
FACULTY OF SCIENCE
Department of Computer Science

Transformation of Task Models into Navigation
Models in the context of WSDM

Graduation thesis submitted to obtain a License Degree in Applied Computer Science

Jan Haegeman

Academic Year 2006-2007

Promotor: Prof. Dr. Olga De Troyer
Advisor: Dr. Sven Casteleyn

FACULTEIT WETENSCHAPPEN
Departement Computerwetenschappen

Transformatie van Taakmodellen in Navigatie-
modellen in de context van WSDM

Thesis ingediend met als doel de graad te behalen van Licentiaat in de Toegepaste Informatica

Jan Haegeman

Academiejaar 2006-2007

Promotor: Prof. Dr. Olga De Troyer
Begeleider: Dr. Sven Casteleyn

Abstract

Since the birth of the World Wide Web in 1990, the need for automated and
formulated web design methods has continuously grown. We have arrived at a
turning point where we no longer want to code our web applications ourselves,
but want them generated. Nowadays, automation plays an increasingly impor-
tant role in web design. Design methods consist of a certain methodology that
describes the systematic steps of the whole design process. A popular way of
representing designs is by using models, which describe the interrelated parts of
a web application.

The context of this thesis is WSDM, an audience-driven web design method,
which takes as its starting point the requirements of the target audience of the
web application. WSDM uses models throughout its methodology to represent
both requirements and conceptual structure. Task models are used to model
the tasks that will allow satisfying the requirements. Navigational models are
used to model the conceptual structure of the web application and are based
on the task models. These navigational models and the implementation details
given in other models allow us to automatically produce the implementation of
the web application.

An important step in WSDM is the transformation of task models into nav-
igational models. Although, navigational models can, to a certain extent, be
derived automatically from the task models, currently, this still needs to be
done manually, while there is no reason not to automate this process. In this
dissertation, an algorithm and an implementation are described that fully auto-
mate this transformation. Next to this, we look into other web design methods
and investigate in what way these methods could be automated and how they
describe requirements and conceptual structure. We also propose some design
patterns for common task models, like containers used in websites to store items,
the typical posting system in community forums, the basic login/logout scheme
of websites and a confirmation dialog. These patterns can be considered as a
form of automation too, as they help us save time in the design process.

3

Samenvatting

Sinds de geboorte van het ”World Wide Web” in 1990, is de nood aan geautoma-
tiseerde en geformuleerde web ontwerpmethoden voortdurend blijven groeien.
We zijn gearriveerd op een punt van ommekeer waar we niet langer onze webtoe-
passingen zelf willen coderen, maar dat we ze willen genereren. Tegenwoordig
speelt automatisering een belangrijke rol in webontwerp. De ontwerpmethodes
bestaan uit een bepaalde methodologie die systematisch de stappen van het
gehele ontwerpproces beschrijft. Een populaire manier om ontwerpen voor te
stellen is door modellen te gebruiken, die de met elkaar verbonden delen van
een webtoepassing beschrijven.

De context van deze thesis is WSDM, een doelpubliek gedreven web ontwerp-
methode, die als uitgangspunt de vereisten van het doelpubliek van de web-
toepassing neemt. Ook WSDM gebruikt modellen bij zijn methodologie. Taak-
modellen worden gebruikt om de taken te modelleren die de vereisten van het
doelpubliek ondersteunen. De navigatiemodellen worden gebruikt om de con-
ceptuele structuur van de webtoepassing te modelleren en zijn gebaseerd op de
taakmodellen. De navigatiemodellen, samen met implementatiedetails gegeven
in andere modellen staan toe om de implementatie van de webtoepassing au-
tomatisch te produceren.

Een belangrijke stap in WSDM is de transformatie van taakmodellen in navi-
gatiemodellen. Alhoewel het mogelijk is om de navigatiemodellen tot op zekere
hoogte automatisch af te leiden van de taakmodellen wordt dit momenteel nog
manueel gedaan, terwijl er geen reden toe is om dit proces niet te automatiseren.
In deze verhandeling, worden een algoritme en een implementatie beschreven
die deze transformatie automatiseren. Ook kijken we naar andere web on-
twerpmethoden en onderzoeken we op welke manier deze methodes zouden
kunnen worden geautomatiseerd en hoe zij vereisten en conceptuele structuur
voorstellen. Tenslotte, stellen wij ook nog enkele ontwerppatronen voor taak-
modellen voor, zoals containers voor items, het typische ”posting” systeem van
forums, de basis ”login/logout” procedure van websites en een confirmatie di-
aloog. Deze patronen kunnen ook als een vorm van automatisering aanzien
worden, omdat ze ons tijd besparen in het ontwerpproces.

4

Acknowledgements

I would like to thank my promoter, Prof. Dr. Olga De Troyer, and my advisor,
Dr. Sven Casteleyn, for their invaluable help, support, advice, and encourage-
ment. They motivated me throughout the period of the dissertation and helped
me improve the quality of this document.

I would also like to thank my parents for giving me the opportunity to study at
the Vrije Universiteit Brussel.

Furthermore, I would like to thank my friends and co-students for giving me
the proper recreation when I needed it most and when I didn’t need it at all.

5

Contents

1 Introduction 10
1.1 Introduction . 10
1.2 Problem Statement . 11
1.3 Motivation . 11
1.4 Objectives . 12
1.5 Thesis Structure . 12

I Background and Related Work 14

2 Web Semantics Design Method 15
2.1 Introduction . 15
2.2 WSDM Overview . 15

2.2.1 Mission Statement Specification 17
2.2.2 Audience Modeling . 17
2.2.3 Conceptual Design . 18
2.2.4 Implementation Design 19
2.2.5 Implementation . 20

2.3 WSDM Conceptual Models . 20
2.3.1 Introduction . 20
2.3.2 Task model . 20
2.3.3 Navigational model . 23

3 Alternative Modeling Techniques 27
3.1 Introduction . 27
3.2 WebML . 28

3.2.1 Introduction . 28
3.2.2 WebML Overview . 29

3.3 OOHDM/SHDM . 35
3.3.1 Introduction . 35
3.3.2 OOHDM/SHDM Overview 36

3.4 Hera . 39
3.4.1 Introduction . 39
3.4.2 Hera Overview . 40

3.5 Comparisons . 45
3.5.1 Introduction . 45
3.5.2 Conceptual structure . 45
3.5.3 Navigational structure . 46

6

Contents 7

II Research 48

4 Task Model Design Patterns 49
4.1 Introduction . 49
4.2 Confirmation . 51
4.3 Validation . 52
4.4 Post Message . 53
4.5 Container . 54

5 Transforming Task Models into Task Navigational Models 55
5.1 Introduction . 55
5.2 Algorithm Overview . 56
5.3 Task Model Representation . 56
5.4 From Task Models to Task Sequences 61
5.5 From Task Sequences to Task Navigational Models 66

5.5.1 Introduction . 66
5.5.2 Nodes and Links . 66
5.5.3 Structure . 67
5.5.4 Recursion . 69
5.5.5 Tasks . 71
5.5.6 Temporal Operators . 71
5.5.7 Iterative and Optional Behaviour 76

6 Implementation 78
6.1 Introduction . 78
6.2 Design . 79

6.2.1 Event Handler . 79
6.2.2 XML Traverser . 80
6.2.3 Task Sequence Generator 80
6.2.4 Task Sequence Processor 81
6.2.5 Shape Placer . 81

6.3 WSDM Visio Add-In Specifications 82
6.3.1 Platform . 82
6.3.2 Installation . 82
6.3.3 Guide . 82

7 Conclusions 88
7.1 Introduction . 88
7.2 Summary . 88
7.3 Achievements . 89
7.4 Future work . 89

List of Figures

2.1 WSDM: An overview of the phases 16
2.2 CTT: Showtimes and Buy Tickets 20
2.3 CTT: Categories of tasks . 21
2.4 Navigational Model: The task navigational model 24
2.5 Navigational Model: The navigational track 25
2.6 Navigational Model: The navigational model 26

3.1 WebML: An overview of the phases 29
3.2 WebML: A site view . 32
3.3 WebML: Four main types of content units 33
3.4 OOHDM/SHDM: An overview of the phases 36
3.5 OOHDM/SHDM: A conceptual model 37
3.6 OOHDM/SHDM: A navigational model 38
3.7 Hera: The layers in the Hera methodology 40
3.8 Hera: The integration and data retrieval 41
3.9 Hera: The presentation generation 43
3.10 Hera: The application model . 44

4.1 CTT: The Confirmation Pattern 51
4.2 CTT: The Validation Pattern . 52
4.3 CTT: The Post Message Pattern 53
4.4 CTT: The Container Pattern . 54

5.1 CTT: A sequence of tasks . 62
5.2 CTT: Query searching with filters 66
5.3 Algorithm: Recursion . 70
5.4 Algorithm: Tasks . 71
5.5 Algorithm: Enabling temporal operator 72
5.6 Algorithm: Deactivation temporal operator 72
5.7 Algorithm: Suspend/Resume temporal operator 73
5.8 Algorithm: Choice temporal operator 76

6.1 Implementation: The visitables 81
6.2 Implementation: The drawables 81
6.3 The ConcurTaskTree Environment 2.3. 83
6.4 CTT: Showtimes and Buy Tickets 84
6.5 Visio’s startup screen. 85
6.6 Importing a task model. 86

8

List of Figures 9

6.7 A generated navigational model. 87

Chapter 1

Introduction

1.1 Introduction

The Internet as we know is growing at an exponentially increasing rate year
after year. It has become the most popular source for information in less than
fifteen years, which can be considered as a negligible fraction of human history.
It is a way of life that is relatively new and unexplored, although we learn more
and more every day.

Nowadays, the Internet has become a victim of its own popularity. Vast amounts
of information are scattered across the World Wide Web, which makes it diffi-
cult to find that piece of information you really need. No more than now has
there been a growing need for professionally designed websites that know how
to make their information accessible to their users. A well-designed website that
offers information that is available to a wide range of users will not only have
satisfied users, but will also establish an extensive and global user base.

Web design methods are a way to come to well-designed websites. They describe
a fixed set of steps to successfully create a structural design for a web system.
The goal of the design methods is to create the design of the web system without
thinking about any implementation details. The implementation is completely
separated from the design phases. Ultimately, one could automatically generate
an entire implementation from a design, which is currently a hot topic in web
design research.

To be clear on this, these web design methods are not at all focusing on the
esthetic graphical looks of the web system. They describe what information
should be available, how it can be reached, and try to make the information as
transparent as possible to the user base. In the end, a design clearly outlines
the basic navigational structure and the structural links between different parts
of the web system. The look and feel of the web system is entirely up to a
graphical designer and is fairly independent from the structural design created
by a web design method.

10

1.2. Problem Statement 11

1.2 Problem Statement

WSDM is such a web design method and is the main topic of this thesis. It
consists of 5 phases that describe the purpose, the user characteristics, the
conceptual structure, the implementation design and the implementation of the
web system respectively. Throughout these 5 phases, it uses models to represent
specific design structures, such as tasks that should meet the requirements of
the users and models that depict the main course of action one can take when
using the web system. These are called task models and navigational models
respectively. One step of the design process is to examine these task models
and turn them into navigational models. The main problem statement of this
thesis can be formulated as follows1:

Currently, WSDM uses Concurrent Task Trees to model the tasks the
different users need to be able to perform in a web system. Concurrent
Task Trees allow to decompose a particular task in (elementary)
subtasks, and denote the temporal relations between the different
(sub)tasks. On the basis of these task models, (part of) the navigation
structure can be derived. Currently, this process is not automated but
must be performed manually by the designer. This is a time-consuming
and error-prone activity.

The purpose of this thesis is to provide automatic support for the deriva-
tion of navigation structures from task models.

In WSDM, the navigation structure is described in the form of task navigational
models. These task navigational models can be combined into one navigational
track for an audience class. These tracks can then be combined into a naviga-
tional model. We need to automate the conversion of the task models into these
task navigational models, to both speed up and simplify the design process.

1.3 Motivation

”Automation is the control of production processes by machines with human
intervention reduced to a minimum”, as Webster’s online dictionary states. Au-
tomated web design methods are an attractive way of creating web systems. The
more steps in the design process can be automated, the less work and time will
be needed to design the web system and the more errors can be avoided. While
some steps of design involve making decisions on particular design problems,
other steps involve going from one design structure to another. The former is
an example of something that can’t be (fully) automated, while the latter can be
automated by creating an algorithm for the transformation and implementing it.

The more automated a web design method is, the more time can be saved by
using it and the more it will be used. The time saved will be significant when

1taken from http://wise.vub.ac.be/

1.4. Objectives 12

creating designs for large web systems. Automation doesn’t only save time, but
it also guarantees fewer mistakes in the design process (when correct and stable
algorithms are used).

This is what motivates us to create a program that supports the transformation
of task models into task navigational models. Automating WSDM can only
mean that the design process will become smoother and easier for the designers.
While other steps of WSDM need to be done manually and therefore cannot be
automated, our contribution is a step in the right direction.

1.4 Objectives

The main objective of this thesis is to create a program that automates one
particular step of the WSDM process, i.e. transforming task models into task
navigational models. Task models and task navigational models are both ex-
pressed by means of a graphical annotation. The main idea is to start from the
graphical task models and convert them into graphical task navigational models
without needing to parse images, which can be quite complex. Therefore, we
need a way of presenting our task models in a textual form, so we can convert
this format into a model. Finding a solution to this particular issue is a first
objective.

The second objective, performing the actual transformation, is the main topic
of this thesis. We will need to create an algorithm that performs the transfor-
mation and create navigational models out of the task models. Furthermore,
we want a tool that implements this algorithm with a user interface to select
the task models and adjust the generated navigational models. Because of the
great variety in task models, we need to make sure our algorithm works in most
(if not all) of the cases.

A third objective is to provide designers using WSDM with a number of pre-
defined task model patterns. In general, design patterns represent solutions
to common design problems. Although design patterns are prominently used
in OO design, they can also be useful in other design activities, such as in web
design. In many web sites, we see the same kind of functionality, e.g., a container
for links or products (”shopping basket”), posting a comment in the guestbook,
login activities... In WSDM, these activities need to be modeled by means of
task models. As they occur that often, it may be more efficient to provide them
in the form of task model design patterns. Designers can then benefit from this
by using a task model design pattern when possible. This can also be considered
as a form of automation as the designer will save time, as he doesn’t need to
create a task model from scratch.

1.5 Thesis Structure

This dissertation consists of 8 chapters, including this introduction. There are
two main parts, one part describing the background and related work and one
part describing the research done. We will briefly discuss the contents of these

1.5. Thesis Structure 13

chapters.

In chapter 2 we examine WSDM, the Web Semantics Design Method, used in
this thesis and supply the reader with the necessary background information on
the different phases of this web design method. We describe the task models
and navigational models of WSDM in greater detail in the second part of this
chapter.

In chapter 3 we consider related work and take a look at other web design meth-
ods and investigate how they solve the problem of creating navigational models.
We also check for automation in these web design methods, and how they are
related to WSDM in general.

In chapter 4 we elaborate on task model design patterns and propose patterns
for a confirmation dialog, the basic login/logout scheme, the ”post message”
system of most community forums and a container type that can store items.
We study how these design patterns can help us saving time when creating task
models that are related to these patterns.

In chapter 5 we discuss the algorithm that was created to perform the transfor-
mation of task models into task navigational models. We perform a thorough
analysis of the algorithm, describing every step in full detail.

In chapter 6 we discuss the implementation of the algorithm. This includes a
complete overview of the design of this implementation. We take a tour around
the WSDM Visio Add-in, which is the transformation tool developed. We look
at how it can be used to transform task models.

In chapter 7 we conclude this dissertation with a brief summary of the objectives
we accomplished, limitations of the tool, and possible future work that could be
done.

Part I

Background and Related
Work

14

Chapter 2

Web Semantics Design
Method

2.1 Introduction

In this chapter, we will discuss WSDM, the Web Semantics Design Method
[2, 6, 7, 8, 9, 10, 18], developed at the Web & Information System Engineer-
ing (WISE) research group of the department of Computer Science of the Vrije
Universiteit Brussel. In the first section of this chapter, we will explain the
philosophy behind this design method and briefly describe the significant steps
in the design process.

Afterwards, we study the models that WSDM employs in its design of web
applications. The most prevalent models of WSDM are certainly the task and
navigational models. We describe each type of model in the second section of
this chapter.

2.2 WSDM Overview

WSDM is an audience-driven web design method, which means that it focuses
on the potential users of the web system. It models the requirements and
needs of these users and builds its design around these requirements. On the
Web, most of the users are unknown and can’t be interviewed to determine
the needs of these users. That’s why a designer will have to study the sys-
tem to be implemented and analyze what classes of users it might possibly
have. The audience-driven approach is clearly different from a data-driven or
implementation-oriented approach that focuses on how the data of the web site
or web application should be presented, rather than how a specific user class
should perceive and find information on this web site.

WSDM was introduced in 1998 by De Troyer and Leune [10] under the name
”Web Site Design Method”. At that time, it was a systematic way of designing
kiosk web sites. In general, we can consider two different kinds of web sites: the
kiosk type and the application type. A kiosk web site provides information and

15

2.2. WSDM Overview 16

allows users to navigate through that information. An application web site is
a kind of interactive information system where the user interface is formed by
a set of web pages. As WSDM evolved into what it is now, it added support
for designing application type web sites. It now allows designing traditional ap-
plication type web sites as well as semantic application type web sites. This is
when the method was renamed to ”Web Semantics Design Method”. As WSDM
can now both design web sites and web applications, we will use the term ”web
system” throughout this chapter to indicate either.

An overview of the different phases of WSDM is shown in figure 2.1. In the first
phase, a mission statement for the web system must be defined. The mission
statement clearly describes the purpose, the main subject and the target users
of the web system. The mission statement is formulated in words (natural
language) and should be kept as clear and short as possible.

Figure 2.1: WSDM: An overview of the phases

With this mission statement in mind, the designer can identify target audience
classes based on the requirements of the users of the web system. Users with
need for the same information and functionality will end up being in the same
audience class. For each of these audience classes the characteristics are given.

Once the designer has described the audience classes, he creates a conceptual
model for the web system. This model abstracts from any implementation de-

2.2. WSDM Overview 17

tails.

From this conceptual structure, clear structural models of how one could navi-
gate through the web system can be developed. For the same conceptual struc-
ture, different structural models can be defined. In this phase, we begin to
create the ”web pages” of the web system, clearly marking what page links to
what.

In the last phase of WSDM, we create an implementation from the structural
models. The implementation can be generated automatically from these models
if the right tool is available.

2.2.1 Mission Statement Specification

In this first phase of WSDM, the designer creates a mission statement that
should answer three questions:

• What is the purpose of the web system?

• What are the target users of the web system?

• What is the subject (the main topics) of the web system?

Without a purpose, it is impossible to define the functionality and information
of the web system. If there isn’t a purpose for creating the web system, then
why create the web system in the first place?

The target users are the users that will actually use the web system and are
interested in using it, either voluntary or work-related. They are identified as
part of the main purpose of the web system. If the web system is a kiosk web
site, then the goal is mainly to provide information to the target users. If the
web system is an application type web site, we want the target users to use this
system to accomplish certain goals.

The subject is the main theme and is connected with the purpose and target
users of the web system. The subject needs to be carefully aligned with the
goals. The subject can consist of a series of topics.

The mission statement is expressed in natural language, with a few concise sen-
tences that give an answer to the above questions. Throughout WSDM, the
mission statement is the basis for any design decisions that need to be made.
The functionality and information of the web system will entirely depend on
the purpose, the subject and the target users of the web system.

2.2.2 Audience Modeling

In this second phase, a detailed description of the target users of the web sys-
tem is given. In the first sub-phase of the Audience Modeling, called Audience
Classification, the users are divided into audience classes. Then, in the second

2.2. WSDM Overview 18

sub-phase Audience Characterization, characteristics are assigned to these au-
dience classes.

The Audience Classification phase classifies users into audience classes. An au-
dience class is a group of users that are equal in needs and information and
functional requirements. A typical example is that in a company the employees
will have different motives than the CEO and his staff when visiting the com-
pany’s web site. The employees will be one audience class, while the CEO and
his staff will be another. When identifying the audience classes, an audience
class hierarchy can be constructed. In our example, the employees can be con-
sidered as a superclass to midline managers, as midline managers are employees
of the company as well.

In the Audience Characterization phase, the crucial characteristics should be
specified for each audience class. The typical characteristics used are level
of experience, frequency of use, language, educational level, age, income, sex,
lifestyle...

The audience classes clearly define what information and functionality should
be present in the web system, while the characteristics of each class define how
the information and functionality needs to be represented to the user.

2.2.3 Conceptual Design

To goal of this phase is to turn the informal requirements of the audience classes
into conceptual, high-level, formal descriptions that can be used later in the gen-
eration of the implementation of the web system. The Conceptual Design phase
has two sub-phases: the Task & Information Modeling phase and the Naviga-
tional Design phase.

In the Task & Information Modeling phase, the requirements of the different
audience classes should be analyzed. In this phase, the designer will create
conceptual descriptions, called object chunks, that model the information and
functionality needed to satisfy the requirements. We can distinguish two sub-
phases in this sub-phase: the Task Modeling and the Information Modeling.
The output of this phase is a set of task models and associated object chunks.

In the Task Modeling phase, task models are created to describe tasks that
were defined to satisfy the requirements of an audience class. A task model is a
way of modeling the details of a task; we use the task modeling technique CTT
[15, 16, 17] for this. In CTT, tasks are decomposed into subtasks, which are in
turn decomposed further on until elementary tasks are obtained. The subtasks
of the task model are connected with each other by temporal operators. A tem-
poral operator indicates the temporal relationship between two tasks, essentially
the order in which these tasks will be performed.

When a task model is created for each of the requirements of the audience
classes, in the Information Modeling phase an object chunk is created for each
elementary task of each task model. If the requirement to which the task corre-

2.2. WSDM Overview 19

sponds is purely informational, then the object chunk will describe this informa-
tion. A standard conceptual modeling language can be used; WSDM uses OWL
for this, as it is a specification language that allows to create domain ontologies.
These domain ontologies will help when designing semantically annotated web
systems. By describing the object chunks with OWL, it is easily to couple the
chunks to an existing or new ontology. When coupled, it is possible to automat-
ically generate the semantic annotations later in the implementation phase.

In the Navigational Design phase, a task navigational model is created for each
task model. A task navigational model consists of components connected by
links; the object chunks created for each elementary task are connected with
these components. It specifies the workflow of the corresponding task. When
the task navigational models are created for all tasks of one audience class, they
can be combined into a navigational track for that audience class. This naviga-
tional track enlists the tasks that the members of an audience class can perform,
much like the task navigational model enlists the parts of one task. Finally, a
navigational model can be created by composing the navigational tracks into
one structure. This means combining all the tasks of all audience classes. The
navigational model describes the conceptual structure of the web system.

We will describe the task model and the navigational model in greater detail in
sections 2.3.2 and 2.3.3 respectively.

2.2.4 Implementation Design

The next phase is the Implementation Design phase, which complements the
conceptual design with details needed for the implementation of the web system.
The Implementation Design consists of three sub-phases: the Site Structure De-
sign phase, the Presentation Design phase and the Logical Data Design phase.

In the Site Structure Design phase, the navigational model is converted to a
site structure model. This model describes how the components from the navi-
gational model are divided amongst the pages of the web system. It is possible
that multiple components are put on the same page, while other pages might
have only one component. These pages are abstract; they only serve as a tool
to provide the necessary information to automatically generate the implemen-
tation from them.

In the Presentation Design phase, the look and feel of the web system is speci-
fied. As mentioned before, this will depend on the characteristics of the audience
classes. E.g., visually impaired people will have special needs when it comes to
the layout of the site. The text fonts will have to be large enough and the images
used will need to be big enough.

The final sub-phase is the Logical Data Design phase, in which the designer
creates a logical data schema for the ontology, or conceptual schema. This is
similar to the creation of a relational database from an ER schema. This process
is normally automatically done with the help of a CASE-tool.

2.3. WSDM Conceptual Models 20

2.2.5 Implementation

This is the last phase of WSDM where the actual implementation of the web
system is done. The specifics of this implementation is up to a designer to
decide, as there weren’t any specific implementation details in the previous
phases that would make us choose one specific type of implementation. With
the right tool, this implementation could be automatically generated from the
structural models.

2.3 WSDM Conceptual Models

2.3.1 Introduction

In this section, we take a closer look at the models that are used in the Con-
ceptual Design phase of WSDM, the task model and the navigational model.
These types of models are created in the two sub-phases of the Conceptual
Design phase: the Task & Information Modeling phase and the Navigational
Design phase. These models define the conceptual structure of the web system
being designed.

2.3.2 Task model

As mentioned earlier, a task model is a way of modeling the details of a task that
satisfies a requirement of an audience class. We use the task modeling technique
CTT (ConcurTaskTree)[15, 16, 17] to create a graphical representation of a task
model. A task model consists of a tree, with the task to be analyzed as its root
node. An example of a task model is shown in figure 2.21.

Figure 2.2: CTT: Showtimes and Buy Tickets

In the figure, we see the task Showtimes and Buy Tickets being modeled. This
task is taken as the root node and is decomposed into subtasks until elementary

1this example was taken from the paper on WSDM by De Troyer et. al. [9]

2.3. WSDM Conceptual Models 21

tasks are reached, which are the leaves of the tree. The horizontal lines con-
necting the subtasks at the same level are the temporal operators, that indicate
the temporal relationships between the subtasks.

CTT was developed in the context of Human-Computer Interaction to describe
user interaction in the system being designed. In figure 2.3, we distinguish four
types of tasks2:

• User tasks: Tasks that are entirely performed by the user, and does not
require any interaction with the system. This usually involves tasks where
the user will have to make a decision (a choice) before selecting from a
number of options. These types of tasks are mainly for clarification, so
the reader of the model knows where the user will have to make decisions.

• Application tasks: These are tasks entirely performed by the system,
they do not require any user interaction. They indicate that the system
is doing some processing work or calculations, before the next task can be
performed.

• Interaction tasks: Tasks that are performed by users interacting with
the system. Here, we have both the user and the system involved in the
task. A typical example is when a user quits a process on the system: the
user presses a button which makes the system end the process.

• Abstraction tasks: These are tasks that are complex and abstract and
do not fall under any of the categories above. When an abstraction task
appears as an elementary task in the tree, it indicates that the task will
be decomposed in another task model. It serves as a reference to this task
model.

Figure 2.3: CTT: Categories of tasks

2taken from the paper on ConcurTaskTrees by Paterno [17]

2.3. WSDM Conceptual Models 22

The temporal operators connecting the sub-tasks indicate temporal relation-
ships. CTT distinguishes 8 temporal relationships:

• T1 [] T2 - Choice: A choice temporal relationship signals a choice to
be made between task T1 and T2. After making the choice, we continue
with the next task. One of the tasks will not be performed.

• T1 |=| T2 - Order Independency: Task T1 and T2 can be done in
any order and both tasks will have to performed in order to continue.

• T1 ||| T2 - Concurrent: Both tasks can be performed concurrently, at
the same time.

• T1 |[]| T2 - Concurrent with information exchange: Both tasks can
be performed concurrently, at the same time, but will need to synchronize
by exchanging information. This is also called synchronization in earlier
versions of CTT.

• T1 >> T2 - Enabling: Before we can do task T2, we will first have to
do task T1. T1 enables to do T2.

• T1 []>> T2 - Enabling with information exchange: Same as En-
abling but with exchange of information between the tasks.

• T1 [> T2 - Disabling: Also called deactivation. The task T1 can be
disabled by performing task T2.

• T1 |> - Suspend/Resume: We can suspend the T1 task and move
directly to task T2. While doing T2, we can also go back and resume task
T1.

• T* - Iteration: The task T is iterative, it can be repeated as much as
needed.

• T(n) - Finite iteration: The task T is iterative and can be repeated n
times.

• [T] - Optional task: Task T is optional and doesn’t need to be per-
formed, it is not mandatory.

• T - Recursion: The possibility to include in the task specification the
task itself. Recursion appears when one of the sub-tasks of a task has the
same name as the task itself.

When we use these temporal operators in the task models, there might possibly
be some ambiguity in the expressions. When we have T1 >> T2 [] T3, it could
either be (T1 >> T2) [] T3 or T1 >> (T2 [] T3). CTT solves this by intro-
ducing a priority order among the temporal operators: choice > concurrency >
disabling > enabling. Another way of solving the ambiguity is by introducing a
new task that has two of these three tasks as its sub-tasks. So we would get T1
>> T4 where T4 contains T2 [] T3. This way, there is no ambiguity. This is
clearer than a priority order solution, since the reader of the task model doesn’t

2.3. WSDM Conceptual Models 23

need to know the priority order to read the task model unambiguously.

WSDM adopted the CTT task modeling technique to create its task models.
Even though the same representation is used, there are some differences in spec-
ifications to better satisfy the particular requirements of web system design:

• WSDM does not utilize user tasks in its task models. They are not im-
portant for making the conceptual structure of the web system.

• CTT enforces a rule that we do not want to enforce in WSDM. When
the children tasks of a parent task are of different types (or categories),
then the parent task has to be an abstraction task. In WSDM, we do not
enforce this rule. For example, if a task is an application task in WSDM,
then we say that the system is responsible for that task, and its sub-tasks
can be of any type.

• All of the temporal operators of CTT are used in WSDM as well. WSDM
adds one new temporal operator: ->T<- - Transaction. The transaction
operator signals that a task must be executed as a transaction. If the task
is complex and long, and it is not completed entirely, the whole task will
not be successful and a roll-back steps in and reverses every change made.

• Finally, the level of detail in the WSDM task models is less than in the
original CTT method. This is because object chunks are used in the In-
formation Modeling sub-phase to provide more details. They describe the
information and functionality needed for an elementary task in the task
model, which means we don’t need a detailed analysis of every task in the
tree. The object chunks will give the necessary details.

The task models in WSDM create a first level of description of the tasks a user
can perform in the web system. Each task model describes a sequence of tasks
(the process logic or workflow of a task) and the necessary information to derive
implementation details later on is kept in the object chunks. A second level of
description is given by the object chunks, which conceive a piece of information
or functionality for an elementary task in the task model. The object chunks
are not a part of the task model itself; they are identified in another part of
the conceptual design phase. The task models are created in the Task Model-
ing sub-phase, while the object chunks are created in the Information Modeling
phase.

2.3.3 Navigational model

Once a task model is created for all of the tasks of an audience class, the designer
can create a task navigational model for each task model, which is a translation
of the task model into a navigational structure. This model is composed of nodes
(components) and links. The links connect the nodes with each other. Each
node can be connected with an object chunk that describes the functionality and
information of that node. The nodes can be considered as the basic navigation
units of the task navigational model. WSDM distinguish four types of links:

2.3. WSDM Conceptual Models 24

• Process logic links: These express the work flow of the nodes. Nodes
are connected by process logic links to indicate the order in which the
information and functionality corresponding with these nodes needs to be
displayed/performed.

• Structural links: These signify the conceptual structure of the different
parts of the web system.

• Semantic links: These are links that indicate semantic relationships.
These semantic relationships depend on the reference ontology of the web
system.

• Navigational aid links: The navigational aid links add (non-mandatory)
links to the models to enhance the overall navigation of the web system.

We create a task navigational model for our CTT example in figure 2.2. The
resulting model is depicted in figure 2.4.

Figure 2.4: Navigational Model: The task navigational model

Note that each elementary task from our task model was converted to a node in
this task navigational model. A node is depicted as a rectangle with the name
of the task inside of it. An object chunk is depicted as a rounded rectangle with
the name of the object chunk inside of it. The process logic links connect the
node with each other, while the object chunk connectors connect the nodes with
the object chunks.

Once the designer has created a task navigational model for each of the tasks of
one audience class, he can create a navigational track or audience track for that
audience class. This navigational track represents all of the tasks an audience
class can perform in the web system. These models are of the same structure as
the task navigational models. We create a navigational track (figure 2.5 for the
audience class Movie Lover that contains the task Show Times and Buy Tickets

2.3. WSDM Conceptual Models 25

we modeled in figure 2.4.

When we create a task model that describes how the audience class can choose
between the several tasks modeled, we can use the same technique as before
to convert this audience class task model into a navigational track, much like
we converted a normal task model into a task navigational model. We don’t
need any object chunks in this stage of the modeling anymore, as there are no
elementary tasks to describe.

Figure 2.5: Navigational Model: The navigational track

The double-lined rectangles in figure 2.5 are a short-hand notation to indicate
that these nodes are expanded further and were decomposed elsewhere in the
design. The Movie Lover Track gets connected with the tasks the movie lover
can perform through normal process logic links. Here we see a movie lover can
choose which action to take; the task model corresponding to this navigational
track would contain a choice temporal operator.

After creating a navigational track for each audience class of the web system,
the navigational model for the web system can be composed by adding each
navigational track into one model by means of the necessary structural links.
Then the designer can add semantic links and navigational aid links to further
enhance the conceptual structure of the web system.

2.3. WSDM Conceptual Models 26

Figure 2.6: Navigational Model: The navigational model

Here we have the navigational model that combines everything in one concep-
tual structure. We have added a Home node, that indicates the home or start
page of the web system. From there a user can be validated, which simply
means logging in and logging out. This validation task is described in a task
navigational model, which isn’t depicted in the figure. We also have added the
tracks for Series Lover and Movies Lover, each described into more detail in the
navigational tracks and their task navigational models.

Chapter 3

Alternative Modeling
Techniques

3.1 Introduction

WSDM is not the only web design method for the ”World Wide Web”. Al-
though it was one of the first, there are several other methods that have arisen
throughout time, one more popular than the other. Typically, these web design
methods are quite different from each other, where one is more suitable for a
specific situation than the other. In this chapter we discuss some of these web
design methods. We describe the basic steps of each and make comparisons
with WSDM where possible.

WebML is a model-driven web design method. Unlike WSDM which is audience-
driven, WebML focuses more on the data schema and (site view) model schema
of the web system, while considering the requirements of the users and the con-
straints of the environment. It is probably the most well known web design
method at this time and is increasingly growing in popularity. WebML is dis-
cussed in section 3.2 of this chapter.

OOHDM/SHDM is another model-driven web design method. It clearly sep-
arates the conceptual models from the navigation models in its design. OOHDM
was one of the first web design methods, while SHDM, a later version of OOHDM,
extends it by adding semantic relationships between concepts. OOHDM/SHDM
is discussed in section 3.3.

Hera is a methodology that supports the design and engineering of Web Informa-
tion Systems (WIS). With model-driven techniques, it was specifically designed
to cope with information retrieval from different sources on the Web (integra-
tion) and use of context (adaptation). It also supports engineering semantically
annotated WIS. Hera is discussed in section 3.4.

27

3.2. WebML 28

3.2 WebML

3.2.1 Introduction

WebML [3, 4], the Web Modeling Language, was created to fulfill the need
of companies that were missing a way of formalizing their web development
techniques. It was nearly impossible to create and control web systems that
were huge and complex of nature. In response to this need, the W3I3 Project
(funded by the European Community under the Fourth Framework Program)
focuses on ”Intelligent Information Infrastructure” for data-intensive web sys-
tems. The project initiated a new web modeling language, called WebML,
and a corresponding CASE tool, called WebRatio. WebML allows to create
high-level, conceptual specifications of complex web systems. WebRatio is a
tool that helps in creating the models WebML utilizes; it is centered mainly
on the use of WebML. WebRatio enables to create the implementation of the
web system automatically by converting the models of WebML into a HTML
(Hypertext Markup Language), WML (Wireless Markup Language) or SMIL
(Synchronized Multimedia Integration Language) specification.

While WSDM focuses mainly on developing web systems (web sites or web ap-
plications), WebML can successfully model the conceptual structure and data
information for any data-centric user interface. These need not be Web related,
but can be user interfaces that will run on PDAs, WAP phones, and even digital
televisions. Because of this, we will talk about developing applications, rather
than web systems throughout this section.

WebML is a model-driven design method. In its design phases, it uses models to
represent the conceptual structures and logical units of the application. It also
creates a data model or data schema to represent the data of the application.
While it considers the requirements of the users, and groups the users into user
classes, it does not base its conceptual structure on these user classes as WSDM
does. We can distinguish the following steps in the iterative WebML design
process:

• Requirements specification: We collect and formalize the essential in-
formation about the application domain and wanted functionality, based
on the business requirements and environmental constraints. The out-
put of this phase is a simple specification of what the application must
do and how it fulfills the requirements of the target users and business
requirements.

• Data Design: In this phase we organize the conceptual information ob-
jects identified in the requirements analysis into a comprehensive graphi-
cal data schema (or data model). Data models are a well-known type of
model, we can create this data model in any specification we want: UML,
ER, ORM, ... These data models will later serve to create the data sources
of the application.

• Hypertext Design: We create site views based on the requirements
specification. Hypertext design operates at the conceptual level, specifying

3.2. WebML 29

how units, defined over data objects from the data design, are composed
within pages, and how these units and pages are interconnected.

• Architecture Design: In this phase we define the hardware, network
and software components that make up the architecture on which the ap-
plication will run. We take into account the constraints and requirements
of the application and create a best possible match between the architec-
tural details and the requirements.

• Implementation: We implement the software, transforming the concep-
tual models and data models into an application running on the selected
architecture.

• Testing and Evaluation: We test and evaluate the software, checking if
the software is consistent with the functional and non-functional require-
ments.

• Maintenance and Evolution: We create modifications in later stages
of the software’s life-cycle to reflect new user-based requirements.

Figure 3.1: WebML: An overview of the phases

3.2.2 WebML Overview

WebML is a process, it derives outputs from the inputs it was given. The busi-
ness requirements and environmental constraints are the inputs of the process.

3.2. WebML 30

A deployment architecture, together with the application itself, is the output of
the WebML process. We will now discuss every step of the WebML in further
detail.

3.2.2.1 Requirements specification

During the requirements specification, we take a look at the business require-
ments and environmental constraints before building the design of the applica-
tion. Business requirements are requirements that drive the application’s devel-
opment. They are mostly non-technical and express the long-term goals of the
application. They identify the stakeholders’ needs. Environmental constraints
are the constraints that can affect the construction of the application. These are
mainly limitations imposed by the current environment in which the company
operates: legacy systems, available time and resources, overall technical skill...

This specification of requirements is fairly unstructured and informal. We use
natural language to describe constraints and requirements, and use tables and
lists to clarify where needed. We can distinguish two main parts in this phase:
the Requirements Collection and the Requirements Analysis.

3.2.2.1.1 Requirements Collection During the Requirements Collection,
we collect all information we have on the application domain and the require-
ments. We describe each step of this collection in further detail:

• Identification of users: Like in WSDM, we create user classes for each
group of users that shows similar characteristics. During the development
of the application, we take into account the several user classes. WebML
distinguishes amongst several types of users: internal and external users,
business and non-business users. As in WSDM, we can then create a
hierarchy of user classes.

• Functional requirements: We address the essential functions that the
application should deliver to its users. We can create use cases to describe
these requirements.

• Data requirements: These describe what information should be avail-
able in the application. This step describes what knowledge we have and
how we want to represent it.

• Personalization requirements: If there’s need for personalization in
the application, we create these type of requirements. Each requirement
defines a user profile. This profile will help us create a customized applica-
tion. While WSDM treats each user class differently, this could personalize
the user experience on an individual level.

• Nonfunctional requirements: These include all the other requirements
that are relevant: usability, performance, availability, scalability, security,
maintainability.

3.2. WebML 31

3.2.2.1.2 Requirements Analysis During Requirements Analysis, we for-
malize the knowledge we have by using different techniques.

• Group specification: This is the formalized part of the identification
of users. We create a hierarchy of user classes here and formally describe
each user class. This is very similar to the Audience Modeling phase of
WSDM.

• Use case specification: This is the formalized part of the functional
requirements specification. We create a use case for each functional re-
quirement. Each use case describes a scenario where a user performs a
task with the application to be developed.

• Data dictionary specification: This is the formalized part of the data
requirements specification. We create a list of the main information ob-
jects of the application. We formally describe each information object.

• Site view specification: This is the formalized part of the personaliza-
tion requirements specification. We create a list of site view maps, based
on the user profiles we created earlier. These sketch the organization of
the hypertexts offered to the users.

• Style guidelines specification: We create a style guide for the applica-
tion. A style guide describes the rules for presentation of pages: the font
type, the colors, the page layout, margins...

• Acceptance tests specification: This is the formalized part of the non-
functional requirements specification. We create a series of acceptance
tests to see if their non-functional requirements are fulfilled.

Now that we’ve extensively examined the requirements and constraints for the
applications, we can create a data schema for the application.

3.2.2.2 Data Design

In the data design phase, we create an ER schema of the information in our ap-
plication domain. We can extend this ER schema by creating some sub-schemas.
Each of these sub-schemas detail an aspect of the requirements specification. We
have a core sub-schema that details the internal properties of a core concept,
an interconnection sub-schema that draws the relationships between the core
entities, an access sub-schema that introduces categories and connects the core
entities with these categories and finally a personalization sub-schema that maps
the users and groups of users on the core entities.

3.2.2.3 Hypertext Design

Hypertext design specifies the site views of the application. Site views have
a user-defined name and contain a set of pages (or areas), they package the
WebML hypertext of the application. An example of a graphical representation
of a site view is shown in figure 3.2.

3.2. WebML 32

Figure 3.2: WebML: A site view

The hypertext design consists of two phases: the Coarse Design and the De-
tailed Design. In the site view coarse design, we create a first draft of each site
view, by using the data schema and the site view maps created earlier in the
WebML process. In the detailed design, we refine the coarse design by revising
each draft and adding specific requirement details where needed.

During both of these phases, we will create hypertext models. Hypertext models
are a way of representing the hypertext of the application. We specify which
pages compose the hypertext and which content units make up a page. A con-
tent unit is logical unit that describes or contains an information object of the
data schema. We distinguish four main types of content units:

• Data units: These units represent an information object (or component).
More than one unit can be defined for the same object, to offer alternative
points of view. The data units allow us to hide certain attributes of the
component. An example is that a student (the entity) gets represented
by his name, enrollment number and year (the attributes). Another data
unit can be defined on this student that only shows his name and year,
this is an alternative point of view created by defining multiple data units
for one entity.

• Multi-data units: Multi-data units present multiple instances of a com-
ponent together, by repeating a data unit representation of the component.
For our example we create a page that shows multiple students: multiple
chunks consisting of a name, a year and enrollment number are shown on
the page.

• Index units: Index units are much like multi-data units, they allow the
presentation of multiple components, based on a common index. This
would mean a page that lists the names of each student in our example.
We can click on these student names for more information.

• Scroller units: These allow browsing of multiple data units. We get to

3.2. WebML 33

see the first student in the database on one page. We can click on the
Next button in this page to see the next student in line.

Figure 3.3: WebML: Four main types of content units

In general, we want some of the content units to be displayed together in one
structure. To cope with this requirement, WebML defines a page. A page is
an abstract representation of an interface block, a part of a screen (in HTML,
this would be a frame), that can contain multiple content units or other pages.
The pages and content units constitute a site view, as shown earlier in figure 3.2.

With pages and contents units we can describe the conceptual hypertext struc-
ture of the application. In later stages of modeling, we create a navigational
model that connects the pages with each other. The pages can be linked with
contextual links, meaning some information exchange will happen, and non-
contextual links that connect pages in a totally free way.

3.2.2.4 Architecture Design

This is the first phase of WebML that doesn’t focus on the conceptual structure
or requirements of the application, but concentrates on the choice of hardware,
network components and software that will make up the application. We need
to find a mix of these components that best meets the application requirements.

3.2.2.5 Implementation

In the implementation phase, each entity in our Entity-Relationship diagram
from the Data Design becomes a relation table. We choose the type of database

3.2. WebML 34

and define primary keys on each table. The SQL syntax for creating these ta-
bles can be automatically generated from the ER diagram, if this diagram is
well-formed.

In a second phase of implementation, we implement the pages, content units
and links. Again, we can automatically generate the corresponding JSP or ASP
from the hypertext models we created. The mapping is pretty basic and we
have all the information needed to perform it. To manage the presentation of
the pages, we can create XSL and CSS from the style guides we made earlier.

3.2.2.6 Testing and Evaluation

We test and evaluate the application in three ways:

• Functional testing: We test if the application meets all functional re-
quirements. The functional testing can be split into three classical activi-
ties: module testing, integration testing and system testing.

• Usability testing: We test if the application meets all non-functional
requirements.

• Performance testing: The throughput and response time of the appli-
cation is evaluated in various conditions.

3.2.2.7 Maintenance and Evolution

We monitor the performance during the lifecycle of the application and make
changes where needed. Changes in requirements are propagated to the design
level, changes at the design level are propagated to the implementation level.

3.3. OOHDM/SHDM 35

3.3 OOHDM/SHDM

3.3.1 Introduction

OOHDM [5, 20, 21, 22] the Object Oriented Hypermedia Design Method, was
one of the first web site design methods, created in 1995, and is built in an
object oriented manner. SHDM, Semantic Hypermedia Design Method, is its
successor and allows us to successfully develop semantic web systems. Both of
these methods use the same methodology. We’ll describe SHDM in more detail,
since that one contains the OOHDM methodology and enables us to compare
it with WSDM more effectively.

SHDM is another model-driven design method. The main difference with WSDM
is that it doesn’t focus on audience classes and characteristics throughout its
design. It puts down basic requirements and immediately starts modeling the
conceptual structure of the web system. SHDM was specifically created to model
web systems, either using JSP, HTML or other languages. It allows automatic
generation of the implementation (the HTML and JSP pages) once the design
phases have been completed.

SHDM consists of five main phases:

• Requirements Gathering: Much like in WebML and WSDM, we gather
the requirements and we collect information on the users of the system.
We take a look at the application domain and create some basic constraints
for the web system where needed. While we identify what role each user
plays, we won’t divide the users into user classes, like we would in the
other two methods.

• Conceptual Design: This phase shows some similarity with the Data
Design phase of WebML. We create conceptual objects for each object
in our application domain and describe the attributes. This conceptual
design can be created with UML, since we’re describing these concepts
in an object-oriented manner. To create constraints, relationships and
behaviour in these models, we can use RDF or OWL in SHDM.

• Navigation Design: We create relationships (links) between the con-
cepts we described in the conceptual design. The output of this phase is
a navigational model that will help us create an abstract interface in the
following phase.

• Abstract Interface Design: In this phase, we create an abstract inter-
face, that will allow us to create a concrete interface. An abstract interface
describes how the objects from the conceptual design will appear to the
user of the web system. It also describes how a user will interact with the
web system.

• Implementation: The conceptual objects are transformed into actual
implementation objects. With JSP (Java Server Pages), we can create
these objects, as Java is an object-oriented programming language. Once
the implementation objects have been created, we can describe the look

3.3. OOHDM/SHDM 36

and feel of the web system, which is entirely up to a graphic designer to
decide.

Figure 3.4: OOHDM/SHDM: An overview of the phases

3.3.2 OOHDM/SHDM Overview

SHDM, like any other web design method, is an iterative, top-down process.
From conceptual, high-level models, that can be corrected or changed itera-
tively, we create low-level implementation specifications or automatically gen-
erate them. We will now describe the five phases of SHDM.

3.3.2.1 Requirements Gathering

The authors on OOHDM/SHDM remain vague on this phase of the web design
method. SHDM describes the target users, the role of these users and the
basic requirements, restrictions or constraints for the web system. With this
information, we can then create constraints in the ontology of the web system.

3.3.2.2 Conceptual Design

During the Conceptual Design, we create a model of the application domain
using object-oriented modeling principles. We create a conceptual class for
each object of the application domain and create the model by using aggre-
gation, generalization and specialization hierarchies between the classes. We
can graphically model this using UML (Unified Modeling Language). To de-
scribe these conceptual models textually we use RDF (Resource Description

3.3. OOHDM/SHDM 37

Framework). To model the constraints and restrictions from the requirements
gathering phase we use OWL (Web Ontology Language). In figure 3.5 we see
an example of a conceptual model for an academic department1.

Figure 3.5: OOHDM/SHDM: A conceptual model

Describing the conceptual objects of the web system in this way is similar to
the Data Design phase of WebML, where we created a data schema for the
application domain. Although both the conceptual model of SHDM and the
data schema of WebML describe the name and structure of the concepts, only
SHDM is able to describe the behavior and the constraints through use of OWL.

3.3.2.3 Navigational Design

Once we’ve created the conceptual model, we define views over the conceptual
objects. We can create multiple views for the same conceptual object. A view
describes what objects can be reached by the users, what relations exist between
the objects, what sets of objects can be accessed, how these will be accessed
and the context of these objects. A view can be described with a navigational
class model, which is based on the conceptual model we defined earlier. Note
the similarity between these views and the site view maps of WebML. We create
for our conceptual model a navigational class model2 in figure 3.6.

1taken from paper on SHDM by Schwabe et. al. [22]
2taken from paper on SHDM by Schwabe et. al. [22]

3.3. OOHDM/SHDM 38

Figure 3.6: OOHDM/SHDM: A navigational model

Next to this navigational class model, we create a navigational context model
that defines how the navigation is organized in different contexts. Contexts
are sets of meaningful navigational objects that describe how concepts can be
displayed to the user. Using a Context Definition Card and RQL (RDF Query
Language), we can describe and create them.

3.3.2.4 Abstract Interface Design

Once we’ve created the navigational class model(s), we can make an abstract
interface for the web system. This abstract interface will make the functionality
and the conceptual objects visible to the user. It is free from any implementation
details and only describes how the information is displayed. To create this
interface, we use the Abstract Widget Ontology, that gives us the vocabulary
to define it. Any interface can be described as a composition of these widgets.

3.3.2.5 Implementation

Once we created the abstract interface, we can then map it onto a concrete
interface. We create a mapping specification that describes how the abstract
widgets will be converted into the real widgets of the user interface. Once we’ve
completed this specification, we can automatically generate concrete interfaces
from the abstract user interfaces. These concrete interfaces are normal JSP
pages that use Java beans to represent the values of the navigational objects.

If we make use of CSS tags in our mapping specification, so that the abstract
widgets will be converted to CSS-tagged objects, it is easier for the graphic de-
signer to define the look and feel of the entire web system.

3.4. Hera 39

3.4 Hera

3.4.1 Introduction

Hera [12, 13, 14, 25] is a model-driven methodology that focuses on the engineer-
ing of Web Information Systems (WIS). WISs retrieve information from various
sources on the Web and present the information in terms of a hypermedia pre-
sentation. At first, these WISs were nothing more than purely informational
web sites that were hard-coded in a hypermedia format (e.g. HTML), that
included both the presentation and the information. Now, with the growth of
available information, there is a need for data-intensive applications that gen-
erate their presentation and information, based on the ontologies of the source
information and the conceptual model of the application itself.

This shift caused the initiation of Hera, a methodology with an accompanying
software suite that supports this generation. Hera divides a WIS into three
layers:

• Semantic Layer: This layer defines the content that is managed in the
WIS. We describe this content with a conceptual model. This layer in-
cludes the integration of the information retrieved from various sources
on the Web (e.g., information from search agents, databases, wrappers,
crawlers, ...) into the conceptual model of the WIS.

• Application Layer: This layer defines the navigation view on the data in
terms of an application model. This application model shows resemblance
to the normal navigational model we discussed in the other web design
methods. This layer includes the adaptation of the information retrieved
(e.g. personalization, context based on user browse history, ...).

• Presentation Layer: This layer describes how the information is pre-
sented. A concrete presentation can be generated from the application
model.

3.4. Hera 40

Figure 3.7: Hera: The layers in the Hera methodology

A WIS allows users to perform informational queries. The WIS will search
for the information requested in its own database and other Web sources and
display the query results to the user. We can distinguish two phases in Hera:

• Integration and Data Retrieval: The integration sub-phase describes
what information is stored in the WIS itself and what information needs
to be retrieved from other Web sources. It uses an integration model to
map the different sources into objects from the conceptual model. To
perform this mapping, we take the sources’ ontologies, create instances of
those ontologies based on the user query and map these instances onto the
conceptual model.

The data retrieval sub-phase handles the reception of the user query. Once
the mapping of the source ontology instance into concepts has been com-
pleted, we create a conceptual model instance containing the results (only
the necessary concepts) from the query.

• Presentation generation: We can then create an application model
instance from this conceptual model instance while considering possible
adaptation. Adaptation changes the application model instance based
on context and personalization. Finally, a concrete presentation can be
generated.

3.4.2 Hera Overview

Most of the Web engineering approaches do not consider integration and adapta-
tion in their methodology as opposed to Hera. Let’s take a look at the different
phases in Hera and how it copes with integration and adaptation in its design.

3.4. Hera 41

3.4.2.1 Integration and Data Retrieval

In this phase, we connect the internal conceptual model with the external in-
formation sources of the WIS. For this, we have to map the external source
ontologies into concepts of our conceptual model. Figure 3.8 shows how the
integration and data retrieval is handled in Hera.

Figure 3.8: Hera: The integration and data retrieval

Let’s start from a query, performed by the user of the WIS. The query is trans-
formed into a query the conceptual model can understand, extending it with
concepts where needed. This extended query is then delivered to a mediator.
The mediator is a common object oriented design pattern that allows object in-
teraction through its interface, encapsulating the specific details in its structure.

An integration model is already present in the system, before any queries are
made. This integration model defines how the external sources will get mapped
into concepts. For the query, we create an instance of the model to perform the
mapping. Using this instance, together with the source’s ontology instance and
the conceptual model, we can return a query result. This result can then be

3.4. Hera 42

translated back into concepts and return a conceptual model instance.

The conceptual model is very similar to the conceptual models we discussed in
the other web design methods. It models information objects, their attributes
and the relationships between them. A conceptual model can be graphically
represented in an ORM-style model. It can be described verbosely in RDF(S).

The external sources of the WIS can be any form of web system. These can be
either external databases or information stored in hypermedia format (HTML,
WML, SMIL...). Hera assumes that an ontology for each source is available.

The integration model relates concepts of the source ontologies with those from
the conceptual model. This process can be done (semi-)automatically through
use of parsers with support for dictionaries and lexical matching.

3.4.2.2 Presentation Generation

In this phase, the application model (a type of navigational model) is created
from the conceptual model instance, which represents the result of the user
query. We take into account the possible adaptation of this application model.
Depending on the context or the personalization rules, the application model
can be adapted.

3.4. Hera 43

Figure 3.9: Hera: The presentation generation

An application model is made up from slices and slice properties. A slice is a
media content unit, they represent a media item. A media item can be a concept
from the conceptual model or a concept from an external source ontology. An
application model3 is depicted in figure 3.10.

3taken from paper on Hera by Vdovjak et. al. [25]

3.4. Hera 44

Figure 3.10: Hera: The application model

From this application model, we generate code specific for a user’s browser.
This code will depend on the type of hypermedia format the browser supports
(HTML, WML, SMIL, ...). A media item from our application models can be
transformed into a chunk of code that represents it. This transformation can
be completely automated. Once all of these media-items are transformed, the
WIS will put the code into the result page, where it will then be visible to the
user. The code can be generated in such a way that it uses the correct CSS tags
of the WIS, so that the results of the query will nicely blend in with the layout
and style of the result page.

3.5. Comparisons 45

3.5 Comparisons

3.5.1 Introduction

In this chapter, we investigate how the conceptual structure of WSDM corre-
sponds to the conceptual structure of the three Web design methods we exam-
ined in this chapter. We will enlist the differences in conceptual design between
the Web design methods. We then take a look at how the navigational models
of WSDM correspond to the navigational models of the three Web design meth-
ods we examined: WebML, OOHDM/SHDM and Hera. We will see if these
design methods derive navigational structure from their conceptual models as
in WSDM and how these steps are or can be automated.

3.5.2 Conceptual structure

In this section we examine how the web design methods describe the conceptual
structure of the web system. When creating the conceptual model of a web
system, we take the requirements of the target users and see what concepts
(information objects) are needed to provide the needed functionality later on.
Note that this step of the Web design methods cannot be automated. It is up to
the designer to decide which concepts constitute the web system or application.
We can however support the creation of these models by creating a software
suite, corresponding to the web design method.

3.5.2.1 WebML

In WebML, we describe conceptual structure through use of a conceptual model.
This is an ER model that identifies concepts, describes the properties of the
concepts and signals relationships between the concepts. We create the concepts
from the business requirements and environmental constraints. The creation of
this ER model happens in the Data Design phase of WebML.

3.5.2.2 OOHDM/SHDM

SHDM uses both a textual and a graphical representation to present the concep-
tual structure of the web system. As SHDM is object-oriented, the conceptual
model is created with UML, a modeling language for object-oriented program-
ming environments. We add a textual OWL representation of each object in
the UML to signal possible constraints and restrictions. The creation of this
conceptual model is done in the Data Design phase of SHDM.

3.5.2.3 Hera

In the Integration and Data Retrieval phase of Hera, we create the conceptual
model of the Web Information System (WIS). Every time a query is handled
by the WIS, is then maps the objects from the source ontology into concepts of
the conceptual model.

3.5. Comparisons 46

3.5.2.4 WSDM

In WSDM, the conceptual structure is described by the task models, accompa-
nied by the information and functional models or object chunk models. This
happens in the Task & Information Modeling sub-phase of the Conceptual De-
sign phase. Instead of using concepts, we define tasks that satisfy the require-
ments of the target users. These tasks are described by task models and each
task interacts with a number of concepts. These concepts are then described in
corresponding object chunks. Each object chunk model describes one concept.
The collection of all of the object chunk models can be considered as a concep-
tual model in WSDM.

This is clearly different from the other Web design methods we described. There
is no phase in WSDM where the designer writes down all of the concepts of the
web system. Instead, we create functionality from the requirements and see
which concepts are needed to support this functionality. The functionality is
described in the task models, the concepts are described in the object chunk
models. The reason for doing this is to support audience-driven design. Linking
concepts to tasks, instead of describing all concepts in one conceptual model
allows to link the concepts to audience classes.

3.5.3 Navigational structure

In this section we examine how the navigational structure is created in the
web design methods. Is the navigational structure derived from the conceptual
structure of the web system or application? Or is the navigational model created
from scratch and totally independent from the conceptual structure? We will
answer these questions for each of the web design methods discussed.

3.5.3.1 WebML

In WebML, we create a navigational model in the Hypertext Design phase.
A navigational model is actually a view on the conceptual model. This view
can contain some of the concepts of the conceptual model and defines how
these concepts can be presented to the user. Multiple views can be defined to
allow different points of view for different user classes. This step can not be
automated; it is up to the designer to decide what views will be defined on the
concepts of the conceptual model. WebML does have a tool (WebRatio) that
allows creating the views through a graphical user interface and allows linking
these views to concepts.

3.5.3.2 OOHDM/SHDM

As in WebML, SHDM creates navigational class models by defining different
kinds of views on the conceptual structure of the web system. We create a view
by taking the conceptual model, created with UML, and extending it with links
that show how the concepts are organized and how they can be presented to
the user. The navigational class models are created in the Navigational Design
phase. Again, this step cannot be automated. The designer will need to specify
how the concepts are links and how they can be represented to the user.

3.5. Comparisons 47

3.5.3.3 Hera

In the Presentation Generation phase of Hera, an application model is created
for each concept. Each application model is made up from slices and slice prop-
erties. These application models describe how the concepts can be presented to
the user. Also, in Hera, these application models will have to be created by the
designer.

3.5.3.4 WSDM

In WSDM, the navigational structure is described by navigational models. Nav-
igational models contain nodes (that signal the workflow) and object chunks
(that present the information and functionality). The creation of these naviga-
tional models happens in the Navigational Design sub-phase of the Conceptual
Design phase. Although these can be considered as part of the conceptual
structure (as they contain object chunks), these models clearly signify the main
navigational structure of the web system as well.

Again, this is clearly different from the other Web design methods we described.
Whereas we would create a navigational model on top of the conceptual model
in the alternative web design methods, we create a navigational model in WSDM
by transforming the task models into a sequential structure. Task models con-
taining concepts (object chunks) are converted to a navigational structure which
links these concepts to nodes. In the other web design methods, we expand our
conceptual model by defining (multiple) navigational views on it.

We can automate the derivation of navigational models from task models. The
difference with the other web design methods is that we already captured some
of the navigational structure in our task models, while the conceptual models
of the other web design methods do not provide any navigational information.
We might seem to be doing twice the work in WSDM, since we describe how
tasks are organized in the task models and then describe the workflow of these
task in the navigational models. But the task models actually allow us to talk
about functionality in a high-level, conceptual manner. When we automate
the generation of a navigational structure from these high-level task models,
this mechanism actually becomes more powerful than creating the navigational
structure from scratch, as in the other web design methods.

Part II

Research

48

Chapter 4

Task Model Design
Patterns

4.1 Introduction

Design patterns are related to a particular problem that often reoccur when
designing systems. A design pattern explains how the problem can be solved, in
what context this problem may occur and what forces constitute to the need for
a solution. The design pattern expresses a relation between problem, context
and solution. Whereas guidelines capture some design knowledge into small
rules, these rules are often too abstract or simplistic to be used properly. De-
sign patterns solve this by giving concrete examples of how and where the design
pattern can be used.

Design pattern can be used for different aspects of design, e.g. in [23, 24] usabil-
ity design patterns are considered. Here, we propose design patterns for task
models. Providing patterns for commonly used situations in task modeling can
be considered as a way of further ”automating” WSDM. They may help the
designer saving time when creating the task models for the web system. When
task design patterns are available, the task models wouldn’t have to be created
from scratch; we could use design patterns and add new tasks to them where
needed. New patterns can be derived from existing task models. The use of
design patterns increases the reusability of designs of web systems in WSDM.

Before creating the design patterns, we take a look at how design patterns are
usually described. For this the following characteristics are used:

• Problem: This describes the problem. In the case of task models, this is
will be the requirement to be satisfied by the task.

• Context: This describes a context in which the design pattern can be
used. Only in this context, the design pattern will turn out to be useful
for the designer.

• Forces: This describes the forces that constitute to the need for the design
pattern. These forces describe how the problem may occur.

49

4.1. Introduction 50

• Solution: This describes the solution to the problem.

• Examples: This describes some examples of context in which the design
pattern can be used.

In this chapter, we present some task model design patterns. We will start off
simple by presenting design patterns for confirmation and validation (sections
4.2 and 4.3). Then we will propose a design pattern for posting a comment
or message on a forum or guestbook (section 4.4). Finally, we give the design
pattern for a container that can store items. These items can be products,
hyperlinks, friends’ names... We discuss the container pattern in section 4.5.

4.2. Confirmation 51

4.2 Confirmation

Figure 4.1: CTT: The Confirmation Pattern

Problem The user wants to complete an action. For safety reasons the
system needs to know that the user is absolutely sure that he
wants to complete the action, because this action might be im-
portant and/or irreversible.

Context The Confirmation pattern can be used when a user needs to
perform an action that is important to the user or the system.
This action usually changes the state of the system in an irre-
versible way. The action is significant enough to require a final
confirmation of the user to complete it.

Forces - The user might be distracted when completing the action.
- The user might have chosen to complete the action by accident.

Solution When the user chooses to complete the action, the sys-
tem will ask for confirmation whether or not the user
really wants to complete the action. This will indicate
to the user that the task is important and that the de-
cision of completing it should not be taken lightly.

Examples - The user wants to save the current file by overwriting another.
- The user wants to quit the application while there are open
unsaved documents.
- The user wants to add an item to the database.

4.3. Validation 52

4.3 Validation

Figure 4.2: CTT: The Validation Pattern

Problem Before any task can be done in the system, the user will need to
login, or register if he doesn’t have any login details yet. When
he wants to leave the system, the user can logout.

Context The Validation pattern can be used in any (web) system that
uses a login/logout scheme.

Forces - The user is not registered and wants to perform a task that
requires identification.
- The user is not logged in and wants to perform a task that
requires identification.
- The user is logged in and wants to logout.

Solution The user has the choice of logging in or registering when
he is not yet in the system. When he has logged in or
registered, the user can then get out of the system by
logging out.

Examples - A user wants to register on a commercial web site.
- A user wants to check his online bank account and wants to
login to the system.

4.4. Post Message 53

4.4 Post Message

Figure 4.3: CTT: The Post Message Pattern

Problem The user wants to post a message on web site. This message
has a subject and a body.

Context The Post Message pattern can be used in any (web) system that
uses a message blackboard. This message blackboard can be a
guestbook, a topic of a forum, a comment review system...

Forces - The user wants to write a message and post it in the system.

Solution The users need to create a message first. A message
consists of a subject, a message body, the layout of this
message body and some various options (whether or
not the e-mail of the user is shown, whether or not the
message is a poll...). While editing the message, he
can stop the editing process and preview the message.
When he’s done editing the message, he can post the
message. A validation pattern can be added to confirm
if the user really wants to post the message.

Examples - A user wants create a new topic on a community forum.
- A user want to post a new comment on the guestbook of his
friend.

4.5. Container 54

4.5 Container

Figure 4.4: CTT: The Container Pattern

Problem A container type is needed in the system. A user should be able
to add items to this container, view the contents of the container
and delete items from the container.

Context The Container pattern can be used in any (web) system that
needs a container type.

Forces - The user needs to keep track of a group of items.

Solution The user has a choice of adding items, viewing items
or deleting items. When adding an item, he can in-
spect this item to show its details. This happens out-
side the container. When he wants to view the contents
or delete an item, he can view the item. This happens
inside the container. A Confirmation pattern was used
since adding and deleting items change the state of the
system.

Examples - A user wants to store products in his ”shopping basket” before
he checks out.
- A user wants to add some friends to his friends list on his
personal webpage.

Chapter 5

Transforming Task Models
into Task Navigational
Models

5.1 Introduction

As mentioned earlier, the Conceptual Design phase of WSDM has two sub-
phases: the Task & Information Modeling phase and the Navigational Design
phase. After creating the task models, we create data objects or object chunks
for each of the elementary tasks in the task models. When this is done, we
create a task navigational model for each task model. Putting these task nav-
igational models together for an audience class, results in a navigational track
for that audience class. We can then create a navigational model out of these
navigational tracks.

A major step in this phase is the transformation of the task models into task
navigational models. The underlying principle to do this is as follows. Each
elementary task has to become a node, while each temporal operator can be-
come a link or multiple links. Currently, this is done manually, although there
are certain principles that can be used when transforming these task models. A
simple example is that an interaction task in a task model will result in a node
in the task navigational model. Another example is that an enabling temporal
operator will result in a simple 1-to-1 link. Using these principles, this step of
the conceptual design could be automated.

By applying a set of procedures based on the type of the task or temporal
operator, we could automate this whole process. Task models could then be
transformed into task navigational models by one click on a button. The ideal
situation would be that a task model is created by the user in a graphical envi-
ronment, saved to disk in a predefined format, then deciphered by the generation
tool and finally the resulting task navigational model is displayed on the screen.
Once all the task navigational models are generated, it is easy to create the
navigational model from them.

55

5.2. Algorithm Overview 56

In this chapter, we will discuss the transformation algorithm. In section 5.2
we give an overview of the steps of this algorithm. Then we describe how
we represent task models in a programmatic environment. We give the basic
structure of this representation in section 5.3. Afterwards, we examine the first
step of the transformation algorithm in section 5.4 and the second step in 5.5.

5.2 Algorithm Overview

Task models represent a hierarchy, where the root task is the most complex one.
It is decomposed into a number of sequential sub-tasks, which are in turn de-
composed further on. Navigational models represent a sequence, where we have
a well-defined start and end of the sequence. Our automation process will have
to make a clear distinction between these two representations. It will have to
turn the tree of tasks into a sequence of tasks, interleaved by temporal operators
to connect them. This is the first step in the transformation process.

Once we have created a sequence of tasks from the task model, we have to look
at the types of temporal operators and tasks this sequence contains. Based on
the types, we can apply a set of procedures and generate nodes and links accord-
ingly. We also have to examine common task model properties like recursion,
iteration, optional behaviour, embedded choice... This is the second and final
step of the transformation.

1. Transform the task model into a textual representation.

2. Retrieve the needed information for the transformation.

3. Create a task sequence from the task model tree.

4. Create a navigational model from the task sequence.

Before we elaborate on the transformation of task models, we first will describe
how we represent task models in a programmatic environment. We describe the
basic structure of this representation. We then describe the two steps of the
transformation process in detail.

5.3 Task Model Representation

As seen in chapter 2 on WSDM, we know that task models are represented as
ConcurTaskTrees or CTTs. This is a graphical notation that allows us to depict
tasks in a tree, with the task we are describing as the root node of this tree.
The tree is made up from tasks and temporal operators, the tasks being the
nodes of the tree and the temporal operators being the links between nodes on
the same level in the tree. To be able to process these graphical task models,

5.3. Task Model Representation 57

an internal representation is needed.

The ConcurTaskTree Environment or CTTE 1 is a graphical environment in
which we can create CTTs. This tool allows saving a CTT as an XML struc-
ture. This structure gives us a way of traversing the task models more easily.
Therefore we will start from this representation. The details of how the con-
version from the graphical representation into the XML representation works,
is beyond the scope of this dissertation.

In the XML representation, the root task of the task model tree is the root node
of the generated XML document. This root node contains its direct descendant
tasks as its child nodes. In turn, each of these child nodes contains its direct
descendants as child tasks. A notable fact is that the temporal operators are
kept in these nodes as well, they are stored in a field of the task node where
they start from. An example of this XML representation can be seen in the
section on Implementation on page 80.

We can save this structure in an file, which allows us to traverse it program-
matically. A node contains multiple fields that describe the information of the
task it represents. Each node contains the following useful information:

• Identifier: This field contains the name of the task in the task model.

• Category: This field contains the category of the task. In WSDM, a task
can be either an interaction task, an abstraction task or an application
task.

• Iterative: This field contains a boolean which specifies if the task is
iterative or not.

• Optional: This field contains a boolean which specifies if the task is
optional or not.

• Frequency: This field contains the frequency of a task.

• TemporalOperator: The temporal operator that appears right next to
the task on the right. When there is no temporal operator to the right of
the task, this field is omitted.

• Parent: Specifies the identifier of the parent of the task. If the task is
the root task, this field is omitted.

• SubTask: This field contains all the child nodes (tasks) of the task at
hand. The child tasks are sorted in the way they appear in the task model,
from left to right. Each child task contains the same type of information
as the parent task. This is how the tree is made up: a task has child tasks,
who in turn have child tasks, ...

1the ConcurTaskTrees Environment by Paterno et. al. [15]

5.3. Task Model Representation 58

Other information is stored as well, but this is not important for our algorithm
because they are either implicit, redundant or can’t be presented in task navi-
gational models:

• Name: This field contains a user-defined name of the task that isn’t
shown in the task model itself. Since we already have an identifier, we
cannot and don’t have to represent this name in the task navigational
model.

• Frequency: This field indicates how often a task is performed in a task
model. There is no way of presenting this in the task navigational model,
unless we expand it so we can.

• SiblingLeft: This field contains the identifier of the task on its left. This
information is redundant, since we can simply check in the parent of the
task what the child task next to it is.

• SiblingRight: This field contains the identifier of the task on its right.
This information is also redundant.

Finally, there is information that is not available in the original XML represen-
tation but that we derive or add, since we need it later on to have the necessary
data for the set of rules we want to apply. For each node (task) we deduce or
add the following information:

• Level: The level of the task in the tree. From the root task which is level
1, we add one level whenever we go down one step in the tree. So the
higher we are in the tree, the lower the level of the tasks will be.

• UniqueID: We assign an ID to each task to distinguish them throughout
our algorithm. Tasks can have the same identifiers. This is necessary to
establish recursion, where two tasks will have the same identifiers which
signifies the recursion call.

• Position: Since we are not using the SiblingLeft and SiblingRight fields,
we store the position (index rather) of the child in the list of childs of its
parent. That way we can easily ask the parent task what the right sibling
and left sibling of the task is.

• RecursionID: This is the ID of the task that is the target of the recursion,
if recursion appears. We will describe this more thoroughly later, in section
5.5.4.

• OptionalList: Instead of storing a boolean whether or not the task is
optional, we keep a list of optional behaviour for each task: we store the
levels where the task is optional. A task can be optional on many levels. If
a task its parent is optional, then that means that task is optional through
inheritance. We introduce concepts like inherited optional behaviour and
direct optional behaviour and discuss this further in section 5.5.7.

5.3. Task Model Representation 59

• IterativeList: Instead of storing a boolean whether or not the task is
iterative, we keep a list of iterative behaviour for each task: we store the
levels where the task is iterative. A task can be iterative on many levels. If
a task its parent is iterative, then that means that task is iterative through
inheritance. We introduce concepts like inherited iterative behaviour and
direct iterative behaviour and discuss this further in section 5.5.7.

When we traverse the XML tree in an object-oriented environment, we can con-
vert each node into a Task object . We give this object the relevant and derived
fields we discussed just now, together with the logically derived accessor meth-
ods. Besides the standard accessors, there are 10 other methods we need for
traversing the Task object tree structure.

• GetSiblingLeft(): As mentioned earlier, the information on siblings can
be derived through use of the parent and position attribute.

method GetSiblingLeft()
if parent == null

then return null
else if position− 1 < 0

then return null
else return parent.GetChildren()[position− 1]

end if
end if

• GetSiblingRight(): The same applies to this method. The information
can be retrieved by using the parent task and the position attribute of the
Task object.

method GetSiblingRight()
if parent == null

then return null
else if position + 1 > parent.GetChildren().Length− 1

then return null
else return parent.GetChildren()[position + 1]

end if
end if

• Elementary(): Another straightforward implementation to check if a
task is an elementary task or not. A task is elementary when it has no
child tasks, so we only have to check if the children list was set or not.

method Elementary()
return (children == null);

• LastOfSiblings(): Check if a task is the last of a set of child tasks.
Again, this is very easy to check.

method LastOfSiblings()
return (GetSiblingRight() == null);

5.3. Task Model Representation 60

• HasParent(): Check if a task has a parent.

method HasParent()
return (parent! = null);

• SetRecursion(): This method checks for recursion for one particular
task. Recursion arises when a task has the same identifier as one of its
ascendants. The task can then be replaced by that ascendant. Recursion
is not the same as iteration, since you can choose when and where in the
sub-hierarchy of your task the recursion occurs. After checking if recursion
did occur, this method will set the recursionID attribute to the uniqueID
of the ascendant. We will need this information later on when handling
recursion in the task models.

method SetRecursion()
Task currTask = parent
while currTask != null do

if currTask.identifier == identifier
then recursionID = currTask.GetLeftMostLeaf().uniqueID

break
else currTask = currTask.GetParent()

end if
end do

• GetLeftMostLeaf(): A simple method of getting the left-most leaf of a
task in the tree.

method GetLeftMostLeaf()
if Elementary()

then return this
else return children[0].GetLeftMostLeaf()

end if

• NextOperator(): We want the first operator to the right of the current
task. If the temporal operator is not set, that means this task is the last of
the siblings. We traverse upwards in the tree to look for the next temporal
operator.

method NextOperator()
if temporalOperator == null

then if parent == null
then return null
else return parent.NextOperator()

end if
else return temporalOperator

end if

• NextOperatorLevel(): Exactly the same as the previous method, but
here we need the level, instead of the name of the temporal operator.

method NextOperatorLevel()
if temporalOperator == null

5.4. From Task Models to Task Sequences 61

then if parent == null
then return 0
else return parent.NextOperatorLevel()

end if
else return level

end if

• NextTask(): This method forms the basic mechanism in the creation of
the sequence. From a leaf task, we go to the next leaf task by using this
method. We traverse the task tree from left to right.

method NextTask()
if Elementary() ∧ LastOfSiblings() ∧ HasParent()

then return parent.NextTask()
else if Elementary() ∧ LastOfSiblings()

then return null
else if !HasParent() ∧ LastOfSiblings()

then return null
else if HasParent() ∧ LastOfSiblings()

then return parent.NextTask()
else

Task sibling = GetSiblingRight()
if sibling.Elementary()

then return sibling
else return sibling.GetLeftMostLeaf()

end if
end if

end if
end if

end if

The task models are represented as trees composed of Task objects. These
objects have a list of attributes and methods that allow us to traverse this
tree. Methods like NextTask() and NextTemporalOperator() will help us with
creating the sequence of tasks. With this background, we can examine the first
step of the transformation algorithm in greater detail.

5.4 From Task Models to Task Sequences

To create task navigational models, we need to take all the elementary tasks of
a task model and create a sequence out of them. A sequence is literally an order
of succession, a following of one thing after another. While trees are made up
from a hierarchy, we will need to parse this tree and list the elementary tasks
in such a way that we can later easily create the task navigational model out of
them.

We create this sequence by listing the elementary tasks from left to right, inter-
leaved by the temporal operators that connect them. This can be obtained by
a depth-first traversal technique. We start at the left-most leaf of the tree and
traverse each leaf of the tree, adding them to the sequence. To clarify, we use

5.4. From Task Models to Task Sequences 62

the example in figure 5.1.

Figure 5.1: CTT: A sequence of tasks

There, we see a task model that has 6 elementary tasks: 4 interaction tasks
and 2 abstraction tasks. There are 5 temporal operators that connect these ele-
mentary tasks: 3 choice temporal operators and 2 enabling temporal operators.
The sequence of this tree is created by parsing the tree, starting at the left-most
leaf, Task 3. We then traverse the tree looking for the next leaf in line, using
depth-first traversal. Our sequence would look like the one in table 5.1.

Task 3 [] Task 4 [] Task 5 >> Task 6 >> Task 8 [] Task 9

Table 5.1: An example of a task sequence

Although this sequence is constructed correctly, we lose some of the information
contained in the tree structure. This is why we introduced derived attributes
like level, optionalList, iterativeList and recursionID to tackle problems like
choice chains, optional and iterative behaviour and recursion respectively. We
store this derived information in this sequence.

In this step of the algorithm we also consider temporal operators as separate
objects. They are no longer considered as part of a task, they need to be treated
independently. We introduce three new types of objects: TaskModelObject ,
TemporalOperator and CttTask. A CttTask stores all the useful information
from the task, a TemporalOperator stores the level and type of the temporal
operator. CttTask and TemporalOperator inherit common behaviour from the
abstract object TaskModelObject. TaskModelObject allows us to store the tasks
and temporal operators in the same list in the object-oriented environment. In
the code below we show how we create the task sequence from the tree of Task
objects.

5.4. From Task Models to Task Sequences 63

1: method GenerateTaskSequence(Task task)
2:
3: CttTask cttTask = null
4: TemporalOperator tmpOperator = null
5: task.SetRecursion()
6:
7: string ident = task.GetIdentifier()
8: List < int > iter = task.GetIterative()
9: List < int > opt = task.GetOptional()

10: int level = task.GetLevel()
11: int id = task.GetUniqueID()
12: int rec = task.GetRecursionID()
13:
14: string tmpType = task.NextOperator()
15: int tmpLevel = task.NextOperatorLevel()
16:
17: switch task.GetCategory()
18: case ”UserTask” :
19: cttTask = new UserTask(ident, iter, opt, level, id, rec)
21: case ”ApplicationTask” :
22: cttTask = new ApplicationTask(ident, iter, opt, level, id, rec)
24: case ”InteractionTask” :
25: cttTask = new InteractionTask(ident, iter, opt, level, id, rec)
27: case ”AbstractionTask” :
28: cttTask = new AbstractionTask(ident, iter, opt, level, id, rec)
30: end switch
31:
32: switch tmpType
33: case ”Concurrent” :
34: tmpOperator = new TemporalConcurrent(tmpLevel)
36: case ”ConcurrentInfo” :
37: tmpOperator = new TemporalConcurrentInfo(tmpLevel)
39: case ”Choice” :
40: tmpOperator = new TemporalChoice(tmpLevel)
42: case ”OrderIndependent” :
43: tmpOperator = new TemporalOrderIndependent(tmpLevel)
45: case ”Deactivation” :
46: tmpOperator = new TemporalDeactivation(tmpLevel)
48: case ”SuspendResume” :
49: tmpOperator = new TemporalSuspendResume(tmpLevel)
51: case ”Enabling” :
52: tmpOperator = new TemporalEnabling(tmpLevel)
54: case ”EnablingInfo” :
55: tmpOperator = new TemporalEnablingInfo(tmpLevel)
57: end switch
58:
59: taskSequence.Add(cttTask)
60: if tmpOperator != null
61: then taskSequence.Add(temporalOperator)
62: end if

5.4. From Task Models to Task Sequences 64

63: GenerateTaskSequence(task.NextTask())

• Line 1: the algorithm is defined as a method which takes a Task as input
argument. The first time we call this method, this Task will be the left-
most leaf of the Task tree. This way, we will process the tasks from left
to right, recursively.

• Line 3 and 4: We declare the two new object variables. They are initially
set to null.

• Line 5: We still haven’t checked for recursion, so we do this here. This
method looks for possible recursion and sets the recursionID to the uniqueID
of the task it refers to in the recursion.

• Line 7 to 12: We introduce a new set of variables that store the in-
formation needed of the task. We need this information to put it into
the sequence. The identifier and uniqueID help us identify each task in
the sequece. The iterativeList, optionalList and recursionID help us with
dealing with iteration, optional behaviour and recursion respectively. The
level gives us information on the tree structure; we will still need this
information.

• Line 14 and 15: We get the type of the temporal operator that is to
the right of the task. If there is no temporal operator to the right of the
task in the tree, this will look in the lower or higher in the tree for the
next temporal operator. We also get the level of this temporal operator;
we need this information to process the sequence later on.

• Line 17 to 30: The objects UserTask, ApplicationTask, InteractionTask
and AbstractionTask inherit the behaviour of CttTask. They each store
the information in their attribute structure. When breaking down the
task model tree, we only want the abstraction and interaction elementary
tasks. Note that we don’t really need the application tasks and user tasks,
as these are not represented as nodes in the navigational models. We will
get rid of these in line 61 where we add the CttTask to the sequence only
if this CttTask is an interaction or abstraction task. More on this is given
in section 5.5.5.

• Line 32 to 57: The objects TemporalConcurrent, TemporalConcurrentInfo,
TemporalChoice, TemporalOrderIndepedent, TemporalDeactivation, Tem-
poralSuspendResume, TemporalEnabling and TemporalEnablingInfo inherit
the behaviour of TemporalOperator. They only store the level where the
temporal operator was found. There will be temporal operators that have
to be replaced since they can’t be presented on a task navigational model,
concurrency for example. More on this is given in section 5.5.6.

• Line 59 to 62: We add the task to the sequence, then we add the
temporal operator to the sequence.

• Line 63: This is a form of tail recursion where we further expand the
sequence with the next task in line.

5.4. From Task Models to Task Sequences 65

Now that we know how the task sequence is constructed and what information
is stored in it, we can examine the second step of the algorithm: the generation
of nodes and links for the task navigational model. This generation is based on
a simple set of procedures that are based on the type of the task or the temporal
operator.

5.5. From Task Sequences to Task Navigational Models 66

5.5 From Task Sequences to Task Navigational
Models

5.5.1 Introduction

In this step of the transformation algorithm, we will go over the sequence and
generate nodes and links based on the task or temporal operator we encounter.
We will explain the basic algorithmic behaviour step by step, covering all the
details and clarifying each procedure with an example. Throughout this section,
we will use the same example: a task model that describes a search task where
a query is used to search and where you can add filters to filter results from the
search. This task model is depicted in figure 5.2.

Figure 5.2: CTT: Query searching with filters

Before we elaborate on the principles of the algorithm, we need some background
knowledge of how nodes and links are constructed in our object-oriented envi-
ronment. We discuss this briefly in section 5.5.2. Afterwards, we outline the
basic structure of the second step of this algorithm. We can then examine re-
cursion and what problems we face when dealing with recursion. After this,
we describe how tasks are converted to nodes and take a look at the temporal
operators and how they help us generate links for the task navigational model.
Finally, we explain how we deal with optional and iterative behaviour in the
task sequence.

5.5.2 Nodes and Links

Nodes and links don’t store a lot of information. Nodes only need to know
its identifier, and whether it is an external node or a normal one. Links only
need a source and a target node. Again, we create objects for these in our
object-oriented environment. We introduce three new objects: Drawable, Node
and Link. Link and Node inherit common behaviour from the abstract object
Drawable. The Drawable object allows us to treat links and nodes as equals,
storing them in the same structure. In our case, this structure is a list. Note

5.5. From Task Sequences to Task Navigational Models 67

the similarity with TaskModelObject, CttTask and TemporalOperator.

These Nodes and Links act as placeholders for the real visible nodes and links of
a navigational model. Nodes and Links are objects that store the necessary in-
formation to later draw actual nodes and links on an empty drawing page. The
drawing is done after this second step of the algorithm, when we go over the
list of drawables and create a graphical component for each Drawable in this list.

A Node stores three things that it needs to know. We create a node with the
constructor Node(index, external, id).

• ID: The uniqueID gets stored in this attribute field. This is needed to
successfully identify a task, since some tasks can have the same name.

• Index: This is the index of the task in the sequence that the node refers
to. When it needs information like the identifier of the task, it can retrieve
it from the sequence using this index.

• External: A boolean value which indicates whether or not the node is
external. This is only stored for our convenience, because we could retrieve
this information from the task in the sequence as well.

A Link stores two things. We create a link with the constructor Link(index,
target).

• Index: This is the index of the task in the sequence that is the source of
the link.

• Target: This is the index of the task in the sequence that is the target of
the link.

This construction might seem illogical at first sight. One could ask the question:
Why not store all the needed information in the Nodes and Links, instead of
referring to the sequence? Also, why not store the links in the nodes and have
the links refer to nodes instead of indices? This would seem to make more sense,
but we simply cannot do this, because some of the links are created before the
nodes even exist. There are no nodes to refer to and no nodes to store the links
in at that point. This will become clear in section 5.5.4 on recursion.

5.5.3 Structure

Before we process the tasks and temporal operators from the sequence, we need
to do some preliminary work. Before we start traversing the sequence, we add a
START and END task to it. This is useful for our algorithm, but also useful in
our task navigational model. It will indicate the start and end of the task nav-
igational model, clearly marking what task(s) you start with and what task(s)
you end with. We give these tasks the level 0, a level that’s lower than anything
else in the task model tree.

The START task will get added in the beginning of our task sequence, together
with an enabling temporal operator to connect it with the first task in the se-
quence. The END task will get added at the end of our task sequence, preceded

5.5. From Task Sequences to Task Navigational Models 68

by another enabling temporal operator. Both of these temporal operators’ level
is also set to 0. This start and end mechanism helps us in adding clear bound-
aries to the sequence. When we create the task sequence for our example in
figure 5.2 and add these boundaries, we get a sequence like the one listed in
table 5.2.

Name START >> Create New Filter []>> Add Filter To... [] Choose Predefined...
Level 0 0 IV IV IV III IV

Iterative 2 2 2
Optional 2 2 2

[]>> Add Filter... []>> Specify Query |> Start Search []>> View Statistics [>
IV IV II III III III II II II

2 2 2
2 2

Quit Searching >> END
II 0 0

Table 5.2: The task sequence of Query Searching

After adding the start and end to the sequence, we will traverse it twice. The
first traversal is to deal with recursion, the second is to deal with the rest. In the
first traversal, the sequence might get modified, we might need to delete some
tasks and temporal operators from the sequence. The sequence of table 5.2 is
the sequence we would get after the first traversal. For every task, we look at
its type. Based on this type, we create a node and store it in a list of drawables
(a list that accepts objects of the type Drawable). For every temporal operator,
we perform a procedure based on its type and add the resulting link(s) to that
same list of drawables. These procedures can generate links that are already in
that list, but we don’t mind since these doubles will get removed before being
drawn in the task navigational model.

1: for index = 0 to taskSequence.Length do
2: current = taskSequence[index]
3: ...
4: we handle the recursion in the first traversal
5: ...
6: end for
7: for index = 0 to taskSequence.Length do
8: current = taskSequence[index]
9: ...

10: we handle everything else in the second traversal
11: ...
12: end for

Note that throughout the following sections, we make use of two lists. One con-
taining the sequence, named taskSequence, the other containing the generated
links and nodes, named drawables, which is empty initially. We can now take a
look at how tasks are converted to nodes.

5.5. From Task Sequences to Task Navigational Models 69

5.5.4 Recursion

Recursion occurs when a task has the same name as one of its ascendants. Re-
cursion only generates one link to indicate the recursive call. The task making
such a call, the descendant with the same name, will never be a part of the
task navigational model. This is because the task only indicates a recursive call
and has no other purpose than that. So we have to delete this task in the first
traversal of the task sequence, otherwise it will be treated as a normal task. Due
to the very nature of the algorithm (working with indices to make the nodes and
links), we have to be very careful when deleting elements from the sequence.
That’s why we need to check all the links we generated for possible shifts when
deleting this task.

The deletion of tasks (and the corresponding temporal operators) is the reason
why we handle recursion in a separate traversal of the sequence. Recursion gets
processed in the first traversal, because the only links that could have been
generated at that point, are links that indicate recursion. Generally, we would
only need to check a few links this way, which decreases the cost in performance.

Recall that we checked for recursion in the first step of the algorithm, before
we created the sequence. In the first traversal of the sequence we still have the
recursive tasks in the sequence. When a task’s recursionID is set (the variable
rec in the code), it is set to the ID of the task that will be the first in line after
making the recursive call. We take a look at how recursion is treated by the
algorithm.

1: for index = 0 to taskSequence.Length do
2: current = taskSequence[index]
3: recursive = −1
4:
5: if current.rec >= 0
6: then for i = 0 to taskSequence.Length do
7: if taskSequence[i].id == current.rec
8: then recursive = i
9: break

10: end if
11: end for
12:
13: if recursive == 2
14: then drawables.Add(new Link(index− 2, 0))
15: else drawables.Add(new Link(index− 2, recursive))
16: end if
17:
18: foreach drawable in drawables
19: if drawable.target > index
20: then drawable.target -=2
21: end if
22: if drawable.index > index
23: then drawable.index -=2
24: end if

5.5. From Task Sequences to Task Navigational Models 70

25: end foreach
26:
27: taskSequence.RemoveAt(index)
28: taskSequence.RemoveAt(index− 1)
29: end if
31: end for

• Line 1: We start the first traversal of the sequence here.

• Line 2 to 3: We introduce a variable recursive that will store the index
of the first task in line after the recursive call would have been made. We
will use the found index to generate a link.

• Line 5 to 11: If the recursionID is set, we find the index of the task
which ID corresponds to this recursionID.

• Line 13 to 16: In the case that the recursive call goes back to the first
task in the sequence, we rather want it to go back to the START task,
instead of the first real task in the sequence. This is usually the case when
recursion on the root task of the task model occurs. Else, we create a link
from the current task (the task before the recursive one, since that one
will get deleted) to the task we found.

• Line 18 to 25: We delete the recursion task from the sequence and the
temporal operator next to it. We might need to shift some link indices,
we do this here.

• Line 27 to 28: We remove the task and its temporal operator from the
sequence.

Figure 5.3: Algorithm: Recursion

Example: For our example in figure 5.2, there is one recursive task. Search
Query appears twice in the task model and is the recursive task here, since one
of the two is the ascendant of the other. The descendant is the last of the siblings
and gets removed from the task sequence once the link has been generated. Since
Show Results is an application task and application tasks didn’t get added to
the sequence, we take Start Search as the end of our Search Query task. We
add a link from Start Search to Specify Query, which is the begin of the Search
Query task. At this point, no Nodes exist yet, so we create a Link from indices
that will later become Nodes.

5.5. From Task Sequences to Task Navigational Models 71

5.5.5 Tasks

Elementary tasks are converted into nodes in the second traversal of the task
sequence. An elementary interaction task will generate a node. An elementary
abstraction task means that this task is explained in another task model, it
is a form of referring to this other task model. In a task navigational model,
we represent this by means of an external node. Every abstraction task of
our sequence (which is only there if it is an elementary task) will generate an
external node.

1: if current is InteractionTask ∨ current is AbstractionTask
2: then
3: ...
4: we handle iterative and optional behaviour here
5: ...
6: if current is AbstractionTask
7: then drawables.Add(new Node(index, true, current.GetUniqueID()))
8: else drawables.Add(new Node(index, false, current.GetUniqueID()))
9: end if

10: end if

Figure 5.4: Algorithm: Tasks

Example: For our example in figure 5.2 we create 8 nodes (2 from START and
END) and 2 external nodes. Notice that we are at the second traversal of the
task sequence, which means the elementary task Search Query isn’t in the task
sequence. Also, the application tasks in the task model were never added to the
task sequence, so they will not be depicted in the task navigational model as well.

5.5.6 Temporal Operators

5.5.6.1 Enabling and Enabling with information exchange

When we come across an enabling temporal operator, we add a link from the
node representing the task on its left to the node representing the task on its
right. This is the simplest form of temporal operator.

1: if current is TemporalEnabling ∨ current is TemporalEnablingInfo

5.5. From Task Sequences to Task Navigational Models 72

2: then drawables.Add(new Link(index− 1, index + 1))
3: end if

Figure 5.5: Algorithm: Enabling temporal operator

Example: We draw 6 links for the 6 enabling temporal operators in the se-
quence.

5.5.6.2 Deactivation

Although deactivation has another meaning than an enabling temporal operator
in a task model tree, it will generate into the same thing in the task navigational
model, because we cannot represent it otherwise.

1: if current is TemporalDeactivation
2: then drawables.Add(new Link(index− 1, index + 1))
3: end if

Figure 5.6: Algorithm: Deactivation temporal operator

Example: We draw 1 link for the only deactivation temporal operator in the
sequence.

5.5.6.3 Suspend/Resume

The suspend/resume temporal operator can be displayed on a task navigational
model by adding two links to it: one that is generated for the ’suspend’ part

5.5. From Task Sequences to Task Navigational Models 73

from the second task to the first, and one that indicates the ’resume’ part from
the first task to the second.

1: if current is TemporalSuspendResume
2: then drawables.Add(new Link(index− 1, index + 1))
3: drawables.Add(new Link(index + 1, index− 1))
4: end if

Figure 5.7: Algorithm: Suspend/Resume temporal operator

Example: We draw 2 links for the only suspend/resume temporal operator in
the sequence. Note that we already had a link going from Start Search to Search
Query generated by recursion. The link will end up in the list of drawables twice
and the double will be removed before drawing them.

5.5.6.4 Choice and Order Independent

Choice and order independency are the most complex temporal operators. They
are part of the reason we added the levels to the sequence. Using these levels,
we know when we run into choice chains. A choice chain is a sequence of tasks
that is part of a choice. This sequence consists of tasks of the same level in the
task tree that are part of the choice on a lower level (higher in the tree). This
signifies that the user can choose between one chain of tasks and other chains
of tasks. When this chain is made up by only one task, we have the choice
temporal operator in its simplest form.

Using the levels of tasks, we can determine when the choice chains end. From
the choice temporal operator we traverse the sequence to the right and to the
left. Every task that is higher level (lower in the tree) than this choice operator
is part of the choice, and part of the left or right choice chain. The choice chain
ends if we find an operator which level is lower or equal to our choice operator
(which means at the same level in the tree or higher in the tree than the choice
temporal operator).

Once we identified the right and left choice chain, we can connect these choice
chains with a start-choice task and end-choice task. The start-choice task is
the task where the user has to make the choice between the two choice chains.

5.5. From Task Sequences to Task Navigational Models 74

The end-choice task is the task where the user will end up after making a choice
between the two choice chains. So we connect the start-choice task with the
beginning of each of the choice chains and connect the end of each of the choice
chains with the end-choice task.

Order independency is very similar to choice. You can choose what task to
begin with, but you will need to do the other tasks of the order independency
as well. It can be seen as a choice temporal operator where we add links between
the choices, indicating you can go to the second choice when finishing the first
one and the other way around. We add a link from the end of the first choice
chain to the beginning of the second choice chain, and a link from the end of
the second choice chain to the beginning of the first choice chain.

1: if current is TemporalChoice ∨ current is TemporalOrderIndependent
2: then startOfChain1 = −1
3: endOfChain1 = index− 1
4: startOfChain2 = index + 1
5: endOfChain2 = −1
6: startOfChoice = −1
7: endOfChoice = −1
8:
9: for i = index to 0 do

10: if taskSequence[i] is TemporalOperator
11: then if taskSequence[i].level <= current.level
12: then startOfChain1 = i + 1
13: break
14: end if
15: end if
16: end for
17: for i = index to taskSequence.Length do
18: if taskSequence[i] is TemporalOperator
19: then if taskSequence[i].level <= current.level
20: then endOfChain2 = i− 1
21: break
22: end if
23: end if
24: end for
25: for i = index to 0
26: if taskSequence[i] is TemporalEnabling
27: ∨ taskSequence[i] is TemporalEnablingInfo
28: ∨ taskSequence[i] is TemporalSuspendResume
29: ∨ taskSequence[i] is TemporalDeactivation
30: then if taskSequence[i].level <= current.level
31: then startOfChoice = i− 1
32: break
33: end if
34: end if
35: end for
36: for i = index to taskSequence.Length do

5.5. From Task Sequences to Task Navigational Models 75

37: if taskSequence[i] is TemporalEnabling
38: ∨ taskSequence[i] is TemporalEnablingInfo
39: ∨ taskSequence[i] is TemporalSuspendResume
40: ∨ taskSequence[i] is TemporalDeactivation
41: then if taskSequence[i].level <= current.level
42: then endOfChoice = i + 1
43: break
44: end if
45: end if
46: end for
47:
48: drawables.Add(new Link(startOfChoice, startOfChain1))
49: drawables.Add(new Link(startOfChoice, startOfChain2))
50: drawables.Add(new Link(endOfChain1, endOfChoice))
51: drawables.Add(new Link(endOfChain2, endOfChoice))
52:
53: if current is TemporalOrderIndependent
54: then drawables.Add(new Link(endOfChain1, startOfChain2))
55: drawables.Add(new Link(endOfChain2, startOfChain1))
56: end if
57: end if

• Line 2 to 7: We initialize a set of variables that will store the tasks that
need links between them:

– startOfChain1: The first task of the first choice chain.

– endOfChain1: The last task of the first choice chain. This is the task
next to the choice temporal operator we’re processing.

– startOfChain2: The first task of the second choice chain. This is the
other task next to the choice temporal operator.

– endOfChain2: The last task of the second choice chain.

– startOfChoice: The task where we make the choice between the two
chains.

– endOfChoice: The task we go to when the choice has been made.

• Line 9 to 24: We find the start of the first choice chain and the end of
the second choice chain here. Our chains end when our level gets smaller,
which means we go up in the tree.

• Line 25 to 46: We find the start and end of the choice. We do this by
taking the first non-choice and non-order independent temporal operators,
checking their level and taking the task next to that temporal operator.

• Line 48 to 56: We add the links to the drawables list. When the temporal
operator is order independent, we add two links that connect the choice
chains with each other.

5.5. From Task Sequences to Task Navigational Models 76

Figure 5.8: Algorithm: Choice temporal operator

Example: For our example in figure 5.2 we get 4 links generated by the choice
temporal operator. START is the start of the choice and Specify Query is taken
as the end of the choice. We have two choice chains as well. The first is Create
New Filter - Add Filter To Filters and the second is Choose Predefined Filter
- Add Filter To Filters. We do not have to connect the elements of each chain
in this step, the temporal operators between them will generate the necessary
links to do so.

5.5.6.5 Concurrent and Concurrent with information exchange

Since we are unable to represent concurrency in task navigational models, we
process them as if they were order independent temporal operators. We could
add new types of links to the task navigational models that can represent con-
currency, but this is beyond the scope of this dissertation.

5.5.7 Iterative and Optional Behaviour

Code needs reviewing.

1: int startChain = −1
2: int endChain = −1
3:
4: foreach optLevel in currentShape.optionalList
5: if optLevel <= currentShape.level
6: for i = index to 0 do
7: if !visitables[i].optionalList.Contains(optLevel)
8: then startChain = i
9: break

10: end if
11: end for
12:
13: for i = index to taskSequence.Length do
14: if !visitables[i].optionalList.Contains(optLevel)
15: then endChain = i
16: break
17: end if

5.5. From Task Sequences to Task Navigational Models 77

18: end for
19:
20: drawables.Add(new Link(startChain, endChain))
21: end foreach

Chapter 6

Implementation

6.1 Introduction

The primary objective of this dissertation was to provide automatic support for
the transformation of task models into navigational models. In chapter 5, we
have defined an algorithm for this. In this chapter we describe an implementa-
tion of this algorithm.

The implementation of the algorithm is called the WSDM Visio Add-In, and is
implemented as an extension to the Visio 2003 environment of Microsoft. Visio
2003 allows us to create diagrams of all sorts using stencils and templates. A
stencil is a collection of shapes (graphical components) that compose a Visio
diagram. A template represents a drawing page and contains a number of differ-
ent stencils. On a template, we can draw diagrams by moving shapes from the
stencils onto the drawing page (drag and drop). The Add-In software package
includes a WSDM template that contains two stencils. It also adds some extra
functionality to this template.

A Visio Add-In is a .COM Add-In, a component we add as an extension to
Visio. Events coming from Visio are intercepted by this Add-In. An event con-
tains a tag that describes the type of event and a context, that contains the
current shape, current page, document and application information of Visio.
The Add-In receiving this event will have all the information needed to perform
an action based on the tag and context of this event. For example, when the
Add-In receives a getProperties event from Visio, the Add-In will respond by
creating a message box containing the properties of the shape for which the
event was generated.

The WSDM Visio Add-In was initiated by Nicolai Roovers [19]. He created the
WSDM template and added two stencils to this template to allow users to draw
navigational models and information and functional models. Furthermore, the
functionality of this template allows you to generate an OWL (textual) repre-
sentation of your diagrams.

78

6.2. Design 79

For our implementation, we took this WSDM Visio Add-In and extended it
with more functionality. From the WSDM template, we can now select the
functionality to import a task model. This task model, created in an external
environment, can be read by the Add-In, parsed, and converted into a navi-
gational model. This navigational model is then drawn automatically on the
drawing page of the WSDM template. From this generated navigational model,
we can then create an OWL textual representation with Roovers’ conversion
functionality.

6.2 Design

We will first discuss how the WSDM Visio Add-In handles the events it receives
from Visio. We will then look at how the Add-In handles the importTaskModel
event, that allows us to import task models and generate the corresponding
navigational models in Visio.

6.2.1 Event Handler

The events are handled by two classes, EventSink and EventHandler. The
EventSink class receives all the events that come from Visio. Every event con-
tains a context string, describing the shape, page, document and application
itself, as mentioned earlier. There are three events that will get processed by
the EventSink and will be handled by the functionality of the WSDM Visio
Add-In:

• setProperties: When we select a shape and request its properties using
its dropdown menu, this type of event will be generated in Visio and re-
ceived by the EventSink. The appropriate user interface window will be
shown for the shape.

• generateOWL: When we select the drawing page itself and select the
functionality to generate OWL code from the dropdown menu, the EventSink
will receive this type of event. This will result in the generation of the
OWL code and a save file dialog will be provided to store the OWL file
on disk.

• importTaskModel: When we select the drawing page itself and select
the functionality to import a task model from the dropdown menu, the
EventSink will receive this type of event. An open file dialog will appear
and the user is asked to select the task model file.

6.2. Design 80

6.2.2 XML Traverser

When we receive an importTaskModel event, the program will ask for a task
model file. This file has to contain an XML representation of a task model.
Once we have opened the file, we create a document from the XML code con-
tained in that file. This document will be traversed by the program and for
each node of this document we can generate a Task object. This Task object is
the same object we defined in section 5.3 on page 59. The XML of a task model
looks like this:

<?xml version= ’1.0’?>

<!DOCTYPE TaskModel PUBLIC "http://giove.cnuce.cnr.it/CTTDTD.dtd" "..\CTTDTD.dtd">

<TaskModel NameTaskModelID="C:\...\Examples\example1.xml">

<Task Identifier="Showtimes and Buy Tickets" Category="Abstraction Task"

Iterative="false" Optional="false" PartOfCooperation="false"

Frequency="null">

<Name> name </Name>

<Type> </Type>

<Description> </Description>

<Precondition> </Precondition>

<TimePerformance>

<Max> </Max>

<Min> </Min>

<Average> </Average>

</TimePerformance>

<Object name="" class="" type="" access_mode="" cardinality="">

<InputAction Description="null" From="null"/>

<OutputAction Description="null" To="null"/>

</Object>

<Object name="" class="" type="" access_mode="" cardinality="">

<InputAction Description="null" From="null"/>

<OutputAction Description="null" To="null"/>

</Object>

<Object name="" class="" type="" access_mode="" cardinality="">

<InputAction Description="null" From="null"/>

<OutputAction Description="null" To="null"/>

</Object>

<Object name="" class="" type="" access_mode="" cardinality="">

<InputAction Description="null" From="null"/>

<OutputAction Description="null" To="null"/>

</Object>

<Object name="" class="" type="" access_mode="" cardinality="">

<InputAction Description="null" From="null"/>

<OutputAction Description="null" To="null"/>

</Object>

<SubTask>

<Task Identifier="Specify Location" Category="Application Task"

Iterative="false" Optional="false" PartOfCooperation="false"

Frequency=" ">

<Name> name </Name>

<Type> </Type>

...

The Task objects are nested in the same way as the nodes of the XML document.
The tree structure is maintained and the root Task contains all the other tasks
of the task model. We can now traverse this tree of Task objects and create a
task sequence out of it.

6.2.3 Task Sequence Generator

This class will create a task sequence out of the Task objects tree. How this
is done is described in section 5.4 on page 61. This task sequence is stored
in a simple List. We add the different kinds of tasks and temporal operators
to this list. This List contains Visitables; a Visitable can be either a CttTask
or a TemporalOperator. A Visitable corresponds to the TaskModelObject we
used in the algorithm in section 5.4 on page 62. These Visitables will then be
”visited” by the Process Task Sequence visitor to generate the nodes and links
of the navigational model.

6.2. Design 81

Figure 6.1: Implementation: The visitables

6.2.4 Task Sequence Processor

This visitor will create nodes and links and stores these in a List as well. This
List stores Drawables, which can either be a Link or a Node. This Drawable
stores all the information needed to draw a Link or a Node on the screen. What
information was stored and how the task sequence gets traversed by the algo-
rithm is discussed in section 5.5 on page 66. A Drawable is nothing more than
a placeholder that stores information for a shape on the drawing page. The
actual drawing of the shape is handled in the next class, Shape Placer.

Figure 6.2: Implementation: The drawables

6.2.5 Shape Placer

When we created a list of Nodes and Links based on rules of our algorithm in
chapter 5, we can start drawing these Nodes and Links. Starting with the nodes
first, we draw each drawable on our drawing page of the open document of Visio.
Once all the nodes are on the drawing page, we create the links between them,
removing any double links that may have been generated by our algorithm.

The resulting navigational model is shown on the drawing page of our WSDM
template. The event was handled successfully and the Event Handler can now
receive a new event to process. The conversion of a task model that contains 10
to 20 tasks takes about 1 to 2 seconds in real time.

6.3. WSDM Visio Add-In Specifications 82

6.3 WSDM Visio Add-In Specifications

We now describe on what platform the Add-In can be installed, how the installa-
tion is performed and how we can use the Add-In to create a navigational model
from a task model. We clarify this with an example and some screenshots.

6.3.1 Platform

The program is a self-installing executable (Windows Installer MSI file1). The
program was developed in Visual Studio 2005 Professional2 on the Windows XP
Professional operating system. The program is a .COM Add-in for Microsoft
Office Visio 2003. To run the program, the following software is required:

• Microsoft Windows 2000/XP or later

• Microsoft Office Visio 2003 or later

• Microsoft .NET Framework 2.0 or later

• CTTE version 2.3 or version 1.5.9b

6.3.2 Installation

The installation is simple and straightforward.

1. First of all, make sure you meet the requirements.

2. Install the Visio add-in using the MSI installer (the WSDMVisioAddin.msi
file). When you do not have the latest update of .NET Framework 2.0,
the installer might ask to install it first, linking you to the corresponding
website. Download and install the update and then install the add-in.

6.3.3 Guide

Before we can start with the add-in, we need to create the task models in a
separate tool. Once we have made these task models and saved them in the
correct format, we can generate the corresponding navigational models from
them in the Visio environment. After generating the models, we can modify the
models, add object chunks, change link details...

6.3.3.1 Creating the task models

To create task models, we use CTTE3 [15], which is a program to develop Con-
curTaskTrees through a graphical user interface. It is fairly simple to create
CTTs using this program.

1see http://support.microsoft.com/kb/893803 for more information
2see http://msdn2.microsoft.com/en-us/vstudio/aa718668.aspx for more information
3the ConcurTaskTrees Environment by Paterno et. al., you can download the needed

software at http://giove.cnuce.cnr.it/ctte.html

6.3. WSDM Visio Add-In Specifications 83

Figure 6.3: The ConcurTaskTree Environment 2.3.

The add-in created, supports two versions of CTTE, version 2.3 and version
1.5.9b. The main reason we did this is because the two versions are very dif-
ferent from each other and we leave it up to the user to decide which version
he prefers. Currently, version 2.3 is the latest version of CTTE. It provides
the best support for placing, arranging and justifying your task model trees.
It also supports automatic enforcing of the CTT rules, which isn’t something
we want in our case because WSDM uses slightly different rules. When you
make the parent of two tasks an interaction task, then the two subtasks will
automatically change into interaction tasks as well. Recall from the chapter on
WSDM that we do not want to enforce this rule, but when using version 2.3 we
have no choice but to do so. In version 1.5.9b this rule isn’t strictly enforced, so
you can make CTTs that correspond to the CTTs we would make in WSDM.
On the other hand, this earlier version doesn’t have all of the fancy features of
arranging and justifying task model trees as in version 2.3.

When you have finished making your task model, you need to export it to an
XML file, which contains all the details of your task model tree. You can export
any task model to an XML file by clicking File - Save CTT as XML. Save the
XML file, as you will need it to generate the navigational model. Let’s take the
CTT in figure 6.4 as an example4 throughout this chapter.

4this example was taken from the paper on WSDM by De Troyer et. al. [9]

6.3. WSDM Visio Add-In Specifications 84

Figure 6.4: CTT: Showtimes and Buy Tickets

In both versions, there is a bug in the CTTE that prevents you from using the
”&” character in the generated XML. Task models with this symbol in one or
more of their subtasks will generate a faulty XML file. Remember not to use
this symbol when you want to generate navigational models from the XML file
using the add-in.

6.3.3.2 Generating the navigational models

After installing the WSDM Visio Add-in, you can use it by starting Visio 2003.
When in Visio you should be able to select the Web Semantics Design template
from the category WSDM in the Choose Drawing Type... menu. The WSDM
category blends in with the other categories as shown in figure 6.5.

6.3. WSDM Visio Add-In Specifications 85

Figure 6.5: Visio’s startup screen.

Selecting the template will give you an empty document on which you can add
shapes. You can choose between stencils to either create navigational models or
object chunk models. These stencils were made by Nicolai Roovers [19] for the
WSDM environment. When you want to import a task model and generate a
navigational model, you right-click the empty document and select Import Task
Model... from the dropdown menu as illustrated in figure 6.6.

6.3. WSDM Visio Add-In Specifications 86

Figure 6.6: Importing a task model.

Selecting this option will give you an open file dialog that asks for an XML file.
Select the XML file that represents your task model created in CTTE and the
add-in will start to analyze the XML, traverse the task model tree, generate the
corresponding navigation structure and place the model on screen in a matter
of seconds. After rearranging the nodes and links on the screen manually, we
get the navigational model as shown in figure 6.7.

6.3. WSDM Visio Add-In Specifications 87

Figure 6.7: A generated navigational model.

In the model we see that every elementary interaction task of the task model was
transformed into a node and every elementary abstraction task was transformed
into an external node. The proper links are generated for the enabling temporal
operators and links for the iteration and optional tasks are added as well. Now
it’s up to the user to add object chunks to this, change links to conditional links
where needed, and add parameters to the links based on the parameters given
in the object chunks.

Chapter 7

Conclusions

7.1 Introduction

To conclude this dissertation, we give a brief summary of the main topics of the
background work, the related work and the research that was done. We then
give an overview of the achievements and discuss possible future work that is
closely related to the subject of this thesis.

The main goal of this thesis was to create a transformation algorithm that
can produce navigational models out of task models in the context of WSDM.
WSDM, an audience-driven web design method, makes use of these types of
models to derive the navigational structure of a web system. Automation is an
effective way of making a web design method more attractive to the designer.
The implementation of the transformation algorithm is a first step into automat-
ing parts of the design methodology of WSDM.

In section 7.2 we give a summary of the chapters of this dissertation. In section
7.3 we list the achievements. Section 7.4 discusses possible future work in the
context of the subject of this thesis.

7.2 Summary

For the background and related work of this dissertation, we discussed various
web design methods. In chapter 2, we introduced WSDM, the Web Semantics
Design Method, which was the main context of this thesis. We listed all the
steps of the design methodology and examined the task models and navigational
models of WSDM in greater detail. In chapter 3, we discussed the Web design
methods WebML, OOHDM/SHDM and Hera respectively. These model-driven
design methods all show resemblances to WSDM, we gave a brief introduction
to each of these.

For the research part of this dissertation, we introduced the notion of task model
patterns in chapter 4. We discussed how patterns for task models could be
specified and gave some examples. In chapter 5 we described the transformation
algorithm we created for the generation of navigational models from task models.

88

7.3. Achievements 89

We listed every step of this algorithm and clarified them with examples. In
chapter 6, we described an implementation of this transformation algorithm
and how this implementation allowed us to perform the transformation in Visio
with the WSDM Visio Add-In. Finally, in this chapter we described the results
of our work, the achievements and the future work.

7.3 Achievements

In this section, we sum up the work achieved during the course of this disserta-
tion:

• Task model patterns: We defined the notion of task model patterns,
which are a form of design patterns for task models. Task models are
a part of WSDM and are created using the CTT task model technique.
These task models describe the tasks that allow satisfying the require-
ments of the target users of a web system. We proposed a method to
write down patterns in the task models and created four patterns using
this method: confirmation pattern, the validation pattern (login/lougout),
container pattern and post message pattern.

• Transformation algorithm: We defined an algorithm that enables us
to create task navigational models from task models. This algorithm was
explained step by step and allowed us to create an extension to the exist-
ing WSDM Visio Add-In of Roovers [19] to support this transformation
algorithm.

• Extension to WSDM Visio Add-In: We took the existing WSDM
Visio Add-In and extended it so it would allow the transformation of task
models into navigational models. Task models created with the CTT mod-
eling technique can now be transformed automatically into navigational
models with the help of the Visio Add-In.

7.4 Future work

At present, there is no real WSDM software suite with which a user can create
all the models of the WSDM methodology. With the work from Roovers and
the work done during the thesis, we are now able to create navigational models,
object chunk models and generate navigational models from task models created
in CTTE, a graphical environment to create task models. There are a few things
we could do in the future:

• Expanding the WSDM Visio Add-in: We could create a WSDM
Software Suite for Visio that includes all the models of WSDM, allows
(semi-)automatic transformations between models and full generation of
OWL code from these models. Also, the user interface (of the .COM Add-
In) could be expanded to allow more kinds of input from the user. For
now, the user interface is basic and allows only the most common actions.

• More tests and evaluation: The algorithm was tested in basic circum-
stances. To be certain that the algorithm yields correct results in all cases,

7.4. Future work 90

more testing and evaluation is needed. Task models come in a great va-
riety, there might be special cases that were overlooked during the design
of the algorithm.

• Addition of new task model patterns: Now that we formulated a
way of writing down task model patterns, we could add new task patterns
to the list. The more task model patterns we create, the more likely a
designer will be able to use one of them. This can only have a positive
effect on the development of task models in WSDM.

Bibliography

[1] A. Bongio, S. Ceri, P. Fraternali, and A. Maurino. Modeling Data Entry
and Operations in WebML. In Lecture Notes in Computer Science, volume
1997, pages 201–208, 2001.

[2] S. Casteleyn and O. De Troyer. Structuring Web Sites using Audience Class
Hierarchies. In Conceptual Modeling for New Information Systems Tech-
nologies, ER 2001 Workshops, HUMACS, DASWIS, ECOMO and DAMA,
Lecture Notes in Computer Science, volume 2465. Spinger-Verlag, 2001.

[3] S. Ceri, P. Fraternali, and A. Bongio. Web Modeling Language (WebML):
a modeling language for designing Web sites. In Computer Networks (Am-
sterdam, Netherlands: 1999), volume 33, pages 137–157, 2000.

[4] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and M. Matera.
Designing Data-Intensive Web Applications. Elsevier Science, 2003. ISBN:
1-55860-843-5.

[5] S. de Moura and D. Schwabe. Interface Development for Hypermedia Ap-
plications in the Semantic Web. In LA-WEBMEDIA ’04: Proceedings of
the WebMedia & LA-Web 2004 Joint Conference 10th Brazilian Sympo-
sium on Multimedia and the Web 2nd Latin American Web Congress, pages
106–113. IEEE Computer Society, 2004. ISBN: 0-7695-2237-8.

[6] O. De Troyer. Audience-driven web design. In Information modelling in
the new millennium. IDEA GroupPublishing, 2001. ISBN: 1-898289-77-2.

[7] O. De Troyer and S. Casteleyn. The Conference Review System with
WSDM. In First International Workshop on Web-Oriented Software Tech-
nology, IWWOST01, 2001.

[8] O. De Troyer and S. Casteleyn. Modeling Complex Processes for Web Ap-
plications using WSDM. In Proceedings of the Third International Work-
shop on Web-Oriented Software Technologies, IWWOST2003, 2003.

[9] O. De Troyer, S. Casteleyn, and P. Plessers. WSDM: Web Semantics Design
Method. In ..., 2007.

[10] O. De Troyer and C. Leune. WSDM: A User-Centered Design Method
for Web Sites. In Computer Networks and ISDN Systems, Proceedings of
the 7th International World Wide Web Conference, pages 85–94. Elsevier
Science, 1998.

91

Bibliography 92

[11] S. Espana, J. Panach, I Pederiva, and O. Pastor. Towards a Holistic Con-
ceptual Modelling-Based Software Development Process. In Conceptual
Modeling - ER 2006, pages 437–450, Heidelberg, 2006. Springer-Verlag.

[12] F. Frasincar, P. Barna, G. Houben, and Fiala Z. Adaptation and Reuse
in Designing Web Information Systems. In International Conference on
Information Technology: Coding and Computing (ITCC’04), pages 387–
391. IEEE Computer Society, 2004.

[13] F. Frasincar and G. Houben. Hypermedia Presentation Adaptation on the
Semantic Web. In Adaptive Hypermedia and Adaptive Web-Based Systems,
Second International Conference, AH 2002, Lecture Notes in Computer
Science, volume 2437, pages 133–142. Spinger-Verlag, 2002. ISBN: 3-540-
43737-1.

[14] F. Frasincar, G. Houben, and Vdovjak R. Specification Framework for
Engineering Adaptive Web Applications. In The Eleventh International
World Wide Web Conference, Web Engineering Track (CDROM Proceed-
ings), 2002.

[15] G. Mori, F. Paterno, and C. Santoro. CTTE: Support for Developing and
Analyzing Task Models for Interactive System Design. In IEEE Transac-
tions on Software Engineering, volume 28, 2002.

[16] F. Paterno. Model-based design and evaluation of interactive applications.
Springer-Verlag, 2000. ISBN: 1-85233-155-0.

[17] F. Paterno, C. Mancini, and Meniconi S. ConcurTaskTrees: A Diagram-
matic Notation for Specifying Task Models. In S. Howard, J. Hammond,
and G. Lindgaard, editors, Human-Computer Interaction, pages 362–369.
Chapman and Hall, 1997.

[18] P. Plessers, S. Casteleyn, Y. Yesilada, O. De Troyer, R. Stevens, S. Harper,
and C. Goble. Accessibility: A Web Engineering Approach. In Proceedings
of the 14th International World Wide Web Conference, WWW2005, pages
353–362. ACM Press, 2005. ISBN: 1-59593-046-9.

[19] N. Roovers. WSDM: OWL Generatie voor Grafisch Model. WISE internal
apprenticeship report, Vrije Universiteit Brussel, 2006.

[20] D. Schwabe and G. Rossi. The Object-Oriented Hypermedia Design Model.
Commun. ACM, 38(8):45–46, 1995.

[21] D. Schwabe and G. Rossi. An Object Oriented Approach to Web-Based
Applications Design. Theory and Practice of Object Systems, 4(4):207–225,
1998.

[22] D. Schwabe, G. Szundy, S. de Moura, and F. Lima. Design and Implemen-
tation of Semantic Web Applications. In WWW 2004 Workshop on Ap-
plication Design, Development and Implementation Issues in the Semantic
Web, 2004.

[23] M. Van Welie. Integrated Representations for Task Modeling. In 10th Euro-
pean Conference on Cognitive Ergonomics (ECCE’10), Linkoping, Sweden,
2000.

Bibliography 93

[24] M. Van Welie, G. Van der Veer, and A. Eliens. Patterns as Tools for User
Interface Design. In Workshop on Tools for Working With Guidelines,
Biarritz, France, 2000.

[25] R. Vdovjak, F. Frasincar, G. Houben, and P. Barna. Engineering Semantic
Web Information Systems in Hera. Journal of Web Engineering, 2(12):3–
26, 2003.

