
Vrije Universiteit Brussel
Faculteit Wetenschappen
Departement Informatica

Het gebruik van XML bij het modelleren van
Conceptuele Schema in Website Design

Tom Decruyenaere
Academiejaar

1998-1999

Verhandeling tot het behalen van de graad van
Licentiaat in de Toegepaste Informatica

Promotor : Prof. Olga De Troyer

Vrije Universiteit Brussel
Faculteit Wetenschappen
Departement Informatica

The Use of XML in modeling Conceptual Schemas in
Website Design

Tom Decruyenaere
Academy year

1998-1999

Essay brought forward to achieve the degree
 of Licentiate in the Applied Computer Science

Promoter : Prof. Olga De Troyer

II

Samenvatting

Internet neemt in steeds toenemende mate een belangrijke rol in binnen onze
informatie maatschappij. Daar waar enkele jaren geleden het Internet niet meer was
dan een experiment binnen een wetenschappelijke omgeving is het nu een der
belangrijkste informatiebronnen in alle gelederen van onze maatschappij. De
informatie op Internet wordt voorgesteld in de vorm van websites verspreid en
beheerd over ontelbare servers over de wereld. De manier waarop met deze informatie
wordt omgegaan evolueert dan ook gestadig naar meer professioneel gebruik waarbij
het belangrijk is op een snelle en efficiënte manier toegang te krijgen tot deze data. In
deze thesis hebben we geprobeerd een manier te vinden om de inhoud en de structuur
van een website voor te stellen op een vast gedefinieerde en overzichtelijke wijze, in
een vorm die over Internet te communiceren is. In de eerste plaats werd hiervoor
gebruik gemaakt van technieken uit de Database ontwikkeling zoals conceptuele
schema. Hiermee was het mogelijk in een eerste stap de verschillende bouwstenen
van een website en hun onderlinge relatie op een gestructureerde manier voor te
stellen in drie conceptuele subschema’s. De eerste twee subschema’s bevatten die
elementen die respectievelijk de inhoud en de structuur voorstellen. Een derde
subschema verbindt deze eerste twee. Vervolgens hebben we beroep gedaan op de
mogelijkheden van XML, welke een nieuwe mark-up taal is die zijn opgang maakt in
de Internet wereld. Deze taal is in tegenstelling met HTML uitbreidbaar doordat eigen
tags kunnen gedefinieerd worden. Door middel van Document type definities (DTD),
gekend vanuit SGML, kunnen inhoud en structuur van documenten gedefinieerd
worden en op die manier onderverdeeld in verschillende klassen. In een tweede stap is
een algoritme opgesteld om een conceptueel schema om te zetten in een DTD. Dit
algoritme is daarna gebruikt om de gecreëerde conceptuele schema’s van een website
te transformeren in een DTD. Hierdoor wordt het mogelijk de inhoud en de structuur
van elke instantie van een website te gaan omvormen in een XML document door
gebruik te maken van de elementen gedeclareerd in de DTD. Door de definitie van
een Document Object model in XML is het mogelijk om een XML document te gaan
beschouwen als een object en op die manier de informatie die het bevat te gaan
verwerken. In een laatste hoofdstuk is door de combinatie van dit DOM en Java
script, verwerkt in HTML, aangetoond hoe een XML document van een website, die
volgens de eerder bepaalde principes is opgebouwd, kan ontleed en voorgesteld
worden. Op die manier is een interessant hulpmiddel gecreëerd dat bijdraagt in het
efficiënt gebruik van websites op het Internet en de zoektocht naar de juiste
informatie.

III

Abstract

Internet plays a more and more important role in our information society. A few years
ago, Internet wasn't more than an experiment within a scientific environment. It is
now one of the major sources of information in every rank of our society. The
information on the Internet is presented in the form of websites spread over and
managed by innumerable servers all over the world. The way this information is used
evolves constantly to a more professional use where it is important to get access to
this data in a fast and efficient way. In this thesis we have tried to find a way to
represent the content and the structure of a website in a common and conveniently
organized way, in a form that can be communicated over the Internet. We have used
techniques from Database-development such as the conceptual schema technique. By
this it was possible in a first step to represent the different building blocks of a
website and their mutual relationship in a structured way in three conceptual
subschemas. The first two subschemas contain those elements which represent
respectively content and structure. The third subschema connects the first two. Then
we have appealed to the possibilities of XML which is a new mark-up language,
increasingly successful in the Internet environment. This language is -as contrasted
with HTML- extendable because private tags can be defined. By means of Document
Type Definitions (DTD), known from SGML, content and structure can be defined
and subdivided in different classes. In a second step an algorithm meant for
converting a conceptual schema into a DTD is drafted. This algorithm is then used to
transform the developed conceptual schema of a website into a DTD. By this it was
possible to model the content and structure of any instance of a website into an XML
document using the elements declared in the DTD. By the definition of a Document
Object Model (DOM) in XML it is possible to consider an XML document as an
object and in that way manipulate the information it contains. In the final chapter, we
have shown, by the combination of this DOM and Java Script embedded in HTML,
how an XML document of a website, built up according to earlier defined principles,
can be analyzed and represented.
By this means, an interesting expedient is created. It contributes to an efficient use of
websites on the Internet and the search to the right information.

IV

Acknowledgement

I would like to thank the following people for there contribution to make this thesis to
what it is.

Prof. Olga De Troyer
My wife Liesbeth
My parents
My fellow student Bert Lefever
My Volvo colleagues

V

Table of Contents

SAMENVATTING... II

ABSTRACT.. III

ACKNOWLEDGEMENT .. IV

TABLE OF CONTENTS..V

TABLE OF FIGURES .. VII

1. DEFINITION OF THE PROBLEM .. 8

1.1. THE INTERNET... 8
1.2. PROBLEM DESCRIPTION ... 8
1.3. OBJECTIVE.. 9

2. STRUCTURE AND OVERVIEW OF A WEBSITE ..10

2.1. HIERARCHICAL STRUCTURE IN A WEBSITE..10
2.2. SOME TECHNIQUES TO REVEAL STRUCTURE..10

2.2.1. Sitemaps..10
2.2.2. Structured Maps ...11

3. SGML, HTML EN XML..14

3.1. SGML ..14
3.1.1. Text Formatters and Formatting Markup...14

3.2. HTML..15
3.2.1. HTML and the Web ...15
3.2.2. HTML gets extended unofficially..16
3.2.3. The World Wide Web reacts ..16

3.3. XML ..17
3.3.1. What is XML? ..17
3.3.2. XML Documents ...17
3.3.3. Document Type Definition (DTD)...19

4. THE CONCEPTUAL SCHEMA OF A WEBSITE..23

4.1. THE OBJECTIVES OF A CONCEPTUAL WEBSITE SCHEMA ..24
4.2. THE META CONCEPTUAL SCHEMA ...24
4.3. NAME CONVENTION. ...28

5. USING XML TO REPRESENT A CONCEPTUAL WEBSITE SCHEMA...........................29

5.1. ALGORITHM TO TRANSFER A BR CONCEPTUAL SCHEMA INTO AN XML DTD........................29
5.2. TRANSFORMATION OF THE META CONCEPTUAL SCHEMA OF A WEBSITE INTO A DTD33

6. CASE STUDY : VOLVO IT BELGIUM, Y2K STATUS INFORMATION37

6.1. INTRODUCTION ...37
6.2. MODELING THE CONCEPTUAL SCHEMA..37

6.2.1. Technical Customer Information Needs...37
6.2.2. Kind of Information...38
6.2.3. Conceptual schema of the content ..40
6.2.4. The Structure of the Website..41
6.2.5. Representation of the Structure..43
6.2.6. The Connection between Content and Structure ..44

6.3. TRANSFORMING THE CONCEPTUAL SCHEMA INTO AN XML DOCUMENT44
6.4. XML DOCUMENT OF THE VOLVO IT BELGIUM Y2K WEBSITE ..49

VI

7. UTILIZATION OF THE XML DOCUMENTS OF WEBSITES...57

7.1. THE XML DOCUMENT OBJECT MODEL ...57
7.1.1. An XML Document as an Object Collection..57
7.1.2. The DOM Interfaces ..58

7.2. EXPLORING THE CONCEPTUAL SCHEMA OF A WEBSITES WITH THE XML DOM......................60
7.2.1. Counting the different ObjectTypes...60
7.2.2. Reflecting the Elements of the Conceptual Schema ..61
7.2.3. Revealing the Relations of ObjectTypes within the Conceptual Schema..........................63

7.2. NEXT STEP ..64

CONCLUSION..65

APPENDIX A ..66

VOLVO IT BELGIUM, Y2K STATUS INFORMATION, SITUATION SKETCH.66

WHAT IS VITB ...66
PROBLEM DESCRIPTION ..67
CHOICE OF MEDIUM ...67

APPENDIX B ..69

EXAMPLE 1..69
EXAMPLE 2..70
EXAMPLE 3..71
EXAMPLE 4..73
EXAMPLE 5..75
EXAMPLE 6..77

REFERENCES ..79

VII

Table of Figures

Fig. 2.1 : Example structured map………………………………………………………..…………. 12
Fig. 4.1 : Content schema of website…………………………………………………...…………… 26
Fig. 4.2 : Structure schema of a website…………………………..………………………...………. 27
Fig. 4.3 : Connection schema of a website………………………………….……………...……….. 27
Fig. 5.1 : Simplified conceptual schema of Academic Domain………………..……………..…….. 29
Fig. 6.1 : Content schema Y2K website………………………………………………………..….... 40
Fig. 6.2 : Start page………………………………………………………………………….……… 41
Fig. 6.3 : Customer view……………………………………………………………………….…… 42
Fig. 7.1 : Result of using attribute methods in the XML DOM………………………………..….... 59
Fig. 7.2 : Result of counting the Objects of the Y2K website…………………………………..….. 61
Fig. 7.3 : Result of exploring the ConceptTypes of the Y2K website…………………………..….. 62
Fig. 7.4 : Result of exploring the Pages of the Y2K website……………………………………….. 62
Fig. 7.5 : Part of the conceptual schema of the Y2K website containing the Customer relations…. 63
Fig. 7.6 : Presentation of the Customer relations in the Y2K website………………………….….. 63

8

1. Definition of the Problem

1.1. The Internet

The Internet is a gigantic collection of information spread over millions of sites
located on thousands of servers all over the world. This pile of data is connected
together by hyperlinks making it possible to go from one website to another, jumping
from one subject to the next topic. This makes the Internet the most dynamic
accumulation of information but perhaps also the most disordered one. The Internet
creation relies on simple techniques like HTML. This is one of the main reasons why
it became as big as it is today. But because this technique doesn’t have much
possibilities in creating structured data presentations it also causes the fact that the
Internet can be hard to explore.
The Internet has evolved from a private experiment for some scientists towards a
medium that reaches millions of people all over the world. Companies have taken
over these techniques and use them as a professional tool to distribute their
information towards customers. In addition every big company nowadays has an
intranet as an internal information provider for their employees, separating and
securing it through firewalls from the Internet. All of this makes the Internet one of
the most important media towards the future.
Today almost anyone who is a bit familiar with the use of a PC can go on the Internet
using a browser program to look for some kind of information. To help people in their
search for knowledge some applications have been developed calling themselves
search engines (e.g. YAHOO, ALTAVISTA). It’s hard to find a subject nowadays
that won’t give you a result on those search engines. The problem today is more of the
kind that you will be overwhelmed with sites were your subject is mentioned and you
will not see the wood for the trees. It has become very difficult to use such an
enormous collection of data in an efficient way.

1.2. Problem Description

The overwhelming accessibility to data, on a global scale, does not necessarily
translate to widespread utility of data. We often find that we are drowning in data,
with few tools to help manage relevant data for our various activities.
The lost-in-hyper-space syndrome is a phenomena that occurs when surfing on the
Internet. Generally this medium is used to find specific information and it can happen
that by frequently use of references and hyperlinks in websites people loose track of
where they are and what they are looking for. You can compare it with finding the
way in a strange city without having a city map at your disposal. The structure and
survey of a website becomes more and more important to help users to deal with their
queries in an efficient way.

9

1.3. Objective

The objective of this thesis is to provide means to create an overview of a website that
permits users to know in an efficient way what information is available inside the
website and how this information is structured and reachable. We will appeal to
Conceptual Schemas to describe the type of information present in a website and how
the information is structured.
To do so, we first have to define the concept of Conceptual Schema (CS) for a
website. This is done by means of a “meta” conceptual schema for websites. This
meta conceptual schema defines the concepts and their relationships that will be used
to define the conceptual schemas of whatever instance of a website. To model the
meta conceptual schema we use the Binary Role Model (BRM) that allows for a
graphical representation. Next we translate this BR-schema into an XML document
type definition (DTD), which is a more suitable representation technique for the
Internet. Then, this DTD can be used to represent every conceptual schema of a
website as an XML document. Next web tools may be developed to explore the
knowledge available in this conceptual schema (XML) document, e.g. to give a visual
representation of the CS.
Note that for the transformation of the BR-version of our meta conceptual schema
into an XML DTD we have developed a general purpose algorithm to translate BR-
schemas into XML document type definitions.

10

2. Structure and Overview of a Website

2.1. Hierarchical Structure in a Website

Today’s website structure is mostly presented in a hierarchical way. It is built up out
of pages where one frame (mostly left of the website) is used to depict the menu of
subjects (connected with links) accessible from that page. In the other pages
information can be found together with some hyperlinks. For a visitor, only the menu
gives some minor information about the structure of the website. When a website
contains information built up in different layers this menu can only bring information
about one layer. Using this technique, it is important to structure your menu’s well,
making sure that each description used as a menu item is a good representation of
what information can be found underneath it.

2.2. Some Techniques to reveal Structure

In this section we will describe briefly two existing techniques to reveal the structure
of a website. One to provide an overview of a website to users called sitemaps, and
one called structured maps [DM 96], an additional modeling construct superimposed
over available information sources, that provides structured and managed access to
data. We touch these techniques lightly because they depict in some way what this
thesis is all about.

2.2.1. Sitemaps

Sitemaps is a Java application that visualizes a given website (or collection of links).
Through a WebCrawler, Sitemaps first traverses every link of the website, collects
statistical data, and indexes all the words and pages of the site. Based on the statistical
and the indexing, sitemaps converts each page of the site into a vector, and uses these
vectors to train a neural network. As the outcome, the trained neural network presents
the site in an organized map: subject areas are identified and labeled; their sizes and
locations are determined by relationships among the subjects and their occurrence and
co-occurrence frequencies. Links are clustered and located within their respective
subject areas, represented by colored dots. Some patterns of the site are clearly
revealed.
To help users interact with the map, Sitemaps provides various interactive tools. For
example, areas can be labeled in more/less details through adjusting a scroll bar; links
can be selected through clicking or dragging; contents of any selected links can be
shown in a separate window, etc.

Examples of sitemaps can be found :
The Boeing Company
http://lislin.gws.uky.edu/Sitemap/sm2/boeing.html
Dynamic Diagrams, In
http://lislin.gws.uky.edu/Sitemap/sm2/dd.html

http://lislin.gws.uky.edu/Sitemap/sm2/boeing.html
http://lislin.gws.uky.edu/Sitemap/sm2/dd.html

11

An other Java applet of the same kind can be found at

http://www.objectvisionltd.com/java/index.html

Visual Sitemaps displays a directory map of a Website with active links. Visual
SiteMap provides an alternative method for navigating sites pages. This applet builds
a navigation tree and correlates tree nodes to URLs by reading an ASCII
configuration file.

These are two tools that can help users to expose the structure of a website they want
to explore looking for certain information.

2.2.2. Structured Maps

Structured maps are based on Topic Navigation maps, defined by the SGML
community to provide multi document indices and glossaries. A structured map
provides a layer of typed entities and relationships where the entities can have typed
references to information elements in the information universe. Structured maps can
be placed over loosely structured data, e.g., document collections, with references at
various levels of granularity. Structured maps directly support new, customized, and
even personalized use of the information.
Structured maps provide the capabilities to organize access to such divers information
in an electronic environment and are superimposed over an underlying universe of
documentation.

Structured maps can model typed entities and relationships, e.g., Students and
Courses. Instances of the entity types are connected to elements (often fragments of
some larger source) in the underlying universe of information. Consider the structured
map shown in Fig 2.1. Three information sources are shown in the information
universe: the student register containing general information of all the students who
are a member of the university, the list of student points, and the schedule when the
courses are given. This information universe is supplemented with a structured map
definition, shown at the top of the figure and a structured map instance, shown in the
middle of the figure. In the structured map definition two entity types are introduced,
with a relationship type to indicate that students follow courses. OMT [WK 96]
notation is used because of the strong similarity of structured maps and entity
relationship-style model (ERM).
The student entity has two facet types shown extending from the bottom of the entity
symbol. The middle box shows the current instance of the structured map. Each facet
instance, for an entity instance, consists of a set of zero or more addresses where each
address references an information element from the universe. It is shown in the figure
as an envelope icon. This structured map can be used as a navigational guide for the
underlying information universe.

http://www.objectvisionltd.com/java/index.html

12

Fig. 2.1 : Example structured map.

As we’ve seen in the example, structured maps have a three level model, the
structured map definition, the structured map instance, and the underlying universe of
information with various information elements highlighted by the facets of the
structured map.
The modeling of structured maps is fairly elementary compared to most ERD models,
but they are currently guided by the definition of the Topic Navigation Map. A Topic
Navigation Map is represented as an SGML document and uses the terms: topic, topic
relation, topic title, and anchor role as the analogous terms for entity, relationship,
title, and facet in structured maps.
The motivations for following Topic navigation maps is :

• The fact that they are being proposed as an ISO standard to provide multi
document indices, glossaries and table of contents

• They use a basic entity relationship model at the core.
• Topic Navigation Maps are defined using SGML.
• Topic Navigation Maps use a DTD to describe the structure of the

document instance.

A structured map introduces useful information to serve as a structured guide to
selected information elements in the underlying universe. When we ignore the
difference with web-based approaches to information access, because structured maps
are not limited to the structure of any particular web, structured maps are somewhat
like structured bookmarks on the World Wide Web.
When we consider a website as being the underlying universe of information, then
there are some similarities between structured maps and the information we want to
present of websites in this thesis. As earlier mentioned, having a good map or schema

Structured Map Definition

Followed_by_follows

Student Course

Followed_byfollows

Evaluated mentionedmentioned

Structured Map Instance

Followed_by_follows

Evaluated mentionedmentioned

Student

TitleTitle

Course

O.O.programming
Liesbeth Vlaeminck

Student : ####
Adress: ####
Age: ####

Student register Information Universe

Course : ###
Points : ###
Student :##

Students points

Course :###
Schedule :##

Course schedule

13

of the universe of information you want to model or use, is of big importance, not
only it will help you to design and create the website, it is also an interesting
instrument to provide the users of the website with some survey and help them to
work in an efficient way with the information.
We will use in this thesis Object Role Modeling (ORM) [HA 95] as a semantic
modeling approach which views the world as objects playing roles. Many of its
features are derived from NIAM [HA 95] (Natural-language Information Analysis
Method)
The conceptual schema of the website gives the type of entities (or objects) the
website contains and the relationships between these object types
By creating XML documents of the conceptual model in a common way we will be
able to present that structural information to users in a comparable way like the
structured maps.
In chapter 7 we will show how we can use JavaScript [NN 96] and the DOM
(Document Object Model) [BD 98] to work with the information in the XML
documents. We will develop a small example to show how we can work with the
received information in the XML documents and how we can present this in a
structured way.

14

3. SGML, HTML en XML

3.1. SGML
SGML (the Standard Generalized Markup Language) is a platform-neutral standard
for creating documents and information archives. It is a series of rules that everyone
can follow in order to make their documents publishable in different media (print,
CD-ROM, the Web) and to make their documents readable with different kinds of
computers. SGML is also a structure for storing information that eases info-
management and manipulation: it allows very powerful searching, and allows large
information repositories to be re-purposed, broken down, and rearranged intelligently
into individual documents.

3.1.1. Text Formatters and Formatting Markup

It all started with text processing systems. Text processing is the sub discipline of
computer science dedicated to creating computer systems that can automate parts of
the document creation and publishing process. The first wave of automated text
processing was computer typesetting. Authors would type in a document and describe
how they would like it to be formatted. A rendition is what we call the file format that
contained the mix of the actual data of the document, plus the description of the
desired format. Some well known rendition notation include Troff, Rich Text Format,
LaTeX. The typesetting systems sped up the process of publishing documents and
evolved into what we now know as desktop publishing. The user interface to the
rendition (the file with formatting code in it) is designed to look like the presentation
(the finished paper product). We call this: what you see is what you get (WYSIWYG)
publishing. The form of typesetting notation that predates WYSIWYG (and is still in
use today) is called formatting markup. Depending on the particular formatting
markup language the text is circled with instructions called tags or codes.
SGML is a language where markup is not used for formatting purposes but to describe
the structure of the text to make it possible to process the text and the recorded
information. This type of markup is called generalized markup.
With SGML, organizations in government, aerospace, airlines, automotive,
electronics, computers, and publishing have freed their documents from hostage
relationships to processing software. SGML coexists with graphics, multimedia, and
other data standards needed for Open Information Management (OIM) and acts as the
framework that relates objects in the other formats to one another and to SGML
documents.

To summarize, it is possible to classify markup as one of three types: stylistic,
structural or semantic.

Stylistic Markup
This indicates how the document is to be presented. When we use
bolding or italics on a word processor, it is stylistic markup. In HTML
, <I>, , <U> tags are all stylistic markup.

15

Structural Markup
This informs us of how the document is to be structured. The <Hn>,
<P>, and the <DIV>tags are examples of structural markup, which
indicate a heading, paragraph and container section respectively.

Semantic Markup
This tells us something about the content of the data. As such
<TITLE> and <CODE> are examples of semantic markup in HTML.

3.2. HTML

HTML as well as XML are based on SGML. HTML, the HyperText Markup
Language, is a particular, though very general application of SGML. There is a
limited set of markup tags that can be used with HTML.

3.2.1. HTML and the Web

In 1989 a researcher named Tim Berners-Lee proposed that information could be
shared within the CERN European Nuclear Research Facility using hyper linked text
documents. He was advised to use an SGML-ish syntax by a colleague named Anders
Berglund, an early adopter of the new SGML standard. They started from a simple
example document type in the SGML standard and developed a hypertext version
called the Hypertext Markup Language (HTML).

Relative to the 20 year evolution of SGML, HTML was developed in a hurry, but it
did the job. When it came on the scene it sparked a publishing phenomenon. The
simplicity of HTML and the other web specifications allowed programmers around
the world to quickly build systems and tools to work with the web. Its simplicity is
widely believed to be an important part of its success.

HTML inherited some important strength from SGML. With a few exceptions, its
element types were generalized and descriptive, not formatting constructs as in
languages like TeX and Microsoft Word. This meant that HTML documents could be
displayed on text screens, under graphical user interfaces, and even projected through
speakers for the sight impaired.
HTML documents used SGML's simple angle bracket convention for markup. That
meant that authors could create HTML documents in almost any text editor or word
processor. The documents are also compatible with almost every computer system in
existence.
On the other hand HTML only uses a fixed set of element types. It is not extensible
and therefore can not be tailored for particular document types, and it was not very
rigorously defined until years after its invention. By the time HTML was given a
formal DTD (Document Type Definition), there were already thousand of web pages
with erroneous HTML.

16

3.2.2. HTML gets extended unofficially

As the web grew in popularity many people started to chafe under HTML's fixed
document type. Browser vendors saw an opportunity to gain market share by making
incompatible extensions to HTML. Most of the extensions were formatting
commands and thus damaged the Web's interoperability. The first golden rule,
standardization, was in serious danger.

One argument for implementing formatting constructs instead of (structure)
abstractions is that there are a fixed number of formatting constructs in wide use, but
an ever growing number of abstractions. Let's say that next year biologists invent a
new formatting notation for discussing a particular type of DNA. They might use
italics to represent one kind of DNA construct and bold to represent another. In other
words, as new abstractions are invented we usually use existing formatting features to
represent them. We have been doing this for thousands of years, and prior to
computerization, it was essentially the only way.
We human readers can read a textual description of the meanings of the features and
we can differentiate them from others using our reasoning and understanding of the
text. But this system leaves computers more or less out of the loop.
For instance superscript can be used for trademarks, footnotes and various
mathematical constructs. Italics can be used for references to book titles, for emphasis
and to represent foreign languages. Without generalized markup to differentiate,
computers cannot do anything useful with that information. It would be impossible for
them to translate foreign languages, convert emphasis to a louder voice of text to
speech conversion, or do calculations on the mathematical formulae.

3.2.3. The World Wide Web reacts

As the interoperability and scalability of the web became more and more endangered
by proprietary formatting markup, the World Wide Web (WWW) Consortium (W3C)
decided to act. They decided to adopt the SGML convention for attaching formatting
to documents, the style sheet.
They invented a simple HTML-specific style sheet language called Cascading Style
Sheets (CSS) that allowed people to attach formatting to HTML documents without
filling the HTML itself with proprietary, rendition-oriented markup. They also came
up with a simple mechanism for adding abstraction to HTML. It allowed new
abstractions to be invented but provided no mechanism for constraining their
occurrence. In other words it brought HTML back to being a single standard, more or
less equally supported by the major vendors, and it allowed people to define arbitrary
extensions (with many limitations).
But they knew that their stool would not stand long on two of its three legs. The
(weakly) extensible HTML and CSS are only stopgaps. For the Web to move to a new
level, it had to incorporate the third of SGML's important ideas, that document types
should be formally defined so that documents can be checked for validity against
them.

17

Therefore the World Wide Web Consortium decided to develop a subset of SGML
that would retain SGML's major virtues but also embrace the Web ethic of minimalist
simplicity. They decided to give the new language the catchy name eXtensible
Markup Language (XML).

3.3. XML

3.3.1. What is XML?

XML, the eXtensible Markup Language is as we discussed before a streamlined
subset of SGML. XML facilities that, like in full SGML, you can use any set of tags.
You can literally create your own markup language with XML.

XML was originally conceived as a big brother to HTML. As its name implies, XML
can be used to extend HTML or even to define a whole new language completely
unlike HTML.

We will now introduce the ideas and techniques that define the language XML to
clarify the opportunities of the language and the advantages. In chapter 5 we will use
these techniques to transform our meta conceptual schema for websites into an XML
document. Only a brief introduction will be given concerning these technique, just
enough to understand the theory we describe in chapter 5. For more detailed
information we refer to specialized lecture [GP 98] [BD 98].

3.3.2. XML Documents

XML got the name eXtensible Markup Language because it is not a fixed format like
HTML. While HTML is limited to a fixed set of tags that the author can use, XML
users can create their own tags (or use tags created by others), which actually describe
their content. As such it is a meta language.

Consider following example:

<Student studentid=”2554123”>
<Name>Tom Decruyenaere</Name>
<Age>29</Age>
<Address>Kortrijksesteenweg 501, 9000 Gent</Address>
<Discipline>Applied Information Technology</Discipline>

<Student>

Here you can see that the tags contain information about their contents. The
<Student> tag tells you that the element’s content relate to the student, where
<Name> is the tag that contains the name of that student.
Even though you have never seen this example before, you are able to understand its
content.

18

First we will discuss the different parts of an XML document.

The XML Prolog

The prolog is made up out of an XML declaration and a document type
declaration, both optional.

The XML declaration is placed at the very beginning of the document file. It
indicates the version of XML used to construct the document so that an
appropriate parser, or parsing process, can be matched to the document.

<?xml version=”1.0”?>

The document type declaration declares the document type that is in use in the
document. The DTD is a formalization of the intuitive idea of a document
type. The DTD lists the element types available and can put constraints on the
occurrence and the content of elements and other details of the document
structure.

Elements

As we have already seen, the XML document essentially consists of data
marked up using tags. Each start-tag / end-tag pair, with the data that may lie
between them, constitutes an element.

<Name> Tom Decruyenaere </Name>

The names in the start and the end tag must be the same. Since XML is case
sensitive, care must be taken to ensure that the names match in letter case.
XML allows you to give the tags any name you desire. However individual
parsing programs may set limits on the length of names even though the XML
specification makes no mention of such.

This freedom in the naming of tags is where the power of XML lies. You can
give your tags names that describe the content of the element.

To have a well-formed document nearly everything we need to know about
how to markup correctly is contained into three simple rules:

• The document must contain one or more elements.
• It must contain a uniquely named element, no part of which

appears in the content of any other element, known as the
root element.

• All other elements within the root element must be
correctly nested.

19

Attributes

In addition to content, elements may have attributes. Attributes are a way of
attaching characteristics or properties to elements of a document. Attributes
have names and values. These values are passed to the application by the
XML parser but which do not constitutes part of the content of the element.
Attributes are given as part of the elements start tag.

<Student StudentID=”2554123”>

In the above, StudentID is an attribute of the Student tag.

Entities

We will deal with entities shortly because we will not use this property further
on in this thesis.

Entities are usually used within a document as a way of avoiding having to
type out long pieces of text many times within a document. It provides a
mechanism whereby you can associate a name with the long piece of text, and
then, wherever you need to place that text within the document you just
mention the name instead. This in turn entails that if any modification has to
be made to the replacement text, that you only have to make one set of
changes to one piece of text, rather than having to make a large number of
alterations within the document.

3.3.3. Document Type Definition (DTD).

The DTD defines the allowed element types, attributes and entities and can express
some constraints on their combination. A document that conforms to its DTD is said
to be valid.
A DTD consist of the declaration within the DOCTYPE declaration, which includes
entity, element and attribute declarations, and any other declaration required for
describing our documents. XML provides a mechanism to refer to an external DTD
file using the following syntax:

<!DOCTYPE University SYSTEM “university.dtd”>

This allows us to reference a DTD stored in a separate file and avoids having to copy
the same DTD into every document we are working with. We can also replace the file
name by an URI (Uniform Resource Identifiers) address.
This way the DTD can be built up out of an internal and an external subset. We can
place declarations in both.

20

<!DOCTYPE University SYSTEM “university.dtd”
[
<!ELEMENT Object (element1 | element2)>
]>

Element Declaration

Elements are the foundation of XML markup. Every element in a valid XML
document must conform to an element type declared in the DTD.

<!ELEMENT Student (Name , Age , Address , Discipline)>

Element type declarations have a content specification. In the example above
the element Student must contain a Name, Age, Address, and Discipline
element.

Element Content Model

Each element is described within the declaration by a content model that lists
the subsidiary elements it can contain, with some elements defined as being
optional or repeated. The content model is part of the element declaration and
is enclosed in the parenthesis. The model describes what lower level elements
make up the current element. There are no restrictions upon what you name
these subsidiary elements provided that you follow the rules for naming.

The symbols used for XML content models are the same as a subset of those
used for regular expressions. For example, parentheses are used for grouping;
a question mark is used to signal optional elements; asterisk and plus symbols
are used to signal repetition. We also find symbols to denote the sequencing of
elements. The use of the comma symbol in a content model means that the
content elements must occur in that order. The | symbol is used to indicate a
selection. An overview is given in Table3.1

Symbol Usage
, Strict ordering
| Selection
+ Required and repeatable

Minimum 1
* Optional and repeatable
? Optional
() Grouping

Table 3.1 : Content model operators and their usage.

21

#PCDATA

Eventually we reach an element that will have character content. This can be
indicated in the content model of that element by including the special element
name #PCDATA. This element can also be used in combination with others.

<!ELEMENT Name (#PCDATA) >

EMPTY

Sometimes we want an element that can never have any content. We need the
element name to act as a placeholder in the document structure but we do not
want the XML parser to interpret the content itself

<!ELEMENT succesfull EMPTY >

ANY

This lets us put any type of content within the element. The consensus says
that it is only useful as a temporary measure when developing a document
type definition.

Attribute List Declaration

An element can have attributes associated with it. Attribute declarations
contain the element name to which the attribute belong; the names of the
attributes in the element; the data types or possible values for the attributes
contents; and default values for the attributes.

<!ATTLIST Student StudentID ID #REQUIRED >

An element can have any number of attributes associated with it. With DTDs
we can control how the attribute value is interpreted.

In the table 3.2, on the next page, all the possible content data types for an
attribute are listed.

22

Attribute Type Attribute value content

CDATA Character data
ID A name that is unique over all other ID attribute values
IDREF A name that is defined by some other ID type attribute

IDREFS A series of names that are defined by ID type attributes and are
separated by white space

ENTITY A name of a pre-existing external entity. The entity is assumed
to contain binary data

ENTITIES A series of names of pre-existing external entities that are
separated by white space. The entities are assumed to contain
binary data.

NMTOKEN A name, which cannot begin with the character _ or :
NMTOKENS A series of NMTOKEN values separated by white space
NOTATION A series of NMTOKEN values separated by white space that

have been named in NOTATION declaration
Enumeration A series of NMTOKEN values that you explicitly listed in the

attribute declaration

Table 3.2 : Summary of attribute types.

Default values of attributes

Attributes can have default values. If the author does not specify an attribute
value then the processor supplies the default value if it exists. Specifying the
default can be done by including it after the type or list of allowed values in
the attribute list declaration.

Furthermore XML allows us to have some control over the presence of values
for the attributes by the following words: #REQUIRED , #FIXED,
#IMPLIED.

The #REQUIRED flag forces the attribute to appear in each start-tag for this
element. That is, there is no default value for any attribute with this mark
against it. Whereas the #IMPLIED flag indicates that the application supplies
the default value if one isn’t supplied in the document instance. Any attribute
that has #FIXED attached to it means that it can only have the one value when
the attribute is used in that element.

23

4. The Conceptual Schema of a Website

What we are seeking for is a means to describe the content and the structure of a
website in a general and formal way, such that it can be used by browsers to display
the structure of the website and allow users to see at a glance what kind of
information the website is offering. Also search engines should be able to explore this
information.

A common way in databases to describe the type of information they are dealing with
and the way it is structured is a conceptual schema. The conceptual schema of a
database gives the type of entities (or objects) the database contains and the
relationships between these object types. As an example, consider a university
database. Typical object types are Student, Course, and Lecture. The relationships
between these object types are e.g. “Student follows a Course” and “Lecture gives a
Course”. The conceptual schema of a database further describes the properties of the
object types (called attributes) and the constraints that apply to attributes and
relationships.

When we consider a website as being a forum to deliver information, then there are
some similarities with a database. Therefore we may consider to use the technique of
conceptual schemas from database theory to describe the content and structure of a
website. However a website is not a database. A website may contain structured data,
but it may also contain unstructured data. In addition the organization of a website is
different from that of a typical database. A website is organized into pages and links
between pages and pieces of information. This means that the basic building blocks of
a conceptual schema for a database, being object types, relationships and constraints,
are not necessarily suitable and certainly not sufficient to build the conceptual schema
of a website. Therefore, we first have to establish the basic concepts needed to specify
the conceptual schema for a website. We have to find out what exactly of a website
we want to describe with a conceptual schema. E.g. do we merely describe the (type
of) information in the website, or do we describe the page and link structure of the
website or both? In addition, there is the question of what level of abstraction we are
looking for? Because the distinction between instance and type is not as clear as in a
database, this may be a difficult issue. We give an answer to these questions in section
4.1.

In database theory, the set of basic concepts used to describe a conceptual schema is
usually described by the same technique, i.e. a conceptual schema. Because this is a
conceptual schema of conceptual schemas, this schema is called the Meta Conceptual
Schema. Therefore our first job will be to develop the meta conceptual schema for a
website. This is done in section 4.2. To represent the meta conceptual schema we
have used the Binary Role (BR) Modeling approach, which views the world as objects
playing roles. The basic building blocks of the BR Model are Object Types (OT)
(graphically represented as circles) and binary relationships composed of two roles
(graphically represented as a rectangle composed into two boxes, each box connects
with a line to the corresponding OT).

24

4.1. The Objectives of a Conceptual Website Schema

In database theory, the conceptual schema concentrates on the conceptual issues of
the allowable contents and the meaning of the database. Implementation issues such
as the grouping into records and the available access paths are not described in the
conceptual schema. These are part of the database schema. If we would follow this
philosophy for websites, it would only be possible to derive from the conceptual
schema what kind of information is available in the website, but we would not be able
to derive where it can be found in the website. For databases this is not a problem
because a database is used through an application program that hides the database
structure from the user. For a website the only existing application is the webbrowser,
which does not hide the pages and links from the user. On the contrary, pages and
links are the basic manipulation concepts to be used in a webbrowser. Therefore to
fulfill our original goal, to allow users to see at a glance where and what kind of
information can be found in a website, the conceptual schema of a website should also
describe where the information can be found in the website. To realize this a
conceptual schema for a website will be composed of three parts: one part will
describe what kind of information is available in the website (called the content
schema), a second part will describe the page and link structure of the website (called
the structure schema) and the third part will describe where the information can be
found in the website. This last part connects the information in the content schema to
the information in the structure schema. Therefore this part is called the connection
schema. We have opted to clearly identify those different parts rather than intertwine
all the information into one schema. This will offer more flexibility towards the future
as web technology changes quickly.
In the next section, we describe each of these sub-schemas into more detail by means
of the meta conceptual schema.

4.2. The Meta Conceptual Schema

As already explained earlier, we will use a meta conceptual schema to define the
concepts of a conceptual schema for a website.
To define a conceptual schema of a website you need certain concepts which can be
used to represent the different information components present in the website and
build them together according to a certain structure. The meta conceptual schema will
be the frame in which the presentation of these concepts and their relation with each
other will be determined.
As a result it should be possible to represent a conceptual schema of any website
using the declared concepts of the meta conceptual model. This conceptual schema
should indicate what information can be found in the website and how this
information is linked together.
As a next step in our theory we will use XML to build a Document Type Definition
(DTD) containing the declarations of the different concepts defined in the meta
conceptual schema. This makes it as an information system more robust by forcing
the conceptual schemas that we will create of websites using this DTD to be
consistent (see Chapter 5).

25

As already explained the meta conceptual schema will be divided into three parts:
• The Content schema.
• The Structure schema.
• The Connection schema.

The Content schema.
In this schema we define the different conceptual ‘elements’ which represent the
content of a website and their (conceptual) relation to each other. To do this, we make
a distinction between Concepts and Concept Types. As an example to clarify the
difference between these two elements we can use "Student" that is a Concept Type
whereas "the student Tom Decruyenaere" can be considered as a Concept. Like in
ORM Objects play roles creating relations between each other. Object and relations
are both subtypes of Concepts, Object Types and Relation Types are subtypes of
Concept Types. Objects may be structured, constructed out of other Objects or just
simply elementary. When we define a tree as being an Object constructed out of
branches and leafs it can be considered as a structured object whereas a leaf can be an
elementary object. We will ignore the structured Objects further on in this thesis to
keep it from becoming to complex. Relations exist out of Roles. The Object Type
Student has a Relation Type with an Object Type Course because the first plays a role
on the second. A Student follows a Course. When we keep it general like in this
example, a role between two Object Types creates a Relation Type. When we become
specific and indicate that the Student "Tom" follows a Course " Software
Engineering" we talk about a Relation between two Objects.
Fig. 4.1 gives a graphical representation of the content schema.

The Structure schema.
In this schema we define the ‘elements’ who are typical for building a website and
defining the structure of it: pages and links. We also define the concept of page
prototype and link prototype. These concepts allow to define a general structure for
pages and links. This makes it possible to define a page or a link as an ‘instance’ of
these prototypes, which means that they must be conform the prototype. E.g. Each
Student could have a website page where some specific information concerning this
student is gathered. The page for this particular student can be considered as a page
and as an instance of the Page Prototype defining structure of this Page. This does not
mean that every page or link should have a prototype.
Fig. 4.2 gives a graphical representation of the structure schema.

The Connection schema.
This schema allows to connect the first two schemas. It provides us with the
possibility to indicate how the conceptual content of a website is reflected on the
structure. More specific, this schema defines the relation indicating what concept
(type)s can be found on what page (prototype)s. The OT Concept Type is connected
to the OT Page through the relation created by the two roles with_overview_on and
overview_page_of.
Fig. 4.3 gives a graphical representation of the connection schema.

26

Fig. 4.1 : Content schema of website.

ConceptTy pe

ObjectType RelationTy pe

 is_supper

/ is_sub

ObjectInstance RelationInstance

Role

with /played_by in /has

with_instance

/of_objectty pe

with_relationinstance

/of_relationtype

RelationObjectStructuredObject

ElementObject

GraphicText

 is_composed_of

Concept

Name

ShortDescription

has_name

has_description

played_by_instance

/instance_with

in_relation_instance

/relation_instance_has

27

Fig. 4.2 : Structure schema of a website.

Fig. 4.3 : Connection schema of a website.

Concept*

Page*

C onceptType*

PageProtoTy pe

on /contains

w ith_overv iew _on /overview _page_of

overviewed_on /for_concept

LinkProtoType

LinkInstance

Link

PageProtoType

PageInstance

Page

for_link /has_link_prototype

from_prototype

/is_source_proto_for

to_prototype

/is_target_proto_for

from

/is_source_for

to

/is_target_for

from_p /is_source_for_proto

to_p /is_target_for_proto

for_page /has_page_prototy pe

InPage

OutPage

Outside

X

X

28

4.3. Name Convention.

All the different OTs in the conceptual schema are written with a capital letter without
spaces between different words. If words are constructed out of more words we also
use capital letters to make it more readable.

For the relations and more specific the roles, we use small letters and underscores to
connect the different words in a role.

In traditional conceptual schemas it is allowed to use the same role names in different
relations. As an example “has” is a frequently used role name. However, we will see
in section 5.1.1 that the algorithm defined to transform a conceptual schema into a
XML DTD requires unique names for all roles. Therefore we should take care that
every role has a unique name. As an example, in the meta conceptual schema we use
for the OT Link and the OT LinkProtoType different role names: from and
from_prototype. Normally it should be more convenient if we use two times from but
it will become clear when we explain the algorithm to transform a conceptual schema
into a DTD in XML why this would induce problems.

29

5. Using XML to represent a Conceptual Website Schema

The BR Model is not a very convenient formalism to be used on the Internet. The
Internet is nowadays dominated by HTML, but the language of the future seems to be
XML. As explained in chapter 3, XML allows to bring more structure and semantics
to the web. Therefore a suitable representation for a conceptual website schema could
be XML. What we are aiming for is a standard way to represent the conceptual
schema of a website on the web. This can be accomplish by defining a DTD for
describing a conceptual website schema. Each conceptual website schema can then be
expressed as an XML document using this DTD. Because this DTD will describe the
general structure of any conceptual schema for a website it is in fact the same as the
meta conceptual schema defined in the previous chapter. What we need to do is to
translate the meta conceptual schema given in BR formalism into a XML DTD.
To transform the meta conceptual schema into a XML DTD we have developed an
algorithm that is capable to transform any BR-schema into a DTD. This algorithm is
given in section 5.1 and illustrated in a simple example. In section 5.2 the algorithm is
applied on the meta conceptual schema resulting in the requested DTD, which we will
refer to as the Conceptual Schema DTD.
We will also use a simplified example to show how we can present whatever
conceptual schema in XML using this conceptual schema. Finally we will test this
theory in a Case-study (Chapter6).

5.1. Algorithm to transfer a BR Conceptual Schema into an XML DTD

We will explain this algorithm on the basis of a very simple example. We will use a
conceptual schema of an academic domain were we have some OTs and relations
between them. We assume in this domain that a course is given by only one professor
and that a student is obliged to follow a course. Both students and professors are
members of the University.

Fig. 5.1 : Simplified conceptual schema of Academic Domain.

We use the theory of DTD given in chapter 3 to transform this conceptual schema into
a DTD. As the first transformation rule we can state:

Mem ber

Student

Profess or

Course

follow s /follow ed

teaches /is_teached_by

30

Every OT in the schema is declared in the DTD as an
Element.

When we look at the OT Member we see in the schema that it has two subtypes. We
will now explain how we represent these subtypes within the element content model
of the element Member.

<!ELEMENT Member(Student | Professor)>

The element Member has two subsidiary elements declared in its content model.
These are the subtypes in the conceptual schema. This brings us to the second transfer
rule:

To represent a subtype relationship we specify the
element for the subtype in the declaration of the content
model of the element for the supertype.

E.g. The element Member is either an element Student or an element Professor.

Note that within a group (….) the connector symbols must be the same. We cannot
mix them like , (element1 | element2 , element3) unless we introduce more
parenthesis, ((element1 | element2), element3). Unlike arithmetic expressions there
is no implied precedence between the connectors.

For each element we define an ID as an attribute. The value for this ID will be used to
refer to this element. This is necessary to create relations between elements. Relations
are no more then roles played by one element sometimes on another element.

<!ATTLIST Member MemberID ID #REQUIRED>

To translate roles we make use of the following rule:

We declare a role as an element. When the role is played
on a NOLOT (NOn Lexical Object Type) it is declared as an
EMPTY element with an IDREF in the attribute list
declaration. When it is played on a LOT the content is
#PCDATA.
The role creates the relation between two elements by use
of the ID reference.

31

Because every role is transformed into an element in the XML DTD by this rule, we
have to make sure that we use for every role in the conceptual schema a different
name.

The name of the role is part of the element type content model of the element
representing the OT that plays the role. When an OT has different roles they will be
lined up in a sequence in the content model of the element. The comma between the
different roles implements this. We use the occurrence indicator to make roles
optional.

<!ELEMENT Course (is_teached_by , is_followed*) >
<!ATTLIST Course CourseID ID #REQUIRED >

<!ELEMENT is_teached_by EMPTY>
<!ATTLIST is_teached_by ProfessorID ID #REQUIRED>
<!ELEMENT is_followed EMPTY>
<!ATTLIST is_followed StudentID ID #REQUIED>

In our example, Course plays two roles into two relations. The role is_teached_by
presents the relation with a professor who is teaching this course. We indicate with
the name of the ID that it should be a professor. However we cannot use constraints
within this model to oblige the use of professor ID’s, in fact every valid ID value can
be used.

If we take the example of Student and its role follows, we can see that the uniqueness
constraints, present on this role, can be transformed using these occurrence indicators.
Follows is part of a many to many relation and is mandatory, that is why we use a
required and repeatable operator + . When we take the OT Professor were teaches is
part of a many to one relation which is not mandatory at the professor side we use the
optional and repeatable operator *.

<!ELEMENT Student (follows)+ >
<!ELEMENT Professor (teaches)* >
<!ELEMENT Course (is_teached_by , is_followed*) >

Uniqueness constraints and the mandatory role constraints
can be expressed in the DTD by making use of the content
model operators as follows:

32

Symbol Usage Constraint

+ Required and repeatable Mandatory
Minimum 1 Mandatory and unique

* Optional and repeatable Non mandatory
? Optional Non mandatory and unique

Table 5.1 : Expression of constraints by content model operators.

When we apply these rules to the entire example conceptual schema we get the
following DTD:

<?xml version="1.0"?>
<!DOCTYPE Academic_Domain [

<!ELEMENT Member (Professor | Student)>
<!ATTLIST Member MemberID ID #REQUIRED>
<!ELEMENT Student (follows)+ >
<!ATTLIST Student StudentID ID #REQUIRED >

<!ELEMENT follows EMPTY>
<!ATTLIST follows CourseID ID #REQUIRED>

<!ELEMENT Professor (teaches)* >
<!ATTLIST Professor ProfessorID ID #REQUIRED>

<!ELEMENT teaches EMPTY>
<!ATTLIST teaches CourseID ID #REQUIRED>

<!ELEMENT course (is_teached_by , is_followed*)>
<!ATTLIST Course CourseID ID #REQUIRED >

<!ELEMENT is_teached_by EMPTY>
<!ATTLIST is_teached_by ProfessorID ID #REQUIRED>
<!ELEMENT is_followed EMPTY>
<!ATTLIST is_followed StudentID ID #REQUIRED>

]>

With this algorithm we are now able to transform every BR conceptual schema into a
DTD. This DTD is then the frame in which the markup is declared to make XML
documents.
In our example of the academic domain we could now make instances of XML pages
with information following the conceptual schema of the academic domain.

<?xml version="1.0"?>
<!DOCTYPE Academic_Domain SYSTEM “Academic.dtd”>

<Member MemberID=”Member Janssens B.”>
<Professor ProfessorID=”Janssens B.”>
<teaches CourseID=“Object Oriented Programming”>
<teaches CourseID=“Software engineering” >
</Professor>

33

</Member>
<Member MemberID=”Member Liesbeth Vlaeminck”>
<Student StudentID=”Liesbeth Vlaeminck”>
<Follows CourseID=“Object Oriented Programming”>
<Follows CourseID“Software engineering” >
</Student>
</Member>
<Member MemberID=”Member Bert Lefever”>
<Student StudentID=”Bert Lefever”>
<follows CourseID“Object Oriented Programming”>
</Student>
</Member>
<Course CourseID=”Object oriented programming”>
<is_teached_by ProfessorID=”Janssens B.”>
<is_followed StudentID=”Liesbeth Vlaeminck”>
<is_followed StudentID=”Bert Lefever”>
</course>
<Course CourseID=”Software engineering”>
<is_teached_by ProfessorID=”Janssens B.”>
<is_followed StudentID=”Liesbeth Vlaeminck”>
</course>

5.2. Transformation of the Meta Conceptual Schema of a Website into a
DTD

We can now use the rules of the algorithm of section 5.1 to create the conceptual
schema DTD of a website. First we give an example of the different applications of
rules.

<!ELEMENT ConceptType ((ObjectType | RelationType),
with_overview_on* , overviewed_on*)>

ConceptType is an OT and therefore declared as an element in the DTD. In the
conceptual schema we see that ObjectType and RelationType are sub-entities of
ConceptType. This is covered by the second rule in our algorithm and is represented
by the two subsidiary elements in the content model of ConceptType. “|” indicates
that it is either an ObjectType or a RelationType but never both.

<!ATTLIST ConceptType ConceptTypeID ID #REQUIRED >

In the attribute declaration of the element ConceptType is the definition of the ID
attribute ConceptTypeID. This attribute will be used to make references in the roles
played by other elements on this element (OT in the conceptual schema).

34

The roles played by the ConceptType are also present in the content model of the
element: with_overview_on and overviewed_on. The use of an asterix * reflect the
non mandatory and not unique constraints for these roles.

The declaration of the role elements is depict here below.

<!ELEMENT with_overview_on EMPTY>
<!ATTLIST with_overview_on PageID IDREF #REQUIRED>
<!ELEMENT overviewed_on EMPTY>
<!ATTLIST overviewed_on PageProtoTypeID IDREF #REQUIRED>

Because the reference of the roles is towards a NOLOT (the role is played on an
NOLOT) it is declared as an EMPTY element with an ID attribute.

The complete DTD:

<?xml version="1.0"?>

<!ELEMENT Website (ConceptType | Concept | Page | PageProtoType |
Role | Link | LinkProtoType)*>
<!ATTLIST Website WebsiteID ID #REQUIRED >

 <!ELEMENT ConceptType ((ObjectType | RelationType),
with_overview_on* , overviewed_on*)>

 <!ATTLIST ConceptType ConceptTypeID ID #REQUIRED >
<!ELEMENT with_overview_on EMPTY>
<!ATTLIST with_overview_on PageID IDREF #REQUIRED>
<!ELEMENT overviewed_on EMPTY>
<!ATTLIST overviewed_on PageProtoTypeID IDREF #REQUIRED>

<!ELEMENT ObjectType ((is_super | is_sub)* ,with*) >
<!ATTLIST ObjectType ObjectTypeID ID #REQUIRED >

<!ELEMENT is_super EMPTY>
<!ATTLIST is_super ObjectTypeID IDREF #REQUIRED>
<!ELEMENT is_sub EMPTY>
<!ATTLIST is_sub ObjectTypeID IDREF #REQUIRED>
<!ELEMENT with EMPTY>
<!ATTLIST with RoleTypeID IDREF #REQUIRED>

<!ELEMENT RelationType (has+)>
<!ATTLIST RelationType RelationTypeID ID #REQUIRED >

<!ELEMENT has EMPTY>
<!ATTLIST has RoleID IDREF #REQUIRED>

35

 <!ELEMENT Role (played_by , in)>
 <!ATTLIST Role RoleID ID #REQUIRED >

<!ELEMENT played_by EMPTY>
<!ATTLIST played_by ObjectTypeID IDREF #REQUIRED>
<!ELEMENT in EMPTY>
<!ATTLIST in RelationTypeID IDREF #REQUIRED>

<!ELEMENT ObjectInstance (of_objecttype?) >
<!ATTLIST ObjectInstance ObjectInstanceID ID #REQUIRED >
<!ELEMENT RelationInstance (of_relationtype) >
<!ATTLIST RelationInstance RelationInstanceID ID #REQUIRED >

<!ELEMENT of_objecttype EMPTY>
<!ATTLIST of_objecttype ObjectTypeID IDREF #REQUIRED>
<!ELEMENT of_relationtype EMPTY>
<!ATTLIST of_relationtype RelationTypeID IDREF #REQUIRED>

 <!ELEMENT Concept ((Object | Relation),is_on_page?)>
 <!ATTLIST Concept ConceptID ID #REQUIRED >

<!ELEMENT is_on_page EMPTY>
<!ATTLIST is_on_page PageID IDREF #REQUIRED>

<!ELEMENT Object ((StructuredObject? | ElementObject?) ,
ObjectInstance? , has_name? , has_description?) >

<!ATTLIST Object ObjectID ID #REQUIRED >
<!ELEMENT has_description (#PCDATA)>
<!ELEMENT has_name (#PCDATA)>

<!ELEMENT StructuredObject (is_composed_of*)>
<!ATTLIST StructuredObject StructuredObjectID ID #REQUIRED >

<!ELEMENT is_composed_of EMPTY>
<!ATTLIST is_composed_of ObjectID IDREF #REQUIRED>

<!ELEMENT ElementObject (Text | Graphics | ObjectInstance)>
<!ATTLIST ElementObject ELementObjectID ID #REQUIRED >

<!ELEMENT Text (#PCDATA)>
<!ELEMENT Grafics (#PCDATA)>

<!ELEMENT Relation (RelationInstance)>
 <!ATTLIST Relation RelationID ID #REQUIRED >

 <!ELEMENT Page (PageInstance?, contains* , overview_page_of* ,
is_source_for* , is_target_for* , is_source_for_proto*,
is_target_for_proto*) >

 <!ATTLIST Page PageID ID #REQUIRED >
<!ELEMENT contains EMPTY>
<!ATTLIST contains ConceptID IDREF #REQUIRED>
<!ELEMENT overview_page_of EMPTY>
<!ATTLIST overview_page_of ConceptTypeID IDREF #REQUIRED>
<!ELEMENT is_source_for EMPTY>
<!ATTLIST is_source_for LinkID IDREF #REQUIRED>
<!ELEMENT is_target_for EMPTY>
<!ATTLIST is_target_for LinkID IDREF #REQUIRED>
<!ELEMENT is_source_for_proto EMPTY>

36

<!ATTLIST is_source_for_proto LinkProtoTypeID IDREF
#REQUIRED>

<!ELEMENT is_target_for_proto EMPTY>
<!ATTLIST is_target_for_proto LinkProtoTypeID IDREF

#REQUIRED>

<!ELEMENT PageInstance (has_page_prototype)>
<!ATTLIST PageInstance PageInstanceID ID #REQUIRED >

<!ELEMENT has_page_prototype EMPTY>
<!ATTLIST has_page_prototype PageProtoTypeID IDREF

#REQUIRED>

 <!ELEMENT PageProtoType (for_concept* , is_source_proto_for* ,
is_target_proto_for*)>

 <!ATTLIST PageProtoType PageProtoTypeID ID #REQUIRED>
<!ELEMENT for_concept EMPTY>
<!ATTLIST for_concept ConceptTypeID IDREF #REQUIRED>
<!ELEMENT is_source_proto_for EMPTY>
<!ATTLIST is_source_proto_for LinkProtoTypeID IDREF

#REQUIRED>
<!ELEMENT is_target_proto_for EMPTY>
<!ATTLIST is_target_proto_for LinkProtoTypeID IDREF

#REQUIRED>

 <!ELEMENT Link (LinkInstance?, from, to)>
 <!ATTLIST Link LinkID ID #REQUIRED >

<!ELEMENT from EMPTY>
<!ATTLIST from PageID IDREF #REQUIRED>
<!ELEMENT to EMPTY>
<!ATTLIST to PageID IDREF #REQUIRED>

<!ELEMENT LinkInstance (has_link_prototype)>
<!ATTLIST LinkInstance LinkInstanceID ID #REQUIRED>

<!ELEMENT has_link_prototype EMPTY>
<!ATTLIST has_link_prototype LinkProtoTypeID IDREF

#REQUIRED>

 <!ELEMENT LinkProtoType ((from_prototype | from_p) ,
(to_prototype | to_p))>

 <!ATTLIST LinkProtoType LinkProtoTypeID ID #REQUIRED >
<!ELEMENT from_prototype EMPTY>
<!ATTLIST from_prototype PageProtoTypeID IDREF

#REQUIRED>
<!ELEMENT to_prototype EMPTY>
<!ATTLIST to_prototype PageProtoTypeID IDREF #REQUIRED>
<!ELEMENT from_p EMPTY>
<!ATTLIST from_p PageID IDREF #REQUIRED>
<!ELEMENT to_p EMPTY>
<!ATTLIST to_p PageID IDREF #REQUIRED>

37

6. Case Study : Volvo IT Belgium, Y2K Status Information

6.1. Introduction

In this chapter we will model (using the BR-model formalism) the conceptual schema
of an Y2K website and the information it contains. We use as a concrete example the
website of Volvo Information Technology Belgium representing the Y2K status
information necessary to provide a good forum to deal with the questions of the
different customers. In Appendix A you can find some more general information
regarding this case (The situation sketch).
Next the conceptual schema will be transformed into an XML document using the
conceptual schema DTD developed in chapter 5.

6.2. Modeling the Conceptual Schema

As in the modeling of the meta conceptual schema of a website we will also divide the
information into three parts rendering the content of the Y2K website, the structure
and how these two are connected with each other.

6.2.1. Technical Customer Information Needs

Queries received from the customer vary through the range of all types of
infrastructure components. Information is needed in the areas of:

• Class; Servers and clients
• UNIX
• Mid-Range (AS400)
• Mainframe

38

• Network

There is the concern as to the status of the above-mentioned items from a customer
perspective. That means that the solution will also need to follow this approach.
Questions arise as to what is being done, whether the specific item has been cleared
for Y2K compliance and if not, when it will be. Today there are numerous sources for
such information, but from a customer point of view, they are fragmented and
platform based, making it hard for the customer to come to a complete overview of
what is applicable for him. There is no official point of contact for such information
and therefore no control over de messages that are being delivered, their reliability
and their form. Customers should be provided with such a forum by VITB and
notified of its existence once it is in production.

6.2.2. Kind of Information

6.2.2.1. Technical Information

The items presented below were identified as information needs from the side of the
customer and what should be presented for each of them. For each of the items, a
subdivision should be made in terms of Hardware, Operating System and Software.

• CLASS
o Server HW/OS/SW
o Client HW/OS/SW

• UNIX HW/OS/SW
• Mid-Range (AS400) HW/OS/SW
• Mainframe HW/OS/SW
• Network HW/OS/SW

For each of the items, the following information should be presented:
• Indication of progress, e.g. XX%complete
• Y2K status and dates, possibly using preformatted expressions:

o not started – specifying planned start date and planned completion date
o in progress – specifying start date and planned completion date
o completed – specifying start date and completion date

• Possibility to consult more detailed information, if available
• Contact person for gathering more extensive information. It should be kept in

mind that someone should be available at all times. If the contact person is
away for a certain period, this must, either be stated, or queries need to be
redirected elsewhere.

On a first level, the information should be presented in a clear way, easy to overlook
in one glance. On a second level, a report must be built as to the individual status of
all e.g. CLASS servers that bear reference to that specific customer, with status
information on their individual progress.

39

6.2.2.2. Meta-information

The presentation of the technical information should be properly introduced and
accompanied by a statement that the information is official, reliable and up-to-date
and binding. The advice is that the selected medium (see below) is presented as the
only official one from a certain point onwards. The customers need to be made aware
of this through this medium, and if needed, supported by another depending on the
characteristics of the primary one.
There should also be a section on General information leading to relevant information
and related links:

6.2.2.3. General Info

• What isY2K?
• What are the generic responsibilities of VITB towards its customers when it

comes to Y2K issues?
• What does the Rollover Plan look like?
• Information per platform (currently available info)
• …

6.2.2.4. Links

• Swedish Y2K site
• Aps2 conditions
• …

40

6.2.3. Conceptual schema of the content

Fig. 6.1 : Content schema Y2K website.

Name

Business

Customer

Platform

/has_name

/part_of

operates_on

/infrastructure_of

HW

OS

S W

hw_is_of /has_hw

os_is_of /has_os

sw_is_of /has_sw

Network

Serv er

Client

/hw_reached

/os_reached

/sw_reached

hw_has

os_has

sw_has

Progress

Status

/operates_on_cl

/operates_on_sv

/runs_on_cl

/runs_on_sv

Date

/is_started

/planned_started

/planned_completed

/is_completed

X

X

41

6.2.4. The Structure of the Website

We can divide the structure of the website into three pages.
• Start page
• Customer view
• Detailed view

6.2.2.1. Start Page

Start page

VITB Y2K Infrastructure Status
Th is page contain s the c urr ent sta tus of Y2 K complian ce of in frast ructu re
run and maintain ed by Volvo IT Belgium .

In o rder to an swer to the de lu ge of quest io ns
that have r eached VI TB over the f ir st ha lf or

the ye ar con cern in g the Y2 K c omplianc e of
infr astru ctur e, it has been decided to ma ke
this in form ation availab le to all our
cust omer s over t he intr anet.

Fr om t his point onward s, this will be the
single official m eans of comm unicat io ns
sur roun ding t his topic.

That is why VIT Belgium has also stated the
com mitmen t that the inf orm ation con tained
in th ese pag es ar e accur ate an d up -to- date
within th e mar gin of one wor king d ay.

Declar ation o f
Co mmitm ent

Volvo IT B elgium
A knowledges that the
infor mation contained

in these pages is
accur ate, correct and

up-to-date.
All status changing

event are entered no
later than one working
day after the status

changing event.

VITB Management

Busines s CompanyCars Volvo Car s Europ e Ind ustry

General
Informatio n

Y2K explained
V ITB r esponsibilities
Sear ch per platform

Links
A PS2 status info

Swedish Y 2K in fo

Entry by customer

VITB is commit ted
to providing
accurate and up to
date information at
all times

Page contents
• Information

grouped
by customer

• postulation for site

• single official
means of
communicat ion

• statement delaring
accuracy of info

• general
information

• links to related info

Fig. 6.2 : Start page.

This page is the central start page for every customer in search for some information
concerning the Y2K status of his used infrastructure. The benefit of this centralized
way of working is that each customer start from the same URL. The page contains
some general and meta information like the statement concerning the commitment
made by VITB regarding the statuses provided on this website. Also the links towards
the Swedish Y2K site and other links are presented on this start page. Furthermore,
each customer can find an entry (link) to his customer view where he can find
specified information regarding his infrastructure.

42

6.2.2.2. Customer View

Company page

Volvo Cars Europe Industry
T his page contains the cur ren t status of Y2K compliance of inf rastru cture
r un a nd ma in tained b y Volvo IT Belgium f or Volvo Cars Eur ope Ind ustry.

Com pone nt %p rogr ess st art e nd link t o deta il

Class Ser ve r HW 1 /3/99 1 /9/99
O S 1 /3/99 1 /9/99
SW 1 /3/99 1 /9/99

Class Client HW 1 /3/99 1 /9/99
O S 1 /3/99 1 /9/99
HW 1 /3/99 1 /9/99

UNIX HW 1 /3/99 1 /9/99
O S 1 /3/99 1 /9/99
SW 1 /3/99 1 /9/99

M id-Rang e (AS4 00) HW 1 /3/99 1 /9/99
O S 1 /3/99 1 /9/99
SW 1 /3/99 1 /9/99

M ainfr ame HW 1 /3/99 1 /9/99
O S 1 /3/99 1 /9/99
SW 1 /3/99 1 /9/99

Net wo rk HW 1 /3/99 1 /9/99
O S 1 /3/99 1 /9/99
SW 1 /3/99 1 /9/99

Bus iness C ompanyCars Volvo Cars Eur ope In dustry

Deta iled list of
sta tus for each e.g.
class server tha t is
re levant to the
respective company

Indica tion of degree
o f comp letion in
percen tages

Sta rt date and
(p lanned) end da te

+Link to each
responsible con tact
person

Fig. 6.3 : Customer view.

This page contains the specific information for a customer. The information is
brought together in a table where it is broken down into the different platforms used
by the customer. Per platform you can find an indication of the status of the Y2K
compliance, divided into operating system, hardware and software. Each platform has
a link towards the next page where some detailed information can be found
concerning that platform.

6.2.2.3. Detailed View

There is no picture here of the detailed view. In this view, the company can see the
status of all e.g. AS400 servers that are relevant to him with their respective status
info. This information should be available for all “components”, Class clients, UNIX,
Mid-Range, etc.

Links here are available in the table in the columns “full report”, usually leading to a
PDF file and “Contact”, providing the possibility of sending e-mails to an appointed
author or contact person where unanswered queries can be addressed.

43

6.2.5. Representation of the Structure

In this section we represent the structure of the Y2K website using the OTs and the
roles declared in the meta conceptual schema and more specific the structure schema
of a website represented in Fig. 4.2.
In table 6.1 we depict the OT Link and the OT Page related through the roles from
and to. We distinguish two Links located on the StartPage linking this page to two
other pages, SwedishY2KPage and Apps2Page.

Link From Page To Page

Swedish Y2K_link StartPage SwedishY2KPage

Apps2status_link StartPage Apps2Page

Table 6.1 : Structure elements of Y2K website.

On the other hand we have the OT LinkProtoType in relation with the OT Page or the
OT PageProtoType. Table 6.2 represents the two LinkProtoType’s attendant in the
website.

LinkProtoType From Page To Page From
ProtoTypePage

To
ProtoTypePage

CustomerLink StartPage CustomerPage

PlatformLink Customerpage DetailedPage

Table 6.2 : Structure elements of Y2K website

As indicated in the conceptual schema in Fig 4.2 by the exclusion constraint between
the roles from_prototype and from_p and the roles to_prototype and to_p a
LinkProtoType can either start from a Page or a ProtoTypePage, and go to a Page or
a ProtoTypePage. The mandatory constraint reflects that is has to be one of both each
time.

We can go more in detail by representing the different instance pages of the page
prototypes. E.g. we could list all the customer pages and the accompanying customer
links linking them to the start page. We will leave it hereby to keep it orderly.

44

6.2.6. The Connection between Content and Structure

We will now use the connection schema depict in Fig. 4.3 to describe how the content
of the website represented by the conceptual schema in Fig. 6.1, and more specific the
OTs present in this schema, are connected with the structure elements of the website
depicted in section 6.2.3.

Page Contains Concept
StartPage Commitment

Table 6.3 : Connection between Page and Concept.

Page Overview of ConceptType
StartPage Customer

Table 6.4 : Connection between Page and ConceptType.

PageProtoType For ConceptType
CustomerPage Customer
CustomerPage Platform
CustomerPage HW
CustomerPage OS
CustomerPage SW
CustomerPage Status
DetailedPage Client
DetailedPage Server
DetailedPage Network

Table 6.5 : Connection between PageProtoType and Concepttype

6.3. Transforming the Conceptual Schema into an XML Document

In previous section the content schema together with the structure schema and the
connection schema gives a good survey how the Y2K website is built up and were we
can find the different information. Also the relation between the different elements is
represented by the roles they play on each other.
In this part we will transform this information into an XML document by making use
of the Document type definition of section 5.1.2.

We will discuss the different elements in the document and how they are declared
using the DTD. In section 6.4 you can find a more complete version of the document.

We start with the element Customer which is an instance of ObjectType and more
general a ConceptType. (ObjectType is declared as a sub-entity of ConceptType in
the DTD).

45

As indicated in the algorithm described in section 5.1.1 we need to use different ID
values for every element within an XML document. This is the reason why we use a
different name for the ConceptTypeID and for the ObjectTypeID. We adapt the
ConceptType name by putting a “C” in front of the ObjectType name.

<ConceptType ConceptTypeID="C_Customer">
<ObjectType ObjectTypeID="Customer">

<with RoleTypeID="operates_on"/>
<with RoleTypeID="has_name"/>
<with RoleTypeID="part_of"/>

</ObjectType>
<with_overview_on PageID="StartPage"/>
<overviewed_on PageProtoTypeID="CustomerPage"/>

</ConceptType>

In the content model of the element ObjectType in the DTD we find the element
“with“, which is a reference towards a RoleTypeID and is declared to represent the
roles in which the object type is playing. Customer plays three different roles in three
relations with other OTs. This results in three child elements “with “ in the
ObjectType element.

In the content model of ConceptType there are two elements, with_overview_on and
overviewed_on , that indicate on which page an overview of the OT can be found and
on which page prototype the details of the OT are overviewed.

As an other example we can demonstrate the OT Business for which no roles are
given in the conceptual schema.

<ConceptType ConceptTypeID="C_Business">
<ObjectType ObjectTypeID="Business">
</ObjectType>

</ConceptType>

Next we can describe a relation declared also as a sub-element of ContentType in the
DTD.

Because only the roles have a name in the conceptual schema modeled in chapter 6.2.
we need to define a name convention to express the names for relations in the XML
document. As an example we take the relation between Customers and Platforms
consisted of the roles operates_on and infrastructure_of.
We construct the name of the relation by putting together the names of the OTs
playing a role in the relation. We put “C” in front of it when it is the ID value for the
Concept type and “R” to indicate that it is the ID value for the RelationType.
In our example this becomes C_Customer_Platform and R_Customer_Platform.

46

Furthermore we have one child element in the content model of RelationType: has is
the element which convey the reference to the roles out of which the relation is
composed. We use this element to reflect the two roles operates_on and
infrastructure_of.

<ConceptType ConceptTypeID="C_Customer_Platform">
 <RelationType RelationTypeID=" R_Customer_Platform">

<has RoleID="operates_on"/>
<has RoleID="infrastructure_of"/>

 </RelationType>
</ConceptType>

When there is more then one relation between the same OTs like between Status and
Date, we will use the name of the most significant role together with the OT playing
that role to construct the name of the relation. In this case it is obvious that we use the
OT Status and the roles it play on Date. E.g. C_Status_is_started,
C_Status_planned_started, C_Status_planned_completed, C_Status_is_completed.

Next is a Role element including two child elements: played_by is representing the ID
reference of the OT playing this role and in is the element that makes the link to the
relation type element of which the role is part of.

<Role RoleID="operates_on">
<played_by ObjectTypeID="Customer"/>
<in RelationTypeID="R_Customer_Platform"/>

</Role>

Until now we only discussed components representing type elements. If we look at
the conceptual schema in Fig 4.1 we see that this only represent the upper part of the
model. At the lower side the concept element is located and is split up in the object- or
relation-instances which can also be an instance of a certain type. These elements are
not reflected directly in the conceptual schema of the Y2K website but are so to say at
a lower level. For example as Customer objects we have Volvo trucks or Volvo Cars
and many more. It is a choice how detailed you want to go in representing the website
information into the XML page. At least the possibility is foreseen to do this. We will
give an example of such a concept element.

47

<Concept ConceptID="C_VolvoTrucks">
<Object ObjectID="O_VolvoTrucks">

<ObjectInstance ObjectInstanceID="VolvoTrucks">
<of_objecttype ObjectTypeID="Customer"/>

</ObjectInstance>
<has_name> VolvoTrucks </has_name>
<has_description> Volvo Trucks is the salescompany for

Volvo Trucks in Belgium.</has_description>
</Object>
<is_on_page PageID="P_VolvoTrucksPage"/>

</Concept>

Volvo Trucks is a concept, an object and an object instance of the object type
Customer.

The connection with the structure schema is already made by the element representing
the reference towards certain pages (is_on_page). Next we will demonstrate how
pages and links are represented in the XML document.

The StartPage is a Page and not an instance of a PagePrototype.

<Page PageID="StartPage">
<contains ConceptID="C_Commitment"/>
<overview_page_of ConceptTypeID="C_Customer"/>
<is_source_for LinkID="Swedish_Y2K_Link"/>
<is_source_for_proto LinkProtoTypeID="CustomerLink"/>

</Page>

The CustomerPage can be considered as a PagePrototype. As you can see, all the
ConceptTypes of which there is an overview on this page are reflected by the element
for_concept.

<PageProtoType PageProtoTypeID="CustomerPage">
<for_concept ConceptTypeID="C_Customer"/>
<for_concept ConceptTypeID="C_Platform"/>
<for_concept ConceptTypeID="C_HW"/>
<for_concept ConceptTypeID="C_SW"/>
<for_concept ConceptTypeID="C_SW"/>
<for_concept ConceptTypeID="C_Status"/>
<for_concept ConceptTypeID="C_Progress"/>
<is_source_proto_for LinkProtoTypeID="PlatformLink"/>

</PageProtoType>

48

We can also go in depth with the pages by defining instances of them. For example
the already mentioned Volvo Trucks page being an instance of the prototype page
CustomerPage.

<Page PageID="P_VolvoTrucksPage">
<PageInstance PageInstanceID="VolvoTrucksPage">
<has_page_prototype PageProtoTypeID="CustomerPage"/>
</PageInstance>
<is_source_for LinkID="L_VolvoTruck"/>

</Page>

We can even go more into detail describing this page if we use the other elements out
of the content model of Page.

Next we give an example of a LinkProtoType element as we can find them in the
structure schema.

<LinkProtoType LinkProtoTypeID="CustomerLink">
<from_p PageID="StartPage"/>
<to_prototype PageProtoTypeID="CustomerPage"/>

</LinkProtoType>

Finally we present the Volvo Truck link as an instance of this link prototype between
the StartPage and the VolvoTruck instance of the customerPage.

<Link LinkID="L_VolvoTruck">
<LinkInstance LinkInstanceID="VolvoTruck">
<has_link_prototype LinkProtoTypeID="CustomerLink"/>
</LinkInstance>
<from PageID="StartPage"/>
<to PageID="P_VolvoTrucksPage"/>

</Link>

49

6.4. XML Document of the Volvo IT Belgium Y2K Website

In this section we present the complete XML document of the Volvo IT Y2K website.
You will notice that we can go much more in detail representing the information in
the website. We only gave a example with Volvo Truck as an instance of a customer.
Nevertheless the possibility exist to record every instance of whatever concept exists
in the website. To preserve an overview we did not go deeper into it.

<?xml version="1.0"?>
<!DOCTYPE Website SYSTEM "website.dtd">

<Website WebsiteID="Y2Kwebsite">

<!-- ConceptType -->

<ConceptType ConceptTypeID="C_Customer">
<ObjectType ObjectTypeID="Customer">

<with RoleTypeID="operates_on"/>
<with RoleTypeID="has_name"/>
<with RoleTypeID="part_of"/>

</ObjectType>
<with_overview_on PageID="StartPage"/>
<overviewed_on PageProtoTypeID="CustomerPage"/>

</ConceptType>

<ConceptType ConceptTypeID="C_Name">
<ObjectType ObjectTypeID="Name">
</ObjectType>

</ConceptType>

<ConceptType ConceptTypeID="C_Business">
<ObjectType ObjectTypeID="Business">
</ObjectType>
<with_overview_on PageID="StartPage"/>

</ConceptType>

<ConceptType ConceptTypeID="C_Platform">
<ObjectType ObjectTypeID="Platform">

<with RoleTypeID="infrastructure_of"/>
<with RoleTypeID="has_hw"/>
<with RoleTypeID="has_os"/>
<with RoleTypeID="has_sw"/>

</ObjectType>
<with_overview_on PageID="StartPage"/>
<overviewed_on PageProtoTypeID="CustomerPage"/>

</ConceptType>

<ConceptType ConceptTypeID="C_HW">
<ObjectType ObjectTypeID="HW">

<with RoleTypeID="hw_reached"/>
<with RoleTypeID="hw_has"/>
<with RoleTypeID="hw_is_of"/>

</ObjectType>
<overviewed_on PageProtoTypeID="CustomerPage"/>

</ConceptType>

50

<ConceptType ConceptTypeID="C_SW">
<ObjectType ObjectTypeID="SW">

<with RoleTypeID="sw_reached"/>
<with RoleTypeID="sw_has"/>
<with RoleTypeID="sw_is_of"/>
<with RoleTypeID="runs_on_cl"/>
<with RoleTypeID="runs_on_sv"/>

</ObjectType>
<overviewed_on PageProtoTypeID="CustomerPage"/>

</ConceptType>

<ConceptType ConceptTypeID="C_OS">
<ObjectType ObjectTypeID="OS">

<with RoleTypeID="os_reached"/>
<with RoleTypeID="os_has"/>
<with RoleTypeID="os_is_of"/>
<with RoleTypeID="operates_on_cl"/>
<with RoleTypeID="operates_on_sv"/>

</ObjectType>
<overviewed_on PageProtoTypeID="CustomerPage"/>

</ConceptType>

<ConceptType ConceptTypeID="C_Network">
<ObjectType ObjectTypeID="Network">

<is_sub ObjectTypeID="HW"/>
</ObjectType>
<overviewed_on PageProtoTypeID="DetailedPage"/>

</ConceptType>

<ConceptType ConceptTypeID="C_Client">
<ObjectType ObjectTypeID="Client">

<is_sub ObjectTypeID="HW"/>
</ObjectType>
<overviewed_on PageProtoTypeID="DetailedPage"/>

</ConceptType>

<ConceptType ConceptTypeID="C_Server">
<ObjectType ObjectTypeID="Server">

<is_sub ObjectTypeID="HW"/>
</ObjectType>
<overviewed_on PageProtoTypeID="DetailedPage"/>

</ConceptType>

<ConceptType ConceptTypeID="C_Status">
<ObjectType ObjectTypeID="Status">

<with RoleTypeID="is_started"/>
<with RoleTypeID="planned_started"/>
<with RoleTypeID="planned_completed"/>
<with RoleTypeID="is_completed"/>

</ObjectType>
<overviewed_on PageProtoTypeID="CustomerPage"/>

</ConceptType>

<ConceptType ConceptTypeID="C_Date">
<ObjectType ObjectTypeID="Date">
</ObjectType>

</ConceptType>

<ConceptType ConceptTypeID="C_Progress">
<ObjectType ObjectTypeID="Progress">

51

</ObjectType>
</ConceptType>

<!-- RelationTypes -->

<ConceptType ConceptTypeID="C_Customer_Platform">
 <RelationType RelationTypeID=" R_Customer_Platform">

<has RoleID="operates_on"/>
<has RoleID="infrastructure_of"/>

 </RelationType>
</ConceptType>

<ConceptType ConceptTypeID="C_Customer_Name">
 <RelationType RelationTypeID=" R_Customer_Name">

<has RoleID="has_name"/>
 </RelationType>
</ConceptType>

<ConceptType ConceptTypeID="C_Customer_Business">
 <RelationType RelationTypeID=" R_Customer_Business">

<has RoleID="part_of"/>
 </RelationType>
</ConceptType>

<ConceptType ConceptTypeID="C_Platform_HW">
 <RelationType RelationTypeID=" R_Platform_HW">

<has RoleID="has_hw"/>
<has RoleID="hw_is_of"/>

 </RelationType>
</ConceptType>

<ConceptType ConceptTypeID="C_Platform_OS">
 <RelationType RelationTypeID=" R_Platform_OS">

<has RoleID="has_os"/>
<has RoleID="os_is_of"/>

 </RelationType>
</ConceptType>

<ConceptType ConceptTypeID="C_Platform_SW">
 <RelationType RelationTypeID=" R_Platform_SW">

<has RoleID="has_sw"/>
<has RoleID="sw_is_of"/>

 </RelationType>
</ConceptType>

<ConceptType ConceptTypeID="C_SW_Client">
 <RelationType RelationTypeID=" R_SW_Client">

<has RoleID="runs_on_cl"/>
 </RelationType>
</ConceptType>

<ConceptType ConceptTypeID="C_SW_Server">
 <RelationType RelationTypeID=" R_SW_Server">

<has RoleID="runs_on_sv"/>
 </RelationType>
</ConceptType>

<ConceptType ConceptTypeID="C_OS_Client">
 <RelationType RelationTypeID=" R_OS_Client">

<has RoleID="operates_on_cl"/>

52

 </RelationType>
</ConceptType>

<ConceptType ConceptTypeID="C_OS_Server">
 <RelationType RelationTypeID=" R_OS_Server">

<has RoleID="operates_on_sv"/>
 </RelationType>
</ConceptType>

<ConceptType ConceptTypeID="C_Status_is_started">
 <RelationType RelationTypeID=" R_Status_is_started">

<has RoleID="is_started"/>
 </RelationType>
</ConceptType>

<ConceptType ConceptTypeID="C_Status_is_completed">
 <RelationType RelationTypeID=" R_Status_is_completed">

<has RoleID="is_completed"/>
 </RelationType>
</ConceptType>

<ConceptType ConceptTypeID="C_Status_planned_started">
 <RelationType RelationTypeID=" R_Status_planned_started">

<has RoleID="planned_started"/>
 </RelationType>
</ConceptType>

<ConceptType ConceptTypeID="C_Status_planned_completed">
 <RelationType RelationTypeID=" R_Status_planned_completed">

<has RoleID="planned_completed"/>
 </RelationType>
</ConceptType>

<ConceptType ConceptTypeID="C_SW_Progress">
 <RelationType RelationTypeID=" R_SW_Progress">

<has RoleID="sw_reached"/>
 </RelationType>
</ConceptType>

<ConceptType ConceptTypeID="C_SW_Status">
 <RelationType RelationTypeID=" R_SW_Status">

<has RoleID="sw_has"/>
 </RelationType>
</ConceptType>

<ConceptType ConceptTypeID="C_OS_Progress">
 <RelationType RelationTypeID=" R_OS_Progress">

<has RoleID="os_reached"/>
 </RelationType>
</ConceptType>

<ConceptType ConceptTypeID="C_OS_Status">
 <RelationType RelationTypeID=" R_OS_Status">

<has RoleID="os_has"/>
 </RelationType>
</ConceptType>

<ConceptType ConceptTypeID="C_HW_Progress">
 <RelationType RelationTypeID=" R_HW_Progress">

<has RoleID="hw_reached"/>
 </RelationType>

53

</ConceptType>

<ConceptType ConceptTypeID="C_HW_Status">
 <RelationType RelationTypeID=" R_HW_Status">

<has RoleID="hw_has"/>
 </RelationType>
</ConceptType>

<!-- Roles -->

<Role RoleID="operates_on">
<played_by ObjectTypeID="Customer"/>
<in RelationTypeID="R_Customer_Platform"/>

</Role>

<Role RoleID="has_name">
<played_by ObjectTypeID="Customer"/>
<in RelationTypeID="R_Customer_Name"/>

</Role>

<Role RoleID="part_of">
<played_by ObjectTypeID="Customer"/>
<in RelationTypeID="R_Customer_Business"/>

</Role>

<Role RoleID="infrastructure_of">
<played_by ObjectTypeID="Platform"/>
<in RelationTypeID="R_Customer_Platform"/>

</Role>

<Role RoleID="has_hw">
<played_by ObjectTypeID="Platform"/>
<in RelationTypeID="R_Platform_HW"/>

</Role>

<Role RoleID="has_os">
<played_by ObjectTypeID="Platform"/>
<in RelationTypeID="R_Platform_OS"/>

</Role>

<Role RoleID="has_sw">
<played_by ObjectTypeID="Platform"/>
<in RelationTypeID="R_Platform_SW"/>

</Role>

<Role RoleID="hw_is_of">
<played_by ObjectTypeID="HW"/>
<in RelationTypeID="R_Platform_HW"/>

</Role>

<Role RoleID="os_is_of">
<played_by ObjectTypeID="OS"/>
<in RelationTypeID="R_Platform_OS"/>

</Role>

<Role RoleID="sw_is_of">
<played_by ObjectTypeID="SW"/>
<in RelationTypeID="R_Platform_SW"/>

</Role>

54

<Role RoleID="runs_on_cl">
<played_by ObjectTypeID="SW"/>
<in RelationTypeID="R_SW_Client"/>

</Role>

<Role RoleID="runs_on_sv">
<played_by ObjectTypeID="SW"/>
<in RelationTypeID="R_SW_Server"/>

</Role>

<Role RoleID="operates_on_sv">
<played_by ObjectTypeID="OS"/>
<in RelationTypeID="R_OS_Server"/>

</Role>

<Role RoleID="operates_on_cl">
<played_by ObjectTypeID="OS"/>
<in RelationTypeID="R_OS_Client"/>

</Role>

<Role RoleID="is_started">
<played_by ObjectTypeID="Status"/>
<in RelationTypeID="R_Status_is_started"/>

</Role>

<Role RoleID="is_completed">
<played_by ObjectTypeID="Status"/>
<in RelationTypeID="R_Status_is_completed"/>

</Role>

<Role RoleID="planned_started">
<played_by ObjectTypeID="Status"/>
<in RelationTypeID="R_Status_planned_started"/>

</Role>

<Role RoleID="planned_completed">
<played_by ObjectTypeID="Status"/>
<in RelationTypeID="R_Status_planned_completed"/>

</Role>

<Role RoleID="sw_reached">
<played_by ObjectTypeID="SW"/>
<in RelationTypeID="R_SW_Progress"/>

</Role>

<Role RoleID="sw_has">
<played_by ObjectTypeID="SW"/>
<in RelationTypeID="R_SW_Status"/>

</Role>

<Role RoleID="os_reached">
<played_by ObjectTypeID="OS"/>
<in RelationTypeID="R_OS_Progress"/>

</Role>

<Role RoleID="os_has">
<played_by ObjectTypeID="OS"/>
<in RelationTypeID="R_OS_Status"/>

</Role>

<Role RoleID="hw_reached">

55

<played_by ObjectTypeID="HW"/>
<in RelationTypeID="R_HW_Progress"/>

</Role>

<Role RoleID="hw_has">
<played_by ObjectTypeID="HW"/>
<in RelationTypeID="R_HW_Status"/>

</Role>

<!-- Pages -->

<Page PageID="StartPage">
<contains ConceptID="C_Commitment"/>
<overview_page_of ConceptTypeID="C_Customer"/>
<is_source_for LinkID="Swedish_Y2K_Link"/>
<is_source_for_proto LinkProtoTypeID="CustomerLink"/>

</Page>

<Page PageID="SwedishY2KPage">
<is_target_for LinkID="Swedish_Y2K_Link"/>

</Page>

<Page PageID="P_VolvoTrucksPage">
<PageInstance PageInstanceID="VolvoTrucksPage">
<has_page_prototype PageProtoTypeID="CustomerPage"/>
</PageInstance>
<is_source_for LinkID="L_VolvoTruck"/>

</Page>

<!-- PagesProtoType -->

<PageProtoType PageProtoTypeID="CustomerPage">
<for_concept ConceptTypeID="C_Customer"/>
<for_concept ConceptTypeID="C_Platform"/>
<for_concept ConceptTypeID="C_HW"/>
<for_concept ConceptTypeID="C_SW"/>
<for_concept ConceptTypeID="C_SW"/>
<for_concept ConceptTypeID="C_Status"/>
<for_concept ConceptTypeID="C_Progress"/>
<is_source_proto_for LinkProtoTypeID="PlatformLink"/>

</PageProtoType>

<PageProtoType PageProtoTypeID="DetailedPage">
<for_concept ConceptTypeID="C_Network"/>
<for_concept ConceptTypeID="C_Client"/>
<for_concept ConceptTypeID="C_Server"/>
<is_target_proto_for LinkProtoTypeID="PlatformLink"/>

</PageProtoType>

<!-- LinkProtoTypeID -->

<LinkProtoType LinkProtoTypeID="CustomerLink">
<from_p PageID="StartPage"/>
<to_prototype PageProtoTypeID="CustomerPage"/>

</LinkProtoType>

<LinkProtoType LinkProtoTypeID="PlatformLink">
<from_prototype PageProtoTypeID="CustomerPage"/>

56

<to_prototype PageProtoTypeID="DetailedPage"/>
</LinkProtoType>

<!-- Link -->

<Link LinkID="Swedish_Y2K_Link">
<from PageID="StartPage"/>
<to PageID="SwedishY2KPage"/>

</Link>

<Link LinkID="L_VolvoTruck">
<LinkInstance LinkInstanceID="VolvoTruck">
<has_link_prototype LinkProtoTypeID="CustomerLink"/>
</LinkInstance>
<from PageID="StartPage"/>
<to PageID="P_VolvoTrucksPage"/>

</Link>

<!-- Concept -->

<Concept ConceptID="C_Commitment">
<Object ObjectID="Commitment">
</Object>

</Concept>

<Concept ConceptID="C_VolvoTrucks">
<Object ObjectID="O_VolvoTrucks">

<ObjectInstance ObjectInstanceID="VolvoTrucks">
<of_objecttype ObjectTypeID="Customer"/>

</ObjectInstance>
<has_name> VolvoTrucks </has_name>
<has_description> Volvo Trucks is the salescompany for

Volvo Trucks in Belgium.</has_description>
</Object>
<is_on_page PageID="P_VolvoTrucksPage"/>

</Concept>

</Website>

57

7. Utilization of the XML Documents of Websites

In this chapter we will illustrate what can be done with the XML documents of a
website constructed in accordance with the DTD of chapter 5. We will show how the
information can be extracted from the XML document using the XML Document
Object Model (DOM) [BD 98]. In a small example this information will be reflected
and made useful to the user of the website of which the XML document represents the
conceptual schema. This can be used as a guide map to find and work with the
information available in the website. Most of the professional websites nowadays use
some sort of a sitemap which is no more then a list of all the subjects present in the
website, and a link from every subject to a certain page. We will demonstrate how the
XML document can be used to create some kind of a sitemap, but with a lot more
information to provide. The lost in hyperspace syndrome can be avoided in this way.
It should be clear that what we give here is only an illustration of the possibilities.
More sophisticated representations and application are possible, e.g. a graphical
representation of the conceptual schema of the website.

7.1. The XML Document Object Model

The XML Document Object Model (DOM) proposed by the World Wide Web
Consortium (W3C) is potentially one of the most important standards since the XML
specification. It gives implementers a common vocabulary to use in manipulating the
XML document. No matter which language is applied, exactly the same methods can
be used. To accomplish a task, exactly the same commands can be given whether the
application was written in C, Java, Python or Visual Basic. We will first look at the
concept of the DOM as applied to XML documents. The core model proposed by the
W3C consists of a suggested API (Application Program Interface) for various
different applications. The importance of this common API originates in the fact that
it allows programmers to use the same commands to accomplish the same task in any
collaborating application. This of course provided the different vendors agree to stick
to it. It almost looks as if with XML this can be reached because all the major vendors
have promised to adhere to the W3C DOM interface. Internet Explorer 5 has already
implemented the majority of it. We will use it as an application to test and run the
examples we will develop to explore the XML documents.

7.1.1. An XML Document as an Object Collection

When we consider an XML document we can immediately define some objects and
their properties. To illustrate some of these objects we can use the following example:

<Website WebsiteID="Y2Kwebsite">
<ConceptType ConceptTypeID="C_Customer">

<ObjectType ObjectTypeID="Customer">
<with RoleTypeID="operates_on"/>

58

<with RoleTypeID="has_name"/>
<with RoleTypeID="part_of"/>

</ObjectType>
<with_overview_on PageID="StartPage"/>
<overviewed_on PageProtoTypeID="CustomerPage"/>

</ConceptType>
</Website>

We distinguish in the first place the Document object itself which includes the whole
document. The Website object is an element object that has one child ConceptType.
In the element object ConceptType there are three children : ObjectType,
with_overview_on and overviewed_on. These objects are sibling element objects.
In XML there are some other types of objects such as comments, XML declarations
and DTDs.

Each of these objects can be described and portrayed by the use of some properties.
These properties should make it possible to build up a document only by using the
description of the properties of the different objects. This way a document can be
rebuilt over and over again when the information about the properties is available for
each object.

Extending our analogy to the nodes of XML documents, here are some of the
properties that are included:

• Type : This property gives information regarding the type of node, like
comment, element, text node, etc. We will see later that types are presented by
a number (1 = element node) and that they can be called for using a certain
method of the node interface.

• Value : A value is related to the nodes content.
• Name : The name of an element node is its tag name.
• Attributes : A list of attribute/value pairs of the element. Attributes could be

handled as child nodes, however the W3C chooses to treat them as properties
of the element node.

• Parent : The parent of the current node.
• Siblings : A knowledge of its position in a list of siblings, or a knowledge of

who its elder and younger siblings are.

The DOM presents documents as a hierarchy of node objects that implement
interfaces. This is completely in line with the Object Oriented way of working [TB
97]. In OO languages like C++ we also see the use of objects and the methods that
can be executed on them. The group of methods is called the interface of the object.

7.1.2. The DOM Interfaces

In this section we will discuss some interfaces and their methods to illustrate how
these tools can be used to manipulate a document.

59

We will start by looking at the Node interface. All the node types in the DOM inherit
a basic set of properties and methods from the node interface. We can make a
difference between methods providing attributes and factory methods.

Attribute methods:

These are methods like nodeName or nodeValue giving back the name or the value of
the node on which it is used. NodeName results into a string presenting the name of
the node. When a node is an element it corresponds with the tag name, when it is a
text node it will have the value #text.
Depending on the method the result can either be a string, a node, a nodelist, or even a
document or an unsigned short representing a type of node.
The use of these methods is of the same nature as the use of methods in other OO
program languages. The object is used with the method placed after it with a point to
connect them.

var x=myDoc.childNodes;
var z=x.length;

 for(var i=0; i < z ; i++)
{
document.write(i + " ___ " + x(i).nodeType+ "___ ");
document.write(x(i).nodeName+ "___ ");
document.write(x(i).nodeValue + "
 ");
}

Note that in the example, myDoc is the document object which we can manipulate
using the DOM. This example is depicted completely in Appendix B, example 1.
There you can see how the document object is created by loading the XML document
into this document object. We make use of the combination of HTML and JavaScript
to work with the DOM and to make it presentable for browsers. This way it can be
sent around the Internet. In Fig 7.1 the result of the HTML page used with the XML
document of the Y2K website of chapter 6 is reflected.

Fig. 7.1 : Result of using attribute methods in the XML DOM.

60

In the code the attribute method childNodes is used on the node mydoc. The
childNodes attribute returns a Nodelist object of all the children of any given node.
This is a list holding all the properties of the children of the node on which it is
executed. We can explore the list through iteration. The different children can be
accessed using an index.
In the iteration we demonstrate the different attribute methods that can be used on the
different children. In Fig. 7.1 we see the result of this iteration executed on the XML
document of the Y2K website (section 6.4). Only three nodes are reflected in the
result. These are the three children nodes of the document. In the second column we
see the number corresponding with the type of the node. Number 7 indicates a
processing instruction node which correspond with the node <?xml version=”1.0”?>,
number 10 indicates a document type node corresponding wit the node <!DOCTYPE
…>, while number 1 indicates an element node. The element node is the <website
…> node which is the top element of the document. The third and fourth column are
the resul of the methods nodeName and nodeValue.

Factory methods:

The node factory methods allow us to insert the nodes we have already created with
the document. In contrast to the attribute methods the factory methods allow us to
make changes to the document. E.g. insertBefore takes two parameters, the node
object to insert and the node object to insert it before. It returns the node being
inserted.
The document interface factory methods make it possible to create each and every
kind of node. E.g. createElement is the method to create an element, it takes a string
as parameter which represent the tag name of the element.

We find al sorts of methods in the different interfaces of the different objects that are
defined in the XML DOM. More information can be found in specialized literature
[BD 98] and on the Microsoft XML website.

7.2. Exploring the Conceptual Schema of a Websites with the XML DOM

We will use the explained theory about the XML DOM together with JavaScript [NN
96] to build some rather simple programs and include them into HTML pages. This
way they can be easily transported over the Internet. The examples will illustrate how
these techniques can be used to manipulate XML pages.

7.2.1. Counting the different ObjectTypes

In this example we use the XML DOM to explore an XML document in a very
superficial way. As a result of the function count() the number of different
ObjectTypes is displayed. Figure 7.2 depicts the result when the program is used on
the XML document of the Y2K website (chapter 6).

61

Fig. 7.2 : Result of counting the Objects of the Y2K website.

The complete listing of the example can be found in Appendix B, example 2. The
main use of the XML DOM is in the statement getElementByTagName executed on
the document node to search for specific elements.

var concepttypes = myDoc.getElementsByTagName("ConceptType");

The result is put into a variable and is a list of all the elements of which the name is
similar as the parameter in the method. The length of this list reflects the number of
elements it has found.

7.2.2. Reflecting the Elements of the Conceptual Schema

The example 3 until 5 are programs that return information regarding a specific
element of the conceptual schema of websites transformed into the XML document.

The ConceptType in the XML document can be explored by using example 3. In Fig.
7.3 the result of the first concept type is presented. By scrolling down, all the Concept
Types can be explored. In this image you can find the different elements out of which
a ConceptType is built up and the information they reveal. The first ConceptType is a
Customer playing three roles in the conceptual schema. It also reveals on what

62

prototype page a customers information is represented and on what page an overview
of all customers can be found.

Fig. 7.3 : Result of exploring the ConceptTypes of the Y2K website.

By using the other examples you can find the details concerning the Pages and the
Links, also reflecting the different elements and the information they contain. Fig. 6.3
presents the result of example 4 and the first page.

Fig. 7.4 : Result of exploring the Pages of the Y2K website.

63

7.2.3. Revealing the Relations of ObjectTypes within the Conceptual Schema.

In this last example 6 we use different elements and the references created by the
different IDattributes to rebuild and represent the relations of the different Object
Types. When the HTML page is selected, the user will be asked to put in an
ObjectType of which he wants to explore the roles it plays in the different relations.

As an example we use the program with the OT Customer. Figure 7.4 depicts a part
of the content conceptual schema of the Y2K website (Fig. 6.1) in which the
Customer is present, whereas Fig. 7.5 reflects how this is transformed using the code
of example 6.

Fig. 7.5 : Part of the conceptual schema of the Y2K website containing the Customer relations.

Fig. 7.6 : Presentation of the Customer relations in the Y2K website.

Name

Business

Customer
Platform
m

/has_name

/part_of

operates_on /infrastructure_of

64

This way of presenting the information is a good method of approach for the graphical
representation as in E.g. Fig. 6.1.

7.2. Next Step

In a next step it should be possible to extend the way we transform the conceptual
schema into a DTD. More information could be included in the different elements. In
this thesis we only worked with elements where most of the information is stored in
the attributes of the different elements. We did not include any data between the tags
of an element of the XML document.
One of the possibilities could be that together with every instance of a certain OT a
URL to a web page is given on which this instance is actually mentioned. If we
present the conceptual schema of the website as illustrated in this chapter, the XML
DOM can then be used to manipulate this reference and reflect it together with the
object it belongs to. This can be done with the help of the reference tag <a> in HTML
so that the instance of the object type is the representation of the link towards that
page. Also listings of all available instances could be included into an element as
normal text. This can be used to display extra information of an OT.
As already mentioned the given examples can be extended in a graphical way
presenting the conceptual schema of a website like displayed in the different figures
made with ObjectModeler (E.g. Fig. 6.1). We could extend this graphical
representation by including references to the different OTs present in the schema.
This way users of the schema can click on an element and immediately go to the page
where it is attendant or extra information like a list of all the instances of the OT can
be revealed.
Concerning the maintenance of the XML document and adapting it according to
changes to the website it stands for, we can make use of the factory methods as
discussed in section 7.1.2. After all the factory methods are able to make changes to
the XML documents and create new elements into it. It should be possible to create a
interface program that gives an administrator of a website the possibility to adapt the
XML document in a user friendly way without having to work in the XML document
itself.

65

Conclusion

Looking at the evolution of the Internet it will become more and more important to
introduce some structure and standardization. This to optimize the use of this pile of
data and make it more professional to exploit. We examined in this thesis the
possibilities XML holds to realize some of these objectives.
As a general conclusion of this thesis we can say that in our search for a common way
to bring more structured information concerning the structure and content of a
website, we proved that XML is a good tool to present conceptual schemas of
websites. Furthermore XML has the capacity to work with and manipulate the
information enclosed in the XML documents using the standard XML DOM.
We succeeded in creating an algorithm to transform every conceptual schema into a
DTD and used it to create a DTD of the conceptual schema of a website. This gave us
a standard frame to use with the XML DOM and made it possible to manipulate and
use the XML documents built up according this DTD. The communality between
these documents can be used to develop programs to manipulate the included
information. If we use this theory it should be possible to have for every website an
XML document containing the necessary information to reproduce the conceptual
schema of the particular website. The use of the XML DOM in combination with Java
Script makes it possible to present the information available in the XML document as
illustrated in Chapter 7. This information could be made accessible through a link
from the homepage of every website. It will provide the users and visitors of the
website an instrument to explore the data available inside the website.
We can conclude by saying that we demonstrated that XML is an opportunity to help
the exploitation of the Internet to become more professional.

66

Appendix A

Volvo IT Belgium, Y2K Status Information, situation sketch.

What is VITB

Volvo Information technology Belgium (VITB) is a regional center which is part of
the global organization Volvo Information Technology. The business activities are
mainly operations and infrastructures for companies within the Volvo organization
located in Belgium, the Netherlands, France, Italy and Spain. These companies which
are the customers of VITB are located in all sorts of business areas, for example
production plants as Volvo Cars Europe Industry in Gent, Marketing departments,
sales companies, warehouses, and action centers. These customers use the provided
infrastructure going from Mainframe through Mid range (AS400) and client server
applications.
Today some 100 people are working in this center and this amount is increasing every
quarter. The scope of the business is also growing towards application development
and support.
One of the main project at this moment is the Y2K compliance of all hardware and
software within the responsibility of VITB. The case treated in this sections deals with
the communication aspect within this project.

67

 Problem description

In order to answer to the deluge of queries from customers concerning the Y2K
compliance of servers run and maintained by Volvo IT Belgium, the need for a
centralized means of communication was identified. There is need for a forum that
unambiguously and easily responds to the information needs on the customer side.
The target groups are all Volvo customers of Volvo IT Belgium that rely on the
company to assure that the infrastructure they use, for which VITB bears the
responsibility, is Y2K compliant by the year-end.

Choice of medium

The choice of medium must be founded on a number of criteria that it must comply to
and have been identified as vital in this area:

- Accessible to all customers
- Accurate and punctual
- Low cost, easy to update
- Part of existing communication lines
- Accepted as official means of communication
- Binding nature and perceived credibility

The medium best answering to the criteria stipulated above is an electronic one. By
using the existing electronic communication lines inside Volvo, the recommendation
goes out to the creation of a centrally controlled website, formally stating the desired
information in a clear and easy way.
But even though this medium may hold the most intrinsically interesting
characteristics, it is still no guarantee for success. It must be utilized in the best
possible way and answer to some strict conditions as specified below:

- Accessibility for all customers
The site must be situated in an environment that can be reached by all
customers. But the successful offering of information is not just the presence
of availability, it is the knowledge of existence. It is of the utmost in
importance that the target audience is notified of the existence of the new site
and that the information there is considered to be the only reference point. If
the customer is not aware that the information is there, the medium does not
comply with the criteria of accessibility, as it remains cognitively hidden.

- Accurate en punctual
The one appointed for the maintenance of the site must take responsibility and
assure that the site always contains the latest information. Not only is it
important to have a site that is up-to-date at all times, responsibility and
accountability must also be specified. Upon publishing, the one responsible
should be fully aware of the information’s accuracy and its binding nature.
The advice is to ensure a time lapse of no more than one working day after a
status-changing event took place. The page should therefore always state the
date at which it was last updated.

- Low cost

68

The cost for spreading information and making it available over the intranet is
intrinsically low. To also control and minimize the number of man-hours spent
on maintaining the site, a routine should be created that is as simple as
possible but as controlled as necessary, considering the binding nature of the
information. The flow of information should be as flat as possible and the
number of intermediate steps as few as the organization permits.

- Make part of the existing communication lines
To save time and effort the message must be conveyed over the existing lines
of communication. The intranet is then the obvious choice in view of its
omnipresence among the customers.

- Accepted as official means of communications
The information must be presented as originating from the official organ that
has specified the commitment to ensure the Y2K compliance. In that sense, the
page must be incorporated into the existing VITB web environment.
The risk here however is, that if the rest of the environment does not possess
the characteristics of being accurate and punctual, this could negatively affect
the ambition of the information. In other words, if the environment does not
look or feel official enough and is not being maintained properly, the
credibility of this page could well be questioned from the part of the receiver.

- Binding nature and perceived credibility
This is foremost the weakest characteristic of an on-line environment. To what
extent can the information on a web page be declared to offer the same kind of
commitment as a statement on paper? Because this question will equally play
in the heads of the customers and because many of them will have experiences
with appalling out-of-date websites, it is of the utmost importance to clearly
address this subject and issue a statement about it. This should be a kind of
declaration of commitment stating that VITB acknowledges that the
information contained in the page is accurate at the publication date, and that
the company commits to having offered correct information.

69

Appendix B

Example 1

<HTML>
<HEAD>
<TITLE> Manipulating XML </TITLE>
</HEAD>
<XML ID="xmldata" ></XML>

<SCRIPT>
 xmldata.load("website.xml");
 var myDoc=xmldata;
 if (myDoc.parseError.reason !="")

{
alert(myDoc.parseError.reason)
}

 var x=myDoc.childNodes;
var z=x.length;

 for(var i=0; i < z ; i++)
{
document.write(i + " ___ " + x(i).nodeType+ "___ ");
document.write(x(i).nodeName+ "___ ");
document.write(x(i).nodeValue + "
 ");
}

document.write("<hr size=3>" + "
 ");

</SCRIPT>

</HTML>

70

Example 2

<HTML>
<HEAD>
<TITLE> Count of the different Objects of websites</TITLE>
</HEAD>
<body bgcolor="#BCD3E">
<XML ID="xmldoc" ></XML>
<h3> Counting the objects of the Y2K website</h3>
<SCRIPT>

function load() {
 xmldoc.load("website.xml");

 }
function contentcount() {
 load()
 var myDoc=xmldoc;
 if (myDoc.parseError.reason !="")

{
alert(myDoc.parseError.reason)
}

 var concepttypes = myDoc.getElementsByTagName("ConceptType");
 var concept = myDoc.getElementsByTagName("Concept");
 var page = myDoc.getElementsByTagName("Page");
 var role = myDoc.getElementsByTagName("Role");
 var pageprototype = myDoc.getElementsByTagName("PageProtoType");
 var link = myDoc.getElementsByTagName("Link");
 var linkprototype = myDoc.getElementsByTagName("Linkprototype");

 var number_concepttypes = concepttypes.length;
 var number_roles = role.length;
 var number_pages = page.length;
 var number_concept = concept.length;
 var number_pageprototypes = pageprototype.length;
 var number_links = link.length;
 var number_linkprototypes = linkprototype.length;

 document.write("<table border=1 width=\"100%\" bgcolor=\"#BCcccc\">
");

 document.write("<tr><td width=\"80\%\">Number of ConceptType : </td><td
width=\"20\%\"> " + number_concepttypes + "</td></tr>");

 document.write("<tr><td width=\"80\%\">Number of Concepts : </td><td
width=\"20\%\"> " + number_concept + "</td></tr>");

 document.write("<tr><td width=\"80\%\">Number of Pages : </td><td
width=\"20\%\"> " + number_pages + "</td></tr>");

 document.write("<tr><td width=\"80\%\">Number of Page Prototypes : </td><td
width=\"20\%\"> " + number_pageprototypes + "</td></tr>");

 document.write("<tr><td width=\"80\%\">Number of Links : </td><td
width=\"20\%\"> " + number_links + "</td></tr>");

 document.write("<tr><td width=\"80\%\">Number of Link Prototype : </td><td
width=\"20\%\"> " + number_linkprototypes + "</td></tr>");

 document.write("</table>");

}
contentcount()

</SCRIPT>

Back to menu</

</body>
</HTML>

71

Example 3

<HTML>
<HEAD>
<TITLE> Presenting the Conceptypes of Websites </TITLE>
</HEAD>
<body bgcolor="#BCD3E">
<XML ID="xmldoc" ></XML>
<h3> Presenting the concepttypes of the Y2K website</h3>
<SCRIPT>
function load() {
 xmldoc.load("website.xml");

 }

function concepttypes() {
 load()
 var myDoc=xmldoc;
 if (myDoc.parseError.reason !="")

{
alert(myDoc.parseError.reason)
}

 var concepttypes = myDoc.getElementsByTagName("ConceptType");
 var aantal_concepttypes = concepttypes.length;

 for (n=0; n<aantal_concepttypes ; n++){
document.write("<table border=1 width=\"100%\" bgcolor=\"#BCcccc\">
");

document.write("<tr><td width=\"60\%\">Concept Type : </td><td
width=\"40\%\"> " + concepttypes(n).attributes(0).nodeValue + "</td></tr>");

var objecttype = concepttypes(n).getElementsByTagName("ObjectType");
for (i=0 ; i<objecttype.length ;i++)

{
document.writeln ("<tr><td width=\"60\%\"> Object Type : </td>" + "<td

width=\"40\%\">" + objecttype(0).attributes(0).nodeValue + "</td></tr>");

var with_roles = objecttype(0).getElementsByTagName("with");
for (i=0 ; i<with_roles.length ;i++)

{
document.writeln("<tr><td width=\"60\%\" align=\"right\">Object

plays role:___ </td>" + "<td width=\"40\%\">"
+ with_roles(i).attributes(0).nodeValue +

"</td></tr>");
}

}
var relationtype = concepttypes(n).getElementsByTagName("RelationType");
for (i=0 ; i<relationtype.length ;i++)

{
document.writeln("<tr><td width=\"60\%\"> Relation Type : </td>" + "<td

width=\"40\%\">" + relationtype(0).attributes(0).nodeValue + "</td></tr>");

var has_roles = relationtype(0).getElementsByTagName("has");
for (i=0 ; i<has_roles.length ;i++)

{
document.writeln("<tr><td width=\"60\%\"

align=\"right\">Relation has role:___ </td>" + "<td width=\"40\%\">"
+ has_roles(i).attributes(0).nodeValue +

"</td></tr>");
}

}

var overviewed_on = concepttypes(n).getElementsByTagName("overviewed_on");
for (i=0 ; i<overviewed_on.length ;i++)

{

72

document.writeln("<tr><td width=\"60\%\"> Overviewed on prototype page
: </td>" + "<td width=\"40\%\">" + overviewed_on(i).attributes(0).nodeValue +
"</td></tr>");

}
var with_overview_on =

concepttypes(n).getElementsByTagName("with_overview_on");
for (i=0 ; i<with_overview_on.length ;i++)

{
document.writeln("<tr><td width=\"60\%\"> With overview on page :

</td>" + "<td width=\"40\%\">" + with_overview_on(i).attributes(0).nodeValue +
"</td></tr>");

}

}
 document.write("</table>");

}

concepttypes()
</SCRIPT>

Back to menu
</body>
</HTML>

73

Example 4

<HTML>
<HEAD>
<TITLE> Presenting the Pages of Websites </TITLE>
</HEAD>
<body bgcolor="#BCD3E">
<XML ID="xmldoc" ></XML>
<h3> Presenting the pages of the Y2K website</h3>
<SCRIPT>

function load() {
 xmldoc.load("website.xml");

 }

function pages() {
 load()
 var myDoc=xmldoc;
 if (myDoc.parseError.reason !="")

{
alert(myDoc.parseError.reason)
}

 var pages = myDoc.getElementsByTagName("Page");
 var aantal_pages = pages.length;

 for (n=0; n<aantal_pages ; n++){
document.write("<table border=1 width=\"100%\" bgcolor=\"#BCcccc\">
");

document.write("<tr><td width=\"60\%\">Page : </td><td
width=\"40\%\"> " + pages(n).attributes(0).nodeValue + "</td></tr>");

var pageinstance = pages(n).getElementsByTagName("PageInstance");
for (i=0 ; i<pageinstance.length ;i++)

{
document.writeln("<tr><td width=\"60\%\"> PageInstance : </td>" + "<td

width=\"40\%\">" + pageinstance(0).attributes(0).nodeValue + "</td></tr>");

var has_page_prototype =
pageinstance(0).getElementsByTagName("has_page_prototype");

for (i=0 ; i<has_page_prototype.length ;i++)
{
document.writeln("<tr><td width=\"60\%\" align=\"right\">Page

has page prototype:__ </td>" + "<td width=\"40\%\">"
+

has_page_prototype(0).attributes(0).nodeValue + "</td></tr>");
}

}

var contains = pages(n).getElementsByTagName("contains");
for (i=0 ; i< contains.length ;i++)

{
document.writeln("<tr><td width=\"60\%\"> this page contains the

concept : </td>" + "<td width=\"40\%\">"
 +

contains(i).attributes(0).nodeValue + "</td></tr>");
}

var overview_page_of = pages(n).getElementsByTagName("overview_page_of");
for (i=0 ; i<overview_page_of.length ;i++)

{
document.writeln("<tr><td width=\"60\%\"> This page provide an overview

for : </td>" + "<td width=\"40\%\">" + overview_page_of(0).attributes(0).nodeValue +
"</td></tr>");

}

var is_source_for = pages(n).getElementsByTagName("is_source_for");
for (i=0 ; i<is_source_for.length ;i++)

{

74

document.writeln("<tr><td width=\"60\%\"> This page is the source for
link : </td>" + "<td width=\"40\%\">" + is_source_for(0).attributes(0).nodeValue +
"</td></tr>");

}

var is_target_for = pages(n).getElementsByTagName("is_target_for");
for (i=0 ; i<is_target_for.length ;i++)

{
document.writeln("<tr><td width=\"60\%\"> This page is the target for

link : </td>" + "<td width=\"40\%\">" + is_target_for(0).attributes(0).nodeValue +
"</td></tr>");

}

var is_source_for_proto = pages(n).getElementsByTagName("is_source_for_proto");
for (i=0 ; i<is_source_for_proto.length ;i++)

{
document.writeln("<tr><td width=\"60\%\"> This page is the source for

link prototype : </td>" + "<td width=\"40\%\">" +
is_source_for_proto(0).attributes(0).nodeValue + "</td></tr>");

}

var is_target_for_proto = pages(n).getElementsByTagName("is_target_for_proto");
for (i=0 ; i<is_target_for_proto.length ;i++)

{
document.writeln("<tr><td width=\"60\%\"> This page is the target for

link prototype : </td>" + "<td width=\"40\%\">" +
is_target_for_proto(0).attributes(0).nodeValue + "</td></tr>");

}

}
 document.write("</table>");

}

pages()
</SCRIPT>

Back to menu
</body>
</HTML>

75

Example 5

<HTML>
<HEAD>
<TITLE> Presenting the Links of Websites </TITLE>
</HEAD>
<body bgcolor="#BCD3E">
<XML ID="xmldoc" ></XML>
<h3> Presenting the Links of the Y2K website</h3>
<SCRIPT>

function load() {
 xmldoc.load("website.xml");

 }

function Links() {
 load()
 var myDoc=xmldoc;
 if (myDoc.parseError.reason !="")

{
alert(myDoc.parseError.reason)
}

 var a="Link"
 var links = myDoc.getElementsByTagName(a);
 var aantal_links = links.length;

 for (n=0; n<aantal_links ; n++){
document.write("<table border=1 width=\"100%\" bgcolor=\"#BCcccc\">
");

document.write("<tr><td width=\"60\%\">Link : </td><td
width=\"40\%\"> " + links(n).attributes(0).nodeValue + "</td></tr>");

var linkinstance = links(n).getElementsByTagName("LinkInstance");
for (i=0 ; i<linkinstance.length ;i++)

{
document.writeln("<tr><td width=\"60\%\"> LinkInstance : </td>" + "<td

width=\"40\%\">" + linkinstance(0).attributes(0).nodeValue + "</td></tr>");

var has_link_prototype =
linkinstance(0).getElementsByTagName("has_link_prototype");

for (i=0 ; i<has_link_prototype.length ;i++)
{
document.writeln("<tr><td width=\"60\%\" align=\"right\">Link

has link prototype:__ </td>" + "<td width=\"40\%\">"
+

has_link_prototype(0).attributes(0).nodeValue + "</td></tr>");
}

}

var from = links(n).getElementsByTagName("from");
for (i=0 ; i< from.length ;i++)

{
document.writeln("<tr><td width=\"60\%\" >Link starts from page :

</td>" + "<td width=\"40\%\">"
 +

from(0).attributes(0).nodeValue + "</td></tr>");
}

var to = links(n).getElementsByTagName("to");
for (i=0 ; i<to.length ;i++)

{
document.writeln("<tr><td width=\"60\%\"> Link goes to page : </td>" +

"<td width=\"40\%\">"
 +

to(0).attributes(0).nodeValue + "</td></tr>");
}

}
 document.write("</table>");

}

76

Links()
</SCRIPT>

Back to menu
</body>

</HTML>

77

Example 6

<HTML>
<HEAD>
<TITLE> Presenting the relations in Websites </TITLE>
</HEAD>
<body bgcolor="#BCD3E">
<XML ID="xmldoc" ></XML>
<h3> Presenting the relation of the Y2K website</h3>

<SCRIPT>
function load() {
 xmldoc.load("website.xml");

 }

function relationtype(relation) {
 load()
 var myDoc=xmldoc;
 if (myDoc.parseError.reason !="")

{
alert(myDoc.parseError.reason)
}

 var relationtypes = myDoc.getElementsByTagName("RelationType");

 document.write("<table border=1 width=\"100%\" bgcolor=\"#BCcccc\">
");

for (l=0 ; l<relationtypes.length ;l++){
if (relationtypes(l).attributes(0).text == relation){

document.writeln("<tr><td width=\"60\%\"> Relation Type : </td>" + "<td
width=\"40\%\">"

 +
relationtypes(l).attributes(0).nodeValue + "</td></tr>");

var has_roles = relationtypes(l).getElementsByTagName("has");
var roles = myDoc.getElementsByTagName("Role");

for (m=0 ; m<has_roles.length ;m++){
for (n=0 ; n<roles.length ;n++){
if (has_roles(m).attributes(0).nodeValue ==

roles(n).attributes(0).nodeValue){

var role_ = roles(n).attributes(0).nodeValue;
var played_by = roles(n).getElementsByTagName("played_by");
for (o=0 ; o<played_by.length ;o++)
{

document.writeln ("<tr><td width=\"60\%\" > Object
</td>" +

"<td width=\"40\%\">" +
played_by(0).attributes(0).nodeValue + "</td></tr>");

}

document.writeln ("<tr><td width=\"60\%\" align=\"right\" >
Object plays role : </td>" +

"<td width=\"40\%\">" + role_ +
"</td></tr>");

}
}}
}}

 document.write("</table>");

}

78

function objecttype() {
 load()
 var myDoc=xmldoc;
 if (myDoc.parseError.reason !="")

{
alert(myDoc.parseError.reason)
}
var object = prompt ("Of what Object do you want to see the relations?");
var objecttypes = myDoc.getElementsByTagName("ObjectType");

 document.write("<table border=1 width=\"100%\" bgcolor=\"#BCcccc\">
");

for (i=0 ; i<objecttypes.length ;i++){
if (objecttypes(i).attributes(0).text == object){

document.writeln("<tr><td width=\"60\%\"> ObjectType : </td>" + "<td
width=\"40\%\">"

 +
objecttypes(i).attributes(0).nodeValue + "</td></tr>");

document.write("</table>");

var has_roles = objecttypes(i).getElementsByTagName("with");
var roles = myDoc.getElementsByTagName("Role");

for (j=0 ; j<has_roles.length ;j++){
for (k=0 ; k<roles.length ;k++){
if (has_roles(j).attributes(0).nodeValue ==

roles(k).attributes(0).nodeValue)
{
var relation = roles(k).getElementsByTagName("in");
var relation_ = relation(0).attributes(0).nodeValue;
relationtype(relation_);

}
 }
 }

}}}
objecttype()

</SCRIPT>

Back to menu
</body>
</HTML>

79

References

[BD 98] Fank Boumphrey, Olivia Direnzo, …
Programmer to Programmer XML Applications
Wrox Press Ltd. 1998 ®

[DM 96] Lois M. L. Delcambre, David Maier, Radhika Reddy, Lougie Anderson
Structured Maps: modeling explicit semantics over a universe of information
Digital Libraries © Springer-verslag 1997

[GP 98] Charles F.Goldfarb, Paul Prescod
The XML Handbook
© 1998 Prentice Hall PTR.

[HA 95] Terry Halpin
Conceptual Schema & Relational Database Design (Second Edition)
© 1995 Prentice Hall Australia Pty Ltd

[NN 96] Netscape Navigator (version4.0)
JavaScript Guide
©Netscape Communications Corporation 1996

[TB 97] Timothy Budd
An introduction to Object-Oriented Programming (Second Edition)
© 1997 Addison-Wesley Longman,Inc.

[WK 96] Jos Warmer & Anneke Kleppe
Praktisch OMT
© 1996 Addison-Wesley Nederland BV.

http://w3c.org
http://msdn.microsoft.com/xml/
http://www.xml.com/

http://lislin.gws.uky.edu/Sitemap/Sitemap.html

http://w3c.org
http://msdn.microsoft.com/xml/
http://www.xml.com/
http://lislin.gws.uky.edu/Sitemap/Sitemap.html

