

 FACULTY OF ENGINEERING
 Department of Computer Science - WISE
 Master Applied Science and Engineering: Computer Science

 A Context-Aware View Over Social Media

 Graduation thesis submitted in partial fulfillment of the requirements
 for the degree of Master Applied Science and Engineering: Computer Science
 Luong Dinh Hieu

 Promoter: Prof. Dr. Olga De Troyer
 Advisor: Dr. William Van Woensel, Prof. Dr. Sven Casteleyn

 2013-2014

Acknowledgements

First of all, I would like to thank my promoter Prof. Dr. Olga De Troyer for her valuable
advices, support and encouragement.

I would like to thank BTC organization for their financial support. I also want to thank
Vrije Universiteit Brussels (VUB) for accepting me as a student and VUB's staff for their
help when I arrived at the university.

I would also like to thank William Van Woensel - my advisor for his great patience,
enthusiasm, and encouragement during the time of doing this thesis. His vast experience
in doing researched helped me a lot in my thesis work. Without him, this thesis would
never been accomplished.

Another advisor, Prof. Dr. Sven Casteleyn, also deserves my gratefulness for his effort in
correcting this dissertation. His corrections and advices help me so much during the
accomplishment of this thesis.

Finally, I thank my friends and my family who helped me and encourage me spiritually
during the time I was doing the thesis.

Abstract

The capabilities of mobile devices have increased with leaps and bounds. Nowadays,
with a smartphone in hand, mobile users can run powerful mobile applications (e.g.,
office apps, games, route planners) anywhere and anytime. In addition to increased
memory and processing power, mobile devices are also being outfitted with a range of
detection technologies (e.g., NFC, GPS). Importantly, these technologies enable the
collection of the mobile user's context. For example, at a short distance, technologies
such as Bluetooth, RFID and NFC may discover surrounding objects, including people,
places and things. In addition, GPS technology allows us to determine the location of
user, and built-in accelerometers and digital compasses identify human motion and
orientation. When equipped with these technologies, mobile devices are able to sketch an
overall contextual picture about the mobile user.

At the same time, the explosive growth of social media allows people to connect each
other in the online community. A wide variety of social media platforms exist to suit all
sorts of social needs, such as communication in general (e.g., Facebook, Twitter),
business and professional networking (LinkedIn), education (StudiVZ), music (Last.fm),
and so on. In line with the current popularity of mobile devices, social media is being
more and more deployed on mobile platforms. This includes mobile apps to supply
instant and real-time access to social media (e.g., Twitter, Facebook), and directly share
photos and videos online with family and friends (e.g., Instagram). Due to this mobile
deployment, an excellent opportunity exists to automatically enhance social media
interaction by leveraging captured mobile user context. Current examples include the
geo-tagging of pictures shared on a social media platform (e.g., Facebook, Google Plus,
etc.), and automatically discover services based on the user's location (e.g., Foursquare).

In particular, an important opportunity exists to realize a full, bi-directional integration of
social media with the physical world. In one direction, context collected by mobile
devices could be utilized to automatically enrich social media content. For example,
information of a new place that users visited could be shared to the online community
automatically. This automation reduces the burden of manual user's context annotation.
In another direction, the relevant and useful information can be automatically retrieved
from social media, by leveraging the mobile user's context. For example, when travelling
to a new place, any information related to that place obtained from social media (e.g., the
user's friends have been there, or information of some event is occurring at that place)
could be interesting or helpful to the user.

The goal of this thesis is to investigate and develop a generic software framework,
realizing a full bi-directional integration of social media and real world activities.
Furthermore, it allows integrating any social network, and thus provides us an
opportunity to exploit context-relevant information from different sources at once. In
addition, integrating multiple social networks is necessary because people are typically
subscribed to different social network platforms for different purposes. Finally, an
android application is built upon this framework. This is a proof-of-concept application
with a user-friendly mobile interface, grouped around important social media concepts.

	
 i	

Contents

1	
 Introduction	
 ...	
 1	

1.1	
 Research	
 Context	
 ...	
 1	

1.2	
 Problem	
 Statement	
 ...	
 3	

1.3	
 Goals	
 and	
 Approach	
 ..	
 4	

1.3.1	
 Targeted	
 Results	
 ..	
 4	

1.3.2	
 Challenges	
 ...	
 4	

1.3.3	
 Approach	
 ...	
 4	

1.4	
 Structure	
 of	
 the	
 Thesis	
 ...	
 6	

2	
 Background	
 ...	
 7	

2.1	
 User	
 Context	
 ..	
 7	

2.2	
 Context	
 Awareness	
 ..	
 7	

2.3	
 Social	
 Networks	
 Connect	
 Service	
 ..	
 8	

2.3.1	
 Facebook	
 API	
 ...	
 9	

2.3.2	
 Twitter	
 API	
 ..	
 12	

2.3.3	
 Google	
 Plus	
 API	
 ..	
 13	

2.4	
 SCOUT	
 ..	
 15	

2.4.1	
 Semantic	
 Web	
 ...	
 15	

2.4.2	
 RDF,	
 RDFS,	
 OWL,	
 SPARQL	
 ...	
 16	

2.4.3	
 SCOUT	
 Framework	
 ...	
 16	

3	
 Related	
 Work	
 ..	
 19	

3.1	
 Integration	
 of	
 Social	
 Media	
 and	
 Physical	
 World	
 ...	
 19	

3.1.1	
 From	
 Social	
 Media	
 to	
 Physical	
 World	
 ..	
 19	

3.1.2	
 From	
 Physical	
 World	
 to	
 Social	
 Media	
 ..	
 20	

3.2	
 Extracting	
 Data	
 from	
 Social	
 Networks	
 ..	
 21	

3.3	
 Integrating	
 Multiple	
 Social	
 Networks	
 ...	
 22	

4	
 Approach	
 ..	
 23	

4.1	
 Architecture	
 Overview	
 ...	
 24	

4.2	
 Social	
 Network	
 Layer	
 ..	
 28	

4.2.1	
 Data	
 Type	
 ...	
 31	

4.3	
 Data	
 Processing	
 Layer	
 ..	
 35	

4.3.1	
 Request	
 Handler	
 ..	
 37	

4.3.2	
 Context	
 Repository	
 ..	
 37	

4.3.3	
 Filter	
 Process	
 ..	
 43	

4.4	
 User	
 Interface	
 Layer	
 ...	
 46	

5	
 Proof-­‐of-­‐Concept	
 Mobile	
 App	
 ...	
 48	

5.1	
 Shared	
 Data	
 Types	
 ...	
 48	

5.2	
 Shared	
 Methods	
 ..	
 49	

5.3	
 Account	
 Screen	
 ...	
 51	

5.4	
 Home	
 Screen	
 ..	
 53	

5.5	
 Friends	
 Screen	
 ..	
 56	

5.6	
 Check-­‐ins	
 Screen	
 ..	
 59	

5.7	
 Group	
 Screen	
 ...	
 61	

5.8	
 Photos	
 Screen	
 ..	
 63	

5.9	
 Posts	
 Screen	
 ...	
 67	

	
 ii	

5.10	
 Events	
 Screen	
 ..	
 69	

5.11	
 Search	
 Screen	
 ...	
 71	

5.12	
 Map	
 Screen	
 ..	
 72	

5.13	
 Physical	
 Entities	
 Screen	
 ..	
 73	

5.14	
 History	
 Screen	
 -­‐	
 The	
 Semi-­‐Auto	
 Posting	
 ..	
 74	

5.15	
 Preference	
 Screen	
 -­‐	
 The	
 Auto-­‐Posting	
 ...	
 75	

6	
 Conclusion	
 and	
 Future	
 Work	
 ...	
 77	

	
 iii	

List Of Figures

Figure 1 - Facebook popularity. Active users of Facebook increased	
 	
 1	

Figure 2 - Social-networks connect services Framework [13]	
 ...	
 8	

Figure 3 - Facebook Platform services	
 ...	
 10	

Figure 4 - Facebook Graph Search Query	
 ...	
 11	

Figure 5 - Facebook Graph Search Query with Location	
 ..	
 11	

Figure 6 - Facebook FQL Query	
 ..	
 11	

Figure 7 - Twitter API Search Request	
 ..	
 12	

Figure 8 - Twitter Search API Parameter	
 ..	
 13	

Figure 9 - Google Plus Search API Request	
 ..	
 14	

Figure 10 - The Google Plus Search API Parameter	
 ...	
 14	

Figure 11 - Architecture Overview	
 ..	
 24	

Figure 12 - The data flow between layers	
 ...	
 26	

Figure 13 - The Social Network Layer Core Classes	
 ..	
 28	

Figure 14 - The set of common social network methods	
 ...	
 30	

Figure 15 - Facebook Post Fields	
 ...	
 32	

Figure 16 - Twitter Tweet Fields	
 ...	
 33	

Figure 17 - Constructing the shared Post data type	
 ...	
 34	

Figure 18 - The Data Processing Layer Core Classes	
 ...	
 36	

Figure 19 - The Context Repository diagram	
 ..	
 38	

Figure 20 - Entity Data Type	
 ...	
 39	

Figure 21 - SPARQL - Select All Detected Entities	
 ..	
 41	

Figure 22 - SPARQL - Select All Nearby Entities	
 ...	
 42	

Figure 23 - SPARQL - Search Nearby Entity By Type	
 ...	
 43	

Figure 24 - Context Matching - The User's Context..	
 44	

Figure 25 - The Context Matching - The User's Profile	
 ...	
 46	

Figure 26 - Shared Vocabulary	
 ...	
 49	

Figure 27 - Shared Methods	
 ...	
 50	

Figure 28 - The Account Screen - integrate Facebook, Twitter and Google Plus	
 	
 51	

Figure 29 - The Account Screen - Showing Profile, Logout and Start Application	
 	
 52	

Figure 30 - The Home Screen	
 ...	
 53	

Figure 31 - The Home Screen - Collecting Physical Entities	
 ...	
 53	

Figure 32 - The Home Screen - Functions related to the physical entities	
 	
 54	

Figure 33 - The Home Screen - Functions related to the physical entities	
 	
 54	

Figure 34 - The Home Screen - Shared Methods	
 ...	
 54	

Figure 35 - The Home Screen - Shared Methods Description	
 ...	
 55	

Figure 36 - Friends Screen	
 ...	
 56	

Figure 37 - FQL to find friends' education matching user's context	
 ..	
 57	

Figure 38 - FQL to find friends' work place matching user's context	
 	
 57	

Figure 39 - FQL to find friends' living place matching user's context	
 	
 57	

Figure 40 - The Check-Ins Screen	
 ...	
 59	

Figure 41 - FQL to find friends' check-ins in a specific location	
 ..	
 60	

Figure 42 - The Group Screen	
 ...	
 61	

Figure 43 - Facebook Graph Search to find all groups related to user's context	
 	
 62	

	
 iv	

Figure 44 - FQL to get all recent news from a specific group	
 ...	
 62	

Figure 45 - The Photos Screen	
 ..	
 63	

Figure 46 - FQL to get information about the user's friends' albums	
 	
 64	

Figure 47 - The Photo List	
 ...	
 65	

Figure 48 - FQL to get all photos in a specific album	
 ..	
 65	

Figure 49 - The Posts Screen	
 ...	
 67	

Figure 50 - Facebook Graph Search to find all public posts related to context	
 	
 67	

Figure 51 - The Events Screen	
 ..	
 69	

Figure 52 - Facebook Graph Search to find events related to user's context	
 	
 69	

Figure 53 - Facebook Graph Search to find all user's friends who attend a specific event

	
 ...	
 70	

Figure 54 - The Search Screen	
 ..	
 71	

Figure 55 - The Map Screen	
 ..	
 72	

Figure 56 - The Physical Entities Screen	
 ..	
 73	

Figure 57 - The History Screen	
 ..	
 74	

Figure 58 - Share the History Context	
 ..	
 74	

Figure 59 - The Preference Screen	
 ..	
 75	

	
 1	

1 Introduction
This chapter presents the research context and problem statement, as well as a summary
of the approach and the structure of this dissertation. In particular, the research context
indicates the motivations and opportunities of integrating social media on mobile.

1.1 Research Context

Online social media has become incredibly popular, and is being accessed by a wide
range of different people for different purposes (e.g., LinkedIn for business, Facebook for
communication, StudiVZ for education). In 2012, the use of social media reached 1
billion users and in the last year (2013) the growth shows no signs of slowing down (see
figure 1). Social media has been deeply integrated into our routine and is having an
increasing impact on human society. People use social media as a new way of
communication and sharing information. In business, social networks are used as a tool
for product advertisement.

Figure 1 - Facebook popularity. Active users of Facebook increased

from just a million in 2004 to over 750 million in 2011. Taken from Wiki source 1

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1 http://en.wikipedia.org/wiki/Facebook

	
 2	

Parallel to the widespread usage of social media, we observe the rapid growth of the
smartphone and tablet markets. Combining these two evolutions, people are getting more
involved in social networking and on advanced mobile devices. Smartphone users are
spending more time on social networks - say, posting status updates on Facebook,
tweeting their thoughts to followers on Twitter or checking-in on Foursquare. Up to
February 2013, according to the MarketingCharts Mobile Consumer Survey2, 55% of
social networking consumption occurs on mobile devices. There are also numerous
applications, allowing users to access social media platforms (Facebook, Twitter, Tumblr,
Google Plus, etc.) on mobile devices. By deploying social media on mobile devices,
mobile users are empowered to directly post updates related to their changing locations
(e.g., having a nice lunch at the VUB KultuurKaffee), or directly tag location to their
photos (e.g., a photo with description "Light Festival at Amateur Square"); and vice-
versa, finding social media information related to their current surroundings (e.g., friend's
reviews of the KultuurKaffee, or future events attended by friends at that place). In doing
so, mobile social media platforms allow for a strong intertwinement of social media real
life.

Advanced sensing capabilities of smartphones and tablets allow identifying the mobile
user's current location and surroundings. For instance, built-in cameras (to read Quick
Response codes), as well as RFID (Radio Frequency Identification) and NFC (Near Field
Communication) readers not only allow integration with nearby tags and devices, but
collecting data from them as well. The mobile user's current, fine-grained location is
retrieved via GPS technology, and compasses and accelerometer acquire human motion
states. As a result, the availability of such sensing hardware opens an excellent
opportunity to obtain the mobile user's physical context.

The deployment of social media platforms (Facebook, Google Plus, etc.) on mobile
devices, together with the context-sensing capabilities of current mobile devices, result in
opportunities to automatically integrate social media with activities in the physical world.
Currently, such integration is already being performed to an extent. Efforts are underway
by social media providers themselves (e.g., almost social medias support geo-tagging
feature, letting users store or keep track of data based on location; Foursquare helps
smartphone users find the perfect places in their vicinity, such as discovering best coffee
shops, restaurants, coupons or promotion). Moreover, such integration is also investigated
in related researches. This includes automatic status updates, based on inferred daily
activities (IYOUIT [11]). This also includes automatic extracting context-relevant social
media data and thereby giving recommendations based on the user's situation (WhozThat
[2], SocialFlick [3]). All of these efforts reflect the importance of integrating social media
with activities in the physical world.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

2 http://www.marketingcharts.com/wp/interactive/55-of-social-networking-consumption-
occurs-on-a-mobile-device-27327/

	
 3	

1.2 Problem Statement

As mentioned, social media platforms are increasingly dealing with the integration of
social media and physical activities. In related works, this integration is currently done
even more extensively. However current approaches performing this integration are not
very far-reaching in the two following fundamental ways:

Firstly, many people are members of multiple social media platforms, but current
approaches only consider a single or few platforms at a time. Nowadays, joining multiple
social medias is normal practice. For example, Facebook is now part of most people's
lives; Twitter is where a lot of people are reading the breaking news. YouTube is a place
for people sharing and watching videos. LinkedIn helps you in your own professional
career. Consequently, exploiting context-relevant information from multiple sources can
be useful to leverage the user's context. By integrating more social networks, more useful
social media data becomes available. However, previous works are limited to a single or
few social media platforms (see chapter 3).

Secondly, no single social media approach realizes an automatic, fully bi-directional
integration with the real world. We define such a bi-directional integration. In one
direction, personalized and context-relevant information is automatically extracted from
social media platforms for the user. Often, the mobile user is curious or keen on finding
context-related social media data; e.g., finding friends attending nearby events, finding
any information friends talk about a specific nearby tourist attraction, or discovering
photos that friends took at that place. In the other direction, user's context is utilized
automatically to enrich the social media content. For example, people tend to share their
check-ins actions (the action specifies that a person has visited a particular place). These
updates can be done in an automatic way with the support of context-aware mobile
applications together with the mobile sensing capabilities, and thus reduce the burden of
manual user's context annotation.

In summary, the goal of this thesis is realizing an improved integration of social media
and physical world activities by solving two limitations mentioned above. This thesis
emphasizes on providing a framework that realizes the fully bi-directional integration,
and allows integrating multiple social media platforms at once.

	
 4	

1.3 Goals and Approach

This section describes the targeted results, challenges and how the approach used to
obtain the targeted results and deal with the challenges.

1.3.1 Targeted Results

We focus on the two following points:

First, we will define a framework that can realize the fully bi-directional integration with
the real life activities. In particular, we seek for an approach that can automatically
enhance the online social media content with information from the user's context, and in
the opposite way, can offer social media information to the user, taking into account his
or her current context.

Secondly, we will propose an approach to support any social media platform.

1.3.2 Challenges

First, while performing the bi-directional integration, the challenge we could meet is how
to gather, manage and serve the context information.

Secondly, to ensure the integration of multiple social media platforms at once, we have to
deal with various social media data types, and integrate data from various social media.
Another challenge is related to the fact that the amount of social media data is huge, so
we need a mechanism to determine and rank the context-relevant information obtained
from these social media.

1.3.3 Approach

First of all, the software application will employ an existing generic context repository
that allows integrating any context acquisition system (e.g., SCOUT [22]) to gather,
manage context data (e.g., nearby buildings, monuments, places, persons). The work
presented in this dissertation will realize a full integration of social media and activities in
the physical world, in both directions, i.e. from the physical world to social media, and
from social media to physical world. Below, we elaborate on how both integration
directions will be realized in our framework.

Physical world → Social media: This integration means that the user's context
information can be obtained and shared on social networks (e.g., context information like
current country when the user is abroad, monuments he is visiting, restaurants he had
dinner at, etc.). In our approach, these collected context information can be (semi-)
automatically posted on online communities.

	
 5	

The auto-posting mechanism is a mechanism that depending on user preferences the
messages generated (or deducted) from the user's context can be posted automatically. In
our framework, this auto-posting mechanism is performed in the following cases:
whenever you go abroad, the country name will be posted, and when the time that you
visit a place is longer than a specific amount of hour (e.g., one or two hours) the name of
the place will be posted.

In the semi-auto posting mechanism, posting these messages requires user confirmation.
In our framework, all contexts will be collected in a history, and at a specific time (i.e. at
the end of day) the user could consider if any context information can be posted. Both
mechanisms reduce the burden of context annotation, but the semi-auto posting provides
a consideration for the user before posting context information online.

Social media → Physical world: Here, context-relevant social media data is
automatically pushed towards the user. Based on the information of the user's current
location, our framework will access to different social media platforms via their API to
obtain the context-relevant data. In the scope of this thesis, we focus on 6 kinds of
context relevant data:

• People: finding friends whose activities are related to the user's current location
(e.g., living, working, studying nearby);

• Check-ins: finding friends who visited places in the user's surroundings;

• Groups: finding groups with activities that are related to the user's location, such

as the group belongs to a particular place, or organizations;

• Events: finding events that belongs to a specific entity, such as building,

company, university that are located in the user's surroundings, or events that take
place nearby user's current location;

• Posts: finding all public posts that contains information about a specific entity,

such as tourist attraction, organization, university that are located in the user's
surroundings;

• Photos: finding all photos and albums that friends have taken of places or things

in the user's current surroundings.

Secondly, the challenges concerning plugging in any social media platform, we will
solve as follow:

As a result of supporting multiple social media platforms, a first challenge is concerned
with dealing with different social media data types. The data type structure varies among
different social media platforms, by different structures, and different field names. To
reconcile the overlaps or conflicts between such data types, we created a common, shared
vocabulary defining data types from heterogeneous social networks.

	
 6	

A second challenge is about filtering context-relevant information from the huge set of
online social media data. Compounding matters, much of this information is unstructured
(e.g., posted messages), making the filtering process more difficult. The approach we
propose is applying context-matching function, which find the most relevant social
network data based on comparing properties between user's context data and social
network data.

Finally, this software framework was implemented for the Android platform. On top of
this generic software framework, we implemented a user-friendly, proof-of-concept
Android user interface, centered around general concepts occurring in social media (e.g.,
posts, groups, events, etc.)

1.4 Structure of the Thesis

The remainder of this thesis is structured in the following way:

- The second chapter introduces the underlying concepts of this thesis. At the beginning,
the main concepts, user context and context awareness will be explained. Afterwards, we
explain how to access a resource on a social network platform. The SCOUT framework
that we use to obtain the context data will be studied at the end of this section together
with the Semantic Web Technologies (e.g., OWL, RDF, SPARQL, etc.).

- Chapter three discusses and compares related work.

- Chapter four presents our approach.

- Chapter five provides our implementation of building a mobile application upon the
framework.

- Chapter six draws conclusions and presents some future works.

	
 7	

2 Background
This chapter provides the background knowledge that we used in the thesis. At the
beginning, the terms user context and context awareness will be explained. With the
purpose to integrate multiple social networks into the application, investigating how to
connect to social networks in general is paramount. We are going to study the common
mechanism of how third-party sites are able to access, and extend the social network data.
Afterward, we will delve into details of each social network connect service, like
Facebook, Google Plus, and Twitter.

2.1 User Context

Before going into the detail of our topic, we need to define what we mean by context.
Schilit [20] defined the user context as the combination of three aspects: "where you are,
whom you are with, and what resources are nearby". Schilit defined the context as a set
of locations, nearby people, buildings and devices. Afterward, many other and similar
definitions were given [5], [7], in which the context is defined by enumerating all context
types. However, as mention in [6] these types are too specific, and these definitions are
quite hard to extend. If a new type of context occurs and is not in the list, then the
question is how we can handle it to adapt to the existing system with a fixed set of
context types?

Therefore, Dey [6] provides the following definition: "Context is any information that
can be used to characterize the situation of an entity. An entity is a person, place, or
object that is considered relevant to the interaction between a user and an application,
including the user and application themselves". With this definition, the context is
extended to anything that can be used to characterize an entity's situation. For example, a
person is walking on a street, listening to his favorite song, and reading a book on mobile.
On the way, he meets some friends. There are several supermarkets and a famous coffee
shop nearby. So, all the activities he is engaged in, nearby locations, nearby people are
his contexts. Even, the user's mood or feeling, and the weather, temperature, humidity,
etc. could be included in the context.

2.2 Context Awareness

As defined in [6], a system is Context Awareness if it uses context to provide relevant
information and/or services to the user, where relevancy depends on the user's task. Let's
take a look at the previous example again. On the way, he passes by a famous coffee
shop, which is highly recommended or rated by his friends and colleagues on some social
networks. Based on his preference mentioning that coffee is one of his favors, the
computing mobile will give him a recommendation to this shop together with the friends'
reviews.

	
 8	

Context Awareness has become a popular topic for recent years. Its purpose is in making
human daily life easier by providing some cues inferred from the user context, such as
recommendations for nearby shops, restaurants, means of transportation, and so on.

2.3 Social Networks Connect Service

In Social Network Websites, users can develop their social relationships by sharing
individual information on their profile, like status, videos, photos, and messages.
However, updating interesting contents may happen when users interact with other
applications. For example, you play a game in an application and achieve a really high
score. Now, you want to share this high score on Facebook so that your friends can see it
and admire you. To encourage this integration, many social networks have exposed their
networks to Web services in the form of online application programming interfaces,
which brings up benefit for both sides. On the third-party side, these APIs let the
developers develop their applications without having to either host or build their own
social network, and advertise their services over the social network to gather a large
number of users. On the social networks side, the integration provides a richer content,
and makes users more involved into their social networks environment. Now, let's take a
look at the common mechanism of how third-party sites are able to access, and extend the
social network data.

Figure 2 - Social-networks connect services Framework. Taken from [13]

As described quite well in [13], there are four stages for a third-party application to be
able to access to a social network: identity authentication, authorization, streams and
applications (see figure 2).

• Identity Authentication: confirms the identity via existing user accounts on
social network providers. In this stage, the third party application can use the

	
 9	

authentication services provided by social networks side (e.g., OAuth 3) to
authenticate users. It means that users are not required to create their profile on
third party application, but using their existing profile on a specific social network
to login. In this convenient way, the third party application can increase their
number of users. After the authentication, the third party application can retrieve
basic profile information (e.g., name, age, gender, friend list, etc.) about the user
from a social network.

• Authorization: manages the access right to social networks' data. Except the

basic profile information obtained from the identity authentication stage, normally
a third party application wants to access other user's data on a social network,
such as photos, messages, posts and so on. In this stage, the application lauches a
request to access the data that it wants, and due to the agreement of the user the
application now can access different user data in a specific social network.

• Streams: allows third-party application to send data to or obtain data from users'

activity streams. This is considered as a channel to enable the communication
between social networks and third-party sides.

• Applications: in the application level, the third-party side can develop its own

social features and thus enrich the social networking sites

There are three types of data in user data. The first one - identity data identifies the user
in social network, containing identity, profile information and privacy policy. Social
graph data describes the relationships in the online social community (e.g., family,
friends, groups that the user participates in). At last, content data describes all data
created through user activities, such as photos, videos, status, and messages.

For each social network, the implementation of these API can vary according to the
protocol and technology the social network uses.

2.3.1 Facebook API

Facebook Platform (see figure 3) uses OAuth 2.0 for authentication and authorization.
OAuth 2.04 is a simplified standard that let third-party application obtain authorization
tokens from Facebook platform. First, on the side of third-party application, a user
authenticates using Facebook as an identity provider. Next, Facebook issues a token that
lets the third-party application access the user's basic profile information, including name,
picture, gender, and friend list.

As mentioned before, the access right can be extended depends on the agreement of the
user and the requirement of an application. At this time, the third-party application will

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

3 http://oauth.net/
4 http://oauth.net/2/

	
 10	

send a request to extend the access right based on its requirements, and the user must
allow the application to access his or her data on the social network platform. For
example, to read posts with location information, you need "user_photos" or
"friends_photos" permissions5.

Figure 3 - Facebook Platform services

The Open Stream API lets third-party sites read and write to users' activity streams. This
API supports multiple-stream publishing methods as well as the Atom feed standard6.

Facebook provides a series of API to assist developers in creating social applications. The
primary API is Open Graph, which lets third-party applications read and write content
objects - photos, friends, and so on - and the connections among them in Facebook's
social graph. Open Graph is used a lot in our thesis application, but FQL (Facebook
Query Language) is also used to improve the searching in some cases. FQL provides a
quick and easy mechanism to query Facebook user data without using API methods. In
our application, we use both FQL and Graph Search API to obtain data from Facebook
Platform. FQL query and Graph Search API both return data in JSON format.

• Facebook Graph Search API7

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

5 https://developers.facebook.com/docs/reference/fql/location_post/
6 https://developers.facebook.com/blog/post/225/

	
 11	

We can search over all public objects in the social graph with
https://graph.facebook.com/search. The format is:

Figure 4 - Facebook Graph Search Query

In the Graph Search API Query, we can search by type of object, such as people, pages,
events, groups, places, check-ins, and object with location. The query contains 2
parameters

- q=QUERY. Here we can pass a keyword for searching
- type=OBJECT_TYPE. Here we can pass a type of object that we need to search, such as
people, pages, groups, etc.

Moreover, we can narrow our search to a specific location and distance by adding the
center parameter (with latitude and longitude) and an optional distance parameter, such as

Figure 5 - Facebook Graph Search Query with Location

The above query will search any university in the location with a specific pair of latitude
(37.76) and longitude (-122.427) and a given diameter (1000 meters).

• Facebook FQL API8

A FQL query is formalized as follow:

Figure 6 - Facebook FQL Query

The query looks like an SQL query, but the FROM clause can contain only a single table.
The sub-queries can be inserted into the IN keyword that is located in SELECT or
WHERE clauses. These sub-queries cannot point to the variables outside the query's
boundary. Moreover, the query must be indexable field that is written very clear in the
Facebook document. Operators, such as simple match or boolean (AND, OR, etc.),
ORDER BY and LIMIT clauses are provided in Facebook FQL query, and thus make it
powerful to process data.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

7 https://developers.facebook.com/docs/reference/api/search/
8 https://developers.facebook.com/docs/technical-guides/fql/

	
 12	

Facebook Platform also supports the multi-query FQL, allowing gathering many FQL
queries in one call and returns the data at one time. This enables us to process a more
complex data in a faster way.

In our application, we use interchangeably Facebook Graph Search API and Facebook
FQL API to implement our services.

2.3.2 Twitter API

The advantage of Twitter is that this platform attracts a large set of people updating news
up-to-minute. The average number of tweets posted on Twitter a day is 200 millions
tweets. In Twitter, streams of tweets can make up a lot of trends or topics that people
follow. By using hashtags or mentions, we can search information in a quick and efficient
way. For example, we can search what people are talking about VUB by using hashtag
#VUB. Even more in details, we can search what people are talking about VUB with a
positive thinking by adding another hashtag of feeling like #excited #enjoy.

The Twitter Platform offers a set of API9; each of them represents a facet of Twitter. In
our application, we use the Search API in almost cases, because it can search tweets by
using specific keywords, finding tweets of a specific user, or provide access to data
around trends. We also use Streaming API to obtain the geo-tagged tweets from a certain
region.

The request is formed as the follow GET Http request

Figure 7 - Twitter API Search Request

Parameter Description
q (required) A UTF-8, URL-encoded search query of 1,000 characters maximum,

including operators. Queries may additionally be limited by
complexity.

geocode Returns tweets by users located within a given radius of the given
latitude/longitude. The location is preferentially taking from the
Geotagging API, but will fall back to their Twitter profile. The
parameter value is specified by "latitude,longitude,radius", where
radius units must be specified as either "mi" (miles) or "km"
(kilometers). Note that you cannot use the near operator via the API to
geocode arbitrary locations; however you can use
this geocodeparameter to search near geocodes directly. A maximum of
1,000 distinct "sub-regions" will be considered when using the radius

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

9 https://twitter.com/search-home

	
 13	

modifier.

lang Restricts tweets to the given language

include_entities

When set to either true, t or 1, each tweet will include a node called
"entities,". This node offers a variety of metadata about the tweet in a
discrete structure, including: urls, media and hashtags.

until Returns tweets generated before the given date.

rpp The number of tweets to return per page

Figure 8 - Twitter Search API Parameter

2.3.3 Google Plus API

Google Plus Platform also uses OAuth 2.0 to allow third-party side access to its API. All
applications that access a Google API must be registered. The result of this registration is
a set of values (such as a client ID and client secret) that are known to both Google and
the application.

Before your application can access private data using a Google API10, it must obtain an
access token that grants access to that API. As the Facebook does, a single access token
can grant varying degrees of access to multiple APIs.

Some requests require an authentication step where the user logs in with their Google
account. After logging in, the user is asked whether they are willing to grant the
permissions that your application is requesting. If the user grants the permission, the
Google Authorization Server sends your application an access token (or an Authorization
code that your application can use to obtain an access token). If the user does not grant
the permission, the server returns an error.

Access tokens are only valid for the set of operations, resources and in a limited time. If
the application needs access to Google API beyond the lifetime of a single access token,
it can obtain a refresh token. A refresh token allows the application to obtain new access
token.

To search public activities, we use Google Search API11. The results are organized by
paginating, but we cannot use a page token longer than 5 minutes. If the set of results is
too large, we should restart pagination and re-send the request.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

10 https://developers.google.com/+/api/
11 https://developers.google.com/+/api/latest/activities/search

	
 14	

The request is formed as the following GET Http Request.

Figure 9 - Google Plus Search API Request

The following parameters can be added at the end of the request to search a specific
activity.

Parameter Description
query (required) Full-text Search query String

language Restricts the search to the given language

lang Restricts tweets to the given language

orderBy

Specifies how to order search results.
The value could be

• "best": Sort activities by relevance to the user, most relevant
first.

• "recent": Sort activities by published date, most recent first.

fields Specifies which fields to include in a partial response.

maxResults The maximum results to include in the response.

Figure 10 - The Google Plus Search API Parameter

	
 15	

2.4 SCOUT

SCOUT [22] is a framework developed to allow mobile applications to become aware of
mobile user's context, such as personal information (profile, device characteristics, etc.),
and current environment (people, objects, and locations in nearby place). The software
framework developed in this thesis utilizes SCOUT to collect the mobile user's context.

SCOUT utilizes the Semantic Web Technologies to represent and retrieve context data.
Below, we shortly summarize relevant Semantic Web concepts (RDF, SPARQL, etc.).
Afterwards, we summarize the SCOUT framework itself.

2.4.1 Semantic Web

At the beginning of the Web history, the web, Web 1.0, could be considered as a static
web. In other words, this kind of web only let us read or search information, and thus the
interaction only occurred in one-way direction.

Web 2.0 provides us with more interactivity. Now, users could collaborate or interact
with each other in online communities, and add their own contributions to update the
website contents. In this period, there are many emerging terms, such as blogs, social
networks, RSS, wikis, bookmark, mash-ups, and so on.

The explosive growth of Web 2.0 makes the web resources become a mess and chaos
with tons of unorganized information. The biggest challenge that the web faces today is
that information is structured to be read by humans, and not for machine interpretation.
For example, typical search engines are based on keywords provided by humans to find
relevant information, and do not understand what the particular search task is about.

The next evolution, web 3.0 (or Semantic Web) addresses this problem by adding
semantics or meaning to the data. In doing so, data becomes readable and processable by
machines. As the result, the Semantic Web will enable computers to autonomously
implement tasks and find answers that currently require users' involvement.

The Semantic Web is a web of data instead of document like the current web. The
Semantic Web provides a common framework that allows data to be shared and reused
across applications. In this framework, shared ontologies are used to establish meaning
(semantic) of the object and meaning of relations between objects. Understanding data in
that way, machine can solve problems using many different kinds of information (e.g.,
instead of searching data about restaurant, Semantic Web can provide more relevant
information, such as menus, cuisine styles, chefs, wine list) or make reason about it (e.g.,
deduce new facts based on the existing data).

The Semantic Web provides a set of technologies for representing, storing, and querying
information. The next sections will describe these technologies in more detail.

	
 16	

2.4.2 RDF, RDFS, OWL, SPARQL

• RDF: The Resource Description Framework is a framework to describe resources
in the World Wide Web. A resource can be a physical such as a building in real
life or a concept, virtual entity like specific roles (e.g., the Belgium King). An
Internet resource is defined by a unique URI (Uniform Resource Identifier). RDF
describes those resources in a RDF statement, which contains subjects, predicate,
and object. Subjects and predicates can be resources and is represented by URI
references. Object can be a resource, or can be a literal (e.g., a string or a
number). RDF is not designed to display for human consumption; it is readable
and processable by machine. Written in XML format, RDF can be used to
exchange data between different platforms and applications.

• RDFS: RDFS is an extension of RDF, in which a new notion of a class that is a

type of thing is introduced. For example, a cat and a dog are members of the class
Animal. The purpose of this notion is to indicate what kind of thing a resource is.
Other notions are also introduced in RDFS, like domain and range, allowing
applications to make inferences from statements about the type of things, and
providing vocabularies.

• OWL: Web Ontology Language is, like RDFS, a language to define vocabularies.

OWL is built on top of RDF. It enables greater machine interpretability by
providing more vocabulary, thus is more expressive than RDFS. OWL adds,
among others, cardinality, relations between classes and more properties.

• SPARQL: is a query language for RDF and have a similar syntax as SQL

language. We can make a SPARQL query to diverse data sources on the web. The
conjunction and disjunction features of SPARQL enable making query of required
and optional graph patterns. Moreover, SPARQL is equipped with constraints and
functions to create more complex queries. SPARQL queries can return in results
sets or RDF graphs.

2.4.3 SCOUT Framework

SCOUT is a mobile application framework that supports linking physical entities to
online semantic data sources. Our application utilizes SCOUT framework, running on a
mobile Android device. By exploiting the rich personal information these device capture
(for example, user preferences, or social networks data), we can personalize the provided
content and functionality based on both personal profile and the user environment,
provided by SCOUT framework.

Understanding SCOUT is a must and a very first step to do in developing our application.
SCOUT detects entities in the user's surroundings using two methods. The first one is
detection and sensing technologies, such as Quick Response (QR) codes or RFID, to let
mobile devices detect tagged physical entities (people, places, and things) in a short

	
 17	

range. In a mean while, online services such as LinkedGeoData (http://linkedgeodata.org)
can be used to obtain entities near the user's current GPS location.

One of the most interesting aspects is that SCOUT doesn't store and manage data in a
centralized server; instead, it uses web itself as an information system to obtain useful
environmental information. Often, information on the physical entities is already
available on the web - for instance, on webpages or in Semantic Web sources.
Consequently, SCOUT accesses the online information, rather than storing it in its own
server.

The SCOUT framework consists of several distinct layers. Each one is responsible to
work independently for its own purpose, and is described in the below sections.

2.4.3.1 Detection Layer

The detection layer is responsible for detecting physical entities in the user's surroundings
and extracting references to those entities' online semantic description (for example, an
RDF description).

2.4.3.2 Location-Management Layer

The location-management layer interprets the raw information received from the
detection layer. It determines whether detected entities are nearby the user or other
detected entities, and when they're no longer nearby.

The location-management layer notifies the environment layer of nearness and
remoteness events, along with the employed criterion, the entities' (approximate)
locations, and references to their online data sources.

2.4.3.3 Environment Layer

The environment layer allows applications to make queries related to the user and all
physical entities in his or her vicinity, which is managed by the environment model. The
environment model contains the user and the proximity model.

The user model provides the user's personal information, such as preference,
characteristics, and device information. Moreover, information from other applications
can also be useful, like a personal agenda, schedule or calendar. This information is
expressed by using ontologies such as CCPP12 and FOAF13 (Friend Of A Friend).

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

12 http://www.w3.org/Mobile/CCPP/
13 http://xmlns.com/foaf/spec/	

	
 18	

The proximity model encodes positional information about the user's environment. It
keeps time-stamped positional relations between the user and physical entities, together
with references to those entities' associated data sources. A positional relation represents
the fact that an entity is, or has been, nearby the user or another entity.

The environment model encompasses the user and proximity model, and extends them
with information obtained from the physical entities' online semantic sources.
Applications query the environment model using the query service. By using Semantic
Web technology, it allows integrating information from different heterogeneous data
sources by relying on the re-use of well-known ontologies and a unique resource identity
via URIs.

	
 19	

3 Related Work
This chapter describes approaches related to the generic software framework proposed in
this thesis. We describe relevant related work in three sections: full integration of social
media and physical world in bi-directional way, extracting meaningful data from social
media, and integrating multiple social networks.

3.1 Integration of Social Media and Physical World

The integration of social media data and physical world data is possible in two ways. The
first one is from Social Media to Physical World. By being aware of the user's context, a
computing system can make deduction about the current situation of the user, and thus
can give the user recommendations and support based on relevant data exploiting from
social media sources. In an opposite way (from the Physical World to Social Media), the
user's context data could be collected and shared on social medias, and thus enriches the
online community. The design of these applications was based on context-awareness.

However, almost recent researches only focus one of these two directions. Our thesis
consists of both above directions to provide a full integration of social media and physical
world data.

3.1.1 From Social Media to Physical World

This direction is to find relevant context data from social media to support the user in his
or her context. There are many researches focusing on this approach to leverage different
scenarios.

WhozThat [2] uses phone proximity (e.g., via Bluetooth or Wi-Fi) to exchange social
network (e.g., Facebook) IDs, which are then used to fetch personal profile from the
social network. By doing this way, WhozThat allows to identify the people in the user's
surroundings.

MobileClique [19] exploits the user's social network profile (e.g., Facebook) to bootstrap
a mobile ad hoc network that includes nearby users' mobile devices. This ad hoc network
allows users to communicate and exchange content (e.g., messages, media data, etc.)
using a store-carry-forward technique.

SocialFlicks [3] is an application that displays recommended movie trailers that match
the movie preference of one or more users jointly watching a common display.
SocialFlicks consists of Stationary and Mobile Components. Mobile Component shares a
user's Facebook ID with the Stationary Component using Bluetooth. The Stationary
Component detects the presence of users and uses the Netflix14 REST API Web service to

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

14 http://en.wikipedia.org/wiki/Netflix

	
 20	

construct a common playlist of recommended movie trailers based on their Facebook
profiles.

Context DJ [18] is another context aware music player application that adapts the music
being played at a given location according to the identities of people present at the
location's context. Context DJ pulls data from user profile located on the LAST.FM - a
musical social network and then uses the LAST.FM algorithm to calculate the artists that
most users have in common.

SOMAR [23] integrates Facebook social network mobile data and sensor data to propose
activities to the user (e.g., concert or computer science seminar) based on the user's
current location and preference. This approach is similar to our, but our framework can
exploit more social network data (groups, photos, people, etc.) rather than only activities.

In our work, the context-relevant information is automatically presented based on the
user's location and places in his vicinity; while the above researches give
recommendations based on the user's profile (e.g., movie preference, personal
information). Moreover, the above researches only focus on one-way integration, from
social media to the physical world.

3.1.2 From Physical World to Social Media

This direction is to share user's context information (or information deducted from the
context) to enrich the social media platforms. The sharing can happen automatically, and
thus enable user to update information on social media easily. There are many researches
focusing on this direction to leverage different scenarios.

IYOUIT [11] is a research focusing on logging life events. IYOUIT automatically
collects context data based on user's routines, and facilitates an instant sharing of
personal daily life activities within online communities (e.g., with Flickr for sharing
photos, with Twitter for sharing status).

SOLE [25] is a similar approach that allows user to share living experience in mobile
environments. With SOLE, users can share their experience of their daily activities.

CenceMe [17] is able to collect, classify and infer user's present status and activity from
the mobile device's sensors and export this information, in real-time, into social networks
(e.g., Facebook and MySpace). CenceMe uses Social Classifiers on central servers to
correlate the user's current activities, visited places and establish new social links (e.g.,
identifying CenceMe buddies in a user's neighborhood).

[8] obtains a set of rich user context by using sensors available in a smartphone as well as
inexpensive and small sensors externally connected via Bluetooth and embedded in
clothes (e.g., sound recorder, light sensor, position accelerometer, etc.). Here authors, use
the supervised learning techniques to determine user context. From a set of training

	
 21	

examples it is possible to induce a decision tree in order to classify contexts according to
sensor readings. The identified context information then will be shared on well-known
social networks (e.g., Twitter and Hi5).

ContextWatcher [14] is another application that enables mobile phone users to
automatically record, store and use context information, e.g., for personalization
purposes, as input parameter to information services, or to share with online community,
or just to store them for future use or to perform statistics on your own life.

ZoneTag [1] is a mobile photo upload tool that provides tag suggestions based on
personal history, and user's current context (e.g., geographic location and time). ZoneTag
uses a location translation mechanism and a suggested tag system to automatically
annotate the photo with the user's location data and then share online (e.g., on Flickr).

FlickrTag [21] is another photo tag recommendation tool. The difference with ZoneTag is
FlickrTag not only bases on the user's context (e.g., personal history, location and time),
but also uses the analysis of tag characteristics (e.g., trends, tag categories) stored in
Flickr to support the users to annotate.

[15] proposes a solution to automatically tag the nearby people appearing on a same
picture. In this proposal, the author uses a mapping between the mobile phones' unique
identifiers and their online social profile to add tags automatically on the picture when it
is posted on social networks (e.g., Facebook).

Micro-Blog [10] is able to generate and share geo-tagged multimedia (e.g., micro blog).
This data can be browsed or queried through either an Internet map service (e.g., Google
Map) or in physical space as a user moves through a location.

In our approach, we also support the user to share context information but in both way of
automatic posting and semi-automatic posting. Automatic posting is implemented in
some default setting, and the semi-automatic way allows user to decide whether these
information could be posted or not.

3.2 Extracting Data from Social Networks

Extracting meaningful data from social networks is a complex process because of the
myriad of raw facts and unstructured data or incomplete data expression. There are many
approaches to deal with this problem.

Event Identification in Social Media [4] proposes an approach to identify events and their
associated user-contributed documents over social media sites (e.g., Twitter). The author
exploits the rich context associated with social media content, including annotations (e.g.,
title, tags), generated information (creation time), and defines similarity metrics for these
context features. Afterwards, similar documents are grouped into clusters via a weighted

	
 22	

ensemble-clustering algorithm by combining any these features. Each cluster corresponds
to one event and its associated social media documents.

Fujisaka [9] proposes a method for the detection of unusual crowding in physical
locations from existing blog community. Via the analysis of common patterns of
occurrence in each region over a specified time period employing K-means based micro-
blog clustering, this method achieves the extraction of useful and interesting movement
patterns, reflecting the occurrence of critical events in a geographic region. Experimental
evaluation of the proposed method uses a real dataset collected from Twitter.

Many researches related to extract geo-tagged photos from social networks (e.g, Flickr,
Panorama) to deduce the meaningful information. Photo2Trip [16] is able to generate
travel routes from geo-tagged photos on Panorama for trip planning. R.Ji et al. [12] report
a work on mining famous city landmarks from blog for personalized tourist suggestion.
Q.Zhao et al. [24] propose detecting and framing events from the real world by exploiting
the tags supplied by users in Flickr photos.

These proposals focus on extracting information from social networks and digesting them
to produce knowledge (e.g., discover unusual crowding, or detect popular events). We
focus on finding the social media data that is directly related to the user context (e.g.,
finding events, groups that take place in the user surroundings and the user's friends
participate in). In our framework, we use the context matching function to determine the
context-relevance of social media data. The context matching function compares pairs of
properties in both the current user context and the social media data.

3.3 Integrating Multiple Social Networks

So far, there is no research focusing on integrating multiple social networks. Although
there are many commercial mobile applications, allowing integrating multiple social
media platforms (e.g., oneall15, sharekit16, etc.), these works do not create a general
framework capable to support any social network. More specifically, each of the data
types provided by the supported social media platforms are simply retained and put in
separates places of the interface. One of the biggest problem is that different social
networks provide different data types, structures, concepts, and services. In our approach,
to deal with this problem, we build a shared vocabulary among social networks in order
to create a unified data representation. After relevant-context data is extracted from social
media platforms, the data will be converted into one of these shared common data type.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

15 http://www.oneall.com/
16 http://getsharekit.com/

	
 23	

4 Approach
This chapter elaborates on the generic and mobile framework presented in this thesis,
which supports plugging in any social media platforms. First, we present the framework
architecture. We discuss how to create a set of shared common data type to resolve the
conflicts or overlaps between different data types of multiple social media networks. To
showcase the generality of the framework, we supply support for Facebook, Twitter and
Google Plus, although other social media platforms can be plugged in as well. We also
investigate methods to extract meaningful data related to user's context by formulizing
requests to access resources of supported social media platforms. Afterwards, we will
show how to process the social network data in order to find the most relevant-context
data. Finally, we discuss how the User Interface is built based on the common data type
structures.

	
 24	

4.1 Architecture Overview

Figure 11 - Architecture Overview

This section explains and describes the architecture of the developed framework
(illustrated in Figure 11). The architecture consists of several distinct layers, separating
the different concerns. In doing so, the user interface is decoupled from the application

	
 25	

logic, and each layer can contain interchangeable components. There are 3 layers: Social
Network Layer, Data Processing Layer, and User Interface Layer.

The bottom layer, the Social Network Layer, is responsible to find the relevant-context
data from various social network platforms. The context-awareness is applied when
formulating the request to the social media platforms. This layer compromises two sub
components: the Social Network Manager and the Social Network Service. The goal of
Social Network Manager is to manage all the online social accounts. The Social
Network Service provides a shared set of methods to access the resources of a specific
social network platform (e.g., Facebook, Twitter, and Google Plus). These methods could
be requesting for the user profile information, finding friends who has visited a specific
place and so on (see section 4.2). Different platforms return different data type structures,
and thus could lead to the conflicts between them. We resolve this problem by
constructing a set of shared common data type (see section 4.2.1). In this layer, the data
obtained from social network platforms is converted to one of these common data types,
and then the converted data is sent up to the next layer - Data Processing Layer.

The goal of Data Processing Layer is to provide the user's context information (e.g., the
nearby places, buildings) and categorize the Social Media data, obtained from the Social
Network Layer. The Request Handler plays a role to manage and distribute the request
(e.g., a request for finding relevant context data, a request for finding nearby buildings,
etc.). This component ensures to prepare data before sending a request, handle when data
is coming successfully, or gives an error when failing to receive data. The Filter Process
is responsible to rank the social media data based on the user's context (e.g., the nearby
entities information, the user's current location, and time), the online user profile
preference (e.g., favorite movies, music, sports). The Context Manager provides and
stores the user's context (e.g., the user's current location, all visited nearby entities within
a day). The user's context information can come from any Context Acquisition system
(e.g., SCOUT framework) that is integrated into the Context Repository - a generic
context repository (see section 4.3.1). Besides, the Context Manager implements the
auto-posting mechanism, as well as the semi-auto posting mechanism (see section 4.3.1).

The User Interface Layer enables the interaction between the user and our system. This
layer utilizes the ranked social media data list to present the most relevant context
information to the user.

Below, we shortly summarize the data flow between these layers and their inner
components. The interactions are described by using the UML sequence diagram as
follow:

	
 26	

Figure 12 - The data flow between layers

Given a specific user request for finding a relevant-context data type (e.g., check-ins data
type - finding friends who visited a nearby place in the user's surroundings), the User
Interface Layer sends the request to the layer Data Processing Layer.

At the Data Processing Layer, the Request Handler receives the request, and before
continuing sending this request to the next layer, it asks the Context Manager for the
nearby entity information that the user is currently interested in. Afterwards, the Request

	
 27	

Handler sends the request along with the nearby entity information to the Social Network
Manager. Based on the request and the nearby entity information (e.g., name, title,
longitude, latitude, social page ID), the Social Network Manager will ask for the required
resource from all social networks it has. Accessing the resource happens at the Social
Network Service. After getting the relevant context social media data, the Social Network
Manager keeps sending this data back to the Request Handler.

The Request Handler receives the social media data and sends this data along with the
nearby entity that the user is currently interested in to the Filter Process. The Filter
Process implements the ranking of the social media data, based on the online user profile
information (e.g., user's preference hobbies and activities) and the user's context
information (e.g., current location, time, nearby entity's name). The Request Handler
receives the categorized social media data and keeps sending the data back to the User
Interface Layer. This layer displays data based on the relevance degree. For example, the
most relevant data will be on top, and then the less relevant data will come after. The
none-relevant data is not displayed.

In the sections below, we detail each of these layers.

	
 28	

4.2 Social Network Layer

Figure 13 - The Social Network Layer Core Classes

This section is accompanied by UML class diagram (figure 13) showing the core classes
used in the implementation. The layer supports integration of multiple social networks

	
 29	

into our framework. Given a request from the Data Processing Layer, this layer returns a
set of relevant context data from all integrated social networks. There are two main parts
in this layer.

The first one is SocialNetworkManager class, which manages the user's social media
accounts (e.g., adding a new account, remove an existing account). When receiving a
request from the top layer, for each account, the Social Network Manager is able to
identify a social network accordingly, and make a call to the second part to implement the
service request. To gain performance improvements when dealing with many requests at
a time, each Social Network service request runs in its own thread. The observer pattern17
is applied in this case in order to notify when the social media data is found. The
SocialNetworkManager class implements the observable interface, and notifies all
registered observer classes about the success or failure while searching social media data.

The second part, namely Social Network Service, is responsible to extract the social
media data based on the user's context. To cope with multiple social network platforms,
we utilize the Factory design pattern18. To support a specific social media platform, a
Social Network Service component (e.g., Facebook Service, Twitter Service, etc.) is
plugged in that allows contacting the particular platform via its API. By supplying a
generic service interface - the SocialNetworkService interface, multiple platforms can be
easily plugged in. The generic service interface provides a set of common methods to
access the resources (e.g., photos, events, posts...) of various social network platforms.
These methods includes:

Methods Description
Login
(Mandatory)

Allowing a user to login into a particular social network.

Logout
(Mandatory)

Allowing a user to logout from a particular social
network.

CheckSession
(Mandatory)

Checking out a session is expired or not. A session is
used to access to a resource on social network platforms,
and it also determines how long the access right is
permitted.

ClearSession
(Mandatory)

Clearing a session. A session is used to access to a
resource on social network platforms, and it also
determines how long the access right is permitted.

GetUserProfile
(Mandatory)

Giving the user profile information of a particular social
network such as the user name, birthdate, gender, avatar
picture, etc.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

17 http://en.wikipedia.org/wiki/Observer_pattern
18 http://www.oodesign.com/factory-pattern.html

	
 30	

FindFriendsMatchContext
(Optional)

Finding friends whose activities are related to the user's
current location (e.g., living, working, studying nearby).

FindCheckInMatchContext
(Optional)

Finding friends who visited places in the user's
surroundings.

FindGroupMatchContext
(Optional)

Finding groups with activities that are related to the user's
location, such as the group belongs to a particular place,
or organizations.

FindEventMatchContext
(Optional)

Finding events that belongs to a specific entity, such as
building, company, university that are located in the
user's surroundings, or events that take place nearby
user's current location.

FindPostMatchContext
(Optional)

Finding all public posts that contains information about a
specific entity, such as tourist attraction, organization,
university that are located in the user's surroundings.

FindPhotoMatchContext
(Optional)

Finding all photos and albums that friends have taken of
places or things in the user's current surroundings.

Figure 14 - The set of common social network methods

In this list, there are some methods, related to the user's account, session and profile
information that are mandatory to be implemented for all social network services. The
remaining methods, related to finding the context information, are optional to be
implemented. A specific social network service may not implement all above optional
methods. This certainly is true, based on the fact that a resource may exist in a particular
social network platform, but may not exit in other platforms. As a result, the method to
access this resource may be applied to a particular social network service, but may be not
applied to others.

When the developer wants to add a new social network into our system, he must do the
following jobs:

1) Implement support for contacting the social network

He first has to register this social network in the Social Network Manager component.
Secondly, a new Social Network Service subclass needs to be created to contact the new
social network platform.

2) Potentially, introduce new common data type

	
 31	

Each social network has its own characteristics, and thus is possible to provide its own
methods to access its resources (e.g., events, photos) accordingly. For example, in our
system, we are now having Facebook and Twitter social networks, providing methods to
find common relevant-context data (see the figure 7). Now, imagine we want to add
support for LinkedIn, a social network about professionals and businesses. Clearly, the
methods to access these topics (e.g., job offers based location19) are new with respect to
our system. When a new social network emerges, the developer has to identify the
provided methods to access its resources are already present in the list of existing
methods or not. Therefore, there are two following cases:

• If the method already exists, he just has to implement this method for the new
social network.

• If the method does not exist, besides implementing the new method for this new

Social Network Service class, he has to look up the list to find out whether any
existing social network is able to implement this method or not and if it's possible
he has to write it.

3) Implement a conversion process

Although each integrated service thus supports a generic interface, platforms typically
return different data type structures (e.g., posts, photos, groups, etc.). To deal with this,
we constructed a set of common data types, representing the typical social media
concepts found in social media platforms (see section 4.2). In this part, any data retrieved
from a social network is converted to one of these common data types. The conversion
process should be implemented in manually by the developer. The following steps could
be an example of the conversion process, in which the developer receives a Tweet data
type (a Twitter status update) and convert to the Post data type (our common data type
represents a social network status update).

• Retrieving a Tweet data type from Twitter platforms in a JSON file format.
• Parsing the JSON file to extract the Tweet sub-properties (e.g., Tweet ID, Tweet

text, etc.)
• Adapting accordingly these sub-properties into our common data type structure -

Post data type.

The next session will explain how we construct a common data type in our system.

4.2.1 Data Type

One of the biggest challenges is reconcile various types of data found in existing social
media platforms. Different social network provide different data types and concepts. For
example, a term "friend" exists in Facebook, but in Twitter it turns out to be "following"

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

19 http://developer.linkedin.com/documents/job-search-api

	
 32	

or "followers", in Google+ friendship refers to the people on circles. The difference is not
only about the different names used by these social networks for the same concepts, but
also the different meanings assigned to them. Friendships on Facebook are bidirectional,
and thus require both parties to agree before connecting. On Google Plus, the relationship
is express clearly by using circles. A circle in Google Plus stands for a relationship with a
group of people. We group people in a circle depending on how we think of them in real
life, such as family circle, close friends circle, etc. Now, you can share jokes with your
close friends, photos with your family, and while your boss in the professional circle
cannot see them. One person can be in several circles for example a cousin can be in both
the family circle, and roommate circle. Twitter defines a relationship in even a different
way. Twitter only requires unidirectional consent via the follow action. Twitter allows
users to follow the other users' activities without any sort of approval, and Twitter does
not divide the relationship clearly as Google Plus does. Therefore, it's not surprising that
you can follow easily thousands people on Twitter in a very short time, but it's much
more time consuming to get the same number of friends on Facebook or Google Plus.

Given this variety in social media data types, we need to construct common data types to
reconcile overlaps or conflicts. In our system, we identify a property as a small unit that
contains a name and a value (e.g., age or name properties). A resource consists of one or
many properties and other sub-resources. A reconciled resource will be the combination
of properties of similar resources from different social networks. Let's take two similar
resources from two different social networks as an example, namely Facebook Post and
Twitter Tweet. Both resources are about the status update that users use to share on
Facebook and Twitter. A Facebook Post20 has the following fields as follow.

Fields Description

id The post ID

from Information about the user who posted the message

to Profile mentioned or targeted in this post

message The message

place Location associated with a Post, if any

created_time The time the post was initially published

message_tags Objects tagged in the message (Users, Paged, etc.)

picture If available, a link to the picture included with this post

Figure 15 - Facebook Post Fields

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

20 https://developers.facebook.com/docs/reference/api/post/

	
 33	

A Twitter tweet21 has the following fields as follow.

Fields Description

id The tweet ID

user The user who posted this Tweet

current_user_retweet The user's own retweet (if existent) of this Tweet

text The status update

place Indicate the place that the tweet is associated with

created_at The time when this tweet was created

entities Entities which have been parsed out of the text of the Tweet

Figure 16 - Twitter Tweet Fields

The two above tables show us that Facebook Posts and Twitter Tweets have many fields
in common. We can take advantage of this to construct our own data type representing
status updates. For example, the following figure (figure 17) illustrates how to reconcile
tweets and Facebook posts.

Facebook
Post

Twitter
Tweet

Our System
Post

Description

id id id The id of a post

from user fromUser The author of a post

to current_user_retweet toUser The user who is targeted in this
post

message text text The status update content

place place place The location associated with the
post if any

created_time created_at created_time The time when this post was
created

message_tags entities objects Objects that were tagged in this
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

21 https://dev.twitter.com/docs/platform-objects/tweets

	
 34	

post
Figure 17 - Constructing the shared Post data type

In this example, we create a sample data called a Post data type for both Facebook Post
and Twitter Tweet. Now, we have a uniform data type to express the status update of both
Facebook Post and Twitter Tweet. Our Post data type also contains every shared field
potentially named differently. Naming these fields is up to the developer. In the scope of
this thesis, we don't have a mechanism to convert different data structures into our own
data structure. The developer implements the conversion and naming process in a manual
way, based on the meaning and concept of these data types in different social networks.
This conversion involves parsing the data, and converting it to our common data type.

In reality, reconciling different social media concepts costs a lot of time and deep
thinking about their meaning, because a resource can contain multi-level sub resource,
showing complicated sub-structures. When adding a new social network to our system,
we should consider the existing data types and think if it is necessary to create a new data
type or use the existing ones. Of course, each social network often has its own meaning,
and serves a specific purpose, like Foursquare provides data type of places, coupons,
promotion, and LinkedIn provides data type related to jobs, career information.
Consequently, specialized data types of these social networks will probably not overlap,
but basic data type like posts, status, and personal profile data are identical.

Aside from (potentially) introducing new common data types, the developer also needs to
implement support for contacting the particular social network.

	
 35	

4.3 Data Processing Layer

The Data Processing Layer is responsible to provide the user's context (e.g., nearby
entities, user's current location) and categorize the social media data based on the context
relevance. There are three main components in this layer: Context Repository, Request
Handler, and Filter Process.

The Context Repository provides the user context. This component allows integrating
different context frameworks, e.g., SCOUT (see section 4.3.1).

The Filter Process is deployed to categorize the social media data from the most relevant
context data to the least relevant context data (see section 4.3.3). The degree of relevance
will be used in the User Interface Layer.

The Request Handler is considered as the entrance to obtain the requests from and
return the results to other layers. For more detail of how the request is handled, please see
the section 4.3.2.

The following figure shows the UML class diagram showing the core classes.

	
 36	

Figure 18 - The Data Processing Layer Core Classes

	
 37	

4.3.1 Request Handler

The figure 10 shows that we utilize the Observer design pattern for the RequestHandler
class. In this case, the RequestHandler plays both roles the Observer and the Observable
object. On the one hand, the RequestHandler class is an Observable when The User
Interface Layer objects send a request to and register in order to get notified when the
social media data is ready to display. On the other hand, the RequestHandler plays as the
Observer role, and register with the SocialNetworkManager class in order to get notified
when the social media data is found from any social network platform. The
RequestHandler also get notified when the user is abroad and the amount of time that the
user is at a specific place is over the predetermined default hour, whereby the user's
location is shared online. The auto-posting mechanism is implemented by this way.

Moreover, each request is executed in a separated thread. Executing requests in the
background ensures the user interface responsive. When a request is completed, the
thread will wake up the Request Handler component, and then the Request Handler will
send all relevant data to the Filter Process to find out the most relevant data before
sending them back to the User Interface Layer. The Request Handler manages all
requests into threads, for example it can spawn a new thread to implement a request, or it
can interrupt and destroy all running threads. In doing so, the system is ensured to not be
memory leak when the number of requests is increasing or the thread to implement a
request is still running but we no longer need it.

4.3.2 Context Repository

The ContextManager class provides access to the mobile user's context. Besides, this
class keeps the user's current location, the user's hometown location, and all visited
entities during a day.

Below is the UML class diagram showing the core classes.

	
 38	

Figure 19 - The Context Repository diagram

This component supports a generic context interface that can utilize different context
acquisition systems (e.g., SCOUT) behind the scenes. Once again, the Factory design
pattern is used in this case. By doing so, different context acquisition system can be
plugged in without having to change other components in this layer (e.g., Filter Process).
This way can ensure a separation of concerns among internal components. In the scope of
this thesis, in the term of the mobile user's context, we focus on discovering physical
entities (e.g., places, buildings) in the user's surroundings. The generic context interface
contains the following methods to access the mobile user's context:

	
 39	

• Detecting Entities: detecting all entities in the user surroundings.

• Nearby Entities: finding out all nearby entities in comparison with the user

location.

• Search Entities by type: finding out a specific kind of entities, such as

restaurant, coffee shop, or university.

In practice, a wrapper class is created for each context acquisition system, which
implements the specified interface - the ContextRepository interface and translates these
methods to operations on the context acquisition system. For example, for SCOUT, this
wrapper class translates the method invocations to queries to be sent to the SCOUT
Query Service.

After retrieving the raw data of user's context from context acquisition frameworks, the
Context Repository component will abstract these data in the entity data type. The entity
data type is defined as a set of properties as describing in the following figure.

Property Description
title The name of an entity

label Another name of an entity

type The type of an entity, such as restaurant,

coffee shop, sports accommodation,
university, etc.

description Detail information to describe the function
of an entity

homepage A link to a website of an entity

image An image to describe the appearance of an
entity

location A pair of the longitude and latitude where
the entity is located

time The time that the entity is open or close

parent A parent entity, identifying that an entity
belongs to another entity.

Figure 20 - Entity Data Type

	
 40	

The SCOUT framework (see section 2.4.3) is chosen to plug in the Context Repository
component to obtain the user's context. The reason for that is because SCOUT is a
lightweight, and scalable framework, and its simplicity, as it does not require a
centralized server; instead, it accesses the physical entities' information directly on the
web. Other context acquisition framework can be plugged in the Context Repository as
well.

In this section, we will focus on how we implemented the three above-mentioned
methods in the generic context interface to collect the physical entities via SCOUT
framework. SCOUT employs its Environment Layer (see section 2.4.3.3) to provide the
mobile application with an integrated view of the physical entities in the user's
environment. As stated before, the Environment Layer supports the query service (by
issuing the SPARQL queries) to access this data, and the notification service to notify
about the changes in the user's environment.

Below, we show in detail how to use SPARQL queries to implement the three above
methods in the generic context interface.

	
 41	

a) Detect Entities: detecting all entities in the user surroundings

Figure 21 - SPARQL - Select All Detected Entities

An entity may contain a lot of information, such as title, label, a short description
describing about the entity, a region that the entity is located in, an image to illustrate,
the entity's coordination, and so on. An entity can have any of these properties, so we
use OPTIONAL operator to identify. In the SPARQL above, an entity can either have
a title, a label, a description or an image.

 OPTIONAL (?entity dcmi:title ?title)
 OPTIONAL (?entity dcmi:label ?label)
 OPTIONAL (?entity dcmi:description ?description)
 OPTIONAL (?image a ?imageType)

However, an entity must have a type, such as restaurant, university, coffee shop, etc.
An entity also contains the position.

 ?entity a ?region
 ?entity pm:lastKnowLocation ?pos

We use FILTER to remove unnecessary results. Because the user can be considered
as an entity, so to detect all entities in the user surroundings we should exclude the
user entity. It's not accepted if the description is not literal.

	
 42	

 FILTER (?region != um:User)
 FILTER (?region != foaf:Person)
 FILTER (isLITERAL(?description))

The information illustrating entities is stored in RDF files or webpages annotation, we
assume that all entities consist images to describe themselves. These images will be
displayed on the interface to represent entities. However, in the case, Internet sources
do not contain images, the label, title or description can explain our entities.

b) Nearby Entities: find out all nearby entities in comparison with user location

Figure 22 - SPARQL - Select All Nearby Entities

The same to identify detected entities, the difference is in the predicate by utilizing the
proximity model "isNearby".

c) Search Entities by type: search entities by type, such as find all restaurants in the
user surroundings, find all the universities in the user surroundings.

	
 43	

Figure 23 - SPARQL - Search Nearby Entity By Type

This query first identify the user, and then obtains entities currently nearby by utilizing
the proximity model (prox:currentlyNearby). Afterward, it checks whether the return
nearby entities are the type that is passed through the query via "%s" parameter.

 ?entityType rdf:type %s

Finally, the ContextManager class supports the auto-posting and semi-auto posting
features. By storing the hometown user's location, and exploiting the amount of time the
user is at a specific entity, the ContextManager class enables notifying when the user is
abroad and when the time the user is at a specific place is over a predetermined amount
of hours, whereby the entity's name can be automatically posted online. On the other
hand, the ContextManager stores all entities that the user visits during a day, whereby the
user can select the entities to share.

4.3.3 Filter Process

The FilterProcess class is responsible for calculating the context-relevance of data (e.g., a
group, an event, a post, a photo), obtained from social networks. For example, there are 2
events happening at the same time at the user's current location. Assume that football is
the user's favorite sport, so the football event would be more relevant than another one.

The filter process is implemented by the ContextMatching function that takes the
following parameters:

	
 44	

• Social media data obtained from Social Network Layer (e.g., a group, an event,

a photo, a post).

• A nearby entity obtained from Context Repository that the user is currently

interested in.

• The social user's profile obtained from Social Network Layer (e.g., user's

favorite movies, places, sports, etc.)

The result that the function returns is a natural integer number, which represents the
degree of similarity. The degree of similarity is measured by summing up the following
points.

The User's Context

Location Description Point

 The distance is within a radius of 1 km 3
 The distance is within a radius of 2 km 2
 The distance is within a radius of 5 km 1
 The distance is over a radius of 5 km 0

 The distance here is the distance between the user's current

location and the location of the social media data (e.g., a
photo, a group, an event)

Time
 The social media data was created today 7
 The social media data was created yesterday 6
 The social media data was created 2 days ago 5
 The social media data was created 3 days ago 4
 The social media data was created 4 days ago 3
 The social media data was created 5 days ago 2
 The social media data was created 6 days ago 1
 The social media data was created a week ago 0
Nearby
Entity

 Each field of the social media data contains the nearby
entity's name

1

Figure 24 - Context Matching - The User's Context

Based on the user's current context, the Context Matching function will calculate the
degree of similarity in terms of points. In particular, the function will identify the distance

	
 45	

between the user's current location and the location where the social media data is posted.
The closer the distance is, the higher the point the relevance receives. On the other hand,
the Context Matching function evaluates the social media data based on time. It means
that the newest social media data will receive a higher point than an old one. In addition,
the more frequently the nearby entity's name appears in the social media data, the higher
the point the relevance will get.

The User's Profile

Relationship Description

Point

 The author of the social media data is in the user's family
group

3

 The author of the social media data is in the user's close
friends group

2

 The author of the social media data is in the user's friend list

1

 The author of the social media data has no relationship with
the user

0

Preference
 Any field of the social media data contains any user's favorite

movie's name

1

 Any field of the social media data contains any user's favorite
book's name

1

 Any field of the social media data contains any user's favorite
music's name

1

 Any field of the social media data contains any user's favorite
sport's name

1

 Any field of the social media data contains any user's favorite
place's name

1

 Any field of the social media data contains any user's favorite
TV Show's name

1

 Any field of the social media data contains any user's
workplace's name

1

 Any field of the social media data contains any user's school's
(or university's) name

1

	
 46	

Figure 25 - The Context Matching - The User's Profile

The Context Matching function exploits the user's profile information to identify the
degree of similarity. The function will give points based on the relationship between the
user and the author of the social media data. The closer the relationship is, the more
points the relevance gets. On the other hand, the function gives points based on the user's
preference. The more frequently the user's favorite activities or hobbies (e.g., sports,
music, movies) appear in the social media data, the more points the relevance receives.

The Filter Process returns the degree of similarity, and the User Interface Layer will
arrange the social media data based on this degree. The higher point the degree returns,
the more relevant the data is. The more relevant data will appear prior to the less relevant
data.

4.4 User Interface Layer

The User Interface Layer (UI) is the space where interactions between the user and
mobile device occur. Our aim is to separate the application logic and the User Interface
concerns so that changes to the user interface will not affect the data handling, and the
data handling part (e.g., Data Processing Layer, Social Network Layer) can be
reorganized without changing the User Interface. Specifically, the User Interface does not
depend on either from which social network returns the social media data, or how many
social networks are plugged into our framework. The User Interface only depends on the
common data type (see section 4.2.1) found in social networks. The communication
between the User Interface layer and the layers below is asynchronous. The UI does not
have to wait for the data coming, but is notified whenever new data is available.

The User Interface Layer contains the following features:

• Displaying a list of nearby physical entities. In this list, we can search entities by
type (e.g., restaurants, university, sport, etc.). Please see section 5.11 for more
details.

• Displaying the user's current location in comparison with other nearby entities on

map (see section 5.12).

• Displaying a list of requests for finding social media relevant-context data. This

includes finding the user’s friends who work, or live at a particular place, who
attends events that take place in the user's surroundings, and so on (see section
5.4)

• Displaying the common data type returned by the bottom layer (the Data

Processing Layer). This includes the photo, group, events, and etc. data types.

	
 47	

Please see sections 5.5, 5.6, 5.7, 5.8, 5.9, and 5.10 for more details. The data will
be arranged based on the degree of similarity.

• Displaying a preference setting, allowing user auto-posting the context. This

includes the scenarios when the user travel abroad, or when the user stays at a
specific context longer than a given amount of time (see section 5.14)

• Displaying the history context, allowing the user semi-auto posting the context.

The history screen shows all contexts that the user has visited during the day. At
a specific time of day, i.e. at the end of day, the user can decide if any context the
user finds interesting, he or she can rate it, and share it on social networks. That
is the way we implement the semi-auto posting feature in our application (see
section 5.13)

The next section deals with the development of an Android application based on our
framework. Via this application, we also see how the User Interface may look like.

	
 48	

5 Proof-of-Concept Mobile App
In this section, we describe a mobile application built upon the above framework to
access three social networks (Facebook, Google Plus, and Twitter) to find the relevant-
context social media data. Firstly, we build a shared data type among these social
networks, and then built a set of shared methods accordingly to access these data found in
social networks. Afterwards, we will show off the result of finding the relevant-context
data from these social networks. Other features (such as, auto-posting mechanism, semi-
auto posting mechanism, searching the user's context by type, displaying the map
location) will be included as well.

5.1 Shared Data Types

Under the scope of the application we built, we integrated three social networks
platforms, Facebook, Twitter, and Google Plus, and we identified a main shared
vocabulary between them as follow:

Facebook Google Plus Twitter Our System Description

New Feed Stream Updates Stream New updated information
visible to the user

Wall Profile TimeLine Profile All information appears on
the user's home page

Friends Followers &
Circles

Following
&
Followers

Friends Information about people in
the user's contact

Events Events None Events Information about an event,
including the location, event
name, and which invitees
plan to attend

Groups Communities None Groups Information about a group,
including group name, group
description, and the owner of
the group

Notifications Notifications Notifications Quick updates about friends'
action that most affect the
user

Posts Shares Tweets Posts An individual entry or status
update that a user shares on
social network page

	
 49	

Likes +1's Favorites Likes An expression shows the
user's preference

Photo Photo Media Photo Information about an
individual photo, including
image, the associated
information like the tagged
user and their position in this
photo

Hashtag Hashtag Hashtag Hashtag A word or a phrase after the
symbol #, indicating an event
or a topic that people are
discussing about

Album Album None Album Information about an album
of photos, including the
album description, the
location of the album, and the
number of photos in this
album

Check-ins Check-ins Geo-
Place

Check-ins Representation of a single
visit to a location, including
the place name, the message
the user added to, all
comments, and the users the
author tagged in the check-in

Place Place Place Place Information about the social
network page that represents
a specific location

User User User User Information about a specific
person

Comments Comments Retweets Comments A text that people use to
answer on a social network
object, like a post, a check-in,
or activities.

Figure 26 - Shared Vocabulary

5.2 Shared Methods

Besides a shared vocabulary, we built a set of common methods shared among Facebook,
Twitter, and Google Plus as follow:

	
 50	

Shared Methods Description

Finding People Finding friends whose activities are related

to the user's current location (e.g., living,
working, studying nearby)

Finding Check-Ins Finding friends who visited a place in a
specific range of user current location (for
example, in a range of 100 meters
diameter)

Finding Events Finding all events that belongs to a specific
entity, such as building, company,
university that are located in the user's
surroundings, or events that take place
nearby the user's current location

Finding Groups Finding groups with activities that are
related to the user's location, such as the
group belongs to a particular place (e.g.,
building) or organizations (e.g., company,
university)

Finding Photos Finding all photos, and albums that the
user's friends have taken of places or things
in the user's current surroundings

Finding Posts Finding all public posts that contains
information about a specific entity, such as
tourist attraction, organization, university
that are located in the user's surroundings

Figure 27 - Shared Methods

The next sections will describe how we created these above shared methods to access
resources on Facebook, Google Plus, and the Twitter Platform.

	
 51	

5.3 Account Screen

Figure 28 - The Account Screen - integrate Facebook, Twitter and Google Plus

The Account Screen is the first screen when the application is launched (see Figure 25).
The Account Screen allows integrating the three most popular social networks at once:
Facebook, Twitter, and Google Plus. By tapping on the button "Add another account", we
can integrate these social networks into our application.

	
 52	

Figure 29 - The Account Screen - Showing Profile, Logout and Start Application

The next rows (see Figure 26) show the information of the current integrated social
networks (e.g., the social network's name, the user's full name, the user's avatar picture).
Tapping on the "Edit" buttons (located at the right side of each row), we can obtain more
details of a specific profile avatar (tapping on button "Show") and we can logout from a
specific social network (tapping on button "Logout").

The user starts our application by tapping on the button "START", which is located on
the bottom of this screen.

	
 53	

5.4 Home Screen

Figure 30 - The Home Screen

The Home Screen (see Figure 27) enables the user to find the relevant-context social
media data (e.g., finding events, groups, check-ins related to the physical entities in the
user's surroundings). The Home Screen consists of three parts:

Part1:

Figure 31 - The Home Screen - Collecting Physical Entities

	
 54	

This part is for presenting the real physical entities detected in the user's surroundings.
The listing 5.4 enumerates the detected entities in VUB University area: Health City,
Complex Building, Opinio Coffee Shop, Student Restaurant, and so on. All detected
entities are stored in a list view, and the user can scroll horizontally to see the rest of
entities. Importantly, the user can select some entities that he is interested in to later
extract later the meaningful information related to these selected entities from social
networks (e.g., finding events that take place there, finding pictures that the user's friends
took there).

Part2:

Figure 32 - The Home Screen - Functions related to the physical entities

This part shows some functions to related to the detected physical entities as specified
follow:

Functions Description

Selecting all detected entities in a page of the list view.

De-selecting all selected entities in a page of the list view.

Searching detected entities by type (e.g., restaurant, coffee shop, etc.).
This function directly links to the Search Screen (see section 5.11).

Showing all detected entities and the user's current location on map. This
function directly links to the Map Screen (see section 5.12)

Figure 33 - The Home Screen - Functions related to the physical entities

Part3:

Figure 34 - The Home Screen - Shared Methods

	
 55	

This part is for representing our set of shared methods (see section 5.2) to obtain the
relevant-context social media data.

Shared Method Description

Finding friends whose activities are related to the user's current
location (e.g., living, working, studying nearby). This method directly
links to the Friends Screen (see section 5.5).

Finding friends who visited a place in a specific range of user current
location (for example, in a range of 100 meters diameter). This method
directly links to the Check-ins Screen (see section 5.6).

Finding groups with activities that are related to the user's location,
such as the group belongs to a particular place (e.g., building) or
organizations (e.g., company, university). This method directly links
to the Groups Screen (see section 5.7).

Finding all photos, and albums that the user's friends have taken of
places or things in the user's current surroundings. This method
directly links to the Photos Screen (see section 5.8).

Finding all public posts that contains information about a specific
entity, such as tourist attraction, organization, university that are
located in the user's surroundings. This method directly links to the
Posts Screen (see section 5.9).

Finding all events that belongs to a specific entity, such as building,
company, university that are located in the user's surroundings, or
events that take place nearby the user's current location. This method
directly links to the Events Screen (see section 5.10).

Figure 35 - The Home Screen - Shared Methods Description

As an example we could imagine is if you want to know about what people talked about
the service of the Health City at VUB campus, or what events of VUB you can enroll,
you just select the VUB entity, and the Health City entity in the first part, and then tap on
the shared methods below related to finding posts and events.

	
 56	

5.5 Friends Screen

Figure 36 - Friends Screen

The Friends Screen is to find the user's friends whose activities are related to the user's
current location (e.g., living, working, studying nearby). The Figure 32 illustrates a
scenario where we are crossing the VUB University and we would like to know who are
our friends that are studying at, working at, or living nearby the VUB University. Below,
we explain how we can achieve this result by accessing the Facebook (see section 4.2.2)
and Twitter Search API (4.2.3).

For Facebook, we use both Graph Search API and FQL query to implement this request.

	
 57	

Figure 37 - FQL to find friends' education matching user's context

This FQL query finds the user's friends who study at a place with the name is the same or
contains the keyword. The keyword here is the name or the abbreviation name of the
place.

Figure 38 - FQL to find friends' work place matching user's context

This FQL query finds the user's friends who work at a place with the name is the same or
contains the user's context keyword.

Figure 39 - FQL to find friends' living place matching user's context

This FQL query finds the user's friends who live at a place with the name is the same or
contains the user's context keyword.

	
 58	

Using Twitter API version 1.1, to find all friends who live near the location of a specific
context.

• GET friends/list 22 - return a collection of user object for every user the specified
user is following (otherwise known as their friends)

User/location 23 - extract location of a user.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

22 https://dev.twitter.com/docs/api/1.1/get/friends/list
23 https://dev.twitter.com/docs/platform-objects/users

	
 59	

5.6 Check-ins Screen

Figure 40 - The Check-Ins Screen

The Check-ins Screen is to find friends who visited a place in a specific range of the
user's current location (for example, in a range of 100 meters diameter). The Check-Ins
information includes the photo taken at that place, the post and the associated comments.
The figure 36 illustrates the user's friends who have visited the VUB University. Below,
we explain how we can achieve this result by accessing the Facebook (see section 4.2.2)
and Twitter Search API (4.2.3).

	
 60	

Figure 41 - FQL to find friends' check-ins in a specific location

This service is to get check-ins of the user's friends in a specific range of user current
location (for example, in a range of 5000 meters diameter) and match the user's context.
This query collects all check-ins in a specific location with diameter of 5 kilometers. The
raw data will be passed to the filter process to find the most relevant-context data.

	
 61	

5.7 Group Screen

Figure 42 - The Group Screen

The Group Screen is to find groups with activities that are related to the user's location,
such as the group belongs to a particular place (e.g., building) or organizations (e.g.,
company, university). The listing 5.9 illustrates all the groups with activities that are
related to the VUB University (e.g., the VUB Student Home Nieuwelaan group, the VUB

	
 62	

international students group, the second-hand stuffs for VUB students, etc.). Below, we
explain how we can achieve this result by accessing the Facebook (see section 4.2.2) and
Twitter Search API (4.2.3).

Figure 43 - Facebook Graph Search to find all groups related to user's context

This query is to get all groups that match the user context, or their activities take place in
the user's current neighborhood.

Figure 44 - FQL to get all recent news from a specific group

This query gets all recent news from a specific group by passing group id.

	
 63	

5.8 Photos Screen

Figure 45 - The Photos Screen

The Photos Screen is to find all photos, and albums that the user's friends have taken of
places or things in the user's current surroundings. The figure 40 illustrates all pictures
taken place at VUB campus by the user's friends. Below, we explain how we can achieve
this result by accessing the Facebook (see section 4.2.2) and Twitter Search API (4.2.3).

	
 64	

Figure 46 - FQL to get information about the user's friends' albums

This query finds out all albums of the user's friends.

	
 65	

Figure 47 - The Photo List

Figure 48 - FQL to get all photos in a specific album

This query finds all photos of a specific album. The maximum in the album is limited to
1000 photos. We use the multi-query FQL in this situation by passing the album query
into photo query.

We pass the raw data (user's friends' photos) to the filter process to find the most relevant
photos that match the user's context.

	
 66	

Using Twitter Search API to find tweets which match context and contain images, by
including "filter:images", searching by topic #keyword_context

	
 67	

5.9 Posts Screen

Figure 49 - The Posts Screen

The Posts Screen is to finding all public posts that contains information about a specific
entity, such as tourist attraction, organization, university that are located in the user's
surroundings. The listing 5.12 illustrates the public posts about VUB University. Below,
we explain how come we can achieve this result by accessing the Facebook (see section
4.2.2) and Twitter Search API (4.2.3).

Figure 50 - Facebook Graph Search to find all public posts related to context

This query is to get all posts that match the user context.

	
 68	

Using Twitter Search API24 to return a collection of tweets that are relevant to the
context. For example, finding all public tweets, which contain the keyword "tcomplex"
near VUB area.

https://api.twitter.com/1.1/search/tweets.json/q=%23tcomplex&geocode=50.82469,4.400
719,1000&lang=eu&

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

24 https://dev.twitter.com/docs/api/1.1/get/search/tweets

	
 69	

5.10 Events Screen

Figure 51 - The Events Screen

The Events Screen is to find all events that belongs to a specific entity, such as building,
company, university that are located in the user's surroundings, or events that take place
nearby the user's current location. The listing 5.13 illustrates all events that are related to
or take place at the VUB University. Below, we explain how we can achieve this result
by accessing the Facebook (see section 4.2.2) and Twitter Search API (4.2.3).

Figure 52 - Facebook Graph Search to find events related to user's context

	
 70	

This query is to get all events, which match the user context, taking place in the user
current neighborhood. This query collects all events related to the user's context. The
user's context here is a keyword (keyword_matching) that is passed as a parameter.

Figure 53 - Facebook Graph Search to find all user's friends who attend a specific event

This query finds out all the user's friends who attend a specific event.

	
 71	

5.11 Search Screen

Figure 54 - The Search Screen

The search screen allows user to find context by type, for example nearby entities,
detected entities, food shops, restaurants, coffee shops, sport buildings or complex
building, statue, and so on. Moreover, the search screen also allows the user to find
context by keyword. Tapping on a specific context, he could get more information of this
context.

	
 72	

5.12 Map Screen

Figure 55 - The Map Screen

Map screen represents all detected entities around the current user's location. The current
version of this application doesn't support a feature of showing the path from the user
location to a specific entity, but with Google API Service, it can be realized.

	
 73	

5.13 Physical Entities Screen

Figure 56 - The Physical Entities Screen

The Physical Entities Screen is to represent the information of detected entities in the
user's surroundings. More specifically, we obtain this information from the SCOUT
framework, and this information is stored in an RDF file on the web. The RDF file
contains all information of a specific entity, such as title, region, label, description,
image, and so on. Please see section 4.3.1 to see how an entity data type is identified in
our system. The Physical Entities Screen provides a list view of all physical entities, and
the user can scroll horizontally to see other entities.

	
 74	

5.14 History Screen - The Semi-Auto Posting

Figure 57 - The History Screen

The history screen shows all contexts that the user has visited during the day. At a
specific time of day (e.g., at the end of a day), the user can decide to rate any context he
finds interesting, and share it on online communities. This is the semi-auto posting
mechanism that we implemented in our application.

Figure 58 - Share the History Context

	
 75	

5.15 Preference Screen - The Auto-Posting

Figure 59 - The Preference Screen

The Preference screen provides a mechanism to automatically post a status based on the
user context, for example in the case you are travelling abroad, or base on the amount of
time you are at a specific context (15 minutes, 30 minutes). If you are at a specific
context for 30 minutes, maybe you find this context interesting, and the application
automatically will post your current location on a chosen social network. You can choose
a status and then the location will be added automatically to the post. Below, we explain
how we can achieve this auto-posting mechanism.

Firstly, from social networks (e.g., Facebook, Twitter, or Google Plus), we can know the
user's home location. Whenever the user moves to another place, our system will
determine the user's current location by using the Google Geocoding API 25 . By
comparing the user's home location and the user's current location, we can identify if the
user is abroad, and the post along with the current location will be shared automatically
online.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

25 https://developers.google.com/maps/documentation/geocoding

	
 76	

Secondly, the SCOUT framework provides us a notification service that notifies our
application when the user is nearby or far from a specific entity. The Proximity Model in
the Environment Layer of SCOUT keeps time-stamped positional relations between the
user and physical entities, and thus we can identify how long the user stay at a specific
entity. A post, along with the name of entity will be shared automatically online, based on
the amount of time that the user stays at a specific entity. This amount of time is set as
default in the Preference Screen.

	
 77	

6 Conclusion and Future Work
This thesis presents a generic mobile social media framework. A first contribution of this
work is allowing for the integration of any social network. In this vein, a challenging
aspect was to resolve the conflicts or overlaps between different data types of the various
social networks. We resolved this problem by building a set of shared common data
types, enabling us to build a common set of services among multiple social networks.

Moreover, the thesis is also focusing on the challenge of extracting meaningful data
based on the user's context from multiple social networks. We proposed a solution of
using the context matching function to categorize the context data by degree of relevance,
based on the online user profile information, and the user's context information.

A second major contribution lies in achieving a full integration of social media and
activities in the physical world. Importantly, this integration is realized in both directions;
i.e., from social media to physical world and vice versa. The integration from physical
world to social media is illustrated with two mechanisms: auto-posting and semi-auto
posting. An auto-posting mechanism is presented, which allows automatically sharing
context data in certain situations (e.g., in case the user travels abroad, or stays in the same
place for a long time). A semi-auto posting mechanism is also presented, which allows
storing all contexts collected during the day; and at the end of each day, the user is able to
decide which context should be shared online. On the other hand, the integration from
social media to physical world is illustrated by automatically pushing context-relevant
social media data towards the user.

In our framework, we decoupled the different concerns into distinct application layers.
The Social Network Layer accesses multiple social networks to find relevant information,
based on the nearby entities information. The Data Processing Layer determines the
degree of relevance of the obtained social network data. The User Interface Layer relies
on the returned social media information, and their degree of relevance to automatically
generate a UI and display the returned data. The framework is demonstrated by building a
mobile application integrating three social networks (Facebook, Twitter, Google Plus)
and exploiting six basic kinds of data types (people, photo, check-in, event, group, and
post).

Future work could be in the two following aspects:

Firstly, so far, we create a set of common data types in a manual way. By analyzing data
types from two or more social networks, the developer should combine and create a
unified and common data type in our system. However, building such a common data
type is not easy because of the data type structure from different social networks may be
complicated, and thus requires a lot of time for the developer to design a common set of
data types. Tools or visualization methods could help the developer to understand and
analyze different data type structures better, and thereby result into more precise results
for combining various data types into a common data type. Such tools would also
decrease the developer's efforts.

	
 78	

The integration from physical activities to social media can still be improved. Firstly,
user's preferences should be exploited more. For example, frequently visited places can
be stored and shared with a group of people. As another example, the time at which the
user arrived at work could be shared with his colleagues; while information indicating
that he is busy at the moment can be shared with everyone. When the user comes to a
favorite place, this information can be shared with his close friends or his girlfriend. In
addition, other user context could be collected to provide a better contextual picture. For
example, nearby people's information could be extracted from the SCOUT framework,
and thus allowing the user to decide to post a status, including nearby people. The user's
movements and gestures that are measured by built-in mobile accelerometer can be
exploited to allow users to automatically insert their current activity into the status, such
as walking, dancing or sleeping.

	
 79	

Bibliography

1. Ahern, S. et al. ZoneTag  : Designing Context-Aware Mobile Media Capture to Increase
Participation. In Proceedings of the Pervasive Image Capture and Sharing: New Social Practices
and Implications for Technology Workshop (PICS 2006) at the Eighth International Conference on
Ubiquitous Computing 3–5 (2006).

2. Beach, A. et al. WhozThat? Evolving an Ecosystem for Context-Aware Mobile Social Networks.
IEEE Network: The Magazine of Global Internetworking 22, 50–55 (2008).

3. Beach, A. et al. Fusing mobile, sensor, and social data to fully enable context-aware computing. In
Proceedings of the Eleventh Workshop on Mobile Computing Systems & Applications -
HotMobile ’10 60–65 (ACM Press, 2010).

4. Becker, H. & Gravano, L. Event Identification in Social Media. In Twelfth International Workshop
on the Web and Databases (2009).

5. Brown, P. J. & Bovey, J. D. Context-aware applications: from the laboratory to the marketplace.
IEEE Personal Communications 4, 58–64 (1997).

6. Dey, A. K. Understanding and Using Context. Personal Ubiquitous Computing 5, 4–7 (2001).

7. Dey, A. K. Context-Aware Computing  : The CyberDesk Project. In The AAAI 1998 Spring Symp,
on Intelligent Environments 51–54 (1998).

8. Ferreira, D. R. & Diniz, P. C. Mobile Context Provider for Social Networking. In OTM ’09
Proceedings of the Confederated International Workshops and Posters on On the Move to
Meaningful Internet Systems: ADI, CAMS, EI2N, ISDE, IWSSA, MONET, OnToContent, ODIS,
ORM, OTM Academy, SWWS, SEMELS, Beyond SAWSDL, and COMBEK 2009 464 – 473
(Springer-Verlag, 2009).

9. Fujisaka, T., Lee, R. & Sumiya, K. Detection of Unusually Crowded Places through Micro-
Blogging Sites. 2010 IEEE 24th International Conference on Advanced Information Networking
and Applications Workshops 467–472 (2010).

10. Gaonkar, S., Li, J., Choudhury, R. R. & Schmidt, A. Micro-Blog  : Sharing and Querying Content
Through Mobile Phones and Social Participation. In Proceedings of the 6th international
conference on Mobile systems, applications, and services 174–186 (ACM, 2008).

11. Holleis, P., Wagner, M., Böhm, S. & Koolwaaij, J. Studying Mobile Context-aware Social Services
in the Wild. In NordiCHI ’10 Proceedings of the 6th Nordic Conference on Human-Computer
Interaction: Extending Boundaries 207–216 (ACM, 2010).

12. Ji, R., Xie, X., Yao, H. & Ma, W.-Y. mining city landmarks from blogs by graph modeling. In
Proceedings of the 17th ACM international conference on Multimedia 105–114 (ACM, 2009).

13. Ko, M. N., Cheek, G. P., Shehab, M. & Carolina, N. Social-Networks Connect Services. The IEEE
Computer Society 43, 37–43 (2010).

	
 80	

14. Koolwaaij, J. et al. Context Watcher ─ Sharing context information in everyday life. In
Proceedings of the IASTED conference on Web Technologies, Applications and Services (WTAS).
IASTED (2006).

15. Labs, A. B. Context-awareness, the missing block of social networking. International Journal of
Computer Science & Applications 6, 50–65 (2009).

16. Lu, X., Wang, C., Yang, J., Pang, Y. & Zhang, L. Photo2Trip  : Generating Travel Routes from
Geo-Tagged Photos for Trip Planning ∗ Categories and Subject Descriptors. in Proceedings of the
international conference on Multimedia 143–152 (ACM, 2010).

17. Miluzzo, E. et al. Sensing Meets Mobile Social Networks  : The Design , Implementation and
Evaluation of the CenceMe Application. In Proceedings of the International Conference on
Embedded Networked Sensor Systems 337–350 (ACM, 2008).

18. Pertola, P. & Kolind, L. Context DJ – A Context-Aware adaptive music player. The Pervasive
Computing Course (2010).

19. Pietiläinen, A., Oliver, E., Lebrun, J. & Varghese, G. MobiClique  : Middleware for Mobile Social
Networking. In The 2nd ACM workshop on Online social networks 49–54 (ACM, 2009).

20. Schilit, B., Adams, N. & Want, R. Context-Aware Computing Application. In WMCSA ’94
Proceedings of the 1994 First Workshop on Mobile Computing Systems and Applications 85–90
(IEEE Computer Society, 1994).

21. Sigurbjörnsson, B. & van Zwol, R. Flickr tag recommendation based on collective knowledge. In
Proceeding of the 17th international conference on World Wide Web - WWW ’08 327 (ACM Press,
2008).

22. Van Woensel, W., Casteleyn, S., Paret, E. & De Troyer, O. Mobile Querying of Online Semantic
Web Data for Context-Aware Applications. IEEE Internet Computing 15, 32–39 (2011).

23. Zanda, A., Eibe, S. & Menasalvas, E. SOMAR: A SOcial Mobile Activity Recommender. Expert
Systems with Applications 39, 8423–8429 (2012).

24. Zhao, Q., Liu, T.-Y., Bhowmick, S. S. & Ma, W.-Y. Event detection from evolution of click-
through data. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining - KDD ’06 484–493 (ACM Press, 2006).

25. Zhu, J., Oliya, M., Pung, H. K. & Wong, W. C. SOLE  : Context-Aware Sharing of Living
Experience in Mobile Environments. In MoMM2010 Proceedings of the 8th International
Conference on Advances in Mobile Computing and Multimedia 0–3 (ACM, 2010).

