

 FACULTY OF SCIENCE
 Department of Computer Science
 Web & Information Systems Engineering

 A Mobile, Context-aware Crowdsourcing Framework

 Graduation thesis submitted in partial fulfilment of the
 requirements for the degree of Master in Computer Science

 Elona Dervishi

 Promotor: Prof. Dr. Olga De Troyer
 Advisor: Dr. William Van Woensel

 2013-2014

Acknowledgements

The road to this final thesis was a long but very interesting one. I have learned a lot about the
world of crowdsourcing and the SCOUT framework. Furthermore, I have gained hands-on
experience on Android and improved my programming skills in Java, PHP and MySQL. I would
like to take this opportunity to thank some people that were involved in the process of
finalizing my thesis.

First of all, I would like to thank Prof. Dr. Olga De Troyer for providing me the opportunity to
study this topic. Furthermore, I also thank Dr. William Van Woensel for his feedback on the
implementation part as well as on previous versions of this thesis. Without their guidance,
support, feedback and suggestions, this research would not have been possible.

Finally, I would like to thank my parents and brother for their support, care and concern over
the past few years during my education away from home. They have been a constant source of
care and comfort.

Abstract

Over the years, the World Wide Web has evolved beyond being a platform for seeking
information, and has become a ubiquitous medium supporting various forms of
communication, collaboration, and peer to peer interactions, as well as the creation of user-
generated content. In Web 2.0, most of the online information is produced by the regular end
users around the globe. Wikipedia provides a compelling and well-known example, in which
content is being created by a massive number of people on the Internet. YouTube is another
example of a collaborative project, where many users share their videos on the Internet;
Twitter has become an important channel of mass communication. In these examples, large
numbers of users making small contributions led to a completely new type of application,
enabled by the pervasive availability of the World Wide Web. End-user participation has
significantly transformed the web, and paves the way towards crowdsourcing; where users are
involved in producing small amounts of information and fulfilling tasks.

Crowdsourcing is a new paradigm for utilizing the power of “crowds” to facilitate large scale
tasks, which are too costly, time consuming or complex to perform with traditional methods
(e.g., automated reasoning). The concept describes a distributed problem-solving and product
model, in which small tasks are outsourced to a group of people in the form of open call for
solutions. Crowdsourcing tries to attract interested, capable and motivated crowds in return for
incentives, which are often mainly small amounts of money. It combines the effort of the crowd
workers, where each of them adds a small portion that combines into a greater result.
Crowdsourcing has an enormous potential that can be truly unleashed when extended to
sensor-rich mobile devices such as smartphones.

The past few years have witnessed the proliferation of smartphones standardly, equipped with
Internet connectivity, location awareness and various utilities such as cameras, NFC readers and
Bluetooth. People carry their phones with them the entire day, providing the opportunity to
contribute at any time. Moreover, new form of contributions become possible, where
contributors utilize their mobile hardware to supply sensed data such as light and temperature
readings, and pictures of places or things. Mobile crowdsourcing offers even greater potential
when automatically considering the mobile user’s context.

In general, context-aware applications take into account the user’s context (e.g., personal
preferences, characteristics) and environment (e.g., nearby places and things) to enhance
functionality and improve usability. In mobile settings, huge amounts of context become
continuously available, increasing the opportunities for improving the user experience. In the
case of crowdsourcing, context can be exploited to automatically push relevant tasks to suitable
and interested users, based on their profile and surroundings. In doing so, both crowdourcer’s
and contributor’s work is facilitated, making it easier to crowdsource tasks and to fulfil them.

In this dissertation, we present a framework for mobile, context-aware aware crowdsourcing.
Compared to the state of the art, our framework is fully context-aware, taking into account the

user’s entire context and allowing a crowdsourcer to define context-sensitive tasks. In
particular, it allows a crowdsourcer to create context-sensitive tasks or queries, which are then
distributed to participants based on their location and profile. When defining a context-
sensitive task, the crowdsourcer can choose the right type of workers, based on their age,
location and level of education, habits, preferences or other attributes. This way, workers are
provided with the right tasks at the right time, leading to a fully context-aware mobile
experience. The framework consists of two mobile Android applications, one for each
stakeholder (crowdsourcers and workers), as well as a server-side component for disseminating
tasks. Furthermore, it is built on top of the SCOUT framework, a mobile context-aware
framework that supplies a wide range of context information to mobile apps.

i

Contents
1. Introduction .. 1

1.1. Research Context .. 1

1.2. Problem Statement ... 2

1.3. Approach ... 3

1.4. Structure ... 3

2. Background ... 5

2.1. Crowdsourcing .. 5

2.1.1. Types of Crowdsourcing .. 5

2.2. Context and Context-Awareness .. 6

2.2.1. Context .. 6

2.2.2. Context-awareness ... 7

2.2.3. Mobile Context-awareness ... 7

2.3. SCOUT Framework .. 8

2.3.1. Scout Layers .. 8

2.4. Building blocks of SCOUT .. 9

2.4.1. The Semantic Web .. 10

2.4.2. RDF .. 10

2.4.3. RDFS .. 11

2.4.4. OWL ... 11

2.4.5. SPARQL .. 11

3. Related Work .. 12

3.1. Mobile Crowdsourcing .. 12

3.2. Mobile Context-Aware Crowdsourcing ... 13

4. Approach ... 16

4.1. Architectural Overview ... 16

4.2. Roles and Operations .. 18

4.3. Crowdsourcer’s Mobile Application .. 19

4.3.2. Create Task .. 20

4.3.3. View Tasks Response .. 26

ii

4.4. Worker’s Mobile Application .. 26

4.4.1. Register ... 26

4.4.2. Complete Task ... 27

4.4.3. View Completed Tasks .. 30

4.5. Shared Components .. 30

4.5.1. Context Repository ... 30

4.5.2. Google Maps API ... 32

4.6. Server Interaction ... 33

5. Implementation .. 36

5.1. Home Screen ... 36

5.2. Crowdsourcer’s View .. 36

5.2.1. Register / Login ... 36

5.2.2. Tab Menu .. 37

5.2.3. Create Task .. 38

5.2.4. Manage ... 43

5.2.5. Profile .. 44

5.3. Worker’s View ... 46

5.3.1. Register / Login ... 46

5.3.2. Tab Menu .. 47

5.3.3. Resolve Task .. 47

5.3.4. Worker’s Hits ... 48

5.3.5. Worker’s Profile .. 48

6. Conclusions and Future Work ... 49

7. Bibliography .. 51

iii

List of Listings

Listing 1: SPARQL – Select nearby entities
Listing 2: Home screen
Listing 3: Crowdsourcer’s registration and logging in
Listing 4: Simple menu
Listing 5: Crowdsourcer’s tab menu
Listing 6: Select task location
Listing 7: Context Entity
Listing 8: Selecting the proper crowd
Listing 9: JSON request

iv

List of Figures

Figure 1: Architectural Overview
Figure 2: Roles and Operations
Figure 3: Crowdsourcer’s registration
Figure 4: Create Task CTT
Figure 5: Select Location CTT
Figure 6: Crowdsourcer’s image tagging task

1

1. Introduction

This chapter presents the research context and problem statement, as well as the approach and
structure of this dissertation.

1.1. Research Context

The World Wide Web has become an essential platform for seeking information,
communication and collaboration for many users. In Web 2.0, content is no longer created and
published by individuals, but is instead produced and modified by all users in a participatory
and collaborative manner. These Web 2.0 applications, particularly blogs, wikis and social
media, have been increasingly adopted by many people as they offer the opportunity for
powerful information sharing, ease of collaboration and expansion of human knowledge.
Wikipedia has turned out to be the largest and most popular general reference work on the
Internet, because of the mutual contribution and sharing knowledge of different people.
OpenStreetMap is an additional example where an online map is made available by the mutual
content contribution of users in different locations.

The idea of user-generated content and mutual contribution has introduced the concept of
crowdsourcing. Crowdsourcing is a relatively new phenomenon which enables organizations or
end users confronted with a problem and desiring a goal to scale up the task environment and
enormously expand the solver base by outsourcing the problem to an online community
through the internet [1]. The problem that the crowdsourcing users need to solve varies from
simple tasks such as tagging content and labelling images to more complex tasks such as
translating, editing content or more investigative type of tasks (e.g., investigating the root cause
of a problem, answering a research question). By performing the task, the user is often
compensated by receiving a small amount of money. For instance, Amazon Mechanical Turk1 is
one of the most well-known crowdsourcing platforms, which allows users to outsource tasks to
a large, flexible workplace of human workers.

Advances in mobile technologies offer huge potential for crowdsourcing. For instance,
nowadays it is common that people spend a lot of time travelling, commuting or waiting for
various events. As time is precious, mobile crowdsourcing provides a better solution by directly
engaging people through their mobile devices any time of the day. Furthermore, as mobile
devices are equipped with location-aware sensors or with GPS technology, the location
information can be used for sending location-based tasks to their mobile phones. Utilities of
mobile devices, such as sensors or cameras, make it possible to easily and directly capture data
for crowdsourcing. Therefore, mobile phones support the idea of mobile crowdsourcing, in
which the user’s context plays an important role.

1
 https://www.mturk.com/mturk/

2

Context-aware crowdsourcing applications introduce a technique for using sensing and

inference in order to define the user’s context and take appropriate action. This approach,

which draws significant attention to what is happening around the user, is able to predict the

user’s needs and automatically select the relevant resources, thus simplifying the interactive

process. With the combination of mobile devices, crowdsourcing can be extended beyond the

traditional digital domain and be linked to tasks in the real world [2]. Context-aware

crowdsourcing in mobile devices has been object of studies in different fields in computer

science and it is being explored in several research projects. However, most of the current

systems are only focusing on the location of the user, limiting them to simply being location-

based services, without taking into account other elements of the user’s context.

In our research, we present a context-aware crowdsourcing framework for mobile devices. The

framework is able to automatically adopt its behaviour by presenting to the respective user

only tasks that are relevant to the user’s context (e.g., location, profile, characteristics) and

allows a crowdsourcer to define a task in a context-sensitive way.

1.2. Problem Statement

Today, mobile users are searching for a more dynamic personalized experience that would
allow them to locate and search information that is mostly relevant to them. In a mobile
setting, users are reluctant or unwilling to spend a lot of time browsing and searching for
information they need at a particular moment and time. For instance, when the user is walking
around in his free time and wishes to view information of his favourite restaurant serving his
favourite cuisine, or find out what items a specific shop sells, he is not willing to continuously
browse and search for this information. Therefore, it is important that in a context-aware
setting the user gets the information at the time and place he needs it with the minimal effort.

Context-aware crowdsourcing platforms should be able to automatically push relevant tasks to
the most suitable users, taking into account the full user’s context. However, in the current
platforms the tasks are delivered to an undefined audience rather than to a specific group of
people. Thus, the task assignment initiated by the crowdsourcer does not allow the system to
have an influence upon assignments and to leverage the profile and characteristics of involved
workers. In such settings, mobile workers can come and complete tasks posted by an individual
or a company, and work for as long or as little as they wish. This flexibility and freedom of
choice may result to several inefficiencies such as for instance the suitability of the participant
for a specific task or the quality of a completed piece of work. Not all human workers are equal,
nor is all human produced work. Some tasks, such as translating a paragraph into a specific
language, are easier for some workers than others, requiring less effort to produce high quality
results. Most of the systems deal with this issue by controlling the quality of a user’s answers
and accuracy. This is done by asking more than one person to complete one task and inferring
the correct answer from the responses of multiple users [3]. However, inferring the correct

3

answer from the responses of multiple error-prone respondents has been a problem addressed
throughout a variety of academic literature. Concerning the up-to-date research on the field,
there is no system that allows a crowdsourcer to dynamically choose the right type of users
that his tasks will be distributed at.

Furthermore, another challenge that can be identified in the current context-aware
crowdsourcing platforms is the fact that the crowdsourcer cannot utilize his own context (e.g.
location) to specify tasks. Initiating the process of crowdsourcing requires the initiator to be
sitting behind a desktop and upload tasks via a web interface. As a result, such approaches are
not fully mobile and context-aware.

1.3. Approach

In the context-aware crowdsourcing domain, aspects of context that were initially investigated
were related to where you are and what resources are nearby [4]. In this thesis, we propose a
system which does not only consider nearby places and entities, but also the mobile user’s
characteristics, preferences and knowledge. As mentioned, workers might not be suitable for a
task, or be able to provide high quality results for a particular topic. In this thesis, we tackle this
issue by allowing the crowdsourcer to limit participation in the task to a particular group of
workers. The crowdsourcer may do this by providing requirements based on personal profile,
expertise and knowledge. Based on worker’s profiles, relevant tasks are then automatically
pushed to suitable workers, improving the overall result’s quality.

In addition, the system allows the crowdsourcer to directly enter tasks on-the-fly, using a
mobile application. In this respect, our context-aware contribution is further extended by also
allowing the definition of tasks related to nearby places or objects. The crowdsourcer can utilize
his own context to specify tasks (e.g., location based), without sitting behind a desktop. In doing
so, we overcome current limitations of existing platforms and create a fully mobile and context-
aware crowdsourcing system.

Our framework consists of two mobile context-aware applications, both built on top of SCOUT,
which respectively allow crowdsourcers to specify tasks and workers to fulfil suitable tasks. In
addition, the framework comprises a server-side application, which collects crowdsourced tasks
and forwards them to relevant workers.

1.4. Structure

The remainder of this thesis is presented in the following way:

- The second chapter introduces the underlying concepts of this thesis, such as

crowdsourcing, context-awareness, mobile context-awareness, SCOUT, RDF, SPARQL, etc.

4

- Chapter three discusses and compares related work.

- Chapter four elaborated on our approach.

- Chapter five illustrated our implementation of building a mobile context-aware platform
on top of the SCOUT framework.

- Chapter six draws conclusions and presents some future work.

5

2. Background

This chapter discusses various topics which are the building blocks of this thesis. The topics vary
from core concepts (crowdsourcing, context-awareness) to frameworks (SCOUT) and
technologies (Semantic Web).

2.1. Crowdsourcing

The term ”Crowdsourcing” was introduced by Jeff Howe and Mark Robinson in a Wired
Magazine article in 2006 [5]. Crowdsourcing is described as ‘a type of participative online
activity in which a crowdsourcer proposes to solve a problem or perform a task, which is then
solved by a group of individuals who bring their knowledge and experience together’
(Wikipedia). It is a form of “peer production” that outsources work traditionally performed by
an employee to an “undefined, generally large group of people in the form of an open call” [6].
Notable examples of crowdsourcing tasks include evaluations (restaurants, books, and
websites), expert tasks (translations, mathematical problems), voting tasks, or more
investigative type of tasks.

2.1.1. Types of Crowdsourcing

Crowdsourcing is still in the phase of experiment and innovations. Different types of
crowdsourcing exist in the domain and it is currently difficult to predict, which, if any, of these
types will become dominant in the future. Howe [5] defines four basic categories of
crowdsourcing applications. Crowdsourcing is a complex phenomenon, however, and often
involves the combination of multiple categories, making them hard to distinguish. A short
description can be found below.

- Crowd creation or user-generated content

Crowd creation revolves around the creation of a new idea or an innovative process. The
concept behind this type of crowdsourcing is that a large crowd holds much more creativity
within it than an individual or a small group of people. Examples include platforms where
people are asked to create new ideas or inputs regarding something new – logo, design,
advertisement, etc. Pico Jobs [7] is a platform, which utilizes the crowd-creation power to
allow companies to gather customer inputs, novel ideas and search for innovation.

- Crowd wisdom

Crowd wisdom refers to the process of relying on the collective opinion of a group of
people to solve complex problems. The idea is that the average opinion over a large

6

number of responses is usually nearer to the truth. Some examples of crowd wisdom
applications are Wikipedia2, Yahoo3, Yelp4 and many forum communities.

- Crowd voting

This form of crowdsourcing gives people the power to vote, judge or rank content such as
newspapers, movies music, etc. It is one of the most popular forms of crowdsourcing,
which generates the highest levels of participation. Crowd voting can be exemplified by
platforms such as Threadless [8], which relies on the aggregation of people votes on
existing T-shirt designs; depending on the number of votes the best designs will be printed.

- Crowd funding

Crowd funding refers to contributions made by people in order to support efforts initiated
by others [9]. This concept of crowdsourcing uses the “crowd” to obtain funds and
feedback in order to support corporate activities. Crowd funding is utilized in platforms
such as “Kickstarter5”, which is a crowd funding company, where project creators can
receive money from the crowd to realise their project.

2.2. Context and Context-Awareness

2.2.1. Context

Context-aware systems offer entirely new opportunities for application developers and end-
users, by gathering context data and adapting system behaviour accordingly. Such context-
aware systems adapt according to the location of the user, the people and objects that are
nearby as well as to changes to such things over time. In order to be able to compose a specific
definition of context-awareness, we will examine how context is defined in the literature, and
present our definition and characterization.

Schilit and Theimer [10] define context as location, nearby people and objects and changes to
those objects. A similar definition was introduced by Brown at al [11] who describes context as
the nearby entities around the user, where an entity can be a person, object or place, the time
of the day, the temperature, the season, etc. These definitions that describe context by using
examples are difficult to apply. For the type of information that is not included in these
examples it is difficult to determine whether it is listed in the definition of context or not.

2
 http://en.wikipedia.org/wiki/Main_Page

3
 http://be.yahoo.com/

4
 http://www.yelp.com/

5
 http://www.kickstarter.com/

http://en.wikipedia.org/wiki/Main_Page
http://be.yahoo.com/
http://www.yelp.com/
http://www.kickstarter.com/

7

Other definitions describe context as the user’s physical, social, emotional or informational
state [12], or as the elements of user’s environment [13], or as the aspects of the user’s current
situation [14]. These definitions are also difficult to apply as they simple use synonyms.

Dey and Abowd [15] stated that “Context is any information that can be used to characterize
the situation of an entity. An entity is a person, place, or object that is considered relevant to
the interaction between a user and an application, including the user and applications
themselves”. This definition does not have the aforementioned issues, and is also the most
references one in the literature. Therefore, we will be using this definition in this thesis.

2.2.2. Context-awareness

The aforementioned definition of context allows a developer to easily determine if a specific
type of information constitutes context. The developer simply has to determine whether that
information can be used to describe the situation of a participant in an interaction; if so, then
that information can be classified as context. As such, the definition of context makes it easier
for an application developer to understand the boundaries of context-awareness, to enumerate
the context for a given scenario and decide what features to implement in order to provide a
context-aware experience to the user.

Context-aware was described by Schilit and Theimer [10] in 1994 as the software that “adapts
according to its location of use, collection of nearby people and objects, as well as changes to
those objects over time”. In other words, software that somehow adapts to the user’s context.
Since then it has been a popular research topic and several definitions have been added to the
academic literature. For example, Dey and Abowd [12] describe context-awareness as the “use
of context to provide task-relevant information and services to users, wherever they may be”.
Furthermore, Salber et al [16] express that context-aware is the ability to provide maximum
flexibility of a service based on real-time sensing of context. Other definitions have simply
provided synonyms for context: adaptive [17], reactive [18], responsive [19], context-sensitive
[20] and others.

In this thesis, the definition of context-awareness that we adopt was firstly introduced by Dey
et al in 1999 [21]. Dey stated that “A system is context-aware if it uses context to provide
relevant information and/or services to the user, where relevancy depends on the user’s task”.
We consider this definition as a reference for our work, since it is more general than the
previous definitions and its main focus is on the user. With this definition, a system can be
considered context-aware if it only responds to context; meaning adaptation, real-time sensing
of context or reactivity are not mandatory. This definition can be useful for applications that do
not adapt to context but simply reflect the context to the user or the ones that do not detect or
sense context, allowing the detection and interpretation to be performed by other computing
entities.

2.2.3. Mobile Context-awareness

8

Combining context-awareness with mobile devices can increase usability tremendously. Mobile
devices have become increasingly sophisticated and equipped with a set of embedded sensors,
such as wireless sensor networks, accelerometers, GPS and cameras that can be used to
automatically sense the mobile user’s current context.

All these factors offer great potential to context-awareness and have introduced a whole new
area of research and development.

2.3. SCOUT Framework

SCOUT is a mobile framework that allows the development of context-aware mobile
applications that provide information and services to the user at the right time and place. It has
the ability to exploit the knowledge on the user and his environment and be aware of the user’s
context, his current physical environment and the people, objects and places in it. SCOUT uses
detection techniques to locate information related to physical entities (people, places, objects)
in the user’s environment. It is mainly based on web technologies for communication and data
acquisition and it uses different sensing technologies to be aware of the user’s surrounding
environment.

One of the state of the art aspects of SCOUT is that it does not depend on a single centralized
server to detect this information, as it can acquire and integrate data from different
decentralized sources. This can be interpreted by the fact that SCOUT is based on semantic web
technologies to obtain useful environmental information. Often, information on the physical
entities is already available on the web and each identifiable entity is responsible to provide
and manage its own data and services in the form of a Web presence, such as for example a
web site or an RDF file. Due to this, SCOUT is the ideal platform for deploying web presences.
By exploiting semantic web standards and vocabularies to describe web presences in a uniform
and expressive way, the SCOUT framework allows seamless integration and querying of data
from several different entities, thereby providing applications with a richer and more complete
view on the global environment [14].

2.3.1. Scout Layers

The SCOUT framework consists of a layered architecture and each layer is shortly described in
the following section.

2.3.1.1. Detection Layer

The Detection layer is responsible for providing detection mechanisms such as RFID and
Bluetooth that allow mobile devices to communicate with the entities in the user’s vicinity.
These mechanisms are able to retrieve useful information about the entities and since they are

9

independent of each other and implement a common interface, the framework can easily
switch between them [14].

2.3.1.2. Location Management Layer

The responsibility of this layer is to determine whether or not an entity is nearby the user,
depending on the results received from the detection layer. This is done by creating
“positional” relations with nearby entities and validating these relations when the
corresponding entities are no longer nearby [14]. Furthermore, this layer can listen for location
updates and whenever the user’s location changes the identification process repeats. This layer
notifies the Environment layer (described below) passing along references to the entities online
data sources.

2.3.1.3. Environmental Layer

The environmental layer provides an integrated view on the user, his environment and the
physical entities in it. This layer maintains models, functionality and API’s that allow the
development of context-aware mobile applications. The models that it is composed of are
described below.

The user model is responsible for holding the user’s personal information such as preferences
and characteristics, storing those using existing ontologies (e.g. FOAF). Furthermore, it allows
application to pose queries to access the user model and retrieve specific information on the
entity.

The proximity model keeps time-stamped positional relations between the user and the
physical entities in combination with references to the entities’ associated online data sources.
Such a positional relation represents the fact that an entity is or has been nearby the user or
another entity. The proximity model keeps the data up-to date, based on nearness and
remoteness notifications from the Location Management layer. This involves adding new
positional relations or invalidating existing ones, and recording the new locations of the
entities.

The environmental model encompasses the User and Proximity model and extends them with
information obtained from the physical entities online semantic sources. It enables a strong
capability of SCOUT, as it combines metadata from multiple web presences, obtained from both
past and current positional relations, and integrating it with the metadata of the mobile user
[14]. Furthermore, this model it allows the client to query any piece of the user’s context and
environment, e.g. accessing the distributed information in one single query.

2.4. Building blocks of SCOUT

10

SCOUT utilizes Semantic Web Technologies to represent and retrieve context data. Below, we
will shortly describe relevant concepts.

2.4.1. The Semantic Web

According to Tim Berners-Lee, the first generation of the internet, representing the Web 1.0,
could be considered as the “read-only” web. In other words, the early web allowed users to
search and read information, without involvement or interaction with the interface. With Web
1.0 the web master had constantly the responsibility of updating the web site to keep visitors
informed and engaged.

The lack of active interaction of common users with the web led to the birth of Web 2.0.
Following Berners-Lee’s method of description, currently users are experiencing the infancy of
the Web 2.0, or the “read-write” web. The ability to contribute content and interact with other
users has dramatically changed the landscape of the web in a short time. People are consuming
as well as contributing information through blogs or sites, such as YouTube, Facebook, Flickr,
etc.

Both these Web versions have been designed for direct human processing, but the next
generation Web, which Tim Berners-Lee and others call the “Semantic Web”, aims at machine-
readable information. The Semantic Web will enable intelligent services, such as information
brokers, search agents, and information filters to directly consume data from the Web, offering
greater functionality and interoperability than current stand-alone services. Web 3.0 will make
it possible to make heterogeneous collections of different kind of data mutually interoperable.
Information will be exchanged between applications, allowing programs to process and
exchange content and information easily.

The Semantic Web will only be possible once further levels of interoperability have been
established. Standards must be defined not only for the syntactic form of documents, but also
for their semantic content. Notable among recent W3C standardization efforts are RDF and RDF
Schema, OWL, SPARQL, which facilitate semantic interoperability. These standards are briefly
described in the following section.

2.4.2. RDF

The RDF6 (Resource Description Framework) is used to describe resources on the web, whereby
a web resource is any concrete thing, person or concept identifiable via a URI (Uniform
Resource Identifier). In particular, RDF allows making statements about those resources, in the
form of subject-predicate-object expressions (known as RDF-triples). Importantly, the object of
a statement may be a resource as well, possibly described by other statements. This gives rise

6
 http://www.w3.org/RDF/

http://www.w3.org/RDF/

11

to a contextual graph structure. An RDF graph may be serialized in a variety of formats, such as
XML, N-TRIPLE, N3 or TURTLE.

2.4.3. RDFS

RDFS7 (Resource Description Framework Schema), built on top of RDF, is the most basic schema
language commonly used in the Semantic Web technology stack. RDFS allows defining
vocabularies for describing web resources, including types and relations between those types.
For this purpose, it supplies a meta vocabulary including terms such as “rdfs: Resource”, “rdfs:
Property”, “rdfs: subClassOff”, etc.

2.4.4. OWL

The Web Ontology Language8 (OWL), same as RDF Schema is a data modeling language that
creates vocabularies to describe data represented in RDF format. Compared to RDFS, OWL
provides a larger vocabulary for describing data, giving the ability to express more complicated
and subtle constraints on those data. OWL adds, among others, cardinality restrictions,
relations, between classes and more properties. OWL has three increasingly-expressive
sublanguages: OWL Lite, OWL DL, and OWL Full.

- OWL Lite is used to define a classification and simple cardinality constraints.

- OWL DL supports maximum expressiveness and guarantees computational completeness.

- OWL Full supports maximum expressiveness, and makes no computational guarantees.

2.4.5. SPARQL

SPARQL9 is both a query language and a protocol. It is used for querying RDF data and returns
mapped result sets. As a protocol, SPARQL allows transmitting queries and results between a
client and a SPARQL engine via HTTP requests.

7
 http://www.w3.org/TR/rdf-schema/

8
 http://www.w3.org/TR/owl-features/

9
 http://www.w3.org/TR/rdf-sparql-query/

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/rdf-sparql-query/

12

3. Related Work

This chapter describes the current state of the art regarding the core topics and concepts of this
thesis. In the first section, we discuss related work regarding mobile crowdsourcing.
Afterwards, we discuss literature on context-aware crowdsourcing carried out on mobile
devices.

3.1. Mobile Crowdsourcing

MClerck [22] is a new platform for mobile crowdsourcing in developing countries. With
mClerck, workers can digitize handwritten words using mobile phones via a protocol that
enables binary picture messages. The users receive an image of a word via SMS, and send back
the typed version. The responses are aggregated into a digital document and the users are paid
accordingly.

Another application, which is similar to mClerck, is MobileWorks [23]. MobileWorks is a
crowdsourcing platform, where mobile users transcribe images of text on mobile phones.
MobileWorks tasks are generated via processing scanned paper documents. MobileWorks's
initiative was to expand the mircrotask market so that it can engage the members of the crowd
no matter where they are and what kind of mobile device they have. Because of the fact that
MobileWorks can be easily used from any kind of device, it is considered to be a simple way of
creating self-organized crowds for gathering data. The difference from mClerck is that
MobileWorks requires the use of a mobile web browser enabled by data connection and uses
English as the primary text language, without supporting other languages.

VizWiz [24] is intended to provide people with visual problems with nearly-real time solutions
to everyday issues. VizWiz allows blind users to take a picture with their phone, speak a
question and then receive multiple spoken answers. VizWiz can, for example help visually
impaired users answer questions about menus in a restaurant, find out the colour of a T-shirt,
find free picnic spots in a park and other everyday problems. The tasks of VizWiz are posted to
an already existing micro-tasking marketplace, namely Amazon Mechanical Turk10. Workers at
Mechanical Turk are presented with a web-based interface, which includes the initial spoken
question, the recorder question and the accompanying text. Answers are then submitted and
sent to the mobile phone of the initial crowdsourcer, namely the visually impaired user.

Txteagle [3], is a mobile crowdsourcing tool that has been deployed in Kenya and is establishing
a broader use worldwide. Same as mClerck, this system uses SMS text messages to provide
tasks such as translations to local language dialects, audio transcription and market research.
Txteagle supports the usage of proprietary messaging protocol with an integrated mechanism
that allows the system to distribute tasks by asking users questions via text and paying them for
their participation. Although txteagle functions via text messages, it does not support SMS

10

 https://www.mturk.com/mturk/

https://www.mturk.com/mturk/

13

images to send graphical tasks. A stated advantage of txteagke and mClerck is that they support
low-range mobile devices, as they only rely on SMS, which is an advantage in third-world
countries.

Tasks in the aforementioned systems are limited to SMS images or document and imaging
processing, while our framework, provides a richer and more dynamic interaction between the
system and participants. In particular, we provide the ability to the crowdsourcer to directly
enter a variety of tasks on the mobile device, potentially utilizing his context to facilitate task
definition. Based on their profiles and context, workers automatically have suitable tasks (e.g.,
transcribing images in a certain language) forwarded to them.

3.2. Mobile Context-Aware Crowdsourcing

Our scope of study is related to context-aware crowdsourcing carried out on mobile platforms.
However, most of the existing mobile approaches focus on enabling location-based tasks
assigned and performed by humans. We provide a short description of the context-aware
applications that exist in the research field.

MCrowd [25] is a mobile-based crowdsourcing platform that enables users to post and work on
sensor-related crowdsourcing tasks. It enables mobile users to fully utilize the sensor-equipped
iPhone to accomplish crowdsourcing tasks including image tagging, collecting images for a
location (e.g., obtaining images for a landmark) and others. MCrowd is comprised of two
systems; an iPhone based client available for workers and a backend website available for
crowdsourcers to enter tasks, manage users and submitted data. The tasks are posted to
Amazon Mechanical Turk via the mCrowd proxy, which are then shown in MTurk as a special
category, easily identified by mCrowd users.

Alt et al [26] present another mobile platform by considering geographically-specific
crowdsourcing tasks. They focus on location-based requests and match potential crowd
workers based on their location. Workers are requested to perform real-world tasks, such as for
example photo tagging, information tasks and action tasks. They conducted an evaluation and
found that users tended to prefer tasks that are nearby their location and it was more pleasant
to complete tasks that were related to photos.

Another platform that is worth mentioning is Askus [27], developed by Konomi. Askus takes
into consideration the user’s location and distributes tasks based on the geographic conditions.
It also includes information, such as the user’s availability (busy or available) when choosing
potential crowd workers. Askus platform was not aware of much context, except from the
user’s location and status. What is worth mentioning is that tasks are matched by the Askus
system to specific workers based on their location and status; emails are then sent to those
workers asking them to complete the task. The system pushes tasks to workers, rather than
distributed them with the form of an open call.

14

Andrei Tamilin [28] has developed a crowdsourcing platform in order to create communication
capabilities between public administration and citizens. They presented sensoRcivio, an
application used by public administration to launch surveys, campaigns or questions that are
redirected to citizens possessing a mobile phone. The application takes into consideration
dimensions that can be determined by the sensing capabilities of the user’s device, such as
geographical dimensions and radius. Based on these dimensions tasks are being pushed to the
users.

The previous works can be classified using two dimensions. The first dimension determines
whether a system focuses on a particular goal (and thus type of task) or allows a variety of
crowdsourcing tasks. The second dimension indicates the extent of the supplied context-
awareness; for example are they only location-based approaches or do they allow for more
personalization.

Regarding the first dimension, sensoRcivio was implemented for a particular goal, namely
bringing the gap between public administration and citizens. The same can be said about the
mobile crowdsourcing solutions of txtgeagle and mclerck, whose goal was to support image
transcribing tasks with low-range mobile devices or WizWiz, whose purpose was to support
visually impaired users. We distinguish from these researches, by proving a more generic
approach, involving a larger user group with a larger set of tasks. Mcrowd, Askus and the
system implemented by Alt et Al, also supply a more generic approach. However, mCrowd uses
existing services to post tasks; we created a client-side mobile application allowing a
crowdsourcer to directly specify tasks to be performed. Comparable to mCrowd, the tasks
provided by Alt’s et al platform had to be uploaded via a web interface.

Regarding the second dimension, which includes applications that support only the location-
awareness in their approaches we distinguish in the following respects. Firstly, we go beyond
using the sensors equipped with mobile devices by including further attributes such as the
user’s profile and surroundings. Secondly, another major difference is that with the systems
that are purely location-based, tasks are distributed to an undefined group of people, while in
our research we limit the participants based on their personal knowledge and profile. What is
worth mentioning is that the tasks provided by Alt’s et al platform, may be location-based, but
the user had to manually input the nearby places where he prefers to take up a task. Based on
this information, tasks are being generated to the users. However, in our platform we
overcome this limitation by integrating the SCOUT platform, which enables the automatic
sensing and detection of entities that are nearby the user’s surrounding. Askus is the first
platform that has a personalization aspect for the workers (busy or available). However, the
context-awareness is limited to location and status, without taking into consideration other
aspects of the user’s context, such as personal characteristics, age, gender, favourite places,
preferences, etc.

Finally, an important and shared drawback of the current state of the art is that crowdsourcers
cannot utilize their own context to specify tasks (e.g., location), and need to be sitting behind a
desktop to define tasks. In contrast, our framework provides a client-side, context-aware

15

mobile application for crowdsourcers to define tasks. As a result, our approach can be
considered fully mobile and context-aware.

16

4. Approach

In our research, we provide the users with a mobile context-aware crowdsourcing platform,
which automatically senses context information (including location and profile) and presents
the right tasks to the relevant users. Our framework consists of three main parts. Firstly, it
includes two mobile context-aware applications, built on top of SCOUT, which respectively
allow crowdsourcers to specify tasks and workers to fulfil suitable tasks. In addition, the
framework comprises a server-side application, which collects crowdsourced tasks and
forwards them to relevant workers.

Our general approach is the following:

- We provide a generic framework, allowing a crowdsourcer to define a variety of tasks.

- Our framework is fully mobile, as the crowdsourcer can enter new tasks via a mobile

application and the worker can complete those tasks by simply using a mobile application.

- Lastly, our framework provides both types of stakeholders with a fully context-aware

experience. On one hand, the crowdsourcer can reference his own context when defining
tasks (e.g. location). On the other hand, the worker completes tasks suited towards his
current context, which includes not only his location and nearby places, but also the
worker’s characteristics, preferences and profile.

In the next section, we illustrate the high level architecture of our framework. Afterwards, we
summarize the roles and operations performed by the stakeholders. Then, we elaborate on the
interfaces provided to each stakeholder.

4.1. Architectural Overview

The following high level architecture represents the logical view of our framework.

17

 Figure 1: Architectural Overview

18

The framework consists of three components: (1) A mobile client application, used by
crowdsourcers to define tasks associated with nearby places (or arbitrary geographic locations)
and for certain kinds of workers. (2) A mobile client application used by workers, which pulls
relevant tasks from the database depending on the user’s location and profile. (3) A server,
which is responsible for storing the tasks in the MySQL database and distributing them to the
right workers. Note that these two mobile clients both rely on a context repository as well as
the Google Maps API (currently, SCOUT is utilized as a context repository).

4.2. Roles and Operations

The figure below shows an overview of roles and their operations in the crowdsourcing process.
Some of these operations, such as for example the operation “create task” are separated into
several sub operations which will be discussed later.

 Figure 2: Roles and Operations

19

The crowdsourcer is a user that submits a task request – initiating the process of
crowdsourcing, by specifying a task and accompanying criteria. He is also able to view the
responses of his submitted task and manage his profile. The crowdsourcer has to register or
login, before being able to interact with the system.

The worker is a member of the crowd that undertakes the execution of a task. The provided
functionality includes registering or logging in to the system, performing a task based on certain
criteria, view completed tasks and manage their profile.

4.3. Crowdsourcer’s Mobile Application

This layer represents the user interface that is provided to the crowdsourcer.

The concrete functionality provided to the crowdsourcer is illustrated in the following sections.
Since the registration process requires entering different information for crowdsourcers and
workers, we also shortly discuss that task.

4.3.1. Register

The crowdsourcer must register in order to start using our system. The fields that are being
stored in the database are the following:

 Figure 3: Crowdsourcer’s registration

20

The above fields are all mandatory and error messages are being displayed to the user in case
fields are left empty or not written properly (e.g. email, already existing username, and
password requirements).

4.3.2. Create Task

Our framework gives the possibility to the crowdsourcer to create a task in three steps. Below,
we illustrate the process that the crowdsourcer needs to follow in order to submit a task.

Figure 4: Create Task CTT

A crowdsourcing request has a central role in our system and implies a number of design
requirements. Firstly, the framework must allow a crowdsourcer to select the location of the
task, to parameterize its description and requirements and select the proper crowd.

Below we will elaborate and describe each of these steps in more details.

4.3.2.1. Select Location

Here the crowdsourcer is able to choose between two different options. The first option is to
choose as task location any nearby places or things. As the crowdsourcer application is built on
top of SCOUT framework, nearby entities can be queried and set as the location where the task
has to take place. These entities may include places or objects that are nearby the user’s
current location, such as for example a nearby restaurant, cafeteria or university. The user can
simply select one of these entities without having to provide further information (e.g., name,
description), as they will be taken from the SCOUT framework. Secondly, we provide the
possibility to the user to specify an explicit location for his task via Google Maps. This will allow
him to define tasks not only around his current location, but also to other areas. For example

21

the crowdsourcer might want to ask the crowd for the opening hours or cuisine of a restaurant
that is not located nearby.

Below we illustrate the process that the crowdsourcer has to follow in order to select the
location to define the task.

Figure 5: Select Location CTT

If the user chooses the first option, all the information related to the selected nearby entity
(e.g., name, description, etc) will be queried from the SCOUT framework. If the user selects an
explicit location, he has to put a marker in the Google Map.

4.3.2.2. Enter Task Details

Our framework currently supports five types of tasks: (i) image tagging tasks, for instance
tagging objects in a query image; (ii) data collection tasks, for instance asking questions to the
users for any kind of information; (iii) voting tasks for collecting the crowd’s opinions and votes
for places such as pubs, restaurants or cafes; (iv) translation tasks for translating a text from a
given language to a required language; (v) temperature tasks, for instance “what is the
temperature in the center of Brussels?” Each type of tasks has a different number of properties.
Below we will describe the attributes of our tasks. Note that only the attributes entered via the
form are shown (e.g., location attributes, result attributes are not shown). As you can view the
“project name” and description are used for all task categories.

22

- Image Tagging Task

Figure 6: Crowdsourcer’s image tagging task

- Data Collection Task

Figure 7: Crowdsourcer’s data collection task

23

- Voting Task

Figure 8: Crowdsourcer’s voting task

Here it is worth mentioning that for the voting tasks there are some default attributes that will
be shown to the worker, such as the rating box on a scale 1 out of 5 and a comment text.

24

- Translation Task

Figure 9: Crowdsourcer’s translation task

- Temperature Task

Figure 10: Crowdsourcer’s temperature task

It is worth mentioning that in this category, we do not permit the worker to select nearby
entities for collecting the temperature, as this would bring ambiguity to our system (e.g. an
entity such as a restaurant cannot have a temperature). The user enters a marker in the Google
Maps for the location that he wants to know the temperature of, and this location is considered
as the task location (which is the section 4.3.2.1 for the rest of the tasks).

25

4.3.2.3. Specifying Criteria for Selecting Workers

Our system needs to include means for finding suitable workers, who are not only in the right
location and place but also with the right profile and knowledge. Some tasks such as for
example proofreading a paragraph of text and translating it to another language, are easier for
some workers and require less effort and time (and the results will be of higher quality).
Furthermore, some other tasks such as for instance requesting information related to
restaurants or food could be better answered if they are addressed only to vegetarians or to
people who prefer eating meat. Other tasks that may request crowd’s opinion about pubs or
cafeterias would be better replied by people who use to go often in such places. The attributes
that the crowdsourcer has to select in order to deliver tasks to the right workers are the
following:

Figure 11: Specifying Criteria for Selecting Workers

26

4.3.3. View Tasks Response

The crowdsourcer’s area also includes an overview of all tasks they previously specified, where
they can easily track their tasks and find out if a task has been completed. They have the ability
to view the responses of the workers.

4.4. Worker’s Mobile Application

The functionality that is provided to the workers is illustrated in the following sections.

4.4.1. Register

Same as with the crowdsourcer, the worker has to be registered in order to start using our
system. The fields that he has to enter are illustrated below. As our goal is to provide him with
the most relevant tasks, the worker has also to enter some personal fields while registering.

27

Figure 13: Worker’s registration

4.4.2. Complete Task

For workers, the application lets users retrieve tasks from the database based on their location
and profile attributes. It should be noted that, regardless of whether the crowdsourcer defined
a task to nearby entities or an explicitly specified location, any issued task related to the user’s
current location (and suiting his profile) are pushed to him. Once the user chooses to solve a

28

task, he will be provided with a particular form to be filled in, based on the task’s type (see
section 4.3.2.2.). Below we provide an overview of the form fields.

- Image Tagging Task

Figure 14: Worker’s image tagging task

- Data Collection Task

Figure 15: Worker’s data collection task

29

- Voting Task

Figure 16: Worker’s voting task

- Translation Task

Figure 17: Worker’s translation task properties

- Temperature Task

30

Figure 18: Worker’s temperature task properties

4.4.3. View Completed Tasks

In this area, the worker is provided with an overview of the tasks he has already submitted. He
can view the task properties, as well as the responses he has given.

4.5. Shared Components

The shared components, on top of which we have implemented the two mobile applications,
ensure the following functionality:

- Interacting with the context repository (SCOUT Framework) by querying the nearby

entities of the user and their properties.

- Interacting with the Google Maps API, for selecting locations.

Below we will briefly summarize the functionality of the shared components.

4.5.1. Context Repository

Our system is generic enough to allow any context repository that supports a certain interface
(e.g. retrieving nearby entities) to be plugged in. SCOUT is a context repository that supports
this interface. In order to query information from SCOUT, we use a SCOUT service that is built
on top of the framework, which provides the ability to implement the interface that needs to
be supported by the context repository. We use this service in order to detect the entities that

31

are nearby the user compared to his current location. The service includes a SPARQL query to
the SCOUT Environment Layer in order to obtain the users’ nearby entities. The SPARQL query
utilizes the proximity model “isNearby”.

Listing 1: SPARQL – Select nearby entities

After this query, we will retrieve the nearby entities of the user as well as all attributes that are
related to them. These attributes are the following.

32

Figure 19: Entities’ properties

4.5.2. Google Maps API

The Google Maps API allows the crowdsourcers to enter the location for their task (different
from their current location).

The Google Maps API for Android allows the user to explore the word with rich maps provided
by Google. We can identify locations with custom markers and embed our map as fragment
into our android activity by using an XML snippet.

33

4.6. Server Interaction

The server enables crowdsourcers to submit their tasks and workers to complete task requests.
The server issues authentication credentials for both types of stakeholders, stores details about
workers and crowdsourcers, and saves details about entered and completed tasks. The
dissemination of the right tasks to the right users requires matching the task criteria to the
user’s characteristics. These criteria are the following:

- Location: Location is a pair of latitude and longitude. The server will compare the task

location with the location of the worker. Two locations are considered nearby if their
distance is smaller than 1 km.

- Age: Age is the age of the worker. The age has the values: <18, 18 – 30, 30 – 60 and >60.
This age specified by the crowdsourcer has to match the age of the worker.

- Gender: The gender can be a male or a female
- Level of education: The level of education can be highschool, master, doctorate
- Languages Spoken: The languages supported by our system are English, Dutch, French and

German.
- Food preferences: The food preferences can be vegetarian or meat fans
- Favourite places: The favourite places can be restaurants, pubs, cafes or others

4.6.1. Interaction with the Crowdsourcer’s Layer

There are four main requests that the crowdsourcer layer sends to the server.

- A request to store the registration details of the crowdsourcer.
- A request to validate the login information.
- A request to modify profile information.
- A request for adding newly defined tasks.

In turn, the crowdsourcer’s layer receives the following:

- A confirmation message that allows the crowdsourcer to register.
- A confirmation message that allows the crowdsourcers to log in.
- The attributes of his profile and the confirmation message in case of modifications
- Also, the completed tasks of the workers are received by the crowdsourcer layer, allowing

the crowdsourcer to view the responses of the tasks he has entered.

34

4.6.2. Interaction with the Worker’s Layer

The worker’s layer represents the user interface that is provided to the worker. There are five
main requests that the worker sends to the server’s layer.

- A request to store the registration details of the worker.
- A request to validate the login information.
- A request to modify profile information.
- A request for querying all the tasks that are relevant to the user, according to his location

and profile.
- A request for storing the responses of the completed tasks.

In turn, the worker’s layer receives the following:

- A confirmation message that allows the worker to register.
- A confirmation message that allows the worker to log in.
- The attributes of his profile and the confirmation message in case of modifications.
- The tasks that are relevant to the user, according to his location and profile.
- A confirmation message for completing a task response.

4.6.3. Technologies

The server side component uses the PHP scripting language to receive requests and interact
with the MySQL database. To connect to the server-side, the mobile apps utilize the HTTP
protocol and encode the sent data in JSON format. JSON is a lightweight text-based open
standard designed for human readable data interchange.

The client-server architecture is illustrated in the below figure.

35

Figure 20: Client-server architecture

The server-side component was deployed using the XAMPP server, which is one of the most
well-known ways to deploy MySQL, Apache and PHP server.

36

5. Implementation

The goal of our demonstration is to show how our framework can facilitate context aware
crowdsourcing. All users will be able to use our system to post context-aware tasks and obtain
results as well as work on jobs posted by other crowdsourcers.

5.1. Home Screen

The user interface of our framework is shown in the figure below. This is the first screen
displayed to the user, from where he can choose to login or register as a crowdsourcer or as a
worker.

Listing 2: Home screen

5.2. Crowdsourcer’s View

5.2.1. Register / Login

A crowdsourcer can register or login to our system

37

Listing 3: Crowdsourcer’s registration and logging in

The authentication is taken care by the PHP scripting language and error messages are being
displayed to the user in case fields are not filled in, or in case the username/password do not
match any existing user. We should also mention that the username is unique for each user.
Furthermore, once the user clicks on the menu button of android he will be presented with the
options in the figure below. The first button will show a short description of the application; the
second will redirect to a contact form where the users can contact the system administrators
for comments and suggestions and the third one will simply exit the user from the application.

Listing 4: Simple menu

5.2.2. Tab Menu

Once the crowdsourcer registers or logs in successfully a welcome message will be shown as
well as a tab menu with 3 different functionalities: (i) enter a new task (ii) manage tasks and (iii)

38

manage profile. This tab menu always remains at the user’s disposal allowing him to easily
navigate to different areas.

Listing 5: Crowdsourcer’s tab menu

5.2.3. Create Task

The tasks are separated into five different categories. For simplicity reasons we will
demonstrate only one task category at this stage. The task category that could decently
illustrate the interaction between the system and the users as well as the use of context-
awareness is the “vote” category. For the crowdsourcer the first screen that will be displayed is
the following.

Listing 6: Select task location

39

5.2.3.1. Task with Nearby Entities

In the scenario of choosing to search for nearby entities, the crowdsourcer will be displayed
with a list containing all entities around him. These entities are being queried from the SCOUT
framework and they change accordingly to the user’s location. Once the user selects one of the
entities, the next screen will display all the rest of the details that are related to this entity.

Listing 7: Context Entity

After selecting the entity, the next screen illustrates the task information that has to be
entered. This information includes the project name, the project description and the questions
that will asked to the crowd.

The next screen is about selecting the proper workers to whom this task will be displayed. The
user has to scroll down in order to view the whole screen.

40

Listing 8: Selecting the proper crowd

All the above information will be stored in the database allowing the system to present this task
to the proper workers. This implementation includes:

- Error messages in case the crowdsourcer does not fill in one of the fields.
- Sending the data to the PHP server via a JSON request

41

Listing 9: JSON request

- Storing the data in the database by using MySQL queries. Although the user goes through

several android screens, the data is being added at once; thus there is a one-time
communication with the server.

Listing 10: Storing data

- Displaying a confirmation message to the crowdsourcer that his task was successfully

created. He will then be redirected to the screen that includes all the task categories.

5.2.3.2. Task with Explicit Location

In case the crowdsourcer chooses to create a task in an explicitly selected location, he will be
displayed with a map where he can easily mark the location of his task. As you can see from the
picture below, the blue marker displays the current location of the crowdsourcer and the red
marker which is added by the crowdsourcer represents the location of his task. The location of
the task does not necessarily have to be nearby the user.

42

 Listing 11: Google maps location

This implementation was made by using the Google Maps API.

Listing 12: Google Maps implementation

43

The next screen is requesting the crowdsourcer to select one category of places or others for
which the voting will be about. The options include restaurant, pub, cafeteria or other. This is
especially related to the personalization aspect of our system, as the crowdsourcer can choose
for example only people whose favourite place is pub. In case the crowdsourcer wishes to
receive votes for a restaurant he can also choose the food habits of the users (vegetarians or
meat-fans).

 Listing 13: Choose type

Same as before, the next screens that will be presented to the crowdourcer are the task details
and the selection of the proper users (see Listing 8). The data are going to be sent to the PhP
server and stored to the MySQL database.

5.2.4. Manage

In this area the crowdsourcer can view the tasks that he has created and the responses of the
users.

44

Listing 14: View completed task

5.2.5. Profile

In the profile tab the user will be given the ability to view his profile and the data he has

entered to our system, to edit his profile and log out. The data are being queried from the

database and sent to the android client by JSON request. The response from the server is firstly

converted to a string message and displayed to the user in the correct format.

45

Listing 15: Manage profile

Listing 16: Server’s JSON response

46

5.3. Worker’s View

5.3.1. Register / Login

Same as the crowdsourcer, the worker can register or log in to our application by filling in their
personal data. The login screen remains the same, but the registration form is slightly different
as the worker has to enter more data in order to get a personalized crowdsourcing experience.
The extra fields have to be filled match exactly with the fields that the crowdsourcer is given in
order to choose the workers.

Listing 17: Worker’s registration

47

5.3.2. Tab Menu

The worker’s tab menu is similar with the crowdsourcer’s menu. The worker can resolve a task,
view the tasks he has completed and manage his profile.

5.3.3. Resolve Task

The system pushes the right tasks to the right users, by comparing the data entered by the
crowdsourcer to the ones entered by the worker. In case there are no tasks matching the user,
a relevant message will be displayed. Let’s assume that a worker selects to resolve the task with
project name “Pub Delirium. Firstly he will be displayed with a screen that includes all the
information related to that task as added by the crowdsourcer and also the questions that he
has to answer. Furthermore, the worker can view the location of the place he has to vote by
clicking the button “View Location”.

48

Listing 18: Worker solving task

5.3.4. Worker’s Hits

Same as with the crowdsourcer, the worker can view the tasks that he has resolved.

5.3.5. Worker’s Profile

The worker can also view or edit his profile as well as the personal data that will be taken into
account for delivering tasks.

49

6. Conclusions and Future Work

In this thesis, we investigated how crowdsourcing can be extended to offer a new personalized
and context-aware experience to users. Based on our discussions and research, we proposed an
approach for context- and location- based crowdsourcing. We created a framework consisting
of a mobile client for the crowdsourcer, a mobile client for the solver, and a web server for
storing and disseminating tasks. To the best of our knowledge, our work is the first example of
crowdsourced work allocation of context and location sensitive tasks to suitable groups of
users. In summary, our contributions are as follows: (i) A novel system for mobile
crowdsourcing, which pushes relevant tasks to suitable workers based on their full context
(location, habits, preferences). (ii) A fully mobile and context-aware framework, since not only
the worker but also the crowdsourcer can specify tasks in a context-aware way, using a mobile
application. (iii) A generic system, as it supports multiple sort of tasks.

As future work, we plan to enhance our application with video and audio features as well as
tagging local songs. Furthermore, it might be interesting to provide real-time responses by
allowing posting of high priority tasks to the front of the task list. Users will have to follow the
priority task list and provide a response within the time specified by the crowdsourcer.
Additionally, future work will also explore the possibility of remuneration for each task entered
in the system. Tasks with the highest priority will have the highest rewarding amount.

Furthermore, in order to achieve efficient and appropriate task allocation we will take into
consideration the worker’s availability to work on a task. Recruiting workers has the
consequence of potential delays in the resolution time of a task. In a normal case scenario users
have to wait several minutes, hours or even days to get their first answers. This can be an
important drawback for crowdsourcers who are seeking a quick reply. In order to overcome this
challenge, we will investigate the implementation of an approach where workers can be
intelligently recruited in advance and based on their availability. This could be implemented in
two ways: (i) manually, by allowing workers to specify the time that they are able to receive and
solve tasks, (ii) using external libraries, as for example the TurKit Mechanical Turk 11,
implemented by Amazon. TurKit primarily achieves low latency by querying workers before
they are needed. These two approaches would help crowdsourcers get answers back even
faster and reduce task’s resolution time.

Lastly, we plan to work on providing a general mechanism for easily defining new, arbitrary
tasks, based on Semantic Web technologies. More specifically, by defining ontologies for task
types (e.g., sensor data collection) and types of data to be collected (e.g., noise level, votes), as
well as task criteria (e.g., location, time), new types of tasks can be defined and plugged-in
easily. This will result in making our framework truly generic. At the same time, it is clear that
the range of supported tasks will still depend on the capabilities of the mobile devices (e.g.,

11

 http://groups.csail.mit.edu/uid/turkit/

http://groups.csail.mit.edu/uid/turkit/

50

light sensor). We also believe that Semantic Web descriptions of tasks will supply an added
value to our framework, for instance data exchange with other systems.

51

7. Bibliography

[1] Brabham, Daren C. (2013), Crowdsourcing, MIT Press

[2] - Alt, F., Shirazi, A. S., Schmidt, A., Kramer, U., Nawaz, Z. 2010. Location-based
crowdsourding – Extending crowdsourcing to the real world. In Proc. NordiCHI2010, 13-22.

[3] Eagle, N. (2009). txteagle : Mobile Crowdsourcing, Internationalization, Design and Global
Development, 447-456

[4] Alt, F., Shirazi, A. S., Schmidt, A., Kramer, U., Nawaz, Z. 2010. Location-based crowdsourding
– Extending crowdsourcing to the real world. In Proc. NordiCHI2010, 13-22.

[5]: Howe J., The rise of crowdsourcing, Wired 14(6) (2006)

[6] J. Howe. Crowdsourcing: Why the power of the crowd is driving the future of business,
Three Rivers Press, 2009.

[7]: Blohm, I.; Fähling, J.; Leimeister, J. M.; Krcmar, H. & Fischer, J. (2010): Accelerating
customer integration into innovation processes using Pico-Jobs. In: 22. ISPIM Conference 2010,
Bilbao, Spain.

[8]: Brabham, D. C. (2010) Moving the crowd at Threadless: Motivations for participation in a
crowdsourcing application, Information, Communication & Society, 13, 8, 1122-1145.

[9] Oomen, Johan and Lora Aroyo. ‘Crowdsourcing in the Cultural Heritage Domain:
Opportunities and Challenges.’ Paper presented at the 5th International Conference on
Communities and Technologies, Queensland University of Technology, Brisbane, Australia, 29
June-2 July 2011.

[10] Schilit, B., Theimer, M. Disseminating Active Map Information to Mobile Hosts. IEEE
Network, 8(5) (1994) 22-32

[11] Brown, P.J., Bovey, J.D. Chen, X. Context-Aware Applications: From the Laboratory to the
Marketplace. IEEE Personal Communications, 4(5) (1997) 58-64

[12] Dey, A.K., Abowd, G.D., Wood, A. CyberDesk: A Framework for Providing Self-Integrating
Context-Aware Services. Knowledge-Based Systems, 11 (1999) 3-13

[13] Brown, P.J. The Stick-e Document: a Framework for Creating Context-Aware Applications.
Electronic Publishing ’96 (1996) 259-272

52

[14] Hull, R., Neaves, P., Bedford-Roberts, J., Towards Situated Computing, 1st International
Symposium on Wearable Computers (1997) 146-153

[15] Dey, K., et al., A Conceptual Framework and a Toolkit for Supporting the Rapid Prototyping
of Context-Aware Applications. Human-Computer Interaction Journal 16, 24 (2001), pp. 97-166.

[16] Salber, D., Dey, A.K., Abowd, G.D. Ubiquitous Computing: Defining an HCI Research Agenda
for an Emerging Interaction Paradigm. Georgia Tech GVU Technical Report GIT-GVU-98-01
(1998)

[17] Brown, M. Supporting User Mobility. International Federation for Information Processing
(1996)

[18] Cooperstock, J., Tanikoshi, K., Beirne, G., Narine, T., Buxton, W. Evolution of a Reactive
Environment CHI ’95 (1995) 170-177

[19] Elrod, S., Hall, G., Costanza, R., Dixon, M., des Rivieres, J. Responsive Office Environments.
CACM 36(7) (1993) 84-85

[20] Rekimoto, J., Ayatsuka, Y., Hayashi, K. Augment-able Reality: Situated Communication
through Physical and Digital Spaces. 2nd International Symposium on Wearable Computers
(1998) 68-75

[21] Dey, A. K., et al., Towards a Better Understanding of Context and Context- Awareness.
Technical Report 99-22, Georgia Institute of Technology, 1999

[22]: Gupta, A., Thies, W., Cutrell, E., Balakrishnan, R. mClerk: enabling mobile crowdsourcing
in developing regions. In Proc. CHI '12, ACM (2012), 1843-1852

[23]: . Narula, P., Gutheim, P., Rolnitzky, D., Kulkarni, A., and Hartmann, B. MobileWorks: A
Mobile Crowdsourcing Platform for Workers at the Bottom of the Pyramid. In Proc. HCOMP
'11 (2011)

[24]: Bigham, J.P., Jayant, C., Ji, H., Little, G., Miller, A., Miller, R.C., Miller, R., Tatrowicz, A.,
White, B., White, S., and Yeh, T. VizWiz: Nearly Real-time Answers to Visual Questions. UIST
2010

[25] Yan et al-mCrowd: Yan, T.; Marzilli, M.; Holmes, R.; Ganesan, D.; and Corner, M. 2009.
mCrowd: a platform for mobile crowdsourcing. In ACM Conference on Embedded Networked
Sensor Systems, SenSys ’09, 347–348. ACM

[26] Alt, F., Shirazi, A. S., Schmidt, A., Kramer, U., Nawaz, Z. 2010. Location-based
crowdsourding – Extending crowdsourcing to the real world. In Proc. NordiCHI2010, 13-22

53

[27] Konomi, S., Thepvilojana, N., Suzuki, R., Pirttikangas, S., Sezaki, K., Tobe, Y. Askus:
Amplifying mobile actions. Proc. Pervasive 2009, Springer, (2009), 202-219

[28] A. Tamilin, I. Carreras, E. Ssebaggala, A. Opira, and N. Conci, “Context-aware mobile
crowdsourcing,” in Proc. of UbiMi Workshop, Pittsburgh, US, Sept. 2012

