
Co-Promotor: Dr. Frederic Kleinermann
Promotor: Prof. Dr. Olga De Troyer

Academiejaar 2006-2007

Bram Pellens
Proefschrift ingediend met het oog op het behalen van de graad van Doctor in de Wetenschappen

A Conceptual Modelling Approach for Behaviour
in Virtual Environments using a Graphical Notation
and Generative Design Patterns

Web & Information Systems Engineering
Departement Computer Wetenschappen
FACULTEIT VAN DE WETENSCHAPPEN

ii

Samenvatting

Virtuele Realiteit (VR) bestaat al vele jaren en de meeste onder ons zijn
er op één of andere manier wel eens een keer mee geconfronteerd geweest.
Sinds de introductie van deze innovatieve vorm van interactie tussen mens
en computer, in het midden van de jaren 80, heeft Virtuele Realiteit al veel
interesse opgewekt en dit zal waarschijnlijk nog vele jaren zo blijven.

Doorgaans gaat Virtuele Realiteit over het creëren van zogenoemde Virtuele
Omgevingen, die geloofwaardig, realistisch, of op zijn minst visueel attractief
zijn. De allereerste applicaties die gebruik maakten van Virtuele Realiteit,
hadden niet echt realistische Virtuele Omgevingen. Anno 2007 zijn de nodige
technologiën zodanig gevorderd dat realistische omgevingen binnen de mo-
gelijkheden liggen. Het meeste onderzoek in Virtuele Realiteit werd gedaan
op het gebied van het modelleren van het statische gedeelte van de Virtuele
Omgeving, namelijk de objecten en hun uiterlijk alsook hoe deze objecten
te combineren om zo de Virtuele Omgeving te construeren. Dit resulteerde
in een aantal software applicaties en API’s, die de taak van de ontwikkelaar
aanzienlijk verlichten, vooral wat betreft het modelleren van het statische
gedeelte. Virtuele Omgevingen zijn echter zeer dynamisch van nature de ob-
jecten hebben gedrag en er is interactie mogelijk tussen de objecten onder-
ling en tussen de gebruikers en de objecten. Tot op heden is er, in contrast
met het statische gedeelte, zeer weinig onderzoek verricht naar het mod-
elleren van het dynamische gedeelte van de Virtuele Omgeving. Het gedrag
wordt meestal manueel gespecificeerd door middel van een specifieke script-
taal of een algemene programmeertaal. Het gevolg is dat het modelleren of
specificeren van gedrag veel tijd kost en niet mogelijk is voor mensen zon-
der achtergrondkennis over programmeren. Daarbij komt nog dat huidige
Virtuele Omgevingen steeds realistischer moeten zijn en dus meer gesofisti-
keerd gedrag vereisen. Daarom is er nood aan nieuwe technieken om het
modelleren van gedrag te vereenvoudigingen en toegankelijk te maken voor
een breder publiek. Met andere woorden, er moet een antwoord gezocht

iii

worden op de vraag: ”Hoe kan de ontwikkeling van Virtuele Omgevingen,
en in het bijzonder het modelleren van gedrag, verbeterd worden?

In dit proefschrift wordt in het licht van de bovenstaande vraag, een
benadering beschreven voor het modelleren van gedrag. Het werk is ver-
richt in de context van VR-WISE, een reeds bestaande benadering voor
het modelleren van Virtuele Realiteit. Het hoofddoel van VR-WISE is het
vergemakkelijken en versnellen van de ontwikkeling van Virtuele Omgevin-
gen. Dit wordt in VR-WISE bewerkstelligd door een expliciete conceptuele
modelleerfase toe te voegen aan de algehele ontwikkelingsproces. De on-
twerper kan een Virtuele Omgevingen specificeren door middel van hoog
niveau specificaties en zonder rekening te moeten houden met implemen-
tatie details. VR-WISE ondersteunde echter enkel het modelleren van het
statische gedeelte van een Virtuele Omgeving. De doelstelling van dit proef-
schrift was dan ook om VR-WISE uit te breiden zodat ook het dynamische
gedeelte (gedrag) van een Virtuele Omgeving kan gemodellerd worden via
hoog niveau specificaties. Eerst zal een conceptuele benadering voor het
modelleren van gedrag gentroduceerd worden samen met een grafische mod-
elleertaal. Deze modelleertaal laat de ontwerper toe om gedrag grafisch te
specificeren, op een hoog niveau en zonder de noodzaak om kennis over
programmeren te hebben. Ten tweede zal deze grafische modelleertaal uit-
gebreid worden om tegemoet te komen aan de beperkingen van een grafische
notatie. Namelijk, wanneer de modellen complex worden, zijn grafische di-
agrammen vaak niet meer overzichtelijk. Dit gebeurt vooral wanneer we
te maken hebben met complex gedrag. Daarom is er een raamwerk on-
twikkeld, gebaseerd op het concept van ontwerppatronen, dat toelaat om
meer complex gedrag te ontwerpen door het gebruik van gedragspatronen.
Minder ervaren ontwerpers kunnen voorgedefinieerde patronen gebruiken,
terwijl meer ervaren ontwerpers hun eigen patronen kunnen definiren. Ten
slotte beschrijven we in dit proefschrift hoe de benadering gevalideerd werd
door middel van een proof-of-concept software applicatie die de benadering
ondersteunt. Ook zal er gerapporteerd worden over een experiment waarin
leken deze tool gebruikt hebben om gedrag te modelleren. Bovendien zijn
er ook enkele voorbeelden uitgewerkt en beschreven in dit proefschrift.

iv

Abstract

Virtual Reality (VR) has been around for many years and most of us have,
in some way or the other, been confronted with it, at least once. Since the
introduction of this innovative form of human-computer interaction in the
mid nineteen eighties, VR has gained a lot of interest and will continue to
do so for many more years.

Basically, VR is about creating Virtual Environments (VEs), which are
believable, realistic, or at least visually attractive. However, this was not
the case for the very first VR applications. Over the last ten years, the
technology has evolved considerably and fairly realistic systems can be built
nowadays. Most of the research efforts have been put into improving the
modelling of the static part of a VE, i.e. the visual appearance of objects
and how to compose the overall scene. As a result, a number of software
tools and application programming interfaces have been developed. These
packages have eased the task of the designer mainly on the modelling of the
static part of a VE. However, in essence VEs are really dynamic, i.e. objects
have behaviours and users can interact with these objects. Unfortunately,
the modelling of the dynamic part of a VE did not receive the same atten-
tion and therefore has not undergone the same progress as the static part.
The specification of behaviour is mostly being done at a low level by man-
ually programming it using either dedicated scripting languages or general
purpose programming languages. As a consequence, the process of building
behaviours is still not accessible to designers without programming skills. In
addition, current VR applications are becoming more realistic and therefore
require more complex behaviours. For this reason, there is a strong need to
have new ways to make the modelling of behaviour easier and more intuitive.
In other words, there is still no adequate answer to the question ”How can
the development process of VR applications, and more precisely the aspect
of modelling the behaviour, be improved further?”

This dissertation presents an approach that is addressing the above ques-

v

tion. The work is done in the context of VR-WISE, an existing modelling
approach for Virtual Reality. The main goal of the VR-WISE approach is to
ease and shorten the development of VEs by including an explicit conceptual
modelling phase into the overall design process. It enables the designer to
specify a VE through intuitive high-level specifications without the need of
considering any implementation details. Until now, VR-WISE only focused
on modelling the static part (i.e. scene) of a VE. The purpose of this disserta-
tion has been to extend VR-WISE in order to facilitate the modelling of the
dynamic part (i.e. behaviour) of a VE. Firstly, this dissertation will intro-
duce a behaviour modelling approach and an associated graphical Behaviour
Modelling Language. This language allows designers to visually specify be-
haviour at a high level and without requiring advanced programming skills.
Secondly, the dissertation will describe how the behaviour modelling ap-
proach has been extended to overcome some of the limitations associated
with graphical notations when it comes to modelling complex behaviours.
A Behavioural Design Patterns Framework has been developed to facilitate
the specification of more complex behaviours by incorporating behavioural
patterns into the graphical modelling language. This framework allows less
experienced designers to use predefined behavioural patterns while more ex-
perienced designers can create their own behavioural patterns. Thirdly, the
dissertation will explain how this approach has been validated by implement-
ing a proof-of-concept software tool supporting VE development using the
VR-WISE approach. It will also report on an experiment performed showing
how laymen have used this tool to model behaviours for real case scenarios.
Furthermore, a number of other case scenarios have been elaborated and are
presented in this dissertation.

vi

Acknowledgements

The period in which the work for this dissertation has been done, was test-
ing, but in the first place exciting, instructive, and fun. Without the help,
support, and encouragement from several persons, I would never have been
able to finish this work.

First and foremost, I would like to express my deep and sincere gratitude
to my promotor, Prof. Dr. Olga De Troyer, Head of the Web & Information
Systems Engineering (WISE) Laboratory of the Vrije Universiteit Brussel.
Her wide knowledge and her logical way of thinking have been of great
value for me. Her understanding, encouraging and personal guidance have
provided a good basis for this dissertation.

I am also deeply indebted to Dr. Frederic Kleinermann, my co-promoter.
The many conversations I had with him on various topics gave me valuable
insights in the domain of Virtual Reality. It will also be very hard for me to
repay him for the countless hours he spent on proofreading and discussing
my text. I hope we can continue to cooperate in the future.

Next, I would like to thank the members of my jury, Prof. Dr. Marc
Cavazza, Prof. Dr. Nicholas Avis, Prof. Dr. Ir. Geert-Jan Houben, and
Prof. Dr. Viviane Jonckers, first of all to be in my jury and secondly for
providing me with good pointers to further improve the quality of my text.

Thanks also to all my colleagues and ex-colleagues at the Department of
Computer Science for providing a good working atmosphere, especially the
persons in the Web & Information Systems Engineering (WISE) Laboratory,
namely Wesley Bille, Sven Casteleyn, Peter Plessers, Raül Romero, Haithem
Mansouri and Abdelgani Mushtaha. They started as colleagues, but became
my friends.

Obviously, I would not be sitting in front of my computer typing these
acknowledgements without my parents. I owe my parents, Diane and Jacky
Pellens much of what I have become. I thank them for their love, their
support, and their confidence throughout the past twenty-six years. My

vii

parents have always put education as a priority in my life. They have done
everything in their power to make this possible. They raised me to set high
goals for myself. I always needed to work hard to achieve my goals in life and
they have always been there for me as an unwavering support. I dedicate
this work to them.

I owe my loving thanks to my girlfriend Els Klerkx for her love and
patience during the PhD period. She supported me with an endless number
of things which allowed me to focus on nothing but my work. She practically
put her life on hold for me. Nonetheless, she had to endure many of my mood
swings. I thank her for being there for me in times when I needed her most.

My special gratitude is also due to my sister Ine Pellens and to the rest
of my family for their loving support.

Last, but not least, special thanks go to my best friends whom I have
been neglecting during the time I was writing up my dissertation: Kevin
Kuppens, Bert Creylman, Larissa Mandos, Tine De Wit, Catherine Cober,
Andy Kellens, Serge Kovacs, Roel Peeten, Tom Peeten, Annika De Graaf,
Wendy Coene and off course all the people of the VUB Diving Center.

Finally, I would like to thank all the people I unwittingly forgot to men-
tion here. Many people contributed in some way to this PhD and I thank
all of them.

Please note that the work reported in this dissertation has been finan-
cially supported by the Institute for the Promotion of Innovation by Science
and Technology in Flanders (IWT) through the VR-DeMo (IWT 030248)
project, a research project in cooperation with Expertise Centrum Digital
Media (EDM - Universiteit Hasselt). Therefore, I also thank the IWT for
this support and the colleagues at EDM for the four years of cooperation.

viii

Contents

Samenvatting iii

Abstract v

Acknowledgements vii

Contents xii

Glossary xx

1 Introduction 1
1.1 Research Context . 1

1.1.1 Virtual Reality . 1
1.1.2 Anatomy of a Virtual Environment 5

1.2 Problem Statement . 7
1.2.1 Modelling the Static Scene 8
1.2.2 Modelling Behaviour and its Complexity 12

1.3 Aims and Objectives . 15
1.4 Research Approach . 17
1.5 Significance . 18
1.6 Outline of this Dissertation 19

2 Related Work 23
2.1 High-Level Design Methods for Virtual Environments 24

2.1.1 VRID . 24
2.1.2 VEDS . 26
2.1.3 CLEVR . 28
2.1.4 CONTIGRA . 31
2.1.5 SENDA . 33

ix

CONTENTS

2.1.6 Ossa . 35
2.1.7 I4D . 37

2.2 Behaviour Modelling Approaches 39
2.2.1 Graphical Notations 39
2.2.2 Scripting Languages 43
2.2.3 Software Applications 49

2.3 Other Related Work . 51
2.4 Situating this Dissertation in the Field of Modelling Behaviour 53

3 Methodology 57
3.1 Conceptual Modelling . 57
3.2 Ontology-Driven Design . 59

3.2.1 What are ontologies? 60
3.2.2 Why using Ontologies? 60

3.3 VR-WISE Approach . 61
3.3.1 Architecture of Ontologies 63
3.3.2 Design Process . 70

3.4 Extension of VR-WISE . 73
3.5 Summary . 73

4 Conceptual Modelling of Dynamic Virtual Environments 75
4.1 Initial Requirements . 76
4.2 Overview of the Behaviour Modelling Approach 77
4.3 Extended Architecture of Ontologies 79

4.3.1 Behaviour Modelling Ontology (Meta Level) 81
4.3.2 Behaviour Specification (Domain Level) 85

4.4 Fitting Behaviour Modelling into the Overall Development
Process . 86

4.5 Summary . 87

5 Graphical Behaviour Modelling Language 89
5.1 Basic Concepts . 90
5.2 Structure Chunk . 96

5.2.1 Item . 96
5.2.2 Relations . 97

5.3 Behaviour Definition Diagram 101
5.3.1 Actor . 102
5.3.2 Generalization/Specialization 104
5.3.3 Behaviours . 105
5.3.4 Operators . 120
5.3.5 Example . 126

5.4 Behaviour Invocation Diagram 127
5.4.1 Object . 129
5.4.2 Behaviour Reference 130

x

CONTENTS

5.4.3 Causal Relation . 131
5.4.4 Events . 133
5.4.5 Example . 138

5.5 Behavioural Script Language 139
5.5.1 General Overview . 140
5.5.2 Speed . 141
5.5.3 Speedtype . 141
5.5.4 Repeat . 142
5.5.5 Variables . 142
5.5.6 Conditions . 143
5.5.7 Before, Do and After Blocks 144
5.5.8 Remaining rules . 147

5.6 Summary . 149

6 Behavioural Design Patterns Framework 151
6.1 Observations . 152
6.2 Visual Generative Design Patterns 153
6.3 The Design Patterns Framework 155

6.3.1 Building Patterns . 157
6.3.2 Using Patterns . 167

6.4 A Collection of Behavioural Design Patterns 169
6.4.1 Chase-Evade Pattern 170
6.4.2 Pattern Movement Pattern 173
6.4.3 Herd Pattern . 175
6.4.4 Strategy Pattern . 176
6.4.5 Proxy Pattern . 178
6.4.6 Randomness Pattern 180
6.4.7 Feedback Pattern . 181
6.4.8 Device Configuration Pattern 184
6.4.9 Other Patterns . 185

6.5 Summary . 186

7 Implementation 187
7.1 Overview . 187
7.2 Conceptual Specification Designer (CSD) 188

7.2.1 VisioVRCSAddin (Microsoft Visio Add-in) 191
7.3 OntoWorld . 193
7.4 Integrated Test Environment (ITE) 196
7.5 Summary . 198

8 Validation 201
8.1 Experimental Results . 201

8.1.1 Description . 203
8.1.2 Data . 207

xi

CONTENTS

8.1.3 Feedback . 208
8.1.4 Discussion . 209

8.2 Case Studies . 211
8.2.1 Case: Virtual City Simulation 211
8.2.2 Case: Human Animation 212
8.2.3 Other Cases: VR-DeMo 214

8.3 Summary . 216

9 Conclusions and Future Research 217
9.1 Summary . 217
9.2 Modelling Behaviour and its Complexity (revised) 221
9.3 Contributions and Achievements 222
9.4 Limitations and Future Work 224

A The Behaviour Modelling Ontology 229

B Script Language BNF Specification 257

C Resources: Experiment 261
C.1 Introductory Document (in Dutch) 261

C.1.1 Modelleren van gedrag in Virtuele Omgevingen (ge-
bruik makende van VR-WISE) 261

C.1.2 Grondplan . 263
C.2 Assignments (in Dutch) . 264
C.3 Questionnaire (in Dutch) . 265

References 281

xii

List of Figures

1.1 Virtual Environment application stack 8
1.2 The Virtual Reality design process as it is currently perceived 15
1.3 Desired Virtual Environment design process 17

2.1 The VRID model (a) and the VRID methodology (b) 25
2.2 The VEDS methodology . 27
2.3 The CLEVR design approach 29
2.4 The CONTIGRA levels and tasks 31
2.5 The SENDA process model 34
2.6 The Ossa design architecture 36
2.7 The i4D design approach . 38

3.1 General overview . 62
3.2 VR-WISE ontology architecture 63
3.3 VR-WISE design process . 71
3.4 The resulting Virtual Environment 73

4.1 Extended architecture of ontologies 80
4.2 Meta-model of a Behaviour Definition Model 82
4.3 Meta-model Behaviour Invocation Model 84

5.1 Three dimensional space . 91
5.2 Reference Frame . 92
5.3 Item (a) and example Items (b) 97
5.4 Spatial Relation . 98
5.5 Orientation Relation . 100
5.6 Actor (a), detailed actor (b), example (c), detailed example (d)103
5.7 Alternative representations of actor 104
5.8 Sub-actor/super-actor . 105

xiii

LIST OF FIGURES

5.9 Manipulations . 109
5.10 Examples of move, resize and roll (with external reference

frame) . 110
5.11 Transform . 111
5.12 Construct (a) and destruct (b) 113
5.13 Example of construct (a), destruct (b) 113
5.14 Grouping (a) and ungrouping (b) 116
5.15 Example of grouping (a), ungrouping (b) 116
5.16 Combine (a) and disperse (b) 118
5.17 Example of disperse (a), combine (b) 119
5.18 External Behaviour (a) and Composite Behaviour (b) 120
5.19 Example of composite behaviour 121
5.20 Operators . 125
5.21 Example of temporal operator (a) and lifetime operator (b) . 126
5.22 Behaviour Definition Diagram: Virtual Robot 127
5.23 Concept (a) and instance (b) 129
5.24 Example of concept (a) and instance (b) 130
5.25 Behaviour reference (a) and an example (b) 131
5.26 Schematic Behaviour Definition Diagram (a), Behaviour In-

vocation Diagram (b) . 132
5.27 Causal Relation: use (a) and call (b) 133
5.28 Events . 137
5.29 Example of context event (a), time event (b), user event (c)

and object event (d) . 137
5.30 Behaviour Invocation Diagram: Virtual Robot 138
5.31 Example use of script in graphical notation 150

6.1 Behavioural design pattern framework 156
6.2 Default pattern creation elements 158
6.3 Pattern description of the Chase-Evade pattern 160
6.4 Visual representation of the Chase-Evade pattern 160
6.5 User interface description of Chase-Evade pattern 164
6.6 Dialog of the Chase-Evade pattern 165
6.7 Uninitialized Behaviour Definition Diagram of the Chase-Evade

pattern . 171
6.8 Behaviour Definition Diagram using the Chase-Evade pattern 172
6.9 Parameter dialog for the Chase Evade pattern 172
6.10 Code extraction . 173
6.11 Additional graphical elements for the Pattern Movement pat-

tern . 174
6.12 Behaviour Definition Diagram using the Pattern Movement

pattern . 175
6.13 Behaviour Definition Diagram using the Herd pattern 177
6.14 Behaviour Definition Diagram using the Strategy pattern . . 178

xiv

LIST OF FIGURES

6.15 Behaviour Definition Diagram using the Proxy pattern 180
6.16 Behaviour Definition Diagram using the Randomness pattern 181
6.17 Additional graphical elements for the Feedback pattern . . . 183
6.18 Behaviour Definition Diagram using the Feedback pattern . . 183
6.19 Additional graphical element for the Device Configuration

pattern . 184
6.20 Behaviour Invocation Diagram using the Device Configura-

tion pattern . 185

7.1 Overview of implementations 188
7.2 Conceptual Specification Designer (screenshot) 189
7.3 Conceptual Specification Designer overview 190
7.4 Pattern explorer (screenshot) 192
7.5 Verbalizer (screenshot) . 193
7.6 OntoWorld (screenshot) . 194
7.7 OntoWorld overview . 195
7.8 Integrated Test Environment (screenshot) 197

8.1 Virtual city park . 202
8.2 BusManoeuvre: Behaviour Definition Diagram 205
8.3 BusManoeuvre: Behaviour Invocation Diagram 206
8.4 CityEvolution: Behaviour Definition Diagram 206
8.5 CityEvolution: Behaviour Invocation Diagram 207
8.6 Behaviour Definition Diagram: CityEvolution 212
8.7 Behaviour Invocation Diagram: CityEvolution 213
8.8 Human animation . 213
8.9 Behaviour Definition Diagram: Human animation 214
8.10 Behaviour Definition Diagram: Human animation (con’t) . . 214
8.11 Behaviour Definition Diagram: Human animation (con’t) . . 215
8.12 Behaviour Invocation Diagram: Human animation 215

9.1 Behaviour Definition (a) and Behaviour Invocation (b) of the
EarthSystem’s spinning behaviour 221

C.1 Temporal operators . 263
C.2 Stadsplan . 268

xv

LIST OF FIGURES

xvi

List of Tables

8.1 Behaviour modelling task performance 207

C.1 Grafische Elementen: Behaviour Definition Diagram 266
C.2 Grafische Elementen: Behaviour Definition Diagram (con’t) . 267
C.3 Grafische Elementen: Structure Chunk 267
C.4 Grafische Elementen: Behaviour Invocation Diagram 267

xvii

LIST OF TABLES

xviii

Glossary

Actor A representation of an object (Concept/Instance) that is involved in
a behaviour.

Animation A predefined time sequence of visual changes in a 3D model
or Virtual Environment. These changes can be anything from trans-
lations and rotations up to changes in size, colour, texture and so on.

API Application Programming Interface.

Behaviour Definition Diagram (BDD) A diagram defining the behaviour
of a Virtual Environment separated from the objects and the interac-
tions.

Behaviour Invocation Diagram (BID) A diagram specifying the con-
nections between the behaviours, the objects and the interactions.

Bounding Box A rectangular bounding volume that completely contains
an object.

Concept A description of a set of objects having similar characteristics.

Conceptual Model A description of a portion of the ’real world’ that is
of interest in a particular application domain.

Domain Expert A person with special knowledge or skills in a particular
area, being the domain for which the VR application needs to be built.

Generative Design Pattern A design pattern with the additional ability
to generate program code from it.

Instance An individual representatitive of a concept.

xix

Glossary

Layman A person who is a non-expert in the field of Virtual Reality.

Object An actual 3D model as a representative of an instance.

Ontology An ontology comprises the definitions of the concepts, individu-
als, properties and relations which makes up a conceptualization.

Reference Frame A particular perspective employed by the designer to
describe and/or observe a motion effectively.

Scenario An outline or model of an expected or supposed sequence of
events happening in the Virtual Environment

Scene Graph A directed acyclic graph containing the spatial representa-
tion of a Virtual Environment.

Simulation An attempt to model a real-life situation through a Virtual
Environment and in which the output (behaviour) differs according to
the set of initial parameters assumed for the environment.

Structure Chunk (SC) A diagram defining the composition of a set of
objects at a particular instant.

Virtual Environment (VE) A computer-generated, and computer-maintained,
three-dimensional environment, which can be navigated and interacted
with by its users.

Virtual Reality (VR) The combination of technologies to create Virtual
Environments as well as those that are involved in enabling them.

Virtual World See Virtual Environment.

xx

CHAPTER 1

Introduction

In 1965, Ivan Sutherland introduced for the first time the notions of a new
form of interaction between humans and computers. He described it as fol-
lows [Sutherland, 1965]: ”The ultimate display would, of course, be a room
within which the computer can control the existence of matter. A chair dis-
played in such a room would be good enough to sit in. Handcuffs displayed
in such a room would be confining, and a bullet displayed in such a room
would be fatal”. If this notion about so-called Virtual Environments would
become true, it would drastically change the field of computer graphics for-
ever. However, every new technology brings not only new possibilities but
also many new problems. On of these problems, and still one of the most
challenging aspects of the design of a Virtual Environment is the design of
the behavioural aspect. This will be the topic of this dissertation.

1.1 Research Context

1.1.1 Virtual Reality

In 1963, Ivan Sutherland came up with a revolutionary computer applica-
tion, called Sketchpad, which is generally accepted as being the origin of
modern computer graphics. The system was one of the first ever that was
designed to use a Graphical User Interface (GUI). It allowed users to in-
teractively (something which was very rare at that time) draw on a screen
using a light pen (a new kind of pointing device in analogy with a normal
pen that is used to draw on paper). Many of the ideas behind the mod-
elling tools used today (e.g., from simple recreational drawing tools up to
professional CAD tools), were initially developed for this system. There is
for example the rubber-banding technique to draw lines on the display. The

1

1. Introduction

most important achievement was the concept of graphical object which was
introduced as an entity with its own semantics and behaviour. Furthermore,
there was the idea of having a master object that could be instantiated into
many duplicates. If the user changed the master drawing all the instances
would change as well. Although the system was quite primitive in its first
implementation, it was the starting point of a new era in computer graphics.

Once there was this capability of interactively building a collection of
graphical objects (possibly interacting with each other), there was an urge
for the possibility of composing these objects into a larger whole resulting
in a new phantom world. This world is actually a set of objects maintained
by the computer, following the laws and behaviours they were programmed
to. As a consequence, a kind of illusion of the real world can be maintained
by the computer. The user can interact with this world and can have the
sensation of ’being part’ of it.

This has lead to the notion of Virtual Reality as it is still known to-
day. However, it was not until 1986 that Jaron Lanier officially coined the
term. Also the terms Virtual Environments and Synthetic Environments
have emerged amongst others. All these terms are used interchangeably in
the community but Virtual Reality and Virtual Environments are by far
the most popular ones and the most used. A nice description, about what
Virtual Reality is all about, is given in [Vince, 2004]:

Virtual Reality is about creating acceptable substitutes for real
objects or environments, and it is not really about constructing
imaginary worlds that are indistinguishable from the real world.

In the remainder of this work, Virtual Reality (VR) will be referred to as
the broad term to denote not only the systems that are used in the process of
modelling these substitutes but also all the technologies that are involved to
make them happen. Virtual Environments (VEs) or Virtual Worlds (VWs)
will be used to refer to the computer-generated (and computer-maintained)
three-dimensional environments, which can be navigated and interacted with
by the users. They are often the result of a Virtual Reality system.

The fact that Virtual Environments provide substitutes for the real phys-
ical environments together with the ability of the user being part of these
Virtual Environments, gives their use major benefits:

• When comparing it to the physical environment that would otherwise
be used, no or very little space is required for the complete system.
Depending on the type of system, it can take the space of a single pc
with a screen up to a small room.

• It has the ability to represent large amounts of information in a more
intuitive way than with 2D visualizations with a very high accuracy
and realism. The Virtual Environment is also much cheaper than if
the real physical models would have been built.

2

1. Introduction

• The content of a Virtual Environment is no longer a snapshot of the
information at a particular time but the evolution of the data can be
shown and consequently true animations and realistic simulations
can be made.

• The user can navigate inside the Virtual Environment instead of just
being an observer. He can move around and explore all the features of
the 3D scene in different ways like walking from one place to another,
but he can also fly and jump. This was not possible with traditional
CAD1-based systems.

• Not only Virtual Environments can be navigated, but they can also be
interacted with. Many new ways of interaction, beyond the standard
keyboard and mouse input and screen output, have been developed
for a user to enable manipulation of the data visualized by the Virtual
Environment.

• The same Virtual World can be shared by many users at the same
time. In this way, the people can interact with each other or collab-
orate on a particular task in a natural way without actually being in
the same physical location.

People really start to see the benefits that Virtual Reality has to offer
to a limitless range of potential application areas [Magnenat-Thalmann and
Thalmann, 2000].

First of all, Virtual Reality has many applications in the industrial world.
An advantage is that virtual prototypes of products can be created. The
prototypes not only can be visualized, but they can also be examined and
evaluated before the product is actually built. Working with the virtual
prototype instead of with a real prototype greatly speeds up the design pro-
cess and potentially reduces the development costs. Virtual Reality is often
used as a means of visualizing data as well. In the architectural domain for
example, complete building projects could be virtually constructed and ex-
periments can be made with different lighting conditions, space layouts and
so on. Also in the scientific visualization domain, Virtual Reality is useful
in order to display large amounts of scientific data where the data can be
interpreted more easily. Virtual Reality is also used as a means for remote
operation or teleoperation. People working in dangerous environments that
make it difficult or even impossible to perform their tasks, can now be dis-
located to operate in more safe Virtual Environments and still maintain full
control over these environments. Virtual Reality is a promising technology
in education and training. The most famous example, and also one of the
first applications to use Virtual Reality, is the flight simulator where future
pilots are safely taught how to fly a plane in various circumstances. Other

1Computer Aided Design

3

1. Introduction

examples are surgical simulators, driving simulators, and so on. Not only
simulators but also other types of applications such as virtual museums2 are
attributed to this sector. Last but not least, there is the entertainment sec-
tor that is a fast growing industry and a big business. The computer games
produced nowadays are more and more realistic. It even becomes harder to
make a distinction between a Game World and a Virtual World. Virtual
Reality could play a central role in the next generation of computer games.
Vice versa, in the serious gaming community, game technology and game de-
sign principles could are also applied nowadays for a primary purpose other
than pure entertainment3.

The list of applications given here is far from complete and many more
applications can be built using Virtual Reality. Only a few were listed to
give the reader an idea of what are the possibilities of this technology, which
is known to many people but at the same time still unknown to many others.
Nonetheless, it is without doubt that Virtual Reality has already attracted
a lot of interest and will continue to do so in the near future.

In the last decade, a lot of efforts have been spent to bring 3D and Vir-
tual Reality to the World Wide Web (WWW). Initially, the WWW was
only capable of communicating text and 2D graphics through its Hyper-
Text Markup Language (HTML). It did not have any support for the third
dimension and so a new language was required which would enable the dis-
tribution of dynamic, interactive 3D worlds. The Virtual Reality Modeling
Language (VRML) was created during the mid ’90s to address this issue.

Like every technology, VRML has improved over time. Nowadays VRML
is known under the name of eXtensible 3D (X3D) and is maintained by the
Web3D4 consortium group. X3D (VRML) has matured up to a point that
it enables full 3D applications on the Web. The combination of the Internet
and Virtual Reality provides a powerful medium for even a wider range of
application areas than those discussed above.

The popularity of Web3D enabling technologies is continuously growing
due to both an increasing demand for interaction between online users and
an expanding interest in Web-based applications overall. The emergence of
so-called Web-based Virtual Environments [Hughes et al., 2002] are a per-
fect example of such applications and their successes prove the fact that
Virtual Reality on the Web is growing in popularity. For example, Sec-
ond Life5 created by the Linden Lab, is the most famous three-dimensional

2http://virtueelmuseum.vub.ac.be
3http://www.seriousgames.org
4http://www.web3d.org
5http://www.secondlife.com

4

1. Introduction

Virtual World6. The Active Worlds7 and There8 systems are similar 3D
Virtual Reality platforms hosted by Activeworlds and Makena Technologies
respectively. Users in these online Virtual Environments can explore exist-
ing environments, build new ones, do online shopping, socialize with other
users, play games and so on.

Having introduced the origin of VR and its implications in different
domains, this section will explain the different components that compose a
Virtual Environment in more details.

1.1.2 Anatomy of a Virtual Environment

A complete Virtual Reality system usually consists of both hardware and
software. The hardware components are computers, input devices (e.g., 3D
mouse, gloves,. . .), output devices (e.g., haptic devices, audio,. . .), displays
(e.g., head-mounted displays, CAVE,. . .). We will not go into further details
on these components since this is outside the scope of this dissertation. The
interested reader is referred to [Stuart, 2001] for an elaborated description of
these issues and other technologies involved. However, some extra attention
will be given to the Virtual Environment itself, generated by the software, as
this will be our main area of interest. A Virtual Environment can basically
be broken down into three parts: the static scene, behaviour and interaction
[Kessler, 2002].

1.1.2.1 Static Scene

One of the major parts of a Virtual Environment is the static scene, i.e. the
scene with its objects as displayed by the computer. The scene encapsulated
the complete Virtual World with its virtual objects. To be displayed on a
screen, the world and the objects have some geometry attributes, as well as
some material attributes. The geometry represents the shape of the object.
It is usually defined by atomic primitives such as points, lines, or polygons
or more complex constructs such as spheres, boxes, cylinders, cones, and
so on. The material is used to tell the computer how the shape eventually
should look like in the scene and is given in terms of colours and textures.
All the objects also have a position and an orientation in space (defined in a
three-dimensional coordinate system). There may be more attributes that
can be related to an object but not all of them will be discussed here.

6On August 30, 2007, around 1.6 million users were reported to have logged-in over
the last 60 days. It has its own economy and currency (http://secondlife.com, access date
September 3, 2007)

7http://www.activeworlds.com
8http://www.there.com

5

1. Introduction

1.1.2.2 Behaviour

An equally important aspect of a Virtual Environment as the scene is the
behaviour, i.e. how the world and its objects act or react. Every object can
have a set of behaviours that can be executed depending on the context the
object is in. These behaviours can be divided into two categories:

• Environment-independent behaviours do not need external stimuli from
the environment in order to be executed. They can be either time-
dependent, where an object’s properties are changed over time or at
a certain point in time, or time-independent, where a fixed sequence
of changes (that may be time-dependent) are specified but the overall
behaviour is not depending on the time.

• The environment-dependent behaviours are performed as a reaction
to particular external stimuli. They can be either event-driven or
constraint-driven. In the case of event-driven, an event is fired when
the user performs actions like interacting or when another object per-
forms an action like collision. For constraint-driven, a change is made
to an object on the basis of its relationships with other objects in the
scene.

Different levels of behaviour can be distinguished as described in [Roehl,
1995]. There are basically four levels in a hierarchical order. The first level
contains very simplistic behaviours which are directly modifying an enti-
ties’ attributes. The second level is about changing these attributes of the
entity over a larger range of time. These behaviours are composed to cre-
ate level-three behaviours and thus consist of the simpler actions from the
second level. Finally, the fourth level is then all about selecting which be-
haviour should be executing and involves decision-making. This dissertation
is mostly concerned with the behaviours of the third level and in a smaller
degree with the behaviours of the fourth level.

1.1.2.3 Interaction

An aspect closely related to the behaviour is interaction since interaction
is often triggering behaviour. There are basically two types of interaction.
Firstly, user-interaction, which is defined as every action taken by the user
with the intention to either change the environment, or to perceive the world.
In a Virtual Environment, interaction is composed of different basic inter-
action tasks. The basic interaction tasks can mainly be divided into three
categories: navigation, selection and manipulation. For each of the basic
interaction tasks different interaction techniques are available. Navigation
refers to the user interactively positioning and orientating himself in the VE
using techniques like walking, or flying. Selection refers to the picking of one

6

1. Introduction

or more objects for some purpose by means of for instance laser pointing,
or cone casting. Manipulation refers to the positioning and orientating of
objects using techniques such as object-in-hand or voodoo dolls. Secondly,
object-interaction is defined as the action that one virtual object exerts on
another. Usually, this is reflected as a kind of collision.

Since the interaction aspect is not the main topic of this dissertation,
it will not be discussed in more detail. The interested reader is referred
to [Bowman, 1999] for an elaborate description of interaction techniques in
Virtual Environments.

1.2 Problem Statement

Virtual Reality is starting to hold its promises that were made in the late
’80s. The technology (in terms of hardware at least) has matured a lot
and from a technological point of view, fairly realistic Virtual Worlds can
be built. Although the technology has evolved quickly over the last ten
years, this has not been the case for the development of Virtual Reality
applications. It is still not easy to develop Virtual Reality applications.
The modelling of behaviour is difficult in comparison with the modelling
of the static scene (i.e. the visual appearance of objects and their position
inside the Virtual World). This is partly due to the fact that most of the
improvements have been made towards modelling the visual appearance of
objects populating the Virtual World and composing the static scene more
easily. Over the last twenty years, these improvements revolved around the
graphics packages, authoring tools, APIs, and file formats. A short history
will be given in the next sub-section.

However, the modelling of behaviours did not receive the same kind of
attention until recently and it is still nowadays not easy, especially for peo-
ple not experienced in Virtual Reality, to model behaviours. In the last six
years, the game industry has provided a way of allowing users to customize
their game [Busby et al., 2004]. However, the way the behaviours are mod-
elled are mostly through dedicated scripting languages which is not intuitive
for non-VR-experts often having no adequate programming skills and even
worst, these scripting languages are also changing from one game platform
to the other one. As a result, the complete language has to be relearned
over and over again. Furthermore, people are also more demanding today
in terms of behaviour than ten years ago. This is due to games becoming
more and more realistic. As VEs are also becoming more accessible to a
larger audience thanks to the Internet, it is therefore necessary to develop
approaches and tools which can ease the task of the designer when modelling
behaviours. This will be the aim of the dissertation. The work presented
in this dissertation does not provide a complete solution for the problems
involved with the development of Virtual Reality applications. Neverthe-

7

1. Introduction

less, some important contributions in the domain of the development of the
behavioural part of a Virtual Reality application are made, which allow
making the development more accessible to a larger public.

This section will be split into two sub-sections. The first sub-section will
give a short history on the improvements which have been made for mod-
elling the visual appearance of objects as well as composing the static scene
of a VE. The second sub-section will explain why modelling the behaviour
of a VE is difficult and how this can be changed.

1.2.1 Modelling the Static Scene

Figure 1.1 gives an overview of the different application layers involved in
Virtual Reality development.

Figure 1.1: Virtual Environment application stack

1.2.1.1 Graphics packages

The lowest level, on which all the software for designing VR applications are
based, are the graphics packages. Graphics packages provide an interface be-
tween the software and the hardware for creating and manipulating graphics
and pictures. Most of the time, the graphics packages provide users with a
variety of functions for creating graphics and properly render them on the
screen as well as functions for transforming these graphics. They also pro-
vide some housekeeping tasks such as clearing a screen display, initializing
parameters and so on.

In terms of graphics packages, international and national standards-
planning organizations did cooperate in an effort to develop a generally
accepted standard for computer graphics. This work led in 1984 to the
Graphical Kernel System (GKS). It was followed by another library called
Programmer’s Hierarchical Interactive Graphics Standards (PHIGS). At the

8

1. Introduction

time when these packages were developed, the graphics workstations from
Silicon Graphics, Inc (SGI9) became increasingly popular. These worksta-
tions came with their own library of routines for graphics called Graphics
Library (GL). These routines were designed to make real-time rendering
possible. Later, the GL was extended to cope with other hardware systems
in order to be more hardware-independent. This has given birth to the cur-
rently known graphics library called OpenGL10. In the middle of the ’90s,
another graphics library, called DirectX11, was created by Microsoft as a
competitor to OpenGL. Today, both OpenGL and DirectX are used on PCs
and mobile devices for creating and manipulating graphics and pictures.
Most of the software for designing Virtual Reality applications nowadays is
based on these two graphics libraries.

To use one of these graphics libraries, one needs knowledge about pro-
gramming as well as mathematics. These libraries are therefore not at all
intuitive to use for non-VR-experts. They usually consist of a wide collec-
tion of commands, with long and unintuitive names, reducing even more
the usability. Furthermore, it requires time to learn how to program the
graphics pipeline using the libraries. Today, this situation is even worse as
the graphics pipeline12 can be programmed to have all kinds of visual ef-
fects. Moreover, these graphics libraries are constantly changing in order to
incorporate new features.

1.2.1.2 Scene Graph and Complex Scenes

To model objects in order to be displayed on a screen, they firstly need to
be represented by a geometry (vertices), a topology (relationships between
the edges and faces) and material properties. Then, the objects can be
manipulated in various ways such as translated, rotated, scaled, and various
combinations of these operations. These operations (or transformations) can
be accomplished by matrix transformations provided by graphics libraries
like OpenGL or DirectX. However, objects do not exist in isolation, but
instead are often interdependent, i.e. a transformation applied to one object
(or part of an object) often propagates to other objects. As an example,
consider a car having a body and four wheels. As the car is positioned to
another position, the four wheels and the body also need to be repositioned.
To program such operations, routines from the graphics libraries mentioned
above can be used. However, from a software development point of view,
this will not be efficient and intuitive as the same routine needs to be called
several times and each part of the car is modelled separately. For instance,

9http://www.sgi.com/
10http://www.opengl.org/
11http://www.microsoft.com/directx/
12The different stages that need to be done in order for a representation of a three-

dimensional scene to be converted in a 2D image on the screen.

9

1. Introduction

each wheel of the car has the same geometry and material, only the position
will be different. Therefore, only the matrix transformation of each wheel
must be stored. To optimize the design process of modelling such complex
objects and scenes, a data structure was introduced. This data structure is
known as scene graph.

In general terms, a scene graph is a special type of data structure used
to describe scenes, i.e. the objects that are contained in it together with
their characteristics. More technically, a scene graph is typically tree data
structure. Every node can have a number of child nodes but only one par-
ent node. At each node, there is a corresponding transformation matrix
specifying how the object at that node is related to its parent node. If an
operation is performed to a node, it is reflected to all of its child nodes, but
not to its parent node. An operation can hence be described by a single
transformation matrix, which is formed by the multiplication of the matri-
ces on the path connecting the nodes. Having these characteristics, related
objects can now be grouped into a compound object that can then be moved
(transformed or selected) as easy as a single object. However, a scene graph
can also be a directed acyclic graph (DAG) which is similar to a tree, except
that in the DAG branches are allowed to merge. That is, different branches
might refer to the same leaf node as its child node.

Therefore, the scene graph can be seen as a kind of abstraction mech-
anism as it provides a way to model complex scenes and its objects in a
more efficient way than with the low-level graphics libraries. Furthermore,
it is also more intuitive for a non-VR-expert to think in terms of a graph,
like for instance in the example of the car. At this moment, the scene graph
approach is still the most widely used modelling paradigm in Virtual Reality.

As the low-level graphics packages do not provide such a structure, a
number of APIs have been built on top of the low-level graphics packages
and incorporate the concept of scene graph. Some examples are Java3D13,
Performer14, and OpenSceneGraph15. Recently, Microsoft released the first
version of XNA16, an interesting set of tools to facilitate 3D computer game
design. With the XNA Game Studio Express toolkit, developers can create
games, for either the XBOX or a normal PC, using the XNA Framework.
There is one difference though between XNA and other toolkits. While
developers have always been able to make games, it is claimed that the XNA
has reduced the steep learning curve for game development and made it into
something more attainable for developers such as students and hobbyists.
In practice, the XNA is nothing more than an abstraction layer on top of
the DirectX graphics library and thus one still needs to have programming
skills and preferably some background on DirectX, in order to really start

13http://www.java3d.org/
14http://www.sgi.com/products/software/performer/
15http://www.openscenegraph.com/index.php
16http://msdn.microsoft.com/directx/XNA/default.aspx

10

1. Introduction

working with it.
All these APIs also provide a way to specify behaviour and interactions.

Furthermore, they provide a number of additional routines that facilitate
the programming part for behaviour and interaction. However, the bulk of
the work is still very much oriented towards the languages in which the APIs
are programmed.

1.2.1.3 Platform Independence and File Formats

As the Internet is becoming part of our life nowadays, it is natural that
computer graphics applications and therefore Virtual Reality applications
are also appearing on the Web. Good examples of this are the 3D online
communities that were mentioned before. In the mid ’90s, the Virtual Real-
ity Modeling Language (VRML) was developed. VRML is an independent
file format to describe the 3D content in a declarative way. A specification
of a Virtual Environment in VRML needs to be interpreted by a suitable
Web browser having an appropriate player to parse the files in order to
construct the scene. At the end of the ’90s, it became clear that VRML
was too limited and needed to be extended. At the same time, the XML
file format was well accepted and used by a number of industrial companies
developing Internet applications. For these reasons, the consortium group
Web3D in charge of extending VRML, decided to change the VRML into an
XML-like format. The VRML has been renamed X3D for eXtentensible 3D
(X3D) [Walsh and Bourges-Sevenier, 2000]. Both VRML and X3D support
the concept of scene graph and the notion of interpolators to specify sim-
ple animations and scripts for modelling more complex behaviour together
with sensors for modelling the interaction and routes for connecting the
elements together. One of the main differences between X3D and VRML is
the definition of an XML encoding for the language. This allows for easier
integration of 3D content with other Web content, technologies, and tools.
In 2004, it became an ISO/IEC standard and now it can be seen as the de
facto standard for 3D on the Web.

At the end of the ’90s and also to enable 3D on the Web, SUN17 intro-
duced the API called Java3D [Selman, 2002]. Unlike VRML, Java3D is an
extension on the Java programming language. The idea is to use Java as a
platform independent framework and to build a set of routines to create and
to manipulate graphics applications on top of the two mostly used graphics
libraries namely OpenGL and DirectX to perform native rendering. The 3D
scene specification, application logic and scene interactions are programmed
in an object-oriented way using the Java language. However, Java3D facil-
itates this by supporting the concept of scene graph and new routines to
model behaviour and interaction as well as to incorporate different types of

17http://www.sun.com

11

1. Introduction

devices. It provides developers with a set of APIs to write either standalone
3D applications for the desktop or Web-based 3D applets that need to be
compiled into bytecode and subsequently executed by the Java Virtual Ma-
chine (JVM) and brought to the Web via Webstart. The advantage of using
Java3D is its platform independence, which is very important in a heteroge-
neous Internet setting. In that way, the developer can create an application
that can run on any machine with any graphical hardware.

1.2.1.4 Authoring Tools

During the last ten years, a number of so-called authoring tools for VR have
emerged. An authoring tool is a software package used by designers to easily
compose their scenes. For most authoring tools, the basic setup is similar,
i.e. 4 different views (3 orthogonal views and one perspective view) on the
Virtual World. The three views show the top view, the front view and a side
view of the scene. These views are needed simultaneously in order to exactly
position the objects. The perspective view is used to show both the object
as a solid form and in the correct perspective. The modelling itself is mostly
done by visually dragging and dropping elements (objects) of the scene from
a toolbox onto the canvas and afterwards editing their properties.

They also allow modelling simple behaviours and interactions and attach
them to the objects. They also have strong assistance capabilities. The
designer is instantaneously notified of his mistake, so that it can be corrected
quickly.

Again these tools are built on the top of the existing graphics libraries
and internally work with their own scene graph. In general, one can say
that there is less technical knowledge required to master them compared to
the low-level programming APIs. In choosing the right authoring tool, a
trade-off has to be made between ease-of-use and functionality. The low-
end authoring tools usually require little learning but they are restricted
in their functionality, while the more high-end authoring tools generally
require several weeks to several months to learn how to use them efficiently,
but they offer much more functionality and provide more flexibility to the
developer. Furthermore, most of the authoring tools have the ability to
work with other software packages or standard file formats in the form of
importers and exporters (for languages such as VRML and X3D).

1.2.2 Modelling Behaviour and its Complexity

Thanks to the progress made in these authoring tools and high-level graphics
APIs described above, it is nowadays possible to model more quickly very
realistic Virtual Environments. The combination of these software packages
with the power provided by the latest graphics hardware has accomplished
this.

12

1. Introduction

These software packages are good for modelling graphics and static Vir-
tual Environments, but Virtual Environments are dynamic in nature, i.e.
they include behaviour and support interaction. However, most of the soft-
ware packages lack high-level support for modelling behaviour and interac-
tions. As the focus of this PhD is on behaviour, we will now explain why
the modelling of behaviour is still a very difficult task in comparison to the
modelling of a static scene.

Let us first have a look to APIs, like Java3D, and file formats, such as
VRML and X3D, to understand why modelling of behaviour is even not
easy for computer specialists. The following code shows an example in
X3D. It is a standard example coming from educational books originally
written for Computer Science students. It is a scene, called EarthSystem,
containing two objects: the World (which is a sphere) and a Satellite (which
is text). If the user clicks on the Satellite, the whole EarthSystem will make
one complete rotation through a smooth ease-in/ease-out (approximated)
animation.

<Scene>
<TimeSensor DEF="Timer" enabled="true" cycleInterval="12"
loop="false"/>

<OrientationInterpolator DEF="Spinner"
key="0.00 0.10 0.20 0.30 0.40 0.50

0.60 0.70 0.80 0.90 1.00"
keyValue="0 1 0 0, 0 1 0 0.154, 0 1 0 0.6, 0 1 0 1.295, 0 1 0 2.171,

0 1 0 3.142, 0 1 0 4.112, 0 1 0 4.988, 0 1 0 5.683,
0 1 0 6.129, 0 1 0 6.283"/>

<ROUTE fromField="fraction_changed" fromNode="Timer"
toField="set_fraction" toNode="Spinner"/>

<Transform DEF="EarthSystem">
<ROUTE fromField="value_changed" fromNode="Spinner"

toField="set_rotation" toNode="EarthSystem"/>
<Group DEF="World">
<Shape>
<Appearance>
<ImageTexture url="earth-topo.gif"/>

</Appearance>
<Sphere radius="1.5"/>

</Shape>
</Group>
<Transform DEF="Satellite" rotation="1 0 0 0.3"
translation="0 0 5">
<Shape>
<Appearance>
<Material diffuseColor="0.9 0.1 0.1"/>

</Appearance>
<Text string="Hello X3D Authors !!">
<FontStyle size="1"/>

</Text>

13

1. Introduction

</Shape>
<TouchSensor DEF="Trigger" enabled="true"/>
<ROUTE fromField="touchTime" fromNode="Trigger"

toField="startTime" toNode="Timer"/>
</Transform>

</Transform>
</Scene>

As it can be seen, making this simple example dynamic with perform-
ing just one action is quite laborious. There are two different sensors (a
TimeSensor and a TouchSensor) in combination with an interpolator (an
OrientationInterpolator) and all these are linked by means of three ROUTE
statements.

It is clear that even simple programs (without scripts) are already quite
verbose. This gets even worse when dealing with larger scenes, hence build-
ing large X3D (or any other specification language for that matter) scenes
is not obvious, especially not for non-VR-experts.

APIs like Java3D provide some built-in routines to model behaviour.
These APIs need to be programmed and extended in order to model com-
plex behaviour. For this reason, they are only accessible to programmers
who also need to have some notions of computer graphics, scene graph and
mathematics to model efficiently behaviours.

Considering the authoring tools, one can see that the modelling of the
behaviour is done in two different ways. If it concerns simple, well-known
behaviour, it can be selected from menus in the GUI and parameterized.
If it is a complex behaviour, then it must be modelled using scripting lan-
guages. This results in not being accessible to people having no or little
knowledge in programming and it still requires users to learn the scripting
languages. Furthermore, the scripting languages differ from one authoring
tool to another. The traditional and widely used technique to represent ob-
ject behaviour is called keyframe animation. The general idea of keyframe
animation is that at particular key moments in time, a snapshot of the ob-
ject, together with all its properties, is taken. Such a snapshot is called a
key frame. This procedure can be repeated for as many times as needed.
The system is then able to calculate all the frames in between by means
of an interpolation scheme, using the key frames as a rough sketch of the
animation. The keyframe animation technique, which is in most cases di-
rectly supported by the design tools, is very powerful. However, it requires
a number of actions that are not always easy for the designer [Terra and
Metoyer, 2004].

Based on the above observations, one can say that the current practice
for modelling behaviours is not very intuitive and obviously it requires the
necessary knowledge. As a result, the design tools are only used to create the
static scene of the VE which is afterwards imported in a toolkit where the
dynamical part is added by means of a conventional programming language

14

1. Introduction

Figure 1.2: The Virtual Reality design process as it is currently perceived

or a dedicated scripting language such as EcmaScript [Ecma, 2000]. This
leaves the task of managing the dynamics of the Virtual Environment to the
(Virtual Reality) programmer. In other words, since it is programmed, the
design of the behaviour is usually integrated with the implementation of the
system.

The current situation in Virtual Environment design is depicted in figure
1.2. The design tools that are available today allow the user to easily build
realistic static Virtual Environments without needing a lot of background
knowledge. However, this is not the case when it comes to dynamic Vir-
tual Environments. The fact that only the visual part is modelled properly
and that the dynamical part is integrated into the implementation phase is
mainly due to the history as it was described above. It would be very in-
teresting if the dynamics could also be modelled separated from the actual
implementation phase so that this too would become platform (or language)
independent. It would be even more interesting if it could be modelled vi-
sually as it is nowadays the case for modelling the static scene. Although a
lot of research has already been performed in this field (see chapter 2), there
are still a lot of improvements that can be made and this will be the main
area of investigation in this dissertation.

1.3 Aims and Objectives

As explained above, Virtual Reality is a promising technology. Nevertheless,
there is a downside to this as well; the development of a Virtual Environ-
ment is still a very difficult, specialized and time-intensive task. One of the
reasons is the simplistic development process used. For the technology to
become more widely used, it is necessary to make the development of VR
applications easier. One way to accomplish this is by extending the de-
velopment process with a design phase as in classical Software Engineering
processes. Such a design phase would allow abstracting from implementa-
tion details and concentrate on design issues. The output of the design phase
could then be used as input for the implementation phase, and to a certain
extend the implementation can be automatically derived. As already stated
in this dissertation, we only focus on the behavioural aspects of a Virtual
Reality application. Therefore, the ultimate aim of the work presented in
this dissertation can be stated as follows:

To facilitate and shorten the development process of Virtual

15

1. Introduction

Environment behaviour by means of high-level specifications and
to enable automatic code generation from these specifications.

The situation that we aim for in this dissertation is depicted in figure 1.3.
The behaviour modelling is now separated from the actual implementation
and made explicit into a proper design phase. In order to achieve the main
goal, a number of specific research objectives have been identified:

• Develop a modelling approach for behaviour that allows domain ex-
perts to be more involved in the modelling process of behaviour.

• Define a set of modelling concepts that allows describing the behaviour
of objects in a Virtual Environment at a high-level. These concepts
need to be expressive enough in order to cope with enough complexity.

• Build a framework that allows the designers to easily (re)use existing
behaviours and algorithms in the high-level behaviour specifications.

• Provide the necessary tool support for the specification, at a high-level,
of the behaviour in a Virtual Environment.

• Enable the automatic translation of the high-level specifications to-
wards the low-level implementation and to provide the necessary sup-
port for viewing (loading) the end result.

• Perform user experiments in order to show whether or not this ap-
proach really facilitates the development process of behaviour.

As explained before, Virtual Environments are usually built by a num-
ber of people, each of them specialized in a certain aspect (e.g., graphics
designer, behaviour designer, sound expert,. . .). The application domain
expert, the person experienced in the domain for which the application is
built, is not involved very much in doing this task while this would be de-
sirable. Developing a Virtual Reality application requires, without doubt,
specialized skills and it is therefore difficult to involve the application do-
main expert in the development process because of the specific technologies
used. An ideal scenario would of course be that a domain expert could
model a complete Virtual Environment. Although we admit that this might
not be feasible, we want to find a way to at least involve the domain expert
more into the development process, and especially in the early phases of the
process, the design phase. We propose to accomplish this by means of a
novel conceptual behaviour modelling approach.

The second objective is closely related to the first. In order to build the
high-level specifications describing the behaviour in a Virtual Environment,
a set of appropriate modelling primitives (concepts) is needed. These
modelling concepts will allow specifying behaviour at a high level, indepen-
dent of any implementation details. In addition, rules on the well-formedness

16

1. Introduction

Figure 1.3: Desired Virtual Environment design process

of the high-level behaviour specifications are needed which enforce the cor-
rect usage of the modelling concepts that were defined. Later on, code can
be generated from these high-level behaviour specifications.

Building behaviour specifications using our approach, and using any ap-
proach for that matter, shows that very often (and especially when deal-
ing with complex behaviours) parts of a behaviour are re-occurring and in
between applications, complete behaviours are re-appearing over and over
again. It is therefore useful to provide those common behaviours as pre-
defined components. This prevents people re-inventing the solution over
and over again. In addition, optimized implementations may already be
available, which you may want to reuse. Therefore, a third objective is
to develop a framework that enables the designer to construct behavioural
patterns that are involving different objects and behaviours.

In order to validate the overall approach as well as the modelling concepts
that were developed, proof-of-concept software has been implemented.
It will allow to (1) specify behaviour of Virtual Environments, (2) attach
it to a particular scene and (3) generate source code from it. Furthermore,
this tool can then be used to perform a number of experiments in order
to assess if people having no skills in VR can model behaviours in a natural
way.

1.4 Research Approach

The research approach taken in this dissertation is on one hand to tackle
the formulated problems and on the other hand to achieve the aims and
goals that were stated above. This is done by extending an already existing
conceptual modelling approach with an approach which allows performing
the behaviour modelling task. Using this behaviour modelling approach, the
designer can describe, at a high-level, the behaviour of a Virtual Environ-
ment. It consequently improves the overall development process of Virtual
Environments in general and of behaviour in particular.

The specification of behaviours in this behaviour modelling approach is
done in two consecutive steps. In the first step, the behaviour definition, the
behaviour is specified separately from the static scene. In the second step,
the behaviour invocation, the behaviour is then eventually attached to the
scene.

The high-level modelling concepts developed for building such behaviour
specifications were searched for using a top-down approach as opposed to a

17

1. Introduction

bottom-up approach. This means that we did not start from the existing
(low-level) building blocks available in the current Virtual Reality technology
(like sensors, interpolators,. . .), but we have investigated which high-level
building blocks are needed in order to describe the possible behaviour that
is required. A number of research domains have therefore been investigated
and useful modelling concepts have been extracted to finally come to a con-
clusive set of modelling concepts that can be used to describe the behaviour
without falling back to the low-level details of the implementation.

In order to cope with the problem of re-occurring parts in a behaviour
and re-appearing behaviours in between applications, a pattern-based ap-
proach has been investigated. The behaviour modelling language that is de-
veloped is therefore extended with the concept of generative design patterns.
This mechanism allows the designer to easily manage the behaviours at a
larger scope. A number of behavioural design patterns are made available
in the framework and a mechanism is provided to customize them towards
the current context.

Two prototype software tools have been developed to validate the pro-
posed approach. The first one allows building the behaviour specifications
while the second one is implemented to view the actual outcome from the
specifications after generation of the source code. The software is evaluated
by means of a case study consisting of a virtual city simulation for which a
number of behaviours are modelled. Two other smaller examples will also be
presented. A number of controlled user experiments have been conducted.
The results of these case studies and experiments allow us to identify issues
for improvement that can be taken into account in future versions of the
software.

Finally, we will also show that both during the initial design as well as in
a later phase of the development process, the information within the high-
level behaviour specifications can be used as a means of guiding the designer
in the creational process of developing the behaviour. We also show that
even the usability of the Virtual Environment itself can be enhanced with
this kind of information.

1.5 Significance

As described earlier, the development of a Virtual Environment often lacks
a proper design phase, especially for behaviour. Since the behaviour is a
key element for having realistic and convincing Virtual Environments, it is
important that this aspect is given the necessary attention. Even though
the modelling of the behaviour has received more and more attention lately
(see the following chapter), there is still room for improvement. We propose
an approach to facilitate the design of behaviour for Virtual Environments
together with supporting tools. The major advantages, which make this

18

1. Introduction

work significant, are the following:

• The behaviour specification is so called action-oriented which means
that it focuses on the actions that an object needs to perform as op-
posed to traditional approaches focusing on the states that an object
can be in. Specifying the behaviour in such a way is more natural for
application domain experts.

• The specification of the behaviour is completely separated from the
design of the static scene and implementation of the Virtual Environ-
ment. This provides a clean separation of concerns, which is generally
accepted to improve the quality of designs as the designer can consider
each design aspect separately.

• The behaviour can be specified independent from the objects that may
execute the behaviour and also independent from the interactions that
may be used to invoke the behaviour. Hence, it improves reusability
since the behaviours can be reused for multiple objects and that the
same behaviour can be triggered in different ways depending on the
application.

• The developed modelling concepts are application domain independent
which makes them suitable to describe any kind of behaviour from any
kind of domain. This means that no specific background knowledge in
VR is required in order to model object behaviour.

• The use of the behavioural design patterns allows for a better reuse
of previously built behaviours as well as of existing algorithms. They
also enable faster development and prevent common mistakes. Less
experienced designers in VR will benefit from the use of patterns,
since they can use them to construct more complex systems even if
they do not have the skill to devise the patterns themselves.

Ultimately, the intention of this research is that people having no back-
ground in VR will find it easier to specify the behaviour of a Virtual En-
vironment and that they would be able to build dynamic Virtual Reality
applications themselves.

1.6 Outline of this Dissertation

This dissertation is organized in 9 chapters. Chapter 1 has set the general
context and stated the problems that we want to tackle. The aims and
objectives of this work are explained together with their significance.

Chapter 2 reviews related work within the field of modelling behaviour
in Virtual Environments. It starts with an overview of existing high-level

19

1. Introduction

modelling approaches for Virtual Environments. It continues with examin-
ing approaches that particularly focus on modelling behaviour, classified by
their nature in either model-based, scripting languages or dedicated software
tools.

Chapter 3 covers the methodology and context used for this research.
A brief background on conceptual modelling and a motivation for the use
of conceptual modelling into the design process of Virtual Environments is
provided. Then, a description of the VR-WISE approach, being the frame-
work used for the research, is given. First, a general overview is given after
which a detailed description is provided on each of the different aspects of
this approach. Also a short example is given where each aspect is illustrated.

Chapter 4 describes in an informal way, how we have extended the
VR-WISE approach to include the modelling of behaviour in a Virtual En-
vironment at a conceptual level. A motivation for the approach taken is
given and an overview of the different models introduced (i.e. Behaviour
Definition model, Behaviour Invocation model) is given. This chapter is an
introductory chapter for chapters 5 and 6.

Chapter 5 builds on top of chapter 4 and provides details on the differ-
ent concepts introduced to specify both simple and more complex behaviours
in Virtual Environments. The chapter is divided into two main parts. In
the first part, all the concepts necessary in the Behaviour Definition are dis-
cussed. The second part focuses on the Behaviour Invocation and describes
all the concepts needed for this model. For each of the concepts, their se-
mantics and their notation are given along with an illustrating example.

Chapter 6 builds on chapter 5 and describes how behaviours can be
combined in a structured way in so-called behavioural design patterns. It
gives details on the way a pattern is specified in our approach and how they
can be used and adapted to fit ones needs. This chapter also describes a
collection of patterns that are already supported by our approach and how
custom patterns can be built.

Chapter 7 discusses the prototype tool that has been implemented to
support the approach. First, a detailed overview of the software architecture
of the tool, called OntoWorld, supporting the overall VR-WISE approach,
is given. Next, the different parts that have been added or modified in
this architecture in order to integrate successfully the behaviour modelling
approach are discussed.

Chapter 8 presents the work that has been done in order to evaluate
the research presented in this dissertation. To illustrate the approach and
to test it, a number of case studies are presented. This will also show the
limitations of our approach. Also the setup and the results of usability tests
performed are discussed.

Chapter 9 reflects on the research results obtained in this dissertation.
A summary is provided; the contributions of this work as well as its limita-
tions are given and discussed in the context of the initially stated research

20

1. Introduction

aims and objectives. Finally, possible extensions and further work are dis-
cussed.

21

1. Introduction

22

CHAPTER 2

Related Work

In the previous chapter, the context for the work to be performed in this
dissertation has been set. The problems related to the design of a Virtual
Environment were listed. The objectives and significance of this work were
also introduced. The purpose of this chapter is to present a review of prior
work that has been done by others in the field of designing Virtual Reality
in general and in particular, with the modelling of behaviour in a Virtual
Environment.

The approaches that are described in this chapter are the ones that are
well described in literature, in other words, approaches that are stable and
described by multiple publications. The general approaches are discussed
because they provide a good overview of the different elements that a Virtual
Environment modelling approach should contain and more important how
the behaviour modelling phase is integrated within the overall approach.
The different specific behaviour modelling approaches are discussed because
they give us insights in the modelling concepts necessary for modelling be-
haviour in a Virtual Environment. Here, we investigated true VR modelling
approaches as well as animation approaches since this is the direction we
are aiming for with our behaviour modelling approach.

The chapter is structured in the following way. Section 2.1 gives an
overview of existing design methods for Virtual Environments, which also
address the problem of designing VEs from a higher-level point of view.
Section 2.2 will discuss approaches that specifically focus on the modelling
of behaviour in Virtual Environments. Some additional related works are
briefly considered in section 2.3. Finally, in section 2.4, the work presented
in this dissertation is being situated in the context of the research field.

23

2. Related Work

2.1 High-Level Design Methods for Virtual Envi-
ronments

For many years, the development of Virtual Environments has been done
in an ad hoc manner without an explicit design phase preceding the imple-
mentation. As a result, the systems were often (re-)implemented completely
from scratch. Only recently, the problem of a lacking design phase has been
acknowledged and this has resulted in a number of high-level design meth-
ods. This section will give an overview of these design methods.

2.1.1 VRID

The Virtual Reality Interface Design (VRID) [Tanriverdi and Jacob, 2001]
model and its accompanying methodology provide a guidance to design-
ers in the early stages of the design of Virtual Environments. The research
resulted from earlier work conducted towards the specification and program-
ming of the interaction in non-WIMP (Window, Icon, Mouse, Pointer) user
interfaces.

The VRID model depicted in figure 2.1a shows the component architec-
ture of a VR interface as identified by the authors of VRID. This model gives
the components that address the characteristics of a VR interface together
with their inter-relationships. These components are graphics, behaviour,
interaction, mediator and communication. The graphics component deals
with the visual representations of objects. This component is needed in or-
der to render the objects nicely in the interface. Since this approach focuses
on the interaction and behaviour of objects, the visual representation, often
created by the graphics designer, is being treated as a black box. The be-
haviour component describes the different kinds of behaviours that exist.
A distinction is made between physical behaviours and magical behaviours.
The physical behaviours refer to changes that are similar as the ones occuring
in the real world (e.g. falling, bouncing of a ball). The magical behaviours
refer to changes that have no physical counterpart in the real world (e.g.
changing colour when selected). Furthermore, simple (physical or magical)
behaviours can be composed to form composite behaviours. The interac-
tion component is closely related to the behaviour component and describes
how the inputs from external data sources are interpreted and routed to the
correct behaviours. The mediator component takes care of all the internal
communication between the different components in the model. In this way,
all the components of the model can be easily replaced without interfering
much with the other components. Finally, the communication component
describes the incoming data from different external sources and the outgoing
data from the objects together with the message passing mechanisms used
in order to do so.

The model provides the designer with a structured overview of the differ-

24

2. Related Work

Figure 2.1: The VRID model (a) and the VRID methodology (b)

ent aspects of a VR interface. These aspects need to be taken into account
when designing VR interfaces. Applying the structure of the VRID model
systematically will lead to interfaces being properly designed. An accom-
panying VRID methodology is proposed (see figure 2.1b) which guides the
designer in applying the VRID model. The starting point of the VRID
methodology is a document that describes the functionality of the system
in natural language. This specification is used as the input of the design
process that is divided into two phases:

• The high-level phase aims at specifying the interface from a high-
level and independent from the implementation. Here, a number of
steps are followed. Firstly, the elements exchanging data with the
system are identified. These elements can be the user, special devices
or other VR systems. Then, the different objects that play a major
role in the interface are identified. This can be done using traditional
object-oriented analysis techniques and design guidelines. Next, the
objects themselves are modelled using five steps. (1) The graphical
representations that are required for the objects are described. (2) The
behaviours performed by the objects are identified and classified into
simple and composite ones. The simple behaviours are further divided
into their categories (physical or magical). The way in which simple
behaviours are combined into composite behaviours is also expressed
here. (3) The interactions are specified between the data elements
and the interface and between the objects within the interface. (4)
The internal communications are specified in order to avoid conflicts
between the messages sent from one component to another through the
mediator. (5) The external communications are declared to control the
incoming and outgoing data of the interface.

• For the low-level phase, the same five steps from the high-level phase
described above are repeated, but this time in a more detailed way.

25

2. Related Work

(1) The graphical models of the objects are linked to the behaviours
(physical and magical), that they need to be able to execute. (2) The
behaviour is modelled using the PMIW user interface specification
language [Jacob et al., 1999]. Data flow models are used to represent
continuous behaviours while state transition models represent the dis-
crete behaviours. (3) The interactions are also modelled through the
PMIW specification language. (4) Different scheduling mechanisms
are selected to resolve any internal communication conflicts that might
arise. (5) The different kinds of message passing mechanisms for the
communication between the system and external data sources are se-
lected.

The aim of the VRID model and methodology is to decompose the de-
sign problem into smaller and simpler problems. In such a way, it becomes
easier to develop the different components. This enhances reusability as well
as communication between the designers and developers. The methodology
also uses a top-down approach going from an abstract high-level representa-
tion to a lower-level detailed representation, which is then used as the input
for the software developers.

In the high-level phase, the interaction and behaviour can be specified
rather intuitively. However, a large part of the high-level phase consists
of specifying the communication between the different components which
involves more difficult actions to be taken. The low-level phase forces the
designer to deal with low-level issues which can be difficult and too complex
for non-experienced designers.

2.1.2 VEDS

The Virtual Environment Development Structure described in [Wilson et al.,
2002] is a user-centred, approach for specifying, developing and evaluating
VE applications. The main aim of this approach is to guide the designer in
its design decisions in such a way that usability, likeability and acceptability
is improved. This will eventually lead to a more widespread use of Virtual
Environments.

The approach is the most elaborated high-level design approach found
in literature. Figure 2.2 summarizes the overall structure.

The development process starts with setting the initial requirements of
the application domain for which the Virtual Environment is to be built (e.g.,
what functionalities need to be available in this type of application for this
particular domain). Here, a clear understanding of VR/VE attributes, what
a VE can and cannot do, is needed in order to already make decisions about
alternative technologies to use in the system. This will lead to defining the
goals of the application, which will be the driving force behind the overall
design process. At this stage, the priorities and constraints on the goals are

26

2. Related Work

Figure 2.2: The VEDS methodology

identified since probably not all of them will eventually be obtained.
The emphasis of the VEDS approach is to have as much direct input as

possible from the end-users in the beginning of the design process. There-
fore, the initial stages involve assessing which tasks and functions must be
completed in the VE, determining the user characteristics and needs (user
analysis), and to produce a task analysis. This is done by means of inter-
views, discussion groups and real world task analysis. The task analysis is
often split up into two separate phases, depending on the intentions of the
application. In a first phase, the analysis is done for the actual tasks that
are modelled (application tasks). In a second phase, which is performed
a bit later, the analysis is done for the tasks to be carried out within the
Virtual Environment (VE tasks). Based on the analysis phase, a number
of specific Virtual Environment goals will have to be provided by the users
of the system which will then form the input for the Virtual Environment
specification in the next phase.

In the conceptual design phase, the actual Virtual Environment is spec-
ified at a high level making balanced decisions on the goals that were set up
at the beginning of the process. This specification is used by the developers
to build the Virtual Environment. So, it is very important that the speci-
fication at this stage meets the requirements of the users. Therefore, it is
imperative that all the stakeholders are involved in this phase. If not, there
is the risk that the end result will have a high chance of not being accept-
able and that it needs to be re-implemented. In VEDS, the storyboarding
technique is used as a method to describe, design, outline and agree on the
form that the Virtual Environment should take at the end. Storyboards use
a terminology that is commonly known by all the stakeholders resulting in
a better communication between the different stakeholders and ultimately,
leads to a better consistent specification of the Virtual Environment system.

27

2. Related Work

After the specification has been completed, the Virtual Environment
can be constructed. This involves making a number of decisions in order to
come to a system that best meets the requirements of the user. A first fun-
damental issue is to decide where to concentrate the modelling effort. Here,
trade-offs will have to be made between providing the user with functionality
or producing a visually more appealing environment itself. For usability, the
most important aspect is the interactivity where a middle ground needs to
be found between the accuracy of the modelling and a reasonable approxi-
mation of the reality in order to have the best solution. The total number of
objects together with their complexity also needs to be carefully considered
when including them in the Virtual Environment. One might choose to use
techniques to manage the level of detail of the objects or even omit some
objects if this increases the overall speed of the application. Besides the
interactivity and appearance, also the cues and feedback to the user need
to be addressed since they will greatly influence the usability of the system
as well. The cues tell the user what interactions are possible at a given
moment. The feedback is the response of the system on any interaction that
was performed by the user.

Finally, the last phase involves performing an extensive evaluation of
both the Virtual Environment itself as well as its usefulness. The evaluations
are divided into examinations of validity, outcomes, user experience and pro-
cess. This means that before the development goes too far, a more detailed
examination can be made on how participants will respond to different ele-
ments in the VE and utilize its functionality, and be able to understand and
work with all the interface elements.

With VEDS, the domain for which the VR application is developed is
really integrated into the design stage. Furthermore, there is also a sort
of iterative loop in which the design of the VR application is step by step
refined until it meets the customer’s expectations. Nevertheless, the domain
expert is not very much involved into the actual design of the VR application
and is solicited only at the beginning of the design phase.

2.1.3 CLEVR

The Concurrent and LEvel by Level Development of VR systems (CLEVR)
approach looks at the design problem from a software engineering point of
view and applies current techniques from this field to Virtual Reality design.
The CLEVR is the successor of the ADASAL/PROTO approach [Kim et al.,
1998].

The authors in [Kang et al., 1998] see a Virtual Environment as a com-
bination of three inter-related aspects: form, function and behaviour.
Form is the visual appearance of the objects, together with their structure
and the overall structure of the scene in the Virtual Environment. Function
is the specification of what objects do to accomplish the behaviour, while

28

2. Related Work

behaviour itself specifies how the objects change and carry out different func-
tions. Changing one of the aspects of the Virtual World often affects the
other aspects. Therefore, CLEVR urges for a design approach with a con-
current (as referred to in its name) design of the three main components as
opposed to the traditional more sequential processes where first the form is
being created and afterwards, the function and behaviour are programmed.
This is considered as one of the main reasons why designing Virtual Worlds
is such a complex activity. CLEVR introduces a methodology to assist the
designer in dealing with all three aspects concurrently.

Level-by-Level refers to the fact that the approach is based on an incre-
mental and hierarchical modelling paradigm. This means that the applica-
tion will be developed, validated and delivered at different stages and will
be continuously refined in a top-down approach starting from simple models
with few details towards more complex and detailed models. The overall
modelling process therefore follows a spiral software development model.

The CLEVR modelling approach is so-called performance driven. Usu-
ally, in the first phase of designing a Virtual World, the main focus is on
the visual and behavioural aspects. At this point, no attention is paid to
the performance of the system yet. It is only in a later phase that more
aspects related to VR (such as performance) get some thoughts. After these
issues have been treated, the third phase will often address issues related
to improving the presence in the Virtual World. Where traditional design
methods stop at the first phase, when the resulting Virtual World has been
generated, the CLEVR approach goes further and provides additional guide-
lines to help the designer in the second and third phase as well.

Figure 2.3: The CLEVR design approach

The first phase in the approach is obviously the specification and is de-
picted in figure 2.3. As shown, the process starts with a number of Message
Sequence Diagrams (MSD) which describe the functionalities of the system

29

2. Related Work

in terms of signals that are exchanged between the different objects that
comprise the Virtual World. This will help to identify the objects that are
needed and will be the basis for a Class Diagram. The class diagram shows
the different objects together with their relationships. The notation that is
used is similar to the notation of UML. Next, the behavioural and functional
aspect is defined by means of state charts and data flow diagrams respec-
tively. The specification of the form aspect is done in an inter-leaved fashion
with the behavioural and functional aspect. It is expressed using the Visual
Object Specification (VOS) language. The language is similar to C++. A
specification for the form of an object resembles to a C++ class definition in
which the different properties as well as the spatial constraints are encoded.
The following step is to convert the state charts and data flow diagrams into
an object-oriented representation so that they can be easily merged with the
object-oriented form specification. The overall goal of the first phase is to
come to an object-oriented model of the entire system, integrating all three
aspects into one whole.

The second phase in the process is the performance estimation and
model selection phase. During the first phase, a number of iterations
have resulted in a number of models at different levels of detail. In this
phase, a simulation is done to estimate the performance of the application
using several combinations of these models. The toolbox in CLEVR includes
a specification simulator that reads the models and executes them with
some performance data as outcome. Depending on the initial requirements,
and based on the performance data, a particular combination of models is
selected and the other models will be neglected.

The third phase of the process is the presence and special effects
phase. Here, it is assumed that everything is already designed and tested,
and that the only thing left to worry about is some additional features to
enhance the overall presence of the Virtual World. At this stage, the designer
might add changes to some of the visual representations of the objects either
to have more detail or to change some of the behaviours in order to be more
realistic.

Although the approach provides a way to design VE applications, it is
based on the assumption that the designer understands the UML notation
and has some knowledge about Object-Oriented (OO) design. It is very
much based on classical software engineering principles. For these reasons,
the approach is not very accessible to non-experienced users or the applica-
tion domain expert.

A more detailed description of the approach together with examples can
be found in [Seo and Kim, 2002].

30

2. Related Work

2.1.4 CONTIGRA

The Component OrieNted Three-dimensional Interactive GRaphical Applications
(CONTIGRA) approach is a high-level declarative approach that enables
the design of interactive 3D component-based applications, mainly targeted
towards the Web [Dachselt, 2001].

CONTIGRA is a so-called document-centred approach which uses struc-
tured documents in order to describe the components, what the interfaces
are to these components and how they should be combined and assembled
into complete 3D applications. For this, a set of different markup languages
based on XML, are introduced. This allows specifying the structured docu-
ments in a consistent and declarative way. The approach thereby promotes
the involvement of non-programmers into the design process of 3D appli-
cations. This is in contrast with the code-centred approaches to create
component-based 3D applications where the necessary programming skills
are required.

Figure 2.4 shows the different levels, together with the corresponding
documents and the tools that are involved in building 3D applications using
the CONTIGRA approach. A short overview of the development stages will
be given here. For a more detailed description, the reader is referred to
[Dachselt et al., 2002].

Figure 2.4: The CONTIGRA levels and tasks

The construction of the components is the first step that needs to be
performed at the development level. This level is divided into two phases,
the implementation phase and the specification phase which respectively use
the SceneGraph language and the SceneComponent language.

The SceneGraph language is an extension of the X3D language and its
purpose is to describe the component at the lowest level, in terms of its

31

2. Related Work

geometry and behaviour. The geometry is being represented by an ordinary
X3D scene graph while the behaviour is being represented by a Behav-
ior3D graph [Dachselt and Rukzio, 2003]. The Behavior3D concept has
been introduced to cope with the shortcomings and unnecessary complexity
of X3D’s built-in support for behaviour. Behavior3D uses an object-oriented
paradigm. New behaviour nodes can inherit from other behaviour nodes
and possibly extend them. Alternatively, new behaviour nodes can also be
constructed by referencing and using other behaviour nodes. The built-in
interpolator nodes from X3D are wrapped into Behavior3D nodes so they
too can be used in the behaviour graph as any other node. In addition, two
special nodes are included, namely Sequential and Parallel, which allow for
an intuitive combining mechanism of nodes in order to construct complex
Behavior3D nodes. A Sequential node activates all containing nodes in a
sequence while all the child nodes of the Parallel node are activated at the
same time. Besides, the standard (wrapped) nodes coming from X3D and
the two special nodes, also external scripts and Java code extractions can
be easily integrated using the same language.

The SceneComponent language is the main language of the architecture.
This allows defining the interfaces of the components separated from the
actual scene graphs. Not only the accessible parameters and methods are
declared here but also the component can already be configured as a particu-
lar instance of a component. This follows a sort of prototype-based paradigm
where a document at this phase is being seen as a prototype. Later on, it
can be copied and changed to suit the needs of the application at hand.
Furthermore, the language also allows specifying complex components by
combining a number of smaller sub-components.

Both the SceneGraph document (together with all the external files such
as scripts, audio files, picture files,. . .) as well as the SceneComponent
document form one single CONTIGRA component. The people that are
involved in the development level are usually experts in the field of 3D
and/or Virtual Reality, or people that at least have some programming
skills. This level is the most time consuming but once a large number of
components have been specified using the two dedicated languages, it will
drastically reduce the time needed to build complete 3D applications.

The second level is concerned with the distribution of components on
the Web. The corresponding task is that the developers need to search and
retrieve the different components that are required for a particular applica-
tion. To facilitate this, a kind of Web portal needs to be built that allows
querying an online collection of components in a flexible way.

Once all the separated components are gathered, they need to be inte-
grated into one whole which is done at the configuration and assembly
stage. The dedicated Scene language is introduced with the purpose of
configuring and assembling the different components. A document in this
language represents a specification of one single interactive 3D/VR appli-

32

2. Related Work

cation. At this point, the specification is still in a technology-independent
format.

The final step is then to transform this independent specification into a
specific 3D technology so that it can be viewed at the runtime level in a
3D browser or executed as a standalone application.

As opposed to other approaches, in the CONTIGRA approach it are the
developers who are really involved in the initial stages of the design process.
They are actually building the different components. The end-user is only
involved in a much later stage where the components just need to be linked
to each other and instantiated.

2.1.5 SENDA

According to the SENDA approach [Sanchez-Segura et al., 2005], Virtual
Environments can be seen as a special kind of information system (from
the software engineering point of view) and thus have to be designed as
such. Hence, this involves the standard analysis, design and implementation
phases encountered in software engineering.

The SENDA framework defines a more formal process model for de-
veloping Virtual Environments. The idea is to refine traditional software
processes in order to improve the quality of Virtual Environment develop-
ment. A number of ISO standards (12207 and 1074) that are specifically
targeted for software engineering have been modified to better suit the de-
velopment of Virtual Environments. It is a combination of reusing existing
techniques and introducing new techniques that are required to deal with
the context of Virtual Environments.

In general, the overall SENDA process model bears much similarities
with traditional process models used in Software Engineering (see figure 2.5).
The framework comprises 11 different processes and each of these processes
is subdivided into tasks to come to a total of 36 tasks which are needed
to develop a complete Virtual Environment. Not all of these tasks will be
discussed in detail here, for this the reader is referred to the corresponding
literature.

The framework starts with the management process which consists of a
planning process and an estimation process like it is the case in the more
traditional approaches. Here, an initial planning is made of what is going
to be done when as well as an estimation of the time, resources and costs of
the development for this particular Virtual Environment.

After this process has been completed, the actual development process
commences which is again divided into three different sub-processes.

• Firstly, an analysis process is executed in which the requirements for
the Virtual Environment are considered. Here, a questionnaire must
be filled in order to identify the tasks that need to be performed in the

33

2. Related Work

Figure 2.5: The SENDA process model

end result. These tasks are specified more formally through use-cases
(known from UML) describing the user interaction with the system.
In addition, use-concepts is a mechanism they have introduced to
describe the system functionalities that are not triggered by means of
user interaction. Afterwards, an initial static and dynamic modelling
task is performed.

• Secondly, the design process is done. This is divided into four sub-
processes. The 3D design process is meant to describe how the en-
vironment is going to look like. This is achieved by means of two
specification, one specifying the VE itself, and one specifying the ob-
jects inside the VE. Furthermore, there is also a map visualizing the
spatial location of the objects and a navigation diagram represent-
ing the links between sub-spaces in the VE. The multimedia design
process involves determining the different multimedia elements such
as sounds, images, animations and so on that will be needed in the
VE. The components internal architecture process is meant to define
the actions (behaviours and interactions) that can take place within

34

2. Related Work

the VE. An interesting issue about this approach is the use of inter-
active behaviour patterns to facilitate the design of components
comprising a Virtual Environment [Sanchez-Segura et al., 2004]. The
system design process mainly consists of extending the static and dy-
namic models developed in the analysis process. This involves class
diagrams for the static modelling and transition diagrams for the
dynamic modelling. In this step, also a prototype of the user interface
of the actual application is developed.

• Thirdly, in the implementation process, the actual Virtual Environ-
ment is implemented in two steps, the components implementation
process and the core implementation process. In the former, all the
different components are implemented independently from each other.
In the latter, an empty Virtual Environment is created and it is grad-
ually built-up by adding the smaller components from the previous
process.

The framework finishes with the control process. The main purpose
of this last set of processes is to evaluate the finished product before it is
actually delivered to the customer. It consists of a verification process and a
validation process, where really the designs as well as the implementations
of the different aspects of the Virtual Environment are submitted to be
reviewed.

The SENDA approach is a very formal approach based on existing de-
sign approaches used in the software engineering domain. The approach
involves a wide range of people into the process such as software designers
and graphics designers as well as psychologists, and so forth, all with their
own expertise. However, the downside of this approach is that the actual
end-user of the application is only involved at the beginning of the process
and then only very little.

2.1.6 Ossa

The Ossa system is an approach to conceptually model Virtual Reality sys-
tems [Southey and Linders, 2001]. Ossa (which stands for ”skeleton” in
Latin) provides a modelling environment that allows building strong under-
lying conceptual models, as a sort of skeleton for the Virtual Reality applica-
tion. These models are a combination of conceptual graphs and production
systems. The conceptual graphs are used for representing the knowledge
of a world that is about to be designed. The production systems approach
is used to capture the dynamics of the application. A brief overview of
the architecture is given here, a more detailed description can be found in
[Southey, 1998].

The architecture of the Ossa approach is depicted in figure 2.6. The
figure shows the two different components of a production system. These

35

2. Related Work

Figure 2.6: The Ossa design architecture

components are used as the major modelling technique in the approach,
given by the columns in the figure. These are the Knowlegde Base con-
taining all the rules and the Working Memory containing all the facts.

The Ossa system is further divided, both conceptually as well as in the
implementation of the overall architecture, into three different layers as given
by the horizontal rows in the figure:

• The Mundo layer is used to describe the Virtual World at a concep-
tual level. This is done by means of specifying the different concepts
together with the relationships between those concepts via the con-
ceptual graphs. The behaviour is then described by writing a set of
rules in a dedicated rule language called the Muto Rule Language
(MRL). When designing a new Virtual World, the designers only need
to create the conceptual model in this layer and do not need to know
anything about the internal workings of the underlying layers. How-
ever, this layer is depending on the second layer for its execution.

• The Muto layer is responsible for managing the conceptual graphs
that make up the current state of the Virtual World (core). Further-
more, it also deals with evaluating and executing the different rules,
described using MRL, inside the knowledge base which will then mod-
ify the facts in the core. As a result, the Virtual World is moving from
one state into the next one. This layer depends on the Notio layer for
its functionality in order to accomplish this task.

• The Notio layer provides the basic data structures for the facts that
are encoded via conceptual graphs. It allows representing the con-
ceptual graphs together with the functionalities for storing, retrieving
and manipulating them. Since the rules are also described by means
of conceptual graphs, it also provides the ability to perform some op-
erations on conceptual graphs as required by these rules. It is built on
top of the Notio API, a general purpose API written in Java that is
used for developing conceptual graphs tools.

As it can be seen, conceptual graphs form the basis for the entire design

36

2. Related Work

approach that enables an intuitive specification of the Virtual World. The
Ossa approach uses conceptual graphs, both as a representation of the con-
ceptual model as well as an internal data representation mechanism in the
system itself. The production systems approach for the dynamics allows for
the behaviour to be specified in considerably less lines of code than other
object-oriented approaches and it facilitates future maintenance. Further-
more, since there also exists a widely accepted graphical notation that can
capture the conceptual graphs and the production rules, the designer can
visually specify the conceptual model, which greatly enhances usability of
this approach.

The disadvantage of the Ossa system is the large complexity it brings
since it is not using a normal procedural approach for specifying the dynam-
ics. A rule-based approach is used resulting in more complicated execution
patterns. Besides this, the rules need to be described in a kind of logic
programming style which is not so accessible to non-programmers.

2.1.7 I4D

The lack of a proper design methodology is also acknowledged in the research
performed in the context of the interactive 4D (i4D) framework [Geiger
et al., 2001]. I4D is a framework for the structured design of all kinds of
interactive and animated media. The approach not only targets the domain
of Virtual (and Augmented) Reality but also the domain of 3D graphics and
multimedia.

The i4D design approach aims at expressing the conceptual models in
terms of concepts that are familiar to all the stakeholders of the application.
Therefore, an actor-based metaphor is chosen where the different compo-
nents of the Virtual Reality application are seen as actors in a play. The
actors act like particular roles that are specified by the designer. The ap-
proach extends current metaphors from the television and film industry to
capture the dynamical aspects of a Virtual Reality application that were pre-
viously not supported. This metaphor is a sort of abstraction over the basic
scene graph but which is a suitable representation to enable communication
between the different designers in the process. At the same time, it contains
enough details to make sure that a future mapping to an implementation is
possible.

In order to bridge the large gap between what the user requests and the
actual implementation, a step-by-step approach needs to be followed. An
overview of the design process is given in figure 2.7. The different steps of
this approach are:

• Scenario descriptions provide a number of short stories behind the
Virtual Reality application as if it was described by the stakeholders,
knowing nothing about technical issues involved in VE design. It gives

37

2. Related Work

Figure 2.7: The i4D design approach

details on which kind of objects there are, how they look like, how the
users interact with the objects and what the results will be afterwards.
This specification is specified in natural language.

• In the scenario analysis, the different scenarios are further refined
into structured situations where more details are added about the in-
teractions and the animations of the objects. This results in a more
formal representation of the scenarios (e.g., a storyboard).

• A decomposition of the storyboard is done into well-defined scenes.
The different actors are identified and (possibly) hierarchically struc-
tured. Finally, a direct mapping is made between the actors and their
geometry they control on the one hand and their actions they perform
on the other hand.

• The behaviour specification formalizes the behaviour of the actors.
Behaviour that has been designed earlier will just be linked to an
action coming from the animation library. For behaviour that has not
yet been encountered, a new action needs to be defined.

• In the evaluation step, the application is executed several times to
see if the behaviour performed by the actors corresponds to the roles
that were specified in the scenarios. If not, the decomposition and
behaviour specification step need to be iterated.

Next to the design approach, the i4D framework also provides a number
of tools covering the whole design process from idea to the actual implemen-
tation of the Virtual Environment. An important aspect is the high-level
component-based library for 3D content, the core of the i4D framework.

38

2. Related Work

This is a library that also follows the actor-based metaphor and allows the
easy design of 3D actors and actions through a high-level programming API.
On top of this library, a scripting language is provided that enables interac-
tive design and a number of visual tools are developed to enhance the design
even further. The framework is extendable by other (external) components
that serve different purposes such as simulations, physics, etc. It allows
managing and using different components more easily, which is a strong
requirement in most Virtual Reality systems nowadays. A more detailed
overview of the framework is given in [Geiger et al., 2000].

The actor-based metaphor which is used in the specifications in i4D only
allows describing a Virtual Reality application using the domain terminol-
ogy from this particular domain, namely that of role plays. Other domain
knowledge cannot be used and therefore, it is too restrictive in the sense
of being able to handle many different domains. Furthermore, most of the
things eventually need to be programmed in their framework, which is a
kind of abstraction of the currently existing graphics libraries.

2.2 Behaviour Modelling Approaches

Whereas the approaches introduced in the previous section deal with the
design of Virtual Environments in general, this section will in particular dis-
cuss research that is related to the aspect of modelling behaviour for Virtual
Environments. The section is divided into three sub-sections. First, the ap-
proaches based on a graphical notation are discussed, then the approaches
using textual scripting languages are considered and finally, some dedicated
software applications are discussed. The focus is on the approaches most
closely related to the work presented in this dissertation.

2.2.1 Graphical Notations

2.2.1.1 Petri Net Script

The Petri Net Script (PNS) described in [Blackwell et al., 2001] is a
graphical language addressing the specification of behaviour of virtual ac-
tors. It provides a graphical interface to behavioural scripting. PNS is built
on Petri Nets, a formal language that was originally created for the specifi-
cation of concurrent, discrete-event dynamic systems. A Petri Net usually
consists of places representing the states and transitions representing possi-
ble changes between states. The places and transitions are connected by a
number of arcs. At any moment in time, the network can be given a state
by marking its places with tokens. Since Petri Nets do not allow storing
data within the tokens and do not support hierarchical structuring of the
networks, they are not really suitable for specifying complex behaviour. In
order to overcome these problems Petri Nets have been extended into so-

39

2. Related Work

called High-Level Petri Nets [Jensen and Rozenberg, 1991]. However, their
main drawback is that they are less easy to use and thus increase the learn-
ing time. The PNS expands on the principles used in existing High-Level
Petri Nets and in order to enhance ease-of-use and flexibility. Firstly, PNS
introduces the concept of external places (e.g., sensors). The places may
also contain embedded information in addition to only keeping record of the
tokens. PNS also extends the usual token typing system by arranging token
types in an intuitive object-oriented hierarchy. Furthermore, the arcs can be
labelled with a number of expressions representing pre- or post-conditions.
Finally, PNS allows structuring the networks hierarchically to allow making
abstractions and reduce the complexity. As a result, Petri Net Script makes
complex behaviour specification more accessible and allows exploring the full
capabilities of a real scripting language in a more intuitive way. However,
the Petri Nets were initially not designed for the modelling of behaviour
typically encountered in Virtual Environments. Therefore, concepts that
were initially not designed for modelling behaviour in a VE need to be used
for exactly this purpose which is not a natural way of modelling.

2.2.1.2 Flownets

In [Smith and Duke, 1999][Willans, 2001][Smith et al., 2000], Virtual Envi-
ronments are considered to be hybrid systems and the behaviour is modelled
as a combination of discrete and continuous components. The Flownet for-
malism introduced by the authors is a specification formalism designed for
Virtual Environments. In Flownets, the discrete processes of the behaviour
are described using traditional Petri Nets. However, as discussed in the
previous approach, some modifications have also been made here, i.e. the
tokens are able to represent conditions and a distinction is made between
normal transitions and interaction transitions in order to cope with priority
handling in case of concurrent firings. Furthermore, the concept of inhibitor
arc is developed to specify that a place does not need to contain a token for
a transition to be fired. Since the Petri Nets lack capabilities for describing
continuous processes, a number of modelling constructs have been added
coming from System Dynamics research. The continuous flow concept rep-
resents a flow of information that is considered as a continuous stream. A
plug concept allows sending and receiving a continuous flow of information.
The flow control element can allow the flow of information to be passed or
not based on the incoming arcs. A store concept is developed to act as a
sort of equivalent for the place concept but then for continuous information.
Finally, a transformer has been added which can modify the information on
one or more continuous flows into one or more resulting flows. The Marigold
toolset, which has been developed to support the approach, provides a means
to specify the Flownets rather independent from the current context (e.g.,
input/output devices, world objects). A stub of code is generated which

40

2. Related Work

can then be seamlessly integrated with the rest of the Virtual Environment.
However, the graphical notation does not allow to hierarchically structure
the models, to decompose them in sub-models. The consequence is that the
models become large and difficult to be read. Therefore, this is not suitable
for inexperienced users.

2.2.1.3 Behavior Transition Networks

Another framework that aims at simplifying the design of behaviour is de-
scribed in [Houlette et al., 2001][Fu et al., 2003] where Behavior Tran-
sition Networks (BTNs) are used, which are actually generalizations of
finite state machines (FSMs), to accomplish this. The BTNs consist of
states, representing the actions, and transitions, controlling the flow from
one action to another based on a condition, just like in the FSMs. However,
a BTN can also contain variables that keep information about the current
state and can communicate to other BTNs through a blackboard. Further-
more, two major extensions have been made to the basic FSM model. First,
the representation supports a hierarchical behaviour model. An author can
decompose more complex behaviours into a few high-level behaviours, each
capturing a portion of the original behaviour. This results in a set of nested
behaviours, which are easier to understand and to modify. Behaviours are
able to invoke other behaviours just like any predefined primitive action.
Secondly, each behaviour may have a number of specializations representing
different kinds of ways for performing a behaviour with a similar goal. Poly-
morphic extensions can be made for every variation of a behaviour, which
are all indexed by means of a set of entity descriptors. The entities also
have these descriptors and the selection of a particular behaviour happens
by finding the closest match between both descriptor sets. This is related to
the strategy design pattern in software engineering where a different strategy
is chosen based on the context at a particular moment. If no match is found,
the default behaviours will be selected. The state machine approach is very
useful for a particular kind of behaviours, mostly discrete behaviours, but
they are less useful for continuous behaviours. Furthermore, it is difficult to
describe behaviour of objects that is somehow related to other behaviours
of other objects.

2.2.1.4 VisualVRML

The work presented in [Arjomandy and Smedley, 2004] acknowledges the dif-
ficulties in specifying behaviour in VRML (X3D) and introduces a system
where behaviours of objects can be visually specified. In this system, the
designer is able to drag-and-drop icons from a palette onto the workspace.
The icons, representing VRML nodes that are being supported, are classi-
fied into four categories: Objects, Sensors, Interpolators and Scripts. Each

41

2. Related Work

node is displayed by means of a rectangle containing an icon that identi-
fies the category and additionally an icon denoting the type of the node
within this category. Connectors are attached to the nodes on the left and
right side corresponding to the input and output fields respectively. The
input and output connectors can be linked to each other using arrows as the
equivalent of the ROUTE statements. The system presented here is merely
a one-to-one correspondence with the behaviour facilities available in the
VRML language. Every element in VRML has a graphical counterpart in
this system. Hence, it does not really provide an additional layer of ab-
straction. Considerable knowledge about the VRML language is required to
build behaviour specifications and a lot of scripting is still involved.

2.2.1.5 Rube

The rube modelling framework [Hopkins and Fishwick, 2003][Fishwick, 2000][Kim
and Fishwick, 2002] goes one step beyond the visual (2D) programming
paradigm and provides developers with a way to specify dynamic models in
three dimensions (3D). Where other methods use fixed 2D, or textual rep-
resentations for their modelling concepts, rube allows the designer to create
models in 3D without being constrained to a predefined set of (graphical)
representations for the modelling constructs. In other words, the behaviour
of the objects is defined using another set of objects. The modelling pro-
cess of rube is as follows. The designer starts with the initial scene con-
taining the objects for which the behaviour needs to be designed. Then
a particular dynamic behavioural model is selected and the dynamics and
interactions between different models are specified in case there are multiple
models selected that need to exchange information. A number of dynamic
behavioural model types are supported by rube including Finite State Ma-
chine, Flow Charts, Petri Nets and many others for which special templates
have been created in VRML. Next, an appropriate metaphor is selected. For
this, rube allows designers to create their own 3D representations, which are
based on the metaphors. When choosing the objects, it is important to pick
the ones that have a meaningful relationship with the actual modelling con-
cepts. The visualization of the metaphors gives a kind of semantic clue of
its actual functionality. Afterwards, the mappings are created between the
metaphorical objects and the actual modelling concepts from the dynamic
behavioural model. In the last step, the models together with the mappings
are combined into the final model. The rube framework provides a means to
intuitively specify the behaviour in a Virtual Environment based on person-
alized 3D metaphors. The main target audience for rube is the intermediate
to expert developer since some general knowledge about the behavioural
model types is required together with a good knowledge of VRML.

42

2. Related Work

2.2.2 Scripting Languages

2.2.2.1 Alice

The Alice1 [Conway, 1997][Conway et al., 2000] project presents an easy-
to-learn scripting language, together with an authoring system. It provides,
to a broader audience of end-users, a means to describe behaviour of 3D
objects without any skills in 3D graphics or animation techniques. On one
hand, the scripting API presented in Alice draws a lot from usability engi-
neering. Data is gathered from usability tests with the system that uncovers
issues that are taken into account the next time the API is refined. On the
other hand, it is being inspired by spatial understanding literature. Litera-
ture that describes the abstractions people use to describe 3D scenes, and
the techniques people use in 3D wayfinding tasks. Navigation has also been
extensively used in the development of the API. As a result, the API in
Alice is found to be more intuitive than some existing 3D APIs. In order to
program behaviour, Alice provides a rich set of primitive commands iden-
tified by names which are carefully chosen having strong relationships with
natural language (e.g., move, turn, pan,. . .). Furthermore, the traditional
names for the coordinate axes in the commands, namely X, Y and Z, are re-
moved from the API, and replaced with the more useful direction names and
surface names of forward/back, left/right, up/down. Alice is also said to be
time-based which means that animations are specified to take a particular
number of seconds as opposed to the frame-based system where they are to
take a particular number of frames. Using overloaded methods, supporting
several different calling patterns for a single command, provides a controlled
exposure of power to the user. Novice users can employ the simple default
commands while more experienced users can use the more advanced features
of the system. Primitive commands can be combined to form more complex
animations through the use of two commands: DoTogether and DoInOrder
for respectively simultaneous and sequential execution. The most interest-
ing aspect about the Alice system is that it provides novice users with a tool
to start programming behaviours in 3D. In a sense, our system has many
similarities with Alice. However, as acknowledged by the creators of Alice
it is still too difficult to model complex animations and in some cases, too
much syntax is needed to specify things.

2.2.2.2 Improv

Improv [Perlin and Goldberg, 1996] is a system designed for the scripting
of interactive actors in Virtual Environments. It follows the expert systems
philosophy and provides the authors with a means to control the choices
that the actors make and how the actors move their bodies accordingly.

1http://www.alice.org

43

2. Related Work

The system firstly consists of the animation engine that uses specifications
of the animated actions to manipulate the bodies of the actors. The actions
are specified by means of setting a set of value-pairs for each of the degrees
of freedom in the model of the actor. These values are ranges of poses cor-
responding with changes over time. The exact degrees of freedom values are
then at runtime computed by means of time-varying noise signals that can
be seen as a sort of interpolators. The designer can place the created actions
into groups based on the fact whether they can be executed simultaneously
or not. The order of the groups determines the execution priority of the
actions. The second component is the behaviour engine that is responsible
for the more high-level behaviours and decisions about which actions to in-
voke. Since the behaviours in Improv are mainly driven by interactions with
the user, which cannot be predicted in advance, fixed sequential animations
are not sufficient anymore. Instead, layers of choices from the more long-
term plans to the more short-term activities must be created. These layers
must take into account the non-deterministic response of the user as well
as the always-changing state of the environment. The designer can write
scripts that allow an actor to randomly choose between a set of behaviours.
Optional weights associated with the behaviours will affect the probability
that a particular behaviour is chosen. Additionally, designers can create
more complex decision rules in which case the choice to favour particular
behaviours over others is based on their outcome. Each decision rule con-
sists of a list of factors all associated with a weight, which control how much
influence this factor has on the decision. The factors can be information
from either the actor itself, from other actors or from the environment in
general. For all this, Improv uses an English-like scripting language to allow
non-programmers to create powerful interactive applications. It is true to
say that the Improv system is quite powerful at the higher levels. However,
in the lower levels, the basic primitive actions are still described using the
most fundamental modelling constructs. This, together with the need of
the noise signals, makes this system rather unintuitive for non-specialists.
Furthermore, it only focuses on modelling human-like figures.

2.2.2.3 STEP

A bit related to the previous works is the language called Scripting Technology
for Embodied Persona (STEP) [Huang et al., 2003a]. STEP is a simplified
and user-friendly, but still expressive, scripting language for 3D web agents
based on H-anim2, a standard for representing humanoids in VRML/X3D.
The main focus of the language is on communicative acts, and in particular
the ones that involve geometrical changes of the body parts. The reference
systems used within STEP are based on those from the H-anim specifica-
tion. The standard pose of the humanoid was used as an inspiration to define

2http://www.hanim.org

44

2. Related Work

a direction reference system on top of the traditional coordinate reference
system. For the three dimensions, more intuitive natural language-like di-
rections are introduced. Besides the time reference system of VRML/X3D,
a more flexible system was defined by introducing the notions of beat and
tempo. The body reference system is the same as the one in H-anim and the
different names of the joints and segments can be used to refer to the parts
of the body within the actions. Usually, a complete behaviour in STEP
is described as a posture together with a movement. Turning body parts
implies setting the rotations for the relevant joints. Moving the body means
setting the position of the whole node hierarchy. Turn and move are the
two main primitives for body(-part) movements. A number of typical op-
erators, to either compose actions into more complex ones and to interact
with the environment, are included. In the first group, there are seq and
par for respectively sequential and parallel execution of the actions. In ad-
dition, there is choice, which is used for a non-deterministic execution and
repeat, which denotes a repeated action. In the second group, there are
if then else and until for conditional executions of the actions together
with constructs to get and set the state of the world. STEP is a high-level
declarative scripting language based on Dynamic Logic. In [Huang et al.,
2003b] the XSTEP language, an XML-based markup language, is proposed
as the successor of STEP. In the same way as Alice, the STEP approach
also provides a very intuitive means to specify behaviour. Since it is based
on the H-anim standard, it can, however, only be used to describe the be-
haviour of virtual characters. It does not provide enough modelling concepts
to be usable for modelling all kinds of behaviours and is not restricted to a
particular sub-domain.

2.2.2.4 Smart objects

The work presented in [Kallmann, 2001][Kallmann and Thalmann, 2002]
introduces a feature-based modelling approach to define so-called smart
objects. This means that all the possible information that is related to the
behaviour of the objects is defined within the object itself rather than pro-
grammed separately. A smart object can be compared with an object, an
instance of a class in object-oriented programming, holding data belonging
to the object together with providing methods for manipulating this data.
The different features of a smart object are described in a text-based script
file. The features that are supported are divided into four categories. Firstly,
the intrinsic object properties, properties that are a part of the object de-
sign such as the movement specification of its moving parts as well as any
physical properties. These specificationo are created using actions which are
the simple functions that an object(-part) can perform, like translations, ro-
tations, etc. Secondly, the interaction information is additional information
that helps the actor in the interaction with the object. This is done by

45

2. Related Work

either specifying positions or gestures. Thirdly, the object behaviour, that
describes how the object reacts to the interaction with the actor, is specified.
And fourthly, the expected actor behaviour describes the behaviour that the
actor has to perform in order to enable the interaction with the object. Both
the object behaviour as well as the actor behaviour is specified through pre-
defined behaviour plans consisting of a set of primitive operations. The
operations can invoke the actions, change the states of the object and call
other (sub-)behaviours. The language used for the behaviour definitions
has many similarities with finite state automata. The writing of this kind of
scripts works well for simplistic behaviours, but it does no longer work for
more complex behaviours. Therefore, the concept of behaviour templates
has been brought to life. The templates contain the most commonly used
behaviour definitions, which can be plugged into other behaviour definitions
to form more complex ones. Still, much programming is needed which is not
suited for people having no skills in this area. Furthermore, since everything
is included inside the object itself, there is little separation of the different
aspects. In general, this is constraining the reusability.

2.2.2.5 BDL

In [Burrows, 2004][Burrows and England, 2005], a declarative Behavior
Description Language (BDL) is developed that is based on VRML and
supports both object-object behaviour and user-object behaviour. A BDL
specification starts with declaring the behaveable objects either by specify-
ing them in a VRML-like syntax or by loading existing VRML objects from
external files. Additionally, some type information can be given. Then, be-
haviour can be attached to the object. This can be done within the object
specification or external to it. Such a behaviour specification basically gives
a list of the set of stimuli together with the required responses referring to
them through their names. The stimulus is an externally created object that
is capable of responding to a number of events coming from user actions,
other objects, or the world itself. In the simple case, there would be just one
response of a single stimuli but the BDL language allows more flexibility in
this regard. That is, one stimulus can trigger multiple responses; multiple
stimuli can trigger a single response. The response is a code module, which
is also defined outside the specification file. Responses can on their turn also
trigger other stimuli or can send messages to another object in the scene.
In addition, the behaviour specification can contain conditions that must be
met in order for the response to be executed if the stimuli are fired. It is im-
portant to note that objects do not have behaviours coded into them directly.
The specification and implementation is completely separated. The scene
specification file just links objects to the required response, which makes
that the specifications are easy to understand and to be modified later on.
Again, the focus went to attaching behaviours to the objects and specifying

46

2. Related Work

the events that trigger them, resulting in a very intuitive alternative way in
comparison of the VRML way of handling things. However, the behaviours,
i.e. the actions that are executed by the objects, are still described using
the standard Java programming language.

2.2.2.6 PAR

The approach presented in [Badler et al., 2001][Badler et al., 2000][Kipper
and Palmer, 2000] introduces Parameterized Action Representation (PAR)
as a conceptual specification mechanism for the actions of virtual agents.
PAR is designed to bridge the gap between the behaviour specification,
specified through natural language instructions, and the virtual agents per-
forming the behaviour. A PAR gives a complete specification of a particular
action. It is called parameterized because the action depends, for details, on
how it should be executed, on the agents and also the objects involved. The
basic form of a PAR resembles the standard SVO (Subject-Verb-Object)
sentence in natural language. The subject and object relate to the agents
and objects respectively in the PAR. However, certain sentences also incor-
porate additional information, to enrich the action that is described, in the
form of adjuncts added to the sentence or within other sentences in proxim-
ity of the main one. PAR includes slots for many types of information of this
kind. There are some applicability and termination conditions that specify
what needs to be satisfied in order for the action to be respectively executed
and terminated. Then, there are also the preparatory specifications that de-
scribe the actions which need to be executed before the current action can
be executed. Finally, there are also the execution steps that allow specifying
what really happens in the action. In case of a complex action, this can con-
tain a list of sub-actions that are either executed in sequence, in parallel or
in any combination. Usually, a PAR can be specified at two different levels
analogous to class and object in object-oriented programming. There is the
non-instantiated PAR. This PAR contains all the default information of a
PAR except the ones of the agents and physical objects involved in the ac-
tion. In other words, the parameters are not yet filled in at this level. Then,
there is also the instantiated PAR that contains the pointers to the agents
and physical objects involved. If some new information is specified here, it
will override the default one specified in the non-instantiated PAR. Natural
language input for describing the behaviour is difficult since firstly, many
of the natural language parsers are still not yet perfect and thus introduce
a lot of errors. Secondly, most people use different sentences for describing
the same things. As far as we could see from the consulted literature, the
system is not able to cope with this.

47

2. Related Work

2.2.2.7 HPTS

In [Devillers et al., 2002] and [Donikian, 2001], an approach is described to
design adaptive and flexible behaviour for any entity involved in a Virtual
Environment and interacting with other entities. The proposed language is
completely based on the HPTS (Hierarchical Parallel Transition Systems)
formalism and data-flows. It allows the specification of state machines that
can be structured hierarchically and which can be activated simultaneously
together with the communication that might occur between those state ma-
chines. A specification of a state machine is basically done as follows. First
of all, the machine can be parameterized which allows setting the initial
characteristics of the state machine. Next, variables can be declared with
a distinction between local variables and public variables, i.e. available to
parent state machines. The body of a machine consists of a list of states
together with a list of transitions between those states. A state is defined
by its name and its activity in terms of data-flow executed once this state is
activated. A transition is defined by an origin, a transition expression and
the write-expression. The transition expression consists of a read-expression
containing the conditions that have to be met in order for the transition to be
fired. The write-expressions are the resulting events that will be generated
and the activities that are executed on the state machine. The transition will
eventually lead to the execution of the next state(s) in the state machine. In
[Devillers and Donikian, 2003], the work has been extended towards a more
high-level specification of complete scenarios. A scenario is decomposed into
a number of smaller sub-scenarios and will at the lowest level consist of a
sequence of elementary tasks. An elementary task is being described by in-
cluding pure C++ code into the specification. However, some instructions
have been added to the language allowing the specification of the tasks to
be done more easily. The scheduling of this hierarchy is done through the
usage of temporal relationships. In contrast with the BTN approach, the
HPTS approach really uses the state machines at the programming level.
Nonetheless, this is resulting in similar problems as the ones encountered
in BTNs, namely not being able to specify continuous behaviours well and
lacking capabilities to synchronize behaviours. Furthermore, there is the
problem of the lack of programming expertise with novice users. Therefore,
it is very difficult to be used by novice users for modelling behaviours other
than the most trivial ones.

2.2.2.8 ScriptEase

Another interesting piece of work is described in [McNaughton et al., 2004b]
and [McNaughton et al., 2003] where an approach is presented to allow
behaviours to be created using template-based Artificial Intelligence (AI)
behavioural patterns. ScriptEase is developed in the context of game de-

48

2. Related Work

sign. In ScriptEase, the process of defining a pattern goes as follows. Firstly,
a list of situations is constructed. These situations are composed by means
of so called Atoms, which are little pieces of scripting code. There are five
kinds of atoms supported in the approach. Event atoms describe which
events might occur in the game world the script is responding to. Action
atoms are wrapping the code that is executed in order to change the game
world after an event has been thrown. Besides the list of parameters, an
action atom also contains a function name together with the code body that
actually implements what the action is meant to do. Definition atoms wrap
the code for gathering information from the game world (e.g., defining local
variables). Condition atoms use information from the game world and pre-
vent some actions to be executed based on a predefined condition. Option
atoms simply encapsulate the enumeration types of the scripting language
denoting different fixed options that can be set by the designer. Once the
pattern has been created, it can be used in many different instances. An
instance of a pattern is made by attaching the pattern to (a) particular ac-
tor(s). Finally, the patterns need to be adapted according to the current
context. The software tool that supports the ScriptEase model is completely
menu-driven and all the options for the behaviours and scenarios are given
in natural language, which greatly reduces the need for programming skills.
This work is focussed on AI patterns used in game programming. Nonethe-
less, because of the close relationship between current game technology and
Virtual Reality, this approach could be directly applied to the design of
Virtual Environments in general and parts of the work presented in this dis-
sertation have been inspired by this approach. There is still a great deal of
programming knowledge required to have a full understanding of the system
although the patterns are fully parameterizable via a GUI interface. The in-
troduction of a graphical notation for the patterns would seriously enhance
the approach.

2.2.3 Software Applications

2.2.3.1 Virtools

The Virtools3 software suite [McCarthy and Callele, 2001][Nahon, 2005] is
a development environment designed to produce interactive 3D applications
and deploy them on a variety of platforms. Virtools is not really a mod-
elling application; however, some basic functionality is available through its
authoring tool. In general, the 3D content must be created elsewhere and
imported to create the static scene. The main focus of Virtools is on the
design of object behaviour, which is facilitated by means of a graphical lan-
guage. A behaviour consists of a header and a body. The header contains
the name of the behaviour and the owner being the behavioural object to

3http://www.virtools.com

49

2. Related Work

which this behaviour is attached. The body is described through a schema.
The basic modelling concept used to design behaviours is the Behaviour
Building Block (BB). BBs can be seen as a visual representation of a func-
tion as known in programming languages. Each BB can have zero or more
Behaviour Inputs and Behaviour Outputs. A BB is executed after it has
received an activation from the input and it will send an activation through
the output once the execution is done. The BBs are connected through Be-
haviour Links describing the order in which they are executed. In addition,
a BB can have a number of parameters. There is a distinction between
input and output parameters, which receive and transmit data. Parameter
Links are used to direct the output of one BB to the input of another BB. A
number of BBs can be composed to form a Behaviour Graph (BG). These
graphs are treated exactly the same as a BB but they can be saved and
reused as a black box later on. Furthermore, the concept of Message was
introduced to enable BBs to change the state of the environment or to no-
tify other behaviours. Virtools comes with a standard library of predefined
behaviours. When a desired functionality is not available in the library, it
can be created using the built-in scripting language, or by creating a new
building block using Virtools’ SDK.

The downside of using Virtools is the complexity of the software tool it-
self. Furthermore, the function-based mechanism (where the designer needs
to take into account the frame-to-frame basis way of processing the be-
haviours by the behaviour engine) tends to be less comprehensible for non-
VR-experts.

2.2.3.2 3D Studio Max / Blender

Two frequently used authoring tools are 3D Studio Max [Murdock, 2002] and
Blender [Roosendaal and Selleri, 2005]. Since both are very similar in nature,
they will be discussed together. Firstly, different types of animations are
natively supported by these tools. A first type of animation is through the
use of key frames. Here, a series of complete positions and orientations are
saved, one for each of the key moments in a set of units of time (frames). An
animation is created by interpolating an object fluidly through the frames.
A second type of animation consists of using motion curves. Here, curves
can be drawn for each XYZ component for location, rotation, and size.
These form the graphs for the movement, with time set out horizontally
and the value set out vertically. The third type of animation is to use
path-like animation where a curve is drawn in 3D space, and the object
is constrained to follow it according to a given time function. Besides the
normal animation, most of the tools also support the creation of so-called
armatures. They were initially developed for animating characters but they
can also be used to animate regular objects (and mechanical structures).
To build an armature object, the designer will interconnect a number of

50

2. Related Work

”bones” which make up a sort of skeleton. This skeleton is linked to the real
objects in the Virtual Environment. In order to manipulate the armature
(and the objects related to it), one can then create different poses that
describe the objects’ changes and the constraints by means of specifying
actions. In order to cope with some missing functionalities or more complex
behaviour, a third option is provided by most software packages. This is the
use of a dedicated scripting language such as MAXScript or PythonScript
for respectively 3DS Max and Blender.

An advantage of the authoring tools is that they, in a sense, automate
the programming and therefore free the designers from being dependent on
programmers. However, this only works well for simple behaviours. In order
to model complex behaviour, usually some kind of scripting language must
be used, requiring programming skills.

2.3 Other Related Work

Besides the different high-level design methods that have been discussed
above, there are a number of other design methods available. In [Fencott,
1999], a design methodology is proposed based on the work presented in
[Kaur, 1998]. Another one is for example the JADE approach which makes
use of adaptive components to build dynamic Virtual Environment systems
[Oliveira et al., 2003]. In [Molina et al., 2005], the TRES-D methodology
is proposed combining design issues from some of the approaches discussed
here.

Other works concerning the modelling of the behaviour, and not dis-
cussed here, can be found as well. For example, there is the beh-VR
approach [Walczak, 2006] using the concept of VR-Bean as a reusable com-
ponent controlled by scenario scripts. The approach described in [Messing
and Hellmich, 2006] uses aspect-oriented programming techniques to define
the behaviour and weave it together with the scene. A closely related set of
markup languages are AML and CML, initially designed to control virtual
characters [Arafa et al., 2002].

Very little research is available on applying design patterns to model the
behaviour in VEs. Most related work concerning design patterns is found in
the field of game design. However, current games share many characteristics
with VEs and hence those concepts from game design could prove to be very
useful in the design of VEs [Clarke-Wilson, 1998].

The work described in [Diaz and Fernandez, 2000] acknowledges the dif-
ficulties encountered in VE design. It proposes an object-oriented model
to design the different aspects of a VE consisting of rooms, avatars and
objects populating the VE which are all considered as objects interacting
with each other. Based on this model, a number of design patterns are pre-
sented which support the designer into solving recurrent design problems

51

2. Related Work

in the context of designing the virtual space, the mobility and behavioural
issues. The patterns called Area and Gate deal with the structural design of
VEs. The Locomotion and Transport pattern deal with navigation. Finally,
the Collector is used to model elements behaving in the same way depend-
ing on another element. This work discusses implementation issues as well
which can be readily used by programmers in their design. The downside is
then that a great deal of programming knowledge is required which makes
its usefulness towards non-programmers very small. Our approach tries to
build an additional layer of abstraction which allows the designer to visually
construct the patterns without any programming knowledge.

The Game Design Patterns project [Bjork and Holopainen, 2004] stud-
ies computer games in terms of interaction, components and design goals
with the intention of creating the basis for a common language for game
designers. The overall goal of the project is to investigate how the design
of computer games can be facilitated, similar to our goal of facilitating VE
design. In order to do this, over 200 design patterns are developed covering
most aspects of gameplay. The most interesting ones, for our purpose, are
those dealing with the temporal aspect. It covers patterns about different
actions and events that might occur in a game and that change the internal
state of the game, as well as those dealing with the interaction between the
player and the game environment and between the objects in the game en-
vironment. However, for the moment, they only use the patterns as a means
of communicating the design and thus do not discuss any implementation
issues. This poses constraints on the active use of these patterns for the
development phase of the games. Since the patterns are focused on game
design, they describe problems which are oriented towards very concrete sit-
uations in games. Most of these situations rarely occur in VEs in general.
However, many of them could be abstracted from in order for them to be
applicable in VEs.

In [Folmer, 2006], a number of design patterns are presented with the
focus on making games more accessible on one hand and lower their develop-
ment costs on the other hand. The patterns are divided into two categories.
Firstly, the usability patterns introduce concepts that help improving the
usability of the game and also the interaction of the player with the game.
Secondly, the accessibility patterns try to overcome the difficulties that peo-
ple with disabilities encounter when playing the games. Although the focus
is less on the design, some of the patterns could be useful for the design of
VEs.

Another interesting piece of work is the one described in [Cavazza et al.,
2004a] and [Cavazza et al., 2004b]. Modelling every physical event in a
VE would be very computationally demanding. In order to keep a high
level of realism, the actual behaviours of the objects are separated from
the physical processes involved in the interaction with these objects. The
events related to interaction are hence descretized through the definition

52

2. Related Work

of so-called programmed system events. Afterwards, they can be effeciently
captured by means of a descrete event-based system typically found in game
engines. The behaviour itself of the objects in Virtual Environments is
specified by means of Qualitative Physics. Basically, the system consists
of describing the objects together with all its properties and then relating
these objects to qualitative processes in which they might be involved. In
essence, such a physical process is described by means of qualitative variables
(representing the states of the process) and the relationships between those
variables by means of influence equations and qualitative proportionalities.
The approach allows for a high-level specification of physical behaviour over
the analytical computations currently used in physics engines.

A detailed literature review of behavioural animation and behaviour
modelling is given in [Cerezo et al., 1999] and [Millar et al., 1999] respec-
tively. These works discuss a wide variety of techniques that are also used
in the field of modelling the behaviour in Virtual Environments but which
were found less relevant for the work described in this dissertation. A fairly
recent state-of-the-art report concerning toolkits and software applications
used for modelling Virtual Reality applications can be found in [Pellens
et al., 2006a].

2.4 Situating this Dissertation in the Field of Mod-
elling Behaviour

Before positioning the work presented in this dissertation within the context
of modelling behaviour for VEs, it is interesting to notice that the current
high-level design methods have a strong emphasis on the modelling of the
behaviour and less attention is paid to the design of the objects itself. This
proves the statement that was made earlier that the specification of the
behaviour in Virtual Environments is a very challenging task and many
people are still looking on how to make improvements.

Looking back to the general high-level design methods introduced earlier
in this chapter, it is also interesting to notice that in most of the cases there
is a very loose coupling between the behaviour specification and the rest of
the aspects of the Virtual Environment. In some cases, this is made possible
by using separate diagrams for describing the behaviour. In other cases, it
is enabled through the use of an independent behaviour graph notation, in
analogy with the scene graph, next to the usual scene graph for the visual
aspect. These separated specifications are, in a later phase, translated (or
merged) to come to the final result. This way of working reduces the risk
that a change in the behaviour specification will have a large impact on
the specification of the other aspects. Furthermore, the specification of the
behaviour is strongly based on the other aspects of modelling the Virtual
Environment since every aspect needs to be modelled by taking all the other

53

2. Related Work

aspects into account in order to come to the best possible solution. The
proposed behaviour modelling approach will need to consider these issues
as well when it is integrated with the overall design approach described in
chapter 3.

Both the model-based as well as the text-based approaches have their
advantages and disadvantages. The model-based approaches allow the spec-
ification of behaviours in a more intuitive way, without the necessity of
having programming skills. Nonetheless, the models are often expressed
in a formalism coming from a particular domain (e.g., Software Engineer-
ing,. . .), which requires the designer to have some background knowledge
about the modelling concepts used in these domains. Furthermore, complex
behaviour often results in very complex models, which quickly become diffi-
cult to read and to be understandable. The difficulties of the scripting-based
approaches are that they require some programming skills or at least some
background knowledge about scripting languages. Therefore, they exclude
non-programmers from designing behaviour. A textual interface involves a
lot of typing which will drastically slow down the design process. However,
they provide more flexibility to the programmer and enable the specification
of more complex behaviours. This then leads to larger code listings making
the maintenance and the reusability more problematic.

In this dissertation, a novel approach for designing the behaviour is pre-
sented. The approach can be primarily categorized as being model-based
since high-level conceptual models, represented by means of graphical dia-
grams, are used to describe the object behaviour. Although the approach
started off to be completely model-based, it evolved into a combination of
being partly model-based and partly text-based. This resulted in a mixed
graphical/textual notation as it will be explained in more details in the main
chapters of this dissertation (chapters 4, 5 and 6). It is our aim to come
to a behaviour specification approach that can deal with the same complex-
ity than the text-based approaches while retaining the intuitiveness of the
model-based approaches.

The work presented here can best be situated in the area of anima-
tion/scripting rather than in the area of physically based modelling. The
behaviours that can be defined with our approach are predefined anima-
tions. This dissertation does not deal with modelling the physics. It is not
our intention to compete with highly accurate physical models (e.g., natural
phenomena,. . .). As described later, in chapter 7, a physics engine is in-
cluded in the proof-of-concept software. Its functionality is used as a black
box. The physics itself is not modelled explicitly.

Furthermore, in this work, it is assumed that all the objects (or parts
of objects) are solid objects, meaning that the distance between any two
points of an object remains constant, as opposed to flexible objects which
are deformable, meaning that the relative positions of points of the objects
can change. Therefore, our approach does not enable manipulations at the

54

2. Related Work

vertex and edge level but only allows geometric manipulations.

55

2. Related Work

56

CHAPTER 3

Methodology

The previous chapter discussed the related work. It started with review-
ing a number of general high-level design methods for developing Virtual
Environments. It continued with focusing on explicit behaviour modelling
approaches since this is the main topic of this dissertation. The purpose of
this chapter is to give a general introduction to the high-level design method,
called VR-WISE, which is used as the context for the work presented in this
dissertation.

The remainder of this chapter is structured as follows. The VR-WISE
approach is a conceptual modelling approach, therefore, section 3.1 first
elaborates on conceptual modelling and gives the motivation for using this
approach. Furthermore, VR-WISE is also so-called ontology-driven as it
uses the concept of ontology as a representation formalism. The concept
of ontology and why this representation formalism was chosen is discussed
in section 3.2. Afterwards, in section 3.3, a detailed description of the VR-
WISE approach is given. Section 3.4 briefly places the work presented in
this dissertation into the overall VR-WISE approach. Section 3.5 provides
a short summary of this chapter.

3.1 Conceptual Modelling

As described earlier, most Virtual Environments that are developed today
are designed in an ad hoc way. Low-level specification and programming
languages are used to respectively model the static and dynamic part of the
Virtual Environment. Unfortunately, these types of languages are too low-
level to describe Virtual Environments in a way that is readily understand-
able by a variety of users, and in addition they lack the essential high-level

57

3. Methodology

abstraction mechanisms that needed when dealing with the development of
large or complex systems. What is needed is a higher-level specification
of the Virtual World, also called a conceptual model. A conceptual model
can roughly be defined as a simplification of (a part of) reality. It models
a portion of the ’real world’ that is of interest in a particular application
domain, also called Universe of Discourse (UoD). It is independent of any
implementation, the target technologies, programming languages, or any
other physical considerations [Dillon and Tan, 1993]. Conceptual modelling
or conceptual design is referred to as the process of constructing such a
high-level specification (i.e. conceptual model).

A specification like this is generally expressed by means of a conceptual
modelling language containing appropriate high-level modelling concepts.
The language, as well as the different modelling concepts, needs to adhere
to some criteria:

• Expressiveness. It is important that the expressive power of the
modelling concepts is sufficient to allow capturing all the features of
the domain so that the resulting models can also be used as input for
the implementation phase.

• Clarity. The meaning of the modelling concepts should be intuitively
clear so that they can be easily learnt and remembered. This means
that these moodelling concepts should be expressed in a terminology
that is familiar to most of its users.

• Formal Foundation. The language needs to have a formal ground
in order to ensure unambiguity and executability (e.g., to automate
the storage, verification, and transformation of the models).

While developing the high-level modelling concepts and the associated graph-
ical notations, presented in this dissertation, these criteria were always kept
in mind.

It is widely acknowledged that conceptual modelling is a prerequisite
for successfully designing applications. Examples of that can be found in
the Software Engineering domain and in the Information Systems domain.
In Software Engineering, the design of an application needs to assess as
many characteristics as possible in order for it to be of any assistance in
the implementation with the hope that the final result is meeting the initial
requirements set up by the client. The best known conceptual modelling
language is UML (Unified Modelling Language), which enables the system-
analyst to make an object-oriented design of a software application in all
its facets, without being restricted to a particular programming language
[Braude, 2000]. Next to the Software Engineering domain, the domain of
Information Systems has also a long history in conceptual modelling. In an
information system the emphasis is on the conceptual modelling of the data.

58

3. Methodology

It needs to be modelled carefully in order to ensure that the data needed will
be available. This must be modelled in a consistent and in a correct way. In
fact, database technology actually only became common practice after the
introduction of a conceptual modelling phase into the overall design process.
The well-known conceptual modelling languages for information systems are
ER (Entity Relationship) Model and ORM (Object Role Model), which al-
lowed the designer to specify the database at a conceptual level; free from
any implementation details [Halpin, 2001]. Because VR applications are
more complex than databases or classical software applications, it is our
belief that the introduction of a conceptual modelling phase for the devel-
opment of Virtual Environments will facilitate the use of Virtual Reality
technology and make it available to a much broader public including people
having no expertise in programming or relevant VR technologies.

This brings us to the question whether or not the existing conceptual
modelling languages used in the domains of Software Engineering and In-
formation Systems could possibly be used in (or extended for) the Virtual
Reality domain as well. Hence, these languages were investigated thoroughly
[Pellens et al., 2004]. This investigation showed that both ORM and ER have
enough expressiveness to partly model the static part of a Virtual Reality
application. However, as they are initially designed for data modelling they
have strong limitations in terms of describing the behavioural part and the
interaction part of a Virtual Reality application. UML on the other hand
is capable to deal with all three aspects, i.e. modelling the scene, modelling
the behaviour and modelling the interaction. The static part for example
can be modelled using its class diagram. It can also model the behavioural
part of a Virtual Reality application by means of the statechart diagram and
the interaction can be described by using the sequence diagram. Although
UML could be used to model an entire Virtual Reality application from a
software engineering point of view, it is not appropriate because it is lacking
expressiveness and intuitiveness towards Virtual Reality design. Therefore,
none of these conceptual modelling languages are really suitable to design a
complete Virtual Reality application in an intuitive way.

A number of candidate conceptual modelling paradigms to describe Vir-
tual Environments have been briefly documented in [Bernier et al., 2004],
all with their advantages and disadvantages. In the VR-WISE approach, a
relational-graph oriented paradigm is chosen to design Virtual Environments
at a conceptual level through the use of ontologies.

3.2 Ontology-Driven Design

Ontologies play an important role in the VR-WISE approach. They are used
for two different purposes. (1) Ontologies are used explicitly during the de-
sign process for specifying the high-level conceptual models. (2) Ontologies

59

3. Methodology

are also used as underlying representation formalism (internally). Therefore
the VR-WISE approach is said to be an ontology-driven approach.

3.2.1 What are ontologies?

Ontology (with capital ”O”) originated from philosophy where it is being
referred to as the study of existence. This discipline tries to answer questions
of what can be said about the world, what exists and what does not or what
features are exactly identifying objects. Later on, the notion has been taken
over by the computer science community in order to represent knowledge
of the world at hand. Since it would be impossible to represent everything
from the real world, this was often narrowed down to a part or aspect of
the world (which is often called domain) sufficient enough for the intended
purpose of the application or a family of applications (hence the widely used
term domain knowledge). The main idea in representing this knowledge is
creating an abstract set of objects, concepts, and other entities as well as
all the relations that may hold between those entities which are assumed to
exist in a particular application domain, that is called a conceptualization.
This leads us to Thomas Gruber’s definition of ontology (with lowercase
”o”), which is without doubt the most cited one in the literature:

An ontology is a formal, explicit specification of a conceptualiza-
tion. [Gruber, 1993]

A detailed interpretation of the definition and other definitions is given in
[Guarino and Giaretta, 1995]. In short, an ontology comprises the definitions
of the concepts, individuals, properties and relations which make up the
conceptualization. Furthermore, the conceptualization has to be formal and
explicit, that is, it needs to be explicitly defined in a kind of formal language.

Numerous ontology languages have been developed in the past, ranging
from RDF(s)1, OIL, DAML+OIL2 and finally the most recent one OWL3

(Ontology Web Language). In our approach, OWL was chosen as our main
ontology language since it is the richest one in terms of already available
modelling primitives and it is currently the standard W3C ontology lan-
guage.

3.2.2 Why using Ontologies?

Initially, ontologies were used to improve communication between either hu-
man beings or computers. They serve as a perfect middle ground between
plain text (which is understandable by human beings) and programming

1http://www.w3.org/RDF/
2http://www.w3.org/TR/daml+oil-reference
3http://www.w3.org/2004/OWL/

60

3. Methodology

code (which is interpretable by computers but not by most humans). How-
ever, the use of ontologies to build conceptual specifications brings about
many other advantages as pointed out in [Uschold and Jasper, 1999] and
[McGuinness, 2003]. The most important ones are:

• The communication between people is improved since they reduce
the conceptual and terminological confusion by providing a uniform
view of the domain under consideration.

• It enhances the inter-operability since different users/applications
are using the same set of terms to describe their knowledge. An ontol-
ogy can also assist in the translation between different representations.

• They give us support in reusability since they can be used and reused
as a kind of component amongst different software applications.

• They facilitate the creative process of building a specification since
they are expressed using terminology of the domain the designer is
most familiar with.

• Because they are formal by nature, it becomes possible to perform
automatic consistency checking up to some degree resulting in more
reliable applications.

• The rich information contained inside the ontologies can be exploited
and additional information can be inferred to enable searching and
querying of the ontology as shown in [Kleinermann et al., 2005].

3.3 VR-WISE Approach

The VR-WISE approach was first introduced by De Troyer et al. in 2003
[De Troyer et al., 2003]. The acronym stands for Virtual Reality - With
Intuitive Specifications Enabled. The aim of the approach is to include an
explicit conceptual modelling phase into the overall design process of Virtual
Environments. It enables the designer to specify a Virtual Environment
through intuitive high-level specifications using his own terminology. There
is no need to consider any implementation details; hence the approach does
not require any Virtual Reality background knowledge whatsoever. These
specifications are then used as input for a (semi-)automatic implementation
phase. The ultimate goal is to facilitate and shorten the overall development
process of Virtual Environments by means of conceptual models.

Although, there are quite a number of ways to develop VR applications
(as mentioned in previous chapter), skilled people are often required in the
process. The problem in most approaches is that the Virtual Environment
one wants to create must be expressed in terms of (combinations of) low-
level building blocks of the VR technology (also called target domain). More

61

3. Methodology

people could be involved in the development of Virtual Environments if it
would not have to be described using such low-level and specialized termi-
nology. To date, none of the currently available VR development tools allow
specifying the Virtual Environment in terms of the domain for which the
application is developed (also called problem domain). A known fact is that
VR experts are usually not experts in the domain for which the Virtual
Environment needs to be developed and vice versa, the domain experts and
the end-users are not experts in the field of Virtual Reality. The VR-WISE
approach, using ontologies as a specification mechanism, allows the domain
experts to be involved and exploit their knowledge by allowing them to use
domain terminology in order to specify the Virtual Environments. This is
making the design more intuitive and natural for them. The VR-WISE ap-
proach inherently bridges the gap between the (high-level) problem domain
and the (low-level) target domain.

Figure 3.1: General overview

Figure 3.1 is a simple schematic overview of VR-WISE. It basically has
two dimensions as given by the large arrows and the colours used. Read
vertically (in grey), it depicts the different layers in the ontology architecture
of VR-WISE, the lower ones depending on (or using concepts from) the ones
above. Read horizontally (in blue), the control flow of the design process of
VR-WISE is depicted. The remaining part of this section presents the VR-
WISE approach based on these two dimensions. An example is used as a
way to illustrate the different parts. Section 3.3.1 describes all the ontologies
used in the approach starting with the most general ones working our way
down to the most specific ones. Afterwards, section 3.3.2, gives an overview
of the different phases that need to be performed in order to build a Virtual
Environment using VR-WISE. Note that the approach described here differs
a bit from the one described in [Bille et al., 2004b],[Bille et al., 2004a] and
[Pellens et al., 2005a] since it takes into account the latest improvements

62

3. Methodology

made to the approach.

3.3.1 Architecture of Ontologies

Figure 3.2 provides a more detailed overview of the complete ontology ar-
chitecture. The architecture has three levels namely the ”Meta Level”, the
”Domain Level” and the ”Instance Level”.

• The Meta Level has three modules namely the Conceptual Modelling
Ontology, the Meta Mapping and the Virtual Reality Ontology. At
this level, the ontologies are independent of a particular application
domain.

• The Domain Level provides the type-level specifications and involves
the Domain Specification and the Domain Mapping. The ontologies
at this level are dependent of an application domain but are not de-
pendent of a specific application.

• The Instance Level defines the object-level specifications and in-
volves, in analogy with the Domain Level, the World Specification and
the World Mapping. Here, the ontologies are related to a particular
application in a particular domain.

The next section explains the three levels with the associated ontologies into
more detail. The ontologies all have been created using the Protégé-OWL4

editor.

Figure 3.2: VR-WISE ontology architecture

4http://protege.stanford.edu/

63

3. Methodology

3.3.1.1 Conceptual Modelling Ontology (Meta Level)

In order to model a VR application, a number of high-level modelling con-
cepts are provided. These modelling concepts are independent of any ap-
plication domain and are defined in a so-called upper ontology [Valente and
Breuker, 1996]. This ontology characterizes the meta-level because it acts as
a kind of repository of our VR modelling concepts. This ontology is called
the Conceptual Modelling Ontology. In fact, it is a collection of ontologies.
Modelling a Virtual Environment involves many different aspects: the ob-
jects in the world, their properties and composition, their behaviour, the
interaction between objects and the interaction with the user, etc. For each
of these aspects, a different ontology has been created.

Since the Conceptual Modelling Ontology is based on OWL, some basic
modelling primitives provided by OWL are already available. The most in-
teresting ones are the Class and Property constructs that allow defining a
type and their properties respectively. Furthermore, OWL has a rich set of
characterization primitives for these constructs. It also has the subClassOf
and subPropertyOf relations for specifying generalization hierarchies of re-
spectively classes and properties. The full specification of OWL can be found
online5. In order to cope with future compatibility issues and to ease the
integration of external domain knowledge, it is imperative that these native
primitives are used instead of defining our own (see later).

Additionally, the Basic Concepts Ontology provides a number of gen-
eral modelling concepts. The most important one is the class Concept; all
the domain concepts that will be defined must be defined as a subclass of
this class (see Domain Specification). It also holds modelling concepts such
as the basic dimensions of concepts (e.g., Width, Height, Depth,. . .), the
appearance of concepts (e.g., Colour, Texture,. . .) as well as information
about units of measurement. It also defines the different reference frames
used within our approach.

The Assembly Ontology defines concepts to specify how objects can be
related or connected to each other in order to form either unconnected com-
plex objects or connected complex objects.

• The spatial relations are used to specify how an object is located in
space in relation to some other object. The spatial relations are divided
into directional relations and orientation relations [Gapp, 1994][Frank,
1996]. The directional relations are used to specify the position using
intuitive directions (e.g., left-of, in-front-of, above,. . .). The ori-
entation relations are used to specify the orientation of an object by
indicating which side of the object is oriented towards which side of
another object. Besides the directional and orientation relations, there
also exist a great number of topological relationships. A classification

5http://www.w3.org/2002/07/owl

64

3. Methodology

has been proposed in [Egenhofer, 1995][Zlatanova, 2000]. However,
these relationships are underspecified to be usable in the context of
positioning objects in space. Therefore, we chose not to include these
relations in our approach.

• The part-whole relations allow to specify how an object is composed
of different (part) objects. Research in this regards has been done
in the field of mereology [Varzi, 1996]. Here, an attempt is made to
set out the general principles underlying the relationships between a
whole and its constituent parts. This is typically resulting in relations
such as is-part-of and has-part. However, modelling the real world
accurately needs more than just the ability to say that one object is
part of another object. There are different ways to make a connection
and thus several different kinds (subtypes) of the general part-of re-
lation have been identified (e.g., component-integral, place-area,
member-bunch,. . .) [Winston et al., 1987][Odell, 1994]. These con-
cepts were included in our approach. Different taxonomies have also
been proposed by [Gerstl and Pribbenow, 1996] and [Iris et al., 1988]
but these were not adopted at this moment.

• The Assembly Ontology is currently extended in the context of another
PhD research [Bille et al., 2005]. On the one hand there are the boolean
operators for modelling complex shapes and on the other hand there
are the connection relations, constraints, and so on, for representing
mechanical constructions.

The complete specification of the Conceptual Modelling Ontology will
not be given here, but it can be found online6. One of the aims of this re-
search work was to extend the Conceptual Modelling Ontology with concepts
that can be used for specifying object behaviour in a Virtual Environment.

3.3.1.2 Virtual Reality Ontology (Meta Level)

The Virtual Reality Ontology is similar to the Conceptual Modelling on-
tology, a kind of repository of VR concepts but this time the ontology
is more presentation- and implementation-oriented instead of modelling-
oriented. The ontology focuses on defining the low-level building blocks
used to represent Virtual Environments. It describes all the building blocks
towards which the conceptual specifications can be mapped (see later). It
is also a combination of different ontologies.

The Virtual Reality Language Ontology is basically a one-to-one mapping
of the X3D node elements to classes in OWL. It defines the class VRConcept
denoting an object that is directly representable in the Virtual Environment.
It also describes the primitive geometries (as subclasses of the Geometry

6http://wise.vub.ac.be/ontoworld/CMOntology.owl

65

3. Methodology

class) such as Box, Cone, Cylinder, Sphere, Text together with their main
attributes that are necessary to specify them. It describes the appearance
such as Colour and Material as well. Furthermore, it contains concepts
like Transform and Group in order to create complex objects. At this stage,
only a limited subset of the X3D language has been defined into OWL, just
enough to describe basic scenes. Please note that it is not the intention
to develop a complete ontology for Virtual Reality in order to describe a
Virtual Environment in all its aspects. This would be a separate subject.

However, incorporating and relying only on the primitive geometries pro-
vided by a particular language (in our case X3D) to represent all the objects
is too restrictive if one wants to accurately model Virtual Environments of
a considerable complexity. What is needed is a collection of more advanced
pre-built geometries that can be used like any other primitive geometry. The
main purpose of the Virtual Reality Library Ontology is to provide such a
collection. An object in this collection, a LibraryObject, is defined as a
special kind of VRConcept (as a subclass thereof). It holds a reference to a
file that is containing the advanced geometry (in the case of X3D, it contains
a reference to a ProtoDeclare definition) and obviously, also its required at-
tributes are defined. The problem is still that it takes time to create such
a library but once it has been done correctly, it seriously reduces the time
that is needed to build a Virtual Environment.

The complete specification of the Virtual Reality Ontology can also be
found online7.

3.3.1.3 Meta Mapping (Meta Level)

The Meta Mapping is a small ontology consisting of the concepts that are
required to enable the mapping (translation) between the high-level speci-
fications using the concepts from the Conceptual Modelling Ontology and
the low-level specifications using the concepts from the Virtual Reality On-
tology. Mappings are expressed by means of a source and a target. The
source must be a subclass of Concept and the target must be a subclass of
VRConcept. This is expressed by the class ConceptRepresentation which
has a hasSource property of which the value needs to be of type Concept and
a hasTarget property that requires a value of type VRConcept. Besides the
source and target, the class also has some hasAttributeRepresentation
properties, each containing a reference to an AttributeRepresentation.
The class AttributeRepresentation expresses the mapping of the attributes
and is also defined as having a hasSource and hasTarget property. An op-
tional hasRule property takes a value of type Rule and defines how the
source value is being transformed to the target value. The rule typically
consists of a mathematical expression relating the two together (e.g., the

7http://wise.vub.ac.be/ontoworld/VROntology.owl

66

3. Methodology

source is three times the target) allowing to describe more complex map-
pings than just one-to-one mappings.

The Meta Mapping makes sure that the mappings defined later on are
structured correctly. The specification of this ontology can also be found on
the Web8.

3.3.1.4 Domain Specification (Domain Level)

The purpose of the Domain Specification is to describe, at a conceptual
level, the concepts (comparable to object types in Object-Oriented mod-
elling) available in the domain under consideration for the application. The
ontology describes the domain concepts by means of their properties as well
as their relationships. It is when this ontology is created, that the back-
ground knowledge of the domain expert is exploited. During this task, also
(information from) existing ontologies can be reused which may drastically
speed up the building process of the Domain Specification.

The example below gives an extraction of the Domain Specification that
has been developed in the domain of department stores. It defines a concept
&vin;Wine as a standard Class in OWL. The concept is also defined as a
subclass of the Concept class (defined in the Conceptual Modelling Ontol-
ogy). Furthermore, it has a property hasBottleDiameter defined. This
property is required, as given by the cardinality element, and it needs to
contain a value of type Diameter, as given by the hasValue element. Other
properties can be defined as well but are not shown here.

<owl:Class rdf:about="&vin;Wine">
<rdfs:subClassOf rdf:resource="&cmo;Concept"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasBottleDiameter"/>
<owl:hasValue rdf:resource="&cmo;Diameter"/>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>
...

</owl:Class

Note the use of the rdf:about="..." syntax in the class-definition. In
this particular case, it allows us to refer to, and possibly extend, a class de-
fined elsewhere. In a typical case, one would define the concepts from scratch
and then the rdf:ID="..." syntax would have been used. Here the class
refers to the Wine class from the well-known Wine-Ontology9. Additional
properties that are automatically incorporated are for example hasColour,
hasMaker, and hasFlavour.

8http://wise.vub.ac.be/ontoworld/MetaMapping.owl
9http://protege.cim3.net/file/pub/ontologies/wine/wine.owl

67

3. Methodology

3.3.1.5 Domain Mapping (Domain Level)

The Domain Mapping defines the mappings from the concepts in the Domain
Specification to the concepts in the Virtual Reality Ontology. The purpose
of this mapping is to specify how a domain concept (from the high-level prob-
lem domain) should by default be represented in the Virtual Environment
(by a concept from the low-level target domain). This ontology contains in-
stantiations of ConceptRepresentation and AttributeRepresentation classes
defined earlier in the Meta Mapping and therefore can be considered as an
instantiation of the Meta Mapping.

The small example below illustrates such a mapping, namely the one
called WineMapping. This instantiation of ConceptRepresentation repre-
sents the mapping of the concept Wine (source) onto its representable primi-
tive Bottle (target). It is given by the hasSource and hasTarget properties
respectively. Next, the attribute of the Wine concept hasBottleDiameter
is mapped to its equivalent hasRadius of the Bottle concept by means of
the instantiation of AttributeRepresentation. This process needs to be
repeated for each of the concepts and obviously for each of the attributes
belonging to those concepts.

<mm:ConceptRepresentation rdf:ID="WineMapping">
<mm:hasSource rdf:resource="&ds;Wine"/>
<mm:hasTarget rdf:resource="&vro;Bottle"/>
<mm:hasAttributeRepresentation>

<mm:AttributeRepresentation rdf:ID="hasBottleDiameterTOhasRadius">
<mm:hasSource rdf:resource="&ds;hasBottleDiameter"/>
<mm:hasTarget rdf:resource="&vro;hasRadius"/>

</mm:AttributeRepresentation>
</mm:hasAttributeRepresentation>
...

</mm:ConceptRepresentation>

3.3.1.6 World Specification (Instance Level)

The actual specification of the Virtual World, at a conceptual level, is done
using the World Specification. This is done in terms of the domain concepts
by instantiating concepts defined in the Domain Specification. These instan-
tiations (comparable to instances in Object-Oriented modelling) represent
the objects that will eventually populate the Virtual Environment.

The following piece of OWL code illustrates an instantiation of a Wine
concept called WiseWine. First of all, it contains all the properties coming
from the fact that it is an instantiation of an already existing class. This
tells us for example that the wine has been bottled by Wise and has the
colour Red. Secondly, also the extra properties which were defined need to
be given appropriate values. In this example WiseWine is given a bottle-
diameter of 7 cm, through an instantiation of the Diameter class, with a

68

3. Methodology

value of ”7” and a unit in ”cm” (centimetres).

<ds:Wine rdf:ID="WiseWine">
<vin:hasMaker rdf:resource="#Wise"/>
<vin:hasColour rdf:resource="&cmo;Red"/>
...
<ds:hasBottleDiameter>

<cmo:Diameter rdf:ID="BottleDiameter">
<cmo:hasValue rdf:datatype="&xsd;int">7</cmo:hasValue>
<cmo:hasUnit rdf:resource="&cmo;cm"/>

</cmo:Diameter>
</ds:hasBottleDiameter>
...

</ds:Wine>

Thus far, only the objects populating the Virtual Environment were de-
fined. In order to use these objects in the Virtual Environment, the designer
has to place them into the environment. This can be done either by giv-
ing an exact position to an object or alternatively by positioning an object
relative to other objects. Suppose ShelvePL is defined as an instantiation
of the Shelve concept from the Domain Specification and has already been
located inside the Virtual Enviromnent. Then, the designer can place the
bottle of WiseWine ”on top of” the ShelvePL. This is represented by cre-
ating an instance of the SpatialRelation class, defined in the Conceptual
Modelling Ontology, as follows:

<cmo:SpatialRelation rdf:ID="WiseWineShelvePL">
<cmo:hasSource rdf:resource="#WiseWine"/>
<cmo:hasTarget rdf:resource="#ShelvePL"/>
<cmo:hasType rdf:resource="&cmo;on-top-of"/>
<cmo:ReferenceFrame rdf:resource="&cmo;FRF"/>

</cmo:SpatialRelation>

Next to the fact that an object can be placed inside the Virtual Environ-
ment, the designer can also specify relationships that are not directly visible
but which are important nonetheless. Suppose, in our department store,
there is an area defined as the location of all the red wines called RedWine.
In the specification below, the bottle of WiseWine is defined as being a part
of that particular area. This is expressed by means of the PlaceArea type
of relation. This is done by making an instance of the PartWholeRelation
class also defined in the Conceptual Modelling Ontology.

<cmo:PartWholeRelation rdf:ID="WiseWineRedWine">
<cmo:hasSource rdf:resource="#WiseWine"/>
<cmo:hasTarget rdf:resource="#RedWine"/>
<cmo:hasType rdf:resource="&cmo;PlaceArea"/>

</cmo:PartWholeRelation>

69

3. Methodology

3.3.1.7 World Mapping (Instance Level)

Although instances may be of the same type (concept), they may in some
cases require different representations. Therefore, the World Mapping allows
(re-)defining the mappings of instances in the World Specification onto con-
cepts in the Virtual Reality Ontology. It thus allows the designer to override
the default mappings specified for the concepts in the Domain Mapping, for
particular instances.

The code fragment below is quite similar to the one of the Domain Map-
ping with the exception that now a particular instance is being used as the
source, namely WiseWine, instead of the concept. The WiseWine is a special
brand of wine and therefore it comes with a wooden box instead of only the
bottle. It can be seen that the target of the mapping has been changed to a
Box where it previously was a Bottle. As a result, also the mappings of the
attributes need to change. The hasDiameter property is now being mapped
onto the hasWidth property. In addition, a rule is used to say that the width
(target) is calculated as the diameter (source) with some added value. Note
that it is possible to have an m-to-n relationship between the sources and
the targets meaning that the same source can be used to map to multiple
targets and vice versa. In our case, the hasDiameter is being mapped onto
the hasWidth property but also to the hasDepth property (not given here).

<mm:ConceptRepresentation rdf:ID="WiseWineMapping">
<mm:hasSource rdf:resource="&ws;WiseWine"/>
<mm:hasTarget rdf:resource="&vro;Box"/>
<mm:hasAttributeRepresentation>

<mm:AttributeRepresentation rdf:ID="hasDiameterTOhasWidth">
<mm:hasSource rdf:resource="&cmo;hasDiameter"/>
<mm:hasTarget rdf:resource="&vro;hasWidth"/>
<mm:hasRule>

<mm:Rule>
<hasValue rdf:datatype="&xsd;string">

&mm;Target = &mm;Source + 2
</cmo:hasValue>

</mm:Rule>
</mm:hasRule>

</mm:AttributeRepresentation>
</mm:hasAttributeRepresentation>
...

</mm:ConceptRepresentation>

3.3.2 Design Process

Figure 3.3 gives a detailed overview of the different phases that need to be
performed together with the ontologies that need to be built within these
phases. Since the gap between the conceptual level and the implementation
level is too large for it to be bridged in one single step, the design process is

70

3. Methodology

divided into three main phases, the specification phase, the mapping phase
and the generation phase. Note that the sequential order as given on the
figure needs to be preserved but that the process can be iterative. One can
do part of the specification, part of the mapping, do the generation and
then go back to the specification to complete or correct it until everything
is specified.

Figure 3.3: VR-WISE design process

3.3.2.1 Phase 1: Specification Phase

In the specification phase, the designer specifies the Virtual Environment,
at a conceptual level, using domain knowledge and without taking any im-
plementation details into account. In principle, this specification phase can
completely be performed by the domain expert (or end-user) without the
interference of someone familiar with Virtual Reality technology. During
this step, the Domain Specification and the World Specification are used.
First of all, the designer needs a suitable Domain Specification. This can be
done by building one completely from scratch or by selecting, and extend-
ing, an existing Domain Specification. Note that it is possible that more
than one domain ontology is needed for a single Virtual Environment. For
example in the department store, there might be a need for a general Drinks
ontology describing other drinks next to wines, and/or a Food ontology de-
scribing all edible items in the store. The second part of this phase then
consists of building the World Specification by creating instantiations of the
concepts in the Domain Specifications for each of the objects one wants to
have in the Virtual Environment. In the creation of the specifications, the
modelling concepts that are needed are available through the Conceptual
Modelling Ontology. This ontology does not need to be created anymore
but is provided by the system.

Note that, in general, it is too laborious and not very user-friendly to ask
the designer to write OWL specifications. Instead of requiring background
knowledge in Virtual Reality technology, this would require knowledge about

71

3. Methodology

ontologies and the OWL language in particular. In most cases, this also does
not belong to the general background knowledge of a domain expert. So, an
additional layer of abstraction has been built on top of the ontology layer,
namely an intuitive graphical notation. For the different high-level modelling
concepts defined in the Conceptual Modelling Ontology, a suitable graphical
representation has been developed. In fact, the designer now has the choice
of modelling the Virtual Environment using the ontologies (usually for more
experienced people) or by means of drawing intuitive diagrams. More details
about this graphical notation will be given in the following chapters.

3.3.2.2 Phase 2: Mapping Phase

After the specification phase, the mapping phase involves specifying how the
concepts and the instances need to be represented in the Virtual Environ-
ment. This is done by specifying the mappings for the concepts defined in
the Domain Specification and the instances defined in the World Specifica-
tion (both from the conceptual level) towards the Virtual Reality Ontology.
This step uses the Domain Mapping and the World Mapping. First, in
the Domain Mapping, the default mappings are specified. Automatically,
all the instances in the World Specification are mapped according to their
corresponding type-level mappings. Next, the World Mapping provides the
opportunity to override any of these default mappings. This step is optional.
Since in this phase, the designer comes in close contact with implementa-
tion issues, there is usually a tighter cooperation needed with the technology
expert that may assist the designer in defining the appropriate mappings.

3.3.2.3 Phase 3: Generation Phase

The generation phase generates the actual source code for the Virtual En-
vironment specified in the specification step using the mappings defined
in the mapping step, i.e. the conceptual specifications given by means of
the Domain Specification and the World Specification are converted into a
working application by means of the conceptual mappings given by the Do-
main Mapping and the World Mapping. This phase is entirely supported by
means of a dedicated software tool called OntoWorld. The tools supporting
the VR-WISE approach will be discussed in more detail in chapter 7. In
short, the generation process goes as follows. All the instances in the World
Specification are taken one by one. The World Mapping is searched for any
mapping having the instance in question as a source. If this is the case,
the instance is mapped according to this object-level mapping. Otherwise,
its corresponding type is retrieved and the instance is mapped according
to the type-level mapping specified in the Domain Mapping. This will give
us an implementation-level specification that can be easily converted into
a particular Virtual Reality language. At this moment, only X3D code is

72

3. Methodology

generated for the Virtual Environment. However, the approach is developed
in such a way that a switch between different target languages can be easily
accomplished. Figure 3.4 illustrates the final Virtual Environment resulting
from the generated code for the department store.

Figure 3.4: The resulting Virtual Environment

3.4 Extension of VR-WISE

In the approach as described in this chapter, nothing was mentioned about
the modelling of behaviour. At the beginning of the VR-WISE research,
the behaviour modelling capabilities were not yet available. It is the aim
of this dissertation to extend (or build upon) the VR-WISE approach to
also enable the specification of the dynamical aspects with the goal to au-
tomatically generate programming code from it. Basically, the work can
be situated at the meta-level. New conceptual modelling concepts need to
be devised for modelling behaviour, and the Conceptual Modelling Ontol-
ogy will be extended with a dedicated Behaviour Modelling Ontology at the
meta-level containing these high-level modelling concepts for the specifica-
tion of behaviour in Virtual Environments. This extension mainly involves
the first phase of the design approach (specification phase) and implicates
that the Domain Specification as well as the World Specification will then
be able to make use of these concepts in the specifications of the Virtual
Environment. Chapters 4, 5 and 6 will give more details on this.

3.5 Summary

In this chapter, the VR-WISE approach for designing Virtual Reality appli-
cations has been presented. This approach is used as the basic framework
for the research performed for this dissertation. The idea underpinning

73

3. Methodology

this approach is that the design of a Virtual Environment should start at
a conceptual level without taking into account any implementation details
whatsoever. The ultimate goal of the VR-WISE research is to facilitate and
shorten the development process of VR applications by means of conceptual
specifications.

It is our belief that the introduction of a conceptual modelling phase
into the overall development process of Virtual Environments, will facilitate
the use of Virtual Reality and make it available to a much broader public
including non-VR-experts. In fact, the current situation in Virtual Reality
is quite similar to the past situation in the software engineering and infor-
mation systems domains. Here, the uses of a conceptual modelling language
have proven to be of much benefit. However, the modelling languages used
in these domains are not appropriate for the design of Virtual Environments.

Furthermore, VR-WISE uses the concept of ontologies as a mechanism
to specify the conceptual models. Ontologies provide us with a mecha-
nism, understandable by both man and machine, to capture semantically
rich information about the Virtual Environment to be built, which may also
be exploited when the Virtual Environment is used. As mentioned in this
chapter, ontologies also provide us with a number of advantages such as the
improved communication, inter-operability and reusability. Furthermore,
they facilitate consistency checking, searching and querying.

The starting point for the VR-WISE approach is the use of intuitive high-
level specifications of the Virtual Environment one wants to realize. Due to
the use of domain terminology and intuitive modelling concepts, there is a
strong similarity between how one describes the Virtual Environment in our
approach and how it would be done using natural language. Therefore, no
background knowledge in Virtual Reality enabling technologies is required
for the designer to model a Virtual Environment using the VR-WISE ap-
proach. Furthermore, all modelling concepts provided to the designer are
carefully chosen, watching over the general characteristics required for con-
ceptual modelling languages. To convert the high-level specifications into a
working application, in a next step, a mapping from the conceptual level into
the implementation level is specified. Finally, the actual source code for the
Virtual Environment is (semi-)automatically generated from the high-level
specifications using these mappings.

74

CHAPTER 4

Conceptual Modelling of Dynamic Virtual Environments

In the previous chapter, the methodology used in this dissertation was ex-
plained. It started by introducing the meaning of the term conceptual mod-
elling. It then described the use of ontologies both as a way of formalizing
the high-level modelling concepts and as a way to model a Virtual Reality
application. It also introduced our own high-level design method for Virtual
Environments called VR-WISE, based on ontologies. This chapter will now
continue to build further on the general VR-WISE approach and lay the
foundations for the modelling of dynamic Virtual Environments, which will
be treated in the next two chapters of this dissertation.

The remainder of this chapter is structured as follows. Section 4.1
presents some general characteristics of our behaviour modelling approach
together with the requirements to be taken into account when modelling
behaviour in Virtual Environments. Section 4.2 will then give an infor-
mal description of the behaviour modelling approach developed. Section
4.3 discusses in details how the ontology-architecture presented in previous
chapter is extended to integrate the high-level modelling concepts used for
the modelling of behaviour. It also describes the ontologies added for the
specification of the behaviour. Furthermore, it also discusses the approach
used for behaviour modelling. Section 4.4 describes how the behaviour mod-
elling fits into the already existing VR-WISE development process. Section
4.5 gives a summary and a discussion about what has been presented in this
chapter.

75

4. Conceptual Modelling of Dynamic Virtual Environments

4.1 Initial Requirements

The behaviour modelling approach that is presented in this dissertation
aims at providing content experts (domain experts, usually not experts in
VR) with a means to design object-behaviour at a high-level and at the
same time allowing more experienced designers to keep control over the
granularity of these specifications. Here, some general characteristics of the
behaviour modelling approach that is put forward, and requirements for this
behaviour modelling approach, are raised.

As mentioned earlier in the introduction and in the chapter on related
work, the majority of designers still takes a code-only approach, at least on
the part of specifying the behaviours, and do not use a high-level modelling
approach for designing behaviours. They rely almost entirely on the code
they write and the behaviours are directly programmed in some kind of
dedicated scripting language. The behaviour modelling approach presented
here is a model-based approach, meaning that high-level models are used
to describe the behaviour at a conceptual level. In addition, the models
have sufficient details to enable the generation of a full implementation.
By using conceptual models, the specifications are made at a much higher
level than scripting languages. Furthermore, if any scripting is needed, it
should be done in a declarative way so that it still remains accessible to
non-programmers.

Most model-based approaches encountered in the related work often used
(or extended) a finite state machine as the underlying model for describing
the behaviour of objects. They are based on the different states the object
can be in during the simulation. Our behaviour modelling approach follows
a different path, which we call action-oriented. This approach is focusing
on the different actions that an object may take throughout the simulation
rather than on the states an object can be in. It is our belief that using
actions is more natural than using states for specifying the behaviour in a
Virtual Environment.

A traditional animation process uses transformation operations for mod-
ifying the numerical data describing the objects in space. These transforma-
tion operations are represented by matrices or quaternions. Although mod-
elling tools allow manipulating these transformations through more friendly
user-interfaces, it still requires some background knowledge in mathemat-
ics to correctly create such transformations. Our approach tries to provide
a higher level of abstraction and use more intuitive actions. The trans-
formation operations can then be replaced by these intuitive actions where
they are equally powerful. Actions can be structured in a hierarchical way
which improves the scalability, modularity and reusability of the behaviour
specifications.

An animation usually consists of a number of transformations that need
to be set correctly throughout time. These transformations are usually not

76

4. Conceptual Modelling of Dynamic Virtual Environments

only sequential but are often related to each other in a more complex way.
One of the most difficult aspects for creating compelling behaviours (ani-
mations) is this time setting of the actions within the complete simulation.
The approach described in this dissertation provides modelling concepts that
allow richer and intuitive timings of the actions. Through the use of
so-called temporal relations, the ordering in time of the actions can be done
in more different ways than only sequentially.

Transformations can occur on single objects, on a collection of objects
or on the entire environment. Thus, somehow, these should be connected to
each other. Furthermore, they can occur as a reaction to different events.
The modelling approach should facilitate a loose coupling between the be-
haviour specification and the link to the objects on the one hand and the
connection with the events that trigger the behaviours on the other hand.
This is needed to reduce the complexity and to enhance reusability. The
proposed approach allows us to define different aspects independently and
then in a subsequent step, link the different aspects together to form the fi-
nal result. To achieve this independence, the behaviour modelling approach
presented here is divided into two separate steps (see following section).

4.2 Overview of the Behaviour Modelling Approach

The behaviour modelling approach that is introduced here, is developed with
the issues and requirements stated above in mind. The approach consists of
two sequential steps namely the Behaviour Definition and the Behaviour
Invocation [Pellens et al., 2007].

The first step, the behaviour definition, allows the designer to define
the different behaviours for an object. Note that in our approach, the be-
haviours of an object are defined separated from the specification of the
visual appearance of the object and independent of how the behaviour will
be triggered. This improves reusability and enhances flexibility as the same
behaviour definition can be reused for different objects (if different types of
objects have the same behaviour) and/or can be triggered in different ways
(e.g., by some user interaction or by a collision with another object). A be-
haviour definition is specified using a so-called Behaviour Definition model.
For the Behaviour Definition model, the most important modelling concept
is the actor. An actor is a placeholder for an object. A behaviour will be
defined for an actor and later (in the second step, the behaviour invoca-
tion) the behaviour is assigned to an actual object. This approach has been
taken to separate the specification of a behaviour from the specification of
the visual appearance of the object that will own the behaviour. An ad-
ditional advantage is that the same behaviour can be assigned to different
(types of) objects. A number of primitive actions (behaviours) have been
defined in our approach ranging from basic manipulations (e.g., move, roll,

77

4. Conceptual Modelling of Dynamic Virtual Environments

turn, resize,. . .) up to actions capable of restructuring the scene graph (e.g.,
construct, destruct, disperse, group,. . .). The primitive actions and defined
behaviours can be combined through a set of operators to form compos-
ite behaviours. Temporal operators (e.g., before, meets, overlaps,. . .) can
be used for synchronization purposes; lifetime operators (e.g., enable, dis-
able,. . .) are used to control the lifetime of behaviours; and conditional
operators are used to control the flow of the specification.

In the second step, the behaviour invocation, the behaviours that were
defined in the behaviour definitions are assigned to the actual objects in
the Virtual Environment. Furthermore, in these models the mechanism of
how the behaviours assigned to objects may be invoked, i.e. the events that
may trigger them, is denoted. In this way, the invocation of the behaviour
is also separated from the actual definition of the behaviour. Hence, the
same behaviour can be triggered in different ways depending on the context
in which it is used. The behaviour invocation is specified using a so-called
Behaviour Invocation model. The most important modelling concept for
the Behaviour Invocation model is the object representing the actual objects
populating the Virtual Environment. By assigning an actor to an object,
the object receives all the behaviours defined for this actor. The objects
used in these models refer to concepts or instances in the models defining
the static structure of the Virtual Environment (Domain Specification and
World Specification). In this way, the link with the models describing the
static structure is established. The behaviour reference concepts used in the
Behaviour Invocation models are actually instantiations of the behaviours
defined in the Behaviour Definition models. This provides the link between
the behaviour invocation and the behaviour definition. Furthermore, the
modelling concept event is used to describe when the behaviours should
be triggered. This is done by attaching events to behaviours. There are
a number of possible events, namely time events for a triggering based on
the passing of time, user events to trigger behaviour as a reaction to user
interaction, context events to react to changes from the environment, and
object events to invoke behaviour upon objects interacting with each other.

In the same line as with the overall VR-WISE approach, the specification
of the conceptual models for the object behaviour in Virtual Environments
is supported by means of ontologies. Therefore, the architecture of ontolo-
gies for the VR-WISE approach had to be extended. This will be discussed
in more details in the following sections. Then, in the following chapter, the
graphical behaviour modelling language developed for the approach is dis-
cussed. This graphical language allows the designer to specify the different
models in a graphical way.

78

4. Conceptual Modelling of Dynamic Virtual Environments

4.3 Extended Architecture of Ontologies

The ontology-architecture mentioned in chapter 3 contains the ontologies
that were used at different levels of abstraction in order to describe the Vir-
tual Environment. However, at the start of this PhD work, there were no
modelling concepts available to allow the designer to model the behaviour
of the objects in a Virtual Environment. Therefore, the architecture of on-
tologies (see figure 3.2 on page 63) has been extended to incorporate the
modelling concepts that allow the designer to specify the behaviours of the
objects in a Virtual Environment. The new modelling concepts provided are
consistent with the approach taken by VR-WISE, i.e. modelling must be
done from a high-level point of view and independent of any technological
issues. The extended architecture is shown in figure 4.1. The architecture
was extended at two different levels, namely on the ”Meta Level” the Be-
haviour Modelling Ontology has been added, and on the ”Domain Level”
the Behaviour Specification has been added. The extensions are highlighted
in bold.

• On the Meta Level, the Behaviour Modelling Ontology has been added
as part of the general Conceptual Modelling Ontology. This new ontol-
ogy defines the high-level modelling concepts for the behaviour speci-
fications.

• The Domain Level has been extended with the Behaviour Specifica-
tion. This ontology is actually a combination of two ontologies, the
Behaviour Definition Ontology (domain-dependent but application-
independent) and the Behaviour Invocation Ontology (application-
dependent) and gives the specification of the behaviours of a VE.

Looking at figure 4.1, the reader may see that no additional mapping
ontology has been added for the behaviour modelling. This is not needed.
For the static structure, the designer needs to define the concepts from the
application domain needed in the Virtual Environment. These concepts are
defined independent from their visual representation in the Virtual Environ-
ment. Later on in the development process, the designer specifies how the
objects must be represented in the Virtual Environment by mapping these
domain concepts onto a particular VR representation. Therefore, mapping
ontologies are needed. However, for the modelling of behaviour only high-
level predefined modelling concepts are used. In other words, the designer
cannot define his own modelling concepts1. Because the modelling concepts
are all predefined, the mappings towards an implementation are predefined
as well, i.e. the behaviour specifications are automatically mapped to code
extractions. A second reason why there is no explicit mapping ontology

1In the design pattern framework extending the behaviour modelling approach, the
designer is allowed to create his own modelling concepts as will be discussed in chapter 6.

79

4. Conceptual Modelling of Dynamic Virtual Environments

Figure 4.1: Extended architecture of ontologies

for behaviour, is the fact that the high-level modelling concepts need to
be mapped onto source code extractions expressed in a programming lan-
guage. The structure of the source code is influenced by the way in which
the behaviour is processed by the target technology. It is often dependent
on the frame-by-frame execution of the rendering engine. In other words,
the same code is executed each rendered frame for as long as the behaviour
is active. This results in programming code that is often not just a sequence
of instructions but is structured in a more complex manner. In principle, it
would be possible to specify this by means of a mapping but it would not
be as straightforward as in the case of the modelling concepts for the static
structure. In addition, the added value of such a mapping would not set off
the effort of specifying it. For these reasons, we have opted not to bother the
designer with manually mapping the behaviours but instead provide default
mappings to some implementation technology. It is always possible to add
new mappings for different implementation technologies.

80

4. Conceptual Modelling of Dynamic Virtual Environments

The remaining part of this section explains in more detail the ontologies
that were developed to extend the existing ontology architecture of the VR-
WISE approach. Again, the ontologies are built using the Protégé-OWL
ontology editor.

4.3.1 Behaviour Modelling Ontology (Meta Level)

At the meta-level, a new ontology has been developed, called the Behaviour
Modelling Ontology (BMO) [Pellens et al., 2005c]. This ontology is part
of the general Conceptual Modelling Ontology (see figure 4.1). It contains
the different high-level modelling concepts that may be used to create a
Behaviour Definition model and a Behaviour Invocation model (see next
section). It also describes their properties and relationships between each
other. This ontology serves as a meta-model, namely it formalizes what
makes a valid behaviour specification. In our case, an ontology is used
for the meta-model because it fits perfectly with the rest of the VR-WISE
approach. However, we could have used another specification formalism in-
stead. A first advantage of having an explicit meta-level is that through the
meta-model, the different modelling concepts are formally defined. Secondly,
having the meta-level, the Behaviour Modelling Language can be easily ex-
tended to incorporate new concepts or features. A comparable situation
exists for UML where also a meta-level is provided and for which a number
of extensions have been developed such as STUML (Spatio-Temporal UML)
[Price et al., 1999] or OMMMA (Object-oriented Modelling of Multimedia
Applications) [Sauer and Engels, 2001]. Also note that extending scripting
languages is not that easy. This section will now discuss how the differ-
ent modelling concepts for designing the behaviour, are defined within our
Behaviour Modelling Ontology.

The concepts in the Behaviour Modelling Ontology can be divided into
two parts. Figures 4.2 and 4.3 give graphical depictions of these two parts.
Due to space restriction, these figures do not display the complete ontology.
The reader is referred to the appendix for the complete ontology specified
in OWL (see appendix A). Each of the two figures corresponds to one of the
steps of the behaviour modelling approach, namely the behaviour definition
and the behaviour invocation. They will be discussed in more detail in the
following section. For the graphical representation, the meta-models, defin-
ing the different modelling concepts of the behaviour modelling approach
are specified as UML class diagrams in order to clarify the contents of the
Behaviour Modelling Ontology.

Figure 4.2 shows an extraction of the meta-model of the Behaviour Def-
inition model. Note that all the concepts in this diagram are in fact sub-
classes of the more general BehaviourDefinitionThing. In this way, we
express that these are the modelling concepts that can be used in the be-
haviour definition.

81

4. Conceptual Modelling of Dynamic Virtual Environments

Figure 4.2: Meta-model of a Behaviour Definition Model

The BehaviourDefinition concept is the main concept which actually
represents the model that specifies a behaviour definition. Creating a new
behaviour definition implies creating an instance of this concept.

A Behaviour Definition model can contain one or more Actor concepts
as specified by the containsActor relation. An actor has to be part of at
least one behaviour definition but can be part of more than one behaviour
definition. Actors are representing objects that are involved in a behaviour.
Actors can also be part of a generalization/specialization hierarchy. This
is given by the superActorOf-subActorOf relation stating that a super-
actor can have zero or more sub-actors while a sub-actor has at most one
super-actor. Furthermore, they may contain instantiations of the Property
concept (not included in the figure). This concept is imported from the Basic
Concepts Ontology and allows to define properties for the actor. The actors
may be associated with the behaviours in two ways. Firstly, actors may
have multiple behaviours defined for them as shown by the hasBehaviour
relation. Secondly, a behaviour may need some actors as reference (further
explained in section 5.3.3). This is expressed by the referenceOf relation.

A Behaviour Definition model also contains a number of Behaviour con-
cepts that represent the actual actions (behaviour) that an object (repre-
sented by an actor) is able to undertake. This link between a behaviour and
an actor is represented by the containsBehaviour relation. The Behaviour
concept is an abstract concept, it can only be instantiated through one of its
sub-concepts, namely a PrimitiveBehaviour or a CompositeBehaviour. A

82

4. Conceptual Modelling of Dynamic Virtual Environments

number of primitive behaviours have been defined in our approach ranging
from basic manipulations (e.g., move, turn, roll,. . .) up to actions capable of
restructuring the scene graph (e.g., construct, destruct, group, disperse,. . .).
A composite behaviour consists of at least one sub-behaviour, which can
on its turn either be a primitive or composite behaviour, as given by the
hasBehaviourThing relationship. A composite behaviour can be named,
in which case it can be referenced more than once in other behaviour def-
initions. Such a behaviour is called a SubBehaviour. It is actually a spe-
cial kind of composite behaviour and is therefore defined as sub-concept of
CompositeBehaviour. A SubBehaviour facilitates reuse and modularity of
the specifications. A behaviour may have a Script concept attached to it,
as expressed by the hasScript relation.

Finally, a Behaviour Definition model contains a number of Operator
concepts, represented through the containsOperator relation. The pur-
pose is to link a number of behaviours to each other to create compos-
ite behaviours. The operators form a direct relation between one or more
incoming behaviour (called source of the operator) and one or more outgoing
behaviours (called target of the operator). The Operator concept is also an
abstract concept meaning that it cannot be instantiated directly but only its
sub-concepts can be instantiated. Different kinds of operators are supported
by the approach. An operator can belong to only one behaviour definition.

The second part is shown by figure 4.3 and depicts an extraction of the
meta-model of the Behaviour Invocation model. Similar as for the meta-
model of the Behaviour Definition model, the modelling concepts for this
model are sub-concepts of the abstract concept, BehaviourInvocationThing.
The classes depicted in red are defined in the previous figure (so in the same
ontology), or in a different ontology (e.g., Basic Concepts Ontology).

A Behaviour Invocation model consists of a number of Object concepts
as shown by the containsObject relationship. These objects represent the
actual objects that are populating the Virtual Environment. They refer to
either a Concept or an Instance, which have been defined in the Basic Con-
cepts Ontology. They provide the link between the behaviour specification
and the static structure specification of the Virtual Environment. Note that
a single concept or instance can be used in multiple behaviour invocations.
Furthermore, an object is associated to at least one Actor as specified by
the playsRoleOf relation. By linking an actor to an object, it will receive
all the behaviours defined for this actor. The other way around, an actor
can be assigned to multiple objects.

A Behaviour Invocation model also contains at least one BehaviourReference
concept as shown by the containsReference relationship. A behaviour
reference is associated with exactly one Behaviour concept defined in a
Behaviour Definition model. The other way around, a behaviour can be
referenced by multiple behaviour references, i.e. it can be used in differ-
ent Behaviour Invocation models. This is represented by the hasReference

83

4. Conceptual Modelling of Dynamic Virtual Environments

Figure 4.3: Meta-model Behaviour Invocation Model

relation. In the same way as the behaviour and the actor were related to
each other, the behaviour reference and the object are also related to each
other through the executedOn relation. Furthermore, instantiations of a be-
haviour reference are related to each other through dependencies denoting a
particular causal link between them as given by the dependentOn-dependsOn
relation. It says that zero or more behaviour references can depend on (i.e.
call or use) another behaviour reference. The other way around, one behav-
iuor reference can be dependent on (i.e. called by or used by) zero or more
other behaviour references.

A third main modelling concept for the Behaviour Invocation model is
the Event concept which is expressed by the containsTrigger relation.
There can be zero or more events for one Behaviour Invocation model. A
single event can trigger multiple behaviours but a single behaviour can also
be triggered by multiple events. This is expressed by associating an event
with a behaviour through the triggeredBy relation. The Event concept is
also an abstract concept meaning that it can only be instantiated through
one of its sub-concepts. Different kinds of events are available to describe
different means of triggering a behaviour.

Next to the Basic Concepts Ontology, the Behaviour Modelling Ontol-
ogy also imports statements from the well known Time Ontology2 [Hobbs
and Pan, 2004]. This is an ontology that has been developed to describe
temporal information and was originally developed in the context of the
Semantic Web. It covers measures of duration, meanings of clock and cal-
endar terms and so on. The concepts CalendarClockDescription and

2http://www.isi.edu/ pan/damltime/time-entry.owl

84

4. Conceptual Modelling of Dynamic Virtual Environments

DurationDescription for example are used within the specifications of the
behaviour. Furthermore, the terms defined within this ontology can also be
exploited to make it possible to reason about the behaviour specifications
[Hobbs and Pustejovsky, 2003].

4.3.2 Behaviour Specification (Domain Level)

At the domain level, the ontology-architecture was extended with the Be-
haviour Specification (see figure 4.1). As briefly discussed before, the Be-
haviour Specification, i.e. the process of creating the behavioural specifi-
cations, is broken down into two separate steps namely the definition and
the invocation resulting in two different and separate models called the Be-
haviour Definition model and the Behaviour Invocation model.

4.3.2.1 Behaviour Definition Model

The first step of the behaviour modelling process consists of setting up the
Behaviour Definition model. A behaviour definition is used to specify the
different behaviours for an object. This is done by instantiating the sub-
classes of BehaviourDefinitionThing discussed above.

The example that follows shows an extraction of a Behaviour Definition
model (in OWL format). This specification contains an actor called Door for
which a behaviour has been defined called OpenDoor. This is done through
the hasBehaviour relation.

<bmo:BehaviourDefinition rdf:ID="OpenDoorDefinition">
<bmo:containsActor>

<bmo:Actor rdf:ID="Door">
<bmo:hasBehaviour rdf:resource="#OpenDoor"/>
...

</bmo:Actor>
</bmo:containsActor>
<bmo:containsBehaviour>

<bmo:CompositeBehaviour rdf:ID="OpenDoor">
...

</bmo:CompositeBehaviour>
</bmo:containsBehaviour>

</bmo:BehaviourDefinition>

4.3.2.2 Behaviour Invocation Model

After the definitions have been created, the second step involves the creation
of a Behaviour Invocation model for each of the Behaviour Definition models.
This is achieved by instantiating subclasses of BehaviourInvocationThing.
Remember that the definition of behaviour is done independently from the
actual objects in the Virtual Environment. To connect behaviour to actual

85

4. Conceptual Modelling of Dynamic Virtual Environments

objects, this second step is needed. A Behaviour Invocation model assigns
the behaviours defined in a Behaviour Definition model to actual objects.
It also denotes how the behaviours may be invoked, i.e. the events that
may trigger the behaviours of the objects. In this way, also the invocation
is separated from the actual definition of the behaviour. Hence, the same
behaviour can be triggered in different ways depending on the situation.

The example that follows shows an extraction of a Behaviour Invocation
model (also in OWL format). This specification contains an object called
Entrance, a behaviour reference called OpenDoorReference and an event
called Timer. The object refers to a concept called Gate with the refersTo
relation. In addition, it plays the role of the Door actor defined previously,
and given by the playsRoleOf property. The behaviour reference refers
to the OpenDoor behaviour by means of the hasReference property. It
is performed on the Entrance object and is triggered by the event Timer,
defined by the executedOn and triggeredBy relations respectively.

<bmo:BehaviourInvocation rdf:ID="OpenDoorInvocation">
<bmo:containsObject>

<bmo:Object rdf:ID="Entrance">
<bmo:refersTo rdf:resource="&ds;Gate"/>
<bmo:playsRoleOf rdf:resource="&bd;Door"/>
...

</bmo:Object>
</bmo:containsObject>
<bmo:containsReference>

<bmo:BehaviourReference rdf:ID="OpenDoorReference">
<bmo:hasReference rdf:resource="&bd;OpenDoor"/>
<bmo:executedOn rdf:resource="#Entrance"/>
<bmo:triggeredBy rdf:resouce="#Timer"/>

</bmo:BehaviourReference>
</bmo:containsReference>
<bmo:containsTrigger>

<bmo:OnTimeEvent rdf:ID="Timer">
...

</bmo:OnTimeEvent>
</bmo:containsTrigger>

</bmo:BehaviourInvocation>

4.4 Fitting Behaviour Modelling into the Overall
Development Process

The use of the ontologies in the VR-WISE approach have gone hand in hand
with a development process consisting of three phases, namely the specifi-
cation phase, the mapping phase, and the generation phase. The Behaviour
Specification is a sub-phase of the specification phase of the development

86

4. Conceptual Modelling of Dynamic Virtual Environments

process. It is a part of the specification of the Virtual Environment in the
same way as the Domain Specification and World Specification are.

In the first step, the designer needs to specify a Behaviour Definition.
The Behaviour Definition can actually be done at any moment in time dur-
ing the specification phase. It can effectively be created before the Domain
Specification or the World Specification is made, as well as after the com-
plete specification of the static structure. This is because the definitions of
the behaviours are completely independent of the static structure of the (ob-
jects in the) Virtual Environment. The second step consists of creating the
Behaviour Invocations. Here, the definitions of the behaviour are ’instan-
tiated’ and parameterized for the particular context. Therefore, this step
always needs to be performed after the first step of the behaviour modelling
approach. Furthermore, also connections with the static structure of the
Virtual Environment are needed, therefore this step must be done after the
Domain Specification (when the behaviours can be attached to concepts) or
after the World Specification (when the behaviours need to be attached to
the instances of the concepts).

Obviously, both steps, namely the Behaviour Definition and the Be-
haviour Invocation, need to be finished before the actual generation phase
can be performed. When the source code for an object in the Virtual En-
vironment is generated, the system retrieves any possible behaviour that
might have been attached to this object (or to its concept type) by means of
the Behaviour Invocation models. If it has found behaviours, the appropri-
ate source code extractions will be assembled on the basis of the definitions
in the Behaviour Definition models (if not already generated before). Then,
the initialization code for this particular object is generated and merged
with the rest of the code. This process is repeated for each of the objects.

In many cases, the specification of the behaviour will be done in an
iterative process together with the specification of the static structure where
first some objects are specified, and then their initial behaviours are defined
after which code is generated to inspect the result and the designer goes
back to further refine the objects or to add new ones.

4.5 Summary

In this chapter, the principles of our behaviour modelling approach were
discussed together with its integration into the general VR-WISE approach
described in chapter 3.

The approach that is proposed in this dissertation tries to overcome
some of the difficulties encountered with specifying behaviour in classical
approaches. Our approach is a model-based approach meaning that the
behaviour is specified through high-level models. In our approach, these
high-level models are specified through the use of ontologies. This is in con-

87

4. Conceptual Modelling of Dynamic Virtual Environments

trast with the more traditional code-based approaches where the behaviours
of Virtual Environments are described through source code in a scripting
language or by using some general purpose programming language.

The behaviour modelling approach consists of two steps. In the first
step, called the Behaviour Definition, behaviours are defined providing only
a loose coupling with the objects for which they are defined and indepen-
dent of the events that will trigger them. In the second step, namely the
Behaviour Invocation, the behaviours are actually connected to the objects
and the events that may trigger them. Finally, in the generation step of the
overall VR-WISE approach, the pieces of source code that are generated for
the dynamic aspects are merged together with the rest of the source code
(generated for the static aspects) to come to the final result, a dynamic
Virtual Environment.

The behaviour modelling language in our approach includes a number
of modelling concepts, which are described in the Behaviour Modelling On-
tology. Furthermore, the Behaviour Modelling Ontology also prescribes how
the high-level modelling concepts can be used in a specification. The Be-
haviour Modelling Ontology actually extends the Conceptual Modelling On-
tology located at the meta-level of the ontology architecture of the VR-WISE
approach. For all the modelling concepts that are defined in the Behaviour
Modelling Ontology, graphical representations have been developed, allow-
ing the designer to visually construct the behaviour specifications. The fol-
lowing chapter will discuss the different modelling concepts in more detail
as well as their graphical notation and their semantics.

88

CHAPTER 5

Graphical Behaviour Modelling Language

In the previous chapter, the principles behind the behaviour modelling ap-
proach were discussed. It was explained how the general VR-WISE archi-
tecture was extended with the so-called Behaviour Modelling Ontology. A
specification of the overall structure of the ontology was also given. Fur-
thermore, the different steps involved in the process of modelling behaviour
were discussed. In this chapter, the different behaviour modelling concepts
are described in more detail. Both the definitions (an informal as well as a
more formal) and the notation for the visual representation of the different
high-level behaviour modelling concepts are given.

We arrived at the modelling concepts presented here following a top-
down approach. A number of high-level modelling languages such as UML,
ER and ORM were investigated for useful modelling concepts that could
be reused in the context of modelling object behaviour in Virtual Envi-
ronments. From these modelling languages, a number of general modelling
concepts were identified to be useful. Furthermore, three different domains
were investigated as well, namely the geographical domain, the architectural
domain, the design and manufacturing domain, and the medical domain. We
mainly focussed on these domains as they have been using VR for a long
time and as they have also some well established high-level concepts which
might be appropriate for VR. The useful modelling concepts found in these
domains were generalized to be applicable to VR in general. Furthermore,
the requirement to have an intuitive and easy to understand set of model-
ing concepts has been a major decision criterion in the research approach
followed.

Please note that the more formal definitions do not capture the complete
semantics of the behaviour modelling concepts. The focus here is on their

89

5. Graphical Behaviour Modelling Language

syntax. Within this chapter, a number of conventions are used:

• Constant, predicate, and function symbols are capitalized.

• Sets are introduced by giving the singular name (or an abbreviation)
of the required type, in capitals and in bold.

• Variables and set elements start with a lowercase letter.

Also a few commonly used sets often returning are:

• ∅ denotes the empty set,

• S denotes the set of strings,

• R denotes the set of real numbers, and

• N denotes the set of natural numbers.

The chapter is structured in the following way. First, in section 5.1,
some basic modelling concepts used in the rest of this chapter are clarified.
Section 5.2 explains the concept of Structure Chunk. This is a small dia-
gram type, which is needed later in the chapter1. Afterwards, the two main
diagram types for modelling behaviour are discussed, namely the Behaviour
Definition Diagram in section 5.3 and the Behaviour Invocation Diagram in
section 5.4. These are the diagram types used for the two corresponding
steps, the behaviour definition and behaviour invocation, explained in the
previous chapter. For the modelling concepts discussed in these diagrams,
the following structure is used: an informal explanation is given about the
concept itself, followed by a more formal definition and afterwards the graph-
ical notation is introduced. In section 5.5, the scripting language, part of our
mixed graphical/textual modelling language, is introduced. Finally, section
5.6 will give a short discussion about this chapter.

5.1 Basic Concepts

Before going into the different types of diagrams that are supported by our
approach, it is worth clarifying some basic concepts about modelling 3D
worlds or Virtual Environments. These concepts are very important since
many of our modelling primitives heavily rely on them. Reading this section
will give a better understanding of what is going to follow in the rest of this
chapter.

A first issue which needs to be explained is the concept of Space. In
order to model a 3D world or Virtual Environment, the three-dimensional

1The reader might want to skip this section for now and come back to it later when it
is actually used in the main diagram types.

90

5. Graphical Behaviour Modelling Language

or virtual space has to be defined properly. This space has, as the name
suggests, three dimensions namely the width, the depth and height. These
dimensions are represented by axes. In this work, the convention is taken
that the axes are labelled with x for the width dimension, y for the height
dimension and z for the depth dimension. All three axes are mutually per-
pendicular. The point in which these axes cross each other is the origin of
the space. A location (or position) within the space can now be defined by
means of a coordinate on the three axes that make up the space ((x,y,z)
coordinates). Figure 5.1a shows an example of the space as it is defined
here. The coordinate systems that are used in this dissertation are always
right-handed coordinate systems meaning that values on the x-axis become
larger to the right of the origin, on the y-axis they become larger above the
origin and on the z-axis they grow as they move to the front.

Figure 5.1: Three dimensional space

After having defined the space, one extra concept needs to be clarified,
namely a Reference Frame. One way to think about a reference frame is
as a three-dimensional coordinate system attached to the object for which
the position or movement can be specified [Frank, 1998]. In most modelling
packages, a reference frame is defined as having an origin, usually at the
centre of the object (e.g., coordinate (0,0,0)). Next to the origin, a ref-
erence frame also has three axes, the x-axis, the y-axis and the z-axis (see
figure 5.1b). Finally, the reference frame is further defined by means of
a handedness describing the way the axes are related to each other. In a
right-handed reference frame, the positive x- and y-axes point right and up,
and the negative z-axis points forward. In a lef-handed reference frame, the
positive x-, y- and z-axes point right, up and forward, respectively.

Definition 1 (Reference Frame). A reference frame RF is defined as a
pair 〈Location, Orientation〉 where:

• Location ∈ R× R× R is the coordinate of the origin,

91

5. Graphical Behaviour Modelling Language

• Orientation ∈ R×R×R is the orientation given in Euler angles2, and

• Handedness ∈ {”Left − handed”, ”Right − handed”} is the handed-
ness. �

Basically two kinds of reference frames can be distinguished. There is
the global reference frame which is used to place (or move) objects in
the Virtual Environment or in relation to each other. Coordinates in this
reference frame do not depend on a particular object. In addition to the
global reference frame, each object can also have its own local reference
frame which is useful to express motion about the object in question.

Figure 5.2: Reference Frame

The use of traditional axes-systems can be unintuitive for users having
no background knowledge in this regard. Therefore, for laymen a natural-
language-like reference frame would be better to intuitively specify positions
and actions. When using a natural-language-like reference frame, a mapping
needs to be made between the inherent reference frame of an object and this
more intuitive reference frame based on natural-language-like directions. To
achieve this, our approach allows the designer to decide for each object how
to assign the directions ”front”, ”back”, ”right”, ”left”, ”top”, and ”bottom”
to the standard axes of the local reference frame. These assignments can be
derived from the properties of the object itself (e.g., a car has a specific front,
left, top,. . .). At this moment, the assignment requires human interaction.
However, in the future, it could perhaps be automatically computed.

In the default scenario the x-axis is defined as the left-to-right axis of
the object. The negative region represents the right of the object while the
positive region represents its left. The same is done with the z-axis, de-
scribing the front and back of the object, and the y-axis, describing the top
and bottom region of the object. Figure 5.2a shows this default labeling

2In an Euler angle representation, the axes of rotation are the axes of the local coordi-
nate system, as opposed to the global axes.

92

5. Graphical Behaviour Modelling Language

of the axes (highlighted in red). Once this mapping has been done, the
position and action of every object (relative to another object) can be ex-
pressed more intuitively in terms of these natural language directions. In
this work, the assumption is made that every object has such a mapping be-
tween the standard reference frame and the natural-language-like reference
frame. Furthermore, it is assumed that the origin of the local coordinate
frame of an object is always defined at the centre of that object and all the
axes of the local coordinate frame pass through the centre of that object
(unless stated otherwise).

Apart from the local reference frame, also the global reference frame
can be assigned more natural-language-like directions. In our approach,
the designer can decide for the space how to assign the cardinal directions
”north”, ”south”, ”east”, ”west”, ”up”, and ”down” to the standard axes
of the global reference frame (see figure 5.2b). However, this will not be
discussed in more details here since it is not used in the remaining parts of
this dissertation.

The definitions in the remaining part of this section are used inside
definitions in the remaining part of this chapter. The reader could skip
these definitions and consult them later, when needed.

A number of definitions that will be put forward in the following sections
require a unit to be given in which a particular value is expressed. Since
these units are similar for different definitions, they will be defined first. We
distinguish between:

• UD = {”mm”, ”cm”, ”m”, ”km”} is the set of distance units.

• UA = {”deg”, ”rot”} is the set of angle units.

• UT = {”ms”, ”s”, ”m”, ”h”} is the set of time units.

• UM = UD ∪ UA ∪ UT. . . is the set of all units of measurement.

A number of high-level modelling concepts that will be defined in this
chapter, will have a number of characteristics associated to them, called
attributes. These attributes are defined by means of a name, a value and a
unit in which this value is expressed.

Definition 2 (Attribute). An attribute a is a triple 〈Name, Value, Unit〉
with:

• Name ∈ S is the name of the attribute,

• Value ∈ S ∪ R ∪ N is the value of the attribute, and

• Unit ∈ UM is the unit in which the attribute is expressed.

The following function symbols are defined in this context:

93

5. Graphical Behaviour Modelling Language

• Name(a) gives the name Name of the attribute a

• Value(a) gives the value Value of the attribute a

• Unit(a) gives the unit Unit of the attribute a �

As was mentioned in chapter 3, the modelling approach used by VR-
WISE is an Object-Oriented (OO) approach. Therefore, the main modelling
concepts are concepts and instances. Concepts are comparable with classes
(or object types); instances are comparable with class instances (or objects).
Concepts are used to model (describe) the relevant concepts of the appli-
cation domain while instances are used to represent the actual objects in
the VE. Since these concepts are used in the definitions that follow, we will
define them first.

A concept is completely specified by means of its name and a number
of attributes characterizing the concept. The attributes that are given for a
concept are default attributes and can be overridden for individual instances
of the concept.

Definition 3 (Concept). A concept et is defined as a pair 〈Name, ATTRIBUTE〉
with:

• Name ∈ S is the name of the concept, and

• ATTRIBUTE is the set of attributes (as defined in definition 2)
of the concept where the values of the attributes represent the default
values for the concept.

The following function symbol is defined in this context:

• Attribute(et) gives the set of attributes ATTRIBUTE of the concept
et �

An instance is defined by means of its name, its type and a number
of attributes. The type refers to a concept that was defined earlier. The
attributes are the actual attributes for the object.

Definition 4 (Instance). An instance ei of a concept is defined as a triple
〈Name, Concept, ATTRIBUTE〉 with:

• Name ∈ S is the name of the instance,

• Concept is the concept (as defined in definition 3) this instance is an
instantiation of,

• ATTRIBUTE is a set of attributes representing the set of actual
attributes of the instance, and

94

5. Graphical Behaviour Modelling Language

• the following must hold: ∀ aei ∈ ATTRIBUTE, ∃! aConcept ∈ At-
tribute(Concept) (Name(aConcept) = Name(aei) ∧ Unit(aConcept) =
Unit(aei)).

The following function symbol is defined in this context:

• Attribute(ei) gives the set of attributes ATTRIBUTE of the instance
ei �

Also the concept of shape will be used. Basically, a shape is a visual
representation for an object in the Virtual Environment. To completely
specify a shape, a name, a filename, and a set of attributes are needed. The
filename refers to a location (file) that contains the actual shape (e.g., in
our library of the available shapes). The attributes are used to denote the
different geometrical properties of the shape (e.g., height, width, depth,. . .)
as well as the default values of these properties.

Definition 5 (Shape). Let FILE ⊂ S be the set of all filenames. A shape
s is defined as a triple 〈Name, File, ATTRIBUTE〉 with:

• Name ∈ S is the name of the shape,

• File ∈ FILE is the filename referring to a place containing the actual
shape, and

• ATTRIBUTE is a set of attributes describing the properties of the
shape.

The following function symbol is defined in this context:

• Attribute(s) gives the set of attributes ATTRIBUTE of the shape s�

Finally, we will give a definition for the concept of constraint. The con-
straints to which we need to refer are constraints defined for complex objects.
Since the topic of complex objects is outside the scope of this dissertation,
an exact definition for these constraints is also outside the scope of this dis-
sertation. More information about this topic can be found in [Bille, 2007].

Definition 6 (Constraint). A constraint cc on a connection relation be-
tween two (or more objects) imposes a limitation to the degrees of freedom
of the connected objects with respect to each other.
The following function symbol is defined in this context:

• Limit(cc) gives the set of named limits of the constraint cc �

95

5. Graphical Behaviour Modelling Language

5.2 Structure Chunk

A Structure Chunk is a small diagram used for specifying the spatial config-
uration of a number of objects at a particular moment in time. In a sense, it
could be considered as a smaller version of a Static Structure Diagram which
describes the complete static scene of the Virtual Environment. Describing
the complete static scene will not be detailed further on since it is not the
topic of this dissertation. A Structure Chunk only describes the static scene
for a small subset of the objects. Basically, a Structure Chunk is specified
using a kind of graph consisting of a number of item concepts connected to
each other by means of relations. Creating a Structure Chunk in the con-
text of this dissertation typically starts with a number of items representing
objects that are already in the Virtual Environment or that should become
part of it at a particular time. Afterwards, relations are defined to describe
how these items (objects) are related to each other from a static world point
of view. This section describes the most important modelling concepts that
can be used in a Structure Chunk. More formally, a Structure Chunk is
defined as follows:

Definition 7 (Structure Chunk). A Structure Chunk SC is defined as a
pair 〈ITEM, RELATION〉 where:

• ITEM is a set of items, and

• RELATION is a set of relations on ITEM.

The following function symbols are defined in this context:

• Item(SC) gives the set of items ITEM of the SC

• Relation(SC) gives the set of relations RELATION of the SC �

In the following sub-sections, both the item and different kinds of rela-
tions are defined.

5.2.1 Item

The most important concept in a Structure Chunk is item. An item repre-
sents an actor that is involved in the spatial layout under definition. The
concept of actor will be discussed later but for now one can think of it as
an ordinary object. The concept of item is used instead of the actor itself.
It can be considered as a placeholder. In fact, an item can be compared to
an interface in Java (or C#). This allows the Structure Chunks to be built
independently from the rest of the models. By using items instead of the
actors themselves, an additional feature is that one can define a number of
predefined Structure Chunks which can play the role of layout configuration.
A layout configuration is similar to templates, describing a particular basic

96

5. Graphical Behaviour Modelling Language

static structure (layout) that is used often. These layout configurations can
be saved separately and instantiated as many times as needed. An example
of a layout configuration is an item in a queue or on a line; or items stand-
ing in a mathematical figure such as a circle, a square and so on. This will
become clearer when discussing the different relations below.

Definition 8 (Item). An item i is simply defined as a monad 〈Name〉
where Name ∈ S is the name of the item. �

Figure 5.3: Item (a) and example Items (b)

An item is graphically represented by means of a dashed-line circle with
the name of the item written inside the circle (see figure 5.3a).

The example in figure 5.3b defines two items called Chair and Desk. For
the moment, they are unrelated. In this case, concrete names are taken
but if one would like to create a more abstract layout configuration to be
applicable in many applications, one could also use more abstract names that
are based on the function (location) of this particular item in the Structure
Chunk (e.g., LeftItem, RightItem,. . .).

5.2.2 Relations

Using items is not enough to specify a (part of a) static scene. The items
also need to be connected to each other to express a certain relationship
between them. These relations are basically meant to create either object
configurations (spatial relation and orientation relation) or complex objects
(connection relations). More formally:

Definition 9 (Relation). A Relation is either a Spatial Relation, an Ori-
entation Relation or a Connection Relation. �

In this section, the possible relation types are discussed in more detail,
and the spatial relation and orientation relation in particular.

5.2.2.1 Spatial Relations

A lot of research is being done about how people perceive the space around
them. In order to act effeciently inside space, a kind of mental model of
the space is created. A detailed explanation can be found in [Tversky,
2000]. These mental models of space are constructions based on elements,

97

5. Graphical Behaviour Modelling Language

the things in space, and the spatial relations among them relative to a refer-
ence frame. A spatial relation specifies how some object is located in space
with respect to some reference object. Strictly speaking, they represent re-
lations between spatial entities. A spatial relation is an n-ary relation, a
binary at least. In order to establish a spatial relation, first of all a located
object (LO) is needed, also called the primary object. This is the object
one wants to localize with respect to one or more other objects, different
from the first. These are often called the reference objects (REFO). At
least one reference object is needed but there could be more of them in spe-
cial relations. In addition, the relation needs to be further qualified with
a direction, usually expressed by means of spatial prepositions (relations),
and a distance to locate the object [Herskovits, 1987]. The use of spatial
relations which is known as a location-by-reference, provides a more intu-
itive means to describe the location of objects as opposed to the numerical
approach (e.g., in CAD/CAM and most VR modelling packages) which is
known as location-by-coordinate and where all the objects are located at
an exact position (given by coordinates) in the environment. For example,
using location-by-reference one can say that object A is in front of object B
while using location-by-position, one has to say that object A is at position
(0,0,6) and object B is at position (0,0,3).

Definition 10 (Spatial Relation). Let D1 = {”in-front-of”, ”behind”, ∅},
D2 = {”above”, ”below”, ∅}, D3 = {”left-of”, ”right-of”, ∅} be the sets of
possible directions. For a Structure Chunk SC, a spatial relation sr is de-
fined as a 6-tuple 〈Items, Itemt, Direction, Distance, DistanceUnit, RF〉
where:

• Items ∈ Item(SC) is the source item,

• Itemt ∈ Item(SC) is the target item,

• Direction ∈ D1 ×D2 ×D3 \ {〈∅, ∅, ∅〉} is the direction,

• Distance ∈ R is the value for the distance,

• DistanceUnit ∈ UD is the unit in which the distance is expressed, and

• RF is the reference frame used. �

Figure 5.4: Spatial Relation

98

5. Graphical Behaviour Modelling Language

A spatial relation is graphically drawn as a rounded rectangle containing
an icon denoting that the relation is a spatial relation (see figure 5.4a).
Below the icon, there is room for the two most important attributes of a
spatial relation. That is, the direction and a distance. For the direction, a
number of possible values can be given: left-of, right-of, in-front-of, behind,
above, below. Other concepts like the cardinal directions north, east, south
and west follow the same sort of principle and could also be included. The
spatial relations can be combined in order to express the position of an object
more accurately. This can be done by specifying more than one direction
within the same relationship. The distance is used to make the specification
more precise and specifies the distance between the two objects. It is given
by means of a value together with a unit (e.g., cm, m,. . .). An optional
reference frame (RF) can be given in the upper right corner of the notation
in order to specify if some other reference frame is used for the relation (such
as the Terrestrial Reference Frame,. . .). If no reference frame is given, the
local one is taken by default. The spatial relation rectangle is connected
with the graphical representation of the two items involved in the spatial
relation.

Figure 5.4b gives an example of a spatial relation between an item Chair
and an item Desk stating that the chair is positioned in-front-of the desk
at a distance of 0.5 m. The direction of the arrow used for the connection
line indicates the order in which the relation should be read and determines
which item is the source and which is the target. The source represents the
to-be-located item and the target is the reference item. In figure 5.4b, the
relation is read as: ”The Chair is 0.5 meters in front of the Desk”.

5.2.2.2 Orientation Relations

Next to a position, an object also requires an orientation to be properly
placed inside the Virtual Environment. Objects thus also need to be orien-
tated in some way. Therefore, the concept of orientation relation has been
introduced. An orientation relation can be used to orientate an object with
respect to another object by specifying (which part of) which side of the
object is orientated to (which part of) which side of the other object. With
the orientation relations, the VR-WISE approach wants to give the designer
a more intuitive way to orientate the objects in the scene next to the tradi-
tional way of orientating objects by means of a set of exact angles around
their axes.

Definition 11 (Orientation Relation). Let S1 = {”front”, ”back”, ∅},
S2 = {”left”, ”right”, ∅}, S3 = {”top”, ”bottom”, ∅}} be the set of possible
sides. For a Structure Chunk SC, an orientation relation or is defined as a
quadruple 〈Items, Itemt, Sides, Sidet〉 where:

• Items ∈ Item(SC) is the source item,

99

5. Graphical Behaviour Modelling Language

• Itemt ∈ Item(SC) is the target item, and

• Sides, Sidet ∈ S1 × S2 × S3 \ {〈∅, ∅, ∅〉} indicate the side for the
source item and for the target item respectively. �

Figure 5.5: Orientation Relation

In the graphical notation, the orientation relation is specified using a
rounded rectangle containing the orientation icon which divides the rectangle
into two parts (see figure 5.5a). Each part will be connected to a particular
item and inside each part, a side is specified referring to the side of the
connected item to consider. Possible values that can be used for the side are
front, back, left, right, top and bottom. Also here, the sides can be combined
to give a more accurate specification.

Figure 5.5b expresses the orientation of the Chair and Desk from the
previous example. In this example, there is an orientation relation between
the Chair with the front-left side and the Desk with the front side. Also
here the arrow on the connection line determines the roles of both items;
the source is the to-be-orientated item and the target is the reference item.
Furthermore, the arrow also indicates the reading order. In figure 5.5b the
relation is read as: ”The front-left side of the Chair is directed towards the
front side of the Desk”.

5.2.2.3 Other Relations

The spatial relations and orientation relations only allow specifying global
object configurations. That is, on one hand scenes in general, and on the
other hand so-called connectionless complex objects where complex objects
are built up from different sub-objects that are not physically connected.
However, those are not the only relations that are available for the speci-
fication of a Structure Chunk. As mentioned in chapter 3, the VR-WISE
approach also contains a number of modelling concepts capable of describing
so-called connected complex objects. Connected complex objects are com-
posed of sub-objects that are physically connected. They can be specified
by means of connection relations and constraints can be specified on top of
these connections. The way in which the sub-objects are connected will be
reflected in the behaviour of these objects, e.g., if one sub-object is moved,
the other needs to follow accordingly.

A more detailed discussion of the connection relations (and the con-
straints on these relations) is outside the scope of this dissertation. This is

100

5. Graphical Behaviour Modelling Language

the subject of another PhD thesis. The reader is referred to the work done
by Bille [Bille, 2007] for more details on defining connected complex objects
through a graphical notation.

5.3 Behaviour Definition Diagram

A Behaviour Definition Diagram (BDD) is used to describe at a conceptual
level the behaviour of the objects inside the Virtual Environment. Specifi-
cally, it describes the different objects involved in a behaviour. A behaviour
consists of a number of actions. The actions that the objects undertake are
often a result of reacting to some external event. As briefly mentioned in the
previous chapter, the behaviour is defined separated from the events that
will trigger them and also separated from the specification of the actual ob-
jects that will undertake the behaviour. A BDD is graphically represented
as a graph containing a set of behaviours (actions) interconnected through
operators and attached to actors. Typically, a BDD is created by defining
an actor, specifying the different properties for this actor, and then defining
the different behaviours for this actor. There can be multiple behaviours de-
fined for one actor. The behaviours itself are usually composite behaviours,
which consist of a number of smaller behaviours (either simple, or compos-
ite ones) combined by means of operators. This section will discuss the
modelling concepts involved in the specification of a BDD. A number of
modelling concepts can be completed with small textual scripts but this will
not be described here, it will be described in section 5.5. More formally, a
Behaviour Definition Diagram is defined as follows:

Definition 12 (Behaviour Definition Diagram). A Behaviour Defini-
tion Diagram BDD is defined as a quadruple 〈ACTOR, BEHAVIOUR,
OPERATOR, LINK〉 where:

• ACTOR is a set of actors,

• BEHAVIOUR is a set of behaviours,

• OPERATOR is a set of operators between behaviours, and

• LINK is the set of links between any two actors or behaviours.

The following function symbols are defined in this context:

• Actor(BDD) gives the set of actors ACTOR of the BDD

• Behaviour(BDD) gives the set of behaviours BEHAVIOUR of the
BDD

• Operator(BDD) gives the set of operators OPERATOR of the BDD

101

5. Graphical Behaviour Modelling Language

• Link(BDD) gives the set of links LINK of the BDD �

The different components of this definition (actors, behaviours, opera-
tors, and links) will be defined in the following sections. First, we define a
link.

Definition 13 (Link). For a Behaviour Definition Diagram BDD, a link
l is defined as a triple 〈Source, Target, Sort〉 where:

• Source ∈ Actor(BDD) ∪ Behaviour(BDD) is the source element,

• Target ∈ Actor(BDD) ∪ Behaviour(BDD) is the target element, and

• Sort ∈ S is the type of link.

The following function symbols are defined in this context:

• Source(l) gives the source Source of link l

• Target(l) gives the target Target of link l

• Sort(l) gives the sort Sort of link l �

In the following sub-sections, the actor, the different behaviours (ac-
tions), operators, and special links are defined.

5.3.1 Actor

The actor is an important modelling concept in the specification of a Be-
haviour Definition Diagram. An actor represents an object that is involved
in a behaviour. An actor can play different roles in a Behaviour Definition
Diagram. It can act as the object for which behaviour is defined; it can
act as a reference object; or it can act as an input or output object (see
later). To separate the definition of a behaviour from the actual definition
of the structure of an object, actors are used in the definition of a behaviour
instead of the actual object(s). They are comparable to placeholders for
objects or to abstract objects.

For an actor, both static and dynamic properties can be specified. The
static properties are represented by a set of attributes. The dynamic prop-
erties are defined by means of the behaviours that are associated with the
actor. For an actor, we only indicate the minimal set of static properties
needed for specifying a behaviour. This means that later on (in the Be-
haviour Invocation Diagram), the actor may be replaced by objects that
have at least this minimal set of properties. This can be compared with
an abstract class in Java (or C#). It declares a kind of protocol on the
properties meaning that each object that has those minimal properties can
replace the actor and thus have the defined behaviour. This will be further
explained in section 5.4.

102

5. Graphical Behaviour Modelling Language

Definition 14 (Actor). An actor e is defined as a pair 〈Name, PROPERTY〉
where:

• Name ∈ S is the name of the actor, and

• PROPERTY is the set of properties of the actor.

The following function symbol is defined in this context:

• Property(e) gives the set of properties PROPERTY of actor e �

Definition 15 (Property). A property p is defined as a pair 〈Name, Unit〉
where:

• Name ∈ S is the name of the property, and

• Unit ∈ UM is the unit in which the property is expressed.

The following function symbols are defined in this context:

• Name(p) gives the name Name of property p

• Unit(p) gives the unit Unit of property p �

Figure 5.6: Actor (a), detailed actor (b), example (c), detailed example (d)

An actor is represented by means of a solid-line circle with the name of
the actor written inside the circle (see figure 5.6a). When more details are
needed (properties), an additional compartment is attached to the circle (see
figure 5.6b). This compartment can hold the static properties of the actor.
The properties are specified in a declarative manner using the following
syntax: name [unit] where name is the name of an attribute and unit is
the unit in which the value of this attribute is expressed (e.g., height[m]).
Please note that our system is not explicitly typed and thus the designer is
not bothered with giving a type for the attributes. This could facilitate the
usage by designer not experienced in VR (or in programming).

The example in figure 5.6c defines an actor called Door. For this actor,
a number of properties can be specified such as the height, width, depth and
so on as shown in figure 5.6d.

103

5. Graphical Behaviour Modelling Language

Figure 5.7: Alternative representations of actor

Another feature introduced in our notation is the notion of a list struc-
ture. When a large number of actors of the same kind need to be represented,
a list structure can be used. Such a list of actors is represented in a similar
way as a regular actor (by a circle) but the name of the actor is included
in the notation: {. . . }*. See figure 5.7a for the abstract representation of
this. In behaviour definitions, the whole list can be referenced by means of
this representation. A list can also be named to be referenced later through
the name BEING {Actor}* expression where name is the name of the list
(see figure 5.7b). A particular item from the list can then be represented by
specifying the name of the list together with the index of the item needed.
This is done using the list #x syntax where x is the index of the item (see
figure 5.7c). Additionally, a name can be given to the item to allow easy
referencing. This is done using the name BEING list #x expression where
name is the name of the element (see figure 5.7d). The list concept helps
the users in creating more powerful behaviour specifications and at the same
time, it reduces the complexity of the diagrams since otherwise many similar
actors need to be specified.

5.3.2 Generalization/Specialization

Actors may be classified into generalization/specialization hierarchies. A
parent actor represents a generalization of a child actor and vice versa, a
child actor is a specialization of a parent actor. When there exists an is-a
relationship between the child actor and the parent actor, all the properties,
namely the attributes as well as the behaviours defined for the parent actor
are inherited by the child actor. Properties inherited from a parent actor
may be overridden by the child actor. This is indicated by re-specifying the
same property for the child actor.

Definition 16 (Generalization/Specialization). For a Behaviour Def-
inition Diagram BDD, a generalization/specialization link l is a link where:

• Source(l) ∈ Actor(BDD) is the child actor,

• Target(l) ∈ Actor(BDD) is the parent actor, and

• the following must hold: Sort(l) = ”subActorOf”. �

104

5. Graphical Behaviour Modelling Language

Figure 5.8: Sub-actor/super-actor

Generalization is represented graphically by a solid-line connector from
the child (the more specific element, the sub-actor) to the parent (the more
general element, the super-actor), with a large hollow triangle at the end of
the connector where it meets the more general element.

See figure 5.8a for this graphical notation. Figure 5.8b gives an example
showing the Door actor as the parent actor and the Sliding Door as the child
actor. Suppose the Door actor has a behaviour called OpenDoor, then this
behaviour is inherited by Sliding Door. Here the behaviour is overridden by
the Sliding Door actor because it also appears as a property of Sliding Door.
Furthermore, compared to Door, Sliding Door has additional behaviours
called Lock and Unlock.

5.3.3 Behaviours

A behaviour can be defined for an actor. This is achieved by attaching a
behaviour to an actor (or multiple actors) through a so-called has-behaviour
link meaning that this actor will now have this behaviour as one of its dy-
namic properties. An actor can have multiple behaviours attached to it
and vice versa, a behaviour can be attached to multiple actors through this
type of link. Our approach distinguishes between primitive behaviours (also
called actions) and composite behaviours. We first define behaviour in gen-
eral; next the different types of behaviours are discussed and defined. Firstly,
a number of primitive behaviours are explained. Secondly, the composite
behaviours are dealt with.

Definition 17 (Behaviour). A Behaviour is either a Move, Turn, Roll,
Resize, Position, Orientate, Custom, Transform, Construct, Destruct, Un-
grouping, Grouping, Disperse, Combine or a Composite Behaviour. �

In this section, the possible behaviour types are discussed in more de-
tail. Firstly, a number of primitive behaviours are explained. Secondly, the
composite behaviours are dealt with.

105

5. Graphical Behaviour Modelling Language

5.3.3.1 Actions (Primitive Behaviours)

On the one hand, the primitive behaviours (or actions) can be categorized
into manipulations and transformations that perform changes at the ob-
ject level but which do not infer structural changes into the scene graph
[Pellens et al., 2005b]. On the other hand, there are also behaviours such
as the construct/destruct, the group/ungroup and the disperse/combine,
which perform changes that have a direct influence on the structure of the
overall scene graph [Pellens et al., 2006c].

Manipulations

The different actions under the manipulations category are the following:

The move behaviour can be used to express a change in the position
of an object. To completely specify a move, a direction and a distance
are needed. The direction specifies the (part of the) axis on which the
object should move. Possible directions are: left, right, forward, backward,
up and down. Multiple directions can be combined to form a more specific
direction with this restriction that two directions from the same axis cannot
be combined. The distance parameter expresses the distance to be travelled
and should be given by means of a value and a unit (e.g., meter).

Definition 18 (move). Let Dfb = {”forward”, ”backward”, ∅}, Dlr =
{”left”, ”right”, ∅}, Dtb = {”up”, ”down”, ∅} be the sets of possible di-
rections. A move action ma is defined as a triple 〈MoveDirection, Distance,
DistanceUnit〉 where:

• MoveDirection ∈ Dfb ×Dlr ×Dtb \ {〈∅, ∅, ∅〉} is the direction,

• Distance ∈ R is the value for the distance, and

• DistanceUnit ∈ UD is the unit in which the distance is expressed. �

The turn is used to express a rotation of the object around its top-to-
bottom axis. To completely specify a turn, a direction and an angle are
needed. For a turn behaviour, the value for the direction can only be left or
right. This is because a turn of an object is only possible around a single axis,
namely the top-to-bottom axis. The angle parameter is needed to specify
how much the object needs to be turned. It should be given by means of a
value and a unit.

Definition 19 (turn). Let Dlr = {”left”, ”right”, ∅} be the set of possible
directions. A turn action ta is defined as a triple 〈TurnDirection, Angle,
AngleUnit〉 where:

• TurnDirection ∈ Dlr \ {∅} is the direction,

106

5. Graphical Behaviour Modelling Language

• Angle ∈ R is the value for the angle, and

• AngleUnit ∈ UA is the unit in which the angle is expressed. �

The roll is used to express the rotation of an object around either its
left-to-right axis and/or its front-to-back axis. Also here, a direction and
an angle are needed. In the former case (a rotation around the left-to-right
axis), the value for the direction can be either forward or backward and in
the latter case (a rotation around the front-to-back axis) this value can be
either left or right. Intermediate directions can be specified by combining
a direction from one axis with a direction from another axis. The angle
parameter is again needed to denote how much the object needs to be rotated
and is given by a value and a unit.

Definition 20 (roll). Let Dfb = {”forward”, ”backward”, ∅}, Dlr = {”left”,
”right”, ∅} be the sets of possible directions. A roll action ra is defined as
a triple 〈RollDirection, Angle, AngleUnit〉 where:

• RollDirection ∈ Dfb ×Dlr \ {〈∅, ∅〉} is the direction,

• Angle ∈ R is the value for the angle, and

• AngleUnit ∈ UA is the unit in which the angle is expressed. �

The resize can be used to describe a change in the scale of the object.
A resize is specified by means of a side which denotes the side from which
the object is actually being ’pulled’ or ’pushed’. The value for side can be:
front, back, left, right, top or bottom. Multiple sides can be specified in a
single resize action. This means that the object is either pulled or pushed
from all these sides simultaneously. Next, a method parameter is needed to
denote whether it is becoming larger or smaller. The value for the method
can be either shrink or blowup. Finally, an amount parameter is needed to
denote the actual amount, in absolute figures or in percents, with which the
object needs to be stretched or compressed.

Definition 21 (resize). Let F = {”front”, ”back”, ”left”, ”right”, ”up”,
”down”} be the set of possible sides. A resize action sa is defined as a
quadruple 〈SIDE, ResizeMethod, Amount, ResizeUnit〉 where:

• SIDE ⊆ F and SIDE 6= ∅ is a nonempty set of sides,

• ResizeMethod ∈ {”shrink”, ”blowup”} is the resizing method used,

• Amount ∈ R is the value for the amount, and

• ResizeUnit ∈ UD ∪ {”%”} is the unit in which the amount is ex-
pressed. �

107

5. Graphical Behaviour Modelling Language

The position is an action that allows the designer to describe a spe-
cific location for an object. Positioning is done by specifying the location
by means of exact coordinates in the global reference frame of the Virtual
Environment. Also the method saying whether the object moves suddenly
or following a smooth path has to be specified. The values for method can
be ”at-once” or ”smooth” respectively.

Definition 22 (position). A position action pa is defined as a pair 〈Location,
Method〉 where:

• Location ∈ R× R× R is a coordinate for the position, and

• Method ∈ {”at-once”, ”smooth”} is the position method used. �

The orientate is an alternative for the turn and the roll and allows
specifying a new orientation for an object. It is specified by means of giving
an orientation through exact angles for each of the three axes (Euler angles).
There are other ways of representing an orientation but this method tends to
be more intuitive for laymen. Also the method for the orientate action has to
be specified. The value can be either ”at-once” or ”smooth” for respectively
making the rotation at one sudden moment or gradually.

Definition 23 (orientate). An orientate action oa is defined as a pair
〈Orientation, Method〉 where:

• Orientation ∈ R× R× R is an orientation in Euler angles, and

• Method ∈ {”at-once”, ”smooth”} is the method used for performing
the action. �

Clearly, not all actions (behaviours) can be predefined. Therefore, there
is possibility to define custom behaviours. The custom behaviour allows
designers to incorporate newly defined actions when different behaviours
are required than the ones provided. These behaviours are coded and thus
requires programming skills. They are regarded as a normal action in our
approach. The custom behaviour is not a means to compose different pre-
defined actions together in order to create a more complex behaviour. This
type of action is specified by means of a name identifying the action and
a script holding the filename referring to the location where the code spec-
ifying the behaviour can be found. Currently, Lua [Ierusalimschy, 2003],
a well known light-weight scripting language, is supported for writing the
customized behaviours.

Definition 24 (custom). Let FILE ⊂ S be the set of all filenames. A
custom action ca is defined as a pair 〈Name, File〉 where:

• Name ∈ S is the name of the action, and

108

5. Graphical Behaviour Modelling Language

Figure 5.9: Manipulations

• File ∈ FILE is the filename referring to the script. �

The behaviours in this category are graphically represented by means of
a rectangle with two compartments (see figure 5.9). The top compartment
contains a symbol (icon) representing the kind of manipulation. The icons
are created in such a way that the meaning of the actions can be intuitively
derived from it. Furthermore, the ease of drawing them has also been a ma-
jor consideration when designing them. The top compartment also includes
the most important properties of the action itself. The second compartment
is used for the textual script that can be attached to this particular action.
A detailed discussion about the scripts is given in section 5.5. Figure 5.9a,
5.9b, 5.9c and 5.9d respectively show the graphical representation of the
move, turn, roll and resize behaviour. Figure 5.9e and 5.9f give the graph-
ical representation of the position and orientate behaviour. The graphical
representation of the custom behaviour is shown in figure 5.9g.

Note that for this range of behaviours, but also for the following be-
haviours, there are actually two different modes in which they can be rep-
resented. There is the simple view in which the compartment holding the
script can be hidden (or omitted) making the diagrams easier to read. And
there is also the detailed view where this compartment is shown.

By default, the directions (or sides) specified for the first four manipu-
lations, namely move, turn, roll and resize, are the directions (or sides) as
perceived from the object’s local reference frame. Note that, as mentioned
earlier, each object has its own reference frame. However, sometimes it may
be easier to specify that the object should perform the behaviour ”as seen
from” another object. This means that the object’s local reference frame
should not be used. Instead, an external reference frame should be used.
In the graphical notation, attaching an actor to the behaviour by means of
a so-called reference link indicates this. The existence of a reference link
indicates that the reference frame of the reference-actor must be used to
perform the primitive behaviour.

Figure 5.10a shows an example of a move behaviour with a combined
direction, forward and left, over a distance of 0.5 meters. Figure 5.10b is
an example of a resize behaviour which expresses an enlargement of the

109

5. Graphical Behaviour Modelling Language

Figure 5.10: Examples of move, resize and roll (with external reference frame)

object from the top with an amount of 10%. Note the compartment holding
the script which is omitted here. See figure 5.10c for an example of a roll
behaviour towards the forward direction over an angle of 15 degrees and
using a reference-actor Door, connected to an actor using a reference link,
meaning that the manipulation is done ”as seen from” the perspective of
the Door. Note that in these examples the actor for which the behaviour is
defined is not shown.

Transform

As seen in chapter 3, a concept (or an instance) is given a specific appear-
ance in the Virtual Environment using the mappings. So far, this appearance
was fixed throughout the complete lifetime of the application. The trans-
form behaviour allows specifying how the appearance of an object can be
changed (at runtime). Note that the object itself will not change, i.e. it will
not suddenly become an instance of another concept but only its represen-
tation in the Virtual Environment will change. Changing the representation
of an object may also imply changes in the properties of the representa-
tion. These changes can be described by means of transformation rules. A
transformation rule represents how a property of the source object must be
converted into a property of the target object. When no rules are given, a
standard one-to-one transformation will be performed for the corresponding
properties if possible; otherwise the defaults of the properties are taken.

Definition 25 (Transform). Let SHAPE be the set of predefined shapes
(as defined in definition 5). A transform action va is defined as a triple
〈Shapes, Shapet, RULE〉 where:

• Shapes ∈ SHAPE is the source shape,

• Shapet ∈ SHAPE is the target shape, and

• RULE ⊆ Attribute(Shapet) × Expression(Attribute(Shapes)) is a set
of mappings representing the transformation rules for the properties,
where Expression(Attribute(Shapes)) is a set of mathematical expres-
sions in terms of the properties of the source shape. �

110

5. Graphical Behaviour Modelling Language

Figure 5.11: Transform

A transform is graphically represented as a rectangle with three compart-
ments separated by horizontal lines (see figure 5.11a). The top compartment
holds an icon representing the type of behaviour as well as the source and
target representation of the object in the form of source TO target. The
middle compartment holds a list of all the transformation rules needed to
perform the conversion from source to target. The bottom compartment
may hold a script.

The example in figure 5.11b shows the transformation of the actor from
a cubic representation to a dome representation. In the conversion from one
representation to the other one, two rules need to be taken into account.
These are, the height of the dome is half of the height of the cube and
the radius equals the depth of the cube. The properties of respectively the
source and target are referred to as the source and target followed by a dot
followed by the name of the property.

Construct/Destruct

An important issue in building dynamic scenes is to be able to add new
objects to the Virtual Environment and to remove existing objects from the
Virtual Environment, at runtime. Therefore, the primitive behaviours called
the construct and the destruct are introduced.

The construct allows new objects to be added (or inserted) into the VE at
runtime. Upon execution of this action, the scene graph is extended with a
branch containing the new object(s). Of course, newly added objects need to
be positioned and orientated correctly. A so-called Structure Chunk is used
for this. It allows relating these new objects to already existing objects in
the scene at the time of creation. Note that (at runtime) once the construct
behaviour is completed the specification given in the Structure Chunk might
not be valid anymore due to other changes of the scene. It is also possible
to specify how the object(s) to be created, should appear in the Virtual
Environment. This is done by means of the optional method parameter.
The value for this parameter can either be appear, fade-in, grow or zoom-in.
When appear is used, the object will just appear at once. Fade-in allows
the object to gradually become visible. Grow and zoom-in make the object
entering the Virtual Environment by gradually expanding from nothing to
the actual size from either the ground (grow) or the centre (zoom-in) of the

111

5. Graphical Behaviour Modelling Language

object.

Definition 26 (Construct). For a Behaviour Definition Diagram BDD,
a construct action ba is defined as a triple 〈Name, SC, ConstructMethod〉
where:

• Name ∈ S is the name of the action,

• SC is a Structure Chunk describing the position of the constructed
actor, and

• ConstructMethod ∈ {”appear”, ”fade-in”, ”grow”, ”zoom-in”} is the
construction method used.

Furthermore,

• there is a nonempty set of links LINKSba ⊆ Link(BDD) such that: ∀
l ∈ LINKba (Source(l) = ba ∧ Target(l) ∈ Actor(BDD) ∧ Sort(l) =
”output”); which indicates that the construct action is attached to at
least one actor through an output link. �

Using the destruct, objects can be deleted from the VE at runtime.
Note that destroying an object will not only make the object disappear
from the environment, but it will also delete it from the scene graph. When
the object that needs to be destroyed is part of a connectionless complex
object, the relationships in which this object was involved will be deleted
too; when it is part of a connected complex object, the connections in which
the object is involved will be deleted as well. Similarly as for the creation of
objects, when specifying this behaviour, an optional method parameter can
be specified. The possible values for this parameter are: disappear, fade-out,
shrink and zoom-out. When disappear is used, the object just disappears
at once. When fade-out is taken as value, the object will gradually become
invisible. Shrink and zoom-out allows removing the object by gradually
becoming smaller, either towards the ground (shrink) or towards the centre
(zoom-out) of the object.

Definition 27 (Destruct). For a Behaviour Definition Diagram BDD, a
destruct action ea is defined as a pair 〈Name, DestructMethod〉 where:

• Name ∈ S is the name of the action, and

• DestructMethod ∈ {”disappear”, ”fade-out”, ”shrink”, ”zoom-out”} is
the destruction method used.

Furthermore,

• there is a nonempty set of links LINKSea ⊆ Link(BDD) such that:
∀ l ∈ LINKea (Target(l) = ea ∧ Source(l) ∈ Actor(BDD) ∧ Sort(l)
= ”input”); which indicates that the destruct action is attached to at
least one actor through an input link. �

112

5. Graphical Behaviour Modelling Language

Figure 5.12: Construct (a) and destruct (b)

The construct behaviour is graphically represented by means of a rect-
angle with three areas (see figure 5.12a). The top area contains the icon rep-
resenting the construct behaviour as well as the name of the behaviour and
the optional method parameter. The middle area is reserved for the Struc-
ture Chunk specifying how the object must be integrated into the existing
Virtual Environment, while the third area may hold a script. A construct
has at least one actor attached to it, through an output link, representing the
object that is created. The opposite behaviour, the destruct, is graphically
represented like any of the previous actions, having two compartments (see
figure 5.12b). The top compartment contains the icon representing the kind
of action (here the destruct action) together with the name of the behaviour
and optionally the method used for the destruction; the second compart-
ment may hold a script. The destruct has at least one actor attached to it,
through an input link, representing the object that is to be deleted from the
scene.

Figure 5.13: Example of construct (a), destruct (b)

Figure 5.13 presents an example of the construct and destruct behaviour.
In the construct behaviour, called BuildStore, a new building, represented
by the Store actor, will be added to the scene. The Structure Chunk spec-
ifies where the new building should be positioned. It will be located on
the right of the Bank building at a distance of 15 meters, and on-top-of
the Commercial Area. In this case, no orientation relation is given mean-
ing that the Store will be given a default orientation. With the destruct

113

5. Graphical Behaviour Modelling Language

behaviour, called DestroyStore, a building, represented by the Store actor,
will be deleted from the scene.

Grouping/Ungrouping

The second kind of scene graph modification is to be able to create at
runtime a group of objects or decompose at runtime an existing group of
objects or alternatively, to assemble and disassemble objects in the Virtual
Environment. Therefore, the primitive behaviours called grouping and un-
grouping are introduced.

The grouping behaviour is used to specify that a new object (or object
group) should be created by combining or assembling a number of objects at
runtime. In other words, new connected complex or unconnected complex
objects can be created at runtime. The objects will be taken from their
current position in the scene graph and brought together under the same
branch according to the given structure. An optional Structure Chunk is
used to describe the structure of the new object. By using spatial relations
and/or orientation relations, one can create unconnected complex objects,
and by specifying connection relations3, one can build connected complex
objects at runtime. Note that in this case, in contrast with the previous con-
struct behaviour, the Structure Chunk is used to express a complex object
and therefore, the relations that will be introduced at runtime will be fixed
relations. That is, after the behaviour has been performed for a number of
objects, the newly created object will behave as a complex object and there-
fore, if one of its parts (or the object itself) is manipulated, the relations will
ensure that the other parts will undergo the same manipulation as well. It is
also possible to specify how the object(s) should be grouped in the Virtual
Environment. This is done by means of the optional method property. The
value for this property can either be at-once or smooth. When at-once is
used, the objects will just be grouped at a sudden moment. Smooth allows
the objects to fluently move towards each other.

Definition 28 (Grouping). For a Behaviour Definition Diagram BDD, a
grouping action ga is defined as a triple 〈Name, SC, Method〉 where:

• Name ∈ S is the name of the action,

• SC is a Structure Chunk describing the position of the created group,
and

• Method ∈ {”at-once”, ”smooth”} is the grouping method used.

Furthermore,

3The connection relations were not discussed in this dissertation.

114

5. Graphical Behaviour Modelling Language

• there is a nonempty set of links LINKga ⊆ Link(BDD) such that: ∀
l ∈ LINKga (Target(l) = ga ∧ Source(l) ∈ Actor(BDD) ∧ Sort(l) =
”input”); which indicates that the grouping action is attached to at
least one actor through an input link, and

• there is exactly one link lga ∈ Link(BDD) such that: Source(lga) = ga
∧ Target(lga) ∈ Actor(BDD) ∧ Sort(lga) = ”output”; which indicates
that the grouping action is attached to exactly one actor through an
output link. �

The ungrouping behaviour is the opposite of the grouping behaviour and
removes all the fixed relationships and connections between the objects used
when the group was created. An optional Structure Chunk can be given to
describe the new positions of the objects from the group after it has been
ungrouped. Note that the relationships specified here are only valid at the
time of ungrouping and might not be valid anymore once the behaviour has
been completed. When no Structure Chunk is given, the objects will just
remain at the same positions as they were before. Also here, an optional
method parameter can be set to denote the way in which the objects are
repositioned. The value for this parameter can either be at-once or smooth.
When at-once is used, the objects will just be repositioned from one frame
to the next. Smooth allows the objects to fluently float away to the proper
positions.

Definition 29 (Ungrouping). For a Behaviour Definition Diagram BDD,
an ungrouping action ua is defined as a triple 〈Name, SC, Method〉 where:

• Name ∈ S is the name of the action,

• SC is a Structure Chunk describing the position of the separate objects,
and

• Method ∈ {”at-once”, ”smooth”} is the ungrouping method used.

Furthermore,

• there is exactly one link lua ∈ Link(BDD) such that: Target(lua) = ua
∧ Source(lua) ∈ Actor(BDD) ∧ Sort(lua) = ”input”; which indicates
that the ungrouping action is attached to exactly one actor through an
input link. �

In the graphical notation, the grouping action is represented by a rectan-
gle divided into three compartments (see figure 5.14a). In the top compart-
ment, the icon for the grouping action is shown as well as the name of the
behaviour and the optional method parameter. The middle compartment
holds the Structure Chunk. The bottom compartment may hold a script.
A grouping behaviour is related to one or more input actors (the items that

115

5. Graphical Behaviour Modelling Language

Figure 5.14: Grouping (a) and ungrouping (b)

should be used to form the group) and one output actor (the group itself).
The ungrouping behaviour is also represented as a rectangle with three com-
partments (see figure 5.14b). In the first compartment, the ungroup icon
is given as well as the name of the behaviour together with the optional
method parameter. The middle compartment holds the Structure Chunk.
The third compartment is reserved for the script. An ungrouping behaviour
is linked to only one input actor, namely the actor representing the group.
No output actors are necessary since the object(s) do already exist.

Figure 5.15: Example of grouping (a), ungrouping (b)

The example in figure 5.15a defines a behaviour, called DoAisle, which
will place two racks, Food and Non-food in our store together to form a
group called Aisle. The Structure Chunk specifies how the objects in the
group should be positioned. The Food object will be located in front of the
Non-Food object at a distance of 2 meters and both objects will be facing
each other. Figure 5.15b shows an example of an ungroup behaviour, called
UndoAisle, for an Aisle group. Since no explicit Structure Chunk is given
here, the objects will just be ungrouped without repositioning them.

Disperse/Combine

116

5. Graphical Behaviour Modelling Language

The third type of modification in the scene graph is the ability to break
at runtime an object apart into multiple smaller objects or to merge at
runtime a number of objects into one single object. To do the former, the
disperse behaviour is introduced. To do the latter, the combine behaviour
is introduced.

The disperse behaviour allows specifying that an object should be di-
vided into two (or more) pieces at runtime. What it actually does is that
the main branch of the object in the scene graph is being deleted from the
scene and new smaller branches are created for the different parts that are
introduced. Like in the construct behaviour, the new objects resulting from
this behaviour need to be placed correctly in the Virtual Environment. A
Structure Chunk is used to specify how the newly created objects should be
related to each other and how they should be related to existing objects. If
a disperse behaviour is invoked on a complex object (connected or uncon-
nected), it will remove all the relations that exist between the (parts of the)
complex object. This implies that if the user manipulates one of the objects
of the original complex object, the other objects of the former object will not
be manipulated accordingly since there is no physical connection anymore.

Definition 30 (Disperse). For a Behaviour Definition Diagram BDD, a
disperse action da is defined as a pair 〈Name, SC〉 where:

• Name ∈ S is the name of the action, and

• SC is a Structure Chunk describing the dispersed object.

Furthermore,

• there is a nonempty set of links LINKda ⊆ Link(BDD) such that: ∀
l ∈ LINKda (Source(l) = da ∧ Target(l) ∈ Actor(BDD) ∧ Sort(l) =
”output”); which indicates that the disperse action is attached to at
least one actor through an output link, and

• there is exactly one link lda ∈ Link(BDD) such that: Target(lda) = da
∧ Source(lda) ∈ Actor(BDD) ∧ Sort(lda) = ”input”; which indicates
that the disperse action is attached to exactly one actor through an
input link. �

The combine behaviour is the reverse of the disperse behaviour and al-
lows bringing together a number of objects and merge them into one single
object according to the specification that is given by means of a Structure
Chunk.

Definition 31 (Combine). For a Behaviour Definition Diagram BDD, a
combine action aa is defined as a pair 〈Name, SC〉 where:

• Name ∈ S is the name of the action, and

117

5. Graphical Behaviour Modelling Language

• SC is a Structure Chunk describing the combined object.

Furthermore,

• there is a nonempty set of links LINKaa ⊆ Link(BDD) such that:
∀ l ∈ LINKaa (Target(l) = aa ∧ Source(l) ∈ Actor(BDD) ∧ Sort(l)
= ”input”); which indicates that the combine action is attached to at
least one actor through an input link, and

• there is exactly one link laa ∈ Link(BDD) such that: Source(laa) = aa
∧ Target(laa) ∈ Actor(BDD) ∧ Sort(laa) = ”output”; which indicates
that the combine action is attached to exactly one actor through an
output link. �

The difference between the disperse behaviour and the ungrouping be-
haviour is that in the latter the output objects are not created but already
existed while in the former they did not exist beforehand. Also the original
object will be destroyed in case of a disperse. In the same way the combine
behaviour is similar to the grouping but with this difference that the input
objects do not exist anymore once the behaviour has been performed.

Figure 5.16: Combine (a) and disperse (b)

Both the disperse and the combine behaviours are graphically repre-
sented by means of a rectangle divided into three compartments (see figure
5.16a and b). The top compartment contains the icon for the action (dis-
perse or combine) as well as the name given to this behaviour. The middle
compartment is used to specify the Structure Chunk, describing the static
structure of the part-objects (for the disperse) or the new object (for the
combine). The third compartment may hold the script for this behaviour.
The disperse behaviour has a single actor attached to it through an input
link, representing the object that will be divided, and one or more actors
through an output link, representing the different parts. The combine be-
haviour has one or more input actors, representing the parts, and only one
output actor, representing the newly created object.

Figure 5.17 shows an example of a disperse and a combine action. In the
first example, BreakShelve, the Shelve object will be partly broken on the
right side. In particular, the object is dispersed into two separate objects,
namely the Shelve Piece and the Right Support. According to the specifica-
tion given in the Structure Chunk, the ShelvePiece will be positioned 1 cm

118

5. Graphical Behaviour Modelling Language

Figure 5.17: Example of disperse (a), combine (b)

left-of the RightSupport. The second example is the opposite of the first
and glues three parts namely Shelve Piece, Left Support and Right Support
together into one whole Shelve by putting the ShelvePiece 1 cm left-of the
RightSupport and 1 cm right-of the LeftSupport.

5.3.3.2 Composite Behaviours

A composite behaviour is a composition of two or more behaviours (called
sub-behaviours) that are combined with each other in a well-defined way.
Composite behaviours enable the designer to describe more complex be-
haviours. A sub-behaviour of a composite behaviour can be either a prim-
itive behaviour of any type (the actions discussed above) or a composite
behaviour on its own. The composite behaviour is a very powerful mod-
elling element. It not only allows specifying more complex behaviours, it
provides the designer an effecient abstraction mechanism. Large behaviours
can be broken down into smaller and less complex behaviours. Composite
behaviours can be parameterized by means of specifying attributes for it.
The attributes can be passed to the sub-behaviours by their name. This kind
of hierarchical structuring may improve the maintainability, reusability and
understandability of the behaviour specifications.

Definition 32 (Composite Behaviour). For a Behaviour Definition Di-
agram BDD, a composite behaviour cb is defined as a triple 〈Name, SUB-
BEHAVIOUR, ATTRIBUTE〉 with:

• Name ∈ S is the name of the composite behaviour,

• SUBBEHAVIOUR ⊂ Behaviour(BDD) is the set of sub-behaviours,
and

119

5. Graphical Behaviour Modelling Language

• ATTRIBUTE is the set of attributes (as defined in definition 2) of
the composite behaviour where the values of the attributes represent
the default values for the composite behaviour.

The following function symbols are defined in this context:

• Attribute(cb) gives the set of attributes ATTRIBUTE of the compos-
ite behaviour cb

• SubBehaviour(cb) gives the set of sub-behaviours SUBBEHAVIOUR
of the composite behaviour cb �

Figure 5.18: External Behaviour (a) and Composite Behaviour (b)

The graphical notation of a composite behaviour is a rectangle divided
into three compartments (see figure 5.18b). The top compartment shows
the name of the behaviour. The second compartment holds a (nested) be-
haviour definition diagram representing the composite behaviour (using the
operators described in the next section). In some situations, it may be more
convenient to hide the nested diagram of a composite behaviour. For ex-
ample if it is too large. Then, the area of the nested diagram is left empty
(see figure 5.18a) and the content is shown in a separate diagram elsewhere.
However, using this alternative notation does not change the semantics of
the composite behaviour. The third compartment holds the script and/or
the attributes belonging to this composite behaviour.

Figure 5.19 shows an example of a composite behaviour. The behaviour
called SmoothLeftTurn is composed of two sub-behaviours (actions), namely
a move and a turn. At this point, it is not important to know how these two
actions are combined to each other. We will give more details about this
in the following section. For now, let us assume that the two actions are
executed simultaneously. In the simplest case, all the information for the
sub-behaviours is explicitly specified such as in the turn action. However,
one can also define an attribute and parameterize the sub-behaviour with
this attribute. This is the case in the move action where the attribute
distance is defined and used in the action to replace an actual distance.

5.3.4 Operators

In the previous sections, only the basic actions and behaviours were dis-
cussed. However, in order to build complex behaviours, a mechanism is re-

120

5. Graphical Behaviour Modelling Language

Figure 5.19: Example of composite behaviour

quired to combine the different primitive actions, or composite behaviours,
together. In our approach, this is achieved using the concept of operator. In
many approaches we discussed in the related work chapter, we found that in
most cases, the mechanism for combining different behaviours was often very
primitive. Therefore, we searched for different ways of combining behaviours
in order to provide the designer with a more rich set of modelling concepts.
Four different kinds of operators are introduced in this dissertation, the
temporal operators, the lifetime operators, the conditional operator and the
influential operator. We first define the concept of operator in general; next
the different types of operators are explained and defined.

Definition 33 (Operator). An Operator is either a Temporal Operator, a
Lifetime Operator, a Conditional Operator, or an Influential Operator. �

The different kinds of operators are discussed in more detail in the fol-
lowing sub-sections.

5.3.4.1 Temporal Operators

In the same way that people have a mental model of how objects in the Vir-
tual Environment are related to each other, they also have a mental model
of when actions should occur inside the Virtual Environment and how these
actions are related to each other. The temporal operators are used for ex-
pressing this. A temporal operator allows specifying, in a natural way, the
order of the different actions and behaviours throughout time. They provide
a more intuitive way for specifying time-dependencies between behaviours
than the typical keyframe animation methods found in most Virtual Re-
ality modelling tools. Furthermore, they allow synchronizing behaviours.
Different temporal models exist to describe timing. There are the point-
based models in which relations only use zero-length moments in time are
described [Hirzalla et al., 1995]. The interval-based models define complete
time intervals for which also a number of relations are created [Allen, 1991].
A different kind of conceptual model capturing the essential semantics of
time-varying information is described in [Spaccapietra et al., 1998]. The
temporal operators employed here, are based on the binary interval rela-
tions. However, some adaptations were needed in order to completely spec-
ify relationships between behaviours. This is because some of the original

121

5. Graphical Behaviour Modelling Language

relationships were underspecified for our purpose. Other operators were not
included at this moment but could be included in the future. The operators
currently supported in our approach are:

• before(x, y, t): Behaviour x ends t seconds before the behaviour y
starts; there is a gap of t seconds.

• meets(x, y): Behaviour y starts immediately after the end of be-
haviour x.

• overlaps(x, y, t): Behaviour y starts t seconds before the end of
behaviour x; there is an overlap of t seconds.

• during(x, y, t1, t2): Behaviour x starts t1 seconds after the start of
behaviour y and ends t2 seconds before the end of behaviour y.

• starts(x, y, [. . .]): Behaviour x and behaviour y are initiated at the
same moment.

• ends(x, y, [. . .]): Behaviour x and behaviour y finish at the same
moment.

• equals(x, y, [. . .]): Behaviour x and behaviour y both start and
finish at the same moment.

All these temporal operators, except equals, have an inverse, namely
after, met-by, overlapped-by, contains, started-by and ended-by. In
their standard form, the operators are all binary relations connecting two
behaviours. However, some of the operators (namely starts, ends and equals)
additionally have an n-ary variant meaning that one operator can connect
multiple behaviours. This is indicated by the [. . .] notation.

Definition 34 (Temporal Operator). For a Behaviour Definition Dia-
gram BDD, a temporal operator to is defined as either:

• a triple 〈Behaviours, Behaviourt, IR〉 where IR ∈ {”meets”, ”met-
by”, ”equals”, ”started-by”, ”ended-by”, ”starts”, ”ends”},

• a quintuple 〈Behaviours, Behaviourt, IR, Time, TimeUnit〉 where IR
∈ {”before”, ”after”, ”overlaps”, ”overlapped-by”},

• a 6-tuple 〈Behaviours, Behaviourt, IR, Time1, Time2, TimeUnit〉
where IR ∈ {”during”, ”contains”},

and where:

• Behaviours ∈ Behaviour(BDD) is the source behaviour,

• Behaviourt ∈ Behaviour(BDD) is the target behaviour,

122

5. Graphical Behaviour Modelling Language

• Time, Time1, Time2 ∈ R are the time identifiers, and

• TimeUnit ∈ UT is the unit in which the time identifiers are expressed.

The following function symbols are defined in this context:

• Source(to) gives the source behaviour Behaviours of operator to

• Target(to) gives the target behaviour Behaviourt of operator to �

5.3.4.2 Lifetime Operators

Sometimes, there are situations that it should not be possible to execute
some behaviours of an object, or that it must be possible to put an executing
behaviour on hold and resume it afterwards. The second type of operator
is therefore the lifetime operator. They are meant to allow this kind of
authority over behaviours. The lifetime operators allow the designer to
describe that one behaviour (source) controls the lifetime (being enabled or
not, active or not) of other (target) behaviour(s). The following list gives
the overview of the different lifetime behaviours supported in our approach.
The notation [. . .] is used to represent that more than two behaviours can
be specified:

• enable(x, y, [. . .]): Behaviour y gets enabled when behaviour x
terminates.

• disable(x, y, [. . .]): Behaviour y is disabled when behaviour x ter-
minates; behaviour y cannot be triggered anymore until it has been
enabled again.

• suspend(x, y, [. . .]): When behaviour x terminates, behaviour y
is deactivated and holds its state in order to be resumed later on;
behaviour y can only be resumed or disabled afterwards.

• resume(x, y, [. . .]): Behaviour y is reactivated when behaviour x
terminates; it allows a behaviour to continue to operate after it has
been suspended; the behaviour continues from where it has stopped.

Definition 35 (Lifetime Operator). For a Behaviour Definition Diagram
BDD, a lifetime operator lo is defined as a triple 〈Behaviours, Behaviourt,
Tense〉 where:

• Behaviours ∈ Behaviour(BDD) is the source behaviour,

• Behaviourt ∈ Behaviour(BDD) is the target behaviour, and

• Tense ∈ {”enable”, ”disable”, ”suspend”, ”resume”} is the particular
type of operator used.

123

5. Graphical Behaviour Modelling Language

The following function symbols are defined in this context:

• Source(lo) gives the source behaviour Behaviours of operator lo

• Target(lo) gives the target behaviour Behaviourt of operator lo �

5.3.4.3 Conditional Operator

There are situations where it is important to have control over the flow of
the actions by means of conditions. For this, the conditional operator is
used. When using a conditional operator, a conditional expression and all
possible behaviours have to be defined. Each behaviour needs to be linked
with a possible outcome (value) of the conditional expression. The behaviour
that will be invoked depends on the value of the conditional expression. A
condition results in true or false and this value will actually trigger the
corresponding behaviour. The condition itself can be described by means of
a number of relational operators (<, >, ≤, ≥, =). In addition, the standard
arithmetic operators may be used (+, −, /, ∗). The conditions can also be
combined or negated using the boolean operators (AND, OR, NOT). The
static properties of the object involved in the behaviour can also be used.
They are referenced by means of the name of the actor followed by the name
of the property.

Definition 36 (Conditional Operator). Let BC be the set of boolean
conditions. For a Behaviour Definition Diagram BDD, a conditional oper-
ator co is defined as a quadruple 〈Behaviours, Behaviourt1, Behaviourt2,
Condition〉 where:

• Behaviours ∈ Behaviour(BDD) is the source behaviour,

• Behaviourt1 ∈ Behaviour(BDD) and Behaviourt2 ∈ Behaviour(BDD)
are the target behaviours associated with the true and false condition
respectively, and

• Condition ∈ BC is the boolean condition for this operator.

The following function symbols are defined in this context:

• Source(co) gives the source behaviour Behaviours of operator co

• TargetT(co) gives the target behaviour Behaviourt1 of operator co

• TargetF(co) gives the target behaviour Behaviourt2 of operator co �

124

5. Graphical Behaviour Modelling Language

5.3.4.4 Influential Operator

In addition to the operators in which a behaviour depends on another be-
haviour by means of time, or by means of a condition, there might be the
case in which the execution of one behaviour is influenced by the execu-
tion of another behaviour. Therefore, an influential operator is introduced.
The influential operator indicates the inter-relationships of the behaviours
of the objects involved in the relation. It also tells us how the manipulation
of one object can influence the movement of another object. When using
an influential operator, an expression needs to be given describing the cou-
pling between the behaviours. The expression is described by means of a
mathematical equation describing the relationship in the properties of one
behaviour with the properties of another behaviour. The use of the influ-
ential operator is extremely useful when modelling mechanical devices e.g.,
gears, belts and pulleys. For example, in a rack-and-pinion gear (which con-
verts a rotation into a linear motion), the pinion is rotating and this rotation
engages the movement of the rack respectively according to the ratio given
in the operator (e.g., x = 3/4 y).

Definition 37 (Influential Operator). Let ME be the set of mathemati-
cal equations. For a Behaviour Definition Diagram BDD, an influential op-
erator io is defined as a triple 〈Behaviours, Behaviourt, Influence〉 where:

• Behaviours ∈ Behaviour(BDD) is the source behaviour,

• Behaviourt ∈ Behaviour(BDD) is the target behaviour, and

• Influence ∈ ME is the mathematical equation representing the inter-
relationship.

The following function symbols are defined in this context:

• Source(io) gives the source behaviour Behaviours of operator io.

• Target(io) gives the target behaviour Behaviourt of operator io. �

Figure 5.20: Operators

In the graphical notation, an operator is drawn as a rectangle with
rounded corners containing an icon that indicates the type of operator (see
figure 5.20). Figure 5.20a shows the notation for a temporal operator, figure

125

5. Graphical Behaviour Modelling Language

5.20b shows the notation for a lifetime operator, figure 5.20c shows the no-
tation for a conditional operator, and figure 5.20d shows the notation for an
influential operator. The graphical element is connected to the behaviours
involved by single solid lines. The arrow on the connection line indicates the
source and the target behaviour as well as the reading direction (see below
for an example). Below the icon indicating the type of operator, there is
some space available to give the parameters of the operator.

Figure 5.21: Example of temporal operator (a) and lifetime operator (b)

Figure 5.21a shows an example of the use of a temporal operator. The
figure can be read as follows: a moving action being a move of 5 meters
in the forward direction needs to happen 5 seconds before a turning action
of 90 degrees to the right is performed. Figure 5.21b illustrates a lifetime
operator. Here, the execution of the UnlockDoor behaviour will enable the
OpenDoor behaviour (which has previously been disabled in some other
way).

5.3.5 Example

In this section, an example is given which illustrates the use of a Behaviour
Definition Diagram and the modelling concepts introduced in the previous
sections. The example is taken from an industrial context and presents the
definition of a virtual robot in a manufacturing plant (see figure 5.3.5).

There are three composite behaviours defined. For the actor, called Mas-
ter, the composite behaviour ProductionCycle is defined. This behaviour has
a number of sub-behaviours. It is composed of three primitive behaviours
(or actions) and two composite behaviours. These sub-behaviours are com-
bined with each other by means of the temporal operators. It performs
the following scenario of synchronized movements. The object first moves
1.5 meters forward, and then immediately the composite behaviours on its
parts (LeftArmMovement and RightArmMovement) are started, as well as
an left movement of 0.5 meters. After the forward movement has ended,
the Master turns right over 90 degrees and this movement needs to end at
the same time as the left movement. The details about the composite be-
haviours, LeftArmMovement and RightArmMovement, are omitted in the
diagram. Furthermore, the diagram also shows a powerOn and a PowerOff
behaviour for a Control actor. Both these behaviours only consist of one sub-
behaviour (action), they will roll over the Control over 30 degrees. Executing
the PowerOn and PowerOff behaviour will enable, respectively disable, the

126

5. Graphical Behaviour Modelling Language

ProductionCycle behaviour of the Master. These last actions are specified
by means of the lifetime operators enable and disable.

Figure 5.22: Behaviour Definition Diagram: Virtual Robot

5.4 Behaviour Invocation Diagram

As explained before, the definition of behaviours is independent from the
specification of the actual objects in the Virtual Environment. The Be-
haviour Invocation Diagram (BID) can be seen as a sort of instantiation,
at a conceptual level, of a Behaviour Definition Diagram. It parameterizes
and assigns behaviours defined earlier to actual objects populating the Vir-
tual Environment. Furthermore, it also denotes the events that may trigger
these behaviours for the particular objects. This improves reusability and
enhances flexibility since the same behaviour definition can be reused for
different objects (if they have the same behaviour) and the same behaviour
can be triggered in different ways (e.g., by some user interaction or by a
collision with another object). A BID is graphically represented as a graph
containing a number of objects (either concepts or instances) connected to
behaviour references which are linked to events that may trigger them. A
BID is typically created by first defining an object, and link this object
to an actor defined in a BDD. As soon as this is done, the behaviours for
this object are known and they can be instantiated through the behaviour
references. Finally, the events are specified defining what will trigger the
behaviours (behaviour references). The different components used in a BID
will now be discussed. More formally, we define a Behaviour Invocation

127

5. Graphical Behaviour Modelling Language

Diagram as follows:

Definition 38 (Behaviour Invocation Diagram). A Behaviour Invoca-
tion Diagram BID is defined as a quadruple 〈OBJECT, REFERENCE,
EVENT, LINK〉 where:

• OBJECT is a set of objects,

• REFERENCE is a set of behaviour references,

• EVENT is a set of events, and

• LINK is a set of links between any two objects, behaviour references
or events.

The following function symbols are defined in this context:

• Object(BID) gives the set of objects OBJECT of the BID

• Reference(BID) gives the set of behaviour references REFERENCE
of the BID

• Event(BID) gives the set of events EVENT of the BID

• Link(BID) gives the set of links LINK of the BID �

In the following sub-sections, the different elements, namely object, be-
haviour reference, events, and special links are further defined. First, we
define the concept link in the context of a Behaviour Invocation Diagram.

Definition 39 (Link). For a Behaviour Invocation Diagram BID, a link l

is defined as a triple 〈Source, Target, Sort〉 where:

• Source ∈ Object(BID) ∪ Reference(BID) ∪ Event(BID) is the source
element,

• Target ∈ Object(BID) ∪ Reference(BID) ∪ Event(BID) is the target
element, and

• Sort ∈ S is the type of link.

The following function symbols are defined in this context:

• Source(l) gives the source Source of link l

• Target(l) gives the target Target of link l

• Sort(l) gives the sort Sort of link l �

128

5. Graphical Behaviour Modelling Language

5.4.1 Object

An important modelling construct for creating a Behaviour Invocation Di-
agram is the concept of object. As discussed in chapter 3, in the VR-WISE
approach, the Virtual Environment is populated by means of a number of in-
stances. These instances are instantiations of concepts defined at the domain
level. The object provides the link between the behaviour specifications and
the static structure specifications. Using a BID, an instance of a concept
can be given a number of behaviours (defined in a BDD). However it is also
possible to connect behaviours to concepts itself. By assigning a behaviour
to a concept, all instances of that concept will receive this behaviour. When
a behaviour is assigned to an instance, only that particular instance will
receive the behaviour. The assignment of a behaviour to an instance or to
a concept is realized by assigning the actor for which the behaviour was
defined to this instance or concept. Note that both a concept and an in-
stance can have multiple actors assigned to it at the same time, meaning
that all the behaviours from each of these actors are assigned to the concept
or instance.

Definition 40 (Object). Let BDD be a Behaviour Definition Diagram,
CONCEPT be a set of concepts, INSTANCE be a set of instances (as
defined in definition 3 and 4). An object o is defined as a pair 〈Entity,
ACTOR〉 where:

• Entity ∈ CONCEPT ∪ INSTANCE is either a concept or an in-
stance,

• ACTOR ⊆ Actor(BDD) is a nonempty set of actors this object is
referring to, and

• the following must hold: ∀ e ∈ ACTOR, ∀ p ∈ Property(e), ∃! a ∈
Attribute(Entity) (Name(p) = Name(a) ∧ Unit(p) = Unit(a)). �

Figure 5.23: Concept (a) and instance (b)

In the graphical representation of a BID, a concept is drawn as a solid-
line rectangle while an instance is drawn using an ellipse shape (see figure
5.23). The name of the object as well as the name(s) of the actor(s) that are
assigned to the object are written inside the shape, as follows name AS actor
[, actor,. . .]. If a list of objects, or a single item from a list of objects is to be
represented, the same syntax is used as for the actor. Note that the objects

129

5. Graphical Behaviour Modelling Language

in the Virtual Environment have a number of properties and these properties
are those making an object compatible with a particular actor, meaning that
the object can only be linked to an actor if it has the properties required
by the actor(s). These properties are not depicted within the BIDs since
they are defined in the Static Structure Diagram (SSD). Remember that a
Static Structure Diagram is a diagram that is created during the Domain
Specification or the World Specification (cfr. chapter 3), and thus contains
the complete static structure of the Virtual Environment, i.e. the objects
with their properties, relations and positions. Defining the properties here
would result in redundancy in the conceptual models.

Figure 5.24: Example of concept (a) and instance (b)

The examples shown in figure 5.24 illustrate the use of the object. In
the first graphical notation (a), a concept called Entrance is assigned to the
Door actor resulting in the fact that all instances of Entrance (e.g., of a
store) will have the behaviours defined for the actor Door. In the second
example (b), the instance called Gate is assigned to the Sliding Door actor
meaning that only the Gate will have the behaviours that are defined for
the Sliding Door actor.

5.4.2 Behaviour Reference

The second modelling concept in a behaviour invocation is the behaviour
reference. The behaviour reference actually provides the link between the
Behaviour Invocation Diagram and the Behaviour Definition Diagram. It
can be seen as a sort of reference or pointer to a behaviour described in
a Behaviour Definition Diagram. This element also gives the designer the
possibility to parameterize the behaviour by giving concrete values to the
parameters defined for the behaviour. Furthermore, a behaviour reference
is also linked to the events that can be used to trigger the behaviour for the
particular object. Events are discussed later on. Also note that a behaviour
reference in the BID can be given a different name than the name of the
behaviour to which it refers. Finally, a behaviour reference is also linked to
the object(s) to which this behaviour belongs.

Definition 41 (Behaviour Reference). Let BDD be a Behaviour Defi-
nition Diagram. A behaviour reference br is defined as a triple 〈Name,
Behaviour, ATTRIBUTE〉 where:

• Name ∈ S is the name of the behaviour reference,

130

5. Graphical Behaviour Modelling Language

• Behaviour ∈ Behaviour(BDD) is the behaviour that this element is
referring to,

• ATTRIBUTE is the set of attributes, representing the actual at-
tributes for the behaviour Behaviour, and

• the following must hold: ∀ abr ∈ ATTRIBUTE, ∃! aBehaviour ∈ At-
tribute(Behaviour) (Name(aBehaviour) = Name(abr) ∧ (Unit(aBehaviour)
= Unit(abr)).

The following function symbols are defined in this context:

• Behaviour(br) is the behaviour Behaviour to which behaviour reference
br is referring

• Attribute(br) gives the set of attributes ATTRIBUTE of the be-
haviour reference br �

Figure 5.25: Behaviour reference (a) and an example (b)

The graphical notation for the behaviour reference is derived from the
graphical notation of a behaviour used in the BDDs. It consists of a rectangle
containing two compartments (see figure 5.25a). In the top compartment,
the name of the behaviour is given as well as the name of the behaviour to
which it refers using the syntax name : reference. The bottom compartment
is again reserved for a script and will mostly be used to denote the values
of the parameters required. A behaviour reference can have a number of
events attached to it through a so-called triggers link. It can also have a
number of objects attached to it through a so-called from link.

Figure 5.25b shows an example of a behaviour, called Sesame, referring
to the OpenDoor behaviour that was defined earlier.

5.4.3 Causal Relation

Causal relations are used in Behaviour Invocation Diagrams to indicate rela-
tionships between behaviour references in a Behaviour Invocation Diagram.
In fact, they are instantiations of relationships (implicitly or explicitly) de-
fined between behaviours in a Behaviour Definition Diagram. As mentioned
earlier, a composite behaviour may contain different sub-behaviours. This
means that there is a relationship between the composite behaviour and
each of its sub-behaviours. This is illustrated in figure 5.26a where A1 and
A2 are sub-behaviours of A, A3 and A4 are sub-behaviours of A2, and B1

131

5. Graphical Behaviour Modelling Language

and B2 are sub-behaviours of B. Behaviours may also be related (connected
to) explicitly by means of operators (e.g., temporal operators, lifetime op-
erators,. . .). In figure 5.26a, an operator exists between A4 and B1, and
between B and C. These implicit and explicit relationships are represented
in a BID by means of causal relations. The relations derived from the decom-
position of a composite behaviour into composite sub-behaviours are called
Use relations (the behaviour uses the sub-behaviour to propertly execute).
The relations derived from an explicit relationship between behaviours by
means of an operator are called Call relations (the behaviour calls another
behaviour in its execution). This is illustrated in figure 5.27b. These rela-
tionships and their associated (sub-)behaviours also need to be represented
in a BID because these behaviours might also require parameters and might
involve other actors than the ones attached to the composite behaviour.
These parameters as well as these actors need to be specified.

Figure 5.26: Schematic Behaviour Definition Diagram (a), Behaviour Invocation
Diagram (b)

Definition 42 (Use Relation). Let BDD be a Behaviour Definition Di-
agram. Let cb ∈ Behaviour(BDD) be a composite behaviour in BDD and
bx ∈ SubBehaviour(cb), then a Behaviour Invocation Diagram BID with be-
haviour references brs and brt where Behaviour(brs) = cb and Behaviour(brt)
= bx, should contain a link l, called use causal relation, where:

• Source(l) = brs is the source of the link,

• Target(l) = brt is the target of the link, and

• Sort(l) = ”use”. �

Definition 43 (Call Relation). Let BDD be a Behaviour Definition Di-
agram. Let c ∈ Operator(BDD) be an operator in BDD where:

132

5. Graphical Behaviour Modelling Language

• Source(c), Target(c) ∈ Behaviour(BDD) is a behaviour in BDD,

then a Behavior Invocation Diagram BID with behaviour references brs and
brt where Behaviour(brs) = Source(c) and Behaviour(brt) = Target(c), should
contain a link l, called call causal relation, where:

• Source(l) = brs is the source of the link,

• Target(l) = brt is the target of the link, and

• Sort(l) = ”call”. �

A causal relation is represented graphically as a dashed arrow from the
dependent behaviour (the behaviour that is using or calling) to the depen-
dending (the behaviour that is being used or called). The arrow has to
be labelled with the type identifier (either ”call” or ”use”) in angle qoutes.
Figure 5.27a shows the notation for the use relation and Figure 5.27b shows
the notation for the call relation.

Figure 5.27: Causal Relation: use (a) and call (b)

5.4.4 Events

Using objects and behaviour references, we are able to specify the behaviour
for the different objects. The only thing that is left to specify is when the
behaviours should be invoked. In our approach, the event concept is used
as a high-level modelling construct for specifying when behaviours should
be triggered. There are different types of events supported in our approach:
context events, time events, user events, and object events. We again define
the concept of event in general first; next, the different types of events are
explained and defined.

Definition 44 (Event). An Event is either a Context Event, a Time Event,
a User Event, or an Object Event. �

We now discuss and define each type of event in more detail.

5.4.4.1 Context Event

The first type of event, the context event, enables the designer to specify
the context (or situation) in which the behaviour of an object needs to be

133

5. Graphical Behaviour Modelling Language

invoked e.g., when the temperature goes beyond 25 degrees Celsius. A con-
text is defined as a condition on some entities. Entities are objects, users, or
the environment in general, considered to be relevant for the behaviour in
question. A simple context is defined using the following syntax [property,
subject, relater, value]4. The property refers to the information this context
is describing something about, subject is the user or any other object, or
thing with which the context is concerned, value is the actual value asso-
ciated with the property of the subject, and relater is a binary predicate
that relates the property of the subject and the value. A relater can be a
comparison operator (such as =, >, or <), or a self-defined predicate. Using
simple contexts, more complex contexts can be constructed by combining
contexts using the boolean operators AND, OR and NOT. An example of
a context is [temperature, Store, >, 25]. This context could be used to for
example open the windows when the temperature of the Store goes beyond
25 degrees Celsius.

Definition 45 (Context Event). Let CONCEPT be a set of concepts,
INSTANCE be a set of instances (as defined in definition 3 and 4). A
context event se is defined as either a simple context event of a complex
context event where:

• A simple context event sce is defined as a quadruple 〈Property, Entity,
Relater, Value〉 where:

– Entity ∈ CONCEPT ∪ INSTANCE is the subject,

– Property ∈ Attribute(Entity) is the property of the subject,

– Relater ∈ S is the relater predicate, and

– Value ∈ S ∪ R is the value of the property.

• A complex context event cce is defined as a triple 〈Context1, Context2,
Join〉 where Context1, Context2 are a simple or complex context events
and Join ∈ {”AND”, ”OR”, ”NOT” } is the boolean operator com-
bining the context events. �

It is interesting to note that the Virtual Environment, the space on it-
self or the user, can be given as the subject of a context. This is done
using the Environment or User identifier respectively. In our approach, a
number of properties of the environment are predefined such as the grav-
ity, temperature, humidity, pressure, and so on, which can be used as the
information-item within the context. An example of such a context would
be [humidity, Environment, =, 96]. This predefined list can easily be mod-
ified or extended by the designer by incorporating any domain-dependant
environmental information.

4This structure should typically be interpreted as ”the property of subject is relater
value”

134

5. Graphical Behaviour Modelling Language

5.4.4.2 Time Event

A time event allows the designer to specify a moment in time on which
the behaviour needs to be triggered. There are three different methods to
specify the moment in time:

The first method is through a relative time specified in the following
syntax hh:mm:ss (e.g., 1:30 meaning 1 minute 30 seconds) representing the
time that has to pass counted from the start of the execution of the Virtual
Environment. Note that not all the components of the relative time need
to explicitely specified. For the ones that are omitted, a default is inferred.
The result will be that the corresponding behaviour will be triggered when
the prescribed amount of time has passed after starting the application.

The second method is to give an absolute time by means of a date-
time through the following syntax YYYY-MM-DDThh:mm:ss (e.g., 2007-
02-07T15:19:30). Note that not all of the components of the absolute time
need to be explicitly specified, some could be omitted and for those a default
one is inferred. The result will be that when the specified moment in time
is reached, an event is sent to the attached behaviour, which will then be
triggered.

The third method is to give a more extended timing schedule in the form
of a recurrence pattern. This is done using the syntax duration [FROM
begin [TO end]]. The duration indicates the time between two occurrences
(the in-between time). An optional from-clause sets the starting date-time
for the schedule while the to-clause sets the end date-time of the schedule.
Every time the schedule is satisfied, an event will trigger the associated
behaviour. For example: 1:30 FROM 13:00 TO 14:00 to indicate ”every
1 minute 30 seconds between 1 PM and 2 PM”, or 1:00:00 FROM 2007-
04-15, indicating ”every hour from April 15th”.

Definition 46 (Time Event). Let TIME ⊂ S be the set of all formatted
time strings. A time event te is defined as a pair 〈Kind, DateTime〉 where:

• Kind ∈ {”absolute”, ”relative”, ”recurrence”} is the type of event, and

• DateTime ∈ TIME is the string denoting the actual time(s) the event
should fire. �

5.4.4.3 User Event

Using a user event, the designer can specify that an action performed by
the user, should be used as the triggering mechanism for the associated
behaviour. The following user events are supported:

• OnSelect : The behaviour will be triggered when the main object of the
behaviour (the object which is connected to the behaviour via a from

135

5. Graphical Behaviour Modelling Language

link), is selected, i.e. when it is clicked with the mouse or selected
through another selection technique.

• OnTouch: The behaviour will be triggered when the user has the
mouse or any other pointing device over the main object.

• OnVisible: The behaviour will be triggered when the user can see a
specific object as he navigates inside the world.

• OnProxy(p): The behaviour will be triggered when the user has en-
tered a particular perimeter p, given by a distance and a unit, around
the object.

• OnKeyPress(k,m): The behaviour will be triggered when a particular
key-combination, given by a key k and a mask m, is pressed on the
keyboard.

Next to these predefined user actions, also custom-made actions can
be defined which allow behaviours to be triggered as a reaction on more
complicated user interaction techniques (e.g., using menus, dialogs).

Definition 47 (User Event). A user event ue is defined as a pair 〈Interaction,
ATTRIBUTE〉 where:

• Interaction ∈ {”OnSelect”, ”OnTouch”, ”OnVisible”, ”OnProxy”, ”On-
KeyPress”} is the type of interaction performed by the user, and

• ATTRIBUTE is the set of attributes (as defined earlier) passed to
the event. �

5.4.4.4 Object Events

The last type of event, the object event represents the event that is fired
when two (or more) objects in the Virtual Environment interact with each
other. Two types of object events are distinguished.

The collision event allows reacting to the situation where an object en-
counters an obstacle in the form of another object, i.e. when a collision
between two objects occurs. This event needs to be further specified by
means of a number of objects given as a parameter to the event. Note that
the objects can be either concepts (meaning that a collision between all ob-
jects of the given concepts will be caught) or instances (meaning that only
the collision between particular objects will be caught).

Definition 48 (Collision Event). Let CONCEPT be a set of Concepts
and INSTANCE be a set of Instances (as defined in definition 3 and 4).
A collision event ce is defined as a monad 〈ENTITY〉 where ENTITY ⊆
CONCEPT ∪ INSTANCE is the set of objects for which collision needs
to be caught. �

136

5. Graphical Behaviour Modelling Language

In addition, the constraint event allows to react when the limit of a par-
ticular constraint has been reached, or in the worst case, when a constraint
has been violated. The constraint this event is referring to, is given by
means of a first parameter. A second parameter is the set of named limits
of the constraint that will fire the event and refer to the lower bound, upper
bound or both.

Definition 49 (Constraint Event). Let CONSTRAINT be a set of con-
straints (as defined in definition 6). A constraint event re is defined as a
pair 〈Constraint, LIMIT〉 where:

• Constraint ∈ CONSTRAINT is the constraint, and

• LIMIT ⊆ Limit(Constraint) is the set of limits to be taken into ac-
count for Constraint. �

Figure 5.28: Events

An event is visualized in the diagram language as a flattened hexagon
(see figure 5.28). The type of the event is indicated by an icon in the upper
area. In the lower area, the additional information related to the event (such
as the parameters) can be given. Figure 5.28a shows the graphical notation
of a context event, figure 5.28b shows the notation of a time event, 5.28c
gives the notation of a user event while figure 5.28d gives the representation
of the object event.

Figure 5.29: Example of context event (a), time event (b), user event (c) and
object event (d)

In figure 5.29, examples are given. Figure 5.29a shows a context event
in which a behaviour (for example OpenDoor) would be invoked when the
temperature of the Store gets above 25 degrees Celsius. Figure 5.29b shows
a relative time event. In this case, the behaviour linked to this event would
be triggered 1 minute 30 seconds after the world has started to exist. Figure
5.29c shows a user event. The behaviour that would be attached to this
event would be invoked when the user (represented by an avatar or virtual
pointer) comes into the vicinity of the object, more specifically within a
distance of 5 meters. Figure 5.29d shows the constraint event where the

137

5. Graphical Behaviour Modelling Language

behaviour attached to this event would be triggered when the constraint on
the gate, GateConstraint, is in its closed limit.

5.4.5 Example

This section will now illustrate the use of a Behaviour Invocation Diagrams
and the modelling concepts introduced in the previous sections. In section
5.3.5 on page 126, an example was given of a virtual robot in a manufacturing
plant for which a Behaviour Definition Diagram was made. This section will
build further on the same example (see figure 5.30).

The Master actor is assigned to the Assembler instance. Hence, the
Assembler will possess the behaviour defined for the Master actor, i.e. Pro-
ductionCycle. This behaviour can be triggered by means of a user-event,
namely OnClick. This means that when the user clicks on the Assembler
this behaviour will be executed. When the ProductionCycle behaviour is at-
tached to an object, also the behaviours that are causally linked (represented
by the dashed arrows) to this behaviour need to be assigned to objects. To
assign behaviour to Gripper A and Gripper B, the actors RightArm, respec-
tively LeftArm are assigned to them. For the actors RightArm and Lef-
tArm the behaviour RightArmMovement, respectively LeftArmMovement
were defined (not shown here). These two behaviours are triggered by the
ProductionCycle. Therefore, there are no events needed to trigger these
behaviours. The Switch instance is given behaviour by assigning the Con-
trol actor to it. As a consequence, this instance will have two behaviours
PowerOn and PowerOff. Both the PowerOn and the PowerOff behaviour
must be invoked by a time-event (at 9h00 for PowerOn and at 18h00 for the
PowerOff).

Figure 5.30: Behaviour Invocation Diagram: Virtual Robot

138

5. Graphical Behaviour Modelling Language

5.5 Behavioural Script Language

In the first two sections of this chapter, the Behaviour Definition Diagram
and the Behaviour Invocation Diagram were introduced. These diagrams,
and the corresponding modelling elements that were defined for them, are
sufficient to specify basic behaviours for the objects in the Virtual Environ-
ment. Until now, the behaviour modelling language was put forward as a
purely diagrammatical language. The advantage of a diagrammatical lan-
guage is its ease of use, which makes it popular amongst non-programmers
and suitable to communicate the design with non-technical people. How-
ever, graphical languages are in general less expressive than a textual (script-
ing) language. This is also the case for the graphical behaviour modelling
language presented. In other words, it is not (yet) possible to specify be-
haviours with a high degree of complexity using only the graphical notation.
Therefore, the behaviour modelling language was extended and turned into
a hybrid mix of a graphical language and a textual language [Pellens et al.,
2006b]. Issues that are best expressed graphically are expressed graphically,
whereas issues that are best expressed textually are done textually through
an intuitive scripting language.

Therefore, a high-level specification language, called Behavioural Script
Language (BSL), is defined. It aims at providing the designer a comple-
mentary formalism for specifying behaviours that are more complex. This
language allows the designer to parameterize behaviours, and to specify ad-
ditional (optional) modifiers for the different actions that were defined earlier
in this chapter. Furthermore, conditions can be specified which may either
prevent or allow the actions to be executed. Finally, also scripts can be
created which should be executed before, during and/or after the execution
of the behaviours. Please note that the scripting language is not used in any
way for combining different behaviours to each other in order to create a
complex behaviour. It is only used in order to further specify the behaviour
(action) with more details and thereby making the behaviour (action) itself
a more complex one.

In this work, the specification of an intuitive, expressive and specific
domain programming language was preferred over an existing (high-level)
general purpose programming language (e.g., Java). Note, that the problem
at hand (i.e. offering the designer the possibility to complete the object
behaviour with more detailed specifications) is a very specific one, and for
a very specific domain (i.e. the domain of Virtual Reality). Such a case is
best supported by a domain-specific language. The field of domain-specific
languages aims at constructing designated languages for different domains
and from which the instructions are closely related to the terminology of
the domain. The scripting language that is used results in specifications
that are more oriented towards the behaviour modelling domain, which may
increase the possibility that both programmers and non-programmers can

139

5. Graphical Behaviour Modelling Language

easily use the language.
In this sense, BSL can be called a domain-specific language. BSL aims

to keep the middle between the expressiveness of a generic (high-level) pro-
gramming language and the specificity of a domain-specific language. How-
ever, it does not offer all of the expressive power usually found in higher-level
general purpose programming languages. One goal was to keep the learning
time as short as possible, also for non-programmers.

This section describes the lexis, the syntax, and the semantics of the Be-
havioural Script Language (BSL). In the end of this section, a few examples
are given about the use of the scripting language in the graphical notation.

The language constructs from BSL will be explained using the extended
Backus Naur Form [Backus et al., 1960]. The following conventions are used
in the remaining part of this section:

• Curly brackets {a} are used for repetitions, meaning 0 or more a’s.

• Squared brackets [a] are used for optional elements.

• The keywords are enclosed in single quotes and cannot be used as
identifier elsewhere.

• Terminal symbols are shown in typewriter font and enclosed in single
quotes.

5.5.1 General Overview

Before going into the structure of a script defined in the BSL, some gen-
eral production rules used in the remaining part of this chapter are firstly
introduced.

Identifiers are names that the designers can choose for their functions,
variables, etc. An identifier must be a whole word, made up of characters
or digits but starting with a character. The standard keywords are reserved
and cannot be used as identifier. This corresponds with the definition of
names in most programming languages. The definitions of a character and
a digit are deferred until later, but for the moment it can be assumed that
they are the same ones as used in the English language. An identifier can
be further qualified into an identifier expression (id-exp) by means of the
dot (”.”) notation. A list of identifiers is generally separated by means of
commas.

〈identifier〉 ::= 〈character〉 { (〈character〉 | 〈digit〉) }

〈id-exp〉 ::= 〈identifier〉
| 〈id-exp〉 ’.’ 〈identifier〉

〈id-list〉 ::= 〈identifier〉 { ’,’ 〈identifier〉 }

140

5. Graphical Behaviour Modelling Language

A script in BSL consists of a number of entries. The beginning of an
entry is denoted with a slash (’/’) together with the name of the entry and
ends when the following entry is encountered or when the script is finished.
All entries are optional and can only be used once. An empty script is a
valid script. Note that the examples until now all had empty scripts. The
scripts only apply to the behaviour (action) in which they are specified.
In the following sub-sections, each of the different possible entries will be
discussed.

〈script〉 ::= [’/speed’ 〈speed-declaration〉]
[’/speedtype’ 〈speedtype-declaration〉]
[’/repeat’ 〈repeat-declaration〉]
[’/variables’ 〈variables-declaration〉]
[’/condition’ 〈condition-declaration〉]
[’/before’ 〈block〉]
[’/do’ 〈block〉]
[’/after’ 〈block〉]

5.5.2 Speed

The speed entry specifies the rate at which the behaviour should be executed.
The possible values for this flag range from very slow, slow, normal, fast to
very fast. Note that the speed is not specified in exact values but rather
using the intuitive counterparts which can be (re)set in the environment in
general.

〈speed-declaration〉 ::= 〈velocity〉
| 〈velocity〉 ’for’ 〈id-list〉 { ’;’ 〈velocity〉 ’for’ 〈id-list〉 }

〈velocity〉 ::= ’very slow’ | ’slow’ | ’normal’ | ’fast’ | ’very fast’

Since some behaviours involve more than one object, the designer needs
to have the flexibility to control the speed of all the objects independently
instead of one speed for all of them (which is the default). This can be
achieved by specifying a specific actor (or list of actors) using the for-variant.

Some examples of setting the speed are:

- /speed ’very slow’

- /speed ’fast’ for Car

5.5.3 Speedtype

The speedtype entry specifies how a movement needs to be executed: one
can accelerate gradually and decelerate gradually (accelerate/decelerate), a
movement at a constant speed (constant) can be used, or the deceleration

141

5. Graphical Behaviour Modelling Language

(decelerate) respectively acceleration (accelerate) can be specified. Also here,
note the use of intuitive terms to indicate the type of movement performed.

〈speedtype-declaration〉 ::= 〈type〉
| 〈type〉 ’for’ 〈id-list〉 { ’;’ 〈type〉 ’for’ 〈id-list〉 }

〈type〉 ::= ’decelerate’ | ’accelerate’ | ’constant’ | ’accelerate/decelerate’

In the same way as it was the case for the speed, different speedtypes
can be specified for the different objects involved in a behaviour.

Examples of using the speedtype element are:

- /speedtype ’accelerate/decelerate’

- /speedtype ’constant’ for Car ; ’accelerate’ for Motorbike

5.5.4 Repeat

The repeat entry is used to denote the number of times that the behaviour
needs to be repeated (executed). This is given either by means of a constant
value or by means of a variable (variables will be defined next).

〈repeat-declaration〉 ::= (〈numeral〉 | 〈variable〉) ’time(s)’

An example of the repeat entry is shown below:

- /repeat 5 time(s)

- /repeat x time(s)

5.5.5 Variables

The variables entry allows the designer to use variables for a particular be-
haviour. Variables are placeholders for different values. We use an un-typed
system for variables, so variables can hold values of any type. This facil-
itates the use of variables for non-programmers because those people are
usually not familiar with types in the way programmers are used to. There
are actually two kinds of variables in the BSL: global variables and local
variables. The global variables are those that are defined for the environ-
ment and which are not defined within a behaviour. Global variables can
be referenced in the behaviours and their value can be changed by the be-
haviours. The local variables are those that are defined within a behaviour.
All variables must be assigned a value before they can be used. A constant
or an expression can be assigned to a variable in the following way:

〈variables-declaration〉 ::= 〈assignment〉 { ’;’ 〈assignment〉 }

142

5. Graphical Behaviour Modelling Language

〈assignment〉 ::= ’assign’ 〈exp〉 ’to’ 〈variable〉

〈variable〉 ::= 〈identifier〉
| ’ThisAction’ ’.’ 〈identifier〉

The variable itself is identified by an identifier. It can optionally be
further qualified by the ThisAction keyword (similar to ’this’ or ’self’ in
programming languages) in case there should be any name conflicts with
the expression that is assigned to this variable.

A few examples of setting up new variables are given:

- /variable assign 5 to x

- /variable assign 5 to x ; assign x+5 to y

As mentioned before, a number of predefined variables that have constant
values are available in our approach. These constants obviously cannot be
changed by the designer. These constants are PI (pi), Natural Logarithm
(e), Frame Number (F). Another important variable is Time which gives
the current absolute time. The above variables are constants belonging to
the environment and are preceded by the ThisEnvironment qualifier. Other
variables are ElapsedTime giving the time that has elapsed since the behav-
ior has been executed or triggered, and the LoopTime which provides the
amount of seconds since this behavior was last executed. These last vari-
ables are belonging to a behaviour and must be preceded by the ThisAction
qualifier.

5.5.6 Conditions

Whether a behaviour will be executed or not is determined by the value
of the conditional expression that can be specified for this behaviour. A
condition must result in a true or false value. If the value is true, the
behaviour will be executed, otherwise the execution will not (re)start. In
the latter case, the execution proceeds with the following behaviour. The
condition is defined as a conditional expression in which basically everything
from a normal expression can be used, except an assignment. A normal
expression will be explained further down.

〈condition-declaration〉 ::= 〈conditional-exp〉

〈conditional-exp〉 ::= 〈disjunctive-exp〉

The use of conditions within a behaviour can be done as follows:

- /condition temperature >= 24

- /condition (code == ”7893”) and (not open)

143

5. Graphical Behaviour Modelling Language

The difference between this conditional expression and the conditional
operator that was discussed earlier is the fact that the conditional operator
is used in a case where a kind of branching semantics is required (e.g., where
either one behaviour or the other is executed). The conditional expression is
mostly used in combination with the repeat entry to construct an iteration
(e.g., execute the behaviour while the condition is true).

5.5.7 Before, Do and After Blocks

The before entry allows the designer to specify statements, specified as a
block-statement, that need to be executed before the actual behaviour is
executed. The after entry is similar to the before entry but allows to specify
a block-statement that needs to be performed once the behaviour has been
completed. The do entry identifies an ongoing activity that is performed as
long as the behaviour is in the active state or until the computation specified
by the block-statement is completed.

All three entries allow performing some calculations and/or set the val-
ues of variables needed in the behaviour and hereby, allow customizing be-
haviours.

The unit of execution in BSL is called a block. A block is a sequence
of statements, which are executed sequentially. The different kinds of state-
ments available in the BSL are given below. All of them will be further
explained.

〈block〉 ::= { 〈statement〉 }

〈statement〉 ::= 〈assignment〉
| 〈function-call〉
| 〈returning-exp〉
| ’increment’ 〈postfix-exp〉 [’by’ 〈exp〉]
| ’decrement’ 〈postfix-exp〉 [’by’ 〈exp〉]
| ’while’ 〈exp〉 ’do’ 〈block〉 ’end’
| ’when’ 〈exp〉 ’do’ 〈block〉 [’otherwise’ 〈block〉] ’end’
| ’for’ 〈identifier〉 ’from’ 〈exp〉 ’to’ 〈exp〉 [’by’ 〈exp〉] ’do’ 〈block〉 ’end’

5.5.7.1 Assignment

A first type of statement is the assignment which was already discussed
above. It serves the purpose of defining new local variables (local to the
block in which they are defined) or update variables. The variables that can
be updated are either local variables of the behaviour, or the global variables
of the environment itself. In the latter case, they must be preceded by the
ThisEnvironment keyword.

A few examples of assigning values to variables are given here:

- assign 25 to ThisEnvironment.temperature

144

5. Graphical Behaviour Modelling Language

- assign 5 to index

- assign counter to ThisAction.index

5.5.7.2 Function-call and Function-definition

The second type of statement is the function-call. The function-call allows
calling (or executing) a particular function, or piece of code defined some-
where else. A call is made through the name of the function together with
zero or more expressions being the arguments of the function. A number
of standard mathematical functions are predefined by the approach (such
as sine, cosine, tangent, squareRoot, and so on). Furthermore, some other
functions related with time are available: getTime provides the current (ab-
solute) time; elapsedTime gives the time that has elapsed since the behaviour
has been started, and loopTime returns the amount of time (seconds) since
this behaviour was last executed. Additional functions to retrieve informa-
tion from the actors (or the user) are also defined: getPosition returns the
location of the actor (or user); and getOrientation returns the orientation
of the actor (or user).

〈function-call〉 ::= ’invoke’ 〈function-name〉 [’with’ ’(’ [〈explist〉] ’)’]

〈function-name〉 ::= 〈id-exp〉

〈explist〉 ::= { 〈exp〉 ’,’ } 〈exp〉

Please note that next to the calling of native functions provided by the
system, a designer can also define his own functions (externally) and call
these functions in the behaviours. A function is identified by an identifier,
and has zero or more parameters, which on their turn are identified by
identifiers. When defining a custom function, the return statement can be
used to return any result coming from the function.

〈function〉 ::= ’define’ 〈function-name〉 [’with’ ’(’ [〈parlist〉] ’)’] 〈block〉
’end’

〈parlist〉 ::= 〈identifier〉 {’,’ 〈identifier〉 }

〈returning-exp〉 ::= ’return’ 〈exp〉

Using externally defined functions, the designer (or somebody else, e.g., a
more experienced programmer) has the possibility to define some frequently
used higher-level operations once and then, use them several times. Indeed,
using functions, higher-level operations on the relevant actions can be de-
fined using the BSL language elements discussed in this chapter. In this
way, more intuitive (composed) operations can be defined, which makes the

145

5. Graphical Behaviour Modelling Language

BSL more intuitive to use for a non-programmer. Furthermore, functions
can also be used to reduce the length of a script. Moreover, the functions
are independent of any particular behaviour, and thus can be used in com-
bination with different behaviours. In this way, libraries of functions can be
shared among designers.

Some examples of function-call and function-definitions are:

- invoke sine with (angle)

- define rollingMotion with (xco, radius) return xco/radius end

- invoke rollingMotion with (x, r)

5.5.7.3 Increment and Decrement

Two commonly used statements are the increment and the decrement, which
serve to increase (or decrease) the value of a variable by a specified amount.
If no amount (to increment or decrement) is specified then the default (1)
will be taken.

The syntax for the increment respectively decrement is given as follows:

〈statement〉 ::= ’increment’ 〈postfix-exp〉 [’by’ 〈exp〉]
| ’decrement’ 〈postfix-exp〉 [’by’ 〈exp〉]

The increment and decrement are used as follows:

- increment i by 2

- decrement j

5.5.7.4 Control statements

The last three rules of the statement refer to the basic control structures.
BSL has some intuitive ways to conditionally control the flow of the execu-
tion.

• A when statement executes code depending on whether a boolean ex-
pression is true. This statement consists of two different parts, one of
it is optional. The first statement block is executed if the expression
evaluates to true and otherwise, the second statement block (if it is
specified) is executed.

〈statement〉 ::= ’when’ 〈exp〉 ’do’ 〈block〉 [’otherwise’ 〈block〉] ’end’

• The while loop repeatedly executes a statement block as long as a
boolean expression is true. It contains two parts, the expression which
is tested before the second part namely the statement block, is exe-
cuted.

146

5. Graphical Behaviour Modelling Language

〈statement〉 ::= ’while’ 〈exp〉 ’do’ 〈block〉 ’end’

• The for loop can be more convenient than a while loop when you need
to maintain an iterator. It contains five parts, of which one is optional.
The first part is an identifier used as a local iterator variable; the
second part is the lower-limit; the third part is the upper-limit while
the fourth part is the step value. The loop is repeated for the variable
starting at the value of the lower-limit, until it passes the upper-limit
by steps of the step value.

〈statement〉 ::= ’for’ 〈identifier〉 ’from’ 〈exp〉 ’to’ 〈exp〉 [’by’ 〈exp〉]
’do’ 〈block〉 ’end’

Examples of the different control structures are listed here:

- when temperature >= 25 do assign ’very fast’ to speed end

- while (x >= 25) and (x <= 30) do increment temperature by 1
end

- for it from 1 to 3 do assign it * 15 to distance end

5.5.8 Remaining rules

The remaining EBNF production rules are discussed in this section. Firstly,
the production rules involved in defining an expression are discussed (which
was already encountered many times above). Afterwards, the low-level rules
for specifying the basic data types are discussed.

5.5.8.1 Expressions

The logical operators in BSL are or, and and not. Equality (==) compares
the type of its operands. If the types are different, then the result is false.
Otherwise, the values of the operands are compared. Numbers and strings
are compared in the usual way. The operator not equals (<>) is exactly the
negation of equality (==). Furthermore, it supports the basic relational
operators such as < (smaller than), > (greater than), <= (smaller than or
equals) and >= (greater than or equals). BSL supports the usual arithmetic
operators: the binary + (addition), - (subtraction), * (multiplication), /
(division), % (modulo), and unary - (negation). The precedence of the
operators is similar to those of an ordinary scripting language and encoded
through the BNF structure (see below). As usual, parentheses can be used
to change the precedence of an expression.

〈exp〉 ::= 〈assignment-exp〉

〈assignment-exp〉 ::= 〈disjunctive-exp〉 | 〈assignment〉

147

5. Graphical Behaviour Modelling Language

〈assignment〉 ::= ’assign’ 〈exp〉 ’to’ 〈variable〉

〈disjunctive-exp〉 ::= 〈conjunctive-exp〉
| 〈disjunctive-exp〉 ’or’ 〈conjunctive-exp〉

〈conjunctive-exp〉 ::= 〈equality-exp〉
| 〈conjunctive-exp〉 ’and’ 〈equality-exp〉

〈equality-exp〉 ::= 〈relational-exp〉
| 〈equality-exp〉 (’==’ | ’<>’) 〈relational-exp〉

〈relational-exp〉 ::= 〈additive-exp〉
| 〈relational-exp〉 (’<’ | ’>’ | ’<=’ | ’>=’) 〈additive-exp〉

〈additive-exp〉 ::= 〈multiplicative-exp〉
| 〈additive-exp〉 (’+’ | ’-’) 〈multiplicative-exp〉

〈multiplicative-exp〉 ::= 〈unary-exp〉
| 〈multiplicative-exp〉 (’*’ | ’/’ | ’%’) 〈unary-exp〉

〈unary-exp〉 ::= ’increment’ 〈unary-exp〉
| ’decrement’ 〈unary-exp〉
| 〈postfix-exp〉
| (’+’ | ’-’) 〈unary-exp〉
| 〈negative-exp〉

〈negative-exp〉 ::= ’not’ 〈unary-exp〉
| 〈postfix-exp〉

〈postfix-exp〉 ::= 〈primary〉 | 〈id-exp〉

〈primary〉 ::= 〈literal〉 | ’(’ 〈exp〉 ’)’ | 〈function-call〉 | 〈attribute-access〉

〈attribute-access〉 ::= ’ThisAction’ ’.’ 〈identifier〉
| ’ThisEnvironment’ ’.’ 〈identifier〉

Here are some examples of expressions:

- (distance + threshold) <= perimeter

- ThisAction.pressure < ThisEnvironment.pressure

- 2 * PI / 3

- -1.5734

- true

148

5. Graphical Behaviour Modelling Language

5.5.8.2 Basic Data Types

A literal is the most primitive kind of expression in BSL. A literal can be in-
terpreted in four different ways. A numeral consists of a numerical constant,
not starting with a 0, and which may be written with an optional decimal
part. A boolean is a type containing fixed values that can be either true
or false. A string is a series of characters or digits, delimited by matching
double quotes, while a character is delimited by matching single quotes.

〈literal〉 ::= 〈numeral〉 | 〈boolean〉 | 〈string〉 | 〈character〉

〈boolean〉 ::= ’true’ | ’false’

〈numeral〉 ::= [’-’] 〈number〉 { 〈digit〉 } [’.’ 〈digit〉 { 〈digit〉 }]
| [’-’] ’0’ [’.’ 〈digit〉 { 〈digit〉 }]

〈string〉 ::= ’"’ { (〈character〉 | 〈digit〉) - ’"’ } ’"’

〈character〉 ::= ”’ (〈character〉 | 〈digit〉) - ”’ ”’

〈character〉 ::= ’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’ | ’g’ | ’h’ | ’i’ | ’j’ | ’k’ | ’l’ | ’m’ |
’n’ | ’o’ | ’p’ | ’q’ | ’r’ | ’s’ | ’t’ | ’u’ | ’v’ | ’w’ | ’x’ | ’y’ | ’z’ | ’A’ | ’B’ | ’C’
| ’D’ | ’E’ | ’F’ | ’G’ | ’H’ | ’I’ | ’J’ | ’K’ | ’L’ | ’M’ | ’N’ | ’O’ | ’P’ | ’Q’ | ’R’ |
’S’ | ’T’ | ’U’ | ’V’ | ’W’ | ’X’ | ’Y’ | ’Z’

〈digit〉 ::= ’0’ | 〈number〉

〈number〉 ::= ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’

As mentioned before, the scripts that have been discussed in this section
can be used in the graphical notation to turn the behaviours (actions) into
more complex behaviours (actions). Figure 5.31 gives two examples of how
the scripting language can be applied. Figure 5.31a presents a move action
where an additional speed and speedtype have been defined stating that the
object needs to move forward but in a very slow manner and accelerating
in the process. Figure 5.31b presents a composite behaviour called Perfor-
mAction which should be executed three times. Two variables have been
defined, namely i and d. Before every execution, the d variable is modified
and after every execution, the i variable is incremented.

5.6 Summary

This chapter has described the first major contribution of this dissertation.
Within this chapter, our Behaviour Modelling Language (BML) is explained
in detail. The language is a combination of a graphical language and a tex-
tual scripting language. The BML is part of the overall VR-WISE approach

149

5. Graphical Behaviour Modelling Language

Figure 5.31: Example use of script in graphical notation

described in chapter 3. Three different types of diagrams were introduced to
fully describe object behaviour in a Virtual Environment. These diagrams
are the Behaviour Definition Diagram, the Behaviour Invocation Diagram
and the Structure Chunk. The chapter furthermore described the notation
and explained the semantics of the different language elements developed
for these diagrams.

The Behaviour Definition Diagram (BDD) allows the designer to define
behaviours. A BDD is represented as a graph-like diagram. The BDD
consists of a number of actors. An actor represents an object that is involved
in a behaviour. Actors are connected to behaviour elements, which describe
how the objects can behave. Behaviours can be combined through a set of
operators to form composite behaviours.

In different places inside a BDD, Structure Chunks (CS), describing the
static structure of a set of objects at a particular moment in time, are used.
These are graphs containing items connected to each other by means of
relations.

The Behaviour Invocation Diagram (BID) is also represented as a graph
in the diagrammatical notation. A BID consists of a number of actual ob-
jects populating the Virtual Environment. These objects play the roles of ac-
tors and thereby receive the behaviours, referred to by behaviour references,
defined for the actors in the BDDs. Furthermore, the behaviour references
are linked with events to specify how the behaviours can be invoked.

A graphical language has many advantages. Diagrams help the user to
quickly build a mental model as the information is presented more explicitly
than in case of textual languages. Diagrams also allow hiding details when
not relevant. However, since a purely graphical notation was not enough to
fully describe complex behaviours, the graphical language has evolved into
a mixed graphical/textual language. Therefore, the chapter also defines the
Behavioural Script Language (BSL), which is the textual part of the BML.
The purpose of BSL is to give the designer the possibility to enhance the
behaviours with scripts and in this way allow specifying behaviours that
could not have been (easily) described using only a graphical notation.

150

CHAPTER 6

Behavioural Design Patterns Framework

The previous two chapters discussed the behaviour modelling approach that
was added to the general VR-WISE approach. They explained in depth the
different steps involved in the process of modelling the behaviours as well as
all the high-level modelling concepts available for doing so. Also the graph-
ical notation that was developed for this approach was introduced. This
chapter will further extend the behaviour modelling approach by combin-
ing the concept of behavioural design patterns with the graphical notation
described earlier. In this way, the modelling of more complex behaviours is
facilitated and the accessibility towards laymen may be improved.

This chapter is structured as follows. First, in section 6.1, some obser-
vations from either the related work that was investigated and from our
own experience obtained with the graphical notation developed in previous
chapters, are reviewed. This leads us to section 6.2 where the concept of
generative design patterns is introduced as a mechanism to overcome some of
the issues concerning the observations made earlier. In section 6.3, the chap-
ter then describes a behaviour modelling framework combining our graphical
notation with generative design patterns. The framework allows more ex-
perienced designers to create their own patterns and make them available
in our graphical notation. These patterns can then be used by both experi-
enced and non-experienced designers in the behaviour specifications. Next
to the behavioural pattern framework, the chapter also describes (in section
6.4) a number of patterns developed within this framework. Finally, section
6.5 will give a short discussion about this chapter.

151

6. Behavioural Design Patterns Framework

6.1 Observations

The graphical notation, introduced in the previous chapter, has been em-
ployed in a number of use cases (see chapter 8). The experience that was
gained from using our behaviour modelling approach on the one hand, and
by investigating the current state-of-the-art [Pellens et al., 2006a] in be-
haviour modelling in general on the other hand, has resulted in a number of
observations. These observations apply to the work that was set out earlier
in this dissertation but can also be generalized to other graphical notations
as well.

A first observation is that graphical notations do not scale well [Whitley,
1997]. The graphical models (i.e. diagrams) can become very complex for
more complex situations, up to the point where they become unmanage-
able. Furthermore, scripting languages also have their limitations and/or
drawbacks. The expressiveness of a graphical notation is usually limited
compared to a textual language, especially if one wants to keep the num-
ber of graphical elements low. An in-depth evaluation of the related work
did reveal that the problem faced by these approaches was that either the
diagrams or the code are becoming too large when specifying complex be-
haviour, resulting in specifications that are not easy to read and to maintain.
As our approach is based on a mixed graphical-textual notation, it is also
facing this kind of problems when modelling complex behaviours. Another
issue is that for some range of specifications, optimized implementations
might already exist. This requires some kind of mechanism to reuse those
existing implementations as a kind of black box rather than to re-specify
them from scratch.

A second observation is that in practice many people using specialized
VR tools (and forced to learn the associated scripting language) are trying to
avoid developing long scripts by using and adapting existing scripts, either
built-in scripts or scripts coming from external sources. An interesting study
has been performed by McNaughton et al.. In [McNaughton et al., 2004a],
the authors investigated how easily non-programmers are using a scripting
language for specifying behaviours in the case of a game engine. This study
showed that non-programmers often reuse existing scripts as they do not
have enough knowledge about the scripting language itself and on how to
specify behaviour in general. For this reason, they often try to find a script
defining a behaviour close to the one they want to model, so that they can
modify it to fit their needs. This study also showed that people without
programming skills spend a lot of time sending questions over mailing lists
in order to be able to understand the script they have found. Part of the
reason for this is that variables used in a script have a name from which
the meaning cannot be derived intuitively. The situation becomes even
worse when multiple (pieces of) scripts need to be combined to fulfill a
particular task. Often not all the necessary changes are made, or some of

152

6. Behavioural Design Patterns Framework

the changes are done incorrectly leading either to non-correct scripts or to
wrong behaviour.

6.2 Visual Generative Design Patterns

Based on the observations made above, we can conclude the following.
Firstly, the design of more complex behaviour needs to be facilitated better
and secondly, a mechanism which will allow to (re)use existing solutions to
particular problems encountered when modelling behaviour in Virtual En-
vironments needs to be provided. To achieve this, our approach has been
extended with the concept of ”design patterns”.

The concept of design pattern was first introduced by Christopher Alexan-
der [Alexander et al., 1977]. However, the patterns that he introduced did
not refer at all to design patterns in computer science. Instead, it was about
architecture and the process of building successful buildings and towns. He
documented the best practices of building and showed that patterns are a
good way to capture the wisdom of a craft.

The work of Alexander has greatly influenced the computer science do-
main and in particular the Software Engineering domain where a lot of
research has been performed in the context of design patterns for software
applications [Schmidt, 1995]. As a result, a number of best practices for soft-
ware design involving design patterns have been published (e.g., [Gamma
et al., 1995]). A design pattern specifies, in a systematic and general way, a
well-defined solution to design problems that often appear when designing
and developing software.

The use of design patterns, which can be applied to the design of Vir-
tual Environments as well, offers many advantages. They can be stated as
follows:

• Capture of expertise. The patterns are usually designed by more
experienced people. Once they exist, it gives a mechanism to less ex-
perienced people to exploit the knowledge and expertise of the pattern
designer in a well-defined way.

• Communication improvement. The use of design patterns will im-
prove the communication between the different stakeholders (i.e. both
non-technical people and technical people) of the application because
it allows abstracting from too much complexity.

• Higher reusability. The patterns promote reuse (of existing algo-
rithms and data structures) since a pattern can be designed and imple-
mented once and then be instantiated many times in different Virtual
Environments, maybe each time in a slightly adapted way.

153

6. Behavioural Design Patterns Framework

• Faster development. The time of development can be reduced sig-
nificantly by providing a library of commonly used patterns, allowing
the designer to select his pattern, fill in the details and make some
adaptations.

In Software Engineering, the patterns are in most cases documented
through a text description, using a fixed template. However, in this way
there is a big disadvantage that still remains, i.e. the patterns must be
manually implemented (programmed) each time they are applied. For non-
programmers, the implementation of a pattern may be difficult and error-
prone. As a way to solve this, MacDonald et al. have introduced the concept
of Generative Design Patterns [MacDonald et al., 2002]. Generative design
patterns are similar to regular design patterns except that they are defined
in such a way that it becomes possible to automatically generate code from
them. They remove the burden of implementing the patterns from the user.
They offer a number of advantages besides the ones offered by traditional
design patterns. These advantages are:

• Code generation. Many people are unable to write scripting code
themselves and therefore, they must rely on experienced programmers.
The generative design patterns for which the code can be automatically
generated enable the user to incorporate larger pieces of code into their
Virtual Environment without having to program a single line of code.

• Fewer errors. Since the design patterns can be used as black boxes
and the code can be automatically generated for them, errors can
be avoided which would otherwise arise when scripts are copied and
modified manually.

In the remaining part of this chapter, the concept of generative design
patterns is used for specifying patterns of behaviours that often occur in
Virtual Environments. These generative design patterns are then turned
into what are called Visual Generative Design Patterns by expressing them
formally using a graphical notation and providing a mechanism to generate
code when these patterns are used. Furthermore, it will be shown how
these visual generative design patterns are created using a framework that
allows them to be integrated into our existing graphical behaviour modelling
language. The combination of the two paradigms, generative design patterns
and graphical languages, allows us to cope with the problems of scripting,
namely not being accessible to non-programmers. At the same time, we
can keep the advantages of a graphical language, namely the ease-of-use
and reduction in programming errors. All this can be achieved while still
being able to properly represent more complex behaviour and simultaneously
capture expertise from others by means of the behavioural design patterns.

154

6. Behavioural Design Patterns Framework

Note that in order to make the generative design patterns visual, the
framework that is described here employs our graphical notation as described
above. However, a different graphical notation could have been taken instead
and this approach would still be applicable. In other words, the approach
discussed in this chapter is independent of the graphical notation used.

6.3 The Design Patterns Framework

In this section, the details on how our behaviour modelling approach, intro-
duced in previous chapters, has been extended with visual generative design
patterns will be discussed. This allows creating generative design patterns
and including them into our existing graphical behaviour modelling lan-
guage.

The design patterns known from Software Engineering are usually de-
scriptive. They are described in terms of their participants and their collab-
orations. Furthermore, the descriptions also often include implementation
issues and sample code. This information can be used by programmers to
use and implement such a design pattern. However, a textual description
is not sufficient for describing generative design patterns and not appropri-
ate for visual generative design patterns. Therefore, a behavioural design
patterns framework that allows combining our overall behaviour modelling
approach with visual generative design patterns has been developed.

When developing the framework, a number of requirements had to be
taken into account. Firstly, it must be possible to manage the collection
of behavioural patterns and to easily construct new patterns and add them
to the existing collection. Secondly, the usage of the behavioural patterns
available in the framework needs to be supported as much as possible. Since
non-VR-experts are part of the target public, these users should be guided
in the process of using (instantiating) a pattern in the design of a particular
Virtual Environment through the graphical modelling language. Thirdly, it
must be possible to adapt a generative design pattern to a particular context,
e.g., it must be possible to do small adjustments and to specify parameters.
A mechanism must be provided to facilitate these adaptations.

Figure 6.1 gives a detailed overview of the complete framework. In the
framework, basically two major flows can be detected, that is the ”Pattern
Creation” flow and the ”Pattern Usage” flow. Recalling figure 4.1 in chapter
4 (on page 80) about the extended architecture, allows us to allocate these
flows to the different levels of the behaviour modelling approach.

• Pattern Creation. The pattern creation flow represents the process
of creating a new behavioural design pattern and making it available
in our graphical notation. It consists of three consecutive steps namely
the Pattern Specification, the Extension Specification and the Source

155

6. Behavioural Design Patterns Framework

Code Specification. This process fits into the Meta Level of our mod-
elling approach since it provides new modelling constructs to the de-
signer that can then be used for specifying the behaviour of a Virtual
Environment.

• Pattern Usage. The pattern usage represents the process of using a
pattern in the behaviour specifications and how to adapt it to a par-
ticular context (for a particular Virtual Environment). It also involves
three steps namely the Selection, the Adaptation and the Generation.
The usage process can be located in the behaviour specification at the
Domain Level of our modelling approach. Using a pattern and ap-
plying it to a particular Virtual Environment is similar to creating a
behaviour definition and a behaviour invocation respectively.

Figure 6.1: Behavioural design pattern framework

At the top of figure 6.1, the pattern creation flow is represented (by the
large horizontal arrow). It denotes the different steps that need to be fol-
lowed in order to construct a new pattern in our framework. This process is
further explained in section 6.3.1. The specifications that result from creat-

156

6. Behavioural Design Patterns Framework

ing a pattern are processed by a tool called Design Pattern Manager. The
Design Pattern Manager is a separate application which is added to our tool-
box and can be used to interpret the specifications, process them and make
them available for its use in the VR-WISE Conceptual Designer application.
Furthermore, the Design Pattern Manager allows us to properly manage all
the behavioural design patterns in our framework (organize them, create
new ones, and so on). The VR-WISE Conceptual Designer is the software
tool supporting the conceptual design phase of the VR-WISE approach. It
is a diagram editor that allows creating the conceptual models in a graphical
way. This tool is extended to be able to facilitate the use of the patterns
in our graphical modelling language. From the different conceptual models
that are created, representing the static part as well as the dynamic part of
the Virtual Environment (possibly using the behavioural design patterns),
the VR-WISE Conceptual Designer can then generate code. The code that
is generated is a specification of the static scene combined with the source
code of the behaviours to be used as input to initialize the runtime binary
(see figure 6.1), i.e. the actual Virtual Reality application. Note that both
the code of the static scene and the code for the behaviours are application
specific. This process is further explained in section 6.3.2. More details
about the VR-WISE Conceptual Designer itself can be found in chapter 7.

6.3.1 Building Patterns

The creation of a new behavioural pattern is not an easy task and it requires
more experienced designers having some programming skills. In other words,
this step is not intended for non-VR-experts. The creation of new patterns
requires designers who are more experienced in Virtual Reality since, for
some parts of the specifications, notions about technologies related to Vir-
tual Reality are needed. It involves specifying a number of things. There
are three different sequential steps in the creation process of a behavioural
pattern, namely the pattern specification, the extension specification and the
source code specification (see top of figure 6.1). The majority of the work
needs to be done in the pattern specification.

The pattern specification (1) allows the designer to describe, at a high
level, the front-end for the behavioural pattern. This is the part that will
be seen by the user of the pattern. The extension specification (2) allows
the pattern designer to describe the back-end of the behavioural pattern.
This part is not seen by the user of the pattern, but is required in order to
be able to generate programming code. The source code specification (3)
allows the pattern designer to provide the executable pattern code, which is
the actual code that implements the behavioural pattern.

157

6. Behavioural Design Patterns Framework

6.3.1.1 Graphical Elements Specification (Pattern Specification)

The first specification that needs to be created is a so-called stencil. A stencil
is a container of all the graphical elements necessary for constructing the
particular pattern. These elements are the graphical representations of the
modelling concepts needed in the pattern. A number of predefined graphical
elements are already available to the pattern designer (see figure 6.2).

Figure 6.2: Default pattern creation elements

The actor (6.2a), denoted by a circle, represents an object (participant)
that is involved in a pattern. The name of the participant is specified in-
side the element. The behavioural element (6.2b) usually represents a be-
havioural aspect of the pattern, that is the algorithm behind the pattern.
The name as well as the role this element has within the pattern is noted in
the top area of the element. The middle area can be used to hold custom
information or even a sub-diagram while the bottom area usually contains
some textual information (such as a script or any particular attributes).
The participant link (6.2c) is used to connect a participant to a behavioural
element and holds the name of the role of this participant within the pat-
tern. The data link (6.2d) is used to connect the output of one behavioural
element with the input of another behavioural element. The causality link
(6.2e) is used to connect two behavioural elements and denotes a causal
relation between the two elements. Textual information referring to the
relationship between the two elements can be noted on the link itself.

With these predefined graphical elements, the objective is to avoid that
different pattern designers start creating their own graphical elements, which
would result in large and inconsistent sets of graphical elements. After a
while, this would most probably lead to an explosion in terms of the number
of elements, which then results in the fact that these graphical elements
are more difficult to use and to remember by other users. Because of the
existence of these predefined graphical elements, it may be unnecessary to

158

6. Behavioural Design Patterns Framework

create a new stencil for some patterns. To facilitate a seamless integration
of the behavioural patterns in our general behaviour modelling approach,
it was decided to use graphical elements that are the same or close to the
ones that were already introduced, as seen earlier in the dissertation. If
the default graphical elements provided by the framework are sufficient for
the pattern, no new stencil needs to be created. However, the framework
allows a pattern designer to add new ones, as it is impossible to provide
all the different graphical elements for all the different patterns that might
be constructed in the future. Therefore, the pattern designer may create
his own graphical elements in addition to the ones already provided. In this
way, the framework is extendable. The only thing the designer has to adhere
to, is to give the graphical element a proper type of shape (ShapeType) so
that it can be referred to later on.

6.3.1.2 Pattern Description (Pattern Specification)

The second specification is the actual pattern description. Once all the dif-
ferent graphical elements have been identified (and possibly new graphical
elements have been added), the pattern designer needs to specify how the
pattern is composed using the graphical elements from the stencil. He must
specify how many instances of a particular element are needed, which roles
they play, how the elements are connected to each other, and which param-
eters are required. Also default values must be provided for all parameters.
This is needed to provide as much support as possible to the designers. This
specification is captured in a standard XML format, which has the bene-
fit of being tool independent. External tools can be used for building this
specification and it can also be easily validated against a DTD.

Let us first start with a small example. Later, more formal definitions
are given about how such a specification should be constructed. Figure 6.3
gives an extract of a pattern description. In the pattern that is described
here, only the standard graphical elements are used. The pattern called
Chase-Evade contains exactly three elements, two actor elements and a sin-
gle behavioural element. The actors (participants) involved in the pattern
play the role of the chaser, respectively the evader. This is indicated by
the two connectors, namely two participant links connecting the actors with
the behavioural element. The behavioural element represents the actual be-
haviour (the algorithm behind the pattern) in which the actors take part.
A detailed description of the pattern is omitted here but will be discussed
in section 6.4.

Figure 6.4 shows how the pattern is visually represented in our frame-
work based on the specification given in figure 6.3. One can clearly see the
correspondences between the specification and the actual visual pattern.
Also note the correspondence with the graphical elements discussed earlier.

Each pattern description is specified by means of a single XML docu-

159

6. Behavioural Design Patterns Framework

Figure 6.3: Pattern description of the Chase-Evade pattern

Figure 6.4: Visual representation of the Chase-Evade pattern

ment. To specify a pattern, a particular format needs to be followed as
defined by the declarations below.

<!ELEMENT Pattern (Head, Description)>
<!ATTLIST Pattern
Identifier ID #REQUIRED
Version CDATA #IMPLIED

>

The document begins with a root element called Pattern. This element
has a required attribute Identifier and one optional attribute Version. The
purpose of the Identifier is to uniquely identify the pattern. The Version
allows the designer to give some information about this particular version
of the pattern. The Pattern element furthermore consists of two parts, i.e.
the Head and the Description.

The first part of the pattern description is the Head which is used to
specify any meta-information about the pattern.

160

6. Behavioural Design Patterns Framework

<!ELEMENT Head ((Name)+, (Category)*, (Synopsis)*)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Category (#PCDATA)>
<!ELEMENT Synopsis (#PCDATA)>

The Head element contains a sequence of child elements. There can be
one or more Name elements defined for a single pattern since a pattern
can have, besides its name, also a number of aliases. There can be zero
or more Category elements. These elements enable a better classification
of the pattern, which facilitates its use. Finally, there can be zero or more
Synopsis elements giving a more detailed description of the pattern. All
child elements can contain any kind of data.

The second part of the pattern description is the Description which is
used to define the actual pattern itself. As mentioned before, a pattern is
built from a number of graphical elements connected in a certain way. This
information is specified here.

<!ELEMENT Description ((Component | Connector)*)>

<!ELEMENT Component ((Description)?, (Component.Properties)?)>
<!ATTLIST Component
Name ID #REQUIRED
Shape NMTOKEN #REQUIRED
Cardinality CDATA #REQUIRED

>

<!ELEMENT Connector ((Connector.Properties)?)>
<!ATTLIST Connector
Name ID #REQUIRED
Shape NMTOKEN #REQUIRED
From IDREF #REQUIRED
To IDREF #REQUIRED
Label CDATA #IMPLIED
FromLabel CDATA #IMPLIED
ToLabel CDATA #IMPLIED

>

The Description element is having zero or more child elements. These
elements can be either Component elements or Connector elements which
can be given in any order.

A Component element represents a graphical element. It has two re-
quired attributes namely a unique Name by which this element can be re-
ferred in the pattern description and a Shape which refers to the name of
the shape that is used from the default shapes or that is created by the de-
signer. In other words, this attribute provides the link between the pattern
description and the graphical elements specification (previous step). The
third attribute is the Cardinality which allows us to put constraints on the

161

6. Behavioural Design Patterns Framework

number of elements used, i.e. how many elements of this particular kind
can be used in the pattern description. Possible values for this attribute are
n (a single value) or n-m (a lower bound and upper bound). Furthermore,
a Component can have zero or one Description elements as child element.
This allows the designer to create more complex patterns (e.g., patterns in
which graphical elements have sub-elements).

The Connector element represents a link between two graphical elements
(or in other words, between two Component elements). As with the Compo-
nent, it has a unique Name attribute and a Shape attribute. It furthermore
has a source as given by the From attribute and a target as given by the To
attribute. The connector points from the element referenced in the From
attribute to the element referenced in the To attribute. These attributes
hold the unique names of the Component elements. Next, it has three more
attributes namely the Label, FromLabel and ToLabel which hold the informa-
tion that is written on the connectors in the graphical notation. Depending
on which kind of connector, some are used and others are omitted.

<!ELEMENT Element.Properties (Property*)>
<!ELEMENT Connector.Properties (Property*)>

<!ELEMENT Property EMPTY>
<!ATTLIST Property
Name ID #REQUIRED
Label CDATA #IMPLIED
Value CDATA #IMPLIED
Type (bool | string | double | integer | array) #REQUIRED

>

Finally, the Component elements can have a property block called El-
ement.Properties. Also the Connector elements can have a property block
which is called Connector.Properties. These two blocks allow specifying the
properties for the elements and are defined in the same way. They can con-
tain zero or more Property elements. A Property element can be defined as
having a unique Name to refer to it later on, and an optional Label giving a
more intuitive name for it. Furthermore, it also has a Type representing the
type that the value of the property must adhere to and a Value part which
is the default value for this property.

6.3.1.3 User Interface Description (Pattern Specification)

The third specification is the user interface description. As mentioned above,
the user of a pattern should be able to change the default values for parame-
ters defined for the different elements composing the pattern. To allow this,
each element of the pattern can be associated with a custom dialog, which
needs to be specified by the pattern designer. This dialog is described by

162

6. Behavioural Design Patterns Framework

means of a user interface specification language. In our case, Extensible Ap-
plication Markup Language (XAML) is used [Nathan, 2006]. XAML is used
for two reasons. Firstly, in the future, it can be automatically incorporated
in the framework without having to be parsed and interpreted explicitly.
Secondly, it has a powerful data-binding mechanism that can be used for
free. The specification contains the different GUI controls that an end-user
can use to enter the values for the parameters. For example, a textbox for
a string parameter, a checkbox for a boolean parameter, a listbox for an
array parameter. Please note that not the complete XAML specification
language is supported at this moment. Only the most frequently used GUI
controls can be interpreted by our framework. Furthermore, a data-binding
mechanism provides a way to create a ’connection’ between the controls in
the dialog and the actual data in the pattern descriptions mentioned ear-
lier. The controls are automatically updated when the data in the pattern
changes and vice versa changes in the controls are automatically propagated
in the underlying pattern instantiation. For example, a particular textbox
can be bound to a string parameter of a pattern element. If the user edits
the value in the textbox element, the underlying data value is automatically
updated to reflect that change.

Let us also start with reconsidering the small example mentioned earlier.
Later on, more formal definitions about the different constructs available in
our framework are briefly discussed. Figure 6.5 gives an extract of a user
interface description. One can clearly see the link that is established be-
tween the user interface description and the pattern description (i.e. pat-
terns/ChaseEvade.xml) that was created before. We have marked this in the
figure. Furthermore, also the different data-bindings between the properties
of the pattern and the controls in the dialog are clearly visible as marked in
the figure as well.

Figure 6.6 shows the dialog that is generated by our framework based
on the specification given in figure 6.5. One can see the correspondences
between the specification and the actual dialog. Also note the default values
that were defined in the pattern description discussed earlier.

A user interface description is a XAML document that is specified ac-
cording to a fixed format. This format is given by the following declarations.

<!ELEMENT Window (Window.Resources, Canvas)>
<!ATTLIST Window
Title CDATA #REQUIRED
Height CDATA #REQUIRED
Width CDATA #REQUIRED

>

The document begins with a root element called Window denoting that
a dialog window is being defined. The Window element requires a number
of attributes to be given. A Title is needed which is represented in the

163

6. Behavioural Design Patterns Framework

Figure 6.5: User interface description of Chase-Evade pattern

border of the dialog window. The Height and Width attributes determine
the size of the window. Next to the attributes, the Window element also
contains two parts, i.e. a Window.Resources child element and a Canvas
child element.

The first part of the user interface description is the Window.Resources
element which is used to specify the resources (data) that are used inside
this specification.

<!ELEMENT Window.Resources ((XmlDataProvider))>
<!ELEMENT XmlDataProvider EMPTY>
<!ATTLIST XmlDataProvider
Source CDATA #REQUIRED
XPath CDATA #FIXED "Pattern/Description"

164

6. Behavioural Design Patterns Framework

Figure 6.6: Dialog of the Chase-Evade pattern

x:Key CDATA #FIXED "PatternData"
>

The Window.Resources element contains one child element namely the
XmlDataProvider that is made available in XAML to provide easy access
to XML documents. An XmlDataProvider has three attributes. Firstly, the
Source is used to specify a URI which refers to a local file, or a file on the
Internet that holds the pattern description. Secondly, the XPath attribute
is set to an XPath1 query that tells where the data is to be found in the
XML document. In our case, this has a fixed value since, as was seen earlier,
our pattern descriptions have a fixed structure. Thirdly, the Key attribute
allows giving a name for this resource which can be used later on in the
specification to do the data-bindings.

The second part of the user interface description is the Canvas which is
used to define the different GUI controls of the dialog window. As mentioned
before, a dialog is built to contain a number of controls for the data in the
pattern. This information is specified here.

<!ELEMENT Canvas ((TextBox | Label | Button | ComboBox
ListBox | CheckBox | TabControl)*)>

<!ATTLIST Canvas
Height CDATA #IMPLIED
Width CDATA #IMPLIED

>

<!ENTITY % attributes "x:Name ID #REQUIRED
Canvas.Left CDATA #REQUIRED
Canvas.Top CDATA #REQUIRED
Height CDATA #REQUIRED

1XML Path Language http://www.w3.org/TR/xpath

165

6. Behavioural Design Patterns Framework

Width CDATA #REQUIRED"
>

The Canvas is a very basic panel only supporting the notion of posi-
tioning elements with explicit coordinates. A Height and Width attribute
can also be given for the Canvas element but they are optional. A Can-
vas can contain zero or more controls. The controls that are supported
are TextBox, Label, Button, ComboBox, ListBox, CheckBox and TabControl.
These controls are defined by a unique name as given by the Name attribute.
Furthermore, a Canvas.Left and Canvas.Top attribute should be given to
locate them on the canvas as well as a Height and Width attribute defining
their size.

In addition, the controls might have a Text or Content attribute which
can be bound to a property in the pattern description (not given in the
declaration). This is done using an XPath expression returning the correct
data.

Please note that it might have been possible to use generalized interfaces
for the parameter dialogs, one that could suit for all kinds of patterns (pat-
tern elements). Although this step seems to require additional overhead of
specifying a parameter dialog for each pattern, we choose to still include it
in our process. This allows the dialogs to be created specifically for the pat-
tern (or pattern element) at hand which would result in a more user-friendly
interface than if it would have been generated automatically.

6.3.1.4 Class Library (Extension Specification)

In the extension specification, a collection of classes (a class library) written
in a programming language (C# in our case) is created. It describes the
actual semantics of the visual pattern. This specification is a necessary step
in order for the framework to know how to process an instantiated pattern
so that code related to that pattern can be automatically generated. The
purpose of this code is to enable the correct interpretation of the newly
specified pattern together with all its parameters and load it into our internal
data structure. So, it is capable of reading all the possible variations of the
pattern that can be specified. For example, if multiple graphical elements of
an actor (participants) are allowed, it should be able to cope with multiple
graphical elements of the actor (participants). It also describes what code
should be generated once a pattern has been instantiated. This class library
is compiled to become a so-called designer extension (see figure 6.1). This
extension is in fact a small component that can be dynamically loaded into
our VR-WISE Conceptual Designer.

Let us illustrate this step for our small example. A number of classes
need to be created. At least one class is required to have the functionality
to be able to parse the graphical pattern correctly. In our example, we

166

6. Behavioural Design Patterns Framework

know that when a pattern is instantiated we can only have one behavioural
element and exactly two actor elements (chaser and evader) as given by the
cardinality constraints in the pattern description. Next, the properties need
to be dealt with. Here, only the behavioural element has some properties
defined for it. These properties need to be extracted and stored for later
use. Another class is needed to be able to generate the correct source code
based on the information that was extracted from the instantiated pattern.
This source code should actually instantiate the classes that will be created
in the next step.

6.3.1.5 Executable Pattern Code (Source Code Specification)

Until now, everything to instantiate the pattern, to process it and to generate
initialization code for it, is specified. However, the actual implementation
of the behaviour represented by the pattern is not yet specified. This is
done in the executable pattern code step. This specification is also a collec-
tion of classes; the classes necessary to execute the pattern or the algorithm
that one wants to use. There are two possibilities. Either, the pattern de-
signer creates his own implementation in which case programming skills are
required. Or, the pattern designer can reuse an already existing implemen-
tation or algorithm and incorporate it completely as a black box. In the
latter case, usually some wrapper classes need to be written to have the
external classes working properly together with the rest of the framework
classes. The classes will be compiled together with our viewer framework
to come to a runtime binary (the resulting VR application). These are the
classes that should be used (or instantiated) in the code generated by the
VR-WISE Conceptual Designer.

For implementing the behavioural pattern in our small example, a to-
tal of seven classes are needed. A first class needs to be implemented to
provide the actual chase-evade behaviour. The pattern also requires a few
helper algorithms to be specified. These need to be implemented too. An
abstract class and two concrete classes are used for implementing two differ-
ent types of chase-evade algorithms that may be used in this pattern (either
the ”line-of-sight” chasing or the ”intercept” chasing algorithm). Also an
abstract class and two concrete classes are used for implementing the obsta-
cle avoidance algorithms available for this pattern (either a ”simple” or a
”target-based” obstacle avoidance algorithm). More details on the meaning
of the different algorithms are given in the discussion on the Chase-Evade
pattern in section 6.4.

6.3.2 Using Patterns

Once a behavioural pattern has been created, it is interpreted by our Design
Pattern Manager and thereby made available to the designer. It can then be

167

6. Behavioural Design Patterns Framework

used (called instantiated) and applied in a particular Virtual Environment
by both designers experienced in Virtual Reality and those who are less
experienced in Virtual Reality. The process of instantiating a behavioural
pattern consists of three steps.

6.3.2.1 Selection

In the first step, the selection, the designer selects an appropriate pattern
from the collection of patterns available in the framework (and created ear-
lier by a pattern designer). The different graphical elements necessary for
this particular pattern are automatically dropped on the drawing canvas of
the VR-WISE Conceptual Designer and the proper connections are made. It
is important that the pattern collection is organized well in order to facilitate
the selection of a pattern as much as possible.

6.3.2.2 Adaptation

In the second step, the adaptation, the designer adapts the pattern to the
particular context of the application. Two different kinds of pattern adap-
tation are supported. The first kind of adaptation is by giving proper values
to the parameters (overriding the default values provided by the pattern
designer). This can be done through the dialogs that were specified in the
user interface description. The second kind of adaptation is by adding ex-
tra graphical elements and/or removing some of the graphical elements that
were automatically dropped on the drawing canvas. The graphical elements
that can be added are the ones available in the stencil of the pattern. Of
course, there are some limitations; the instantiation of the pattern needs to
respect the constraints associated with the pattern (i.e. cardinalities on the
graphical elements) to avoid ending up with something that has nothing to
do with the pattern anymore. These constraints are defined in the pattern
description as mentioned earlier.

6.3.2.3 Generation

The third step, the generation, is the automatic generation in which all the
specifications are translated into the correct application specific initializa-
tion code that serves as the input for the resulting Virtual Reality appli-
cation. The code that is generated by the VR-WISE Conceptual Designer
consists of two parts: firstly a specification of the static scene, and secondly
the source code of the behaviours (instantiated behavioural patterns). Both
parts are to be used as input to initialize the runtime binary that was men-
tioned earlier. Note that only the code of the static scene and the code for
the behaviours are specific for the particular application, the runtime binary
itself is not.

168

6. Behavioural Design Patterns Framework

The process of using a behavioural design pattern will be illustrated by
means of an example in the following section.

6.4 A Collection of Behavioural Design Patterns

In previous sections, our behavioural design pattern framework was dis-
cussed. The creation flow and the usage flow were explained and illustrated
by means of an example. This framework facilitates the use of visual gener-
ative design patterns in the behaviour specifications. This approach allows
to easily incorporate existing VR expertise. Complex behaviours can now
be defined more quickly and with fewer errors by making use of existing be-
havioural patterns. Also the size and the complexity of the diagrams can be
reduced by using the pattern-based framework. This results in models that
are easier to read and better maintainable. Furthermore, since the design
patterns encapsulate a larger piece of functionality and fixed collaborations
between the actors (participants), optimizations and existing algorithms can
be used for the code generation, which will result in code that is more effi-
cient than if it would have been generated directly from conceptual models,
i.e. by only using the standard elements of our graphical modelling language.

This section reviews some of the most frequently used patterns that have
been encountered so far in the different Virtual Environments built using
our VR-WISE design approach. All these patterns were successfully created
within our pattern-based framework. It also shows the feasibility of our
framework.

As a way to illustrate the different patterns, an example Virtual Reality
application is provided. In previous chapters, the example of a virtual de-
partment store has been used regularly. In the following, a larger example is
used and a complete virtual city application is being developed, which has
been created using the VR-WISE Conceptual Designer module. The Virtual
Environment has a virtual city park that contains monuments, a road net-
work with cars and buses driving around, and a number of buildings, which
can be visited.

In the remaining part of this section, a number of patterns, which have
been created using our approach, will be explained. Each pattern will be
described using the following structure:

• Name. First, the name of the pattern is given. This is an important
item since it allows referring to the pattern in a discussion between
the different stakeholders of the Virtual Environment.

• Description. The actual description of the pattern starts with a
concise explanation of the general intent of the pattern. It answers
the question on what the pattern does, or what problem it tries to
solve.

169

6. Behavioural Design Patterns Framework

• Motivation. Some examples of the pattern in existing Virtual Envi-
ronments are given to illustrate the design problem. This will help to
understand the more abstract description of the pattern.

• Structure. Then, an explanation of the different elements that com-
pose the pattern is given. It discusses the actors and/or behaviours
participating in the design pattern, how they are graphically connected
to each other and what their responsibilities are. This section also
discusses the different parameters that are required (and need to be
entered by the pattern user).

• Usage. Afterwards, a more detailed example (in the context of the
virtual city application) is given to illustrate how the pattern is to be
used.

• [Sample Code]. Finally, some code examples are included showing
what is actually generated by the framework and what is not. This
section is optional, not all patterns will contain full descriptions of the
generated source code.

Please note that this collection of patterns is not exhaustive. It is con-
tinuously being extended with new patterns.

6.4.1 Chase-Evade Pattern

6.4.1.1 Name

Chase-Evade

6.4.1.2 Description

The goal for this pattern is to express the behaviour where a so-called
”chaser” tries to capture (or chase) another actor called the ”evader”. The
evader on his turn tries to evade (or avoid being captured by) the chaser.

6.4.1.3 Motivation

The chase-evade pattern is often encountered in Virtual Environments or
Game Worlds involving some kind of Artificial Intelligence. Examples can
be found in action games where a guard has detected an intruder on the
premises and tries to take him into custody, or in role-playing games where
an enemy either tries to capture the player or run away from it. In the
context of our virtual city application, the chase-evade pattern was used to
allow an avatar (e.g., a tourist in the Virtual Environment) to smoothly
intercept the driving bus and once it gets close enough, it can then get on
board of the bus and take the tour. Another example is a police officer
trying to catch a thief of the department store in the city.

170

6. Behavioural Design Patterns Framework

6.4.1.4 Structure

A chase-evade pattern is defined using three elements, one behavioural el-
ement and two actor elements (see figure 6.7). The actors (participants)
involved in the pattern play the role of the chaser respectively the evader.
This is indicated by participant links connecting the actors with the be-
havioural element. The behavioural element represents the actual behaviour
(chase-evade algorithm) in which the actors take part.

Figure 6.7: Uninitialized Behaviour Definition Diagram of the Chase-Evade pat-
tern

Figure 6.7 shows how the pattern is graphically represented in our frame-
work. As you might have noticed, the pattern described here is similar to
the one that was described in the previous section.

The pattern requires a number of parameters to be given for the chaser-
participant as well as for the evader-participant. The active range parameter
is used to specify when the chase-evade has to be initiated (given for both
the chaser and the evader). The second parameter is needed to indicate the
actual algorithm that should be used for performing the chase and evade.
This algorithm can be the simple line-of-sight chasing, which just corrects
the position of the chaser based on the position of the evader. In this way,
their distance is reduced (and the opposite for the evader). But the algo-
rithm can also be the intercept chasing where the chaser takes the heading
of the evader into account to try to intercept it in a smarter way. The
third group of parameters is to indicate the obstacle avoidance algorithm
that needs to be used. Here, there are again two possibilities, a simple
one, where a random direction is chosen when avoiding an obstacle, and a
target-based version, where the direction in which the actor moves around
an obstacle depends on a target.

6.4.1.5 Usage

Figure 6.8 shows a Behaviour Definition Diagram illustrating how the pat-
tern is used. The Police Officer and Thief actors respectively play the roles
of chaser and evader. The behavioural element is called ChaseThief.

Figure 6.9 shows the parameter dialog for the chase-evade pattern that
is invoked by double-clicking the behavioural element. This dialog can be
used to override the default values for the parameters.

Remember that in order to use this behaviour in the context of our
particular virtual city application, the actors need to be linked with actual

171

6. Behavioural Design Patterns Framework

Figure 6.8: Behaviour Definition Diagram using the Chase-Evade pattern

Figure 6.9: Parameter dialog for the Chase Evade pattern

objects from the Virtual Environment by means of a Behaviour Invocation
Diagram. Suppose that in our example, the actors Police Officer and Thief,
are linked to respectively the ”P-007” and ”T-1” instances. The Behaviour
Invocation Diagram for this is not given here.

6.4.1.6 Example (of generated) Code

The piece of code in figure 6.10 gives a small extraction of the pattern
initialization code. Please remember that it is not the complete algorithm
generated when the pattern is used. It is only the source code necessary for
invoking (initializing) the algorithm that is shown. The actual algorithm is
specified by the pattern designer and is shielded from the behaviour designer.
In the extraction, the first two lines show the instances (”P-007” and ”T-
1”) that are corresponding to the actors being retrieved. Then, the obstacle
avoidance algorithms are initialized, first for the chaser, then for the evader.
Afterwards, the chase-evade algorithms are initialized with the correct values
for the parameters entered through the dialog which is firstly the algorithm
for the chasing-part and secondly the algorithm for the evading-part. Then,
the actual pattern behaviour is initialized with all this information. Finally,
this behaviour is attached to the scene graph (i.e. behaviorGroup), which
is necessary for it to become active in the Virtual Reality application.

172

6. Behavioural Design Patterns Framework

Figure 6.10: Code extraction

6.4.2 Pattern Movement Pattern

6.4.2.1 Name

Pattern Movement

6.4.2.2 Description

This pattern allows controlling the movement of an object in the Virtual
Environment according to some predefined path specified by a series of key
locations along the trail. It is a way to give the illusion of intelligent be-
haviour since the movement makes the object appear as if it is executing
complex manoeuvres.

6.4.2.3 Motivation

Within dynamic Virtual Environments, objects often move along a prede-
fined path. For example, in our virtual city application, buses need to
drive along the streets according to a predefined route and stop at different
places. This sort of behaviour occurs in many Virtual Environments and
games, e.g., a guided tour where tourists are following a predefined path,
in First-Person-Shooter (fps) games where a guard is patrolling around a
castle in a well-defined manner, or in flight simulator games where evasive
manoeuvers could be taken according to a fixed pattern.

6.4.2.4 Structure

The basic structure of a pattern movement pattern consists of an actor el-
ement and a behavioural element connected to each other by means of a

173

6. Behavioural Design Patterns Framework

Figure 6.11: Additional graphical elements for the Pattern Movement pattern

participant link. Furthermore, the actual path is defined by means of a
graph consisting of minimal two landmarks (indicated by a small flag), and
path specifiers (represented by a one headed or a two headed arrow) connect-
ing the landmarks. The landmark and path specifier are two new graphical
elements that have been defined in the stencil of this pattern (see figure
6.11a and 6.11b for their graphical representation). The landmarks repre-
sent the key locations of the movement. They are specified either by using
absolute coordinates in the Virtual Environment or by using a named land-
mark. A named landmark refers to a named location previously specified in
a Static Structure Diagram. This location refers to a position in the Virtual
Environment. Either the absolute coordinate or the name of the landmark
is given through a textual label below the landmark element. The path
specifiers connect the different landmarks to each other and thereby specify
the path that needs to be followed by the object involved in the pattern
movement. These path specifiers can be one-way or two-way, meaning that
the object can move between the two connected landmarks respectively in
one direction or in both directions. There can be multiple outgoing arrows,
which means that the object will randomly choose the next landmark to go
to. Going from one landmark to another will be achieved through interpo-
lation to ensure that the different pieces of the path smoothly fit together.
In this way, the actor involved in the pattern will follow a smooth path.

6.4.2.5 Usage

The usage of the pattern is shown in figure 6.12. In this example, it is
applied to an actor called Bus. The actor is connected to the BusBehaviour
element. Within the BusBehaviour element, the path that the bus has to
follow is given by means of the landmarks, named A-1, B-1, A-2 and B-2.
These landmarks refer to actual positions that have been marked in the
Static Structure Diagrams (not shown here). In this example, the path
specifiers correspond to the streets in the virtual city application meaning
that an arrow from A-1 to B-1 represents a road going from A-1 to B-1. Note
that, it is the responsibility of the designer to specify meaningful connections
between the different landmarks.

174

6. Behavioural Design Patterns Framework

Figure 6.12: Behaviour Definition Diagram using the Pattern Movement pattern

6.4.3 Herd Pattern

6.4.3.1 Name

Herd

6.4.3.2 Description

The main goal of this pattern is to allow a number of objects to move as
a single cohesive group (and possibly following a leader). Craig Reynolds
was the first to introduce this kind of grouping behaviour in his flocking
algorithms [Reynolds, 1987].

6.4.3.3 Motivation

The pattern represents a well-known type of behaviour used in many differ-
ent kinds of applications. It can for example be a group of soldiers following
their commandant in chief in a combat game, a group of animals in an ad-
venture game, or a fleet of jet fighter planes in a flight simulator. In the
virtual city application, the herd pattern is used to enable a number of
avatars (tourists) to follow a tour guide.

6.4.3.4 Structure

The herd pattern is defined using a single behavioural element and two or
more actor elements. The actors that are involved are either participating
as an ”item” or as a ”master”. This is denoted by means of a participant
link towards the behavioural element of the pattern. The actors of the
herd pattern are actually all the objects that belong to the group. The
master represents the group leader. It is the head of the group and will

175

6. Behavioural Design Patterns Framework

thus determine the behaviour of the items, i.e. the followers. There can be
multiple item-actors but only one master-actor in this pattern.

This behaviour requires the specification of the field-of-view parameter
(the range, specified through a radius, by which the world can be observed),
the blind-spot-angle parameter and the size of the blind spot in the field of
view, which starts directly behind the item and which represents the area
in which the items cannot perceive (view) anything. It actually determines
the visibility for the items in the group; the larger the angle, the lesser the
item can see. Furthermore, the herd behaviour needs the specification of
the weights for cohesion, alignment, and separation. Cohesion enforces the
actors to be close to the average position of the group. Alignment aims to
have the orientation aligned with the rest of the group. Separation makes
sure that there is a certain distance between the items of the group so
that they are not colliding. Different weights for these rules can be set by
the designer, which will result in the actual steering force of each of the
items. Similar to the chase-evade pattern, also here, an obstacle avoidance
algorithm can be specified.

6.4.3.5 Usage

There are basically two ways of using this pattern. The first way is to
enumerate all the actors that are involved in the group. An example is given
in the JointPatrol (figure 6.13a) behaviour where a fixed number of Guards
(the item-actors) are used with one Leader (the master-actor). However,
if a large number of item-actors are involved, this will quickly clutter the
diagram. For this reason, a second way of using this pattern is provided
which avoids listing explicitly all the item-actors. This is done by employing
the list-specifier supported by our approach (given by the {. . . }* notation)
as illustrated in figure 6.13b, where a GuidedTour behaviour is expressed
involving a set of Tourist actors (item-actors) (expressed by means of {. . . }*)
which follow a Guide (master-actor). The parameter dialog for this pattern
is omitted.

6.4.4 Strategy Pattern

6.4.4.1 Name

Strategy

6.4.4.2 Description

Many applications are often faced with the issue of selecting a particular
behaviour in a particular context. The strategy pattern aims at allowing
the designer to specify how or when the appropriate behaviour should be
selected. It allows defining a family of behaviours, all having the same

176

6. Behavioural Design Patterns Framework

Figure 6.13: Behaviour Definition Diagram using the Herd pattern

purpose, and specifying how an object at runtime can decide which one to
choose.

6.4.4.3 Motivation

An example can be found in games, where an attack is done differently
depending on the weapon that is carried or where a different kind of move-
ment is performed depending on the health of the player (e.g., running when
healthy, limping when hurt) or depending on the location in the world (e.g.,
walking when on ground, swimming when in water). For example in our vir-
tual city application, this pattern can be used for the wandering behaviour
of the avatar representing a tourist. Depending on his level of tiredness and
his interest in the things around him, we want to adapt the way in which
he wanders.

6.4.4.4 Structure

The strategy pattern consists of a generic behaviour, which can be considered
as an abstract strategy that needs to be replaced by a concrete behaviour
when invoked. The abstract strategy is connected to a subject, being the
actor that will actually be performing the behaviour, through a participant
link. A number of concrete strategies (behaviours) are connected to the
abstract strategy by means of causality links. The causality on the links
is given by means of conditions. When the abstract strategy is invoked,
the concrete strategy that will be executed will depend on the values of the
conditional expressions that have been specified. The behaviour associated

177

6. Behavioural Design Patterns Framework

with a true condition will be executed. When more than one condition
would result in a true value, one of these strategies is randomly picked. If
none of the conditions are satisfied, the behaviour is set to the default one
defined in the abstract strategy. The condition can be specified by means
of relational operators (<, >, <=, >=, ==). In addition, the standard
arithmetic operators may be used (+, −, /, ∗). The conditions can also
be combined or negated using the boolean operators (AND, OR, NOT).
The properties of the object that is involved in the behaviour (the subject)
can be referred to by means of their name. Properties of other objects or
of the environment itself can be referred to using their name followed by
the dot-operator (”.”) followed by the name of the property. The concrete
strategies need to be defined elsewhere (in Behaviour Definition Diagrams).

6.4.4.5 Usage

Figure 6.14: Behaviour Definition Diagram using the Strategy pattern

An example of how this pattern is used, is given in figure 6.14. The
Tourist actor is specified as the subject of this pattern. For the abstract
strategy, Wander is used. This abstract strategy is connected to the concrete
behaviours Walk and Run. Depending on the strength and the general
interest of the Tourist, a particular behaviour will be selected. If the Tourist
is tired, he will walk slowly, if he is not tired and has a low interest, he will
pass everything much faster. The concrete behaviours, Walk and Run need
to be defined in other Behaviour Definition Diagrams through the standard
graphical notation in our approach (see chapter 5).

6.4.5 Proxy Pattern

6.4.5.1 Name

Proxy

178

6. Behavioural Design Patterns Framework

6.4.5.2 Description

As mentioned earlier, in our approach, events are used to specify when be-
haviours should be invoked for particular objects. In many cases, one wants
to have a kind of indirect control to trigger the behaviour of an object as
opposed to direct control in which the behaviour of an object is triggered by
interacting with that object directly. With indirect control, the interaction
occurs with an object different from the one of which the behaviour needs to
be invoked. This pattern provides a kind of substitute behaviour that can
be triggered and which on his turn triggers the desired behaviour of some
other object.

6.4.5.3 Motivation

This scenario happens often in Virtual Environments. For example, some
safety regulations may state that the start- and stop-button of a machine
is required to be in a remote location, separate from the target machine
itself. Another example can be found in an action game where the player
has to pull a lever in order to open a door to the next room. In the virtual
city application, this pattern was introduced on the bus stop and the bus
expressing that when the user clicked on the bus stop, the bus would start
its route until reaching the bus stop again.

6.4.5.4 Structure

The proxy pattern involves two different structures, the proxy-structure and
the target-structure. The proxy-structure consists of an actor element, which
is the subject of the pattern, connected by a participant link to a behavioural
element which is the proxy. The proxy is actually the surrogate for the
behaviour to be executed. This element is connected via a causality link to
the behaviour element of the target-structure. The target-structure contains
a behaviour element connected to an actor executing the behaviour. This
behaviour obviously needs to be specified elsewhere in the same way as a
regular behaviour is specified in our modelling language.

6.4.5.5 Usage

An instantiation of this pattern is illustrated in figure 6.15. The Lever ac-
tor participates in the pattern as the subject of the proxy element called
StartMachine. This element is related to another behaviour called Produc-
tionCycle, which is a behaviour of the actor called Machine. Here, it states
that interacting with the Lever would indirectly initiate the ProductionCycle
behaviour on the Machine.

179

6. Behavioural Design Patterns Framework

Figure 6.15: Behaviour Definition Diagram using the Proxy pattern

6.4.6 Randomness Pattern

6.4.6.1 Name

Randomness

6.4.6.2 Description

Much behaviour is deterministic behaviour, which may sometimes result in
rather unrealistic situations. The goal of this pattern is to add a level
of unpredictability to the behaviours that are executed, using the basic
principles of probability and in this way giving more realism to the Virtual
Environment. However, the behaviours are not completely random of course,
since after a while the chances that a behaviour is executed could be known
by the end-user.

6.4.6.3 Motivation

This pattern can be used to personalize a player in a game, allowing him to
select an action according to his preferences or abilities. It can be used in
fps games, where the computer controlling characters, i.e. the enemies, are
executing some actions in a randomly fashion. In the context of our virtual
city application, this pattern was applied to a number of tourists (avatars)
in order to give them a kind of random behaviour by letting them to choose
between different actions at runtime.

6.4.6.4 Structure

The randomness pattern is defined using a set of behavioural elements. Of
this set, one is the main behaviour while the others (at least two) are the sec-
ondary behaviours. The main behaviour is causally linked to the secondary
behaviours and acts as a sort of interface to them. Each of the connectors
specifies the probability that the connected behaviour will be chosen among
the set of secondary behaviours. The sum of the probabilities of all possible
behaviours must be equal to 1 since at least one of the behaviours must be

180

6. Behavioural Design Patterns Framework

executed. When no probabilities are given on the connectors, it is assumed
that all the behaviours have the same probability. Finally, an actor (the
subject of the pattern) is connected to the main behaviour by means of a
participant link. Also here, the secondary behaviours should be defined in
separate diagrams using our graphical behaviour modelling language.

6.4.6.5 Usage

Figure 6.16: Behaviour Definition Diagram using the Randomness pattern

An example instantiation is given in figure 6.16. The actor, called
Tourist, is the subject of the pattern and is connected to the main be-
havioural element, namely ExploreCity. The ExploreCity is further con-
nected to the secondary behaviours. In this case, there is a 70 percent
chance that the actor will choose the VisitPark behaviour (this high proba-
bility was taken because the park is the city’s biggest attraction), 20 percent
of chance that the actor will choose the TakeBus behaviour, and a 10 per-
cent of chance that the actor will pick the VisitMuseum behaviour. In this
example, the ExploreCity is set to be continuously repeated by means of the
repeat command in the scripting area of the ExploreCity behaviour. This
means that once the selected behaviour is finished, the actor will choose
again for a next behaviour. It will execute this pattern until the behaviour
is interrupted by an external event.

6.4.7 Feedback Pattern

6.4.7.1 Name

Feedback

181

6. Behavioural Design Patterns Framework

6.4.7.2 Description

Virtual Environments are often populated with a large number of objects.
End-users are often able to grasp the spatial structure and the visual prop-
erties of the objects populating the environment through exploration; how-
ever, the possible interactions and behaviours may not be obvious for the
end-users. This pattern actually specifies a kind of interaction that allows
the end-user to be informed about the behavioural characteristics of the ob-
jects. This may seriously improve the usability of the Virtual Environment.

6.4.7.3 Motivation

The feedback pattern can be used to inform the end-user on how to trigger
the different behaviours associated with an object. In the game community,
it is becoming extremely important to give visual feedback in addition to
audio feedback to facilitate the game play. In the context of our virtual city
application, an avatar can perform several actions, like for example, take the
bus, visit the museum or visit the park. The feedback pattern can be used
to inform the end-user on how to trigger these different behaviours. Another
example would be feedback for the bus that is following a particular route
in the city. The pattern could be used to give a textual description on the
different roads that the bus is taking.

6.4.7.4 Structure

The behavioural information (feedback) to be displayed is specified by means
of a caption, represented by means of a rounded rectangle. For this cap-
tion, a new graphical element has been introduced, because this element is
conceptually different from a behavioural element and from an actor (see
figure 6.17). The feedback should provide information on how an end-user
can interact with the actors and information about the behaviours of the
actors. The simplest way to provide the feedback, called the behavioural
information, is by means of text (a string) in natural language. However,
the behavioural information can also be specified by means of a template
using replacement tags (in our notation they are enclosed by squared brack-
ets ”[”. . . ”]”). See figure 6.17 for an overview (given in BNF format) of
the different tags that are available. When using the Description tag, an
automatically generated description of the behaviour will be displayed when
the behaviour is executed. See section 7.2.1 (on page 193) for more informa-
tion regarding the automatic text generation. Through the Attribute tag,
the designer can ask to visualize the value of some of the attributes of the
actor or behaviour. The attribute tag is specified by means of the Name tag
(which will return the name of the attribute) and the Value tag (will return
the value of the attribute). Furthermore, the functionality provided by the
actor can be displayed by using the Function tag. This tag is specified by

182

6. Behavioural Design Patterns Framework

means of an Action and a Reaction tag, resulting in the display of tuples
of respectively the trigger to be used and the behaviour triggered. One
can refer to a particular attribute or to a particular behaviour by explicitly
mentioning the name within the replacement tags. Finally, separators can
be used to denote how the different elements must be separated in case of
multiple information items or multiple behavioural information entries. A
caption element is connected to either an actor or a behavioural element
by means of a participant link. Note that in case of a complex behaviour,
these caption elements can also be attached to sub-behaviours within the
complex behaviour. The information described in the caption element will
be displayed when the end-user selects the object with the virtual pointer,
or when the behaviour is executed.

Figure 6.17: Additional graphical elements for the Feedback pattern

6.4.7.5 Usage

The use of this pattern is shown in figure 6.18. In 6.18a the functionality
of the Tourist actor will be displayed by showing the name of the triggers
and the name of the behaviour executed via this trigger as follows: OnKey-
Press(b) ∼> TakeBus. It also illustrates the use of a separator (e.g., ∼>).
In 6.18b, the attribute value of one particular attribute of the Tourist object
will be returned, namely that of ”Strength”. By the specification given in
figure 6.18c, the automatically generated description of the ProductionCycle
behaviour will be returned.

Figure 6.18: Behaviour Definition Diagram using the Feedback pattern

183

6. Behavioural Design Patterns Framework

6.4.8 Device Configuration Pattern

6.4.8.1 Name

Device Configuration

6.4.8.2 Description

With the large range of input devices available in interactive applications
(such as mouse, keyboard, space mouse, controllers, and so on) it may be
necessary to adapt an application in such a way that the most appropriate
input device can be used for invoking a behaviour. This can be realized with
the device configuration pattern. This pattern is a so-called interaction pat-
tern that allows the designer to select a particular device and reconfigure its
buttons appropriately. It allows not only to easily switch between different
devices in the behaviour specifications but also to simplify the incorporation
of new devices.

6.4.8.3 Motivation

Many games nowadays come with controllers having a wide variety of but-
tons. Several combinations of buttons could be set by the player to execute a
particular action. The different buttons of a space orb or space mouse [Bur-
dea and Coiffet, 2003] might be configured for a particular Virtual Reality
application. This is very important for people that are physically not able
to use a particular device, in which case game actions can be mapped onto
specific keys or buttons of input devices. In our virtual city application, this
pattern was used to provide keyboard shortcuts for a number of behaviours
to be executed.

6.4.8.4 Structure

Figure 6.19: Additional graphical element for the Device Configuration pattern

This pattern is composed of one device element representing a partic-
ular physical device. This element is connected with a number of event
elements. The event elements are on their turn connected to the behaviours
that they need to trigger (which is the normal procedure in our behaviour
modelling approach). On the connector between a device element and an
event element, the designer can specify some arguments denoting the infor-
mation that should be sent to the event. This can be the keys or buttons
that are pressed, possibly together with the masks for any key (or button)

184

6. Behavioural Design Patterns Framework

combinations. This can also be position and orientation information. Please
remember that in our approach, the definition of a behaviour is separated
from the events triggering it, which is specified in a Behaviour Invocation Di-
agram. A device configuration pattern is therefore used within a Behaviour
Invocation Diagram.

6.4.8.5 Usage

Figure 6.20: Behaviour Invocation Diagram using the Device Configuration pat-
tern

Figure 6.20 gives an example use of this pattern. The device element,
namely the SpaceMouse, is connected to a number of events (OnKeyPress).
The different behaviours (TakeBus and VisitPark) will be executed respec-
tively by pressing the 1-key and the 2-key on the SpaceMouse as specified
by the arguments on the connectors. Key combinations can also be specified
(such as ctrl+vk b, alt+vk enter and shift+vk p).

6.4.9 Other Patterns

The collection of patterns presented in this section is far from complete and
many other patterns could be added. For instance, a pattern that could be
useful would be to provide the possibility of adding and removing behaviours
at runtime where an object could gain or loose some capabilities depending
on its status or on its location in the Virtual Environment. Other patterns
could be, for example, patterns dealing with objects learning about their
environment or with communication between objects.

Since the focus of this dissertation is on the modelling of behaviour in
a Virtual Environment, only behavioural patterns were developed so far.
However, it is our strong believe that the concept of visual generative design
patterns can also be used in the context of the Static Structure Diagram
(the diagram specifying the static structure of the Virtual Environment) in
our approach. Examples could be: objects placed according to some prede-
fined pattern (such as the setup of the players in a soccer team), or rooms
connected to each other in a certain way (predefined common structures of
building layouts).

185

6. Behavioural Design Patterns Framework

6.5 Summary

The work presented in this chapter extends the work introduced in the previ-
ous chapter. It describes the second major contribution of this dissertation.
Within this chapter, an extension on the behaviour modelling approach is
explained. The extension combines our graphical notation with the concept
of so-called visual generative design patterns. A behavioural design pat-
terns framework, implementing the proposed approach, has been discussed.
It allows a more experienced designer to create new visual generative de-
sign patterns and to include them in the framework for further use. The
design patterns created with this approach are generative so that by us-
ing our framework, automatic code generation for the Virtual Environments
specified is possible.

The pattern creation process can be summarized as follows. The pattern
specification is used to describe the pattern from the viewpoint of our graph-
ical notation (using graphical elements and parameters) (step (1)). In the
extension specification (step (2)), the semantics of the visual pattern is spec-
ified so that the pattern can be used by the VR-WISE Conceptual Designer
and the parameters can be interpreted correctly. After step (1) and (2) the
specified pattern is available in the VR-WISE Conceptual Designer and can
be used by the designer and applied in the design of a Virtual Environment.
The use of a pattern can be done completely through our graphical nota-
tion. The executable pattern code, which is the result of the source code
specification (step (3)), is compiled together with the output of the other
specifications made with the visualization framework to come to a runtime
binary. The result from the VR-WISE Conceptual Designer is then used as
an input for this binary, which makes the actual Virtual Reality application.

The goal of this approach was twofold. On one hand, it was aimed
to reduce the size and complexity of the behaviour specifications, which is
considered as the main drawback of existing specification approaches such as
scripting languages and graphical notations. On the other hand, it allowed
us to capture existing expertise in a behaviour specification in a well-defined
way and reuse it in other designs, which may result in a reduction of the
time (and cost) needed for developing behaviours.

This chapter furthermore described a number of patterns created with
our framework, such as patterns applying AI techniques (Chase-Evade and
Herd), general-purpose behavioural patterns (Pattern Movement, Random-
ness, Strategy and Proxy), and some interaction patterns (Feedback and
Device Configuration). As already mentioned, this collection of patterns
can be extended with new patterns. It was not the intention to create
a complete set of design patterns; the main intention of this collection is
to show the capabilities of the behavioural design patterns framework and
hereby prove its feasibility.

186

CHAPTER 7

Implementation

So far, this dissertation has been devoted to the general architecture of our
approach, called VR-WISE, as well as how this approach was extended to
enable the modelling of behaviour. The previous chapters mainly discussed
the details of the behaviour modelling approach that was introduced. To
show the feasibility of our approach, proof-of-concept software tools sup-
porting the approach have been developed. The topic of this chapter is to
discuss these tools and in particular the tools developed in the context of
this dissertation.

The chapter will start (section 7.1) by giving a general overview of the
different tools that were developed to prove the feasibility of the ideas pre-
sented in this dissertation. This section also discusses the relationships
between those tools. Section 7.2 gives details on the tool developed to sup-
port the graphical modelling of the behaviour in a Virtual Environment.
Section 7.3 will then go into detail on the main software application, called
OntoWorld, developed to support the overall VR-WISE approach and how
it was extended with the behaviour modelling approach. Afterwards, sec-
tion 7.4 discusses some issues related to our viewer framework designed to
visualize the end result. Finally, section 7.5 briefly summarizes this chapter.

7.1 Overview

In order to validate, and later on evaluate, the expressiveness (i.e. Is the
information captured by means of the models sufficient to describe an ac-
tual Virtual Environment?) and applicability (i.e. Can a working Virtual
Environment be generated from these models?) of the modelling concepts
developed for the VR-WISE approach and in particular for the behaviour

187

7. Implementation

modelling approach, a number of prototype tools have been implemented.

Figure 7.1: Overview of implementations

Figure 7.1 gives an overview of the different tools developed to support
the complete VR-WISE approach, including the behaviour modelling ap-
proach. There are basically three tools:

• Conceptual Specification Designer (CSD). This diagram editor
allows the designer to specify the high-level conceptual specifications
using the graphical notation presented in previous chapters.

• OntoWorld. This is the main application supporting the different
phases (specification, mapping and generation) of the overall VR-
WISE approach through an intuitive GUI interface. The diagrams
created by the first tool can be imported in this tool to replace the
textual specification provided for the specification phase.

• Integrated Test Environment (ITE). This is a visualization frame-
work for loading the Virtual Environment (for the static part) and
processing the generated source code (for the dynamic part), coming
from the OntoWorld application, in order to show the resulting Virtual
Reality application.

These tools will be discussed in more details in the following sections.
Only the first two are actually used for designing the Virtual Reality appli-
cation and are grouped into the VR-WISE toolbox. The third one is used
to visualize the end result but could be replaced by some other viewer.

7.2 Conceptual Specification Designer (CSD)

A first and important tool in the VR-WISE toolbox is the Conceptual
Specification Designer (CSD). It is a diagram editor with a graphical in-
terface, implemented on the .NET platform. It allows creating the high-level
conceptual specifications in a graphical way (see figure 7.2). The different

188

7. Implementation

models describing the behaviour definition as well as the behaviour invoca-
tion can be specified using this CSD. Figure 7.3 gives a schematic overview
of how this prototype is implemented.

Figure 7.2: Conceptual Specification Designer (screenshot)

At the Core of the application, an internal record is kept of all the
diagrams that are created (and loaded) at a particular moment in time.
All this information is kept in a data structure that is called the semantic
graph. This information can be written to a file using an XML format that
can later on be imported in the OntoWorld tool. More details on the seman-
tic graph and the OntoWorld tool are given in section 7.3. In terms of the
GUI, it can be said that the application is MDI1-based. To facilitate the
design of the behaviour, a so-called model explorer is available (see figure
7.2 on the right). The model explorer gives an overview of the diagrams
that are currently loaded and the hierarchical structure of the graphical el-
ements within these diagrams. Furthermore, the model explorer eases some
tasks in the behaviour modelling approach. As mentioned earlier, there are
places in the diagrams where ’connections’ should be made between con-
cepts from different diagrams. For example, an object (either a concept
or an instance described in the Static Structure Diagrams) in a Behaviour
Invocation Diagram needs to be assigned to one or more actors from the
Behaviour Definition Diagram. Using the model explorer, the designer does

1Multi Document Interface

189

7. Implementation

not need to manually specify the names for the actors assigned to the object.
Instead, this can be easily done by just dragging the actor from the model
explorer to the object element in the diagram. For the GUI, the application
makes use of Microsoft Visio [Wideman, 2003] for the diagramming capabil-
ities itself. In figure 7.2, this module is marked in red since it is not built
by us.

Figure 7.3: Conceptual Specification Designer overview

The CSD accesses Visio using an ActiveX control2. This enables our
application to add the functionality of Visio as if it was a regular part of
our application. Microsoft Visio is a drawing and diagramming program
that allows quickly and easily visualizing and communicating information
through diagrams.

To use Visio, a number of stencils have been created (see left side of
figure 7.2). A stencil contains all the shapes needed for creating a particular
diagram. These shapes are the representations of the graphical elements
that were introduced in previous chapters; they are the key to creating
diagrams in Visio. Organizing the shapes by means of the stencils makes

2A software module based on Microsoft’s Component Object Model (COM) architec-
ture

190

7. Implementation

that they can be searched for, and referenced to, quickly. Furthermore,
in this way, all the graphical elements can be easily maintained. In our
approach, one stencil was created for each type of diagram (Structure Chunk,
Behaviour Definition Diagram, and Behaviour Invocation Diagram) and an
additional one containing all the default shapes necessary for defining the
visual behavioural design patterns. By simply dragging and dropping the
shapes onto the drawing page, a designer can compose a diagram.

It was also necessary to build a template which includes all the settings
and stencils that are needed to assemble a high-level conceptual model (a
combination of different diagrams) in our approach. Furthermore, the tem-
plate also automatically sets up the drawing page correctly. The template
together with the predefined stencils forms the basis of our application. Cre-
ating a new diagram based on the provided template initializes the second
part of our CSD, namely the add-in for Microsoft Visio (see next section).

An advantage of having the CSD separated from the main application
and the add-in is that the designer can work either with the normal Visio
environment as well as with the CSD environment for creating the diagrams.
One of the parts could also easily be replaced by some other solution without
touching the other part.

7.2.1 VisioVRCSAddin (Microsoft Visio Add-in)

As soon as an instance of Microsoft Visio starts (either the application itself
or through the ActiveX control from the CSD), our Microsoft Visio add-in,
named VisioVRCSAddin, will be loaded. See the frame in figure 7.3 for
a more detailed overview of the add-in.

The main part of the add-in (Base) includes some general functionality.
There is an event handler, which is capable of catching the events coming
from the Visio application, or the diagram itself. The processing of these
events is also done in the add-in in order to make sure that the correct
methods can be executed. Furthermore, it contains some basic classes for
saving and loading the attributes required for the graphical elements of the
diagram.

The bulk of the add-in consists of a collection of parameter dialogs. The
graphical elements (representing the high-level modelling concepts) require
a number of attributes to completely specify them. These attributes are
entered through dialogs. Every element has its own dialog. When the de-
signer double clicks the element, an event is thrown which is caught by the
add-in resulting in the correct dialog being displayed. The designer can then
enter the values for this particular element. Since every element has its own
dialog, the dialogs remain simple.

The second part in the add-in is the Pattern Explorer (see figure 7.4).
The purpose of the pattern explorer is on one hand to organize the different
patterns available (discussed in chapter 6) and allow searching for patterns.

191

7. Implementation

On the other hand it serves as a mechanism to quickly instantiate (use) a
pattern. When the designer wants to instantiate a pattern from the library,
all he needs to do is select the pattern in the Pattern Explorer and press the
button ”insert”. After the pattern is inserted, the add-in will automatically
place the graphical elements specified for the pattern on the canvas and
make the appropriate connections between them, according to the pattern
description. In other words, the designer does not need to draw the pattern
manually. This tool also allows to easily manage the pattern collection, i.e.
existing patterns can be modified and new patterns can be added by loading
a so-called Pattern Package. The pattern package is an archive containing
all the different files required for building a new pattern in the Behavioural
Design Patterns Framework (see chapter 6). Loading a pattern package will
automatically copy the files to the correct places, dynamically load the class
libraries and configure the system for use of the newly added pattern.

Figure 7.4: Pattern explorer (screenshot)

The third part of the add-in is an additional tool called the Verbalizer
(see figure 7.5). This tool provides a natural language description of the
models while the designer is making them. A template-based approach
[Reiter and Dale, 1997] is used to generate the textual formulation. Every
high-level modelling concept (e.g., actions, operators,. . .) is associated with
a (range of) template(s). A template contains a number of slots or tags
which are replaced at runtime with the correct values and this according
to the parameters given for the modelling concept. A variety of templates
have been created for each modelling concept, which allows us to produce
text depending on the values of the parameters entered, or whether the
parameters are given or not. So, any correct graphical representation can
be converted into a text representation. Also for composite behaviours, text
descriptions can be produced. This is based on how the composite behaviour
is composed of primitive behaviours (actions).

The Verbalizer provides a mechanism to exploit the semantic information
captured by means of the models. It has the following advantages:

• Interactive Design. Providing a natural language-like description
of the behaviour that has been modelled, gives the designer a first
facility to verify the model. He can check if the model indeed expresses

192

7. Implementation

Figure 7.5: Verbalizer (screenshot)

what he is intending to express. This allows for an early detection of
design errors. In addition, the textual descriptions may also shorten
the learning time of the graphical notation.

• Code Documentation. After the design process has been com-
pleted, the models are used to generate programming code. The code
generator can use the text descriptions, generated at design time, to
document the code, and hereby facilitate the post-modelling phase and
possible extensions and customization of the code.

7.3 OntoWorld

The second software application in the VR-WISE toolbox is called On-
toWorld. The OntoWorld tool supports the overall VR-WISE approach,
i.e. the creation of the conceptual models, the mappings of the conceptual
level onto the implementation level, and the generation of the actual source
code. Figure 7.6 gives an impression of the user interface of the tool.

To guide the user in the development process, a panel is available (on
the left side of the interface) which gives an overview of the different steps
comprising the VR-WISE approach. These steps correspond to the ones
described in section 3.3.2. Through the user interface, the user can cre-
ate a high-level specification of the Virtual Environment to be developed.
This means first describing the concepts needed from the application do-
main under consideration (cfr. Domain Specification) and secondly defining
instances of these concepts which represent the actual objects that will pop-
ulate the Virtual Environment (cfr. World Specification). This can be done
by means of the user interface of OntoWorld (form-based) or alternatively by
making the different diagrams using the Conceptual Specification Designer
and importing them into OntoWorld. Note that only the static structure
can be described through the user interface of OntoWorld. Specifying the
behaviours through the user interface of OntoWorld is not possible. For the
behaviours, the Conceptual Specification Designer needs to be used. Then,
the designer can specify the mapping for the conceptual level. This means
first defining the mappings of the concepts (cfr. Domain Mapping) and then

193

7. Implementation

possibly override these mappings for particular instances (cfr. World Map-
ping). Once the specification and the mapping have been created, the code
can be automatically generated by pressing the ”code generation” button.

Figure 7.6: OntoWorld (screenshot)

Similar as the Conceptual Specification Designer, the OntoWorld tool
has a MDI-based user interface. When designing this user interface, special
attention was paid to the usability for the designer. If a user interface
is too complex and too much functionality is offered at the same time, a
non-experienced user quickly gets lost in the wide range of functionalities
available. A major requirement for the design of our user interface was to
provide the user at each moment a very clear picture of what needs to be
done and in what stage of the development he is.

The complete user interface is contained in a single package called GUI
as illustrated in figure 7.7. Here, an overview of the internal structure of
OntoWorld is given. Next to the user interface, this tool consists of three
other major packages: the Core, the Semantic Factory, and the 3D Factory.

The Core mainly consists of what is called the semantic graph. The
semantic graph is the domain-specific representation of the information on
which the OntoWorld tool operates. Earlier, the concept of scene graph
was introduced, which is the most commonly used data structure in the
Virtual Reality domain. A scene graph only contains the different nodes of
the scene together with a sort of parent-child relations. The semantic graph
extends the concept of scene graph in the sense that not only parent-child

194

7. Implementation

relations can be captured, as in the regular scene graph, but many other
relations can be included as well. These relations are is-a relations, part-of
relations and so on. Using this semantic graph means that practically any
kind of relation could be easily added to the system. The semantic graph is
a powerful data structure and much richer than a regular scene graph. The
tool can save the information in the graph in an XML file and read it back
later on. Furthermore, since the Conceptual Specification Designer uses the
same semantic graph internally, the output of this tool can also be imported
in the OntoWorld tool.

Figure 7.7: OntoWorld overview

The second package is the Semantic Factory. On the one hand, it
deals with exporting the semantic information in the models to an OWL
(Web Ontology Language) ontology so that this information can be used
later on, for other purposes such as searching, reasoning and so on. An
example of this can be found in [Mansouri, 2005]. On the other hand, the
ontology format can be used to import external knowledge and use it during
the design to create the high-level conceptual models. The semantic factory
employs the OwlDotNetApi3 for accomplishing this. The OwlDotNetApi is a
self-developed fast and lightweight OWL API written on the .NET platform
and based on the Drive RDF4 parser. The API allows reading and writing
OWL ontologies from and to a file. It furthermore allows manipulating
OWL ontologies. That is, new concepts can be made; relations between
those concepts can be created as well as instantiations of those concepts
and so on. It is fully compliant with the W3C OWL syntax specification5.

The third package is the 3D Factory. This module is used to generate
3http://users.skynet.be/bpellens/OwlDotNetApi/
4http://www.driverdf.org/
5http://www.w3.org/TR/owl-ref/

195

7. Implementation

the actual Virtual Environment. It works by transforming the conceptual
specifications into a working application using the mappings. That is, for the
static part, the internal semantic graph is converted into a standard scene
graph. Next, all the instances (objects) are taken one by one. The behaviour
specifications are searched for any of these instances playing the role of one
or more actors. If this is the case, the possible behaviours belonging to the
actor(s) are retrieved and programming code is generated for it (if it has
not been generated before). Next, the behaviour parameterizations for the
instances are added to the scene graph. The output of OntoWorld for the
static part of the Virtual Environment is X3D or VRML code. The output
of the dynamic part of the Virtual Environment is either Java code or Lua
script. At this moment, these are the only formats that are supported.
However, the package is designed in such a way that code generation towards
other formats can be easily added in the future.

Please note that the OntoWorld tool is not a VR modelling tool. It is not
capable of visually creating complex objects nor does it support advanced
features such as soft body modelling, particle systems and so on. To over-
come this limitation, the OntoWorld tool has been extended with an object
library allowing to incorporate objects coming from dedicated VR modelling
tools. The object library is a collection of (complex) objects that can be
used as the target in the mapping step of the approach. These objects com-
plement the standard primitives available in OntoWorld, and in almost any
modelling application or language, such as a Box, Sphere, Cone, Cylinder.
Most of the actual objects are not created by OntoWorld itself but loaded
into the application from external sources. From the viewpoint of the static
scene, the purpose of the OntoWorld tool is to compose the overall scene
(and the objects populating it) by means of the semantic relationships that
are provided in our approach.

7.4 Integrated Test Environment (ITE)

The third application that was developed is the Integrated Test Environ-
ment (ITE). This tool is not a part of the VR-WISE toolbox. It actually is a
viewer, completely written in Java, dedicated to visualizing the output that
is generated by the OntoWorld tool. Two main parts can be distinguished
here.

The first part deals with visualizing the scene graph itself. For this the
ITE uses Java3D6 [Selman, 2002], a 3D graphics API for Java. The option
of using Java3D was chosen since in this case, the application can also be
loaded in an ordinary Web browser via WebStart7. In such a way, no appli-
cations or plug-ins need to be installed by the user in order to visualize the

6http://www.java3d.org/
7http://java.sun.com/products/javawebstart/

196

7. Implementation

Figure 7.8: Integrated Test Environment (screenshot)

Virtual Environment in a Web environment. This was an important require-
ment since the focus of the VR-WISE approach is on Virtual Environments
for the Web. It can also be executed as a local application, which is the case
with the ITE. The X3D loader of Xj3D8 is used to load the complete scene
into Java3D. Furthermore, all the objects in the scene are linked to the Ode-
Java9 physics engine in order to give the user the feeling of being in a real
physical environment. The viewer can be used in two modes, namely a nav-
igation mode and an interaction mode. In the navigation mode, the Virtual
Environment can be navigated using the standard navigational metaphors
(e.g. walk, fly,. . .). In the interaction mode, a virtual pointer becomes vis-
ible which can be manipulated in order to interact with the objects in the
Virtual Environment.

The second part deals with managing behaviours. For this, a special be-
haviour scheduler has been implemented which is using a constraint solver,
called Cream. Cream10 (Constraint Resolution Enhancement And Modules)
is an open source constraint solver implemented in Java. It supports a num-
ber of optimization algorithms such as Simulated Annealing, Taboo Search
and so on. An in-depth discussion about these algorithms is not the pur-
pose of this chapter but can be found in [Russel and Norvig, 1995]. The
purpose of the constraint solver is to calculate the timings in which a partic-
ular action, or behaviour, needs to become active, that is, at what time an
action needs to be started and at what time an action needs to be stopped.
In our approach, every action (behaviour) is expressed as an interval with
a beginning time and an ending time. The operators between the actions

8http://www.xj3d.org/
9https://odejava.dev.java.net/

10http://bach.istc.kobe-u.ac.jp/cream/

197

7. Implementation

and behaviours determine the constraints between those intervals. For ex-
ample, an action A connected to action B through the temporal operator
Before(5s) results in the ending time of action A being 5 seconds before the
beginning time of action B. In this way, both the beginning times as well
as the ending times of all the action (behaviours) can be resolved. In the
current version, a Branch and Bound search algorithm is used for solving
this behaviour schedule. For each scheduling block inside a behaviour, a
corresponding scheduler will use the behaviour graph structure at runtime
to schedule the execution of the sub-behaviours. However, errors can occur
at runtime if some behaviours do not respect the global constraints. For
example, if action A is before action B, action B is before C and action
C needs to begin simulataneously with action A then this will result in an
invalid schedule. Such errors will be detected by the behaviour scheduler
that will destroy the inconsistent sub-behaviours. The overall consistency of
a behaviour specification thus remains under the control and responsibility
of the designer. The behaviours are attached to the scene graph only when
they need to be active and are removed from the scene graph when they are
finished.

The Integrated Test Environment allows a designer to quickly check if
his design satisfies the requirements formulated for the application. In com-
bination with the other tools it can be regarded as a fast prototype tool for
Virtual Reality applications and to debug and improve the design.

7.5 Summary

This chapter described the implementation of the prototype tools developed
to prove the feasibility of the main ideas presented in this dissertation. The
chapter started by giving a general overview of the different tools and how
they relate to each other. There are three tools implemented, namely the
Conceptual Specification Designer, OntoWorld and the Integrated Test En-
vironment. For all these applications, the architecture is discussed as well
as the data representations used.

The OntoWorld tool was originally developed to support the complete
VR-WISE approach. Through the OntoWorld tool, the user is able to spec-
ify the high-level conceptual specifications, describing the Virtual Environ-
ment at a conceptual level. Afterwards, mappings towards implementation
models can be defined for the conceptual level. Finally, the actual Virtual
Environment can be generated from these specifications. The internal data
representation used by OntoWorld is a semantic graph. This graph does not
only contain the properties about objects and relationships between the ob-
jects as usually found in a standard scene graph, but also keeps track of the
additional semantic information that is typical for the VR-WISE approach,
i.e. it holds information about the positional relations (spatial relations, ori-

198

7. Implementation

entation relations,. . .), the is-a relationships, the part-of relationships, and
so on.

The OntoWorld tool allows specifying the static structure of a Virtual
Environment but it does not provide a way to specify the behaviour of the
objects in the Virtual Environment. Therefore, a second tool, the Concep-
tual Specification Designer, has been developed on top of the OntoWorld
Tool. The Conceptual Specification Designer supports the behaviour mod-
elling approach as explained in this dissertation. Based on Microsoft Visio,
this tool allows the designer to graphically describe the different models in-
volved in a behaviour specification. Furthermore, through the Conceptual
Specification Designer, the designer has access to the different behavioural
patterns that were defined in the behavioural design patterns framework.
In this chapter, we did not discuss in depth the implementation of the be-
havioural design patterns framework since most of the issues concerning this
topic were already presented in chapter 6.

The third tool is the Integrated Test Environment which is the framework
that has been built to visualize the output of the OntoWorld tool. This tool
is capable of loading the scene graph and the programming code that was
generated. The visual part is managed by Java3D, while the dynamic part
is managed by a scheduler based on a constraint solver. This tool is valuable
for debugging and adjusting the design of the Virtual Environment.

199

7. Implementation

200

CHAPTER 8

Validation

The main work done in this dissertation was the description of a novel
approach for modelling behaviour. This approach was explained in detail
together with the different high-level modelling concepts developed to spec-
ify the behaviour within this approach. Furthermore, a design patterns
framework was introduced which enabled the designer to model more easily
complex behaviour. The purpose of this chapter is to validate this behaviour
modelling approach. Note that the approach has already been partly vali-
dated through the implementation of a number of prototype tools, such as
the Conceptual Specification Designer and OntoWorld (see chapter 7). The
approach has been further validated by means of a user experiment. This
chapter will present the results of this experiment. In this experiment, peo-
ple having no VR background had to design a number of behaviours using
our proof-of-concept tool to evaluate the intuitiveness of our approach. In
addition, two other case scenarios are elaborated, showing how generic the
approach is.

This chapter is split into two parts. First, in section 8.1, the user ex-
periment performed to evaluate if our approach satisfies the initial goals, is
described in detail and the results are discussed. Secondly, in section 8.2,
the two case studies modelled using our graphical notation, a Virtual City
Park and a small case of animating a Virtual Humanoid, are presented. In
section 8.3, a summary of this chapter is provided.

8.1 Experimental Results

One of the objectives for this research was to develop a modelling approach
for behaviour in Virtual Reality applications that allows domain experts

201

8. Validation

(usually laymen in the domain of Virtual Reality) to be more involved in
the process of modelling behaviour. To achieve this, it is important that the
required knowledge about programming for Virtual Reality, when using our
approach, is as little as possible. This is in contrast with current practice
where the behaviour is usually not modelled but programmed by hand. In
other words, this objective can be restated as the aim to have people having
no prior knowledge in Virtual Reality technologies start designing behaviours
instead of having to rely on more experienced people. This section will
present a user experiment that was performed to validate if this objective
has been achieved. In particular, the goal of this experiment was to evaluate
the intuitiveness of our approach and the usability of the prototype software.
The results of the experiment can then be taken into account in the following
versions of the modelling language and the software tools.

The experiment was executed in the context of the Virtual City Park
example. This example has already been used several times in this disser-
tation. In chapter 6 for example, a number of behavioural design patterns
have been discussed in the context of this Virtual Environment. Figure 8.1
illustrates this Virtual Environment. This Virtual Environment has been
created completely using the VR-WISE Conceptual Specification Designer
discussed in chapter 7. The source code was generated for it allowing us to
visualize it in the Integrated Test Environment. Remember that our Virtual
City Park contains a park with some monuments and is surrounded by a
network of roads on which cars and buses are driving. A number of buildings
are placed around the park. More details on how this Virtual Environment
has been created using our toolbox can be found in [Coninx et al., 2006].

Figure 8.1: Virtual city park

This section is structured as follows. First, a description of the set-up

202

8. Validation

of the experiment is given. Then, the data drawn from the experiment is
analyzed, and the feedback received from the participants is presented. The
section will finish with a discussion of the results.

8.1.1 Description

This section contains the design of the experiment, and a bit of information
about the participants involved in the experiment. The materials used to
help the participants performing the different tasks are also presented, and
the procedure followed during the experiment is explained.

8.1.1.1 Hypothesis

In order to perform an initial evaluation of our behaviour modelling ap-
proach, we designed an experiment to test the following hypothesis: Some-
one with little or no experience in VR and little or no experience in con-
ceptual modelling is able to build a valid behaviour specification using our
behaviour modelling approach within a limited amount of time.

8.1.1.2 Design

The experiment consisted of the task of modelling two behaviours using
our graphical behaviour modelling language. The first behaviour to model
was a manoeuvre with a bus. The second behaviour to model was the
evolution of a city through the time. Both behaviours were to be modelled
in the context of the Virtual City Park environment mentioned earlier. To
evaluate the experiment, the measuring for the different tasks included the
time to complete the design of the two behaviours. In addition, the use of
the correct elements for creating the behaviours was also considered.

The different behaviour modelling tasks covered the need to use a wide
variety of modelling concepts. The experiment was focused on the graphical
notation. The script extension was not considered, nor the ceation and usage
of the behavioural design patterns.

8.1.1.3 Participants

The participants consisted of 8 people who participated individually in the
experiment. They were all recruited from the Computer Science depart-
ment. The experiment was done in two sessions; in each session 4 people
participated. The first group consisted of one third-year bachelor student,
two second-year bachelor students and one first-year bachelor student. The
second group consisted of first-year bachelor students only.

All the participants were very familiar with computers and used com-
puters at least several times a week, if not daily. The participants had,
in one way or the other, been exposed to Virtual Environments (at least

203

8. Validation

once) before the experiment was conducted (mostly through playing video
games). None of them had any knowledge about building Virtual Environ-
ments, and especially not about modelling behaviour (dynamics) in Virtual
Environments. With the exception of four participants (the second group),
who only had limited programming skills, all the other participants had
some knowledge about programming. Only three participants were familiar
with UML or another graphical modelling language.

We believe these participants are representative for the public that we
want to reach. They had no experience in any Virtual Reality technologies.
They did however have some general computer science background, some
programming skills but they were certainly no experienced programmers.
This corresponds with the requirements that we have in mind for the people
that will use the approach and the tools in practice.

8.1.1.4 Materials

This experiment was performed on four PCs of which three laptops and one
desktop. The laptops were equipped with an external mouse so that the
touchpad (which would make it more difficult for creating the diagrams)
did not need to be used. On all the machines, the Conceptual Specification
Designer tool and the Integrated Test Environment application were pre-
installed.

Each of the participants received a printed introductory document, in
Dutch (their mother tongue), containing a very short overview of the differ-
ent steps involved in the behaviour modelling approach as well as an overview
of the most important modelling concepts together with their graphical no-
tation and a short explanation (i.e. use of the elements and parameters
required for them). The document also contained a small example. This
document is given in appendix C.1.

In addition, for each of the behaviour modelling tasks that the partici-
pants were asked to perform, a short video was prepared showing the desired
end result of the behaviour in the Virtual Environment. These videos were
available on each of the machines on which the experiment was executed
and could be consulted as many times as needed during the modelling of
the behaviours.

Finally, the complete static Virtual Environment (as shown in figure 8.1)
was also provided as well as a ground plan (top-view) of the city containing
the different objects together with their names as defined in the Virtual
Environment.

8.1.1.5 Procedure

The experiment was performed in three parts. During the first part, the par-
ticipants were given a twenty-five minute explanation about the behaviour

204

8. Validation

modelling approach and about the different modelling concepts, following
the introductory document they received. Any additional questions they
had at that moment were answered. Then, a five minute course was given
about the most important features of the Conceptual Specification Designer
tool and the Integrated Test Environment application. This included the
features for creating a new project, inserting new diagrams to this project,
dragging and dropping the different elements on the canvas and generating
the actual programming code. Furthermore, the navigation and the inter-
action with the actual Virtual Environment through the Integrated Test
Environment were also explained.

The second part was the actual experiment. Each participant received
a textual description (in Dutch) of the tasks to be performed (see appendix
C.2).

The intention of the first exercise was to create a behaviour for a bus
inside the Virtual City Park. The behaviour consisted of one manoeuvre.
The bus should drive towards the next crossroad, make a left turn, stop there
for a moment, and then go back and head for the bus stop a little further
down the road. The Behaviour Definition Diagram of this manoeuvre is
shown in figure 8.2.

Figure 8.2: BusManoeuvre: Behaviour Definition Diagram

Figure 8.3 gives the Behaviour Invocation Diagram of the manoeuvre
behaviour. It specifies that the behaviour is attached to the object bus1 in
our Virtual City Park and should be triggered by means of pressing a key.

The aim of the second exercise was to create an environment-behaviour,

205

8. Validation

Figure 8.3: BusManoeuvre: Behaviour Invocation Diagram

i.e. a behaviour not attached to a single object but attached to the complete
environment. The result of this behaviour would be the evolution of the city
over time. Firstly, the bank building should be deleted from the scene, and
while this is still happening, the building for the electricity company should
transform into a more high-tech building. And finally, after some time,
a new palace should be added to the scene on the left of the hotel. The
Behaviour Definition Diagram of this city evolution behaviour is shown in
figure 8.4.

Figure 8.4: CityEvolution: Behaviour Definition Diagram

Figure 8.5 gives the Behaviour Invocation Diagram of the city evolution
behaviour. The behaviour refers to fortis as the bank, electrabel as the
building for the electricity company, hilton as the hotel and bramspalace as
the palace. Furthermore, it is triggered at a particular date and time.

206

8. Validation

Figure 8.5: CityEvolution: Behaviour Invocation Diagram

The only intervention that was done during the exercises was to explain
the error messages given by the software application and to answer general
questions not directly related to the exercises themselves.

After performing the tasks, the participants were asked to fill in a small
questionnaire (see appendix C.3). The questions were about the partic-
ipant’s impressions on using the graphical behaviour modelling language
and the prototype software applications.

The total amount of time to complete the experiment took no more than
two and a half hours.

8.1.2 Data

After each session, the diagrams made by the participants as well as the
generated files were examined. Additionally, the time needed to complete
the tasks was documented. Table 8.1 gives an overview of the performance
of both groups separately as well as in total.

Table 8.1: Behaviour modelling task performance

Description Behaviour
BusManoeuvre CityEvolution

M 47.25 43.75
Group 1

SD 2.98 6.24

M 33.5 41.75
Group 2

SD 2.38 8.42

M 40.375 42.75
Total

SD 7.76 6.94

Figures are in minutes; M (Mean); SD (Standard Deviation)

Table 8.1 shows that the participants needed an average of 40 minutes
for the first exercise (BusManoeuvre) and nearly 43 minutes for the second
exercise (CityEvolution). For the first exercise, the numbers are quite close

207

8. Validation

to each other as can be derived from the small standard deviations (less
than 3 minutes for both groups). This is not the case for the second exercise
where the times needed to complete the task are more diverse as one can see
from the larger standard deviations (up to 8 minutes for group 2). Further-
more, the table also shows that the second group performed their exercises
considerably faster than the first group. Especially for the first exercise,
this even resulted in an average difference of ±14 minutes. In the second
exercise, there is also a difference but it is less distinctive (±2 minutes).

8.1.3 Feedback

Next to examining the performance, also some direct feedback was received
from the participants concerning the approach, the tools, and the exercises
they had to model.

In general, the participants found the approach rather intuitive. Most
of the participants were quite enthusiastic, and did not have any remarks
on the two-level approach that was used (the behaviour definition and the
behaviour invocation).

As explained earlier, our behaviour modelling language uses icons to
denote the meaning of the graphical elements. These icons were found to be
intuitive by all the participants.

Concerning the exercises, two participants found the first exercise the
most difficult one. The reason they gave was that, in order to start designing
the behaviours, one should place oneself inside the Virtual Environment.
Especially in the beginning, this led to some difficulties since the participants
looked to the movements and the positioning from an external point of view,
i.e. as a person looking to the Virtual Environment from the top.

Five out of eight participants found the second exercise, and in particular
the construct action, the most difficult one. The reason for this was the
Structure Chunk that had to be created to position the newly created object.
Most of the participants were a bit lost in the sense that they did not know
what exactly to specify there. This was firstly due to the fact that one of the
item elements needed to refer to the output actor of the behaviour. Another
item element needed to refer to an actor (representing an existing building)
to use as a reference object in the relationships. The link between the actors
of the action and the items in the Structure Chunk was confusing for the
participants.

Concerning the software, two participants advised that for some struc-
tures (e.g., a particular action always requires an actor connected to it
through an input link), the required elements could be automatically added
to the canvas and the correct connections should be made automatically
when dropping the main element. Furthermore, they missed some support
for naming the different elements. A lot of elements have to be named and
the overview of the different names that have already been used (or that are

208

8. Validation

available to be used) is therefore lost very quickly.

8.1.4 Discussion

The performance that was measured during this experiment (see table 8.1)
suggests that considering the small size of the exercises, the time needed
for modelling the behaviours might be quite long. However, we should take
into consideration that the participants were not familiar with modelling
in general and that, as with any new technology, some time is required to
get acquainted with the tools that needed to be used as well as with the
behaviour modelling approach. This learning time was included in the time
measured. In future experiments, an explicit learning period before the
actual experiment, could be used to eliminate the influence of the learning
time.

The participants were quite positive about the behaviour modelling ap-
proach. However, one has to take into account that all participants were
Computer Science students. It is however possible that people having no
education in Computer Science whatsoever could find this approach rather
awkward since they are not comfortable with these kinds of abstraction
mechanisms. As we require some background knowledge in Computer Sci-
ence for using the approach, this is not relevant. However, on the other
hand, we also want to use the models for communicating with other stake-
holders, which may not have any Computer Science background. Therefore,
it may be interesting to set up experiments to find out how easy it is, or
how much time it requires for these people to understand the models.

The reason that particularly the first exercise took more time, and even
was a problem for some participants is due to the fact that, as was explained
earlier, the reference frame that is used in the behaviour modelling approach
is different from that of a typical modelling application. All actions and re-
lations are expressed using the local reference frame of the objects involved.
This way of thinking obviously requires some adaptation of the designer. In
the approach, there is the possibility to specify the actions and the posi-
tioning of the objects using an external reference frame but at the time of
the experiment, this was not yet implemented. It is unclear whether this
would simplify the task or instead make it even more difficult. However,
there should at least be the choice to use one method or the other. Though,
once the participants were more used to the approach, it became clearer to
them.

The figures in table 8.1 show that the second exercise lasted longer. This
was mainly due to the fact that some participants created invalid diagrams,
which then took a while for them to figure out what needed to be changed
to correct the models. From the feedback received from the participants,
it was found that the participants considered that the second exercise was
the most difficult behaviour to model. One explanation for this issue is

209

8. Validation

that in the software application, a separate page is needed to specify the
Structure Chunk. This makes it more difficult to keep the link between
elements in the Structure Chunk and the actual graphical representation of
the construct action itself. The relations (spatial relation and orientation
relation) on itself were not a problem, although one of the participants would
rather have preferred to position the object in a specific location through
coordinates.

For the difference in time between the first group and the second group,
no reasonable answer can be found at this moment. It is in contradiction
with what was expected since the first group had more experience in Com-
puter Science in general, and thus they could be able to solve the assignments
more quickly than the second group. Maybe the motivation of this group
was lower.

While examining the resulting files, it was found that for modelling
the behaviours, different participants used different layouts. Some of them
placed all the actions on a horizontal line while others placed them in a verti-
cal line and others used a totally different configuration. This is not possible
when writing scripting code where a concrete order (and syntax) has to be
followed and from which no one can deviate. A nice issue in this regard
is also the method followed by the participants to create the behaviours.
Most participants immediately started decomposing the behaviour into the
different actions required and placed all these actions onto the canvas first.
Afterwards, the operators were selected to connect the different actions to
each other.

Another interesting issue, related to the temporal operators, came up
since the participants, at the start of the experiment, were a bit confused
and often placed the arrows of the operators in the wrong direction. For
example, the specification behaviourA − operator(After,x) → behaviourB is
normally read as behaviour A is executed x seconds after behaviour B. That
is, the reading should be done in the direction of the arrow. But for some
participants, this structure was interpreted as behaviour B is executed x
seconds after behaviour A. It means that the arrows were used for ordering
the actions relative to each other and the operators were used to describe
the relation from the behaviour with its previous one. In other words, for
them, the textual name of the operator seemed to take precedence over the
direction of the arrow in the operator. At first sight, this only seemed to
occur when using the inverse temporal operators since in fact the time-flow
in these cases is in the reverse order than the flow of the arrows.

Although these results are based on an experiment with a small group
of participants, they are nonetheless encouraging. But larger experiments
are needed to confirm these results.

210

8. Validation

8.2 Case Studies

Besides the experimental results, also a number of additional cases have been
elaborated mainly to show the expressiveness of our behaviour modelling
language.

8.2.1 Case: Virtual City Simulation

Our first case will also be in the context of the Virtual City Park that was
used during the experiment. In this case, the behaviour being modelled
corresponds to the history of the city throughout time.

Figure 8.6 shows an extract of the Behaviour Definition Diagram defin-
ing the behaviours of the city and those of the buildings inside this city1.
The BuildMuseum behaviour for example outputs a Museum and it refers
to the CityHall actor since it needs this for positioning the Museum during
the execution of this behaviour. The BuildMuseum behaviour is starting
the transform behaviour on the CityHall actor. This behaviour will trans-
form the CityHall from a cube-like (Cuboid) representation to a sphere-like
(Hemisphere) representation. The transformation behaviour will trigger the
BreakBridge behaviour as soon as it finishes. By means of the BreakBridge
behaviour, the Bridge will break into two pieces. The BuildMuseum be-
haviour is executed 25 seconds before the Restructure behaviour, which re-
structures the HeadQuarters and the Factory into one big industrial Site.
This Restructure behaviour is running in parallel with the DestroyMuseum
behaviour that is removing the Museum from the scene. The BuildStores
behaviour is running with an overlap of 10 seconds with the DestroyMuseum
behaviour and is creating a list of Store actors. Note the script, using the
Behavioural Script Language, specifying a parameterized creation of a set
of actors at once.

After having defined the different behaviours and their inter-relationships,
the actual objects defined for the Virtual Environment can be assigned to
them through a Behaviour Invocation Diagram. Figure 8.7 shows such a
diagram. The Virtual Environment consists of a number of instances. The
instances are associated with actors to assign behaviours to them. In or-
der to have the behaviours executed, they need to be invoked by means of
events. Since all the behaviours are related to each other, only one needs
to be triggered and all the others are executed according to the specifica-
tion given in the Behaviour Definition Diagram. Here, a time event has
been specified that will trigger the BuildMuseum behaviour 2 minutes after
starting the application.

After completing the diagrams, the source code was generated and the

1Note that in the diagram, the different subdiagrams or scripting areas are not always
shown in order to give a better overview of the overall specification. This is achieved by
folding-in (or folding-out) the graphical elements using our software tool.

211

8. Validation

Figure 8.6: Behaviour Definition Diagram: CityEvolution

dynamic Virtual Environment could be inspected through the Integrated
Test Environment.

8.2.2 Case: Human Animation

In this case, an example of character animation is presented which is re-
garded as one of toughest objects to make dynamic behaviours for. The
behaviour that is modelled here is Mr. Phillip’s famous back kick. Mr.
Phillip is a modified version of the avatar as provided in Flux Studio2. Fig-
ure 8.8 shows a number of different intermediate poses that are taken by
the avatar to perform this back kick. Please note that this avatar has not
been created by the OntoWorld tool itself but was manually recreated and
transformed into standard X3D (without H-anim3) to be able to load it in
our Integrated Test Environment.

Figure 8.9 gives the Behaviour Definition Diagram for the back kick be-
haviour of our avatar. The behaviour BackKick is defined for the actor
called Avatar. There are two synchronized sub-behaviours within the Back-
Kick behaviour, namely MoveBody and Kick. These sub-behaviours are
shown separately in figure 8.10 and 8.11. The first sub-behaviour is moving
the upper part of the body, i.e. the torso, the arms, and the head (UpperFig-

2Media Machines, Inc (http://www.mediamachines.com)
3http://h-anim.org/

212

8. Validation

Figure 8.7: Behaviour Invocation Diagram: CityEvolution

Figure 8.8: Human animation

ure). This behaviour is rolling the body forward which also makes that the
arms (the LeftArm and RightArm) are starting to roll forward. The body
is then rolling backward to its original position. The second sub-behaviour
is performing the kick itself which is performed on the Leg. It is pulling up
the Leg by rolling the upper leg backward while rolling the LowerLeg for-
ward. Then, the leg is swung to the rear by rolling it over a very wide angle,
the LowerLeg is also rolling simultaneously to come to a stretched position.
Finally, the Leg is being rolled backward to an upstanding position again.

After having defined the behaviours for the avatar, the behaviours need
to be associated with the actual objects (or object-parts) through a Be-
haviour Invocation Diagram. Figure 8.12 shows this diagram for the Back-
Kick behaviour. This behaviour is linked to MrPhillip, the avatar in our
Virtual Environment. Furthermore, the actors referred to in the behaviour
are also linked to real objects as well as those that are used in the sub-
behaviours. In order to have the behaviour executed, an event needs to be

213

8. Validation

Figure 8.9: Behaviour Definition Diagram: Human animation

Figure 8.10: Behaviour Definition Diagram: Human animation (con’t)

specified. Here, a user event has been specified that will trigger the BackKick
behaviour when the avatar is touched by the user.

After having created the two diagrams, the source code could be gen-
erated and visualized in the Integrated Test Environment which gives the
result as is displayed in figure 8.8.

8.2.3 Other Cases: VR-DeMo

VR-DeMo (Virtual Reality: Conceptual Descriptions and Models for the
Realization of Virtual Environments) is a project that took place in collabo-
ration with the Vrije Universiteit Brussel and Universiteit Hasselt4. The re-
search done for this dissertation was part of VR-DeMo project. The project
covered a wide range of research objectives dealing with most aspects of de-

4IWT SBO VR-DeMo (IWT 030348)

214

8. Validation

Figure 8.11: Behaviour Definition Diagram: Human animation (con’t)

Figure 8.12: Behaviour Invocation Diagram: Human animation

veloping Virtual Reality applications (static scene, behaviour, interaction).
In the context of this project, also a number of case studies were performed.

A large case was done for a Belgian Mining Museum, the Beringen Mu-
seum5. This case consisted of reconstructing the complete mining site that
existed during the 20th century, above ground as well as below ground.
Above ground, the site contained the two mine shafts, the docking stations,
the factory, the cooling towers, the teril, and so on. Below ground, the two
main tunnels were recreated. For this case, also a number of behaviours
were modelled. Firstly, a behaviour was modelled to create a fly-through
(by animating the camera) of the complete site and hereby construct a kind
of virtual tour around the museum. Furthermore, an animation of the min-
ing process was modelled by animating a coal wagon being driven inside
the tunnels, elevated to the surface, and finally transported to the docking
station. A last behaviour that was modelled for this case was the historical
evolution of the mine site over time by gradually adding buildings, changing

5http://www.geocities.com/vlaamsmijnmuseum/ (in Dutch)

215

8. Validation

buildings, and deleting buildings.

8.3 Summary

In this chapter, the validation of our behaviour modelling approach has been
described. A first validation, the implementation of the proof-of-concept
tools, was discussed in the previous chapter. This chapter started by pre-
senting in details the setup and results of a user experiment that was con-
ducted. Then, it showed some examples of the modelled behaviours.

The first part of this chapter described a user experiment performed
to evaluate the intuitiveness of our graphical notation and behaviour mod-
elling approach. In the experiment, eight participants were given a short
introduction to our behaviour modelling approach as well as on the asso-
ciated modelling language. Then, they were asked to model two different
behaviours in the context of an existing Virtual City Park virtual environ-
ment. The feedback that was received from this experiment will be used
as input for the second version of our behaviour modelling language and
tools. We do acknowledge that the experiment presented here is only a
pilot study. In order to fully validate the approach, we need to do addi-
tional experiments. A first group of experiments which should be done is
a comparative test between our modelling approach and other approaches.
Furthermore, we can do additional experiments with people having differ-
ent backgrounds, namely with and without programming background, with
and without modelling background or/and with and without background in
Virtual Reality to measure how the background influences the results.

To illustrate the expressiveness of our approach and of the graphical
behaviour modelling language, a number of example behaviours were pre-
sented. The first example given was an extended version of the behaviour
describing the evolution of the city. Last but not least, a case about human
animation in which a virtual character was animated to perform a back kick
was given. All these examples have been successfully modelled by means of
our graphical notation and code has been generated by our software tools.

216

CHAPTER 9

Conclusions and Future Research

In the previous chapter, the validation of the work presented in this dis-
sertation has been described. Firstly, a proof-of-concept implementation
supporting the behaviour modelling approach was discussed. Secondly, the
results of an experiment were presented. In the experiment, users had to
design a number of behaviours using our proof-of-concept tool to evaluate
the intuitiveness of our approach. Thirdly, a number of cases were elabo-
rated, showing how generic the approach is. In this chapter, we look back
and reflect on the work that has been done. Furthermore, we also discuss
future work. We look to possible improvements but also present some new
research directions that could be interesting to explore.

This final chapter is structured as follows. In section 9.1, a summary
is given of the work described in this dissertation. Section 9.2, the initial
example given in the introduction (section 1.2.2) is revised. Section 9.3 dis-
cusses the main contributions and achievements of this dissertation. Finally,
section 9.4 presents limitations and possible future work to be done.

9.1 Summary

In this dissertation, an extension to VR-WISE, an existing modelling ap-
proach for Virtual Reality, is presented. The VR-WISE approach has been
developed with the main purpose of facilitating and shortening the devel-
opment process of Virtual Reality applications. This goal is achieved by
introducing a conceptual modelling phase into the overall design process.
The extension focuses on the modelling of behaviour in a Virtual Environ-
ment. This aspect was not yet covered in the VR-WISE approach when
this PhD work started. The behaviour is one of the most difficult aspects

217

9. Conclusions and Future Research

to model and it is still not very accessible to non-VR-experts. The aim
of this work was to ease the design process of behaviour through the use
of intuitive high-level specifications, and without requiring advanced pro-
gramming skills. In summary, this dissertation was built around three main
parts, namely a behaviour modelling approach and the associated graphical
behaviour modelling language, the behavioural design patterns framework
and the validation of the behaviour modelling approach.

A behaviour modelling approach.

Specifying behaviour in this modelling approach is broken down into two
consecutive steps, namely the behaviour definition step and the behaviour
invocation step. The first step, the behaviour definition, allows the designer
to define the different behaviours for an object. In our approach, the be-
haviours of an object are not only defined separated from the specification
of the visual appearance of the object, but also independent of how the be-
haviour will be invoked. These issues are specified in the second step, the
behaviour invocation. In this step, the behaviours that were defined in the
behaviour definitions are assigned to the actual objects in the Virtual Envi-
ronment. Furthermore, it also denotes how the behaviours may be invoked,
i.e. the events that may trigger the behaviours of the objects.

Since the behaviour modelling approach is, as the overall VR-WISE
approach, using ontologies as the underlying specification mechanism, an
additional layer of abstraction has been added by means of a graphical be-
haviour modelling language. In this way, the designers do not need to be
proficient in ontology languages. The behaviour modelling language involves
three different kinds of diagrams: Structure Chunks, Behaviour Definition
Diagrams, and Behaviour Invocation Diagrams. Each kind of diagram uses
a number of high-level modelling concepts.

• A Structure Chunk is a small diagram used for specifying the spatial
configuration of a number of objects at a particular moment in time. It
describes the static scene for a small subset of objects. This is done by
placing an object through spatial relations and orientation relations,
defining respectively the position and orientation of an object with
respect to other objects. This diagram is used within a Behaviour
Definition Diagram.

• A Behaviour Definition Diagram is used to describe the actual be-
haviour of an object in the Virtual Environment. This diagram mainly
contains actors (representing objects) connected to behaviours (repre-
senting the behaviours that the objects can undertake). Different types
of elementary behaviours (actions) are distinguished. One set of ac-
tions focuses on the direct manipulations of the objects (e.g., move,

218

9. Conclusions and Future Research

turn, roll,. . .), while a second set of actions focuses on the restructur-
ing of the scene graph (e.g., construct/destruct, group/ungroup,. . .).
More complex behaviours can be defined by composing behaviours,
either elementary or composed ones, by means of operators.

• A Behaviour Invocation Diagram can be considered as a kind of in-
stantiation of a Behaviour Definition Diagram. It parameterizes and
assigns behaviours defined by means of Behaviour Definition Diagrams
to actual objects, being either concepts or instances populating the
Virtual Environment. Furthermore, it also denotes the events that
may trigger these behaviours for the particular objects.

At the beginning, our behaviour modelling language was a pure graph-
ical language. Later, this behaviour modelling language was extended and
became a kind of hybrid mix between a graphical language and a textual
language. Therefore, a high-level specification language, called Behavioural
Script Language (BSL), was defined. It was added to overcome the limita-
tions of a pure graphical language and aimed at providing the designer a
complementary formalism for specifying behaviours that are more complex.
This language allows the designer to parameterize behaviours, to specify ad-
ditional (optional) modifiers for the different actions, to specify conditions
that allow to conditionally execute actions, and scripts can also be created.
Scripts will be executed before, during and/or after the execution of a be-
haviour. This Behavioural Script Language is kept as simple and intuitive
as possible.

The behavioural design patterns framework.

When modelling complex behaviour, the size of the diagrams easily becomes
larger and complex. They easily reach a point where it becomes too difficult
to understand and maintain them. In addition, current practice tells us that
most people are trying to avoid developing complex behaviours by using and
adapting existing behaviours. Therefore, the concept of Visual Generative
Design Patterns has been applied to the modelling of behaviour in Virtual
Environments. This kind of patterns distinct themselves from traditional
patterns in the sense that they are described in such a way that automatic
code generation becomes possible.

The framework that has been developed allows more experienced design-
ers to create their own behavioural patterns and make them available in the
graphical behaviour modelling language. The creation process follows three
consecutive steps:

• In the pattern specification, the front-end for the graphical pattern is
specified. This involves first creating the different graphical elements

219

9. Conclusions and Future Research

required by the pattern (if needed). Secondly, the actual pattern needs
to be described in terms of these graphical elements, their connections,
the constraints that apply as well as all the properties that are needed
for the elements. Thirdly, the parameter dialogs need to be specified
through an existing user interface description language.

• During the extension specification, the back-end for the pattern is spec-
ified. This step consists of creating a small component that will be dy-
namically loaded into our proof-of-concept software application. The
component should contain the functionality to parse (interpret) an in-
stance of the pattern and secondly generate the proper source code
from it.

• In the executable code specification, the implementation of the pattern
is given. This actually defines the semantics of the pattern. The
implementation can be an existing implementation or it can be created
from scratch. The resulting classes will be compiled together with our
viewer framework to get the actual base Virtual Reality application
that later on needs to be initialized.

Once a pattern has been created and added to the pattern collection, it
can be used (instantiated) and applied in a particular Virtual Reality ap-
plication. This process also consists of three consecutive steps. First, the
appropriate pattern is selected from the collection. Then, it is adapted to
suit the context of the application someone wants to develop. This can be
done either via the user interfaces that have been specified for the various
graphical elements or by adding and/or deleting graphical elements. Fi-
nally, the initialization code can be generated for the base Virtual Reality
application.

Validation of the approach and the language.

Finally, as a validation of the principles and to show the feasibility of our
approach, a prototype implementation was made; an experiment was set up;
and some cases were elaborated. A graphical diagram editor has been cre-
ated based on Microsoft Visio that allows the designer to visually specify the
behaviour specifications using the graphical behaviour modelling language.
Furthermore, the design patterns framework was implemented facilitating
the creation and usage of behavioural patterns. The tools developed showed
that it is possible to generate an actual dynamic Virtual Environment using
the VR-WISE approach in combination with our behaviour modelling ap-
proach. This was illustrated for a number of cases, which were elaborated.
Finally, an experiment that was conducted with Computer Science students
using the software tool to model behaviours, has showed that the approach
is indeed promising.

220

9. Conclusions and Future Research

9.2 Modelling Behaviour and its Complexity (re-
vised)

As a final example to illustrate the potential of the approach introduced
in this dissertation, the earth system example, presented in chapter 1 (see
section 1.2.2 on page 12), is reconsidered.

Although it was a simple example, it was quite laborious to specify this
system in X3D. There were three main issues. Firstly, an interpolator was
used which did require the use of ten different sets of values (keys and
keyframes) in order to describe the smooth rotation of the objects. These
values were a rough approximation and if a smoother animation was needed,
more values should have been used. Secondly, two different sensors were
needed to represent a single mechanism to invoke the behaviour on the
objects. Thirdly, three ROUTE statements were needed to tie the sensors,
the interpolator and the objects together.

Figure 9.1 presents the Behaviour Definition Diagram and the Behaviour
Invocation Diagram illustrating the same behaviour specified using our graph-
ical behaviour modelling language.

Figure 9.1: Behaviour Definition (a) and Behaviour Invocation (b) of the Earth-
System’s spinning behaviour

Using our approach, the same behaviour can be easily defined without re-
quiring Virtual Reality knowledge or knowledge of programming languages.
As illustrated in figure 9.1a, a SpinAround behaviour is created for the Sys-
tem actor. This behaviour contains a single action, namely a turn. To have
the same smooth animation as in the X3D code, the speed flag is set to
’slow’ and the speedtype flag to ’accelerate/decelerate’ for the turn action.
Using these flags, the designer does not need to worry anymore about the
different values (i.e. the keys and keyframes) for the animation. Further-
more, the repeat flag indicates that the behaviour should be executed only
once. As shown in figure 9.1b with the Behaviour Invocation Diagram, this
behaviour is connected to the target object, namely the EarthSystem, and
a single trigger is attached to it stating that if the object is selected by

221

9. Conclusions and Future Research

the end-user (clicked), the behaviour needs to be executed. Note that the
designer does not need to know any kind of Virtual Reality-specific instruc-
tions like it was the case in the specification given in chapter 1 where X3D
instructions are used.

9.3 Contributions and Achievements

This dissertation contributes to the Virtual Reality domain by introducing
a novel behaviour modelling approach. As mentioned earlier, the mod-
elling of behaviour in a Virtual Environment is a relevant research topic
since (1) the behaviour is a key element for having realistic and convincing
Virtual Environments, and (2) modelling of behaviour is still difficult and
not a trivial task and is often done using some dedicated scripting language
directly, which makes it difficult (if not impossible) to discuss the design of
the behaviours with other stakeholders in the development process. The ap-
proach presented here tried to address this issue by introducing a conceptual
design phase for behaviour modelling.

Next to the fact that the approach allows the modelling of behaviour at a
conceptual level, it also has a number of important additional characteristics:

• Separation of the behaviour definition from the behaviour invocation.
This separation has two advantages: (1) it allows reuse of behaviours
as the same behaviour can be attached to different types of objects
as long as they satisfy the minimal requirements needed for the be-
haviour. (2) The same behaviour can be triggered by different inter-
actions depending on the situation.

• Decoupling of the dynamic aspect from the static aspect of the Virtual
Environment. Behaviours are specified independent from the specifi-
cation of the static scene. This clear separation of concerns enables the
designer to consider behaviour separately, thereby reducing the com-
plexity of specifying a Virtual Reality application. Behaviour could
even be (partly) specified before specifying the actual static scene.
Furthermore, as the specification of behaviour is not intertwined with
that of the static scene, easy reuse of behaviours for different Virtual
Environments is possible.

• Action-oriented behaviour modelling. Action-oriented means that in
the behaviour specifications, the focus is on the actions that an object
needs to perform as opposed to traditional approaches focusing on
the state that an object can be in. This allows for a designer not
familiar with Virtual Reality implementation technology to express
the behaviours in a natural way.

222

9. Conclusions and Future Research

• Domain independent. The developed high-level modelling concepts
for creating a behaviour specification are domain independent which
make them suitable to describe any kind of behaviour for any kind of
domain.

• Generative. The modelling concepts provided have enough expres-
sive power so that the resulting behaviour specifications can be used
to automatically generate code for them. This will result in shorter
development time, as the developer does not need to write the code
manually. Even in the case that very high performance is required, and
the generated code would not satisfy this requirement, this facility can
be used for prototyping purposes.

• Natural language perspective. The modelling concepts were created
from a natural language perspective. This means that the way in
which behaviour is described closely relates to how one would express it
using natural language. This makes it easy to use and will enhance the
communication with other stakeholders in the development process.

• A mixed graphical/textual language. By combining a graphical lan-
guage with a textual scripting language, we actually combine the best
of two worlds. The graphical notation allows to quickly build a mental
model of a specification as the information is presented more explicitly
than in case of textual scripting languages. It is easier to learn (when
designed well) and may reduce the number of errors since considerably
less textual input is required. The textual language on the other hand
adds more expressive power to the graphical language.

Another major contribution is the behavioural design patterns frame-
work which allows us to cope with more complexity while the behaviour
specification remains understandable and maintainable. Using behavioural
design patterns in the behaviour modelling provides us with a mechanism
to explicitly capture the knowledge and expertise of a more experienced de-
signer and allows other designers to use it in a well-defined way. Patterns
also improve the reusability since a pattern can be designed and imple-
mented once and then instantiated many times in different Virtual Reality
applications. By using generative design patterns, it is also possible to use
these patterns as black boxes, and to have the code generated. This will
further reduce the development time, as well as the number of errors.

Another valuable contribution of this dissertation is the creation of a
behavioural pattern collection consisting of several patterns from different
categories. This demonstrates the applicability of our design patterns frame-
work.

To realize our behaviour modelling approach, some important research
artifacts were produced.

223

9. Conclusions and Future Research

• An important one is the behaviour modelling ontology. The ontology
serves as a kind of meta-model. Not only it defines the behaviour
modelling language in a more formal way (i.e. what is a valid be-
haviour specification), but it also provides a firm basis for possible
future extensions of the approach.

• A second important artifact is a set of prototype implementations sup-
porting the behaviour modelling approach, being the VR-WISE Con-
ceptual Designer and OntoWorld. Both applications are built in such
a way that it is easy to change the front-end in order to cope with
other graphical notations, or to change the back-end to automatically
generate code for a number of other platforms.

9.4 Limitations and Future Work

In this section, we discuss the limitations of our work and indicate oppor-
tunities for improvements. Furthermore, various interesting directions for
future research activities are also discussed.

The experiment performed was rather limited in different respects. First
of all, only a part of the work was considered and secondly only a small
amount of participants were involved. Further experiments are needed to
validate if the approach indeed fulfills the expectations. For example, exper-
iments should be performed to evaluate the Behavioural Script Language.
Also, the design patterns framework needs to be carefully evaluated both
on the side of pattern creation as well as on the side of pattern usage. Also,
experiments with larger and more diverse groups of people are needed. Due
to the small amount of participants used in the experiment, only very basic
statistics could be applied. This could have led to inaccurate results. More
large-scale experiments would enable us to use more advanced statistical
techniques, which are better suited for handling large datasets. Considering
different kinds of people could also reveal different results. We should con-
sider people having no programming skills whatsoever as well as experienced
programmers, people having no experience in the domain of Virtual Reality
as well as VR-experts.

Obviously, the prototype implementations that were developed to sup-
port our behaviour modelling approach are merely proof-of-concept appli-
cations and need to be improved considerably in terms of usability. This is
imperative if we want the system to be employed by a larger audience.

Also the behaviour modelling approach proposal has some limitations.
Until now, the focus was put on basic manipulations of either the objects
or of the scene graph. A straightforward extension of this work would be to
investigate additional modelling primitives. For example, we could think of
behaviour primitives for colouring and rendering as well as for sound. Also
in the area of the operators, other primitives could be developed to provide

224

9. Conclusions and Future Research

complementary means of linking different behaviours. Furthermore, the
existing modelling concepts are very general and aimed to be applicable to
any kind of domain. It could also be interesting to look to the possibility of
developing predefined modelling concepts for a particular domain. Certain
domains have already established a well-defined set of conceptual modelling
concepts and will prefer to use these rather than the more general ones. The
modelling concepts related to these domains can be expressed in terms of
the more general ones. These concepts could be seen as a specialization or
refinement of the more general ones and could add more modelling power.
In relation to this, also more work should be spent on extending the pattern
collection. For the moment, there are only a limited amount of patterns
available. This collection should be elaborated to contain a wider range of
patterns.

A shortcoming in the current design pattern framework is the lack of sup-
port for pattern composition. It is known in the Design Patterns community
that composition of pattern instances is something that must be considered
with care when developing software applications. Also for our pattern-based
framework, this is important. An actor can play several roles in different
patterns and it is not always clear how all these roles interact. For example,
one behavioural pattern can use another behavioural pattern or one pattern
can conflict with another pattern. A conflict could occur when an actor has
to perform a similar action (such as moving) in two (or more) patterns at
the same time. Therefore, we should provide the designer not only a means
to select and instantiate patterns (as possible now) but also a means to al-
low composing several patterns into one composite pattern. As mentioned
above, this problem is known in the Design Patterns community and has
been addressed there as well. It should be interesting to look into existing
pattern composition techniques as described in [Yacoub and Ammar, 2003]
and try to apply these techniques to compose behavioural patterns in the
Virtual Reality domain.

An additional research activity could be to provide a tighter integration
between our graphical behaviour modelling language and a graphical inter-
action modelling language. There is often a very thin line between behaviour
and interaction, which makes it difficult to tell where the behaviour stops
and where interaction takes over. Basically, our behaviour modelling ap-
proach only supports so-called event-driven behaviour, where the behaviour
is triggered by an event and it is executed independently of the event that
triggered it. However, in many cases, the interaction is much more inter-
twined with the behaviour in what we call interaction-controlled behaviour
where during the complete duration of the behaviour, the user (interaction)
is having control over the object. The triggering of the behaviour happens
through recurring events, i.e. events are sent regularly to activate a be-
haviour, which checks its current state and performs the appropriate action
for that time slice. A number of interaction modelling languages such as

225

9. Conclusions and Future Research

the Notation for Multimodal Interaction Techniques (NiMMiT) [De Boeck,
2007], in which interaction techniques can be described through diagrams,
already exist. In order to have a better support for interaction-controlled
behaviour, it is a necessity to extend our approach with some new modelling
concepts. This should allow us to directly hook up to the interaction dia-
grams. An important aspect here is the capturing of incoming data (from
external devices) and its use in the behaviours. Vice versa, it should also
be possible to indicate that data should be sent back to the interaction,
which could then be used to control the devices (i.e. feedback). Such an ap-
proach would definitely give an added value for both approaches (interaction
modelling and behaviour modelling).

A major extension to the work described in this dissertation includes
support for modelling scenarios. In the beginning of this dissertation, we
claimed that a Virtual Environment consists of the static scene, behaviour,
and interaction. However, this is in some cases a bit simplistic. In this way,
a Virtual Environment would still be rather static, nothing would happen
next to the predefined behaviours and interactions and this would not be
very appealing. In practice, all Virtual Environments are designed with a
goal in mind; they are part of some application, whether it is a game, a
virtual shop, or something else. Therefore, there is a strong need for being
able to model application-relevant scenarios. For example, in a game, the
designer should be able to specify what actions the player should take to
finish a level, and how his actions influence the Virtual Environment (Game
World). In a virtual shop, the designer has to be able to specify which
tasks the customer should go through in order to buy something [De Troyer
et al., 2006]. Therefore, a kind of scenario modelling [Willemsen, 2000]
[Grutzmacher et al., 2003] should be available to specify this.

Following the same motivations as for the overall VR-WISE approach,
a graphical notation for modelling scenarios could be developed instead of
using a scripting language. A possible solution would be to introduce two
different kinds to specifications: Actor Specification and Scenario Specifica-
tion.

To model a scenario, one needs to be aware of the ”actors” participating
in it. These actors represent the dynamic entities, either objects or users, in
the Virtual Environment that can change under the impulse of the scenario.
An Actor Specification would enable the designer to specify this. This could
be done by means of a kind of elaborated Finite State Machine. It describes
the way in which an actor can evolve during the execution of the scenario.
In other words, the different states it can be in and the transitions between
these states. Such a specification should be created for every actor that is
involved in the scenario. A very important requirement here would be a tight
integration with the other aspects of our modelling approach, i.e. the static
scene and the behaviour. Firstly, objects can change their visual appearance
throughout the scenario. This implies creating different mappings for the

226

9. Conclusions and Future Research

same object and the ability to change the mapping used during the execution
of the scenario. Secondly, the objects should be able to execute behaviours
(or play a role in a behavioural pattern). Mechanisms should be provided to
enable the parameterization and invocation of these behaviours both inside
the states as well as on the transitions.

Once all the actors involved in the scenario (and with the scenario in
mind) are modelled, the actual scenario itself should be modelled, i.e. the
storyline, or plot, on what could or should happen in the Virtual Environ-
ment. The main purpose of this step should be to design the scenario-specific
alterations to the different Actor Specifications created previously. This
could be done through a so called Scenario Specification. A specification
like this could be specified in an advanced form of a Flow Chart, specifically
tailored towards the modelling of scenarios in Virtual Environments. Two
important requirements for such a specification are what we call runtime
behaviour and interaction. Until now, all behaviours in our approach were
indirectly linked to the objects executing the behaviours. As the execution
of behaviours often depends on the course of actions taken in the scenario,
this approach is not usable anymore since we do not know at design time,
which objects need to execute a particular behaviour. Special constructs
should be available to dynamically associate actors in the scenarios with
actors in the behaviour specifications. Furthermore, interactivity needs to
be taken into account as well, i.e. the Virtual Reality application should be
able to cope with, or anticipate on, the unpredictability of the actions taken
by the user.

We believe that an integrated development approach, namely creating
a development process including static modelling, dynamic modelling and
scenario modelling would present great benefits for the Virtual Reality com-
munity.

227

9. Conclusions and Future Research

228

APPENDIX A

The Behaviour Modelling Ontology

<rdf:RDF

xmlns:bco="http://users.skynet.be/bpellens/bco.owl#"

xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:time="http://www.isi.edu/~pan/damltime/time-entry.owl#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns="http://wise.vub.ac.be/ontoworld/bmo.owl#"

xml:base="http://wise.vub.ac.be/ontoworld/bmo.owl">

<owl:Ontology rdf:about="">

<owl:imports rdf:resource="http://www.isi.edu/~pan/damltime/time-entry.owl"/>

<owl:imports rdf:resource="http://users.skynet.be/bpellens/bco.owl"/>

</owl:Ontology>

<owl:Class rdf:ID="Event">

<rdfs:subClassOf>

<owl:Class rdf:ID="BehaviourInvocationThing"/>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:ID="BehaviourInvocation"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:ID="BehaviourReference"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:ID="Object"/>

</owl:disjointWith>

</owl:Class>

<owl:Class rdf:about="#BehaviourInvocation">

<rdfs:subClassOf>

<owl:Class rdf:about="#BehaviourInvocationThing"/>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:about="#BehaviourReference"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Object"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Event"/>

</owl:Class>

<owl:Class rdf:ID="CompositeBehaviour">

<owl:disjointWith>

<owl:Class rdf:ID="Roll"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:ID="Construct"/>

</owl:disjointWith>

<rdfs:subClassOf>

<owl:Restriction>

<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:minCardinality>

<owl:onProperty>

229

A. The Behaviour Modelling Ontology

<owl:ObjectProperty rdf:ID="hasBehaviourThing"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:ID="Destruct"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:ID="Group"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:ID="Disperse"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:ID="Move"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:ID="Turn"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:ID="Transform"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:ID="Ungroup"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:ID="Custom"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:ID="Orientate"/>

</owl:disjointWith>

<rdfs:subClassOf>

<owl:Class rdf:ID="Behaviour"/>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:ID="Combine"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:ID="Position"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:ID="Resize"/>

</owl:disjointWith>

</owl:Class>

<owl:Class rdf:ID="Overlaps">

<owl:disjointWith>

<owl:Class rdf:ID="OverlappedBy"/>

</owl:disjointWith>

<rdfs:subClassOf>

<owl:Class rdf:ID="TemporalOperator"/>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:ID="After"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:ID="Contains"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:ID="During"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:ID="EndedBy"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:ID="StartedBy"/>

</owl:disjointWith>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasOverlap"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:ID="MetBy"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:ID="Before"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:ID="Ends"/>

</owl:disjointWith>

230

A. The Behaviour Modelling Ontology

<owl:disjointWith>

<owl:Class rdf:ID="Starts"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:ID="Equals"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:ID="Meets"/>

</owl:disjointWith>

</owl:Class>

<owl:Class rdf:ID="StructureChunk">

<owl:disjointWith>

<owl:Class rdf:ID="Item"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:ID="Relation"/>

</owl:disjointWith>

<rdfs:subClassOf>

<owl:Class rdf:ID="StructureChunkThing"/>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#Position">

<owl:disjointWith>

<owl:Class rdf:about="#Turn"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Custom"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Orientate"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Roll"/>

</owl:disjointWith>

<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasPosition"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith rdf:resource="#CompositeBehaviour"/>

<rdfs:subClassOf>

<owl:Class rdf:about="#Behaviour"/>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:about="#Destruct"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Resize"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Group"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Ungroup"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Disperse"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Move"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Construct"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Transform"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Combine"/>

</owl:disjointWith>

</owl:Class>

<owl:Class rdf:about="#Meets">

<owl:disjointWith>

<owl:Class rdf:about="#After"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#MetBy"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Ends"/>

231

A. The Behaviour Modelling Ontology

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Equals"/>

</owl:disjointWith>

<rdfs:subClassOf>

<owl:Class rdf:about="#TemporalOperator"/>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:about="#Before"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Contains"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#EndedBy"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#During"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Starts"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#StartedBy"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#OverlappedBy"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Overlaps"/>

</owl:Class>

<owl:Class rdf:about="#During">

<owl:disjointWith>

<owl:Class rdf:about="#Starts"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Contains"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#After"/>

</owl:disjointWith>

<rdfs:subClassOf>

<owl:Class rdf:about="#TemporalOperator"/>

</rdfs:subClassOf>

<owl:disjointWith rdf:resource="#Meets"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasPostDuration"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasPreDuration"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:about="#OverlappedBy"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#MetBy"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Before"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Equals"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#StartedBy"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Ends"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#EndedBy"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Overlaps"/>

232

A. The Behaviour Modelling Ontology

</owl:Class>

<owl:Class rdf:ID="BehaviourDefinitionThing">

<owl:equivalentClass>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:ID="Actor"/>

<owl:Class rdf:about="#Behaviour"/>

<owl:Class rdf:ID="Operator"/>

<owl:Class rdf:ID="BehaviourDefinition"/>

<owl:Class rdf:ID="Script"/>

</owl:unionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

<owl:Class rdf:about="#Item">

<rdfs:subClassOf>

<owl:Class rdf:about="#StructureChunkThing"/>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:about="#Relation"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#StructureChunk"/>

</owl:Class>

<owl:Class rdf:ID="Enable">

<rdfs:subClassOf>

<owl:Class rdf:ID="LifetimeOperator"/>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:ID="Disable"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:ID="Resume"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:ID="Suspend"/>

</owl:disjointWith>

</owl:Class>

<owl:Class rdf:about="#Actor">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="superActorOf"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="#BehaviourDefinitionThing"/>

<owl:disjointWith>

<owl:Class rdf:about="#Behaviour"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#BehaviourDefinition"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Operator"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Script"/>

</owl:disjointWith>

</owl:Class>

<owl:Class rdf:ID="OnVisible">

<owl:disjointWith>

<owl:Class rdf:ID="OnKeyPress"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:ID="OnProxy"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:ID="OnSelect"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:ID="OnTouch"/>

</owl:disjointWith>

<rdfs:subClassOf>

<owl:Class rdf:ID="UserEvent"/>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#Disable">

<rdfs:subClassOf>

<owl:Class rdf:about="#LifetimeOperator"/>

</rdfs:subClassOf>

<owl:disjointWith rdf:resource="#Enable"/>

<owl:disjointWith>

233

A. The Behaviour Modelling Ontology

<owl:Class rdf:about="#Resume"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Suspend"/>

</owl:disjointWith>

</owl:Class>

<owl:Class rdf:about="#Resize">

<owl:disjointWith>

<owl:Class rdf:about="#Destruct"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Roll"/>

</owl:disjointWith>

<rdfs:subClassOf>

<owl:Restriction>

<owl:allValuesFrom rdf:resource="http://users.skynet.be/bpellens/bco.owl#DirectionDescription"/>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasDirection"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:about="#Group"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Move"/>

</owl:disjointWith>

<rdfs:subClassOf>

<owl:Class rdf:about="#Behaviour"/>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:about="#Construct"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Custom"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Position"/>

<owl:disjointWith>

<owl:Class rdf:about="#Turn"/>

</owl:disjointWith>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasReferenceActor"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:about="#Disperse"/>

</owl:disjointWith>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasMetric"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:about="#Combine"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#CompositeBehaviour"/>

<owl:disjointWith>

<owl:Class rdf:about="#Transform"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Ungroup"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Orientate"/>

</owl:disjointWith>

</owl:Class>

<owl:Class rdf:ID="ContextEvent">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasContext"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

</owl:Restriction>

234

A. The Behaviour Modelling Ontology

</rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="#Event"/>

<owl:disjointWith>

<owl:Class rdf:ID="ObjectEvent"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:ID="TimeEvent"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#UserEvent"/>

</owl:disjointWith>

</owl:Class>

<owl:Class rdf:about="#TimeEvent">

<owl:disjointWith rdf:resource="#ContextEvent"/>

<owl:disjointWith>

<owl:Class rdf:about="#ObjectEvent"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#UserEvent"/>

</owl:disjointWith>

<rdfs:subClassOf rdf:resource="#Event"/>

</owl:Class>

<owl:Class rdf:about="#Resume">

<owl:disjointWith rdf:resource="#Disable"/>

<owl:disjointWith rdf:resource="#Enable"/>

<owl:disjointWith>

<owl:Class rdf:about="#Suspend"/>

</owl:disjointWith>

<rdfs:subClassOf>

<owl:Class rdf:about="#LifetimeOperator"/>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="DirectionDescription">

<rdfs:subClassOf>

<owl:Restriction>

<owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>3</owl:maxCardinality>

<owl:onProperty>

<owl:DatatypeProperty rdf:ID="direction"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:DatatypeProperty rdf:about="#direction"/>

</owl:onProperty>

<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

</owl:Class>

<owl:Class rdf:about="#Turn">

<owl:disjointWith>

<owl:Class rdf:about="#Disperse"/>

</owl:disjointWith>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasReferenceActor"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:about="#Move"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Orientate"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Transform"/>

</owl:disjointWith>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasDirection"/>

</owl:onProperty>

<owl:allValuesFrom rdf:resource="#DirectionDescription"/>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith rdf:resource="#Position"/>

235

A. The Behaviour Modelling Ontology

<owl:disjointWith>

<owl:Class rdf:about="#Group"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Combine"/>

</owl:disjointWith>

<rdfs:subClassOf>

<owl:Class rdf:about="#Behaviour"/>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:about="#Roll"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Custom"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Resize"/>

<owl:disjointWith>

<owl:Class rdf:about="#Ungroup"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#CompositeBehaviour"/>

<owl:disjointWith>

<owl:Class rdf:about="#Construct"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Destruct"/>

</owl:disjointWith>

</owl:Class>

<owl:Class rdf:about="#Destruct">

<owl:disjointWith rdf:resource="#Resize"/>

<owl:disjointWith>

<owl:Class rdf:about="#Roll"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Ungroup"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Combine"/>

</owl:disjointWith>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:DatatypeProperty rdf:ID="hasDestructMethod"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:about="#Move"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Disperse"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Group"/>

</owl:disjointWith>

<rdfs:subClassOf>

<owl:Restriction>

<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:minCardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasInput"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith rdf:resource="#Turn"/>

<rdfs:subClassOf>

<owl:Class rdf:about="#Behaviour"/>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:about="#Orientate"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Transform"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Position"/>

<owl:disjointWith>

<owl:Class rdf:about="#Construct"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#CompositeBehaviour"/>

<owl:disjointWith>

<owl:Class rdf:about="#Custom"/>

</owl:disjointWith>

</owl:Class>

236

A. The Behaviour Modelling Ontology

<owl:Class rdf:about="#EndedBy">

<owl:disjointWith>

<owl:Class rdf:about="#OverlappedBy"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Overlaps"/>

<rdfs:subClassOf>

<owl:Class rdf:about="#TemporalOperator"/>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:about="#StartedBy"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Equals"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Starts"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Contains"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#MetBy"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Meets"/>

<owl:disjointWith rdf:resource="#During"/>

<owl:disjointWith>

<owl:Class rdf:about="#Ends"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Before"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#After"/>

</owl:disjointWith>

</owl:Class>

<owl:Class rdf:about="#OnSelect">

<owl:disjointWith>

<owl:Class rdf:about="#OnKeyPress"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#OnProxy"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#OnTouch"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#OnVisible"/>

<rdfs:subClassOf>

<owl:Class rdf:about="#UserEvent"/>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="OnConstraint">

<owl:disjointWith>

<owl:Class rdf:ID="OnCollision"/>

</owl:disjointWith>

<rdfs:subClassOf>

<owl:Class rdf:about="#ObjectEvent"/>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#Transform">

<owl:disjointWith rdf:resource="#Resize"/>

<owl:disjointWith>

<owl:Class rdf:about="#Construct"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Move"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Position"/>

<owl:disjointWith rdf:resource="#CompositeBehaviour"/>

<owl:disjointWith>

<owl:Class rdf:about="#Orientate"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Turn"/>

<owl:disjointWith>

<owl:Class rdf:about="#Custom"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Ungroup"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Combine"/>

</owl:disjointWith>

<rdfs:subClassOf>

<owl:Class rdf:about="#Behaviour"/>

</rdfs:subClassOf>

237

A. The Behaviour Modelling Ontology

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:DatatypeProperty rdf:ID="hasRepresentation"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith rdf:resource="#Destruct"/>

<owl:disjointWith>

<owl:Class rdf:about="#Roll"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Disperse"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Group"/>

</owl:disjointWith>

</owl:Class>

<owl:Class rdf:about="#MetBy">

<owl:disjointWith>

<owl:Class rdf:about="#OverlappedBy"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Contains"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Starts"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Equals"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#During"/>

<owl:disjointWith rdf:resource="#Meets"/>

<owl:disjointWith>

<owl:Class rdf:about="#StartedBy"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Overlaps"/>

<rdfs:subClassOf>

<owl:Class rdf:about="#TemporalOperator"/>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:about="#Ends"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#EndedBy"/>

<owl:disjointWith>

<owl:Class rdf:about="#Before"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#After"/>

</owl:disjointWith>

</owl:Class>

<owl:Class rdf:about="#Ungroup">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasInput"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:about="#Construct"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Move"/>

</owl:disjointWith>

<rdfs:subClassOf>

<owl:Class rdf:about="#Behaviour"/>

</rdfs:subClassOf>

<owl:disjointWith rdf:resource="#CompositeBehaviour"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:DatatypeProperty rdf:ID="hasManner"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:about="#Group"/>

238

A. The Behaviour Modelling Ontology

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Disperse"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Custom"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Orientate"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Transform"/>

<owl:disjointWith>

<owl:Class rdf:about="#Combine"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Turn"/>

<owl:disjointWith rdf:resource="#Resize"/>

<owl:disjointWith rdf:resource="#Position"/>

<owl:disjointWith>

<owl:Class rdf:about="#Roll"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Destruct"/>

</owl:Class>

<owl:Class rdf:about="#Group">

<owl:disjointWith rdf:resource="#Resize"/>

<owl:disjointWith>

<owl:Class rdf:about="#Combine"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Destruct"/>

<rdfs:subClassOf>

<owl:Class rdf:about="#Behaviour"/>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:about="#Orientate"/>

</owl:disjointWith>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasOutput"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:minCardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasInput"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:about="#Move"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Turn"/>

<owl:disjointWith>

<owl:Class rdf:about="#Roll"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Transform"/>

<owl:disjointWith rdf:resource="#Ungroup"/>

<owl:disjointWith rdf:resource="#CompositeBehaviour"/>

<owl:disjointWith>

<owl:Class rdf:about="#Disperse"/>

</owl:disjointWith>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:DatatypeProperty rdf:about="#hasManner"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:about="#Construct"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Custom"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Position"/>

</owl:Class>

<owl:Class rdf:about="#OnCollision">

<rdfs:subClassOf>

239

A. The Behaviour Modelling Ontology

<owl:Class rdf:about="#ObjectEvent"/>

</rdfs:subClassOf>

<owl:disjointWith rdf:resource="#OnConstraint"/>

</owl:Class>

<owl:Class rdf:about="#BehaviourDefinition">

<owl:disjointWith rdf:resource="#Actor"/>

<owl:disjointWith>

<owl:Class rdf:about="#Behaviour"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Operator"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Script"/>

</owl:disjointWith>

<rdfs:subClassOf rdf:resource="#BehaviourDefinitionThing"/>

</owl:Class>

<owl:Class rdf:about="#StructureChunkThing">

<owl:equivalentClass>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#StructureChunk"/>

<owl:Class rdf:about="#Item"/>

<owl:Class rdf:about="#Relation"/>

</owl:unionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

<owl:Class rdf:about="#UserEvent">

<rdfs:subClassOf rdf:resource="#Event"/>

<owl:disjointWith rdf:resource="#ContextEvent"/>

<owl:disjointWith>

<owl:Class rdf:about="#ObjectEvent"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#TimeEvent"/>

</owl:Class>

<owl:Class rdf:about="#Equals">

<owl:disjointWith rdf:resource="#MetBy"/>

<owl:disjointWith rdf:resource="#During"/>

<rdfs:subClassOf>

<owl:Class rdf:about="#TemporalOperator"/>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:about="#Starts"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Overlaps"/>

<owl:disjointWith rdf:resource="#Meets"/>

<owl:disjointWith>

<owl:Class rdf:about="#After"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Contains"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#StartedBy"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Before"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#OverlappedBy"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#EndedBy"/>

<owl:disjointWith>

<owl:Class rdf:about="#Ends"/>

</owl:disjointWith>

</owl:Class>

<owl:Class rdf:about="#OnTouch">

<owl:disjointWith>

<owl:Class rdf:about="#OnKeyPress"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#OnProxy"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#OnSelect"/>

<owl:disjointWith rdf:resource="#OnVisible"/>

<rdfs:subClassOf rdf:resource="#UserEvent"/>

</owl:Class>

<owl:Class rdf:about="#Roll">

<owl:disjointWith rdf:resource="#Transform"/>

<owl:disjointWith rdf:resource="#Group"/>

<owl:disjointWith rdf:resource="#Resize"/>

<owl:disjointWith rdf:resource="#Destruct"/>

<rdfs:subClassOf>

240

A. The Behaviour Modelling Ontology

<owl:Class rdf:about="#Behaviour"/>

</rdfs:subClassOf>

<owl:disjointWith rdf:resource="#Ungroup"/>

<owl:disjointWith rdf:resource="#CompositeBehaviour"/>

<owl:disjointWith>

<owl:Class rdf:about="#Disperse"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Construct"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Turn"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:allValuesFrom rdf:resource="#DirectionDescription"/>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasDirection"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith rdf:resource="#Position"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasReferenceActor"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:about="#Orientate"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Move"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Combine"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Custom"/>

</owl:disjointWith>

<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasAngle"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#BehaviourReference">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="triggeredBy"/>

</owl:onProperty>

<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasReference"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Class rdf:about="#BehaviourInvocationThing"/>

</rdfs:subClassOf>

<owl:disjointWith rdf:resource="#BehaviourInvocation"/>

<owl:disjointWith>

<owl:Class rdf:about="#Object"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Event"/>

</owl:Class>

<owl:Class rdf:about="#Construct">

<owl:disjointWith>

<owl:Class rdf:about="#Custom"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Position"/>

241

A. The Behaviour Modelling Ontology

<owl:disjointWith rdf:resource="#CompositeBehaviour"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:DatatypeProperty rdf:ID="hasConstructMethod"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith rdf:resource="#Group"/>

<owl:disjointWith rdf:resource="#Turn"/>

<owl:disjointWith>

<owl:Class rdf:about="#Move"/>

</owl:disjointWith>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasStructureChunk"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasOutput"/>

</owl:onProperty>

<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:about="#Disperse"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Ungroup"/>

<rdfs:subClassOf>

<owl:Class rdf:about="#Behaviour"/>

</rdfs:subClassOf>

<owl:disjointWith rdf:resource="#Roll"/>

<owl:disjointWith rdf:resource="#Resize"/>

<owl:disjointWith rdf:resource="#Transform"/>

<owl:disjointWith rdf:resource="#Destruct"/>

<owl:disjointWith>

<owl:Class rdf:about="#Combine"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Orientate"/>

</owl:disjointWith>

</owl:Class>

<owl:Class rdf:ID="Context"/>

<owl:Class rdf:about="#Operator">

<rdfs:subClassOf rdf:resource="#BehaviourDefinitionThing"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasSource"/>

</owl:onProperty>

<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasTarget"/>

</owl:onProperty>

<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith rdf:resource="#Actor"/>

<owl:disjointWith>

<owl:Class rdf:about="#Behaviour"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#BehaviourDefinition"/>

<owl:disjointWith>

<owl:Class rdf:about="#Script"/>

</owl:disjointWith>

</owl:Class>

<owl:Class rdf:about="#Move">

<owl:disjointWith rdf:resource="#Transform"/>

<owl:disjointWith rdf:resource="#CompositeBehaviour"/>

242

A. The Behaviour Modelling Ontology

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasDirection"/>

</owl:onProperty>

<owl:allValuesFrom rdf:resource="#DirectionDescription"/>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith rdf:resource="#Position"/>

<owl:disjointWith>

<owl:Class rdf:about="#Combine"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Destruct"/>

<owl:disjointWith rdf:resource="#Group"/>

<owl:disjointWith rdf:resource="#Ungroup"/>

<rdfs:subClassOf>

<owl:Class rdf:about="#Behaviour"/>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:about="#Disperse"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Resize"/>

<owl:disjointWith rdf:resource="#Construct"/>

<owl:disjointWith>

<owl:Class rdf:about="#Custom"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Turn"/>

<owl:disjointWith>

<owl:Class rdf:about="#Orientate"/>

</owl:disjointWith>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasReferenceActor"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith rdf:resource="#Roll"/>

</owl:Class>

<owl:Class rdf:about="#Script">

<owl:disjointWith rdf:resource="#Actor"/>

<owl:disjointWith>

<owl:Class rdf:about="#Behaviour"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#BehaviourDefinition"/>

<owl:disjointWith rdf:resource="#Operator"/>

<rdfs:subClassOf rdf:resource="#BehaviourDefinitionThing"/>

</owl:Class>

<owl:Class rdf:about="#LifetimeOperator">

<rdfs:subClassOf rdf:resource="#Operator"/>

<owl:disjointWith>

<owl:Class rdf:ID="ConditionalOperator"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#TemporalOperator"/>

</owl:disjointWith>

</owl:Class>

<owl:Class rdf:about="#OnProxy">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasPerimeter"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="#UserEvent"/>

<owl:disjointWith>

<owl:Class rdf:about="#OnKeyPress"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#OnSelect"/>

<owl:disjointWith rdf:resource="#OnTouch"/>

<owl:disjointWith rdf:resource="#OnVisible"/>

</owl:Class>

<owl:Class rdf:about="#ObjectEvent">

<owl:disjointWith rdf:resource="#ContextEvent"/>

<owl:disjointWith rdf:resource="#TimeEvent"/>

<owl:disjointWith rdf:resource="#UserEvent"/>

<rdfs:subClassOf rdf:resource="#Event"/>

</owl:Class>

<owl:Class rdf:about="#Behaviour">

243

A. The Behaviour Modelling Ontology

<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasScript"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="#BehaviourDefinitionThing"/>

<owl:disjointWith rdf:resource="#Actor"/>

<owl:disjointWith rdf:resource="#BehaviourDefinition"/>

<owl:disjointWith rdf:resource="#Operator"/>

<owl:disjointWith rdf:resource="#Script"/>

</owl:Class>

<owl:Class rdf:about="#Before">

<owl:disjointWith>

<owl:Class rdf:about="#Starts"/>

</owl:disjointWith>

<rdfs:subClassOf>

<owl:Class rdf:about="#TemporalOperator"/>

</rdfs:subClassOf>

<owl:disjointWith rdf:resource="#Overlaps"/>

<owl:disjointWith>

<owl:Class rdf:about="#StartedBy"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#After"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Equals"/>

<owl:disjointWith rdf:resource="#MetBy"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasDuration"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:about="#Contains"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#OverlappedBy"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#During"/>

<owl:disjointWith rdf:resource="#EndedBy"/>

<owl:disjointWith>

<owl:Class rdf:about="#Ends"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Meets"/>

</owl:Class>

<owl:Class rdf:about="#Suspend">

<rdfs:subClassOf rdf:resource="#LifetimeOperator"/>

<owl:disjointWith rdf:resource="#Disable"/>

<owl:disjointWith rdf:resource="#Enable"/>

<owl:disjointWith rdf:resource="#Resume"/>

</owl:Class>

<owl:Class rdf:about="#Combine">

<owl:disjointWith rdf:resource="#Turn"/>

<owl:disjointWith>

<owl:Class rdf:about="#Orientate"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Disperse"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Custom"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#CompositeBehaviour"/>

<owl:disjointWith rdf:resource="#Ungroup"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasOutput"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith rdf:resource="#Move"/>

<owl:disjointWith rdf:resource="#Destruct"/>

<owl:disjointWith rdf:resource="#Construct"/>

244

A. The Behaviour Modelling Ontology

<owl:disjointWith rdf:resource="#Resize"/>

<owl:disjointWith rdf:resource="#Transform"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:minCardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasInput"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="#Behaviour"/>

<owl:disjointWith rdf:resource="#Group"/>

<owl:disjointWith rdf:resource="#Roll"/>

<owl:disjointWith rdf:resource="#Position"/>

</owl:Class>

<owl:Class rdf:about="#StartedBy">

<owl:disjointWith rdf:resource="#EndedBy"/>

<owl:disjointWith>

<owl:Class rdf:about="#Ends"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Before"/>

<owl:disjointWith rdf:resource="#Overlaps"/>

<rdfs:subClassOf>

<owl:Class rdf:about="#TemporalOperator"/>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:about="#After"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Equals"/>

<owl:disjointWith>

<owl:Class rdf:about="#Contains"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#OverlappedBy"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#MetBy"/>

<owl:disjointWith rdf:resource="#During"/>

<owl:disjointWith rdf:resource="#Meets"/>

<owl:disjointWith>

<owl:Class rdf:about="#Starts"/>

</owl:disjointWith>

</owl:Class>

<owl:Class rdf:about="#ConditionalOperator">

<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

<owl:onProperty>

<owl:DatatypeProperty rdf:ID="hasCondition"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="#Operator"/>

<owl:disjointWith rdf:resource="#LifetimeOperator"/>

<owl:disjointWith>

<owl:Class rdf:about="#TemporalOperator"/>

</owl:disjointWith>

</owl:Class>

<owl:Class rdf:ID="OrientationRelation">

<owl:disjointWith>

<owl:Class rdf:ID="SpatialRelation"/>

</owl:disjointWith>

<rdfs:subClassOf>

<owl:Class rdf:about="#Relation"/>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasOrientation"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:allValuesFrom rdf:resource="http://users.skynet.be/bpellens/bco.owl#OrientationDescription"/>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasOrientation"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

245

A. The Behaviour Modelling Ontology

<owl:Class rdf:about="#Ends">

<owl:disjointWith rdf:resource="#Before"/>

<owl:disjointWith rdf:resource="#EndedBy"/>

<rdfs:subClassOf>

<owl:Class rdf:about="#TemporalOperator"/>

</rdfs:subClassOf>

<owl:disjointWith rdf:resource="#StartedBy"/>

<owl:disjointWith rdf:resource="#Overlaps"/>

<owl:disjointWith rdf:resource="#During"/>

<owl:disjointWith>

<owl:Class rdf:about="#OverlappedBy"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#After"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Starts"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#MetBy"/>

<owl:disjointWith rdf:resource="#Equals"/>

<owl:disjointWith>

<owl:Class rdf:about="#Contains"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Meets"/>

</owl:Class>

<owl:Class rdf:about="#Custom">

<owl:disjointWith rdf:resource="#CompositeBehaviour"/>

<owl:disjointWith rdf:resource="#Position"/>

<owl:disjointWith rdf:resource="#Transform"/>

<owl:disjointWith>

<owl:Class rdf:about="#Orientate"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Construct"/>

<owl:disjointWith rdf:resource="#Roll"/>

<owl:disjointWith>

<owl:Class rdf:about="#Disperse"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Destruct"/>

<owl:disjointWith rdf:resource="#Ungroup"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:DatatypeProperty rdf:ID="hasBody"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith rdf:resource="#Move"/>

<rdfs:subClassOf rdf:resource="#Behaviour"/>

<owl:disjointWith rdf:resource="#Resize"/>

<owl:disjointWith rdf:resource="#Combine"/>

<owl:disjointWith rdf:resource="#Group"/>

<owl:disjointWith rdf:resource="#Turn"/>

</owl:Class>

<owl:Class rdf:about="#Relation">

<owl:disjointWith rdf:resource="#Item"/>

<owl:disjointWith rdf:resource="#StructureChunk"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasReferenceItem"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="#StructureChunkThing"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasReferredItem"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#Starts">

<owl:disjointWith rdf:resource="#EndedBy"/>

<owl:disjointWith rdf:resource="#Before"/>

<owl:disjointWith rdf:resource="#Ends"/>

<owl:disjointWith rdf:resource="#During"/>

<owl:disjointWith>

246

A. The Behaviour Modelling Ontology

<owl:Class rdf:about="#OverlappedBy"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Contains"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#MetBy"/>

<owl:disjointWith rdf:resource="#Equals"/>

<owl:disjointWith>

<owl:Class rdf:about="#After"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#StartedBy"/>

<owl:disjointWith rdf:resource="#Meets"/>

<rdfs:subClassOf>

<owl:Class rdf:about="#TemporalOperator"/>

</rdfs:subClassOf>

<owl:disjointWith rdf:resource="#Overlaps"/>

</owl:Class>

<owl:Class rdf:about="#OverlappedBy">

<owl:disjointWith rdf:resource="#Overlaps"/>

<owl:disjointWith rdf:resource="#Meets"/>

<owl:disjointWith rdf:resource="#Equals"/>

<rdfs:subClassOf>

<owl:Class rdf:about="#TemporalOperator"/>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:about="#Contains"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#StartedBy"/>

<owl:disjointWith rdf:resource="#Before"/>

<owl:disjointWith rdf:resource="#Starts"/>

<owl:disjointWith rdf:resource="#Ends"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasOverlap"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith rdf:resource="#During"/>

<owl:disjointWith>

<owl:Class rdf:about="#After"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#MetBy"/>

<owl:disjointWith rdf:resource="#EndedBy"/>

</owl:Class>

<owl:Class rdf:about="#Orientate">

<owl:disjointWith rdf:resource="#Construct"/>

<owl:disjointWith rdf:resource="#Position"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasOrientation"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith rdf:resource="#Transform"/>

<owl:disjointWith rdf:resource="#Combine"/>

<owl:disjointWith rdf:resource="#Resize"/>

<owl:disjointWith rdf:resource="#Ungroup"/>

<owl:disjointWith rdf:resource="#Roll"/>

<owl:disjointWith rdf:resource="#Turn"/>

<owl:disjointWith>

<owl:Class rdf:about="#Disperse"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Custom"/>

<owl:disjointWith rdf:resource="#Move"/>

<owl:disjointWith rdf:resource="#Destruct"/>

<owl:disjointWith rdf:resource="#CompositeBehaviour"/>

<rdfs:subClassOf rdf:resource="#Behaviour"/>

<owl:disjointWith rdf:resource="#Group"/>

</owl:Class>

<owl:Class rdf:about="#TemporalOperator">

<owl:disjointWith rdf:resource="#ConditionalOperator"/>

<owl:disjointWith rdf:resource="#LifetimeOperator"/>

<rdfs:subClassOf rdf:resource="#Operator"/>

</owl:Class>

<owl:Class rdf:about="#BehaviourInvocationThing">

<owl:equivalentClass>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

247

A. The Behaviour Modelling Ontology

<owl:Class rdf:about="#BehaviourInvocation"/>

<owl:Class rdf:about="#BehaviourReference"/>

<owl:Class rdf:about="#Object"/>

<owl:Class rdf:about="#Event"/>

</owl:unionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

<owl:Class rdf:about="#OnKeyPress">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasKeyCombination"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="#UserEvent"/>

<owl:disjointWith rdf:resource="#OnProxy"/>

<owl:disjointWith rdf:resource="#OnSelect"/>

<owl:disjointWith rdf:resource="#OnTouch"/>

<owl:disjointWith rdf:resource="#OnVisible"/>

</owl:Class>

<owl:Class rdf:about="#After">

<owl:disjointWith rdf:resource="#Starts"/>

<owl:disjointWith rdf:resource="#Ends"/>

<owl:disjointWith rdf:resource="#Equals"/>

<owl:disjointWith rdf:resource="#MetBy"/>

<owl:disjointWith rdf:resource="#EndedBy"/>

<owl:disjointWith rdf:resource="#StartedBy"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasDuration"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith rdf:resource="#Before"/>

<owl:disjointWith rdf:resource="#Meets"/>

<owl:disjointWith rdf:resource="#OverlappedBy"/>

<owl:disjointWith rdf:resource="#Overlaps"/>

<owl:disjointWith>

<owl:Class rdf:about="#Contains"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#During"/>

<rdfs:subClassOf rdf:resource="#TemporalOperator"/>

</owl:Class>

<owl:Class rdf:about="#Object">

<rdfs:subClassOf rdf:resource="#BehaviourInvocationThing"/>

<owl:disjointWith rdf:resource="#BehaviourInvocation"/>

<owl:disjointWith rdf:resource="#BehaviourReference"/>

<owl:disjointWith rdf:resource="#Event"/>

</owl:Class>

<owl:Class rdf:about="#Disperse">

<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasInput"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith rdf:resource="#Construct"/>

<owl:disjointWith rdf:resource="#Transform"/>

<owl:disjointWith rdf:resource="#Resize"/>

<owl:disjointWith rdf:resource="#CompositeBehaviour"/>

<rdfs:subClassOf rdf:resource="#Behaviour"/>

<owl:disjointWith rdf:resource="#Destruct"/>

<owl:disjointWith rdf:resource="#Position"/>

<owl:disjointWith rdf:resource="#Move"/>

<owl:disjointWith rdf:resource="#Roll"/>

<owl:disjointWith rdf:resource="#Orientate"/>

<owl:disjointWith rdf:resource="#Combine"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasOutput"/>

</owl:onProperty>

<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:minCardinality>

248

A. The Behaviour Modelling Ontology

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith rdf:resource="#Ungroup"/>

<owl:disjointWith rdf:resource="#Turn"/>

<owl:disjointWith rdf:resource="#Custom"/>

<owl:disjointWith rdf:resource="#Group"/>

</owl:Class>

<owl:Class rdf:about="#Contains">

<owl:disjointWith rdf:resource="#OverlappedBy"/>

<owl:disjointWith rdf:resource="#Starts"/>

<owl:disjointWith rdf:resource="#EndedBy"/>

<owl:disjointWith rdf:resource="#After"/>

<owl:disjointWith rdf:resource="#Ends"/>

<owl:disjointWith rdf:resource="#MetBy"/>

<owl:disjointWith rdf:resource="#Meets"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasPostDuration"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasPreDuration"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="#TemporalOperator"/>

<owl:disjointWith rdf:resource="#Equals"/>

<owl:disjointWith rdf:resource="#StartedBy"/>

<owl:disjointWith rdf:resource="#During"/>

<owl:disjointWith rdf:resource="#Before"/>

<owl:disjointWith rdf:resource="#Overlaps"/>

</owl:Class>

<owl:Class rdf:about="#SpatialRelation">

<rdfs:subClassOf rdf:resource="#Relation"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasDistance"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasDirection"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:allValuesFrom rdf:resource="http://users.skynet.be/bpellens/bco.owl#DirectionDescription"/>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasDirection"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith rdf:resource="#OrientationRelation"/>

</owl:Class>

<owl:ObjectProperty rdf:ID="containsDefinitionThing">

<rdfs:range rdf:resource="#Operator"/>

<rdfs:range rdf:resource="#Behaviour"/>

<rdfs:range rdf:resource="#Actor"/>

<rdfs:domain rdf:resource="#BehaviourDefinition"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="executedOn">

<rdfs:domain rdf:resource="#BehaviourReference"/>

<rdfs:range rdf:resource="#Object"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasAngle">

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

249

A. The Behaviour Modelling Ontology

<owl:Class rdf:about="#Roll"/>

<owl:Class rdf:about="#Turn"/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

<rdfs:range rdf:resource="http://users.skynet.be/bpellens/bco.owl#Angle"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasDuration">

<rdfs:range rdf:resource="http://www.isi.edu/~pan/damltime/time-entry.owl#DurationDescription"/>

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#After"/>

<owl:Class rdf:about="#Before"/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasRelativeTime">

<rdfs:domain rdf:resource="#TimeEvent"/>

<rdfs:range rdf:resource="http://www.isi.edu/~pan/damltime/time-entry.owl#DurationDescription"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasChild">

<rdfs:range rdf:resource="#Actor"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasAttribute">

<rdfs:range rdf:resource="http://users.skynet.be/bpellens/bco.owl#Attribute"/>

<rdfs:domain rdf:resource="#Actor"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasOrientation">

<rdfs:range rdf:resource="http://users.skynet.be/bpellens/bco.owl#Orientation"/>

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Orientate"/>

<owl:Class rdf:about="#OrientationRelation"/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasReferenceItem">

<rdfs:domain rdf:resource="#Relation"/>

<rdfs:range rdf:resource="#Item"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasBehaviourThing">

<rdfs:domain rdf:resource="#CompositeBehaviour"/>

<rdfs:range rdf:resource="#BehaviourDefinitionThing"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="dependsOn">

<rdfs:domain rdf:resource="#BehaviourReference"/>

<rdfs:range rdf:resource="#BehaviourReference"/>

<owl:inverseOf>

<owl:ObjectProperty rdf:ID="dependentOn"/>

</owl:inverseOf>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasParent">

<rdfs:range rdf:resource="#Actor"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasPosition">

<rdfs:domain rdf:resource="#Position"/>

<rdfs:range rdf:resource="http://users.skynet.be/bpellens/bco.owl#Position"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasDirection">

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Move"/>

<owl:Class rdf:about="#Resize"/>

<owl:Class rdf:about="#Roll"/>

<owl:Class rdf:about="#Turn"/>

<owl:Class rdf:about="#SpatialRelation"/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasStructureChunk">

<rdfs:range rdf:resource="#StructureChunk"/>

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Construct"/>

<owl:Class rdf:about="#Combine"/>

<owl:Class rdf:about="#Disperse"/>

<owl:Class rdf:about="#Group"/>

250

A. The Behaviour Modelling Ontology

<owl:Class rdf:about="#Ungroup"/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="linkedTo">

<rdfs:domain rdf:resource="#Object"/>

<rdfs:range rdf:resource="http://users.skynet.be/bpellens/bco.owl#Concept"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasMetric">

<rdfs:range rdf:resource="http://users.skynet.be/bpellens/bco.owl#MetricDescription"/>

<rdfs:domain rdf:resource="#Resize"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="playsRoleOf">

<rdfs:range rdf:resource="#Actor"/>

<rdfs:domain rdf:resource="#Object"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#superActorOf">

<owl:inverseOf>

<owl:TransitiveProperty rdf:ID="subActorOf"/>

</owl:inverseOf>

<rdfs:domain rdf:resource="#Actor"/>

<rdfs:range rdf:resource="#Actor"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasScript">

<rdfs:domain rdf:resource="#Behaviour"/>

<rdfs:range rdf:resource="#Script"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasPostDuration">

<rdfs:range rdf:resource="http://www.isi.edu/~pan/damltime/time-entry.owl#DurationDescription"/>

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#During"/>

<owl:Class rdf:about="#Contains"/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#dependentOn">

<owl:inverseOf rdf:resource="#dependsOn"/>

<rdfs:domain rdf:resource="#BehaviourReference"/>

<rdfs:range rdf:resource="#BehaviourReference"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasPerimeter">

<rdfs:domain rdf:resource="#OnProxy"/>

<rdfs:range rdf:resource="http://users.skynet.be/bpellens/bco.owl#DistanceDescription"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasSource">

<rdfs:range rdf:resource="#Behaviour"/>

<rdfs:domain rdf:resource="#Operator"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasReferenceActor">

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Move"/>

<owl:Class rdf:about="#Roll"/>

<owl:Class rdf:about="#Turn"/>

<owl:Class rdf:about="#Resize"/>

<owl:Class rdf:about="#Transform"/>

<owl:Class rdf:about="#Construct"/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

<rdfs:range rdf:resource="#Actor"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="containsInvocationThing">

<rdfs:range rdf:resource="#Event"/>

<rdfs:range rdf:resource="#BehaviourReference"/>

<rdfs:range rdf:resource="#Object"/>

<rdfs:domain rdf:resource="#BehaviourInvocation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasReferredItem">

<rdfs:range rdf:resource="#Item"/>

<rdfs:domain rdf:resource="#Relation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasContext">

<rdfs:range rdf:resource="#Context"/>

<rdfs:domain rdf:resource="#ContextEvent"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasReference">

<rdfs:domain rdf:resource="#BehaviourReference"/>

<rdfs:range rdf:resource="#CompositeBehaviour"/>

251

A. The Behaviour Modelling Ontology

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasDistance">

<rdfs:range rdf:resource="http://users.skynet.be/bpellens/bco.owl#DistanceDescription"/>

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Move"/>

<owl:Class rdf:about="#SpatialRelation"/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="containsChunkThing">

<rdfs:domain rdf:resource="#StructureChunk"/>

<rdfs:range rdf:resource="#Relation"/>

<rdfs:range rdf:resource="#Item"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasOutput">

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Construct"/>

<owl:Class rdf:about="#Group"/>

<owl:Class rdf:about="#Combine"/>

<owl:Class rdf:about="#Disperse"/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

<rdfs:range rdf:resource="#Actor"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasOverlap">

<rdfs:range rdf:resource="http://www.isi.edu/~pan/damltime/time-entry.owl#DurationDescription"/>

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#OverlappedBy"/>

<owl:Class rdf:about="#Overlaps"/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasExternal">

<rdfs:range rdf:resource="#CompositeBehaviour"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasBehaviour">

<rdfs:domain rdf:resource="#Actor"/>

<rdfs:range rdf:resource="#Behaviour"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasAbsoluteTime">

<rdfs:domain rdf:resource="#TimeEvent"/>

<rdfs:range rdf:resource="http://www.isi.edu/~pan/damltime/time-entry.owl#CalendarClockDescription"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasInput">

<rdfs:range rdf:resource="#Actor"/>

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Combine"/>

<owl:Class rdf:about="#Destruct"/>

<owl:Class rdf:about="#Group"/>

<owl:Class rdf:about="#Ungroup"/>

<owl:Class rdf:about="#Disperse"/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasKeyCombination">

<rdfs:domain rdf:resource="#OnKeyPress"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#triggeredBy">

<rdfs:range rdf:resource="#Event"/>

<rdfs:domain rdf:resource="#BehaviourReference"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="reliesOn">

<rdfs:domain rdf:resource="#BehaviourReference"/>

<rdfs:range rdf:resource="#Object"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasTarget">

<rdfs:range rdf:resource="#Behaviour"/>

<rdfs:domain rdf:resource="#Operator"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasPreDuration">

<rdfs:range rdf:resource="http://www.isi.edu/~pan/damltime/time-entry.owl#DurationDescription"/>

<rdfs:domain>

252

A. The Behaviour Modelling Ontology

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#During"/>

<owl:Class rdf:about="#Contains"/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:about="#hasBody">

<rdfs:domain rdf:resource="#Custom"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="hasAfterSection">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource="#Script"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="hasIdentifier">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource="#CompositeBehaviour"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="hasRule">

<rdfs:domain rdf:resource="#Transform"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasRepresentation">

<rdfs:domain rdf:resource="#Transform"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="Label">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="hasDoSection">

<rdfs:domain rdf:resource="#Script"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="hasSpeedTypeSection">

<rdfs:domain rdf:resource="#Script"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="hasRepeatSection">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>

<rdfs:domain rdf:resource="#Script"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="hasSpeedSection">

<rdfs:domain rdf:resource="#Script"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="hasBeforeSection">

<rdfs:domain rdf:resource="#Script"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="hasVariablesSection">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource="#Script"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#direction">

<rdfs:range>

<owl:DataRange>

<owl:oneOf rdf:parseType="Resource">

<rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>forward</rdf:first>

<rdf:rest rdf:parseType="Resource">

<rdf:rest rdf:parseType="Resource">

<rdf:rest rdf:parseType="Resource">

<rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>right</rdf:first>

<rdf:rest rdf:parseType="Resource">

<rdf:rest rdf:parseType="Resource">

<rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>

<rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>down</rdf:first>

</rdf:rest>

<rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>up</rdf:first>

</rdf:rest>

</rdf:rest>

<rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>left</rdf:first>

</rdf:rest>

<rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>backward</rdf:first>

</rdf:rest>

</owl:oneOf>

</owl:DataRange>

253

A. The Behaviour Modelling Ontology

</rdfs:range>

<rdfs:domain rdf:resource="#DirectionDescription"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="hasConditionSection">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource="#Script"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasConstructMethod">

<rdfs:range>

<owl:DataRange>

<owl:oneOf rdf:parseType="Resource">

<rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>Appear</rdf:first>

<rdf:rest rdf:parseType="Resource">

<rdf:rest rdf:parseType="Resource">

<rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>ZoomIn</rdf:first>

<rdf:rest rdf:parseType="Resource">

<rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>

<rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>FadeIn</rdf:first>

</rdf:rest>

</rdf:rest>

<rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>Grow</rdf:first>

</rdf:rest>

</owl:oneOf>

</owl:DataRange>

</rdfs:range>

<rdfs:domain rdf:resource="#Construct"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasCondition">

<rdfs:domain rdf:resource="#ConditionalOperator"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasDestructMethod">

<rdfs:domain rdf:resource="#Destruct"/>

<rdfs:range>

<owl:DataRange>

<owl:oneOf rdf:parseType="Resource">

<rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>Disappear</rdf:first>

<rdf:rest rdf:parseType="Resource">

<rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>FadeOut</rdf:first>

<rdf:rest rdf:parseType="Resource">

<rdf:rest rdf:parseType="Resource">

<rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>Shrink</rdf:first>

<rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>

</rdf:rest>

<rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>ZoomOut</rdf:first>

</rdf:rest>

</rdf:rest>

</owl:oneOf>

</owl:DataRange>

</rdfs:range>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="hasPredicate">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource="#Context"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasManner">

<rdfs:range>

<owl:DataRange>

<owl:oneOf rdf:parseType="Resource">

<rdf:rest rdf:parseType="Resource">

<rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>Smooth</rdf:first>

<rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>

</rdf:rest>

<rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>AtOnce</rdf:first>

</owl:oneOf>

</owl:DataRange>

</rdfs:range>

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Group"/>

<owl:Class rdf:about="#Ungroup"/>

<owl:Class rdf:about="#Orientate"/>

<owl:Class rdf:about="#Position"/>

254

A. The Behaviour Modelling Ontology

</owl:unionOf>

</owl:Class>

</rdfs:domain>

</owl:DatatypeProperty>

<owl:TransitiveProperty rdf:about="#subActorOf">

<rdfs:range rdf:resource="#Actor"/>

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>

<owl:inverseOf rdf:resource="#superActorOf"/>

<rdfs:domain rdf:resource="#Actor"/>

</owl:TransitiveProperty>

</rdf:RDF>

255

A. The Behaviour Modelling Ontology

256

APPENDIX B

Script Language BNF Specification

〈script〉 ::= [’/speed’ 〈speed-declaration〉]
[’/speedtype’ 〈speedtype-declaration〉]
[’/repeat’ 〈repeat-declaration〉]
[’/variables’ 〈variables-declaration〉]
[’/condition’ 〈condition-declaration〉]
[’/before’ 〈block〉]
[’/do’ 〈block〉]
[’/after’ 〈block〉]

〈speed-declaration〉 ::= 〈velocity〉
| 〈velocity〉 ’for’ 〈id-list〉 { ’;’ 〈velocity〉 ’for’ 〈id-list〉 }

〈velocity〉 ::= ’very slow’ | ’slow’ | ’normal’ | ’fast’ | ’very fast’

〈speedtype-declaration〉 ::= 〈type〉
| 〈type〉 ’for’ 〈id-list〉 { ’;’ 〈type〉 ’for’ 〈id-list〉 }

〈type〉 ::= ’decelerate’ | ’accelerate’ | ’constant’ | ’accelerate/decelerate’

〈repeat-declaration〉 ::= (〈numeral〉 | 〈variable〉) ’time(s)’

〈variables-declaration〉 ::= 〈assignment〉 { ’;’ 〈assignment〉 }

〈condition-declaration〉 ::= 〈conditional-exp〉

〈conditional-exp〉 ::= 〈disjunctive-exp〉

〈block〉 ::= { 〈statement〉 }

257

B. Script Language BNF Specification

〈statement〉 ::= 〈assignment〉
| 〈function-call〉
| 〈returning-exp〉
| ’increment’ 〈postfix-exp〉 [’by’ 〈exp〉]
| ’decrement’ 〈postfix-exp〉 [’by’ 〈exp〉]
| ’while’ 〈exp〉 ’do’ 〈block〉 ’end’
| ’when’ 〈exp〉 ’do’ 〈block〉 [’otherwise’ 〈block〉] ’end’
| ’for’ 〈identifier〉 ’from’ 〈exp〉 ’to’ 〈exp〉 [’by’ 〈exp〉] ’do’ 〈block〉 ’end’

〈exp〉 ::= 〈assignment-exp〉

〈assignment-exp〉 ::= 〈disjunctive-exp〉 | 〈assignment〉

〈assignment〉 ::= ’assign’ 〈exp〉 ’to’ 〈variable〉

〈disjunctive-exp〉 ::= 〈conjunctive-exp〉
| 〈disjunctive-exp〉 ’or’ 〈conjunctive-exp〉

〈conjunctive-exp〉 ::= 〈equality-exp〉
| 〈conjunctive-exp〉 ’and’ 〈equality-exp〉

〈equality-exp〉 ::= 〈relational-exp〉
| 〈equality-exp〉 (’=’ | ’<>’) 〈relational-exp〉

〈relational-exp〉 ::= 〈additive-exp〉
| 〈relational-exp〉 (’<’ | ’>’ | ’<=’ | ’>=’) 〈additive-exp〉

〈additive-exp〉 ::= 〈multiplicative-exp〉
| 〈additive-exp〉 (’+’ | ’-’) 〈multiplicative-exp〉

〈multiplicative-exp〉 ::= 〈unary-exp〉
| 〈multiplicative-exp〉 (’*’ | ’/’ | ’%’) 〈unary-exp〉

〈unary-exp〉 ::= ’increment’ 〈unary-exp〉
| ’decrement’ 〈unary-exp〉
| 〈postfix-exp〉
| (’+’ | ’-’) 〈unary-exp〉
| 〈negative-exp〉

〈negative-exp〉 ::= ’not’ 〈unary-exp〉
| 〈postfix-exp〉

〈postfix-exp〉 ::= 〈primary〉 | 〈id-exp〉

〈primary〉 ::= 〈literal〉 | ’(’ 〈exp〉 ’)’ | 〈function-call〉 | 〈attribute-access〉

258

B. Script Language BNF Specification

〈attribute-access〉 ::= ’ThisAction’ ’.’ 〈identifier〉
| ’ThisEnvironment’ ’.’ 〈identifier〉

〈function-call〉 ::= ’invoke’ 〈function-name〉 [’with’ ’(’ [〈explist〉] ’)’]

〈function-name〉 ::= 〈id-exp〉

〈explist〉 ::= { 〈exp〉 ’,’ } 〈exp〉

〈function〉 ::= ’define’ 〈function-name〉 [’with’ ’(’ [〈parlist〉] ’)’] 〈block〉
’end’

〈parlist〉 ::= 〈identifier〉 {’,’ 〈identifier〉 }

〈returning-exp〉 ::= ’return’ 〈exp〉

〈variable〉 ::= 〈identifier〉
| ’ThisAction’ ’.’ 〈identifier〉

〈id-exp〉 ::= 〈identifier〉
| 〈id-exp〉 ’.’ 〈identifier〉

〈identifier〉 ::= 〈character〉 { (〈character〉 | 〈digit〉) }

〈id-list〉 ::= 〈identifier〉 { ’,’ 〈identifier〉 }

〈literal〉 ::= 〈numeral〉 | 〈boolean〉 | 〈string〉 | 〈character〉

〈boolean〉 ::= ’true’ | ’false’

〈numeral〉 ::= [’-’] 〈number〉 { 〈digit〉 } [’.’ 〈digit〉 { 〈digit〉 }]
| [’-’] ’0’ [’.’ 〈digit〉 { 〈digit〉 }]

〈string〉 ::= ’"’ { (〈character〉 | 〈digit〉) - ’"’ } ’"’

〈character〉 ::= ”’ (〈character〉 | 〈digit〉) - ”’ ”’

〈character〉 ::= ’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’ | ’g’ | ’h’ | ’i’ | ’j’ | ’k’ | ’l’ | ’m’ |
’n’ | ’o’ | ’p’ | ’q’ | ’r’ | ’s’ | ’t’ | ’u’ | ’v’ | ’w’ | ’x’ | ’y’ | ’z’ | ’A’ | ’B’ | ’C’
| ’D’ | ’E’ | ’F’ | ’G’ | ’H’ | ’I’ | ’J’ | ’K’ | ’L’ | ’M’ | ’N’ | ’O’ | ’P’ | ’Q’ | ’R’ |
’S’ | ’T’ | ’U’ | ’V’ | ’W’ | ’X’ | ’Y’ | ’Z’

〈digit〉 ::= ’0’ | 〈number〉

〈number〉 ::= ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’

259

B. Script Language BNF Specification

260

APPENDIX C

Resources: Experiment

C.1 Introductory Document (in Dutch)

C.1.1 Modelleren van gedrag in Virtuele Omgevingen (ge-
bruik makende van VR-WISE)

Virtuele Realiteit is een manier om het visualiseren, manipuleren en inter-
ageren met computers en complexe gegevens mogelijk te maken. Virtuele
Omgevingen zijn computer-gegenereerde werelden die het effect creëren van
een interactieve 3-dimensionele wereld waarin objecten kunnen voorgesteld
en gemanipuleerd worden als dusdanig. Heel wat software applicaties zijn
reeds beschikbaar om op een intuitieve manier Virtuele Omgevingen te
bouwen maar deze leggen zich vooral toe op het maken van het visuele
gedeelte. Het dynamische gedeelte (gedrag) moet in de praktijk veelal
manueel geprogrammeerd worden. Daarom hebben we een benadering on-
twikkeld met het doel om ook het dynamische gedeelte op een intuitieve
manier te specificeren, namelijk door middel van een grafische notatie (dia-
grammen).

Deze benadering is onderverdeeld in twee stappen:

• Behaviour Definition (Diagram). Hier gaan we het eigenlijke
gedrag definiëren, maar op dit moment nog onafhankelijk van het ob-
ject waaraan we het willen koppelen en onafhankelijk van de manier
waarop het uiteindelijk opgeroepen wordt.

• Behaviour Invocation (Diagram). Hier gaan we dan het gedrag
dat we zojuist gedefinieerd hebben toekennen aan de objecten in de
Virtuele Omgeving, en we gaan de events toevoegen die uiteindelijk
ons gedrag gaan oproepen.

261

C. Resources: Experiment

C.1.1.1 Voorbeeld

Een eerste voorbeeldje is een Behaviour Definition Diagram waarbij een ac-
tor (gerepresenteerd door de cirkel) genaamd ”Car” een gedrag aan wordt
toegekend, namelijk ”ParkCar” (door middel van een has-behaviour link).
Hiermee begin je een definitie van een gedrag binnen onze benadering. Ver-
volgens kan je binnen het ParkCar gedrag met behulp van primitieve ac-
ties (en deze met elkaar te linken) het uiteindelijke gedrag van deze Car
definieren.

Het onderstaande diagram is van het overeenkomstige Behaviour Invo-
cation Diagram waarbij een object in onze Virtuele Omgeving (instantie),
namelijk ”car2”, gekoppeld is met de actor ”Car” (uit het gedrag dat in
het Behaviour Definition Diagram aangemaakt werd). Hiermee kunnen
we zeggen dat een object alle behaviours heeft die geassocieerd zijn met
Car. De ParkCar instance is dan een referentie naar het gedrag ParkCar,
gedefinieerd in het Behaviour Definition Diagram. Ten slotte is er een event
gekoppeld aan het gedrag dat ervoor zal zorgen dat het gedrag ook daadw-
erkelijk uitgevoerd wordt.

C.1.1.2 Definitie van het gedrag

Een eerste soort van diagram dat je dus nodig hebt om een gedrag te
definiëren is een Behaviour Definition Diagram. In dit diagram kan je onder
andere gebruik maken van de volgende grafische elementen:

Notatie Uitleg

Actor: Object waarvoor we een gedrag willen definiëren.
- Naam

Composite Behaviour: Complex gedrag, kan verschillende acties
bevatten.
- Naam

Vervolgens zijn er een hele reeks van primitieve acties beschikbaar die
gebruikt kunnen worden in de definities van het gedrag zoals aangegeven
in tabellen C.1 en C.3. De verschillende acties die gebruikt werden kun-
nen aan elkaar gelinkt worden door middel van de operatoren. De meest

262

C. Resources: Experiment

voorkomende set van operatoren zijn de temporal operators (zie figuur C.1)
en de lifetime operators zoals aangegeven in tabel C.2.

Figure C.1: Temporal operators

C.1.1.3 Invocatie van het gedrag

Nadat je een Behaviour Definition Diagram hebt gemaakt voor het gedrag,
heb je een Behaviour Invocation Diagram nodig om dit gedrag te koppelen
aan de objecten, en om de events toe te voegen om het gedrag te triggeren.
Hiervoor kan je gebruik maken van de grafische elementen zoals aangegeven
in tabel C.4.

C.1.2 Grondplan

Figuur C.2 geeft een overzichtje (van bovenaf gezien) van de Virtuele Omgev-
ing. Deze Virtuele Omgeving zal gebruikt worden tijdens het experiment.
De namen van de verschillende gebouwen staan in de legende onderaan de
figuur.

263

C. Resources: Experiment

C.2 Assignments (in Dutch)

Maak de volgende oefeningen zoals aangegeven in de opgaves hieronder en
in de video’s.

• Oefening 1 : BusManeuvre
Voer een manoeuvre uit met de bus, genaamd ”bus1”, als volgt. De bus
maakt een ommekeer door op het volgende kruispunt links af te slaan
en daarna achterwaarts terug te keren zoals weergegeven op de video
en vervolgens verder te gaan op dezelfde weg. De bus zal uiteindelijk
stoppen aan de bushalte.

• Oefening 2 : CityEvolution
Laat het gebouw ”fortisbuilding” afbreken. Terwijl deze afbraak nog
bezig is wordt het ”electrabelbuilding” volledig heropgebouwd (lees:
verandert in een andere vorm), namelijk in een ”HighestBuilding”.
Enige tijd nadat dit gebeurd is zal op de oude plaats van het fortis-
building, dus naast het ”hiltonbuilding”, een nieuw gebouw worden
neergeplant, namelijk ”bramspalace”.

264

C. Resources: Experiment

C.3 Questionnaire (in Dutch)

Deelnemer #

Probeer onderstaande vragen naar best vermogen te beantwoorden.

1. Hoe vaak maak je gebruik van computers? (nooit, maandelijks, weke-
lijks, dagelijks)

2. Heb je al ooit gebruik gemaakt van een VR systeem? (bv. Videogames,
3D omgevingen,. . .)

3. Had je al enige kennis van grafische notaties (zoals UML, ORM,. . .)?

4. Had je al enige voorkennis van Microsoft Visio?

5. Welk gedrag vond je het moeilijkste om te modelleren?

6. Welk aspect van de gedragingen vond je het moeilijkst en waarom?

7. Waren de symbolen (icoontjes) gebruikt in de grafische notatie intüıtief
genoeg om er uit af te leiden wat het gedrag voorstelt?

8. Wat vond je niet intüıtief, of wat kan er verbeterd worden?

• De grafische notatie zelf: bepaalde primitieve acties, de connecties
tussen de verschillende acties.

• De benadering met de twee stappen: Behaviour Definition en
Behaviour Invocation.

• De software applicaties.

265

C. Resources: Experiment

Notatie Uitleg

Move: Bewegen in een bepaalde richting over een bepaalde afstand.
- Richting: forward, backward, left, right, up, down,. . .
- Afstand

Turn: Draaien in een bepaalde richting over een bepaalde hoek.
- Richting: left, right
- Hoek

Roll: Rollen in een bepaalde richting over een bepaalde hoek.
- Richting: forward, backward, left, right
- Hoek

Resize: Uitrekken (inkrimpen) vanuit de zijde(s) over een bepaalde
hoeveelheid.
- Zijdes: front, back, left, right, top, bottom
- Type (grow of shrink) en een hoeveelheid

Position: Positioneren op een specifieke locatie.
- x, y, z coördinaat

Orient: Oriënteren in een specifieke richting.
- x, y, z draaingshoeken over de respectievelijke assen

Transform: Transformeren van de vorm van een object naar een
andere vorm.
- Oude vorm (uit een lijst van voorgedefinieerde vormen)
- Nieuwe vorm (uit een lijst van voorgedefinieerde vormen)

Destruct: Verwijderen van een object uit de scene.
- Manier: disappear, shrink, zoom-out
- Input actor (het te verwijderen object)

Construct: Toevoegen van een object aan de scene.
- Manier: appear, grow, zoom-in
- Output actor (het toe te voegen object)

Table C.1: Grafische Elementen: Behaviour Definition Diagram

266

C. Resources: Experiment

Notatie Uitleg

Temporal Operator: Koppel acties aan elkaar in functie
van de tijd.
- Relatie: before, after, meets, during, overlaps,. . .
- Tijd

Lifetime Operator: Een relatie die de levensduur van een
actie controleert.
- Operator: enable, disable, suspend, resume

Table C.2: Grafische Elementen: Behaviour Definition Diagram (con’t)

Notatie Uitleg

Item: Een object dat we willen plaatsen of waarnaar we willen
refereren om een ander object te plaatsen.
- Naam

Spatial Relation: Een relatie die een object plaatst relatief
t.o.v. een ander object.
- Richting: left-of, right-of, above, below, in-front-of, behind
- Afstand

Orientation Relations: Een relatie die een object
heroriënteert t.o.v. een ander object.
- Zijde van oorsprong: front, back, left, right, top, bottom
- Zijde van bestemming: front, back, left, right, top, bottom

Table C.3: Grafische Elementen: Structure Chunk

Notatie Uitleg

Concept: Een object-type van de Virtuele Wereld, moet toegekend
worden aan een actor.
- Naam
- Naam van de actor

Instance: Een werkelijk object in de Virtuele Wereld, moet toegek-
end worden aan een actor.
- Naam
- Naam van de actor

Behaviour Reference: Referentie naar een gedrag dat gedefinieerd
werd in een Behaviour Definition Diagram.
- Naam van het gedrag waarnaar het refereert
- Naam

Initialize event: Een trigger op basis van een conditie die geldig
wordt op een bepaald tijdstip.
- Conditie waaraan voldaan moet worden om het gedrag op te roepen

Time event: Een trigger op basis van het verstrijken van de tijd.
- Absolute tijd of Relatieve tijd

User event: Een trigger op basis van een actie van de gebruiker.
- Type: OnKeyPress, OnTouch, OnProxy, OnSelect
- Eventuele argumenten

Table C.4: Grafische Elementen: Behaviour Invocation Diagram

267

C. Resources: Experiment

Figure C.2: Stadsplan

268

References

C. Alexander, S. Ishikawa, and M. Silverstein. A Pattern Language: Towns,
Buildings, Construction. Oxford University Press, 1977. 153

J. F. Allen. Time and time again: The many ways to represent time. Inter-
national Journal of Intelligent Systems, 6(4):341–355, 1991. 121

Y. Arafa, K. Kamyab, S. Kshirsagar, N. Magnenat-Thalmann, A. Guye-
Vuillaume, and D. Thalmann. Two approaches to scripting character
animation. In Proceedings AAMAS-02 Workshop on Embodied Conversa-
tional Agents, Bologna, Italy, 2002. 51

S. Arjomandy and T. J. Smedley. Visual specification of behaviours in vrml
worlds. In Proceedings of the ninth international conference on 3D Web
technology, pages 127–133, California, USA, 2004. ACM Press. 41

J. W. Backus, J. H. Wegstein, A. van Wijngaarden, M. Woodger, F. L.
Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis, H. Rutishauser,
K. Samelson, and B. Vauquois. Revised report on the algorithmic language
algol 60. Communications of the ACM, 3(5):299–314, 1960. 140

N. I. Badler, R. Bindiganavale, J. Allbeck, W. Schuler, L. Zhao, S.-J. Lee,
H. Shin, and M. Palmer. Parameterized action representation and natu-
ral language instructions for dynamic behavior modification of embodied
agents. In Proceedings of the AAAI Spring Symposium 2000, Stanford,
California, 2000. 47

N. I. Badler, R. Bindiganavale, J. Allbeck, W. Schuler, L. Zhao, and
M. Palmer. Parameterized action representation for virtual human agents.
In Proceedings of Embodied conversational agents, pages 256–284. MIT
Press, 2001. 47

269

REFERENCES

F. Bernier, E. Boivin, D. Laurendeau, M. Mokhtari, and F. Lemieux. Con-
ceptual models for describing virtual worlds. In WSCG Posters Proceed-
ings, pages 25–28, Plezn, Czech Republic, 2004. UNION Agency - Science
Press. 59

W. Bille. Conceptual Modeling of Complex Objects for Virtual Environments
- A Formal Approach. PhD thesis, Vrije Universiteit Brussel, 2007. 95,
101

W. Bille, O. De Troyer, F. Kleinermann, B. Pellens, and R. Romero. Us-
ing ontologies to build virtual worlds for the web. In P. Isaias and
N. Karmakar, editors, Proceedings of the IADIS International Conference
WWW/Internet 2004 (ICWI2004), volume 1, pages 683–690, Madrid,
Spain, 2004a. IADIS PRESS. 62

W. Bille, B. Pellens, F. Kleinermann, and O. De Troyer. Intelligent mod-
elling of virtual worlds using domain ontologies. In L. Sheremetov and
M. Alvarado, editors, Proceedings of MICAI 2004 Intelligent Computing
Workshops, pages 272–279, Mexico City, Mexico, 2004b. 62

W. Bille, O. De Troyer, B. Pellens, and F. Kleinermann. Conceptual model-
ing of articulated bodies in virtual environments. In H. Thwaites, editor,
Proceedings of the 11th International Conference on Virtual Systems and
Multimedia, pages 17–26, Ghent, Belgium, 2005. Archaeolingua. 65

S. Bjork and J. Holopainen. Patterns in Game Design. Game Development
Series. Charles River Media, 1st edition, December 2004. 52

L. Blackwell, B. von Konsky, and M. Robey. Petri net script: a visual lan-
guage for describing action, behavior and plot. In Proceedings of the 24th
Australasian Computer Science Conference (ACSC 2001), volume 11 of
ACM International Conference Proceedings Series, pages 29–37, Queens-
land, Australia, 2001. IEEE Computer Society. 39

D. Bowman. Formalizing the design, evaluation, and application of inter-
action techniques for immersive virtual environments. Journal of Visual
Languages and Computing, 10(1):37–53, 1999. 7

E. J. Braude. Software Engineering: An Object-Oriented Perspective. Wiley,
1st edition, 2000. 58

G. C. Burdea and P. Coiffet. Virtual Reality Technology. Wiley-Interscience,
2nd edition, 2003. 184

T. Burrows. The Specification of Behaviour in Virtual Environments. PhD
thesis, Liverpool John Moores University, Liverpool, UK, June 2004. 46

270

REFERENCES

T. Burrows and D. England. Yable: Yet another behaviour language. In
Proceedings of the tenth international conference on 3D Web technology,
pages 65–73, Bangor, United Kingdom, 2005. ACM Press. 46

J. Busby, Z. Parrish, and J. VanEenwyk. Mastering Unreal Technology: The
Art of Level Design. Sams, December 2004. 7

M. Cavazza, S. Hartley, J.-L. Lugrin, and M. Le Bras. Qualitative physics in
virtual environments. In Proceedings of the 9th international conference
on Intelligent user interface, pages 54–61, Funchal, Portugal, 2004a. ACM
Press. 52

M. Cavazza, S. Hartley, J.-L. Lugrin, P. Libardi, and M. Le Bras. New
behavioural approaches for virtual environments. In Proceedings of the
International Conference on Entertainment Computing, volume 3166 of
Lecture Notes in Computer Science, pages 23–31, Eindhoven, Holland,
2004b. Springer-Verlag. 52

E. Cerezo, A. Pina, and F. Seron. Motion and behaviour modelling: state
of art and new trends. The Visual Computer, 15:124–146, 1999. 53

S. Clarke-Wilson. Digital illusion: entertaining the future with high technol-
ogy, chapter 13, pages 229–239. ACM Press/Addison-Wesley Publishing
Co, 1998. 51

K. Coninx, O. De Troyer, C. Raymaekers, and F. Kleinermann. Vr-demo: a
tool-supported approach facilitating flexible development of virtual en-
vironments using conceptual modelling. In D. Coutellier and X. Fis-
cher, editors, Proceedings of Virtual Concept 2006, Cancun, Mexico, 2006.
Springer-Verlag. 202

M. Conway. Alice: Easy-to-Learn 3D Scripting for Novices. PhD thesis,
University of Virginia, Virginia, USA, December 1997. 43

M. Conway, S. Audia, T. Burnette, D. Cosgrove, and K. Christiansen. Alice:
Lessons learned from building a 3d system for novices. In Proceedings of
the SIGCHI conference on Human factors in computing systems, pages
486–493, The Hague, The Netherlands, 2000. ACM Press. 43

R. Dachselt. Contigra: Towards a document-based approach to 3d compo-
nents. In Proceedings of the Structured Design of Virtual Environments
and 3D-Components Workshop, Paderborn, Germany, 2001. 31

R. Dachselt and E. Rukzio. Behavior3d: an xml-based framework for 3d
graphics behavior. In C. Bouville, editor, Proceedings of the eighth inter-
national conference on 3D Web technology, pages 101–112, Saint Malo,
France, 2003. ACM Press. 32

271

REFERENCES

R. Dachselt, M. Hinz, and K. Meisner. Contigra: an xml-based architecture
for component-oriented 3d applications. In Proceedings of the seventh
international conference on 3D Web technology, pages 155–163, Arizona,
USA, 2002. ACM Press. 31

J. De Boeck. A User and Designer Perspective on Multimodal Interaction
in 3D Environments. PhD thesis, Universiteit Hasselt, January 2007. 226

O. De Troyer, W. Bille, R. Romero, and P. Stuer. On generating virtual
worlds from domain ontologies. In T.-S. Chua and T. L. Kunii, editors,
Proceedings of the 9th International Conference on Multi-Media Modeling,
pages 279–294, Taipei, Taiwan, 2003. Tamkang University. 61

O. De Troyer, F. Kleinermann, H. Mansouri, B. Pellens, W. Bille, and
V. Fomenko. Developing semantic vr-shops for e-commerce. Special Is-
sue of VIRTUAL REALITY: Virtual Reality in the e-Society, 1359-4338,
2006. 226

F. Devillers and S. Donikian. A scenario language to orchestrate virtual
world evolution. In Proceedings of the 2003 ACM SIGGRAPH/Euro-
graphics symposium on Computer animation, pages 265–275, San Diego,
California, 2003. Eurographics Association. 48

F. Devillers, S. Donikian, F. Lamarche, and J. F. Taille. A programming
environment for behavioral animation. Journal of Visualization and Com-
puter Animation, 13:263–274, 2002. 48

A. Diaz and A. Fernandez. A pattern language for virtual environments.
Journal of Network and Computer Applications, 23(3):291–309, 2000. 51

T. Dillon and P. L. Tan. Object-Oriented Conceptual Modeling, chapter 4,
pages 87–123. Prentice Hall, 1993. 58

S. Donikian. Hpts: a behaviour modelling language for autonomous agents.
In Proceedings of the fifth international conference on Autonomous agents,
pages 401–408, Montreal, Canada, 2001. ACM Press. 48

Ecma, editor. Ecmascript Language Specification (Open Documents Stan-
dards Library). Iuniverse Inc, 3rd edition, April 2000. 15

M.J. Egenhofer. Topological relations in 3d. Technical report, University of
Maine, USA, 1995. 65

C. Fencott. Towards a design methodology for virtual environments. In Pro-
ceedings of the Workshop on User Centered Design and Implementation
of Virtual Environments, York, UK, 1999. 51

272

REFERENCES

P. A. Fishwick. 3d behavioral model design for simulation and software
engineering. In Proceedings of the fifth symposium on Virtual reality mod-
eling language (Web3D-VRML), pages 7–16, California, USA, 2000. ACM
Press. 42

E. Folmer. Usability patterns in games. In Proceedings of the Futureplay
2006 conference, Ontario, Canada, 2006. 52

A. U. Frank. Formal models for cognition, taxonomy of spatial location
description and frames of reference. In C. Freksa, C. Habel, and K. F.
Wender, editors, Spatial Cognition, An Interdisciplinary Approach to Rep-
resenting and Processing Spatial Knowledge, volume 1404 of Lecture Notes
in Computer Science, pages 293–312. Springer-Verlag, 1998. 91

Andrew U. Frank. Qualitative spatial reasoning: Cardinal directions as an
example. International Journal of Geographical Information Science, 10
(3):269290, 1996. 64

D. Fu, R. Houlette, and R. Jensen. A visual environment for rapid behavior
definition. In Proceedings of the 2003 Conference on Behavior Represen-
tation in Modeling and Simulation, Arizona, USA, 2003. 41

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: El-
ements of Reusable Object-Oriented Software. Addison-Wesley Profes-
sional, 1995. 153

K.P. Gapp. Basic meanings of spatial relations: Computation and evaluation
in 3d space. In In proceedings of the National Conference on Artificial
Intelligence, pages 1393–1398, Seattle, USA, 1994. 64

C. Geiger, V. Paelke, C. Reimann, and W. Rosenbach. A framework for the
structured design of vr/ar content. In Proceedings of the ACM symposium
on Virtual reality software and technology, pages 75–82, Seoul, Korea,
2000. ACM Press. 39

C. Geiger, V. Paelke, C. Reimann, and W. Rosenbach. Structured design of
interactive virtual and augmented reality content. In Proceedings of the
Structured Design of Virtual Environments and 3D-Components Work-
shop, Paderborn, Germany, 2001. 37

P. Gerstl and S. Pribbenow. A conceptual theory of part-whole relations and
its applications. Data and Knowledge Engineering, 20(3):305–322, 1996.
65

T. R. Gruber. A translation approach to portable ontology specifications.
Special Issue of Journal of Knowledge Acquisition: Current issues in
knowledge modeling, 5(2):199–220, 1993. 60

273

REFERENCES

B. Grutzmacher, R. Wages, and G. Trogemann. An authoring system for
non-linear vr scenarios. In Proceedings of the Ninth International Con-
ference on Virtual Systems and Multimedia, pages 634–641, Montreal,
Canada, 2003. 226

N. Guarino and P. Giaretta. Ontologies and knowledge bases: Towards
a terminological clarification. In N. J. I. Mars, editor, Proceedings of
2nd Internationl Conference on Building and Sharing Very Large-Scale
Knowledge Bases, pages 25–32, Amsterdam, The Netherlands, 1995. IOS
Press. 60

T. Halpin. Information Modeling and Relational Databases, From Concep-
tual Analysis to Logical Design. Morgan Kaufmann, 2001. 59

A. Herskovits. Language and Spatial Cognition: An Interdisciplinary Study
of the Prepositions in English. Cambridge University Press, 1987. 98

N. Hirzalla, B. Falchuk, and Ahmed Karmouch. A temporal model for
interactive multimedia systems. IEEE Multimedia, 2(3):24–31, 1995. 121

J. R. Hobbs and F. Pan. An ontology of time for the semantic web. ACM
Transactions on Asian Language Processing (TALIP): Special issue on
Temporal Information Processing, 3(1):66–85, 2004. 84

J. R. Hobbs and J. Pustejovsky. Annotating and reasoning about time and
events. In Proceedings of the AAAI Spring Symposium on Logical For-
mulization of Commonsense Reasoning, California, USA, 2003. Stanford
University. 85

J. F. Hopkins and P. A. Fishwick. The rube framework for software mod-
eling and customized 3-d visualization. Journal of Visual Languages and
Computing, 14(1):97–117, 2003. 42

R. Houlette, D. Fu, and D. Ross. Towards an ai behavior toolkit for games.
In AAAI 2001 Spring Symposium on AI and Interactive Entertainment,
California, USA, 2001. 41

Z. Huang, A. Eliens, and C. Visser. Implementation of a scripting language
for vrml/x3d-based embodied agents. In Proceedings of the eighth in-
ternational conference on 3D Web technology, pages 91–100, Saint-Malo,
France, 2003a. ACM Press. 44

Z. Huang, A. Eliens, and C. Visser. Xstep: a markup language for embodied
agents. In Proceedings of the 16th International Conference on Computer
Animation and Social Agents, page 105, California, USA, 2003b. IEEE
Computer Society. 45

274

REFERENCES

C. E. Hughes, M. J. Moshell, and D. Reed. Handbook of Virtual Environ-
ments, chapter 16, pages 333–352. Lawrence Erlbaum Associates, 2002.
4

R. Ierusalimschy. Programming in Lua. Lua.Org, 1 edition, 2003. 108

M. Iris, B. Lutowitz, and M. Evens. Relational models of the lexicon, chapter
Problems of the part-whole relation, pages 261–288. Cambridge University
Press, 1988. 65

R. J. K. Jacob, L. Deligiannidis, and S. Morrison. A software model and
specification language for non-wimp user interfaces. ACM Transactions
on Computer-Human Interaction, 6(1):1–46, 1999. 26

K. Jensen and G. Rozenberg, editors. High-level Petri nets: theory and
application. Springer-Verlag, 1991. 40

M. Kallmann. Object Interaction in Real-Time Virtual Environments. PhD
thesis, Swiss Federal Institute of Technology - EPFL, Lausanne, Swiss,
January 2001. 45

M. Kallmann and D. Thalmann. Modeling behaviors of interactive objects
for real-time virtual environments. Journal of Visual Languages & Com-
puting, 13(2):177–195, 2002. 45

K. C. Kang, G. J. Kim, J. Y. Lee, and H. J. Kim. Prototype = function
+ behavior + form. ACM SIGSOFT Software Engineering Notes, 23(4):
44–49, 1998. 28

K. Kaur. Designing Virtual Environments for Usability. PhD thesis, City
University, London, UK, June 1998. 51

G. D. Kessler. Handbook of Virtual Environments, chapter 12, pages 255–
276. Lawrence Erlbaum Associates, 2002. 5

G. Kim, K. Kang, H. Kim, and J. Lee. Software engineering of virtual worlds.
In Proceedings of the ACM Symposium on Virtual Reality Software and
Technology, pages 131–138, Taipei, Taiwan, 1998. ACM Press. 28

T. Kim and P. A. Fishwick. A 3d xml-based customized framework for
dynamic models. In Proceedings of the seventh international conference
on 3D Web technology, pages 103–109, Arizona, USA, 2002. ACM Press.
42

K. Kipper and M. Palmer. Representation of actions as an interlingua. In
NAACL-ANLP 2000 Workshop on Applied interlinguas: practical appli-
cations of interlingual approaches to NLP, pages 12–17, Seattle, Washing-
ton, 2000. Association for Computational Linguistics. 47

275

REFERENCES

F. Kleinermann, O. De Troyer, H. Mansouri, R. Romero, B. Pellens, and
W. Bille. Designing semantic virtual reality applications. In Proceedings
of the 2nd INTUITION International Workshop, Senlis, France, 2005. 61

S. MacDonald, D. Szafron, J. Schaeffer, J. Anvik, S. Bromling, and K. Tan.
Generative design patterns. In Proceedings of the 17th IEEE International
Conference on Automated software engineering, page 23, Edinburgh, Scot-
land, 2002. 154

N. Magnenat-Thalmann and D. Thalmann. Virtual reality software and
technology. Encyclopedia of Computer Science and Technology, 41:331–
361, 2000. Springer-Verlag. 3

H. Mansouri. Using semantic descriptions for building and querying virtual
environments. Master’s thesis, Vrije Universiteit Brussel, 2005. 195

C. McCarthy and D. Callele. Virtools Dev User Guide. Virtools SA, Paris,
France, 2001. 49

D. L. McGuinness. Ontologies come of age. Spinning the Semantic Web:
Bringing the World Wide Web to Its Full Potential, 1(1):171–188, 2003.
61

M. McNaughton, J. Redford, J. Schaeffer, D. Szafron, Y. Xiang, and
B. Chaib-draa. Pattern-based ai scripting using scriptease. In Proceed-
ings of AI 2003 : advances in artificial intelligence, volume 2671 of Lecture
notes in computer science, pages 35–49, Halifax, Canada, 2003. Springer
Verlag. 48

M. McNaughton, M. Cutumisu, D. Szafron, J. Schaeffer, J. Redford, and
D. Parker. Scriptease: Generating scripting code for computer role-
playing games. In Proceedings of 19th IEEE International Conference on
Automated Software Engineering, pages 386–387, Linz, Austria, 2004a.
IEEE Computer Society. 152

M. McNaughton, J. Schaeffer, D. Szafron, D. Parker, and J. Redford. Code
generation for ai scripting in computer role-playing games. In Proceedings
of Game AI Workshop at AAAI-04, pages 129–133, San Jose, USA, 2004b.
48

B. Messing and C. Hellmich. Using aspect oriented methods to add be-
haviour to x3d documents. In Proceedings of the 11th International Con-
ference on 3D Web Technology, pages 97–107, Columbia, USA, 2006. ACM
Press. 51

R. J. Millar, J. R. P Hanna, and S. M. Kealy. A review of behavioural
animation. Computers & Graphics, 23:127–143, 1999. 53

276

REFERENCES

J. P. Molina, A. S. Garcia, V. Lopez-Jaquero, and P. Gonzalez. Developing
vr applications: the tres-d methodology. In Proceedings of the 1st Inter-
national Workshop On Methods and Tools for Designing VR Applications,
Ghent, Belgium, 2005. 51

K. L. Murdock. 3ds max 5 Bible. Wiley Publishing, November 2002. 50

D. Nahon. Virtools and virtual reality. In Proceedings of the 2nd Interna-
tional Intuition 2005 Workshop, Senlis, France, 2005. 49

A. Nathan. Windows Presentation Foundation Unleashed. Sams, 1st edition,
2006. 163

J.J. Odell. Six different kinds of composition. International Journal of
Object Oriented Programming, 5(8):10–15, 1994. 65

M. Oliveira, J. Crowcroft, and M. Slater. An innovative design approach
to build virtual environment systems. In Proceedings of the workshop on
Virtual environments 2003, volume 39 of ACM International Conference
Proceedings Series, pages 143–151, Zurich, Switzerland, 2003. ACM Press.
51

B. Pellens, F. Kleinermann, O. De Troyer, and W. Bille. Overview of existing
virtual reality modelling concepts. IWT SBO VR-DeMo (IWT 030248),
Deliverable 1.1, Vrije Universiteit Brussel, Brussels, Belgium, 2004. 59

B. Pellens, W. Bille, O. De Troyer, and F. Kleinermann. Vr-wise: A concep-
tual modelling approach for virtual environments. In Proceedings of the
1st International Methods and Tools for Virtual Reality (MeTo-VR 2005)
workshop, Ghent, Belgium, 2005a. 62

B. Pellens, O. De Troyer, W. Bille, and F. Kleinermann. Conceptual mod-
eling of object behavior in a virtual environment. In X. Fischer and
D. Coutellier, editors, Research in Interactive Design, Proceedings of In-
ternational Conference Virtual Concept, pages 93–94, Biarritz, France,
2005b. Springer-Verlag. 106

B. Pellens, O. De Troyer, W. Bille, F. Kleinermann, and R. Romero. An
ontology-driven approach for modeling behavior in virtual environments.
In R. Meersman, Z. Tari, and P. Herrero, editors, Proceedings of On the
Move to Meaningful Internet Systems 2005: Ontology Mining and Engi-
neering and its Use for Virtual Reality (WOMEUVR 2005) Workshop,
number 3762 in Lecture Notes in Computer Science, pages 1215–1224,
Agia Napa, Cyprus, 2005c. Springer-Verlag. 81

B. Pellens, F. Kleinermann, O. De Troyer, J. De Boeck, E. Cuppens,
T. De Weyer, and K. Coninx. State of the art in designing virtual re-

277

REFERENCES

ality applications. Iwt sbo vr-demo (iwt 030248), state-of-the-art report,
Vrije Universiteit Brussel, Universiteit Hasselt, Belgium, 2006a. 53, 152

B. Pellens, F. Kleinermann, and O. De Troyer. Intuitively specifying object
dynamics in virtual environments using vr-wise. In Proceedings of the
ACM Symposium on Virtual Reality Software and Technology, pages 334–
337, Limassol, Cyprus, 2006b. ACM Press. 139

B. Pellens, F. Kleinermann, O. De Troyer, and W. Bille. Model-based de-
sign of virtual environment behavior. In H. Zha, Z. Pan, and H. Thwaites,
editors, Proceedings of the 12th International Conference on Virtual Sys-
tems and Multimedia, number 4270 in Lecture Notes in Computer Science,
pages 29–39, Xian, China, 2006c. Springer-Verlag. 106

B. Pellens, O. De Troyer, F. Kleinermann, and W. Bille. Conceptual mod-
eling of behavior in a virtual environment. Special Issue of International
Journal of Product and Development, 4(6):626–645, 2007. Inderscience
Enterprises. 77

K. Perlin and A. Goldberg. Improv: a system for scripting interactive actors
in virtual worlds. In Proceedings of the 23rd annual conference on Com-
puter graphics and interactive techniques, pages 205–216, Los Angeles,
USA, 1996. ACM Press. 43

R. Price, B. Srinivasan, and K. Ramamohanarao. Extending the unified
modeling language to support spatiotemporal applications. In Technology
of Object-Oriented Languages and Systems, pages 163–174, Melbourne,
Australia, 1999. 81

E. Reiter and R. Dale. Building applied natural language generation sys-
tems. Natural Language Engineering, 3(1):57–87, 1997. 192

C. W. Reynolds. Flocks, herds, and schools: a distributed behavioral model.
Computer Graphics, 21(4):25–34, 1987. 175

B. Roehl. Some thoughts on behavior in vr systems.
http://www.ece.uwaterloo.ca/ broehl/behav.html, August 1995. 6

T. Roosendaal and S. Selleri. The Official Blender 2.3 Guide: Free 3D
Creation Suite for Modeling, Animation, and Rendering. No Starch Press,
April 2005. 50

S. Russel and P. Norvig. Artificial Intelligence, A Modern Approach. Pren-
tice Hall, 1995. 197

M.-I. Sanchez-Segura, A. de Antonio, and A. de Amescua. Interaction pat-
terns for future interactive systems components. Interacting with Com-
puters, 16:331–350, 2004. 35

278

REFERENCES

M.-I. Sanchez-Segura, A. de Antonio, and A. de Amescua. Senda: A whole
process to develop virtual environments. In M.-I. Sanchez-Segura, ed-
itor, Developing Future Interactive Systems, pages 92–114. Idea Group
Publishing, 2005. 33

S. Sauer and G. Engels. Uml-based behavior specification of interactive
multimedia applications. In Proceedings of the IEEE Symposia on Human-
Centric Computing Languages and Environments, pages 248–255, Stresa,
Italy, 2001. 81

D. C. Schmidt. Using design patterns to develop reusable object-oriented
communication software. Communications of the ACM, 38(10):65–74,
1995. 153

D. Selman. Java 3D Programming. Manning Publications, February 2002.
11, 196

J. Seo and G. J. Kim. A structured approach to virtual reality system design.
Presence, 11(4):378–403, 2002. 30

S. Smith and D. Duke. Virtual environments as hybrid systems. In N. Dodg-
son and M. Austen, editors, Proceedings of the 17th Eurographics Annual
Conference, pages 113–128, Cambridge, UK, 1999. Eurographics. 40

S. P. Smith, D. J. Duke, and J. S. Willans. Designing world objects for usable
virtual environments. In P. Palanque and F. Paterno, editors, Proceedings
of the Workshop on Design, Specification and Verification of Interactive
Systems: DSV-IS 2000, pages 309–319, Limerick, Ireland, 2000. 40

F. Southey. Ossa: A modelling system for virtual realities based on con-
ceptual graphs and production systems. Master’s thesis, University of
Guelph, September 1998. 35

F. Southey and J. G. Linders. Ossa : A conceptual modelling system for
virtual realities. In H. S. Delugach and G. Stumme, editors, Proceedings of
the 9th International Conference on Conceptual Structures, volume 2120
of Lecture Notes in Computer Science, pages 333–345, California, USA,
2001. Springer-Verlag. 35

S. Spaccapietra, C. Parent, and E. Zimanyi. Modeling time from a concep-
tual perspective. In Proceedings of the seventh international conference
on Information and knowledge management, pages 432 – 440, Bethesda,
USA, 1998. ACM Press. 121

R. Stuart. Design of Virtual Environments. Barricade Books, August 2001.
5

279

REFERENCES

I. Sutherland. The ultimate display. In Proceedings of the International
Federation of Information Processing Congress, volume 2, pages 506–509,
1965. 1

V. Tanriverdi and R. J. K. Jacob. Vrid: a design model and methodology for
developing virtual reality interfaces. In Proceedings of the ACM sympo-
sium on Virtual reality software and technology, pages 175–182, Alberta,
Canada, 2001. ACM Press. 24

S. C. L. Terra and R. A. Metoyer. Performance timing for keyframe anima-
tion. In R. Boulic and D. K. Pai, editors, Proceedings of the 2004 ACM
SIGGRAPH/Eurographics symposium on Computer animation, pages 253
– 258, Grenoble, France, 2004. ACM Press. 14

B. Tversky. Handbook of Memory, chapter Remembering spaces, pages 363–
378. New York: Oxford University Press, 2000. 97

M. Uschold and R. Jasper. A framework for understanding and classifying
ontology applications. In Proceedings of the IJCAI99 Workshop on On-
tologies and Problem-Solving Methods(KRR5), Stockholm, Sweden, 1999.
61

A. Valente and J. A. Breuker. Towards principled core ontologies. In B. R.
Gaines and M. Musen, editors, Proceedings of the 10th Knowledge Ac-
quisition for Knowledge-Based Systems Workshop, pages 301–320, Banff,
Canada, 1996. 64

A.C. Varzi. Parts, wholes, and part-whole relations: the prospects of
mereotopology. Journal of Data & Knowledge Engineering, 20(3):259 –
286, 1996. 65

J. Vince. Introduction to Virtual Reality. Springer-Verlag, 1st edition, Febru-
ary 2004. 2

K. Walczak. Beh-vr: Modeling behavior of dynamic virtual reality contents.
In H. Zha, Z. Pan, H. Thwaites, A. Addison, and M. Forte, editors, Inter-
active Technologies and Sociotechnical Systems, number 4270 in Lecture
Notes in Computer Science, pages 40–51, Xian, China, 2006. Springer-
Verlag. 51

A. Walsh and M. I. Bourges-Sevenier. Core Web3D. Core Series. Prentice
Hall, September 2000. 11

K. N. Whitley. Visual programming languages and the empirical evidence for
and against. Journal of Visual Languages and Computing, 8(1):109–142,
1997. 152

280

REFERENCES

G. Wideman. Visio 2003 Developer’s Survival Pack. Trafford Publishing,
September 2003. 190

J. Willans. Integrating behavioural design into the virtual environment de-
velopment process. PhD thesis, University of York, York, UK, November
2001. 40

P. Willemsen. Behavior and Scenario Modeling for Real-Time Virtual En-
vironments. PhD thesis, University of Iowa, May 2000. 226

J. R. Wilson, R. M. Eastgate, and M. D’Cruz. Handbook of Virtual Environ-
ments, chapter 17, pages 353–378. Lawrence Erlbaum Associates, 2002.
26

M. E. Winston, R. Chaffin, and D. Herrmann. A taxonomy of part-whole
relations. Cognitive Science, 11(4):417–444, 1987. 65

S. M. Yacoub and H. H. Ammar. Pattern-Oriented Analysis and Design:
Composing Patterns to Design Software Systems, chapter 3, pages 19–41.
Addison Wesley, 2003. 225

S. Zlatanova. On 3d topological relationships. In Proceedings of the 11th
International Workshop on Database and Expert Systems Applications,
page 913, London/Greenwich, UK, 2000. 65

281

REFERENCES

282

	Samenvatting
	Abstract
	Acknowledgements
	Contents
	Glossary
	1 Introduction
	1.1 Research Context
	1.1.1 Virtual Reality
	1.1.2 Anatomy of a Virtual Environment

	1.2 Problem Statement
	1.2.1 Modelling the Static Scene
	1.2.2 Modelling Behaviour and its Complexity

	1.3 Aims and Objectives
	1.4 Research Approach
	1.5 Significance
	1.6 Outline of this Dissertation

	2 Related Work
	2.1 High-Level Design Methods for Virtual Environments
	2.1.1 VRID
	2.1.2 VEDS
	2.1.3 CLEVR
	2.1.4 CONTIGRA
	2.1.5 SENDA
	2.1.6 Ossa
	2.1.7 I4D

	2.2 Behaviour Modelling Approaches
	2.2.1 Graphical Notations
	2.2.2 Scripting Languages
	2.2.3 Software Applications

	2.3 Other Related Work
	2.4 Situating this Dissertation in the Field of Modelling Behaviour

	3 Methodology
	3.1 Conceptual Modelling
	3.2 Ontology-Driven Design
	3.2.1 What are ontologies?
	3.2.2 Why using Ontologies?

	3.3 VR-WISE Approach
	3.3.1 Architecture of Ontologies
	3.3.2 Design Process

	3.4 Extension of VR-WISE
	3.5 Summary

	4 Conceptual Modelling of Dynamic Virtual Environments
	4.1 Initial Requirements
	4.2 Overview of the Behaviour Modelling Approach
	4.3 Extended Architecture of Ontologies
	4.3.1 Behaviour Modelling Ontology (Meta Level)
	4.3.2 Behaviour Specification (Domain Level)

	4.4 Fitting Behaviour Modelling into the Overall Development Process
	4.5 Summary

	5 Graphical Behaviour Modelling Language
	5.1 Basic Concepts
	5.2 Structure Chunk
	5.2.1 Item
	5.2.2 Relations

	5.3 Behaviour Definition Diagram
	5.3.1 Actor
	5.3.2 Generalization/Specialization
	5.3.3 Behaviours
	5.3.4 Operators
	5.3.5 Example

	5.4 Behaviour Invocation Diagram
	5.4.1 Object
	5.4.2 Behaviour Reference
	5.4.3 Causal Relation
	5.4.4 Events
	5.4.5 Example

	5.5 Behavioural Script Language
	5.5.1 General Overview
	5.5.2 Speed
	5.5.3 Speedtype
	5.5.4 Repeat
	5.5.5 Variables
	5.5.6 Conditions
	5.5.7 Before, Do and After Blocks
	5.5.8 Remaining rules

	5.6 Summary

	6 Behavioural Design Patterns Framework
	6.1 Observations
	6.2 Visual Generative Design Patterns
	6.3 The Design Patterns Framework
	6.3.1 Building Patterns
	6.3.2 Using Patterns

	6.4 A Collection of Behavioural Design Patterns
	6.4.1 Chase-Evade Pattern
	6.4.2 Pattern Movement Pattern
	6.4.3 Herd Pattern
	6.4.4 Strategy Pattern
	6.4.5 Proxy Pattern
	6.4.6 Randomness Pattern
	6.4.7 Feedback Pattern
	6.4.8 Device Configuration Pattern
	6.4.9 Other Patterns

	6.5 Summary

	7 Implementation
	7.1 Overview
	7.2 Conceptual Specification Designer (CSD)
	7.2.1 VisioVRCSAddin (Microsoft Visio Add-in)

	7.3 OntoWorld
	7.4 Integrated Test Environment (ITE)
	7.5 Summary

	8 Validation
	8.1 Experimental Results
	8.1.1 Description
	8.1.2 Data
	8.1.3 Feedback
	8.1.4 Discussion

	8.2 Case Studies
	8.2.1 Case: Virtual City Simulation
	8.2.2 Case: Human Animation
	8.2.3 Other Cases: VR-DeMo

	8.3 Summary

	9 Conclusions and Future Research
	9.1 Summary
	9.2 Modelling Behaviour and its Complexity (revised)
	9.3 Contributions and Achievements
	9.4 Limitations and Future Work

	A The Behaviour Modelling Ontology
	B Script Language BNF Specification
	C Resources: Experiment
	C.1 Introductory Document (in Dutch)
	C.1.1 Modelleren van gedrag in Virtuele Omgevingen (gebruik makende van VR-WISE)
	C.1.2 Grondplan

	C.2 Assignments (in Dutch)
	C.3 Questionnaire (in Dutch)

	References

