrowser, etc. Even more, a
comparison between a set of cars could be made by displaying all public
boolean and number types of these cars in a table. An important aspect
is that multiple Smart Entity files, which relate to the same 3D model, can
coexist. This opens up possibilities for customization. Different Smart
Entity files could link to the same 3D models. They could contain different
descriptors. In our virtual showroom, the average visitor may not care
about all technicalities of the car, such as its horse-power or the number
of cylinders. While an enthusiast would want to know all this information.
Another example could be a virtual museum. Different Smart Entity files
could be created for each of the visitors’ native languages. The VE player
can then load the appropriate Smart Entity file, with regard to the visitor’s
language. As a result, information on the paintings can be tailored to the
user’s background and language. To conclude this section, an example of
the descriptors will be given in the syntax of our Smart Entity file.

35

<Descriptors>
<Descriptor visibility="Public" name="Title"
value="Girl with a pearl earring" contenttype="Text" />
<Descriptor visibility="Public" name="Artist"
value="Johannes Vermeer" contenttype="Text" />
<Descriptor visibility="Public" name="Period"
value="1665" contenttype="Text" />
<Descriptor visibility="Public" name="Location"
value="Mauritshuis, The Hague" contenttype="Text" />
<Descriptor visibility="Private" name="Dimensions"
value="(44.5, 39)" contenttype="Vector2" />

</Descriptors>

The above XML example shows how descriptors are stored in our Smart
Entity file format. These descriptors relate to a 3D model of a painting.
It states public descriptors which contain information about the painting,
which can be communicated to the visitor of the virtual museum. It also
contains a private descriptor, which tells VE application how to position the
painting in the virtual museum.

3.2.3 State
A VO will always be in a particular state, which is inherent to the VO itself.
This state is the result of the sequence of abilities that have been per-
formed on it. A door, for instance will initially be in the “closed” state, but
when the ability which opens the door has been performed, the door will
be in the “opened” state. To introduce this notion of state in our approach,
a mechanism similar to the attributes in object-oriented programming has
been employed. In the Smart Entity format, a number of state variables
and their initial value will be defined. For our door, there would be only one
state variable (“doorstate”), which will initially be set to “closed”. These
state variables can be asserted and changed by invoking abilities, as will
be described in the next section. The following XML example shows how
we can define the state of the door.

<StateVariables>
<Variable name="doorstate" value="closed" />

</StateVariables>

This part of the Smart Entity file defines one state variable for our VO,
namely the “doorstate”. Its initial value has been set to “closed”.

36

3.2.4 Abilities
One of the things that makes VEs fun to use is the interaction they offer
between the user and the VOs. Users want to know what a VO is able to
do and they want to invoke those abilities. In this section, we will introduce
how these abilities are expressed in our Smart Entity format and how they
can be used. Since we want to present the set of available abilities of a VO
to the user, one of the first things that are needed to represent an ability is
its name. This name should indicate to the user what will be done when
the ability is invoked. In the VE, the user could select a VO in some way,
for instance by clicking it, upon which the set of available abilities of that
VO can be displayed. Users can then select which of the abilities of the
VO they want to invoke. In this thesis, we will focus on explicit invocation
of abilities by a user. Abilities could also be invoked automatically. For
instance, when a collision between two VOs takes place, one VO could
react by changing color. This work has not focused on this type of interac-
tion, but suggestions on this topic, given the current approach, have been
made in the Future Work chapter (chapter 6). When the notion of state
was introduced in the previous section, the example of a door was given.
Now we will elaborate further on this example. The set of available abilities
of our virtual door depends on its state, i.e.: opened or closed. To express
this in our format, we have used the idea of pre- and postconditions. Pre-
conditions define what the values of the state variables should be if the
ability can be invoked. For instance, the “open” ability of the door can only
be invoked if the door is closed, i.e. when the “doorstate” variable of the
VO has the value “closed”. To update the state of a VO after an ability was
invoked, the postconditions can be used. Postconditions set the value of
state variables after the ability has been invoked. When the “open” ability
has been performed, the postcondition of the ability should set the state
of the door to open. This is done by setting the value of the “doorstate”
variable to “open”. The XML snippet below describes how these pre- and
postconditions can be defined in the Smart Entity file format.

<Ability name="Open">
<Preconditions>
<!-- Compare the state of the VO -->

<Variable name="doorstate" value="closed" />
</Preconditions>
<Postconditions>

<!-- Set the state of the VO -->
<Variable name="doorstate" value="open" />
</Postconditions>
...

</Ability>

When the VE player needs to present all available abilities to the user, it
will enumerate each ability and check if its preconditions have been met.
It does this by comparing the value of each variable from the state of the
VO (as discussed in the previous section), with the value of that same

37

variable which has been asserted in the preconditions section. If all of
these comparisons succeed, then the ability can be invoked by the user.
When an ability has finished, for instance when the door has been opened,
the postconditions will be set. To accomplish this, the VE player’s Engine
Extension will enumerate all postconditions and set the state variables of
the VO to the value that has been defined in these postconditions. So
suppose we have invoked the “Open” ability, then the “doorstate” variable’s
value will be set to “open”. As a result, the precondition for “open” will now
fail and the “Open” ability will not be able to start again, unless the door
has been closed and the “doorstate” has been set to “closed” by the close
ability’s postconditions. The usage of abilities in the Smart Entity format
will be explained further in the following section.

3.2.5 Behaviors

Let us take a closer look at the abilities of a VO. Suppose we are animat-
ing a car. The car will have the ability to drive forward. To accomplish
this, the wheels of the car will need to rotate and at the same time the car
itself will need to be moved (translated) forward. We can say that this abil-
ity, “drive”, is composed of five behaviors: the rotations of the four wheels
and the translation of the car as a whole. Before this ability can be in-
voked, we need some information on how and when these behaviors will
be performed. In the case of our car, the rotation and translation will start
and stop at the same time. To spin the wheels, we need to rotate them
a given amount of radians around their respective X-axes. To translate
the car, we need to translate the entire car a number of units along its
forward vector. We have now abstracted the behaviors away from their
implementation. We have simply stated what should be done and which
parameters are needed in order to perform the behavior. This abstraction
allows us to define abilities and their set of behavior invocations in an ab-
stract way, without having to know how these behaviors are performed by
the VE player.

38

From the example that was given, we can deduce that each behavior
has some required parameters:

1. Start: When the ability is executed, at what time will the behavior be
invoked.

2. Duration: What is the duration of the behavior invocation.

3. TargetBoneIDs: On which bones (geometric parts) of the VO will the
behavior be invoked. (ex. front wheel)

In addition to these three required attributes, a behavior invocation might
need other parameters that define how it should be performed. Examples
of these are the rotation angle of the wheels of a car and the direction and
distance of the translation of the car. These parameters depend solely
on the behavior and its requested invocation and are unrelated to any
implementation of these behaviors. By only stating the parameters and
their values, the concrete implementation of these behaviors has been
abstracted away and we can express the abilities of a VO in a platform-
independent way, this method will be referred to as the parameterization
of a behavior. As an example, consider a linear rotation behavior. The re-
quired parameters are the start and duration times, the target parts of the
model (TargetBoneIDs) and the axis and angle of the rotation. Given these
parameters, the rotation behavior could be invoked regardless of the spe-
cific implementation. The behavior could be implemented in Java for the
Java3D [16] VE player, C# for Microsoft’s XNA VE player [17], JavaScript
for Google’s O3D [36] VE player or by using any other programming lan-
guage. Given this fact, we can identify a behavior implementation by what
it should do. We attach this identification to all VE player specific imple-
mentations of that behavior. This identification has been called a behavior
Global Unique Identifier or GUID. For example, we might have some code
in a Java Archive (JAR) file that contains specific code for Java3D and
which performs a translation, given the correct parameters. We could also
have JavaScript code which performs the translation in the same way, but
on Google’s O3D VE player. These two behavior implementations will then
have the same GUID. This GUID is an important aspect in our approach
and is essential in providing behavior portability and reusability.

39

In the Smart Entity file, the abilities of the VOs will be described. Within
this ability definition, all of the behaviors which make up the ability will be
instantiated. To illustrate how an ability is defined in our XML Smart Entity
file format, an example is given below.

<Ability name="Drive forward">
<Preconditions />
<Postconditions />
<BehaviorInvocations>
<BehaviorInvocation guid="TranslationBehavior">
<Parameters>
<Parameter name="targetboneIDs" value="car" />
<Parameter name="start" value="0" />
<Parameter name="duration" value="10000" />
<Parameter name="direction" value="0 0 1" />
<Parameter name="distance" value="10000" />
</Parameters>

</BehaviorInvocation>
<BehaviorInvocation guid="RotationBehavior">
<Parameters>
<Parameter name="targetboneIDs" value="lfwheel;rfwheel;

lbwheel;rbwheel" />
<Parameter name="start" value="0" />
<Parameter name="duration" value="10000" />
<Parameter name="angle" value="60" />
<Parameter name="axis" value="(1,0,0)" />
</Parameters>

</BehaviorInvocation>
</BehaviorInvocations>

</Ability>

In this XML example, we have define a car’s “Drive forward” ability. As we
have explained, this ability can be dissected into a translation of the entire
car and rotations of the four wheels. In the snippet, we have created invo-
cations of these behaviors. The translation behavior is referred to by the
“TranslationBehavior” GUID and the rotation behavior by the “RotationBe-
havior” GUID. Now that we have stated which unique behavior we want to
invoke, we can state the parameters for these behaviors. These param-
eters are bound to the GUID of the behavior. The Behavior Repository,
which will be elaborated in the next chapter, allows designers to query for
these parameters. For now, we will assume that these are provided as
such. The three first parameters are required, while the other ones are
specific to the GUID of the behavior.

40

3.2.6 Behavior Locators
In the previous section, we have described how we have abstracted away
from the concrete behavior implementation by means of parameterization
of the behavior invocations. Furthermore, we have used Global Unique
Identifiers (GUIDs) to group behavior implementations which perform the
same behavior on different platforms. To provide portability, the concept
of Behavior Locators has been introduced in our Smart Entity file format.
Here is an example of these Behavior Locators.

<BehaviorLocators>
<BehaviorLocator guid="rotate"

repositoryUri="http://localhost/BehaviorRepository.asmx"/>
<BehaviorLocator guid="translate"

repositoryUri="http://localhost/BehaviorRepository.asmx" />
</BehaviorLocators>

Behavior Locators link GUIDs of behaviors to a Behavior Repository. This
Behavior Repository can be seen as a database which contains all VE
player specific implementations of behaviors, grouped by their GUID. More
information on this Behavior Repository can be found in the next chapter.
These locators are used by our proposed extension of the VE player: the
Engine Extension. This extension will attempt to find the specific imple-
mentation of the behavior for the VE player. This process is called Be-
havior Resolution. If a VE player needs to perform a certain behavior, the
extension will query these Behavior Locators to find the Behavior Repos-
itory in which it can find the implementation. The extension will then ask
the Behavior Repository for an implementation of the behavior for the VE
player in question. This process will be elaborated in more detail in the
next chapter. For now, it is important to know that the Smart Entity file
indirectly contains the location of the VE player specific implementation of
all behaviors that are used in the file.

41

3.2.7 Members
A VO can be composed of many different parts, we call these complex VOs
[50]. To group a set of logically related geometric parts (bones) of a VO, a
member can be defined in our Smart Entity format. A member is a named
composition of strings which refer to the names of the bones that form
the group. This feature was conceived in order to ease reuse of logically
related bones. An example could be a “wheels” member that consists out
of all of a vehicle’s wheels. Designers that want to attach a behavior to the
wheels can refer to all four wheels by using the name of the member as the
TargetBoneIDs parameter of the behavior, the Engine Extension will then
replace this member by the bones it represents. Members cannot have
the same name as a bone of the model. To illustrate how members are
defined in our Smart Entity file according to the XSD scheme (see 8.1), an
example is given below:

<Members>
<Member name="wheels">

<MemberBone id="wheelLF" /><MemberBone id="wheelRF" />
<MemberBone id="wheelLB" /><MemberBone id="wheelRB" />

</Member>
</Members>

42

3.3 Framework

In this section, we will describe the framework that uses the Smart Entity
file format which has been discussed in the previous section. This format
allows VEs and their VOs to provide information to the user and allows
the user to interact with the VO, regardless of the VE player. In order to
achieve this portability, VE players will need to be extended slightly. This
extension will be elaborated on in this section. The framework which will
be discussed here, consists of two parts: the Engine Extension and the
Behavior Repository. These two components will also be discussed in this
section. A conceptual overview of the entire approach is given in figure
3.2.

Figure 3.2: Conceptual overview of the architecture.

43

The main components of the framework are (1) an extension to exist-
ing VE players and (2) the Behavior Repository webservice. Each of these
two components will be described in more details in this section. To design
our framework, we have made two hypotheses. The first hypothesis is that
developers of existing VE players will be willing to extend their VE players.
We believe that we can persuade them to do so if they see all of the bene-
fits that our approach can offer them and if the required changes are kept
as minimal as possible. The second hypothesis is that the complete VE
— its VOs and behaviors — will be annotated using our approach and that
there will be a Smart Entity file for each VO in the VE. The next chapter
will describe an Authoring Tool that has been developed in order to allow
designers to annotate these VOs in an efficient way.

In the previous section, the Smart Entity file format, which is depicted
on the left side of the scheme, was discussed. This section will focus on
the right side of this scheme. An extension to the existing VE player will be
elaborated. This extension will be responsible for loading the presented
Smart Entity file format. The VE application can then display the informa-
tion about the VO in the virtual world.

Furthermore, the VE application can ask the Engine Extension to in-
voke the abilities that were described in the Smart Entity file. In order
to accomplish this, the Behavior Repository webservice will be queried
(Behavior Resolution) for obtaining a behavior implementation that is com-
patible with the VE player and its platform. We will now discuss the com-
ponents that make up the framework i.e.: the Engine Extension and the
Behavior Repository.

44

3.3.1 The Engine Extension

In our approach, we have taken the view that existing VE players should be
extended. This extension is necessary if designers want to use the ben-
efits of the approach to their advantage: portability and reusability of the
behaviors and information of VOs. We are not asking VE player developers
to redesign their entire application. We only suggest a small extension to
existing VE players. We know that the number of changes that are needed
in order to adapt existing VE players for this approach, should be kept as
low as possible if we actually want developers to implement it.

Let us begin by stating the tasks and requirements of our proposed En-
gine Extension:

1. Loading the Smart Entity file: The VE application can ask the En-
gine Extension to load a Smart Entity file. This file should then be
parsed and transformed to an internal structure which can be used
by the VE application.

2. Behavior Resolution: The Engine Extension needs to be able to
find and load a compatible behavior implementation. In order to
lookup a behavior that was designed to be used by the platform and
VE player in question, the Engine Extension may need to contact the
Behavior Repository webservice. This webservice will give the En-
gine Extension a behavior implementation that is compatible with the
VE player and its platform.

3. Reflection and invocation: The Engine Extension does not know a-
priori (at compile-time) which behavior implementations it will need,
therefore it should be possible to load and execute external code at
runtime (i.e. when the Smart Entity file has been parsed). The En-
gine Extension should also be able to pass the parameters of the
behavior invocation from the Smart Entity file to the behavior imple-
mentation. The availability of these reflection routines is of the utmost
importance for this approach to work. Fortunately, most program-
ming languages (Java, C#, C++, ActionScript and even JavaScript
[51]) have more than adequate routines which allow loading external
code at runtime.

45

Behavior portability

It is time to elaborate further on how the approach achieves portability
of behaviors. When a Smart Entity file has been loaded upon a request
from the VE application, the Engine Extension will enumerate through all
of the behaviors that are used in the abilities. For each unique GUID that
has been found, the Engine Extension will check the Behavior Locators
(see 3.2). These Behavior Locators should indicate the address of the
Behavior Repository webservice in which the behavior implementation can
be found. The extension can first check if it already has a local copy of the
required behavior implementation, for instance by checking if a file with
the same name as the GUID exists in a local folder (a local repository).
If this is not the case, the Engine Extension should query the Behavior
Repository webservice.

Figure 3.3: The Behavior Resolution process.

The extension will pass the name of the VE player and its version to
the webservice, along with the GUID of the behavior it wants to resolve.
If a behavior implementation for the VE player in question is available,
the webservice will answer with the URI of that implementation and the
Engine Extension can download it. More information about the Behavior
Repository can be found in the next section.

The behavior implementations are essentially pieces of code, which
are especially written to be used by the specific VE player and its platform.
These implementations need to follow some specific guidelines, which de-

46

pend on the VE player. These guidelines are essential if the Engine Exten-
sion needs to be able to interface with a behavior implementation dynam-
ically. The next chapter will discuss these guidelines for an extension to
the XNA Framework [17]. These guidelines can be seen as a set of rules
which the code should follow. An example of such a guideline could be
that the implementation contains a class which has the same name as the
GUID and that each parameter can be set by invoking the method named
“set”, appended with the name of the parameter and provided with the
value as an argument (ex. setAngle(1.52)). These guidelines are specific
to the VE player and provide the Engine Extension with a known interface
which it can use to communicate with the behavior implementations.

Interface for VE player extensions

Because we want to minimize the required efforts for VE player develop-
ers to incorporate our approach into their products, we will now define an
abstract interface by which the Extended Engine should be able to com-
municate with the VE player and the VE application. This interface will
be defined as a set of functions. First of all, our Engine Extension should
be able to load a Smart Entity file upon a request of the VE application.
This is the loadSmartEntity function of our Engine Extension. It should
load a Smart Entity file, by using its own loadSmartEntityFile function.
This function is responsible for parsing the document and for instructing
the VE player to visualize the related 3D model. This visualization is done
by examining the Geometry Locators (see 3.2). The Engine Extension will
select a compatible file format for the visual representation of the VO. The
extension should then be able to request the VE player to load that rep-
resentation so it can be rendered in the VE. This interface function will be
named loadGeometry. Since our Engine Extension needs this loaded ge-
ometry in order to pass it to the behavior implementations, the VE player
should also be able to return the geometry that has been loaded to the En-
gine Extension. This function will be named returnGeometry. When a VE
application wants to invoke an ability of a VO, it will call the invokeAbility
method of our Engine Extension. The Engine Extension should then exe-
cute the behaviors of the ability. These behaviors will modify the geometry
of our VOs as a function of time, therefore the Engine Extension will need
to call these behaviors periodically. To accomplish this, our Engine Ex-
tension should receive a synchronization signal from the VE player. Upon
receiving this signal, the geometry of each VO can be updated in function
of the behaviors that are being invoked and the execution time of these
behaviors. All VE players already have this kind of synchronization inter-

47

nally, namely the game-loop [52]. This game-loop is called each time the
scene needs to be redrawn. If we want the Engine Extension to update
synchronously at the same rate, the VE player will need to send a notifi-
cation to our Extended Engine, forcing it to update the VOs according to
the behaviors which are currently being invoked. This signalization will be
called the update function and should be called by the VE player within its
game-loop. Obviously, the VE application will also want to make use of the
information which has been annotated. By using the requestInformation
function, the VE application can request the information of a specific Smart
Entity. The Engine Extension can then communicate this information back
to the VE application, which can visualize it appropriately.

Figure 3.4: Conceptual overview of the interface.

48

To summarize, we have defined an abstract interface which defines
how communication between the VE player, its Engine Extension and the
VE application should occur (see figure 3.4). We have defined the follow-
ing set of functions:

• loadSmartEntity: The Engine Extension can be asked to load a
Smart Entity.

• loadSmartEntityFile: This function will parse the Smart Entity file
into an internal representation and will call the requestGeometr y
function.

• requestInformation: The VE application can request information a
Smart Entity, for instance its descriptors and available abilities. This
information can then be displayed within the VE.

• loadGeometry: The VE player should provide a function which loads
the actual geometry of the Smart Entity from a file which is compat-
ible with the VE player. This file is chosen by the Engine Extension
by examining the entity’s Geometry Locators.

• returnGeometry: This function returns the geometry of the VO from
the VE player to the Engine Extension, so the behaviors can update
it.

• invokeAbility: This function can be called by the VE application if it
needs to execute an ability of the Smart Entity.

• update: This function of the Extended Engine is called periodically
by the VE player’s game-loop. It will enumerate all of the abilities
of the VO and their abilities which are being performed. For each
ability, its behaviors will be updated in terms of the time the ability is
running.

49

3.3.2 Behavior Repository

All of the platform-specific behavior implementations reside in a central
repository. This is the Behavior Repository. Ideally, it holds references
(URIs) to all implementations of behaviors for all different VE players, oth-
erwise some behaviors cannot be invoked on certain VE players. The En-
gine Extension can query this repository because it can retrieve its address
from the Behavior Locators within the Smart Entity file. These locators link
behavior GUIDs to the URI of a Behavior Repository. When the Engine Ex-
tension queries the Behavior Repository for a specific behavior implemen-
tation, it sends its VE player code (ex. XNA, Java3D, O3D) and the version
number of the VE player (ex. 3.0) along with the GUID of the behavior. The
repository will respond with a URI to the behavior implementation for that
VE player. Along with references to implementations, the repository also
contains information about behaviors. This information is specific to each
behavior GUID. As an example, consider the behavior with GUID “Rotate-
Linear”. When queried with a GUID, the Behavior Repository can answer
with the information it has about that behavior. This information contains
a description of this GUID, a list of VE players for which it has a specific
behavior implementation and the list of parameters this behavior requires,
as well as a description per parameter and the types of the parameters.

This information can be used by authoring tools, like the one that will be
presented in the next chapter, in order to help designers of VOs. Design-
ers can then browse the repository, select a behavior they want to use and
receive information on how they should use the behavior. For example, a
designer wants to perform a rotation of the turret of a tank. The designer
can then query the Behavior Repository for all of its available behaviors.
The designer can select the RotateLinear behavior and use it. The author-
ing tool can then request additional information about the behavior in order
to assist the designer. This way, the designer can see that the angle that
is needed should be expressed in radians and that the rotation axis should
be expressed as a vector in 3D space.

From the example that was given, we can deduce that the parameters
of a behavior have types associated with them. In order to maintain porta-
bility, the values of these parameters should be expressed in an identical
way for each type. The Engine Extension can then convert the values
of the parameters to the types that are needed by the concrete Behavior
Implementation.

50

Below is a list of the proposed data types of the parameters.

• String: Simple textual content, represented as text.

• String[]: An array of Strings, represented as each String separated
by a semi-colon. This is the type of the required TargetBoneIDs
parameter. Example: “part1;part2”

• Number: Represents a number, examples are the Star t and Duration
parameters.

• Boolean: Represents a boolean value. Represented as “True” or
“False”

• Vector3: Represents a triple of numbers. Grouped within round
brackets and separated by a comma. Example: “(1,2,3)”).

These types are used to indicate the type of the parameters to the Author-
ing Tool and to the user. The Authoring Tool can then provide an easy
way of entering an array of strings or vectors. The Engine Extension will
pass the values of the parameters to the behavior implementation. Since
the value of the parameters are expressed as strings, it is then necessary
to transform these strings to platform specific structures, such as XNA’s
Vector3 class or Java3D’s Double class.

51

By centralizing all available behavior implementations and by provid-
ing a platform-independent interface by means of a webservice, several
advantages have been achieved:

• Increased behavior reusability: Designers can make use of the
same behavior implementation and the available behaviors can be
browsed by a designer. This way, a designer only needs to specify
the parameters of a behavior, while the concrete implementation has
been done by programmers.

• Increased portability: The Behavior Repository provides a central-
ized point of access for all VE players on different platforms. By
querying this repository, the Engine Extension can obtain the com-
patible behavior implementation. This way, Smart Entities could even
be loaded at run-time by the VE player.

• New behaviors can be added: Because the Behavior Repository
is an open medium, behavior implementations can be added, upon
which they can be used by designers.

• Existing behaviors can be updated: Existing behaviors can be
tuned to achieve a better performance or to eliminate bugs. To ac-
complish this, the Engine Extension could regularly check if updated
implementations of the behaviors in its local repository are available.

52

Chapter 4

Implementation of the Authoring
Tool and the Framework

The first part of this chapter will explain the Authoring Tool that has been
developed in order to facilitate the creation of Smart Entities. The main
features and the implementation of this tool will be discussed. The sec-
ond part will elaborate on the Microsoft XNA Engine Extension that has
been developed. The VE player that was chosen for this extension was
Microsoft’s XNA 3.0. The third and last part of this chapter will talk about
the implementation of the Behavior Repository webservice.

4.1 Authoring Tool

4.1.1 General design

Obviously, we cannot expect designers to create and edit Smart Entities by
altering the Smart Entity XML file format directly. In order to facilitate this
task, an Authoring Tool has been developed which will enable designers
to both create and edit the Smart Entity files in an attractive visual envi-
ronment. The Authoring Tool that will be presented in this section is the
prototype of a target-platform independent, Smart Entity editor. Meaning
that the Smart Entity files which are created by using this Authoring Tool
should not refer to specific behavior implementations but to the GUID that
is attached to each behavior and to the Behavior Repository webservice
on which the behavior with that GUID was found.

53

The Authoring tool provides the following functionalities:

1. Create, read and edit Smart Entity files: A user is able to create
new Smart Entity files or can alter existing ones.

2. Attach and detach Geometry Locators: When a file is loaded, Ge-
ometry Locators (see 3.2) can be attached and detached.

3. Visualization of the work: Users can preview their work easily, re-
sulting in a faster and more efficient production process.

4. Manage descriptors: Users are able to add descriptors to the Smart
Entity by entering the key, value, type and visibility of the descriptor.
They can also update or remove existing descriptors.

5. Manage abilities: Users can add abilities by providing a name. Abil-
ities can also be removed or their name can be changed.

6. Manage a set of available behaviors: The application has its own
repository of behaviors which contains the location of the Behavior
Repository webservice where the behavior can be found and the pa-
rameters the behavior requires. The user can add behaviors to the
application’s repository or remove them.

7. Manage behaviors per ability: Users can select a behavior from
the Behavior Repository, attach it to the ability and define the be-
havior’s parameters (such as Start, Duration, TargetBoneIDs, etc.).
Behaviors can also be updated or removed from the ability.

8. Manage Behavior Locators behind the scenes: When a new be-
havior is added to an ability, the application will update the Behavior
Locators. The behavior’s GUID will be added, along with the link
to the Behavior Repository webservice where it can be found. If a
behavior is removed (all instances of that behavior), the matching
Behavior Locator is deleted.

9. Manage State: The user should be able to add state variables to an
entity and assign an initial value to those variables.

10. Manage Pre- and Postconditions: The user is able to specify the
conditions (state variables) under which an ability can be performed,
i.e. the preconditions. User should also be able to define postcon-
ditions, which update the state of the entity when an ability has fin-
ished.

54

4.1.2 Implementation

Based on the set of features which has been discussed in the previous sec-
tion, an application was developed using C#/.NET 3.5 and Microsoft Visual
Studio 2008. This technology was chosen because it supports the design
of user interfaces in an easy and intuitive way. By choosing the .NET
framework, it was possible to use the same Smart Entity format parser
for both the extension of the VE player and the Authoring Tool. For more
details on the functionalities of the Authoring Tool, we refer the reader to
chapter 5, where a walkthrough of the tool will be given during the Case
Study. This Authoring Tool has been designed to provide an attractive and

Figure 4.1: Annotating a Smart Entity by using the Authoring Tool.

efficient way of creating and editing Smart Entities. It contains a previewer
which allows designers to visualize their work. This previewer uses the
Smart Entity Engine, which will be discussed in the next section.

55

4.2 The XNA Engine Extension

This section will explain how we have created the Extended Engine for Mi-
crosoft’s XNA 3.0 VE player [17], which has been called the “Smart Entity
Engine”. This technology was chosen for several reasons. First, XNA is
well documented and supported by Microsoft. Therefore there is a sure
future for this technology. Second, XNA is well accepted within the gaming
industry and more and more games are being created with XNA. Third, by
combining XNA and .NET, we have access to a large library of function-
alities which ease the development of our application. Examples of these
libraries are XNA’s mathematics library and .NET’s serialization functions
[53]. XNA integrates well into Microsoft Visual Studio 2008 Professional
which is one of the most productive and user-friendly Integrated Devel-
opment Environments (IDE) available today. After we have discussed the
extension, we will state which guidelines the created Engine Extension
imposes on the behavior implementations.

4.2.1 XNA Smart Entity Engine

The XNA Smart Entity Engine is the implementation of an Engine Exten-
sion for Microsoft’s XNA 3.0 VE player [17]. In XNA, loading custom con-
tent such as 3D model, sound or texture formats can be done by extending
the Content Pipeline [41]. Because other VE players do not provide such
architecture and because the created extension that will be discussed here
will serve as a blueprint for creating other Engine Extensions for different
VE players, we did not create such a Content Pipeline extension. In XNA,
all VOs are represented internally by an instance of the
DrawableGameComponent class. This class can be inherited from any
new visual components the developer wants to add to the VW. Our Smart
Entity engine has created such a specialization of this class, namely the
XNASmar tEntity class. An UML scheme of the architecture is displayed
on the next page. When an instance of the DrawableGameComponent
class is added to the game, its update and draw methods will be called
continuously by the XNA framework. The XNASmar tEntity class which
has been created contains the geometry of the entity in an instance of
XNA’s Model class and contains an instance of the Smar tEntityDefinit ion
class, which contains the information from the Smart Entity file: descriptors
and abilities. The VE can access and query this information and display it
appropriately, as was discussed in chapter 3.

56

Figure 4.2: The Smart Entity in the XNA Framework.

Furthermore, the game can perform an ability of a Smart Entity by call-
ing the invokeAbil i ty method of the XNASmar tEntity instance, in order
to help explain how this is accomplished, the scheme display in figure 4.3
can be of help while reading.

When the invokeAbil i ty method is called, the Smart Entity Engine will
first check to see if the preconditions are met, given the current state of
the object. This is done by comparing all of the variables values that were
stated in the preconditions with the actual values of the entity’s state (see
chapter 3). When the preconditions are met, a new instance of the
XNAAbil i ty Instance class will be created. Upon creation, the ability’s def-
inition will be iterated and for each behavior invocation that is used, an in-
stance of XNABehavior Instance will be added to the Behavior Instances
list. The XNABehavior Instance will first construct an instance of the
platform-specific behavior implementation (ex. RotationBehavior), which
has been fetched during the Behavior Resolution (see 3.3), and will then
set the instance’s parameters according to those in the Smart Entity file.
The values of the parameters in the definition will first be converted to XNA
specific structures by using a type-conversion mechanism. This mecha-

57

Figure 4.3: Propagation of updates in the game-loop.

nism first checks which datatype the behavior implementation expects and
then attempts to transform the string value from the Smart Entity file’s be-
havior invocation parameter to that type. When the XNABehavior Instance
instances have been created, the XNAAbil i ty Instance will be added to
the collection of running abilities in the XNASmar tEntity instance. Since
all off the required behavior implementations have been resolved when the
Smart Entity file was loaded, no more lookups need to occur and this pro-
cess can be performed fast. During the game-loop, the update method of
the XNASmar tEntity instance will be called at regular intervals. During
each call to update, the XNASmar tEntity instance will loop through all of
the abilities which are currently being performed (RunningAbil i t ies mem-
ber) and call the update method on those XNAAbil i ty Instance instances
(1). Within this method, the update method of all XNABehavior Instance
instances in the Behavior Instances member will be invoked (2). This
update method will set the Posit ion field of the dynamically loaded be-
havior implementation and will call the update method of the dynamic in-
stance if necessary (star t ≤ Posit ion ≤ star t + duration) (3). It is this
instance that is responsible for updating the model’s geometry and actu-
ally performing the behavior. More information on the way these behaviors
are implemented can be found in the next sections. When an ability has

58

finished, so when all of the behavior instances have finished, the Smart
Entity engine will set the state variables of the entity according to the post-
conditions of the Smart Entity, thereby updating the state the entity is in.

4.2.2 Smart Entity engine interface

In chapter 3, we have proposed an interface for the VE player extensions.
In this section, we will provide an overview of how our XNA Smart Entity
engine implements this interface.

• loadSmartEntity: The VE application which uses our XNA Smart
Entity can request our Smart Entity engine to load a Smart Entity
file. The engine will then load the information from the file and create
a new instance of the XNASmar tEntity class. This instance will
then be returned.

• loadSmartEntityFile: This function will be called by the Smart En-
gine extension and will parse our Smart Entity file into an object-
oriented representation. We have created a parser which is decou-
pled from the Microsoft XNA framework and which could be used by
other .NET based applications (like our Authoring Tool).

• requestInformation: All of the information from our Smart Entity file
is available within an instance of the XNASmar tEntity class. This
instance has been returned by the loadSmar tEntity function.

• loadGeometry: Our Smart Entity engine will enumerate all Geome-
try Locators of the Smart Entity file and will ask the XNA framework
to load either a DirectX or FBX file, depending on which one is avail-
able.

• returnGeometry: The XNA framework will return an instance of its
Model class, which holds the necessary geometry and which is en-
capsulated in the XNASmar tEntity instance.

• invokeAbility: The XNASmar tEntity instance provides a method
which can invoke an ability by passing its name as an argument. This
process is described in more detail in 4.2.1.

• update: In XNA, adding code to the game-loop is easy. By inher-
iting from the DrawableGameComponent class, implementing the
Draw and Update methods and adding the instance to the game’s
Components attribute the Draw and Update methods will be called

59

periodically. For more information on this implementation, please see
4.2.1.

4.2.3 Behavior implementation guidelines

Before any Engine Extension can load code at runtime by using reflec-
tion techniques [51], the code in question should be created with some
guidelines in mind. These guidelines can be seen as the specification of
an interface between the Engine Extension and the behavior implemen-
tations. This interface allows these two components to interact with each
other. For our XNA Smart Entity engine and its behaviors, we have stated
the following guidelines:

1. The file which contains the platform-specific implementation has the
format “guid.dll”, in which guid represents the GUID of the behavior.
(ex. rotationbehavior.dll)

2. The name of the class which implements the behavior is the same
as the GUID.

3. The constructor of that class accepts two parameters: an instance
of the Game class, which is an XNA specific class that contains in-
formation on the rendering and context. The second parameter is
the Model class. This class is also specific to XNA and contains the
geometric data of the model: its bones and transformation matrices.
It is important to know that these matrices are passed by reference.

4. The parameters are applied to the behavior implementation instance
by setting fields. These fields are the way to define data accessors
in C# [54]

5. The behavior implementation contains an update method, which takes
no parameters. This method will be called when the behavior needs
to be invoked. It is within this method that the actual modification of
the geometry in function of time can take place.

6. Before the update method is called, the Smart Entity Engine will set
the Position field of the behavior implementation to the elapsed time
(in milliseconds), since the ability was invoked.

When a behavior implementation is created with these guidelines in mind,
our Smart Entity Engine is able to load the behavior dynamically and can

60

interface with it. To facilitate the creation of new behavior implementa-
tions, a template class has been designed which can be inherited from.
This code, as well as the code for the TranslationBehavior and Rotation-
Behavior can be found in the appendix (8.4). The guidelines that were
stated were specifically conceived for our Smart Entity engine, but they
can be generalized towards other object-oriented environments, such as
Java or C++.

4.3 Behavior Repository

The Behavior Repository is implemented as an ASP.NET 3.5 webservice
(.asmx). Using a webservice promotes the interoperability we wish to
strive for. The webservice exposes its capabilities by using a WSDL (Web-
service Description Language) scheme and uses SOAP (Simple Object
Access Protocol) to transfer its information to clients (an Engine Extension
or an Authoring Tool), both of these standards are supported across most
of the platforms that are in use today The information on the behaviors
themselves is stored using a plain XML file that has the following struc-
ture:

<Behavior guid="RotationBehavior"
description="Perform a linear rotation">
<Parameters>
<Parameter name="TargetBoneIDs" type="String[]"

description="" />
<Parameter name="Duration" type="Number"

description="" />
<Parameter name="Start" type="Number"

description="" />
<Parameter name="Angle" type="Number"

description="The angle in radians" />
<Parameter name="Axis" type="Vector3"

description="The axis of rotation" />
</Parameters>

</Behavior>

<Player code="Java3D" version="1.3">
<BehaviorLocation guid="RotationBehavior"
uri="http://.../java3d/13/RotationBehavior.jar" />

</Player>
<Player code="XNA" version="2.0">

<BehaviorLocation guid="RotationBehavior"
uri="http://.../xna/20/RotationBehavior.dll" />

</Player>

61

The Behavior Repository webservice exposes three web-methods:

• DescribeBehavior(guid): Returns the description of the behavior
identified by the GUID parameter, independent of the platform. This
is the description of the behavior, along with the parameters that are
needed, their descriptions and their datatypes.

• FindBehavior(guid, playerCode, playerVersion): This method is
to be invoked by the Engine Extension. The extension will contact
the webservice with the GUID of the behavior it needs to invoke, the
playerCode (name of the VE player) and the version of the player.
The repository will respond with the description of the behavior and
a URI for the behavior implementation (code file) for that VE player,
if available.

• ListAvailableBehaviors(): Returns a list of descriptions for all the
behaviors that are available in the Behavior Repository. This method
is mainly used by the Authoring Tool to provide means of browsing
and exploring the Behavior Repository to the designer.

Upon a request, the XML file is parsed by the Behavior Repository web-
service and the data-structures (defined in the WSDL) are passed on to
the client using SOAP.

62

Chapter 5

Case study

To demonstrate the approach that was presented in this work and the tech-
niques that were developed, a case study will be presented.

5.1 Outline

In this case study, we will be creating a VE application and its content from
scratch. More concretely, we will develop an application that will display
a cellphone in a 3D environment. The main purpose of this environment
is promotion. As several research papers have shown, a company can
benefit greatly from these promotional 3D environments (see [55], [56]
[57]). We want to deliver the annotations (information) which we will add to
the VO of the cellphone by using the Authoring Tool and allow some basic
interaction with the VO. Furthermore, it should be possible to reuse the
environment for different cellphones and we should be able to reuse the
cellphone on different VE players like Google’s O3D [36]. We will model
the 3D representation, create a Smart Entity file (see 3.2) by using the
presented Authoring Tool(see 4.1), use the Smart Entity Engine (see 4.2)
to load and use this file and finally create the VE application itself. In order
to deliver a rich user experience, we will also add some requirements to
the environment:

1. Users should be able to view the cellphone from different perspec-
tives, the cellphone can be rotated and zoomed into.

2. The specifications of the cellphone should be displayed in the top-left
corner.

3. Images should be shown at the right of the screen.

63

4. The cellphone can be opened and closed by the user, depending of
its state (opened or closed).

5.2 3D Modeling

The cellphone we will use in this case study is the Nokia 5300 [58]. It has
been modeled using AutoDesk’s 3ds Max [7] and exported to the COL-
LADA [20] format by using the built-in COLLADA exporter and to the Di-
rectX (X) format with the Panda DirectX Exporter for 3ds Max [59]. To

Figure 5.1: The Nokia 5300 being modeled in 3ds Max.

allow the open and close animation, we need to name the parts which
make up the model’s front appropriately. This can be accomplished in 3ds
Max by selecting the meshes with the mouse and simply setting the name
in the panel on the right. We will then be able to reference these in the
TargetBoneIDs parameter of our behaviors, so they can be animated.

64

5.3 Creating the Smart Entity file

To create the Smart Entity file, we will use the presented Authoring Tool
(see 4.1). We start by creating a new Smart Entity file. We will first attach
the cellphone models (COLLADA and DirectX) to the file. The previewer
will then visualize the model (DirectX format) in the Authoring Tool. Then
we can start annotating our Smart Entity by adding the descriptors. The
descriptors can be seen in the right upper corner of the application. Five
textual descriptors and four images of the cellphone have been added. In
order to add abilities to the entity, we will need to have some available
behaviors to work with. For this, we will use the Authoring Tool’s Behav-
ior Explorer to browse a Behavior Repository webservice. The Behavior

Figure 5.2: The Authoring Tool’s Behavior Explorer.

Explorer allows users to add a behavior they found to Authoring Tool’s
toolbox of available behaviors. This toolbox is maintained by the Author-
ing Tool itself and allows reuse of behaviors. Using the Behavior Explorer,
we have added both the translation- and rotation-behaviors to the toolbox.
The XML file which has been created by the Authoring Tool, can be seen
in the Appendix (see 8.2)).

65

Because we do not want to be able to open the cellphone twice, we
will attach some state to our Smart Entity. The Authoring Tool allows us
to attach state variables to the entity. This functionality is displayed below:
We have added and initialized three state variables to our Smart Entity. We

Figure 5.3: Adding state variables in the Authoring Tool.

can now go on and define our “open” and “close” abilities. When we add
an ability, we first need to give it at name. Second, we need to add a set of
behaviors to the ability. Because opening the cellphone actually consists
of a translation of the front of the cellphone, we will use the translation-
behavior which we have already added to the Authoring Tool’s toolbox. All
we need to do now is parameterize this behavior, this process is shown
below: This is the only behavior we need to add to the “Open” ability. The

Figure 5.4: Specifying parameters of a behavior invocation.

“Close” ability is analogous to the “Open” ability, except for the translation
direction vector which should be (0,−1, 0).

66

When this is done, we can specify the pre- and postconditions of the
abilities. This process is shown below. The precondition that is depicted

Figure 5.5: Specifying post- and preconditions for the “Open” behavior.

states that the cellphone cannot be opened when it is already opened
and that the “open” state variable’s value should change to “yes” when the
ability was performed. This concludes the creation of the Smart Entity file
by using the Authoring Tool, we can now save this file to disk and our VE
application will be able to load it.

Figure 5.6: The main window of the Authoring Tool.

67

5.4 VE design and programming

To develop a VE application which uses the Smart Entity file which we
have created, we have used the extension to the XNA VE player which has
been presented in chapter 4, the Smart Entity Engine. To recapture: the
VE application is responsible for the logic of our application (rules, menus,
content, etc.) and uses the VE player to help visualize and control the
VE. Note that if we would want to develop our environment using another
VE player such as one based on Java3D [16], we would need to use an
Engine Extension for that VE player. The Smart Entity file will remain the
same, so it is a platform-independent specification of the VO and its abil-
ities. The Smart Entity engine (see 4.2) is able to read and visualize the
Smart Entity and can invoke the abilities of our cellphone (open and close).

We will now explain how the VE application has been created by using
the Smart Entity engine and the Smart Entity file of the cellphone. We
will use Microsoft Visual Studio 2008 Professional edition to develop this
environment. First off all, we have created a new XNA 3.0 game. Then
we add a reference to the Smart Entity engine. Before we can see any-
thing in the world, we need to configure the camera system (see 2.1). The
camera needs to react to user input: we want to be able to rotate around
the cellphone in any direction (up, down, left, right) and zoom in and out.
The implementation of this camera system was a good exercise in vector
algebra which is out of the scope of this thesis, but the implementation can
be found in the appendix (see 8.3). Now that we have our camera system
available, we can start making the environment. We will start by loading
the Smart Entity and placing in the environment, this requires the following
piece of code:

protected void InitializeRequestedSmartEntity()
{

SmartEntityDefinition sed = SEDParser.Instance.Load(
@"E:\nokia.xml");

CellphoneModel cellphone = new CellphoneModel(this, sed);
Quaternion rot = Quaternion.CreateFromAxisAngle(
Vector3.Normalize(
new Vector3(-0.2f, -0.4f, 0.15f)),
MathHelper.PiOver4 / 2);

cellphone.Rotation = Matrix.CreateFromQuaternion(rot);
this.Components.Add(se);

}

First, the parser will load the Smart Entity file which we created using
our Authoring Tool. The CellphoneModel class, which inherits from the
XNASmar tEntity class will be instantiated. The constructor will select an
appropriate geometry format, in this case the X format, from our definition
and will load it into XNA’s Model class. To have a nicer visualization,
the model is rotated slightly and finally our CellphoneModel instance is
added to the Game’s Component property so that it will be drawn and

68

updated in the game-loop. Next thing we want to do is to process the
Smart Entity’s descriptors and display them in the VE. We will display all
public descriptors of type Text in the left upper corner. An example would
be “Manufacturer:Nokia”. We will also display all public descriptors of type
Image. These will be positioned on the right of the display. The code that
is needed to accomplish this is display below:

public void DisplayImages() {
Vector2 position = new Vector2(

this.Window.ClientBounds.Width - 250, 150);

foreach (DescriptorDefinition imgDesc in
Cellphone.Definition.SelectDescriptors(

VisiblilityTypes.PUBLIC, ContentTypes.IMAGE))
{
ImageOverlay overlay = new ImageOverlay(this,

spriteBatch,
imgDesc.Value,
position);

position += new Vector2(0, 135);
Components.Add(overlay);
}

}

The descriptors collection can be queried by providing two parameters: the
visibility and the type of the descriptors. For each public image descrip-
tor, an ImageOver lay instance will be added to the scene’s components.
This ImageOver lay class will draw this image on the right of the screen,
at the offset specified by the posit ion variable. Another requirement was
the display of the cellphone’s specifications in the top left corner of the
screen. This is accomplished in about the same way as the images. In-
stead of images, we will query for text and instead of the ImageOver lay
instance, we will add a TextOver lay to the Components property. Using
the Authoring Tool, we have created two abilities: “open” and close. If a
user presses the Enter key, we want the cellphone to open if closed and
vice versa. In order to make this possible, we will add a Toggle method to
our CellphoneModel class. Within this method, we will check the state of
the entity and start the appropriate ability.

public void Toggle()
{
if (IsOpen())
InvokeAbility("close");
else
InvokeAbility("open");

}

That is it for the VE design and programming part. We can now visualize
our environment.

69

5.5 Result

Figure 5.7: The opened cellphone in our created environment.

Above, a screenshot of the created environment is shown. Our Author-
ing Tool (see 4.1) has been used for the creation of our Smart Entity. This
tool provides an easy to use front-end so that anyone can create new or
alter existing Smart Entity files. Furthermore, the Authoring Tool has al-
lowed us to browse a Behavior Repository (see 4.3) and has let us use
the available behaviors in our Smart Entity file. We have also created an
attractive virtual promotion environment. By using the Smart Entity engine
(see 4.2), we were able to use our created Smart Entity file. We have used
the typed descriptors (images and text) and have relied on the XNA Smart
Entity engine to perform abilities (open, close) for us, simply by executing
the invokeAbil i ty method. The approach we have taken has given us
some benefits. For instance, we can still change our Smart Entity file and
the changes will be reflected in our VE without recompilation. We could
add specifications, add images, create new abilities, etc. We can also
reuse our Smart Entity file in other virtual environments, without changing
it, and even on different VE players, if an Engine Extension is available for
that player. The entire scene could also be reused for other cellphones,
requiring none or minimal changes to the code of the VE application.

70

Chapter 6

Future work

The work that has been presented in this thesis is far from being complete,
therefore this chapter will suggest a number of possible improvements.

Allowing Smart Entity interaction.

The current approach does not enable interaction between Smart Entities
in the VE. For instance, when one entity collides with the other, the first
could change color. Adding these kinds of triggers to our Smart Entity
format would not pose a problem, but in order to use these triggers the
interface of the Engine Extension, which was presented in 3.3 should be
extended. The VE player could monitor events in the VE (collisions, mouse
and keyboard interaction, etc.) and then trigger an event function on the
Extended Engine, ex. eventOccured . The VE player could then decide
what should be done, depending on the Smart Entities which triggered the
event.

Improving the Authoring Tool

As with any application, the Authoring Tool can always be improved fur-
ther. The current version of the Authoring Tool depends on the user to
choose the right sequence of behaviors. A more advanced tool could use
Constraint Solving techniques [60] to calculate the correct sequence and
parameters. The functionalities of the tool could also be improved, for in-
stance the abilities could be shown as a timeline. This would provide a
better overview of the ability to the user. The tool could also provide more
help to users while they adjust the parameters of a behavior. Some aid
could be given when the user has to enter an angle or a vector, which

71

would also lower the level of knowledge that is needed in order to work
with the tool.

Creating an Engine Extension for another VE player

In this work, we have created a concrete implementation of our proposed
Engine Extension for Microsoft’s XNA framework. In order to fully test in-
teroperability, another extension for an existing VE player could be made.
A proof of concept Engine Extension the uses Google’s O3D framework
[36] is being developed at the time of writing, but since this technology
was only released by the end of April and because large parts of the doc-
umentation are not yet available, this second Engine Extension could not
yet be presented in this work. A screenshot of the proof of concept can be
seen in figure 6.1.

Figure 6.1: A limited prototype of the approach using Google O3D.

72

Chapter 7

Conclusion

Currently, the annotations that are supported by existing authoring tools
are often text based and they are only related to the static part of a VO.
Our approach has shown that it is possible to also annotate the dynamic
part of a VO i.e. its behaviors and interactions. This was the first aim of
the thesis.

By annotating behaviors and by knowing the behaviors that are associ-
ated to a VO, we were also capable of stating what a VO can do. This has
allowed us to tell the user what a VO is capable of (i.e. what its abilities
are).

In our approach, we have developed a new kind of file format, which is
dedicated to these annotations. This file format has been called the Smart
Entity file format.

We also made the observation that the portability across VE players is not
well supported. By portability, we meant that VOs and their behaviors may
not run on different VE players. Part of the reason for this is that, although
VE players support different geometry file formats (X3D [19], COLLADA
[20], etc.), the behaviors are still encoded into specific languages which
only a group of the VE players can interpret and use. As a result, the VO
is not very portable across VE players and often needs to be changed in
order to run on a different VE player. This increases the cost of producing
a VE and is also very frustrating and time-consuming for the designer. For
these reasons, our approach has introduced a framework that will improve
the portability of VOs across multiple VE players by using our Smart Entity
file format and by assuming that developers of VE players will be willing to
extend the VE players if they understand the benefits and if the necessary

73

extension is kept small. To address this second aim, we have created a
framework which facilitates the portability of VOs across different VE play-
ers.

The thesis has also produced an Authoring Tool which allows designers
to generate Smart Entity files related to a VO. A case study was also pro-
vided which made use of the presented approach and its implementations.
Nevertheless the framework has not been fully tested as we still need to
show that portability of a VO can happen across several VE players.

74

Bibliography

[1] D. Livinstone and J. Kemp. Integrating web-based and 3d learn-
ing environments second life meets moodle. UPGRADE, 9(3):8–14,
2008.

[2] http://www.ohsu.edu/ohsuedu/newspub/releases/062005virtual.cfm.
New Virtual Reality Surgery Simulator Hones Surgeons’ Skills,
Improves Patient Safety. Last accessed May 28, 2009.

[3] L. Chittaro and R. Ranon. Serious games for training occupants of a
building in personal fire safety skills. Proceedings of VS-GAMES’09:
IEEE First International Conference on Games and Virtual Worlds for
Serious Applications, pages 76–83, 2009.

[4] P. S. Smith and D. Trenholme. Rapid prototyping a virtual fire drill
environment using computer game technology. Fire Safety Journal,
44(4):559–569, May 2009.

[5] http://www.psychsci.manchester.ac.uk/research/projects/intrepid. IN-
TREPID Project. Last accessed May 28, 2009.

[6] J. Vince. Introduction to Virtual Reality. Springer, 1st edition edition,
2004.

[7] http://usa.autodesk.com/adsk/servlet/index?siteID=123112id=
5659302. Autodesk 3ds Max. Last accessed May 28, 2009.

[8] http://sketchup.google.com. Google Sketchup. Last accessed May
28, 2009.

[9] O. De Troyer, F. Kleinermann, B. Pellens, and W. Bille. Concep-
tual modeling for virtual reality. In ER ’07: Tutorials, posters, panels
and industrial contributions at the 26th international conference on
Conceptual modeling, pages 3–18, Darlinghurst, Australia, Australia,
2007.

75

[10] T. Gutschmidth. Game programming with Python, LUA and Ruby.
Course Technology PTR, 2003.

[11] A. Martelli and D. Ascher. Python Cookbook. O’Reilly, 1st edition
edition, 2002.

[12] B. Pellens, F. Kleinermann, O. De Troyer, and W. Bille. Model-Based
Design of Virtual Environment Behavior. Proceedings of the 12th In-
ternational Conference on Virtual Systems and Multimedia., pages
29–39, 2006.

[13] http://www.secondlife.com/. Second Life. Last accessed May 28,
2009.

[14] M. Slater, A. Steed, and Y. Chrysanthou. Computer Graphics and
Virtual Environments: From Realism to Real-Time. Addison Wesley,
2001.

[15] http://usa.autodesk.com/adsk/servlet/index?id=7635018&siteID=
123112. Autodesk Maya. Last accessed May 28, 2009.

[16] http://java.sun.com/javase/technologies/desktop/java3d/. Java 3D
API. Last accessed May 28, 2009.

[17] http://msdn.microsoft.com/en us/xna/. Microsoft XNA. Last accessed
May 28, 2009.

[18] http://developer.vivaty.com. Vivaty Player and Vivaty Studio. Last ac-
cessed May 28, 2009.

[19] http://www.web3d.org. The Web3D Consortium. Last accessed May
28, 2009.

[20] http://www.khronos.org/collada. The Khronos Group on Collada. Last
accessed May 28, 2009.

[21] http://www.research.philips.com/technologies/projects/3ddisp.html.
3D - The next revolution in TV viewing. Last accessed May 28, 2009.

[22] http://www.merl.com/projects/3dtv. Mitsubishi 3DTV. Last accessed
May 28, 2009.

[23] http://www.evl.uic.edu/pape/CAVE/oldCAVE/CAVE.overview.html.
CAVE Automatic Virtual Environment Overview. Last accessed May
28, 2009.

76

[24] http://graphics.cs.brown.edu/research/adviser/. ADVISER PSE (Ad-
vanced Visualization in Solar System Exploration and Research Prob-
lem Solving Environment). Last accessed May 28, 2009.

[25] http://vis.cs.brown.edu/areas/projects/cavepainting.html. CAVE
Painting. Last accessed May 28, 2009.

[26] http://planetjeff.net/ut/CaveUT.html. CaveUT2004. Last accessed
May 28, 2009.

[27] http://www.mobilizy.com/wikitude.php. Mobilizy’s WikiTude Aug-
mented Reality. Last accessed May 28, 2009.

[28] http://www.web3d.org. Web3D Consortium. Last accessed May 28,
2009.

[29] http://www.web3d.org/x3d/vrml. Virtual Reality Modeling Language
(VRML). Last accessed May 28, 2009.

[30] http://www.octaga.com. Octaga Player. Last accessed May 28, 2009.

[31] http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=6837478.
Autodesk’s FBX 3D Model format. Last accessed May 28, 2009.

[32] http://www.blender3d.org/cms/Home.2.0.html. Blender. Last ac-
cessed May 28, 2009.

[33] http://www.adobe.com/products/playercensus/flashplayer. Flash
Player Penetration. Last accessed May 28, 2009.

[34] http://www.papervision3d.org. Papervision3D. Last accessed May
28, 2009.

[35] http://www.alternativaplatform.com. Alternativa3D. Last accessed
May 28, 2009.

[36] http://code.google.com/apis/o3d. Google O3D. Last accessed May
28, 2009.

[37] http://msdn.microsoft.com/en us/library/bb200104.aspx. Microsoft
XNA Official Documentation. Last accessed May 28, 2009.

[38] http://creators.xna.com. Microsoft XNA Creators community. Last
accessed May 28, 2009.

77

[39] R. Grootjans. XNA 2.0 Game Programming Recipes: A Problem-
Solution Approach. Apress, 2008.

[40] C. Carter. Microsoft XNA Unleashed: Graphics and Game Program-
ming for Xbox 360 and Windows. Sams, 2007.

[41] http://msdn.microsoft.com/en us/library/bb203887.aspx. The XNA
Content Pipeline. Last accessed May 28, 2009.

[42] F. Kleinermann, O. De Troyer, C. Creelle, and B. Pellens. Adding
Semantic Annotations, Navigation Paths and Tour Guides to Exist-
ing Virtual Environments. Proceedings of the 13th International Con-
ference on Virtual Systems and Multimedia, pages 50–62. Publ.
Springer-Verlag, ISBN 978-0-9775978-1-9, Brisbane, Australia 2007.

[43] M. Kallmann. Object interaction in real-time virtual environments.
PhD thesis, Ecole Polytechnique Fédérale de Lausanne, 2001.

[44] T. Abaci, M. Mortara, G. Patane, M. Spagnulo, F. Vexo, and D. Thal-
mann. Bridging Geometry and Semantics for Object Manipulation
and Grasping. In Proceedings of Workshop towards Semantic Virtual
Environments (SVE 2005) workshop, 2005.

[45] L. Goncalves, M. Kallmann, and D. Thalmann. Defining behaviors
for autonomous agents based on local perception and smart objects.
Computers and Graphics, 26(6):887–897, 2002.

[46] C. Peters, S. Dobbyn, B. McNamee, and C. O’Sullivan. Smart ob-
jects for attentive agents. In proceedings of The 11th International
Conference in Central Europe on Computer Graphics, Visualization
and Computer Vision, pages 95–98, 2003.

[47] M. Kallmann and D. Thalmann. Modeling behaviors of interactive ob-
jects for real-time virtual environments. Journal of Visual Languages
and Computing, 13(2):177–195, 2002.

[48] B. Pellens. A Conceptual Modelling Approach for Behaviour in Vir-
tual Environments using a Graphical Notation and Generative Design
Patterns. PhD thesis, Vrije Universiteit Brussel, 2007.

[49] http://ece.uwaterloo.ca/ broehl/behav.html. B. Roehl : Some
Thoughts on Behavior in VR Systems, 1995. Last accessed May
28, 2009.

78

[50] W. Bille. From Knowledge Representation to Virtual Reality Environ-
ments. Master’s thesis, Vrije Universiteit Brussel, 2002.

[51] http://en.wikipedia.org/wiki/Reflection (computer science). Reflec-
tion. Last accessed May 28, 2009.

[52] A. Rolling and D. Morris. Game Architecture and Design: Learn the
Best Practices for Game Design and Programming. Coriolis Group
Books, 1999.

[53] http://msdn.microsoft.com/en us/library/ms950721.aspx. XML Serial-
ization in the .NET Framework. Last accessed May 28, 2009.

[54] http://msdn.microsoft.com/en us/library/ms173118.aspx. C# Fields.
Last accessed May 28, 2009.

[55] L. Chittaro and R. Ranon. Virtual reality stores for 1-to-1 e-commerce.
Technical report, Department of Mathematics and Computer Science,
University of Udine, 2000.

[56] G. Haubl and P. Figueroa. Interactive 3d presentations and buyer be-
haviors. Conference on Human Factors in Computing Systems Min-
neapolis, Minnesota, USA, pages 744–745, 2002.

[57] O. De Troyer, F. Kleinermann, H. Mansouri, B. Pellens, W. Bille, and
V. Fomenko. Developing semantic VR-shops for e-Commerce. Spe-
cial Issue of Virtual Reality: ”Virtual Reality in the e-Society”, Vol.
11:89–106, 2007.

[58] http://europe.nokia.com/A4195032. Nokia 5300. Last accessed May
28, 2009.

[59] http://www.andytather.co.uk/Panda/directxmax.aspx. Panda DirectX
Exporter for 3ds Max. Last accessed May 28, 2009.

[60] http://en.wikipedia.org/wiki/Constraint satisfaction problem. Con-
straint Satisfaction Problem. Last accessed May 28, 2009.

79

Chapter 8

Appendix

8.1 Smart Entity file format XSD

The XML Schema (XSD) that is displayed below, formally defines our
Smart Entity file format.

<?xml version="1.0" encoding="utf-8"?>
<xs:schema id="SmartEntityDefinition">
<xs:element name="BehaviorLocator">
<xs:complexType>
<xs:attribute name="guid" type="xs:string"/>
<xs:attribute name="repositoryUri" type="xs:string"/>

</xs:complexType>
</xs:element>
<xs:element name="Variable">
<xs:complexType>
<xs:attribute name="name" type="xs:string"/>
<xs:attribute name="value" type="xs:string"/>

</xs:complexType>
</xs:element>
<xs:element name="SmartEntityDefinition">
<xs:complexType>
<xs:sequence>
<xs:element name="GeometryLocators">
<xs:complexType>
<xs:sequence>
<xs:element name="GeometryLocator">
<xs:complexType>
<xs:attribute name="location" type="xs:string"/>
</xs:complexType>

</xs:element>
</xs:sequence>

80

</xs:complexType>
</xs:element>
<xs:element name="Semantics">
<xs:complexType>
<xs:sequence>
<xs:element name="StateVariables">
<xs:complexType>
<xs:sequence>
<xs:element ref="Variable" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="Members">
<xs:complexType>
<xs:sequence>
<xs:element name="Member" minOccurs="0"
maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="MemberBone" minOccurs="0"
maxOccurs="unbounded">
<xs:complexType>
<xs:attribute name="id" type="xs:string"/>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="name" type="xs:string"/>
</xs:complexType>

</xs:element>
</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="BehaviorLocators" minOccurs="1"
maxOccurs="1">
<xs:complexType>
<xs:sequence>
<xs:element name="BehaviorLocator" minOccurs="0"
maxOccurs="unbounded">
<xs:complexType>
<xs:attribute name="guid" type="xs:string"/>
<xs:attribute name="repositoryUri" type="xs:string"/>
</xs:complexType>

</xs:element>
</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="Descriptors" minOccurs="1"
maxOccurs="1">

81

<xs:complexType>
<xs:sequence>
<xs:element name="Descriptor" minOccurs="0"
maxOccurs="unbounded">
<xs:complexType>
<xs:attribute name="visibility" type="xs:string"/>
<xs:attribute name="name" type="xs:string"/>
<xs:attribute name="value" type="xs:string"/>
<xs:attribute name="contenttype" type="xs:string"/>
</xs:complexType>

</xs:element>
</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="Abilities" minOccurs="1"
maxOccurs="1">
<xs:complexType>
<xs:sequence>
<xs:element name="Ability" minOccurs="0"
maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="Preconditions">
<xs:complexType>
<xs:sequence>
<xs:element ref="Variable" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Postconditions">
<xs:complexType>
<xs:sequence>
<xs:element ref="Variable" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="BehaviorInvocations" minOccurs="1"
maxOccurs="1">
<xs:complexType>
<xs:sequence>
<xs:element name="BehaviorInvocation" minOccurs="0"
maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="Parameters" minOccurs="1"
maxOccurs="1">
<xs:complexType>

82

<xs:sequence>
<xs:element name="Parameter" minOccurs="0"
maxOccurs="unbounded">
<xs:complexType>
<xs:attribute name="name" type="xs:string"/>
<xs:attribute name="value" type="xs:string"/>
</xs:complexType>

</xs:element>
</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="guid" type="xs:string"/>

</xs:complexType>
</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="name" type="xs:string"/>
</xs:complexType>

</xs:element>
</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

83

8.2 Case study Smart Entity XML

The following XML fragment is the Smart Entity file which was created by
using the presented Authoring Tool. The file describes the cellphone which
was annotated in the Case Study (chapter 5).

<?xml version="1.0"?>
<SmartEntityDefinition>
<GeometryLocators>
<GeometryLocator location="E:\...\nokia.DAE"/>
<GeometryLocator location="E:\...\nokia.X"/>
</GeometryLocators>
<Semantics>
<StateVariables>
<Variable name="open" value="false" />

</StateVariables>
<Members/>
<BehaviorLocators/>
<Descriptors>
<Descriptor visibility="PUBLIC" name="Manufacturer"
value="Nokia" contenttype="TEXT"/>

<Descriptor visibility="PUBLIC" name="Type"
value="5200G Black" contenttype="TEXT"/>

<Descriptor visibility="PUBLIC" name="Camera"
value="Yes" contenttype="TEXT"/>

<Descriptor visibility="PUBLIC" name="Weight"
value="104,2 g" contenttype="TEXT"/>

<Descriptor visibility="PUBLIC" name="Price"
value="129,99 euro" contenttype="TEXT"/>

<Descriptor visibility="PUBLIC" name="Picture1"
value="E:\...\nokia1.jpg" contenttype="IMAGE"/>

<Descriptor visibility="PUBLIC" name="Picture2"
value="E:\...\nokia2.jpg" contenttype="IMAGE"/>

<Descriptor visibility="PUBLIC" name="Picture3"
value="E:\...\nokia3.jpg" contenttype="IMAGE"/>

<Descriptor visibility="PUBLIC" name="Picture4"
value="E:\...\nokia4.jpg" contenttype="IMAGE"/>

</Descriptors>
<Abilities>
<Ability name="Open">
<Preconditions>
<Variable name="open" value="false" />
</Preconditions>
<Postconditions>
<Variable name="open" value="true" />
</Postconditions>
<BehaviorInvocations>

84

<BehaviorInvocation guid="TranslationBehavior">
<Parameters>
<Parameter name="targetbones" value="top"/>
<Parameter name="distance" value="150"/>
<Parameter name="direction" value="0 1 0"/>
<Parameter name="start" value="0"/>
<Parameter name="duration" value="2500"/>
</Parameters>

</BehaviorInvocation>
</BehaviorInvocations>

</Ability>
<Ability name="Close">
<Preconditions>
<Variable name="open" value="true"/>
</Preconditions>
<Postconditions>
<Variable name="open" value="false" />
</Postconditions>
<BehaviorInvocations>
<BehaviorInvocation guid="TranslationBehavior">
<Parameters>
<Parameter name="targetbones" value="top"/>
<Parameter name="distance" value="-150"/>
<Parameter name="direction" value="0 1 0"/>
<Parameter name="start" value="0"/>
<Parameter name="duration" value="2500"/>
</Parameters>

</BehaviorInvocation>
</BehaviorInvocations>

</Ability>
</Abilities>
</Semantics>

</SmartEntityDefinition>

85

8.3 Investigator Camera

This section provides the code that was used for the camera system in our
Microsoft XNA based VE applications.

8.3.1 Camera
The Camera class defines an abstract interface for all camera-systems.
This allows us to easily change the camera system (at runtime).

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;

namespace XNAComponents.Cameras
{
public abstract class Camera : GameComponent
{
public Matrix ViewMatrix;
public Vector3 TargetVector;
public Vector3 PositionVector;
public Vector3 UpVector;

public Matrix ProjectionMatrix;
public float ViewAngle;
public float NearPlane;
public float FarPlane;
public float AspectRatio;

protected Camera(Game hostGame)
: base(hostGame)

{
InitializeMatrices();

}

protected virtual void InitializeMatrices()
{
PositionVector = new Vector3(0, 2, 15);
UpVector = Vector3.Up;
TargetVector = new Vector3(0, 2, 0);
UpdateViewMatrix();

ViewAngle = MathHelper.PiOver4;
AspectRatio = Game.GraphicsDevice.Viewport.AspectRatio;
NearPlane = 0.01f;
FarPlane = 200f;
UpdateProjectionMatrix();

}

86

public abstract void Up();
public abstract void Down();
public abstract void Left();
public abstract void Right();
public abstract void ZoomIn();
public abstract void ZoomOut();

public virtual void UpdateViewMatrix()
{
ViewMatrix = Matrix.CreateLookAt(PositionVector, TargetVector,
UpVector);

}

public virtual void UpdateProjectionMatrix()
{
ProjectionMatrix = Matrix.CreatePerspectiveFieldOfView(ViewAngle,
AspectRatio, NearPlane, FarPlane);

}

public static Vector3 Unproject(Viewport viewport, Vector3 screenSpace,
Matrix projection, Matrix view, Matrix world)

{
//Convert the VE’s 3D coordinates to the screen’s 2D coordinates
//First, convert raw screen coords to unprojectable ones

Vector3 position = new Vector3();
position.X = (((screenSpace.X - (float)viewport.X)
/ ((float)viewport.Width)) * 2f) - 1f;

position.Y = -((((screenSpace.Y - (float)viewport.Y)
/ ((float)viewport.Height)) * 2f) - 1f);

position.Z = (screenSpace.Z - viewport.MinDepth)

/ (viewport.MaxDepth - viewport.MinDepth);

//Unproject by transforming the 4d vector by the
//inverse of the projecttion matrix, followed by
//the inverse of the view matrix.

Vector4 us4 = new Vector4(position, 1f);
Vector4 up4 = Vector4.Transform(us4,
Matrix.Invert(Matrix.Multiply(

Matrix.Multiply(world, view), projection)));
Vector3 up3 = new Vector3(up4.X, up4.Y, up4.Z);
return up3 / up4.W; //better to do this here to reduce precision loss

}
}

}

87

8.3.2 InvestigatorCamera
The InvestigatorCamera allows circular rotation around an object in the VE
around the X- and Y-axes. Furthermore, users can zoom in and out. This
camera is used in the Authoring Tool.

using Microsoft.Xna.Framework;

namespace XNAComponents.Cameras
{
public class InvestigatorCamera : Camera
{
public float speed = MathHelper.ToRadians(1);
private float zoomspeed = 0.5f;
private float xRot = 0, yRot = 0;
private Vector3 translationVector = Vector3.Zero;

public InvestigatorCamera(Game hostGame)
: base(hostGame)

{

}

public override void Update(GameTime gameTime)
{
Quaternion qRot = Quaternion.Identity;

if ((PositionVector.Y <= 10) || (xRot < 0))
{
if ((PositionVector.Y >= -10) || (xRot > 0))
{
Vector3 perpendicularX = Vector3.Cross(

Vector3.Normalize(PositionVector),
new Vector3(0, 1, 0));

qRot = Quaternion.CreateFromAxisAngle(perpendicularX, xRot);
}
}

PositionVector = Vector3.Transform(PositionVector,
Matrix.CreateRotationY(yRot));
PositionVector = Vector3.Transform(PositionVector,
Matrix.CreateFromQuaternion(qRot));
PositionVector = Vector3.Add(PositionVector,
translationVector);

UpdateViewMatrix();
UpdateProjectionMatrix();

xRot = 0;
yRot = 0;

88

translationVector = Vector3.Zero;

base.Update(gameTime);
}

public override void Up()
{
xRot += speed;

}

public override void Down()
{
xRot -= speed;

}

public override void Left()
{
yRot -= speed;

}

public override void Right()
{
yRot += speed;

}

public override void ZoomIn()
{
translationVector = Vector3.Add(translationVector,

Vector3.Multiply(Vector3.Normalize(PositionVector),
zoomspeed));

}

public override void ZoomOut()
{
translationVector = Vector3.Add(translationVector,

Vector3.Multiply(Vector3.Normalize(PositionVector),
-zoomspeed));

}
}

}

89

8.4 TemplateBehavior

The TemplateBehavior class is an abstract interface which developers of
new behavior implementations for our Smart Entity engine can use.

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
using System.Diagnostics;
using System.Collections.Generic;

namespace TemplateBehavior
{
public abstract class TemplateBehavior
{
private string _guid;
private Game _hostGame;
private Model _smartModel;
private ModelBone[] _targetBones;
private Matrix[] _originalBoneTransforms;
private double _duration;
private double _start;
private double _position;

private Matrix _worldMatrix;
private Matrix _viewMatrix;
private Matrix _projectionMatrix;

protected TemplateBehavior(Game hostGame, Model smartModel)
{
HostGame = hostGame;
SmartModel = smartModel;

}

public abstract void Initialize();
public abstract void Update(GameTime gameTime);

public void UpdateOriginalBoneTransforms()
{
if (SmartModel != null)
{
OriginalBoneTransforms = new Matrix[SmartModel.Bones.Count];
//COPY RELATIVE BONE TRANSFORMS!!!!!
SmartModel.CopyBoneTransformsTo(OriginalBoneTransforms);

}
}

90

public ModelBone[] TargetBones
{
get { return _targetBones; }
set { _targetBones = value; }

}

public double Duration
{
get { return _duration; }
set { _duration = value; }

}

public double Start
{
get { return _start; }
set { _start = value; }

}

public Game HostGame
{
get { return _hostGame; }
set { _hostGame = value; }

}

public Matrix WorldMatrix
{
get { return _worldMatrix; }
set { _worldMatrix = value; }

}

public Matrix ViewMatrix
{
get { return _viewMatrix; }
set { _viewMatrix = value; }

}

public Matrix ProjectionMatrix
{
get { return _projectionMatrix; }
set { _projectionMatrix = value; }

}

91

public Model SmartModel
{
get { return _smartModel; }
set { _smartModel = value; }

}

public Matrix[] OriginalBoneTransforms
{
get { return _originalBoneTransforms; }
set { _originalBoneTransforms = value; }

}

public double Position
{
get { return _position; }
set { _position = value; }

}

public string GUID
{

get { return _guid; }
set { _guid = value; }

}
}

}

92

8.5 RotationBehavior
The RotationBehavior class, inherits from the TemplateBehavior and im-
plements a simple linear rotation around a given axis.

using System.Diagnostics;
using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
using System.Collections.Generic;
using System;

namespace RotationBehavior
{
public class RotationBehavior : TemplateBehavior.TemplateBehavior
{
private float _angle;
private Vector3 _axis;

//The constructor should only take arguments that are
//behavior INdependent and engine/platform dependent!
public RotationBehavior(Game hostGame, Model smartModel)

: base(hostGame, smartModel)
{
GUID = "RotationBehavior";
Trace.WriteLine("External Behavior GUID = " + GUID);
Trace.WriteLine("Invocation on = " + smartModel.Tag);
}

public override void Update(GameTime gameTime)
{
float absAngle = Math.Abs(Angle);

//Clamp will yield zero left of the interval
//and angle right of the interval...
float angle = MathHelper.Clamp(
(float)((Position - Start) / (Duration)) * absAngle
, 0, absAngle);

Matrix rotationMatrix = Matrix.CreateFromAxisAngle(Axis,
Math.Sign(Angle) * angle);

foreach (ModelBone aBone in TargetBones)
{
aBone.Transform = rotationMatrix *
OriginalBoneTransforms[aBone.Index];

}
}

93

public float Angle
{
get { return _angle; }
set { _angle = value; }
}

public Vector3 Axis
{
get { return _axis; }
set { _axis = value; }
}

}
}

94

8.6 TranslationBehavior
The TranslationBehavior class can perform a linear translation behavior,
given a direction (normalized vector) and a distance. The unit of this dis-
tance depends on the coordinate system of the 3D model, so it is VE player
independent.

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.Xna.Framework;

using System.Diagnostics;

namespace TranslationBehavior
{
public class TranslationBehavior : TemplateBehavior.TemplateBehavior
{
public Vector3 DirectionVector;
public float DistanceMeasure;

public TranslationBehavior(Game hostGame, Model model)
: base(hostGame, model)

{
}

public override void Update(GameTime gameTime)
{
//Clamp will yield zero left of the interval
//and angle right of the interval...
float factor = MathHelper.Clamp((float)
((Position - Start) / (Duration)), 0, 1);
Vector3 transl = (factor * Distance) * Direction;

foreach (ModelBone aBone in TargetBones)
{
aBone.Transform = Matrix.CreateTranslation(transl)

* OriginalBoneTransforms[aBone.Index];
}

}

95

public Vector3 Direction
{
get { return DirectionVector; }
set { DirectionVector = Vector3.Normalize(value); }

}

public float Distance
{
get { return DistanceMeasure; }
set { DistanceMeasure = value; }

}
}

}

96

	Introduction
	Virtual Reality and Game engines
	Anatomy of a VE application
	Motivation
	Thesis aims and structure
	Aims of this thesis
	Thesis structure

	Related work
	Background
	Virtual Environments
	3D Computer Graphics
	3D Model file formats
	Digital Content Creation
	VE players

	Related research

	The Smart Entity approach
	Overview of the approach
	Smart Entity file format
	Geometry Locators
	Descriptors
	State
	Abilities
	Behaviors
	Behavior Locators
	Members

	Framework
	The Engine Extension
	Behavior Repository

	Implementation of the Authoring Tool and the Framework
	Authoring Tool
	General design
	Implementation

	The XNA Engine Extension
	XNA Smart Entity Engine
	Smart Entity engine interface
	Behavior implementation guidelines

	Behavior Repository

	Case study
	Outline
	3D Modeling
	Creating the Smart Entity file
	VE design and programming
	Result

	Future work
	Conclusion
	Bibliography
	Appendix
	Smart Entity file format XSD
	Case study Smart Entity XML
	Investigator Camera
	Camera
	InvestigatorCamera

	TemplateBehavior
	RotationBehavior
	TranslationBehavior

