
1

2

Vrije Universiteit Brussel
Faculteit van de Wetenschappen

Departement Informatica
Academiejaar 1999-2000

Valideren van User Input in
Web Applicaties

Plasqui Jan

Promotor: Prof. Dr. O. De Troyer

Eindverhandeling ingediend met doel
het behalen van de graad van

Licentiaat in de Toegepaste Informatica

3

Samenvatting

Het World Wide Web kent de laatste jaren een sterke groei.
Niet alleen het aantal websites is sterk toegenomen, er worden ook steeds nieuwe
internet-technologieën ontwikkeld.

Moderne websites laten toe dat bezoekers het uitzicht en/of de inhoud van de
website kunnen personaliseren door gebruikersprofielen op te slaan.
De overgrote meerderheid van de bedrijven willen nu ook gebruik maken van e-
commerce. Banken geven hun klanten de mogelijkheid om aan internet bankieren
te doen: via het web kan het rekeningssaldo opgevraagd worden of kunnen
overschrijvingen gemaakt worden. Winkels bieden de mogelijkheid om via het
web producten te bestellen en te betalen, sommige winkels verkopen uitsluitend
via het web en met veel succes.
Andere bedrijven trachten dan weer mensen naar hun website te lokken door
allerlei gratis diensten zoals e-mail of het zenden van SMS berichten aan te
bieden.

In de bovenstaande voorbeelden moeten er gegevens die door de gebruiker zijn
ingevoerd d.m.v. de webbrowser naar een server gestuurd worden. De server
stuurt daarna weer gegevens terug naar de browser. Gebruikers kunnen echter
foute en/of onvolledige informatie ingevoerd hebben. Daarom moeten we ons de
volgende vragen stellen:
1. hoe kunnen we nagaan of de gebruiker van een web applicatie correcte data

ingevoerd heeft
2. wanneer gaan we dit nagaan

Gegevens invoer van een gebruiker van de web applicatie kan ofwel nagekeken
worden op het moment van invoeren (in de browser) of zodra het naar de server
gestuurd is. In het laatste geval is er echter een extra verbinding naar de server
nodig. Het valideren van user input van web applicaties langs de server kant kan
vrij complex worden.

In deze thesis zal uitgelegd worden hoe web applicaties nu input valideren en
zullen andere oplossingen bestudeerd worden die de overlast van data verkeer en
processing op de server verminderen. Er zal een beschrijving van mogelijke
beperkingen (constraints) op user input gegeven worden en voor elke constraint
zal besproken worden hoe deze geverifiëerd kan worden.

4

5

Vrije Universiteit Brussel
Faculty of Science

Department of Computer Science
Academic year 1999-2000

Validating User Input in
Web Applications

Plasqui Jan

Promoter: Prof. Dr. O. De Troyer

Dissertation submitted in view
of obtaining the degree of

Licentiate in Applied Computer Science

6

Abstract

The World Wide Web has known an enormous growth in the last few years.
Not only the number of websites has increased but also new web technologies
were produced.

Websites now allow users to make a personalized view of the information they
carry by keeping user profiles.
The majority of companies nowadays want to use e-commerce. Banks offer their
clients the possibility for web banking; shops let their customers order and pay via
the web, some shops only sell online and with great success.
Other companies try to attract people to their web site by offering some free
service like e-mail or the possibility to send SMS messages.

In all of the above examples users need to enter information that needs to flow
from the user’s browser to a server and back. But users may enter incorrect or
incomplete information. The questions that arise from these new types of web
applications are:
1. how can we check if a user has entered correct information and
2. when are we going to check this.

User input can be checked upon entering (in the browser) or when it arrives on the
server but this requires an extra connection to the server. For larger applications,
checking information residing at the server may complicate the validation of user
input.

In this thesis I explain how user input is currently verified and investigate other
solutions that will reduce the load of traffic and processing on the web servers.
Also a detailed description of different kinds of constraints on user input will be
given. For each kind of constraint it will be discussed how it can be checked.

7

Acknowledgements

I would like to express my gratitude to my promoter, Prof. Dr. Olga De Troyer,
for her guidance and encouragement during the accomplishment of this thesis.

I would also like to thank my parents for giving me the opportunity to study.

Furthermore I want to thank my sister and my friends for their help and support
during my studies.

8

Table of contents

1. Introduction 1
1.1 History and evolution of the World Wide Web 1
1.2 Web applications 3
1.3 Description of the problem 5
1.4 Current ways to validate user input in web applications 6

2. Types of errors in user input 7
2.1 Incorrect input and database consistency 7

2.1.1 Database terminology 8
2.1.2 Data integrity 8
2.1.3 Referential constraints 9
2.1.4 Domain constraints 10
2.1.5 Enterprise constraints 11
2.1.6 Applying database constraints on user input 11

2.2 Errors concerning state of an object 12
3. Technology available to validate user input in web applications 13

3.1 Keeping state in a stateless connection 13
3.1.1 Cookies 13
3.1.2 Hidden data in forms 14
3.1.3 Data in URLs 15
3.1.4 HTTP sessions 15

3.2 Interfaces used in web applications 16
3.3 Server-side scripting versus client-side scripting 19

3.3.1 Server-side scripting 20
3.3.2 Client-side scripting 21

3.4 Overview of server-side scripting/programming languages 22
3.4.1 PHP 22
3.4.2 ColdFusion 23
3.4.3 ASP 24
3.4.4 Java servlets 25
3.4.5 JavaScript 26
3.4.6 SSI 27
3.4.7 Perl 29

3.5 Overview of client-side scripting/programming languages 30
3.5.1 JavaScript 30
3.5.2 JScript 32
3.5.3 VBScript 32
3.5.4 Java 32
3.5.5 Netscape plug-ins 33

3.6 XML and related standards 33
3.6.1 From SGML to XML 33
3.6.2 XML 35
3.6.3 XML Schema 35

3.7 Evolution of HTML 37
3.8 Portable internet devices 43
3.9 What technology to use 44
3.10 New research directions 45
 3.10.1 Advanced XML-based forms 45

9

 3.10.2 Verifying page authenticity 48
4. Methods for validating user input 50

4.1 Domain constraints 50
4.1.1 Numerical values 50

4.1.1.1 Syntax check 50
4.1.1.2 Range check 51

4.1.2 String values 51
4.1.2.1 String length 51
4.1.2.2 String syntax 52

4.1.3 Values from a set 52
4.2 Referential constraints 52

4.2.1 Referential constraints enforced by the DBMS 52
4.2.2 Manually verify referential constraints 53
4.2.3 Avoid invalid foreign keys entered by users 53

4.3 Enterprise constraints 54
4.3.1 One cell constraints 54
4.3.2 Multi cell constraints 54

5. Examples 55
5.1 Domain constraints 55

5.1.1 Numerical values 55
5.1.1.1 Syntax check 55
5.1.1.2 Range check 59

5.1.2 String values 59
5.1.2.1 String length 59
5.1.2.2 String syntax 60

5.1.3 Values from a set 60
5.2 Referential constraints 60

5.2.1 Referential constraints enforced by the DBMS 60
5.2.2 Manually verify referential constraints 62
5.2.3 Avoid invalid foreign keys entered by users 62

5.3 Enterprise constraints 66
5.3.1 One cell constraints 66
5.3.2 Multi cell constraints 66

6. Conclusions and further work 69
6.1 Further work 69

6.1.1 Synchronization client/server rules 69
6.1.2 Web document authenticity 69

6.2 Conclusions 70

References 72

10

List of figures

1 HTML form interface 19

2 Information flow with CGIs 20

3 Java servlets in middle tiers 26

4 Server side JavaScript in the Netscape server environment 27

5 Processing SSI configured pages 28

6 The Netscape Navigator Object Hierarchy 30

7 XForm design layers 47

8 JavaScript error message 55

9 Selecting values from a set 60

10 MS Access tables and relations with referential constraints 62

11 Business rules 69

11

1. Introduction

1.1 History and evolution of the World Wide Web

The roots of the Internet go back to the 1960’s and the height of the cold war. The
U.S. military, in preparation for a possible nuclear war, sought a means to ensure
communications in the event of an enemy missile attack. The communications
network needed to withstand large-scale destruction and at the same time deliver
uninterrupted service.

The main problem with the existing system was that a direct hit on a central point
of control would disable the entire network. The RAND Corporation came up
with the idea of building a network without a central point of control. In this way,
the system would not be vulnerable to a direct hit on a single location.

To accommodate this requirement, a network was devised that allowed data to
flow around destroyed components. A special communication standard, called
TCP/IP, (Transmission Control Protocol/Internet Protocol), was designed to direct
the flow of data between computers on the network and around possibly damaged
sections of the network. Thus, TCP/IP increased the survivability and reliability of
the network.

In 1969, a group of Department of Defense researchers working for the Advanced
Research Projects Agency linked computers at UCLA, Stanford Research
Institute, the University of Utah, and the University of California at Santa Barbara
to create the network. This non-centralized networked was called ARPANET
(Advanced Research Projects Agency Network).

At first, the military researchers used ARPANET to discuss government projects,
sending electronic messages (email) across the network. However, these
researchers soon discovered that email was a very convenient way to discuss
topics far outside even the most liberal interpretations of research-related actives.
They created email programs that automatically sent the same message to
everyone on a list. Email lists, or list servers, enabled entire groups of like-minded
researchers to share their interests.

The original APRANET community grew from 4 institutions in 1969 to more than
50 universities and military agencies by 1972. The ability of APRANET users to
interact and share the latest information was driving ever-greater use of the
network. Non-military scientists were pressuring for access to the network too but
ARPANET’s acceptable use policy prohibited those outside the military
establishment from using it. So, in 1983, ARPANET split into two networks; one
to handle all scientific traffic and another, MILNET, to carry just military
information.

These large networks, along with many small local networks, were woven and
interconnected into a network of networks. Early on in the 1980’s, this collection
of networks was called the APRA Internet, but it eventually became known as just
the Internet.

12

In the 1986, the National Science Foundation established the NSFNET to link
supercomputers at high speed. NSFNET became the backbone of the Internet,
offering transmission speeds of a million-bits-per-second rate. The acceptable use
policy was further expanded to include almost everything except commercial
activity.

The origins of the World Wide Web came about in March 1989, when Tim
Berners-Lee of the European Particle Physics Laboratory (known as CERN, a
collective of European high-energy physics researchers) proposed a project to be
used as a means of sharing research colleagues in the organization. The project
was envisioned to include a system of networked hypertext documents to be
transmitted among members of the high-energy physics community. By the end of
1990, the first piece of Web software was developed with the ability to view, edit,
and send hypertext documents to colleagues via the Internet. The Web was born.

In 1991, the U.S. Congress passed the High Performance Computing Act to
establish the National Research and Education Network (NREN). The goals of
NREN were to experiment and establish high-speed, high-capacity research,
education networks, and to not only allow commercial activity on the Internet but
to find ways to encourage it

Although the commercial restrictions on the Net where effectively removed by the
1991 act, it remained primarily a tool for researchers and academics because of
the complexity in using it for communications. However, in June of 1993 Marc
Andreessen, and other researchers at the National Center for Supercomputing
Applications (NCSA), released a graphical Web Browser - Mosaic 1.0 for X
Windows. It was soon followed by a version that would run on Microsoft
Windows (the dominant desktop operating system).

In 1994, Andreessen left NCSA to form a new corporation with Jim Clark. The
company created a much easier-to-use and faster Web browser called Netscape
Navigator. The general public went wild over Navigator, making Netscape
Communications the fastest growing software company in history. Business,
sensing the opportunity, began a mad rush to establish a "presence" on the Web.

Before long, one couldn't listen to a radio, watch TV, read a magazine, or glance
at a newspaper without being inundated with information about the growth and
potential commercial opportunities of the World Wide Web. People and
companies were signing up by the millions, with Internet service providers, to
gain access to the Web. They wanted to participate in this new global
communication feast. The Web soon became the dominant service, with the
exception of email, on the Internet.

13

1.2 Web applications

Some believe a web application is anything that uses Java, others consider a web
application anything that uses a web server. The general consensus is somewhere
in between.

[C 99] defines a web application as a web system (web server, network, HTTP,
browser) in which user input (navigation and data input) affects the state of the
business.

I will follow this definition of web applications as programs that run on servers
and that interface with the users via web browsers through e.g. forms or java
applets. A web system is used as the front end of a web application.

The architecture of web applications is quite similar to the architecture of a
regular client/server system. The biggest advantage of web applications is the ease
of deployment. It is sufficient to set up a web server and installing the server side
applications needed. The client can then simply use the web application via his
web browser and doesn’t need extra software. Depending on how the web
application was built, the user might need a specific browser and/or installed plug-
ins to properly use the application.

The application domain of such applications is somewhat limited because of the
connectionless nature of the Internet.
IP or Internet Protocol is called connectionless because it resembles the Postal
Service more than it does the telephone system. When a node using IP wishes to
send a message to another such node, it simply sends the packet, properly
addressed, analogous to mailing a letter or sending a telegram. (IP packets are also
called datagrams) The telephone system, on the other hand, creates a connection
between two users that is maintained for the duration of the information exchange.
Unlike the Postal Service, however, the services of IP can be used to create a
connection-oriented operation mode, but this is the job of higher-level protocols
and applications (such as TCP, File Transfer Protocol (FTP), Telnet, and others).
In IP's connectionless design, every packet is treated completely independently
from all others.

HTTP (HyperText Transfer Protocol) is the client-server TCP/IP protocol used on
the Web for the exchange of HTML documents. It is designed for robustness and
fault tolerance instead of maximum communication throughput. All HTTP
transactions go by the same general method. Each client request and server
response has three parts: the request or response line, a header section, and the
entity body. To retrieve a HTML document, the client sends a document request
by specifying an HTTP command, e.g. the GET method. The client sends header
information: browser information and mime-types of acceptable files.
Multipurpose Internet Mail Extensions (MIME) is a specification for formatting
non-ASCII messages for transmission over the Internet. MIME types enable the
browser to display or output files that are not in HTML format. After sending the
header information, the client can send additional data to the server. This is used
for sending variables to CGI’s using the POST method. The server responds to the
client’s request by first sending a status line, followed by a header containing

14

information on the server and on the requested document. The transaction is
finished after sending the requested data or a generated error message if the
document was not available. Clients can also request a keep-alive connection to
the server to avoid repeated connections for fetching a single page containing
inline images etc.

The consequence of connectionless data transmission is that servers cannot
remember state. If a user sends information to the server in several steps (e.g. by
means of a number of forms which are sent one by one to the server), this means
that each time the server receives a form, it doesn’t know what the user has filled-
in in the previous forms. To overcome this lack of “memory” a number of
techniques are currently used.

When a registration form requires too much data to fit on a single HTML form, it
can be split into multiple forms. This requires multiple connections to the server
and the input from previous forms needs to be remembered.

The following techniques are available to keep state in stateless connections:

• Cookies can be used to store previously entered data and control information
in the users’ browser.

• Hidden data can be included in later forms presented to the user.

• Data can be pasted as arguments in URLs.

• HTTP Sessions is a service for web servers that allows keeping track of users.

Common Web applications are:

• Online stores that allow users to buy items through the Internet. Such an
application keeps track of what en how much items a user selects to buy and
handles some form of payment.

• Email service that allows users to edit a message, send it to another person and
let the user manage his mailbox. This is different from an online store because
the state, i.e. the mailbox is always kept on the server in the form of a
database. An online store will not store an order into the database each time
the user selects an extra item but it will wait until the whole order and
payment details are confirmed.

• File storage service that allows simple file management. Files can be
uploaded to the server, downloaded and shared with other users of the system.

15

• Discussion forums allow users to post messages and reply to others.

• Newsgroups where users can read the messages from a selected newsgroup,
have a hierarchical view of the threads and respond to any message.

• Sending E-Cards, a small application that lets a user customize the look of an
electronic postcard and have it delivered to a specified e-mail address.

• …

1.3 Description of the problem

In e.g. database applications, it is common practice to check the data for
correctness as soon as possible. In classical applications this is done often as soon
as the user enters a value in a input box and confirms his input by either clicking
on a validate button or when focussing on another input box. Validating user input
as fast as possible has several advantages: it enhances the usability of the
application by giving direct feedback as soon as the user performs an action. In
case of an illegal action, appropriate error messages concerning the faulty action
can be generated. Giving direct feedback minimizes the user’s memory load.
Human short-term memory has a limited capacity of about +/- 7 chunks of
information, which will fade away after 2 to 3 seconds. Giving clear feedback to
the user of what is already done, of the result of actions and on what he still has to
do reduces the use of short-term memory.

When working with web applications, the application (the user’s browser) will
always have to make at least one connection to the server i.e. to send the data.
However, if the user enters incorrect or incomplete data, the server will send the
form back to the user for correction. The user’s browser will then again send the
data to the server until all of the input is correct. All this means extra server
connections and an increased workload for the server. A suitable mechanism
should be provided to generate appropriate error messages in case of multiple
errors.

Since many web applications are also database applications, it is necessary to
maintain database integrity. Incorrect user input can invalidate the data present in
a database and this should be avoided by validating the entire user input before
inserting any data in the database.

16

1.4 Current ways to validate user input in web applications

As an example we take a small application to register people for some service via
the web. Such a service could e.g. be an Internet mail service.
To register himself, a new user has to enter a lot of personal data like his name,
address, occupation and general interests. All this information will be used later
on for sending the user commercial messages that are more likely to interest him.

The least efficient way to get the input from the user is by asking him to fill in 1
field and have him send it to the server to check if the input is acceptable, and
then present a page with the next field to continue or to retry the previous field in
case of an error.
This method uses a lot of server connections and is also not appealing to the user
from an interface point of view.

A better and commonly used way of getting user input is by grouping logically
related input fields into one form. Then the user can enter all required information
on one form and send all this information at once to the server, thus making fewer
server connections when submitting the data. When splitting up a form into
several smaller forms, the size of those new forms can introduce new problems. If
the form size is too small, e.g. only a few input elements on a form and thus
possibly followed by a fairly large number of these forms, the user will have to
make too many connections to the server which will be frustrating, especially if
that user is equipped with only a slow (telephone) modem connection. If, on the
other hand, the forms contain too many input elements and dependencies among
these input elements, the user can be asked to fill in all the fields again after
making only one mistake.

In both cases, the input validating process becomes a little more complex. When
the server notices the form contains invalid input it can either ask the user to re-
fill the form completely or it can accumulate all faulty fields and generate a new
form for those. In this last approach, the user can see what fields were wrong and
need to be corrected.

Both methods for re-entering faulty data are a form of delayed validation because
the entered data is not immediately checked for correctness, as it is mostly done in
classical computer applications.

17

2. Types of errors in user input

Generally, there are two ways a user can give input to a web application. One
would be performing an action on some state object by clicking a button to get the
desired effect. An example of such an action could be clicking on a ‘send mail’
button in an e-mail application.
Another way of user input consists of a user filling in information fields, checking
options and/or selecting values from a given list. An example of such user input
could be a user entering some personal details and his credit card information to
purchase some items via the web. Both kinds of user input are susceptible to
errors.

Errors can occur in many forms:

• Incomplete input when a user forgets to fill in a required piece of information
needed by the web application

• Inconsistent input when a user enters contradicting information, this can
happen when there are dependencies between some of the required input fields

• Incorrect input when a user enters logically wrong data in a form, an example
could be a user who mixes up the field to enter his first name with the field for
his last name. Incorrect input will be further explained by comparing it to
database consistency errors.

• False input when a user intentionally enters false information; the information
he gives is complete, consistent and correct but is not true. This is common
practice when users sign up for ‘free1’ services to stay anonymous or to avoid
spam (unwanted advertisement).

• Object/State errors when a user requests an action, possibly on an object,
which is invalid under the current state of the application. An example could
be a user trying to send an e-mail without specifying a recipient.

2.1 Incorrect input and database consistency

Many web applications are also database applications. Therefore I will give a
short introduction to databases and explain the problem of storing invalid
information in a database and mechanisms available to validate data before
insertion. Finally, the similarities between database consistency constraints and
incorrect user input in web applications will be given.
2.1.1 Database terminology

1 Many companies provide free services like e-mail or webhosting to non-commercial users. The
user doesn’t have to pay for these services but instead he either receives some form of personalised
advertisement or automatically promotes the company to others.

18

A database can be seen as a shared collection of logically related data (and a
description of these data). This means that not only the entities and the attributes
but also the logical relationships between entities are to be presented in the
database ([V 99]).

In a relational database, the data is organized in tables (also called relations),
columns represent attributes of a certain type and rows (or tuples) represent an
entity for that relation.
A base relation is a named relation, corresponding to an entity in the conceptual
schema, whose tuples are physically stored in the database.

A null represents a value for an attribute that is currently unknown or is not
applicable for the tuple. Nulls are a way to deal with incomplete or exceptional
data. However, a null is not the same as a zero numeric value or a text string filled
with spaces because those are values and a null represents the absence of a value.

An attribute or a set of attributes that uniquely identifies a tuple within a relation
is called a superkey. A superkey such that no proper subset is a superkey in the
relation is a candidate key. The candidate key that is selected to identify tuples
uniquely within the relation becomes the primary key, the other candidate keys are
called alternate keys.
Duplicate values are not allowed for the primary key.

A foreign key is an attribute or set of attributes within a relation that matches the
candidate key of some (possibly the same) relation.

2.1.2 Data integrity

Data integrity is closely associated with data security or database security, and to
properly safeguard a system both sets of controls are essential ([CBS 96]). Data
integrity or validity and consistency of stored data means that for example a table
that is designed to store employee names actually contains strings referring to
existing names. The database can also make sure that only the names of
employees that currently work with the company are stored in that table. Data
security is the protection of the database from unauthorized users. This is a very
important aspect in databases underneath a web application because the database
might contain confidential and critical business information or information that
falls under the users right of privacy and is also not to be seen by others.
If security controls exist without any integrity controls, the reliability and validity
of the data rely entirely on the authorized users’ correct use of the database. If, on
the other hand those integrity controls exist, data is guaranteed to be consistent.
There are several aspects in considering how to ensure a database maintains data
integrity.
Although data integrity may be preserved, it does not absolutely guarantee that the
data is correct. It is very difficult to check data correctness automatically, unless

19

there is a simultaneous checking mechanism such as a dual data entry system2.
However such a dual data entry system would not be feasible in a web application
as a user will have to enter personal data. Having a user to enter the same data
twice would not only annoy him and keep him from wanting to use the application
but it can’t prevent a user to (sometimes intentionally) enter incorrect data twice.
To maintain data integrity, it is necessary to have appropriate constraints on the
manipulation of the data, particularly on insert, update and delete. In many
instances, these constraints may be stored in the DBMS (DataBase Management
System). Ideally, the DBMS would facilitate the handling of all required controls,
but to what extent this is possible depends upon the DBMS being used.

There are 3 types of constraints: referential constraints, domain constraints and
enterprise constraints.

2.1.3 Referential constraints

A first requirement is entity integrity. This constraint does not allow null values in
attributes of a primary key in a base relation. If one would allow nulls to appear in
a primary key the result would be loss of information and/or rendering the
remaining information meaningless.

If a foreign key exists in a relation, either the foreign key value must match a
candidate key value of some tuple in its home relation, or the foreign key value
must be wholly null.
This constraint states that if a value exists as a foreign key in a relation, then it
must match the value of an existing primary key in another relation, or else be
wholly null.

A number of problems can arise when enforcing referential integrity.

Consider the next tables as a small example.

PersonLocation City

PersonID Street AreaCode AreaCode City
55486 Walenhoekstraat 1910 1024 Brussels

12345 Nieuwstraat 1024 1910 Kampenhout

56789 Parkstraat 1024 1830 Machelen

A tuple in the table PersonLocation has a foreign key AreaCode that refers to a
tuple in the table City.

If we for example delete the tuple [1024, Brussels] from the table City, a problem
arises in the last two tuples in the table PersonLocation where the AreaCodes no
longer reference an existing value in City.
The same would happen if we would decide to use another area code for Brussels.

2 Administrative database applications often require that the same form is entered twice by
different users of the system. This allows error detection by comparing both inputs.

20

Suppose Kampenhout would get another area code and Brussels get the code 1910
(which is not very likely to happen in reality). This will make every reference in
the table PersonLocation that originally referred to Kampenhout now point to
Brussels.

Database systems allow the designer to specify how the DBMS should ensure
referential integrity when a primary key is updated or an entire tuple is deleted.

 [CBS 96]

Referential constraints can also be implemented in the application using the
database if the DBMS used doesn’t support this.

2.1.4 Domain constraints

A domain constraint is the set of allowable values for one or more attributes.

A first level of domain constraints is the native data types supported by the
DBMS. When defining relations, a data type has to be provided for every

ÿ The primary key value does not occur anywhere as a foreign key:

¸ Allow the operation to take place

ÿ The primary key value does occur elsewhere as a foreign key:

¸ Do not allow the operation to take place.

¸ Allow the operation to take place, and also set the foreign key
occurrences either to null or to a default value if one has been
specified.

¸ Allow the operation to take place, and also

• in the case of update propagate the changed value to the foreign
key occurrences, and where the foreign key forms part of the
primary key of this relation, propagate the changes where this
primary key is also a foreign key another relation.

• in the case of delete propagate the deletion, that is, delete the
tuples that have a foreign key value matching the primary key,
and where the primary key of these deleted tuples is also a
foreign key in another relation.

¸ Enter into dialog with the user.

21

attribute. The domain of the native data type is determined by the characteristics
of the system.
A character data type will be able to assume all the available characters present in
an implementation-defined character set, such as ASCII. The legitimate
operations that can be carried out on these values may include comparison but
exclude operations such as addition and subtraction, which usually belong to
numeric data types.

Another kind of domain constraints is a set of allowable values for an attribute.
Many database systems allow enumerating all valid attribute values when creating
the relation.
If a database permits the creation of named domains, it would be possible to
define for example a domain Gender, which allows either M or F. This domain
name could then be used to specify the type of an attribute in a relation.

Depending on the capabilities of the DBMS used, domain constraints may need to
be implemented in the application itself.

2.1.5 Enterprise constraints

Enterprise constraints are additional rules specified by the users or database
administrator of a database. Other names for enterprise constraints are application
constraints, business rules and assertions.

Enterprise constraints can be implemented with the SQL Assert statement,
although not all database systems support this yet. An assertion is a named
constraint that may relate to the content of individual rows of a table, to the entire
contents of a table, or to a state required to exist among a number of tables.

Cardinal constraints, constraints that indicate how many tuples a relation can hold,
can also be seen as a form of enterprise constraints.

2.1.6 Applying database constraints on user input

• Incomplete information can conflict with referential constraints because
attributes from a (primary) key may be missing. If we would allow the DBMS
to store a key with missing attributes (nulls), the tuple can become impossible
to be referred to. Tuples can lose the property of being uniquely identified by
their primary key if this key contains nulls.

• Inconsistent information can conflict with referential constraints when a tuple
is inserted that contains an illegal or missing foreign key value.

• Incorrect input can conflict with domain constraints when the entered data is
considered to be of a different or incompatible data type of the attribute’s
domain as specified in the table definition. When user input is of the correct

22

data type but falls beyond the boundaries of allowed values for the attribute,
domain constraints will be violated as well. For example, entering some
alphabetic characters for a numeric data field or entering an unrealistic
numerical value for a person’s age can, depending on the DBMS used, result
in an error.
Incorrect input can also conflict with integrity constraints for the same reasons
as inconsistent input.
Enterprise constraints can also be broken; entering some value of the correct
domain does not mean it is valid under the enterprise constraints present for
that attribute. For example, not every sequence of digits is a valid bank
account number.

2.2 Errors concerning state of an object

Let’s take as example a web application that allows users to store electronic
documents on a server and associate a short summary and keywords with each
document. All this information is stored in a database.
Users can then via a web interface perform searches on keywords to retrieve the
matching documents. Authorized users can edit a document’s associated
information or delete a document and it’s data.

Various problems can then occur:

• A user opens an edit window on a document; while the first user is editing the
document’s information, another user deletes this document. When the first
user then wants to update the document, his web application is in an invalid
state without him knowing, resulting in an error.

• Web applications that interface to the user via web pages generated by the
server are run in the user’s browser. Most browsers keep the most recently
viewed pages in their cache for faster retrieval later on. In such web
applications, the user can go back in time by clicking the back button and thus
viewing the state of the application before the most recent action. Then again,
the user can perform some actions that might not be compatible with the real
state of the object but which are not shown because of the cached information.

23

3. Technology available to validate user input in web applications

3.1 Keeping state in a stateless connection

As mentioned earlier in 1.2, the Internet Protocol is stateless, this means that
when a user makes a connection to e.g. a server, the server does not remember
information about previous connections from that user.

This stateless property is a problem for a lot of web applications. The most typical
example is a online store that lets users browse between the available items and
lets them add items to some virtual shopping basket and in the end produces a list
of all selected items with a price total, followed by some choice of payment. The
issue here is how to have the server remember what items a particular user
selected and to accumulate all of them until the user is satisfied and goes to the
payment section. As shopping items are most likely to be spread over different
pages, multiple server connections are needed in the selecting phase.

These state problems are not related to validating user input in web applications, it
is just a problem that needs to be solved for many web applications.

Several techniques will be discussed here: cookies, hidden data in forms, data in
URLs and HTTP sessions. All these techniques are used to keep state on the
server; it is always possible to keep state at the client using a scripting language as
e.g. JavaScript.

3.1.1 Cookies

Cookies are a general mechanism that server side connections (e.g. CGI scripts)
can use to store and retrieve information from the client [Netscape]. Cookies are
kept on the user’s PC.
Besides the value(s) to be stored, cookies can contain extra information like a
description of the range of URLs for which the value is valid. All future HTTP
requests made by the client, which fall in that range, will result in a send of the
current value of the cookie from the client to the server. A time constraint stating
how long the cookie data will remain valid can also be included. Cookies can be
configured to be sent to the server only if the connection between client and server
is secure. Currently this means that secure cookies will only be sent to HTTPS
(HTTP over SSL) servers.

SSL (Secure Sockets Layer) is a program layer created by Netscape for managing
the security of message transmissions in a network. Netscape's idea is that the
programming for keeping messages confidential needs to be contained in a
program layer between the application (e.g. Web browser) and the Internet's
TCP/IP (Transmission Control Protocol/Internet Protocol) layers.

TCP/IP is a two-layered program. The higher layer, Transmission Control
Protocol, manages the assembling of a message or file into smaller packets that

24

are transmitted over the Internet and received by a TCP layer that reassembles the
packets into the original message. The lower layer, Internet Protocol, handles the
address part of each packet so that it gets to the right destination. Netscape's SSL
uses the public-and-private key encryption system from RSA, which also includes
the use of a digital certificate.

The SSL Handshake Protocol consists of two phases: server authentication and an
optional client authentication [RSA]. In the first phase, the server, in response to a
client's request, sends its certificate and its cipher preferences. The client then
generates a master key, which it encrypts with the server's public key, and
transmits the encrypted master key to the server. The server recovers the master
key and authenticates itself to the client by returning a message authenticated with
the master key. Subsequent data is encrypted and authenticated with keys derived
from this master key. In the optional second phase, the server sends a challenge to
the client. The client authenticates itself to the server by returning the client's
digital signature on the challenge, as well as its public-key certificate.

A short cookie example in PHP:

the PHP statement

setcookie ("FileUploadLogin", "loginok", time()+300, "/");

stores the following values at the client:

wendy.vub.ac.be FALSE / FALSE 60538966 FileUploadLogin loginok

(note that the domain attribute wendy.vub.ac.be was automatically set)

3.1.2 Hidden data in forms

Another solution consists of copying all the input from a previous form as hidden
data in the next form. That way no information is kept on the server until the last
form has been submitted. The copy process needs to be done by some server
script that either generates the HTML form or inserts the data into an existing
HTML page before sending it to the user.

Data can be stored into a form using the <INPUT TYPE="HIDDEN" ...> tag [see
also 3.2].
The advantage of this approach is that it is very easy to implement and requires
almost nothing extra from the server.
On the other hand, the user can view the generated source code of the HTML
form and see the 'hidden' variable name - value pairs.
It is also possible to save the source code, edit the 'hidden' values and use the
newly modified form to connect to the server. Normally, if the input on every
form is validated before going to the next one, the server can assume that all the
hidden data is correct but these data can be manipulated and can make the data of

25

the database inconsistent. (A user might alter a foreign key value to a non-existing
one, given that the DBMS doesn't check this when inserting the data.)

Hidden fields should not be used to store sensitive data such as credit card
numbers or other private data because at each transaction this data will be sent and
can be intercepted by others.

To be safe that the user didn’t modify the source code before posting hidden data
to the server, the location of the CGI can be ‘hidden’, or made non-trivial making
hard on the user to submit the data. The best way to avoid all this to happen would
be some mechanism to make sure the page is unaltered and submitted from it’s
home domain.

3.1.3 Data in URLs

A Universal Resource Locator (URL) can carry a query to be performed on the
object it is referring to. Name=Value pairs can be added for usage in server-side
scripts.

Example:

http://wendy.vub.ac.be/~jplasqui/IIS/download.php3?id=7&dl=1

Here the id=7 would tell the download.php3 script what file should be
downloaded.

With this approach, users will always see the variables passed to the server and
they can very easily alter them. Server-side scripts that rely on data
stored/transferred by urls need to check whether these data are valid and complete,
i.e. all the necessary variables are present.

3.1.4 HTTP sessions

Another way of keeping state is storing the user's information on the server. If a
server script can uniquely identify each user, it can keep state of those users.

A session either stores data on the server only or it can use one of the above
techniques to store some data at the client in combination with data storage at the
server.

In the first case a CGI script could use the client's IP address to uniquely identify
him (although multiple PCs can surf with the same IP behind a firewall). In
Internet Protocol Version 4, an IP address is a 32-bit number that identifies each
sender or receiver of information that is sent in packets across the Internet.
One could use the REMOTE_ADDR environment variable to obtain the client's
IP address. By definition of the CGI specification, at least the REMOTE_ADDR
variable should be set by the server prior to execution of the CGI program. For
security reasons, a user session should expire after a specified duration.

http://wendy.vub.ac.be/~jplasqui/IIS/download.php3

26

There is one drawback to this approach:
Take a user with a simple and unreliable telephone connection who has browsed
e.g. some online shopping website and selected some items for purchase. If the
user's connection gets interrupted and he first has to reconnect to his ISP (Internet
Service Provider) he will most likely be assigned another IP address than he
previously used to store all his session information on the server. This will result
in the shopping website not recognizing the user anymore and he has to start all
over again.

Another approach to sessions is to generate some unique session id on the server
for each user that connects. This session id is then stored and sent back to the
server every time the user performs some action on the website. All other state
information is kept at the server.

Unlike the previous case, if a user gets disconnected and gets a different IP
address he can continue browsing the website without losing any previous state
information because his session id is still stored in his browser.

3.2 Interfaces used in web applications

Web applications are applications where the interface is executed in the browser.
Currently this restricts the interface to either HTML forms or Java applets.

HTML forms are most commonly used because they are easy to implement and
don’t require the usage of another programming language. This also saves the user
from the overhead of first downloading the byte code or script for the interface
and then interpret it on his browser.

The following constructs are available in HTML forms:

• Buttons: Start execution of specified action
• Checkbox: Select a value On or Off
• File: Let the user select a file for upload to the server
• Hidden: This is not a input element, a hidden field serves for carrying extra

non- visible information in a form
• Image: This is an image that acts like a button
• Password: This is a textbox that masks user input with ‘*’
• Radio button: This allows to user to select one of several given values by

checking a small box near that value
• Reset: A button that restores all the input to its default values
• Submit: Invokes the action specified in the form tag
• Text: Allows the user to enter a single line of text
• Select: Allows the user to select one or more values from a pull-down menu
• Textarea: Lets the user enter multiple lines of text

HTML syntax:

27

<FORM
ACTION="serverURL"
ENCTYPE="encodingType"
METHOD="GET"|"POST"
NAME="formName"
ONRESET="JScode"
ONSUBMIT="JScode"
TARGET="windowName"

 >

<INPUT TYPE="BUTTON"
 NAME="buttonName"
 VALUE="buttonText"
 ONCLICK="JScode"
>

<INPUT TYPE="CHECKBOX"
 CHECKED
 NAME="name"
 ONCLICK="JScode"
 VALUE="checkboxValue"
>

<INPUT TYPE="FILE"
 NAME="name"
 VALUE="filename"
>

<INPUT TYPE="HIDDEN"
 NAME="name"
 VALUE="value"
>

<INPUT TYPE="IMAGE"
 ALIGN="LEFT"|"RIGHT"|"TOP"|"ABSMIDDLE"|"ABSBOTTOM"|
 "TEXTTOP"|"MIDDLE"|"BASELINE"|"BOTTOM"
 NAME="name"
 SRC="location"
>

<INPUT TYPE="PASSWORD"
 MAXLENGTH="maxChar"
 NAME="name"
 ONSELECT="JScode"
 SIZE="charLength"
 VALUE="textValue"
>

<INPUT TYPE="RADIO"
 CHECKED
 NAME="name"
 ONCLICK="JScode"
 VALUE="buttonValue"
>

<INPUT TYPE="RESET"
 NAME="name"
 ONCLICK="JScode"
 VALUE="label"
>

<INPUT TYPE="SUBMIT"
 NAME="name"
 VALUE="label"
>

<INPUT TYPE="TEXT"
 MAXLENGTH="maxChars"
 NAME="name"
 ONBLUR="Scode"
 ONCHANGE="JScode"
 ONFOCUS="Scode"
 ONSELECT="JScode"
 SIZE="lengthChars"
 VALUE="text"

28

All form elements have attributes to embed JavaScript code.

The following is an example of how such a HTML form interface looks like.

29

 Fig. 1, HTML form interface

The usage of java applets allows for a more complex interface that can have the
look and feel of regular applications for windows-like operating systems.

3.3 Server-side scripting versus client-side scripting

Before going into detail about scripting on either client or sever side, a definition
of a scripting language should be given.
Following [O 98], scripting languages (or glue languages3) are weakly typed or
untyped, have little or no provision for complex data structures, and programs in
them (scripts) are interpreted. Scripts need to interact either with other programs
(often as glue) or with a set of functions provided by the interpreter, as with the
file system functions provided in a UNIX shell. An MSDOS batch file is a typical
example of a script.
In general, script languages are easier and faster to code in than the more
structured and compiled languages such as C and C++ and are ideal for programs
of very limited capability or that can reuse and tie together existing compiled
programs. However, a script takes longer to run than a compiled program since
each instruction is being handled by another program first (requiring additional
instructions) rather than directly by the basic instruction processor.

3.3.1 Server-side scripting

3 A script can call various programs, using the output from one program as input for the next. This
gives the impression of gluing applications together to handle a specific problem.

29

A server-side script is a program that is run on the server. These scripts are used
to generate dynamic web pages or implement small services like sending e-mails
or sending SMS (Short Message Service) to a GSM network.

The Common Gateway Interface (CGI) is a standard for interfacing external
applications with information servers, such as HTTP or Web servers. A plain
HTML document that the Web daemon retrieves is static, which means it exists in
a constant state, a text file that doesn't change. A CGI program, on the other hand,
is executed in real-time, so that it can output dynamic information.
Dynamic information can come from a database that is regularly updated or can
be based upon input from the user via textboxes, buttons or links.

CGI programs are not limited to generating HTML text but can also transfer
output from other programs or libraries as image or sound fragments on a web
page. CGI programs can be programmed in any language. If one chooses a
language like C or C++, the program needs to be compiled and will be executed
when the page is requested.

fig. 2, Information flow with CGIs: (1) the user sends information to the web server via the form; (2) the
web server calls the appropriate CGI program; (3) the CGI generates a response page which is sent to the
user by the web server, picture taken from Webmaster in a Nutshell, Stephen Spainhour & Robert
Eckstein, O'Reilly & Associates

CGI scripts can be divided into three major categories:

• Scripted pages

All the web pages available to the client browser are stored as scripted files on
the server. Such a scripted file is usually a mix of HTML and some other
scripting language. When a page is requested, the web server first has an
engine (that recognizes the file) process it. The engine will generate an HTML
formatted data stream by executing/interpreting the embedded scripting
statements. This data stream is then sent back to the client browser as if it was
a regular HTML page.
Examples of scripted pages are: Active Server Pages, Cold Fusion, Hypertext
PreProcessor (PHP), Server Side Include (SSI)

29

• Compiled pages

Technologies like Netscape’s NSAPI (Netscape Server Application
Programming Interface) or Microsoft’s ISAPI (Internet Server API), allow
programmers to extend the web server’s functionality by creating loadable
binary modules to add or replace elements such as authentication,
authorization, error logging, or content generation.
This means that when a user requests a page, the web server loads and
executes a binary component. This component, as with scripted pages, can use
values from form fields or parameters and access server side resources to
generate the HTML stream.
The main advantages of compiled pages in respect to CGIs are faster response
and better performance because compiled code executes faster than interpreted
code. There is less server overhead with compiled pages because the
component loads in the server's process space and does not spawn additional
processes, as is the case with CGIs.

• Hybrid of scripted and compiled pages

Using this approach, scripted pages are compiled once they are requested. The
compiled version is then used for all later requests for that page. The compiled
page will remain the same until the content of the page has changed. After an
update, the page will be recompiled. This combination of scripted and
compiled pages benefits from both the flexibility of scripted pages and the
efficiency of compiled pages.
Java Server Pages uses this technology.

3.3.2 Client-side scripting

Client-side scripts are pieces of code that are interpreted in the client’s browser.
These scripts are usually embedded into the page’s HTML source. Client-side
scripts are used to enhance the browser capabilities, create extra navigation
possibilities, or simply make the web page more fancy. Apart from visual
enhancements, client-side scripting can be used for form validation before
submitting data to the server. This will be examined in detail in chapters 4 and 5.

3.4 Overview of server-side scripting/programming languages

29

3.4.1 PHP

PHP, the Hypertext PreProcessor, is an interpreted programming language
designed for generating dynamic web pages.

As with most scripted languages designed for the web, PHP statements can be
interleaved with regular HTML code. The PHP interpreter can distinguish both by
the enclosing <? ?> or <PHP ?> tags. The PHP engine can access a wide variety
of libraries to access almost any database system, use other server resources, parse
XML data, generate gif images and so on [PHP3]. Up to version 3, PHP was open
source and free. PHP_ wasn’t suited for big, high-traffic websites due to
performance problems.

The improved version 4 of PHP, also called ZEND, is split into several separate
modules, which are not all freeware. The Zend Engine is the basic scripting
engine that powers PHP. The Zend Optimizer uses multi-pass code optimizations
to double the running speed of PHP applications and thus reducing the CPU of the
server. The Zend Cache is a script-caching module that stores an intermediate
coded version of a PHP application in the Web server's memory. A compiled
version of the PHP script is stored in the server's persistent cache registry,
avoiding redundant compilations. This saves server processing time and disk
accesses. The Zend Compiler allows compilation of PHP scripts before
distributing them. By saving the code in a closed Zend Intermediate Code format,
source code is protected from copyright violations, enabling companies to develop
exclusive commercial PHP applications [ZEND]. Other benefits besides the
enormous performance gain include e.g. native session support and real platform
and web server independence.

Thus depending on the components used, PHP scripts act like scripted pages or
compiled pages.

3.4.2 ColdFusion

29

ColdFusion is a product developped by Allaire Corporation for creating web
applications and database driven websites. ColdFusion has a server engine that
processess CFML pages. The Cold Fusion Markup Language is a tag-based
scripting language.

CFML example from the CF manual to print rows from a database:

CFML offers three major advantages over other server-side scripting languages
[CF]. It tightly integrates with HTML and XML, making the process of
developing Web applications easier and faster. CFML provides a high level of
encapsulation for complex processes, eliminating the need for excessive scripting
and increasing developer productivity. Finally, CFML is easy to extend with new
ColdFusion Extensions (CFX) and Java objects, which serve as reusable
components.

The ColdFusion server runs as a multithreaded process with native support for
load balancing and can work with almost any web server. Other features of the
server include database connection caching, just-in-time compilation and
automatic failure recovery.

Since ColdFusion is a commercial software package, it supports a lot of other
technologies as wel to reach a broad range of customers. ColdFusion can therefore
work with ActiveX components, which are in fact Component Object Models
(COM), Microsoft’s core object technology for building software out of
encapsulated functionality in reusable blocks.
ColdFusion also provides a generic interface to CORBA ORBs. The Common
Object Resource Broker Architecture (CORBA) is an industry-standard system
for allowing distributed systems to invoke methods on other servers across
platforms and application architectures. CORBA works by using Object Request
Brokers (ORBs) that translate method calls from each application. The Interface
Definition Language (IDL) provides a language-neutral way to describe a

<HTML>
<HEAD>

<TITLE>Employee List</TITLE>
</HEAD>
<BODY>
<H1>Employee List</H1>

<CFQUERY NAME="EmpList" DATASOURCE="CompanyInfo">
SELECT FirstName, LastName, Salary, Contract
FROM Employees

</CFQUERY>

<CFOUTPUT Query="EmpList">
#FirstName#, #LastName#, #Salary#, #Contract#

</CFOUTPUT>

<CFOUTPUT>
The query returned #EmpList.RecordCount# records.

</CFOUTPUT>

</BODY>
</HTML>

29

CORBA object and the services it provides. The IDL code then needs to be
compiled into Java or C++ code stubs and skeletons. The client uses the stubs, and
the server skeletons provide the framework that needs to be filled in with the code
for the service the object is to provide.
ColdFusion applications can call Java objects, Servlets and JavaBeans, leaving
alternative technology choices open for specific problems.

3.4.3 ASP

Microsoft’s Active Server Pages (ASP) is a server-side scripting technology that
can be used to create dynamic and interactive Web applications. ASP works as a
filter and a redirector for IIS, Microsoft’s Internet Information Server, intercepting
incoming client requests with the .asp extension and caching information as
needed to gain server performance. Active Server Pages are actually a series of
dynamic link libraries or DLLs that have to be installed on the web server, which
has to run on Windows NT machines.
The big difference between ASP and other server side scripting tools is that ASP
supports different languages. The default ASP programming language is
Microsoft’s VBScript but also JScript and PerlScript are supported. The first line
of ASP in a document states which language will be used further on. As with
many scripting languages, ASP statements are embedded into HTML and
distinguished from HTML by enclosing them with an ASP specific tag (<% %>).
ASP has database support and makes full use of Microsoft’s COM technology.

The following example taken from Microsoft’s Active Server Pages tutorial
demonstrates how to use an ODBC connection to a Microsoft Excel data file and
to generate a HTML table containing the data records:

The big drawback of using ASP is that the developers are forced to use other
products from the same vendor (Microsoft) and lose portability of their system.

<%@Language=VBScript %>
<html>
<head>
<title> Displaying An Excel Spreadsheet in an Web Page </title>
</head>
<body bgcolor="#FFFFFF" text="#000000" >
<h1>ASP Table of Contents</h1>
<%
‘Creates an instance of an Active Server Component
 Set oConn = Server.CreateObject("ADODB.Connection")
‘Connects to the Excel driver and the Excel spreadsheet
‘in the directory where the spreadsheet was saved
strConn = "Driver={Microsoft Excel Driver (*.xls)};
DBQ=C:\Inetpub\Wwwroot\Tutorial\ASPTOC.xls;"
‘Opens the connection to the data store
 oConn.Open strConn
‘Selects the records from the Excel spreadsheet
strCmd = "SELECT * from `ASPTOC`"
Set oRS = Server.CreateObject("ADODB.Recordset")
‘Opens the recordset
oRS.Open strCmd, oConn
‘Prints the cells and rows in the table
Response.Write "<table border=1><tr><td>"
‘Gets records in spreadsheet as a string and prints them in the table
Response.Write oRS.GetString (, , "</tr><td>", "</td></tr><tr><td>", NBSPACE)
%>
</body>
</html>

mailto:%@Language=VBScript %

29

3.4.4 Java servlets

A java servlet can be seen as a java applet running on the server side. These are
just small programs loaded by the web server to handle client requests, just like
CGIs. This fairly young technology of server side applets has several advantages
over CGI programs [JSVL] :

Servlets can run on any platform without the need for recompiling or rewriting the
servlet. This platform independence supports the Java philosophy of ‘write once,
run anywhere’.
Servlets are written in Java, a robust, well-designed and fully object-oriented
language. Specialized Java libraries, development tools and database drivers are
available and growing in number all the time, and servlets can utilize any of them.
This brings a high level of extensibility to servlet developers. Developers don’t
have to worry about the inner workings of the server either. Form data, server
headers, cookies, ... are all handled by the servlet's underlying classes.
The most important advantage of servlets is their performance. A CGI is executed
at each request, this includes process creation, setting up a database connection if
needed and/or use other server resources and finally closing the process. Servlets
on the other hand are loaded once when they are called and then they stay resident
in memory for fast execution. Database connection also remain allocated, this
results in one connection for a servlet against maybe several hundred or thousand
connections for a CGI. All this makes up for Java’s poor performance when
compared to compiled languages. Java servlets can handle multiple requests of the
same servlet concurrently.
A nice feature of servlets is their possibility of chaining. Output from one servlet
can be provided as input for another and so on. This allows reuse of components
to perform some standard tasks as formatting output in a desired way for the user.
Java servlets can off course easily communicate with java applets.

Clearly the most common use of Java Servlets will be to function as part of
middle tiers in enterprise networks, connecting to SQL databases via JDBC,
Java’s facilities for database communications. This three-tier architecture is a
special type of client/server architecture consisting of three well-defined and
separate processes, each running on a different platform:

1. The user interface, which runs on the user's computer (the client browser).
2. The functional modules that actually process data (the servlet).
3. A database management system that stores the data required by the middle

tier.

The added modularity makes it easier to modify or replace one tier without
affecting the others. Separating the application functions from the database
functions makes it easier to implement load balancing as can be done with
servlets.
Servlets are called from HTML pages just as any regular CGI. In order to use
them, the server needs to be compatible with the Java Servlet API. Some web

29

servers like the World Wide Web Consortium's free JigSaw Web Server has
native servlet support, for others plug-ins like the Java Servlet Developers Kit can
be installed to be able to run and manage java servlets.

 fig. 3, Java servlets in middle tiers, [JWS]

3.4.5 JavaScript

JavaScript was originally developed by Netscape as a programming language that
could be embedded in web pages to extend the functionality of the Netscape
Navigator browser [see 3.5.1]. It’s original name LiveScript was changed to profit
from the popularity of the object-oriented programming language Java from Sun
Microsystems.

Server-side JavaScript extends the core JavaScript language (predefined objects
and functions) by supplying objects relevant to running JavaScript on a server.
Sever side functionality includes connecting to a relational database, providing
continuity of information from one invocation to another of the application,
performing file manipulations on the server, sharing information across users of
an application and communicating with other applications through LiveConnect
and Java.
Server side JavaScript is also embedded in HTML pages, which can also contain
client side statements to be executed in the client browser.

Unlike the interpreted client side JavaScript statements, server side JavaScript
pages are compiled into bytecode executable files. Multiple HTML pages
containing embedded server side JavaScript can be compiled into a single binary

29

executable. These application executables are run by a web server that contains
the JavaScript runtime engine. The runtime engine uses the application executable
to look up the requested source page and dynamically generates the HTML to be
sent back to the user.

Figure 4 depicts the global view of server side JavaScript. The Java virtual
machine is not only for use with JavaScript; any Java application running on the
server uses this virtual machine. It has been extended to allow JavaScript
applications to access Java classes using JavaScript's LiveConnect features. The
server side JavaScript runtime library offers basic functions like session
management and so on. The application manager is built on top of the system and
is needed to install the JavaScript applications and to provide access to them for
the users.

Fig 4, Server side JavaScript in the Netscape server environment, taken from Server Side JavaScript Guide, 1999
Netscape Communications Corp.

3.4.6 SSI

Server Side Includes (SSI) are directives which are embedded into HTML
documents to execute other programs or output such data as environment
variables and file statistics (e.g. web counter).

SSI works by inserting HTML comment tags containing a function call as is
shown in this simple example:

<HTML>

<BODY>

The document is titled:

<!--#echo var="DOCUMENT_NAME"- ->,

and was last modified on

<!--#echo var="LAST_MODIFIED"-->.

29

In order to avoid the server having to parse every HTML document at request,
documents containing SSI directives carry a different file extension which is often
.shtml.

 Fig. 5, Processing SSI configured pages, taken from CGI Programming on the World Wide Web,
 Shishir Gundavaram

Besides printing system variables, SSI also allows to execute system commands
or CGIs.

Example:

This page has been accessed <!--#exec cgi="/cgi-bin/counter.pl"--> times.

Care should be taken when processing shtml documents as they can execute any
command and can cause damage to the underlying system.

SSI is only useful to bring little dynamics to static web pages without having to
write a CGI for it. SSI is not to be used in dynamic web pages or web applications
as far much better technologies are available.

3.4.7 Perl

29

The Practical Extraction and Report Language (PERL) Perl is a scripting language
that combines powerful text-manipulation functions with features and purposes of
many command languages. Perl is quite popular for programming World Wide
Web electronic forms and also serves as glue and gateway between systems as is
the main purpose of a scripting language.

Perl example taken from [PERL]: the example prints a simple HTML form, after
submitting some values the script will report those values back to the user.
Generating a form and handling the form is often done in the same script; the
script starts with some check whether there was any input and reacts accordingly.

3.5 Overview of client-side scripting/programming languages

#!/usr/local/bin/perl
Send error messages to the user, not system log
open(STDERR,'<&STDOUT'); $| = 1
require "cgi-lib.pl"; # Get external subroutines
print &PrintHeader;

$script = $ENV{'SCRIPT_NAME'};
$webserver = $ENV{'SERVER_NAME'};

if (! &ReadParse(*input)) { &showform }
else { &readentries }
exit;

sub showform {
If there is no input data, show the blank form

print <<EOF;
<HTML><HEAD>
<TITLE>Form Example, Part 1</TITLE>
</HEAD><BODY>
<H1>Web Form Example</H1>
<P>(From http://$webserver$script)
<FORM METHOD="POST"
ACTION=$script>
<PRE>
Enter your ID Number: <INPUT NAME=idnum>
Enter your Name: <INPUT NAME=name>
Select favorite Color: <SELECT NAME=color>
<OPTION>red<OPTION>green<OPTION>blue
</SELECT>
</PRE>
To submit the query, press this button:
<INPUT TYPE=submit VALUE="Submit Request">
</FORM>
</BODY></HTML>
EOF
} # End of sub showform #

sub readentries {
Input data was detected. Echo back to form user.

print <<EOF;
<HTML><HEAD>
<TITLE>Form Example, Part 2</TITLE>
</HEAD><BODY>
<H1>Results of Form</H1>
<P>(From http://$webserver$script)
<P>Your ID Number is $input{'idnum'}, your name is $input{'name'},
and your favorite color is $input{'color'}.
<HR>
[Try again]
EOF
} # end of sub readentries #

29

3.5.1 JavaScript

At the client side, JavaScript is an interpreted, object-based, event-driven
programming language embedded into HTML pages.
Although JavaScript is different from other OOP languages (such as Java) in its
approach to objects, it is nonetheless object based. No distinction between types
of objects is made. Being object-based, JavaScript has a built-in object hierarchy
reflecting the building blocks of a page. All properties can be accessed in an
object-oriented way.

 Fig. 6, The Netscape Navigator Object Hierarchy, Copyright 1997 Netscape Communications Corporation

Inheritance is achieved through the prototype mechanism and properties and
methods can be added to any object dynamically. JavaScript is loose typed or
untyped, variables don’t need to be declared but they can be. Bindings are
dynamic since they are only checked at runtime.
Functions can be called on various events in a page. This can be while the page is
loading in the browser or when the mouse pointer is moving away from an item.
JavaScript has a security mechanism that prevents writing or retrieving files from
the users hard disk. The only files that can be read are the cookies stored in the
user’s browser.
JavaScript can be used to implement small applications to be run at the client but
is mostly used to make animations happen at certain events or to create a dynamic
interface for a web page. Furthermore, JavaScript is well suited to perform input

29

validation in HTML forms before actually submitting the data to a server. Given
the object hierarchy as depicted in fig. 6, JavaScript can access user input from all
the form elements for testing.

Using LiveConnect, JavaScript can communicate with Java Applets. Using this
idea, a page containing some form interface can both contain a Java Applet that
implements complex validation functions which are then called with the variable
of what the user entered in some form field via a JavaScript statement.

The next example demonstrates the communication between JavaScript and Java:
The Java applet SerialValidator contains a method public boolean

validateSerial(String s) which is called in the same object like way from
within a JavaScript function.

JavaScript is supported in almost all current graphical browsers. Netscape has two
libraries available with JavaScript functions designed to validate different forms
of user input in forms. These functions include basic type checking, common

<HTML>

<HEAD>
<TITLE>Serial validation</TITLE>
</HEAD>

<BODY>

<APPLET CODE="SerialValidator.class" WIDTH="0" HEIGHT="0" NAME="Validator">
</APPLET>

<SCRIPT LANGUAGE="JavaScript">

function validateSerial(form) {

if(document.Validator.ValidateSerial(form.serial.value)) {

return(true);

} else {

form.serial.focus();
window.alert("Invalid serial. Please try again.");
return(false);

}
}

</SCRIPT>

<FORM
NAME="serialInput"
ACTION="test.php3"
METHOD="POST"
OnSubmit="return validateSerial(document.serialInput);"

>

<P>Enter serial number:
<INPUT TYPE="text" SIZE="10" NAME="serial">
<P><INPUT TYPE="submit" NAME="Submit" VALUE="Submit">

</FORM>

</BODY>
</HTML>

29

input elements validation for zip codes, email addresses, dates and credit card
numbers.
However, it is not safe to rely on its working too much because users always have
the option to turn off JavaScript interpretation in their browsers. This can be
overcome by only showing the form if JavaScript is enabled. This can either be
done by ‘writing’ the form with JavaScript statements or by first checking the
browser object model for a JavaScript-enabled flag.
Another issue with JavaScript is that users can edit the HTML file they are
browsing and simply remove the call to the validation function. This can be done
in the example above by removing the OnSubmit attribute from the form tag.

3.5.2 Jscript

Jscript is Microsoft’s equivalent of Netscape’s JavaScript.
On the surface, the JavaScript supported by both companies is identical. They
provide the same conditional control statements, have defined objects such as
window or document, and can be used directly in HTML documents. They both
support events based on user actions and support functions in a similar manner.
However, just as there were incompatibilities between proprietary HTML tags in
the Browser War4, differences exist between both JavaScripts. These
incompatibilities are documented and can be solved but require more
programming efforts.

3.5.3 VBScript

Visual Basic Scripting Edition, also known as VBScript, enables authors to create
scripts using a subset of the Microsoft Visual Basic language. VBScript is
implemented as a fast, portable interpreter for use in Web browsers and
applications that use ActiveX controls, Java applets, and OLE Automation
servers. As VBScript is a proprietary language, it is only supported by Microsoft
browsers. VBScript can be used for form validation. [H 96]

3.5.4 Java

Java is an object-oriented programming language developed by Sun
Microsystems. Java is a platform independent language; java source files are first
compiled into class files containing byte code. A Java Virtual Machine on the host
computer then interprets these class files. Java has an extensive library of classes
and methods for distributed processing, creating graphical user interfaces, image
processing etc.
The portability of Java classes and the fact that Java applications can be built as a
Java Applets for usage on the Web has created a certain hype around Java thus
making it very popular. Java is used on both client and server; on the client side
applets are used to enhance the interface of web pages. A Java Applet is a Java

4 The strong competition between Netscape and Microsoft to provide the dominant web browser to
the public is often referred to as the ‘Browser War’.

29

program that can be executed in the user’s browser. Applets are mostly used to
create a dynamic and animated interface to a web site but they can also be used to
deliver small applications that entirely run in the client browser. These
applications vary from calculators and text validators to games.
Java applets use the so-called Sandbox model for security; applets cannot access
the user’s file system to do any damage there. Java classes can be linked to a page
as an applet to provide extra functionality to other scripting languages such as
JavaScript (see 3.5.1).
Packages such as the Abstract Window Toolkit (AWT) and Swing provide classes
to build graphical user interfaces. A web page could load an applet with a more
sophisticated interface than HTML forms currently offers and use that applet to
immediately validate user input like in a classical application and in the end post
the necessary data to the CGI or servlet running on the server.
Most current browsers support Java, however users have control on whether or
not to allow Java applets to run in their browser.

3.5.5 Netscape plugins

A plug-in is a separate code module that behaves as though it is part of the
Netscape Communicator browser5. The browser can be extended via the Plugin
API with a wide range of interactive and multimedia capabilities, and that handle
one or more data (MIME) types. Other browsers also support this Plugin API. The
main purpose of plug-ins is providing inline viewers for types of data not
supported by the browsers. A popular example is Macromedia’s Shockwave Flash
plug-in to display interactive animations in a web page.
Using Netscape’s LiveConnect technology, plug-ins can communicate with Java.
Plug-ins are written in C++ and can benefit of existing classes and libraries. Plug-
ins are not portable as their execution is operating system (and browser)
dependent.

3.6 XML and related standards

3.6.1 From SGML to XML

The Standard Generalized Markup Language (SGML) is an international standard
for the definition of hardware-independent, software-independent methods of
representing texts in electronic form. SGML isn’t a language on itself, it is a
means of formally describing a markup language. A markup language is a set of
markup conventions used together for encoding texts. A markup, or encoding, is
any way of making an interpretation of a text explicit. Spacing can be thought of
as a markup to distinguish the beginning from one and the end from another word.
SGML uses descriptive markup rather than procedural markup. A descriptive
markup system uses markup codes which simply provide names to categorize
parts of a document. Markup codes such as <p> simply identify a portion of a

5 Netscape was the first browser creator that provided facilities for plug-in creation and
documented it. Therefore I maintain the term ‘Netscape plug-in’ although meanwhile Microsoft
also supports plug-ins.

29

document and assert of it that “the following item is a paragraph”. On the other
hand, a procedural markup system defines what processing is to be performed at
particular points in a document. The benefit of using a descriptive system is that
different applications can process the same file. A database application can scan
the document for certain information elements to store them in a database while
ignoring other unneeded data. Another application might have to use all of the
descriptions to render the document for printing.
Another feature of SGML is the use of Document Type Definitions (DTD). An e-
mail message has a different structure than for example a book. Usage of DTDs
allows for more intelligent processing of documents. DTDs also bring structure to
a document, e.g. a book could be structured as a title followed by an author name
which is then followed by a number of chapters which also comply to some
structure. Besides it’s reuse, another advantage of a DTD is document validation
for completeness and correctness.
Another and very important aspect of SGML is the demand of document
portability from one hardware and software environment to another without loss
of information. SGML provides a general purpose mechanism for string
substitution, that is, a simple machine-independent way of stating that a particular
string of characters in the document should be replaced by some other string when
the document is processed. This is useful to encompass the differences in
character sets from different systems.

Although SGML will remain the preferred data format for creating and storing
enterprise-critical documents and data, it has several shortcomings in document
delivery.

[XML] describes why SGML isn’t used for distributing documents on the web:

The primary problem is that SGML isn’t supported by the mainstream browser
providers. The reason for this goes hand-in-hand with what makes SGML so
valuable: SGML offers so many options that designing tools to support them all
results in complicated software.
With only HTML support available in the browsers, organizations that want to
publish their SGML documents on the Web typically use some automatic SGML-
to-HTML conversion of their data. This down-conversion from SGML to HTML
results in a significant loss of information, and without it, it’s nearly impossible to
reconstruct the original meaning of the SGML document by only looking at the
HTML file.
Another problem to Web delivery is that SGML only standardizes structure and
has no support for styles. There have been a couple of attempts to establish a
stylesheet standard, but each of these has received little or no vendor support. The
result is that there is no widely accepted standard stylesheet format for expressing
SGML information.

To overcome this shortcoming of SGML, and also keeping the problems with
HTML in mind [see 3.7.2], XML, or eXtensible Markup Language was built.

3.6.2 XML

29

The Extensible Markup Language is a highly functional subset of SGML. The
purpose of XML is to specify an SGML subset that works very well for delivering
SGML information over the Web. The eXtensible Markup Language describes a
class of data objects (XML documents) and partially describes the behavior of
computer programs that process them.
XML documents are made up of storage units called entities, which contain either
parsed (characters and/or markup) or unparsed data. Markup encodes a description
of the document’s storage layout and logical structure. XML provides a
mechanism to impose constraints on the storage layout and logical structure.

A Document Type Definition (DTD) is a file (or several files used together),
written in XML’s Declaration Syntax, which contains a formal description of a
specific type of document. It sets out what names can be used for element types,
where they may occur, and how they all fit together. XML has been designed so it
can be used either with or without a DTD. This implies that one can invent
markup without having to define it formally. Drawback off course is the loss of
automated control over the structuring of additional documents of the same type.
To make this work, a DTD-less file in effect defines its own markup informally
by the location of elements. But when an XML application (such as a browser)
encounters a DTD-less file, it needs to be able to understand the document
structure while it reads it, because it has no DTD to tell it what to expect. This is
also why XML documents need to be well formed.

3.6.3 XML Schema

A DTD serves for specifying the structure of an XML file: it gives the names of
the elements, attributes and entities that can be used, and how they fit together.
Because DTDs are designed for use with text, they have no mechanism for
defining the content of elements in terms of data types, because XML has no data
types and text is just text. This is why a DTD can’t be used to specify numeric
ranges or to define limitations or checks on the text content, only on the markup.

The XML Schema proposal provides a means of specifying element content in
terms of data types, so that document type designers can provide criteria for
validating the content of elements as well as the markup itself. Schemas are
written as XML files, thus avoiding the need for processing software to be able to
read XML Declaration Syntax, which is different from XML Instance Syntax.

The working of XML Schema can be best demonstrated by a small example
[XSCH].

<xsd:schema xmlns:xsd="http://www.w3.org/1999/XMLSchema">

 <xsd:annotation>
 <xsd:documentation>
 Purchase order schema for Example.com.
 Copyright 2000 Example.com. All rights reserved.
 </xsd:documentation>
 </xsd:annotation>

 <xsd:element name="purchaseOrder" type="PurchaseOrderType"/>

http://www.w3.org/1999/XMLSchema

29

The example above is the schema for some order form to purchase items from a
store. All the elements in the schema have a xsd prefix to identify the elements
and simple types as belonging to the vocabulary of the XML Schema language
rather than the vocabulary of the schema author. XML Schema has several built-
in Simple Types such as string, boolean, float, unsignedInt, date, time and so on.
Other Simple Types can also be derived from existing built-in Simple Types.
Various constraints can be added to data types: domain constraints can specify a
range of allowed values, cardinal constraints determine the number of instances
allowed and regular expressions can be provided to match data. In the example
above, the Sku (product number) has to be a sequence of three digits followed by
a hyphen followed by two upper-case characters.
The schema example can be instantiated as is done in the following example, also
taken from [XSCH]:

29

3.7 Evolution of HTML

HTML, the HyperText Markup Language, is the language used to deliver
documents over the web. HTML is in fact an application of SGML, a fixed set of
tags to bring (limited) structure to web documents.

HTML is very popular. People learn how to navigate between HTML documents
in no time. Creating simple web pages can be learned in jut a couple of hours and
for the more complicated aspects or for those who don’t want to ‘code’ their page,
an enormous amount of web development tools exist.

The HTML tags have been extended quite often, resulting in three major HTML
versions:

HTML 1.0 was the first widely used version of HTML. The main characteristics
of HTML 1.0 include the means of bringing simple structure to a document.
Structure elements are headers, lists of list items, paragraphs and so further. Other
features are the ability to handle inline images and the use of anchors to link to
other documents.

HTML 2.0 greatest improvement is the handling of user input via forms.
Companies as Netscape also started to develop their own tags at that time to work
with their specific browser.

<?xml version="1.0"?>
<purchaseOrder orderDate="1999-10-20">
 <shipTo country="US">
 <name>Alice Smith</name>
 <street>123 Maple Street</street>
 <city>Mill Valley</city>
 <state>CA</state>
 <zip>90952</zip>
 </shipTo>
 <billTo country="US">
 <name>Robert Smith</name>
 <street>8 Oak Avenue</street>
 <city>Old Town</city>
 <state>PA</state>
 <zip>95819</zip>
 </billTo>
 <comment>Hurry, my lawn is going wild!</comment>
 <items>
 <item partNum="872-AA">
 <productName>Lawnmower</productName>
 <quantity>1</quantity>
 <price>148.95</price>
 <comment>Confirm this is electric</comment>
 </item>
 <item partNum="926-AA">
 <productName>Baby Monitor</productName>
 <quantity>1</quantity>
 <price>39.98</price>
 <shipDate>1999-05-21</shipDate>
 </item>
 </items>
</purchaseOrder>

29

The arrival of HTML 3.0 brought quite a lot of new possibilities: tables, frames,
more form input types and style sheets. In this version, most of the proprietary
tags created by others were adopted, although often with some modifications.
Although HTML 3.0 didn’t receive consensus in standards discussions, it’s drafts
led to the adoption of a range of new features that resulted in HTML 3.2.

HTML 4.0 extends HTML further with mechanisms for style sheets, scripting,
frames, embedding objects, improved support for right to left and mixed direction
text, richer tables, and enhancements to forms, offering improved accessibility for
people with disabilities.

Despite the continuous evolution of HTML, which often focuses on appearance
rather than structure, HTML still has several problems.

HTML 3.2 is still the mostly adopted web language, together with CGI scripts,
Java applets, JavaScript and others, plus plug-ins such as Shockwave, RealPlayer
and Quicktime, it provides Web authors and commercial sites with a vast amount
of techniques for displaying content that is visually pleasing and possibly even
informative. However, these techniques do little if anything for the representation
of structured data.

Using HTML, one can’t markup data in a meaningful way. HTML was originally
intended to provide a simple way to markup any type of document to reflect its
structure and also some stylistic aspects. But companies also have the need to
exchange data. Hierarchical relationships of data values, such as that which is
represented by database records and object hierarchies can’t be coded in HTML.
An HTML document contains structure and presentation, but conveys nothing
about the meaning of the marked up document.

When using some search engine to find web pages related to the keywords entered
in the query, an enormous list of ‘hits’ will be returned to the user. The majority
of these pages don’t even deal with the intended topic. Of course one can
argument that the user first needs to understand the working of the search engine
and learn the proper syntax to reduce the amount of hits. Currently, HTML
supports the use of meta tags, extra attributes in the head of an HTML document
that describe the content of the page and carry some extra information to facilitate
better responses from search engines. There is no guarantee that a search engine
uses those meta descriptions as they typically only index frequency of words and
document titles. What is needed is a way to markup the significant portions of a
document and to describe the semantics of documents so search engines can focus
on the semantically related pages and drop those several hundred meaningless
hits.
An example of such a search could be the retrieval of pages on books about some
artist. Pages about works by that artist should be retained although both would be
presented to the user using some typical search engine.
Another annoying thing can happen when a user finds a web page with useful
information for him that is part of a larger collection. If all goes well, the user can
find a link to a table of contents, a home page, or some other means of listing the

29

collection. Otherwise he can guess a URL for a page higher in hierarchy that links
to all page from the collection.
But how can the user print the collection without having to manually search and
print each page individually? HTML currently has no means to express the
interrelationship of a set of pages so they can be processed as a group.

Although the Web’s current one-way hypertext link capability has proven
extremely useful, but HTML documents could gain more functionality with
extended link capabilities. More flexible linking schemes have existed for many
years in the publishing industry to express complex link relationships, such as
links with multiple targets, multi-directional links, and automatically updated link
databases. [http://www.hytime.org, http://www.tei-c.org]

A popular buzzword on the web is an agent. An intelligent agent, or simply an
agent, is a program that gathers information or performs some other service
without the user’s immediate presence and on some regular schedule. Typically,
an agent program searches the Internet using user specified parameters, gathers
information in which the user is interested in, and finally presents it to the user on
some periodic basis.
Other agents have been developed that personalize information on a Web site
based on registration information and usage analysis. Other types of agents
include specific site watchers that tell when the site has been updated or look for
other events and analyst agents that not only gather but also organize and interpret
information.
The operation of such agents could be facilitated in the same way search engines
could become very efficient, that is by using semantic information from the
HTML document markup.

All limitations and problems stated above lead to the development of XHTML 1.0
or the eXtensible HyperText Markup Language. XHTML is in fact the
reformulation of HTML 4.0 as an application of XML. The World Wide Web
Consortium (W3C) lists the following reasons why to use XHTML [XHTML]:

• XHTML documents are XML conforming. As such, they are readily viewed,
edited, and validated with standard XML tools.

• XHTML documents can be written to operate as well or better than they did
before in existing HTML 4-conforming user agents like web browsers as
well as in new, XHTML 1.0 conforming user agents.

• XHTML documents can utilize applications (e.g. scripts and applets) that
rely upon either the HTML Document Object Model or the XML Document
Object Model.

• As the XHTML family evolves, documents conforming to XHTML 1.0 will
be more likely to interoperate within and among various XHTML
environments.

The two main benefits of XHTML over plain HTML are called extensibility and
portability by the W3C.

http://www.hytime.org, http://www.tei-c.org

29

Extensibility: XML documents are required to be well-formed. Under HTML, the
addition of a new group of elements requires alteration of the entire DTD. In an
XML-based DTD, all that is required is that the new set of elements be internally
consistent and well-formed to be added to an existing DTD. This greatly eases the
development and integration of new collections of elements.

Portability: There will be increasing use of non-desktop devices to access Internet
documents. W3C estimates that by the year 2002 as much as 75% of Internet
access could be carried out on these alternate platforms. In most cases these
devices will not have the computing power of a desktop computer, and will not be
designed to accommodate ill-formed HTML as current browsers tend to do. In
fact, if these non-desktop browsers do not receive well-formed markup (HTML or
XHTML), they may simply be unable to display the document.

There are some syntax differences between HTML and XHTML. XHTML has to
be well-formed, in other words, tags have to be properly nested. In XHTML it is
illegal to write for example <I>bold & italic text</I>, which was already
prohibited in SGML but was tolerated in HTML. The correct syntax would be
<I>bold & italic text</I> . In fact browsers contain quite a bit of code to
interpret all these ill-formed documents but doing so on PDAs could require too
much processing power.
Since XML is case-sensitive, XHTML tags all have to be lower-case. Tags
and are thus considered to be different.
In XHTML, all non-empty elements require a closing tag. In HTML, one could
write <P> a paragraph… <P> another paragraph … .However, in XHTML
the syntax needs to be as follows: <p> a paragraph…</p> <p> another

paragraph …</p>.
Other differences include the need for quoting attribute values, for example
<table rows=”5”>. Also, XML does not support attribute minimization.
Attribute-value pairs must be written in full, for example: <input

type=”checkbox” checked=”checked”> instead of <input type=”checkbox”
checked>. Furthermore, empty elements need to written like
 or
<hr></hr>.

The following example taken from [XHTML] shows a very basic XHTML
document:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/strict.dtd">
<html xmlns="http://www.w3.org/TR/xhtml1/strict" xml:lang="en" lang="en">
 <head>
 <title>Virtual Library</title>
 </head>
 <body>
 <p>Moved to vlib.org.</p>
 </body>
</html>

http://www.w3.org/TR/xhtml1/DTD/strict.dtd
http://www.w3.org/TR/xhtml1/strict
http://vlib.org/

29

XHTML can also be used inside other XML documents [XHTML]:

XHTML can make use of other XML related technologies making it even more
powerful.

I’ll restrict to one academically interesting example: MathML [MATH]. The
incorporation of MathML allows authors to encode both the notation which
represents a mathematical object and the mathematical structure of the object
itself. Moreover, authors can mix both kinds of encoding in order to specify both
the presentation and content of a mathematical idea.

For example, the formula
a

acbb
x

2

42 −±−= is represented by the following

code:

<?xml version="1.0" encoding="UTF-8"?>
<!-- initially, the default namespace is "books" -->
<book xmlns='urn:loc.gov:books'
 xmlns:isbn='urn:ISBN:0-395-36341-6' xml:lang="en" lang="en">
 <title>Cheaper by the Dozen</title>
 <isbn:number>1568491379</isbn:number>
 <notes>
 <!-- make HTML the default namespace for a hypertext commentary -->
 <p xmlns='http://www.w3.org/1999/xhtml'>
 This is also available online.
 </p>
 </notes>
</book>

<mrow>
 <mi>x</mi>
 <mo>=</mo>
 <mfrac>
 <mrow>
 <mrow>
 <mo>-</mo>
 <mi>b</mi>
 </mrow>
 <mo><mchar name="PlusMinus"/></mo>
 <msqrt>
 <mrow>
 <msup>
 <mi>b</mi>
 <mn>2</mn>
 </msup>

http://www.w3.org/1999/xhtml
http://www.w3.org/

29

Browsers can be extended to be able to render the XML code to a classical math
representation.

W3C has implemented the Cascading Style Sheets (CSS) language to get
extensive stylistic control over the presentation of Web pages. Rather than
creating complex HTML documents that use tags and attributes to control the font
and other layout aspects, CSS makes stylistic control a separate process. This
approach of keeping structure and presentation apart has great benefits when it
comes to adapting Web content for different devices such as mobile phones,
PDAs,… Different style sheets can be used to deliver the same Web page to
different machines, considering their limitations and focussing on their
capabilities.

The eXtensible Stylesheet Language (XSL) differs from CSS as it is a language to
transform XML documents to some other form. This can be used to generate
XHTML pages from existing XML documents or to generate some report by
scanning for required tags and ignoring the rest.

3.8 Portable internet devices

A new boost in wireless communications devices came with the third-generation
GSMs that provide Internet access. Other than GSM devices, PDAs (Personal
Digital Assistants), handheld devices that combine computing, fax and
networking features are becoming quite popular. Many PDAs nowadays also offer

29

some form of Internet access. To make this possible, a new access protocol was
developed.

The Wireless Application Protocol (WAP) is an open, global specification that
allows mobile users with wireless devices to easily access and interact with
information and services. WAP is a communication protocol that operates on most
wireless networks and is also an application environment that can be built on any
operating system.
Applications for WAP devices include: customer care and provisioning, message
notification and call management, e-mail, telephony value-added services and
unified messaging, mapping and locator services, weather and traffic alerts, news,
sports and information services, e-commerce transactions and banking services,
online address books, directory services and corporate intranet applications
[WAPF].

The ability to surf the web, that’s to say browse WAP enabled web pages, brings
another group e-business users to web applications.

WML (Wireless Markup Language) is a markup language based on XML, and is
intended for use in specifying content and user interface for narrowband devices.
These devices are constrained by a small display and limited user input facilities,
a narrowband network connection and limited memory and computational
resources.
This means that WAP devices cannot simply access the same web interface for
existing web applications. Thus we can either build two different web
applications, one for normal PC users and one for wireless devices, which do the
same thing. On the other hand, we can also build two different interfaces for the
same application, one in HTML and one in WML. This would limit the use of
client side technologies even more because of the computational constraints on
the wireless devices.

WML can make use of a client side scripting language called WMLScript.
WMLScript is a scripting language that is very similar to JavaScript. However,
rather than embedding WMLScript in the WML decks (WML uses a metaphor of
a deck of cards), WML contains only references to WMLScript URLs. Another
difference is that WMLScript compilation units need to be compiled into the
WMLScript bytecode before it can be run on a WAP client. Such a WAP browser
must contain a WMLScript Virtual Machine (VM) to run the compiled script.
WMLScript makes minimal demands on memory and CPU usage and omits a
number of functions that are not required from other scripting languages.

Using this WMLScript, we could also perform some level of client side
validation. But because of the wide variety of handheld devices (hardware) and
software, usage of client side scripting on all machines is uncertain. Therefore it is
advised to perform input validation on the server.

29

3.9 What technology to use

When deciding what technologies to use for user input validation, several aspects
need our attention.

A first thing that needs to be known is what group of users is allowed to use the
web application in question. If the application is meant for the employees of a
company, it can only be accessed via the company’s Intranet. This gives the
developers either a free choice of technologies to use as they can make sure
everyone in the building gets the necessary software add-ons (plug-ins) to make
the application work, or they know exactly the limitations of the systems present
in the company and can choose a technology that is compatible with the existing
situation.
As soon as the web application is available to everyone on the Internet, the usage
of technology matters to the user. A user can have any machine (hardware)
running a variety of operating systems and web browsers (software). A
commercial web application cannot demand from the users to use a specific
technology from some company just to be able to use the application. The user’s
browsing software might be incompatible with the needed plug-in, the user’s
computer might not have enough memory or computing power or the user can
simply not have the privileges to install extra software on his machine. Besides
from physical computing limitations, certain groups of users simply don’t want
any software from certain companies on their machines. To give a concrete
example, a company that intends to make money from advertisement by providing
a free web service like an e-mail account should think twice before enforcing
possible users to use Microsoft Windows technology to access the service, thus
ruling out Unix/Linux, Macintosh, … users.

Another and far more important issue is security with client-side technologies.
A company cannot use critical business information on the client to validate user
input.
One example as mentioned earlier is the validation of a registration number that a
user has bought to register a piece of software and to gain access to a support
network.
If the company that produces this software includes the information on how a
valid registration number is composed in a function that is available on the client
browser, then hackers can easily reverse-engineer this algorithm to produce their
own registration numbers to unlawfully pay for their software. Such pirate actions
can cause great damage to the company.
There exist utilities that allow one to de-compile the client validation program to
view some form of its source code. Take for example a small program that would
compare an entered value with some other values from a database on the server
(the client application would then make an extra connection to the server). It
would be possible to alter the source code in such a way that possibly confidential
information from the server is transferred to the client PC. The modified source
code can be recompiled and run from the client to achieve this.
Such actions can cause great damage to a company because the loss of credibility
and distrust from the normal users can have a great (negative) impact on the
company’s business.

29

So when a company has a web site containing a form that requires multiple fields
filled out by a user and only one of those fields contains information that has to be
checked on the server for security reasons, then this company would prefer to
check all of the input on the server to have a uniform way of interaction with the
user through feedback.

So to summarize, knowing the audience gives an idea of what technologies can be
considered to use and the nature of the information to be validated should imply
on which side, client or server, it is to be validated.

When considering all of the above, the only technology that is guaranteed to work
on all browsers is a server-side CGI or script that validates the input and gives the
necessary feedback to the user. Of course that CGI or script has to generate some
standard HTML text that doesn’t require any special plug-ins.

3.10 New research directions

3.10.1 Advanced XML-based forms

An idea on how to standardize user input validation: forms with built-in
validation.

It is clear that incompatibilities between technologies, browsers and hardware will
remain a problem if one would choose a specific technology now as ‘the’ standard
way for handling user input. Off course JavaScript seems to be the most supported
technology to cooperate with HTML forms but as discussed before one cannot
rely completely on some JavaScript validation done on the client side before
sending data to the server. Keeping into mind the advantages of using XML
applications on the web and looking at the development of XHTML as an
example of such XML technology, it seems logical to embed semantic
information in forms.
If all the needed information to handle a form is already contained in the form
definition, various technologies can be dynamically applied to achieve the same
goal: validating user input to reduce both the server load and the number of server
connections.

XML Schema is a first step to the solution as various constraints on the actual
data can be represented in the schema. Several other techniques focus on the
development of some kind of form to enter data.

A first XML application for representing forms is the eXtensible Forms
Description Language (XFDL) [XFDL]. XFDL is an XML syntax developed for
the Universal Forms Description Language (UFDL), originally designed by
Unisoft Wares Inc. XFDL is currently still a draft at the W3C. The purpose of

29

XFDL is to solve the body of problems associated with digitally representing
complex forms such as those found in business and government. XFDL is the
result of developing an XML syntax for the Universal Forms Description
Language (UFDL), thereby permitting the expression of powerful, complex forms
in a syntax that promotes application interoperability and compliance to world-
wide Internet standards. The design goals of XFDL include support for high
precision layout, supporting documentation, integrated computations and input
validation, multiple overlapping digital signatures, and legally binding auditable
transaction records, by maintaining the whole form as a single unit such that
digital signatures can capture the entire context of transactions. To use those
XFDL forms, an XFDL processor is needed. It is a software program that reads,
processes, and writes XFDL forms. Processing may include such tasks as GUI
rendering, data extraction, or modification.

XFDL supports several basic data types extended with date, time and dollar but
not as many as XML Schema does. XFDL has the means to denote whether user
input is optional or mandatory, what the range of allowable values is and what the
maximum field length is. Also, templates describing the valid input formats for a
form field can be added and other control flags can be set to state whether input is
case sensitive and so on. Custom help messages can be added to a field and are
displayed to the user when his input doesn’t match the specified data type. An
extensive list of options to specify the layout of a form is present. XFDL also
incorporates computations to enhance the functionality of the form. These are
simply embedded in a <compute> tag.

The following is a simple example taken from [XFDL] and demonstrates a simple
form. It contains three fields: the first two collect side lengths for a right triangle;
the third computes the length of the hypotenuse of the right triangle with the given
side lengths. An editstate of readonly is given to prevent the user from
accidentally destroying the compute by entering a value for field C.

<?xml version="1.0"?>
<XFDL version="4.1.0">

<bgcolor content="array">
<ae>128</ae> <ae>128</ae> <ae>128</ae>

</bgcolor>
<page sid="Pythagorean_Theorem">

<bgcolor content="array">
<ae>192</ae> <ae>192</ae><ae>192</ae>

</bgcolor>
<label>Pythagorean Theorem Form</label>
<field sid="A">

<label>Enter A:</label>
<value>3</value>

</field>
<field sid="B">

<label>Enter B:</label>
<value>4</value>

29

Apart from XFDL, Xforms is another project to represent forms as an XML
application ([XFORM]). Xforms are currently under development by the W3C.
The design of Xforms focuses on the increasing demands for improved human-
computer interaction as well as the interaction mechanisms between the browser
and the server. Xforms will be designed to cleanly distinguish between form data,
logic and presentation ([XFORM2]).

 Fig. 7, Xform design layers: the Datamodel constrains the Instance Data, Instance Data is XML-encoded for exchange
 with the web server, the User Interface accesses the Instance Data via get/set methods in a Model-View-Control
 architecture

The data model allows the abstract structure of a form to be defined without
explicitly specifying a user interface. Xforms will introduce a new user interface
layer for richer user interaction. The device-indepedence will be limited to avoid
the loss of functionality as we have now in HTML forms. Xforms are as such
designed for integration with other XML applications.

The list of Xform requirements includes the following:

User
Interface

Datamodel
Instance

Data
XML-encoded

DATA

29

• Separation of purpose from presentation; Xforms fields should not be bound
to a particular interface representation.

• Allow access and manipulation of forms via the XML Document Object
Model by other scripting languages.

• Xforms should be able to send form data to the server as well formed XML.
• Device and application independence; usage of a form should not rely on

some system specific way of input, like e.g. a double mouse click.
• Xforms will have a set of data types with basic control over it’s content and

achieve some form of input validation there. Functionality would be about the
same as with XFDL: range constraints and patterns.

• Calculations and relations based on existing input fields should be expressed
in the form.

• Saving and resuming; it should be possible for a user to save the form and
then at a later time, to resume filling it out, perhaps from a different machine
and even with a different user interface.

• Xforms should provide richer form controls and offer extended functionality
for data acquisition.

• Other requirements proposed by the W3C include voice enhancements, paper
enhancements for use with OCR (Optical Character Recognition), digital
signatures, …

3.10.2 Verifying page authenticity

One problem with HTML documents and embedded scripting functions is that a
user can alter the source before submitting data to the server. Even if you know
that all of the users have a browser with for example JavaScript enabled, the
actual call of the validation function can be removed and the web document can
then be interpreted from the user’s hard drive as if it was the original. Thus the
server cannot rely on the client-side validation of the input received. If the server
could check whether the web document containing the form was altered or not (in
this closed user environment), client input could be accepted without further
validation or it could simply be rejected. The user could be prompted to retry or
denied further access.
In data transmissions, checksums are used to determine whether the message has
been corrupted during transmission. Compression formats like RAR have a built
in checksum to detect corrupt archives. This is done by calculating Cyclic
Redundancy Codes (CRC) for each file and storing this CRC in the archive.
Before extracting a file from the archive, the CRC is computed and compared
with the original value. For file distributions in the Web (HTTP & FTP), Simple
File Verification (SFV) can be used to generate a text file describing a set of files
for transmission by listing their file size and a checksum. The receiver can then
with this description verify whether the files he got are error-free and complete.
Applying such a technology to a web page can give the server a guarantee that
nobody altered a document before retransmission to the server. A checksum can
be computed on the data sent to the client and stored at the server, the client

29

browser can compute the same checksum of the page’s content when posting data
back to the server.

4. Methods for validating user input

4.1 Domain constraints

4.1.1 Numerical values

29

4.1.1.1 Syntax check

Numerical input can be tested on syntactical correctness by parsing it.
The standard notation for numbers can vary from country to country and because
we are working on the Internet, the processing of these notations should be taken
care of. Of course one could just as well give an example on the form showing
how the data should be entered. But even in that case your application should be
foolproof and invalid numbers should not be used in calculations, generating a
run-time (data) type error.

Some examples of different notations for numbers:

123,45 123.45 123.45E10 123,- -123.45

We suggest to take advantage of the parsing of the input number by at the same
time converting numbers from the recognized valid forms and convert them to one
single format that is used in the rest of the application to allow mathematical
operations on it.
For numbers that are not compatible with any of the defined formats an error
message is generated. Depending on how advanced the parser works, very
specific messages can be generated pointing out where the error in the number is.

Some solutions:

If one doesn’t need advanced checking of numbers one can:

• Use a native function of your programming language for type-checking.
• Treat the number as a string and test character by character.

For more complex parsers one can use a parser generator.
Given a grammar, these tools will produce a program that can check if input is
well formed according to the specified grammar rules.

Some existing and well-known parser generators are:

• JavaCC: The Java Compiler Compiler

JavaCC is a tool that reads a grammar specification and converts it to a Java
program that can recognize matches to the grammar. In addition to the parser
generator itself provides other standard capabilities related to parser
generation such as tree building, actions, debugging, etc…[JavaCC]

• Lex / Yacc

Lex (A Lexical Analyzer Generator) helps writing programs whose control
flow is directed by instances of regular expressions in the input stream [LEX].
Yacc (Yet Another Compiler-Compiler) provides a general tool for describing
the input to a computer program. The Yacc user specifies the structures of his

29

input, together with code to be invoked as each such structure is recognized
[LEX].

• Flex / Bison

Flex (A fast scanner generator) is a tool for generating scanners: programs
which recognized lexical patterns in text [LEX]. Bison is a general-purpose
parser generator that converts a grammar description for a context-free
grammar into a, e.g. C program to parse that grammar [LEX].

4.1.1.2 Range check

Numerical values can easily be tested to check if they are within a given range.
Given a well formed input number n and some interval [a, b] where b >= a, then n
lies within the interval if n >= a and n <= b.
Intervals of the form [a, b[6 can also occur. In that case n lies within [a, b[if n
>= a and n is only restricted by the lower bound a.

These range checks can either be manually programmed or a parser that takes as
input a set of intervals can generate them. Operators as union, set difference and
intersection can be included in the syntax to allow for more complex ranges.

4.1.2 String values

4.1.2.1 String length

When storing string values in a database one has to be sure that -depending on the
database system- no empty strings are inserted or that the strings fit in the
reserved field size of the database table.

Most programming languages have built-in functions for getting the string length.
A string can be compared to the empty string (“”) and if necessary replaced by a
single space character (‘ ‘).

String overload can be avoided by limiting the string size at input level. This is
built-in into HTML.
4.1.2.2 String syntax

If for example, a user wants to register a piece of software online and has to enter
a personal serial number, the structure of the serial number can be tested.

A serial number might look like this: 12345-ABCD-678

6]a, b[,]a, b] are also possible intervals

29

A simple parser can check if the string is of the form [5 numbers][‘-‘][4
characters][‘-‘][3 numbers].

It is would not be safe to include the algorithm at the client side for checking the
correctness of the serial number. If so, pirates can reverse-engineer the algorithm
to make a serial number generator for illegal purposes.

4.1.3 Values from a set

When a user has to enter a value of which there are only limited values
acceptable, there are two ways to validate this input.

One solution is to compare the input from the user in a big IF statement with all
the acceptable solutions. This approach has some drawbacks. Take as an example
a form that requires a user to enter the name of the country he/she lives in. First of
all the user has to spell the name in exactly the same way the makers of the form
did. Secondly, a lot of string comparisons are needed to validate the input.

Therefore it is better to present the user with a pull-down menu when he has to
choose among a fixed number of values. This way the user cannot enter invalid
data. Of course we have to rely on the user for selecting the correct value from the
pull-down menu. When validating domain constraints we cannot tell if the user
actually enters truthfully correct information.

4.2 Referential constraints

There are generally three ways to deal with referential constraints.

4.2.1 Referential constraints enforced by the DBMS

Many Database Managers refuse to store information if either entity integrity or
referential constraints invalidate it. This would allow the programmers to
completely rely on the DBMS when inserting a tuple. The only thing that should
be done is to catch the error from the DBMS and to generate an understandable
error message for the user using the web application.

4.2.2 Manually verify referential constraints

As implied in the previous point, many, meaning not all Database Managers check
for referential correctness. The common used MySQL database server does not
automatically verify referential constraints. The programmer himself can write
extra database queries that first check if the foreign key of the tuple he is about to

29

store matches a primary key in the home relation. The programmer can then
decide what action to take if the referential constraint gets violated. The drawback
of this method is the loss of data independence. Data independence is an
important concept in the separation of an application and the data it operates on. If
the descriptions and logic for accessing the data are built into an application
program, the program becomes dependent on the data. Changes to the structure of
the data can require substantial alterations to the programs dependent on this data.
In a DBMS, data independence is reached by incorporating the ANSI-SPARC
architecture that provides both logical and physical data independence. This three-
level architecture has a mapping from the external schemas (user views) to the
conceptual schema (tables & relations) giving a logical data independence that
refers to the immunity of external schemas to changes in the conceptual schema.
A second mapping from the conceptual schema to the internal schema (storage
structures) results in physical data independence, which in turn refers to the
immunity of the conceptual schema to changes in the internal schema ([CBS 96]).
The programmer now has to include elements of the table definitions in the
application that describes which attributes belong to primary or foreign keys.
Subsequent changes to the database definition will most likely affect the operation
of application.
If the web application allows the user to update tuples with referential constraints,
strategies as listed in 2.1.3 can be applied to maintain data integrity.

4.2.3 Avoid invalid foreign keys entered by users

If the web application would make it impossible for the user to enter information
in such a way that referential constraints are violated, it would eliminate the need
for manually checking these if the DBMS has no facilities to do it automatically.
The best way to achieve this functionality is to generate a list of all valid entries
for a foreign key. The user can then be presented with e.g. a pull-down list
containing those values and thus limiting him to select a valid one. The list of all
valid foreign keys can be found by querying all unique primary keys from the
home relation. It is not needed to show the primary key to the user because this
might be some personID number while the user is expecting to select the name of
a person. The value shown in a pull-down list and the actual value sent to the
server need not be the same.

4.3 Enterprise constraints

4.3.1 One cell constraints

A one cell constraint is a constraint that does not depend on other cells from either
the same row, table or database. Generally, each value for an attribute dependent

29

on a one cell enterprise constraint, needs to satisfy some function implementing
the constraint. Examples of such functions can be a test to see whether a number
is prime or a function to test whether a serial number to register a commercial
application is a valid one. If supported by the DBMS, these enterprise constraints
can be implemented in the database itself. Otherwise, these validation functions
can be implemented on both the client and the server side. Of course, care should
be taken when considering what functions to implement on the client side. As
mentioned in 4.1.2.2, putting a function that uses confidential information from a
business should not be put on the client for everyone to view.

4.3.2 Multi cell constraints

Values for an attribute might as well be constrained in respect to values from
other attributes but making it different from a domain constraint. Lets take for
example a database application for administrating employee salaries. Domain
constraints on the salary attribute of an employee might be an interval between the
legal minimum wage and some maximum specified by the company. Extra
enterprise constraints can then for example state that the salary of the manager has
to be at least 35% more than the average salary of the other employees. Again,
those constraints can be implemented directly into the DBMS if supported or it
can be manually implemented on the server side by first making some queries and
then compare it with the input before storing new data.
Such constraints can be checked on the client side as well. The server could, while
generating the form interface for the user, include extra information from some
queries needed to test the constraint. Once again, care should be taken on what
information the user is allowed to view that way.

5 Examples

5.1 Domain constraints

5.1.1 Numerical values

29

5.1.1.1 Syntax check

The following example in Java uses a built-in function from the
java.lang.Integer class that parses the string argument as a signed decimal
integer.
Numbers that can be parsed by the following syntax: [-][0..9]+ (any sequence of at
least 1 digit, possibly preceded by a minus sign) are accepted.

Example in Java:

The next JavaScript example treats a number as a string. This is because the input
for this number most likely comes from a <INPUT Type=”TEXT” …> form
element. The function testInt can be called from the onClick attribute of the
form’s submit button.
Input of “123A5” would result in an error message.

Fig. 8, JavaScript error message

Example in JavaScript:

String intString = "123a4";

try {

int parsedInt = Integer.parseInt(intString);

} catch(NumberFormatException e) {

System.out.print("\n Error: Invalid integer " + e.getMessage() + "\n");

}

function testInt(number) {

s = number.length;
stringIndex = 0;

if(s > 0) {

numberOk = true;

} else {

numberOk = false;

29

Another example demonstrates the parsing of (Belgian) telephone numbers.
Using the Java Compiler Compiler (JavaCC), one can specify a grammar and
actions to be undertaken during the parsing process. Then a set of Java files will
be generated that implement a parser for the grammar specified.
This grammar accepts both “012345678” and “012/34.56.78” which are not all
pure numerical values. Numbers like “0123456781111” are also accepted, as the
parser will first find the valid number “012345678”. This parser is not 100%
correct but merely serves as an example of an alternate way to check user input.

Example in JavaCC:

PARSER_BEGIN(TelParser)

public class TelParser {

public static void main(String args[]) {

TelParser parser;
System.out.println("Enter (Belgian) Telephone Number:");

parser = new TelParser(System.in);

try {
 String theResult;

29

...

|

< #SLASH: "\\" | "/" >

|

< #ONE_DIGIT: ["0"-"9"] >

|

< # TWO_DIGITS: <ONE_DIGIT> <ONE_DIGIT> >

|

< # THREE_DIGITS: <ONE_DIGIT> <ONE_DIGIT> <ONE_DIGIT> >

29

5.1.1.2 Range check

A range check is very easy to implement as is shown in the next JavaScript
function that verifies whether a user’s age falls into the interval specified for the
application needing the piece of information.

29

Example in JavaScript:

5.1.2 String values

5.1.2.1 String length

The string length of user input can be limited at the client by specifying the
maximum length for every text input box in the form. This can be easily achieved
by the MAXLENGTH attribute. The example shows the HTML code for a text box
where the user enters his login for some service and this input box is limited to
accept no more than 8 characters. The Microsoft Internet Explorer browser blocks
character input as soon as the maximum length is reached.

Example in HTML:

5.1.2.2 String syntax

See example in 5.1.1.1.

5.1.3 Values from a set

function testAge(age,minAge,maxAge) {

if((age < minAge) || (age > maxAge)) {

window.alert('Please enter a more realistic age.');

}
}

<INPUT TYPE="TEXT"
 MAXLENGTH="8"
 NAME="Login"
 SIZE="9"
 VALUE=""
>

29

HTML has facilities for creating pull-down menus from which a user can select
either a single item or multiple items. It suffices to enumerate all the elements
from the set and their corresponding values that will be sent to the server to fill the
menu.
The following piece of HTML represents the pull-down menu from fig. 9 where a
user can select his favorite music genre. “House” is marked as a default selection.

Example in HTML:

5.2 Referential constraints

5.2.1 Referential constraints enforced by the DBMS

Many database systems verify referential correctness of new data that is to be
added or of existing data that is to be updated or deleted. The next example uses
Microsoft Access and PHP_ to implement a small application to subscribe
students for their exams. This is done by linking an exam to a student in a new
table. If a student with a studentID that is not in the database is subscribed,
referential integrity is violated and the Access database will give an error instead
of storing the tuple. In the example, the real error message “SQL error:

[Microsoft][ODBC Microsoft Access Driver] You cannot add or change a record because a related
record is required in table ‘Students’., SQL state 23000 in SQLExecDirect” is suppressed and
a simple “Error: Unknown student: …” is shown instead. Other database drivers allow
extraction of different parts of the error message from the DBMS to construct a
meaningful custom error message.

Example in PHP_

Fig. 9, Selecting values
from a set

<SELECT NAME="MusicGenre" SIZE="1">

<OPTION VALUE="Acid-Jazz"> Acid-Jazz
<OPTION VALUE="Dance"> Dance
<OPTION VALUE="Drum-n-base"> Drum-n-base
<OPTION VALUE="Garage"> Garage
<OPTION VALUE="House" SELECTED> House
<OPTION VALUE="Jazz"> Jazz
<OPTION VALUE="Lo-fi"> Lo-fi
<OPTION VALUE="Lounge"> Lounge

</SELECT>

<?

header("Pragma: no-cache");
header("Cache-Control: no-cache, must-revalidate");

$mysqldbid = odbc_connect("test1", "", "");

if ($submit) {

// this code will be executed if the form has been sent
// ODBC error reporting is disabeled, if $status is false, referential
// integrity is violated

$status = @odbc_exec($mysqldbid, "INSERT INTO ExamSubscriptions VALUES
 ($exam,$student)");

29

…

</SELECT>

<P>Enter Student Role Number:

<INPUT TYPE="TEXT" NAME="student" MAXLENGTH="5" SIZE="5">

<P><INPUT TYPE="SUBMIT" NAME="submit" VALUE="Submit">

</FORM>

</BODY>

</HTML>

<?

29

Microsoft Access tables for the PHP example:

Fig. 10, MS Access tables and relations with referential constraints

5.2.2 Manually verify referential constraints

Not all database systems have facilities for enforcing referential constraints. To
maintain data integrity, the server script in this example performs a query to check
whether the student is in the database before adding the student-exam link. This is
implemented in 5.2.3, which is a modification of the example in 5.2.1.

5.2.3 Avoid invalid foreign keys entered by users

As mentioned earlier, the user of the web application cannot enter information in
such a way that storing it would invalidate referential constraints if the input were
limited by e.g. pull-down menus. As the web application stores data in a database,
a fixed set of input choices can either become insufficient for automatically
maintaining referential correctness or it imposes a limit on the usage of the web
application. Therefore the items for the pull-down menu are automatically
generated every time the user requests the web page containing the form interface.
The PHP script generates HTML code as shown in 5.1.3 using information
fetched from a MySQL database. The MySQL tables used here have the same
structure as those in the MS Access example.

Example in PHP_

29

<?

header("Pragma: no-cache");
header("Cache-Control: no-cache, must-revalidate");

$mysqldbid = mysql_connect("localhost", "jplasqui", "gnat");

mysql_select_db("forumtest", $mysqldbid);

if ($submit) {

// this code will be executed if the form has been sent

$foreign_key_check = mysql_num_rows(mysql_query("SELECT
FirstName,LastName FROM Students WHERE StudentID=$student"));

if($foreign_key_check) {

// insertion only happens if no referential constraints are violated
// for the student; exams are assumed to exist as they come from a
// pull-down menu

mysql_query("INSERT INTO ExamSubscriptions VALUES
($exam,$student)");

echo("<P>Subscription OK
");

} else {

echo("<P>Error: Unknown student: <I>$student</I>
");

}

} else {

?>

<HTML>

<HEAD>
<TITLE>Exam subscriptions</TITLE>

</HEAD>

<BODY>

...

…

<P><FORM ACTION="foreign_key.php3" METHOD="POST">

Select course:

<SELECT NAME="exam">

<?

$query_result = mysql_query("SELECT ExamID,CourseName FROM Exams",
$mysqldbid);

// generate items for pull-down menu

while($row = mysql_fetch_array($query_result)) {

29

MySQL tables for the PHP_ example:

CREATE TABLE Students(

StudentID INTEGER NOT NULL PRIMARY KEY,
FirstName VARCHAR(64) NOT NULL,
LastName VARCHAR(128) NOT NULL

);

CREATE TABLE Exams(

ExamID INTEGER NOT NULL PRIMARY KEY AUTO_INCREMENT,
CourseName VARCHAR(128) NOT NULL

);

29

5.3 Enterprise constraints

5.3.1 One cell constraints

A one cell constraint is some form of a special domain constraint. An example of
a one cell constraint is a rule used in banking to verify the well-formedness of a
bank account number. A belgian account has the from of “123-4567890-02”, the
last two digits are a built-in check, it should be equal to the remainder after

29

dividing the first ten digits by 97. The JavaScript function performs this check; it
does not first test whether the account number is in the format mentioned above.

Example in JavaScript

5.3.2 Multi cell constraints

In this example, the value of a field is constrained by other tuples for the same
relation. The enterprise constraint states that a manager should at least earn 30%
more than the average of the other (non-manager) employees. The server script
generates the client side script with the correct test values.

MySQL table

function testActNbr(actNbr) {

nbr = actNbr.substring(0,3) + actNbr.substring(4,11);

check = actNbr.substring(12,14);

if((nbr % 97) == check) {

return(true);

} else {

window.alert("Invalid Account number ["+actNbr+"].");

}

}

CREATE TABLE Employees(

EmployeeID INTEGER NOT NULL,
JobStatus SET('Manager','Engineer','Junior'),
Salary DOUBLE,
PRIMARY KEY (EmployeeID)

);

<?

$mysqldbid = mysql_connect("localhost", "jplasqui", "gnat");
mysql_select_db("forumtest", $mysqldbid);

if($submit) {

echo("salary $salary accepted...");

// DataBase update here

} else {

// vars: $employee_id

?>

<HTML>
<HEAD>

29

…

<P><FORM NAME="SalaryForm"
 ACTION="edit_salary.php3"
 METHOD="POST"
 OnSubmit="return testSalary(document.SalaryForm.salary.value);"
 >

Enter new salary for employee
<? echo(" $employee_id, $job_status"); ?>:

<P><INPUT TYPE="TEXT" NAME="salary" SIZE="7">

<P><INPUT TYPE="SUBMIT" NAME="submit" VALUE="Submit">

</FORM>

</BODY>
</HTML>

29

6 Conclusions and further work

6.1 Further work

Before coming to the conclusions, we will first briefly discuss a number of issues
that are not elaborated in this thesis but are relevant for the problem and therefore
could be given attention in possible further work.

29

6.1.1 Synchronization client/server rules

Validating user input comes down to applying business rules to it and check for
conformance with the rules. If one chooses to use both server side and client side
validation, problems can arise when the business rules change. If the rules on the
server change before they are propagated to the client side, users will get errors or
input that is now accepted by the server will still be rejected by the browser.
These problems can be solved by changing both client side and server side
implementations of the validation system at the same time. On the server side, this
may only involve a change in the definition of a database table in contrast to
altering probably several lines of code on the client. If the business rules were
specified in some formal language, client side code could be generated from it. In
some extent, server side validation could also be based on those business rules.

 Fig. 11, Business rules

6.1.2 Web document authenticity

As listed in 3.10.2, further research is needed on mechanisms to guarantee
document authenticity. His includes researching whether existing technologies
already implement this, verifying which technologies can be used for it and how
this extra processing impacts server performance and the way of serving
documents to the users. Some documents are self-modifying, how will such a
modified document be compared to the original? Also, in what way will browsers
have to be enhanced to compute a checksum for a page and how can this
checksum be sent to the server with current technologies (e.g. using cookies).

6.2 Conclusions

Client JavaScript

HTTP
Server CGI

Business
Rules

29

In this thesis, we have investigated the problem of validating user input in web
applications. We have seen that an increasing amount of programming languages
allows client and/or server side validation of user input. User input can be
validated at the client but the developers have to consider possible data overload
for the client when checking foreign keys or the possible risk of including
sensitive information in the client browser. A suitable server side scripting
language has to be chosen based on the frequency of requests for the application
to run. Performance of web applications is directly related to the way they are
executed on the server. Compiled scripts execute faster than scripts that need to be
interpreted at every request.

Clearly, client-side validation has several benefits:

• It reduces load on the server. “Bad data” are already filtered out when input is
passed to the server-based program.

• It avoids a series of connections to the server to handle faulty data. This saves
bandwidth for the server.

• It reduces delays in case of user error. Validation otherwise has to be
performed on the server, so data must travel from client to server, be
processed, and then returned to client for valid input.

• It simplifies the server-based program.

Although there are several advantages when using client-side validation, very few
web applications actually use it. Actually there are several reasons why client-side
validation is almost not used today:

• There exist quite a number of different technologies that allow some form of
client-side validation; however there is no guarantee that the user’s browser is
compatible with the used technology.

• The above implies that a company cannot just rely on one technology. If the
company rules out users that cannot or don’t want to use a certain technology,
then they lose a probably large piece of their so much needed audience. On the
other hand, providing a choice to the users means a greater cost for the
company.

• It is still possible that certain user agents cannot use any form of client-side
validation or that users disable the interpretation of some client-side scripting
language or even play around with hidden data or function calls in the form.
Thus the server needs to check the input or at least some of it anyhow, in order
to avoid database inconsistencies or incorrect behaviour of the application.

• Not all kinds of user input can be validated at the client. Especially if the
validation process involves confidential and/or critical information from the
company. Validating foreign keys on the client may require a huge amount of

29

data that needs to be sent with the form to the client. Aside from possible
privacy issues with that data, the form generating process and the traffic can
cause a greater load on the server then what might be saved with client-side
validation. Thus some data is better validated on the server.

• Using some kind of a CGI to validate input and send feedback to the user in
valid (X)HTML is in fact the only reliable way of validating user input in a
way that is compatible with all devices.

To conclude, client-side validations are good for preventing roundtrips to the
server but are not yet to be trusted such that server-side validation becomes
redundant.

References

Books

[CBS 96] Thomas Connolly, Carolyn Begg, Anne Strachan
Database Systems – A Practical Approach to Design,
Implementation and Management

29

Addison-Wesley, 1996

[V 99] Prof. Dr. E. Vandijck
Databases
Dienst Uitgaven VUB

[DFAB 98] Alan Dix, Janet Finlay, Gregory Abowd, Russel Beale
Human-Computer Interaction, second edition
Prentice Hall Europe, 1998

[H 96] Scott Hillier
Inside Microsoft Visual Basic, Scripting Edition
Microsoft PRESS, 1996

Papers

[L 97] Barry M. Leiner, Vinton G. Cerf, David D. Clark, Robert E.
Kahn, Leonard Kleinrock, Daniel C. Lynch, Jon Postel,
Lawrence G. Roberts, Stephen S. Wolff
The Past and Future History of the Internet
Communications of the ACM, Vol. 40, No. 2, February 1997

[C 99] Jim Conallen
Modeling Web Application Architectures with UML
Communications of the ACM, Vol. 42, No. 10, October 1999

[O 98] John K. Ousterhout
Scripting: Higher Level Programming for the 21st Century
IEEE Computer magazine, March 1998
http://www.scriptics.com/people/john.ousterhout/scripting.html

URLs

[Netscape] Client Side State – HTTP Cookies
http://www.netscape.com/newsref/std/cookie_spec.html

[RSA] RSA Security Inc.
http://www.rsasecurity.com

[WAPF] WAP Forum
http://www.wapforum.org/

[JavaCC] JavaCC
http://www.metamata.com/JavaCC/

[LEX] The LEX & YACC Page
http://www.combo.org/lex_yacc_page/

http://www.scriptics.com/people/john.ousterhout/scripting.html
http://www.netscape.com/newsref/std/cookie_spec.html
http://www.rsasecurity.com
http://www.wapforum.org/
http://www.metamata.com/JavaCC/
http://www.combo.org/lex_yacc_page/

29

[PHP3] PHP
http://www.php.net

[ZEND] ZEND
http://www.zend.com

[XML] XML for Managers – Evaluating SGML vs. XML from a
Manager’s Perspective
http://www.arbortext.com

[XHTML] XHTML 1.0
http://w3.org/TR/xhtml1/

[JSVL] William Crawford
Developing Java Servlets
http://webreview.com/

[JWS] Phil Inje Chang
Inside The Java Web Server
http://java.sun.com/

[CF] The ColdFusion Web application server and development from
Allaire
http://www.allaire.com/products/coldfusion/

[PERL] Introduction to PERL
http://www.cclabs.missouri.edu/things/instruction/perl

[MATH] The Mathematical Markup Language
http://www.w3.org/TR/2000/WD-MathML2-
20000328/overview.html

[XSCH] XML Schema Part 0 – Primer
http://www.w3.org/TR/xmlschema-0/

[XFDL] Extensible Forms Description Language (XFDL) 4.0
http://www.w3.org/TR/NOTE-XFDL

[XFORM] XForms requirements
http://www.w3.org/TR/xhtml-forms-req

[XFORM2] XForms 1.0 : Data model
http://www.w3.org/TR/xforms-datamodel

http://www.php.net
http://www.zend.com
http://www.arbortext.com
http://w3.org/TR/xhtml1/
http://webreview.com/
http://java.sun.com/
http://www.allaire.com/products/coldfusion/
http://www.cclabs.missouri.edu/things/instruction/perl
http://www.w3.org/TR/2000/WD-MathML2-
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/NOTE-XFDL
http://www.w3.org/TR/xhtml-forms-req
http://www.w3.org/TR/xforms-datamodel

