: { Vrije Universiteit Brussel

FACULTY OF SCIENCE AND BIO-ENGINEERING SCIENCES

DEPARTMENT OF COMPUTER SCIENCE

A Simulator for the Scenario Models
Developed with ATTAC-L

Master thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science in de Toegepaste Informatica

Dennis Geerts

Promoter: Prof. Dr. Olga De Troyer
Advisor: Frederik Van Broeckhoven

Academic year 2014-2015

: { Vrije Universiteit Brussel

FACULTEIT WETENSCHAPPEN EN BIO-INGENIEURSWETENSCHAPPEN

DEPARTEMENT COMPUTERWETENSCHAPPEN

A Simulator for the Scenario Models
Developed with ATTAC-L

Masterproef ingediend in gedeeltelijke vervulling van de eisen voor het behalen van de graad
Master of Science in de Toegepaste Informatica

Dennis Geerts

Promotor: Prof. Dr. Olga De Troyer
Begeleider: Frederik Van Broeckhoven

Academiejaar 2014-2015

Abstract

Games have existed throughout the years in different forms, ranging from
card games and board games to digital games, each having various subgenres
and specific markets. Digital gaming is nowadays one of the biggest markets
in the world. It has mostly been used in the context of entertainment. How-
ever, games induce effects that can also be useful for other purposes, such as
training and learning. A person’s concentration level is much higher when he
is performing something he enjoys, like a game. Furthermore, video games
can be so immersive that the player becomes unaware of its surroundings in
real life. Therefore, there is an increasing interest in so-called serious games.
The goal of serious games is to learn while playing. Failure in a virtual world
does not have the same consequences as it would in real life. On top of that,
even failure is a way to learn. However, the creation of digital games is time
consuming and expensive. Therefore, in order to allow for the development of
more serious games, tools that support and shorten this development process
are needed. This thesis is a contribution to this goal.

The subject of the thesis is a simulator for the semi-automatic replay and
verification of virtual scenario models, created with the ATTAC-L language
specification. ATTAC-L is a Domain Specific Modeling Language (DSML)
developed in the context of the Friendly ATTAC project, aiming to allow
non-technical stakeholders to be involved in the modeling of scenarios for
serious games. Virtual scenarios are modeled using the natural language
based syntax of ATTAC-L and exported in a JSON format. The simulator
we created takes this JSON as input and simulates the scenario in a 3D envi-
ronment. A limited number of 3D environments are possible. Inconsistencies
in the scenarios are detected and reported. The user can stepwise go through
the scenario and explore different branches.

Keywords: Friendly ATTAC, ATTAC-L, games, serious games, Unity.

ii

Samenvatting (in Dutch)

Spellen hebben bestaan door de jaren heen in verschillende vormen, variérend
van kaartspellen tot bordspellen tot digitale spellen, met elk verschillende
subgenres en specifieke markten. Digitaal spelen is tegenwoordig een van de
grootste markten in de wereld. Het is meestal gebruikt in de context van
amusement. Echter veroorzaken games effecten die van toepassingen kunnen
zijn voor andere doeleinden, zoals opleiding en leren. Het concentratieniveau
is veel hoger als een persoon iets doet waarvan hij geniet, zoals een spel.
Bovendien, video games kunnen zo meeslepend zijn dat de speler zich onbe-
wust wordt van zijn omgeving in het echte leven. Daarom is er een stijgende
interesse in zogenoemde serious games. Het doel van serious games is om te
leren tijdens het spelen. Falen in een virtuele wereld heeft niet dezelfde gevol-
gen dan falen in het echte leven. Daarbovenop, zelfs falen is een manier om
te leren. Echter vergt het creéren van digitale spellen tijd en geld. Daarom
zijn er middelen nodig die helpen met het ontwikkelen en verkorten van de
ontwikkelings processen van serious games. Deze thesis is een contributie
naar dit doel.

Het onderwerp van de thesis is een simulator voor de semi-automatische
herhaling en verificatie van virtuele scenario modellen, gecreéerd met behulp
van de ATTAC-L taal specificatie. ATTAC-L is een Domain Specific Mod-
eling Language (DSML) ontwikkeld in de context van het Friendly ATTAC
project. Het mikt op het engageren van niet-technische belanghebbenden in
het modeleer proces van scenarios voor serious games. Virtuele scenarios wor-
den gemodelleerd met behulp van de natuurlijke taal gebaseerde syntax van
ATTAC-L en worden geéxporteerd naar een JSON formaat. De simulator die
we gemaakt hebben neemt deze JSON als invoer en simuleert het scenario
in een 3D omgeving. Een beperkt aantal 3D omgevingen zijn beschikbaar.
Inconsistenties in de scenarios worden gedetecteerd en gerapporteerd. De
gebruiker kan stapsgewijs door het scenario gaan en de verschillende takken
verkennen.

Kernwoorden: Friendly ATTAC, ATTAC-L, games, serious games, Unity.

iii

Declaration of Originality

I hereby declare that this thesis was entirely my own work and that any addi-
tional sources of information have been duly cited. I certify that, to the best
of my knowledge, my thesis does not infringe upon anyone’s copyright nor
violate any proprietary rights and that any ideas, techniques, quotations, or
any other material from the work of other people included in my thesis, pub-
lished or otherwise, are fully acknowledged in accordance with the standard
referencing practices. Furthermore, to the extent that I have included copy-
righted material, I certify that I have obtained a written permission from the
copyright owner(s) to include such material(s) in my thesis and have included
copies of such copyright clearances to my appendix.

I declare that this thesis has not been submitted for a higher degree to
any other University or Institution.

iv

Acknowledgements

I would like to express my gratitude towards my promoter Prof. Dr. Olga De
Troyer and advisor Frederik Van Broeckhoven for the support, help, patience,
and valuable feedback given.

I would also like to thank Roxana Radulescu for supporting me through-
out my studies, without her help and support I would not have made it up
to where I am today.

Lastly, I would like to show my appreciation towards my family and
friends. Their encouragements and support helped me to keep on going.

Thank you all.
Dennis Geerts

Contents

1 Introduction

1.1 Context e 1
1.2 Problem 2
1.3 Research Methodology 3
1.4 Structure of the Thesis 3
2 Related Work
2.1 Frameworks for Story Building 5t
2.1.1 Learning Programming 5)
2.1.2 Prototyping Tools 9
3 Background
3.1 Games . ..o 13
3.1.1 Game Genres 15
3.1.2 Narrative-based Games 16
3.1.3 Serious Games 17
3.1.4 Classification for Serious Games 19
3.2 Tools for Implementing Videogames and Simulations 21
3.21 Game Engines oL 22
3.3 ATTAC-L 27
3.3.1 Purpose 27
3.3.2 Language Description 28
3.3.3 Language Export 34
3.3.4 Example Storyo oo o 39
4 ATTAC-L Simulator
4.1 Aim and Context, 43
4.2 Requirements Lo 44
4.3 Features 46
4.3.1 Persons o 46
4.3.2 Ttems and Inventory 47

4.3.3 Locations 48

CONTENTS vi

4.3.4 Scenario Log oL 48
4.3.5 Conversation 49
4.3.6 Social Media. o000 49
4.3.7 Messaging o 50
4.3.8 Verb Support 51
4.4 User Interfaceo oo 73
441 Main Menu o oo 73
4.4.2 Simulation oo 75
4.4.3 Inventory 77
4.4.4 Conversation Overlay 78
4.4.5 Social Media Overlays 79
4.4.6 Messaging Overlays 82

5 Implementation

5.1 Conceptsin Unity 87
5. 1.1 Scene. 87
5.1.2 GameObjecto 89
5.1.3 Prefabso 90
51.4 Nav Mesh 91

5.2 System Architecture L. 92
5.21 Unity 93
5.2.2 Assets 94
5.2.3 Rendering oL 94
5.2.4 Seriptingo 94
5.2.5 Game Specific Subsystems 95

5.3 Design 95
5.3.1 Sequence Diagram 117

54 Configuration File L. 120

6 Conclusions

6.1 Summary 123

6.2 Limitations and Future Work 124
6.2.1 Limitation of the Simulation Overlays. 124

6.3 Limitations in Language Support 126
6.3.1 Verbs. 126
6.3.2 Characters Lo 126
6.3.3 Animations o 126
6.3.4 Ttems. 126

Bibliography

vii

CONTENTS

A Appendix A
B Appendix B
C Appendix C

D Appendix D

List of Figures

2.1 Programming Interface Environment of Scratch with Dance

Party Example oo 6
2.2 Programming Interface Environment of Greenfoot with Pool-

Game Exampleo oL 7
2.3 Programming Interface Environment of Alice 3. 8
2.4 Programming Interface Environment of e-Adventure 10
2.5 StoryTec and Story Editor framework, retrieved from http://

storytec.de/index.php?id=49\&L=1 on 11/04/2015. 11

3.1 Example of an interactive conversation in Mass Effect 3 (re-
trieved from http://www.giantbomb.com/profile/dalai/blog/
when-a-dialogue-tree-has-too-many-leaves/76768/).. . . 18

3.2 Scene from the serious game Pulse!! (retrieved from http://
www.paristechreview.com/2013/03/26/qui-peur-serious-games/). 19

3.3 The relationship diagram of Video, Serious Games and Serious

Gaming (Djaouti et al.,, 2011) 22
3.4 Reusability of Game Engines (Gregory, 2009a) 23
3.6 Bricks 29
3.7 Regular Game Move 29
3.8 Regular Game Move with Indirect Object 29
3.9 Unclear Game Move 30
3.10 Clear Game Move by using a Value Brick 30
3.11 Normal Game Move 30
3.12 Game Move in Passive Voice 30
3.13 Inline Definition, 30
3.14 Sequence Bricko 31
3.15 Two Connected Game Moves 31
3.16 Empty Choice Brick 31
3.17 Choice Brick with Three Choices 32
3.18 Empty Order Independence Brick 32
3.19 Order Independence Brick with Three Game Moves 33

3.20 Empty Concurrency Independence Brick 33

1x

LIST OF FIGURES

3.21
3.22
3.23
3.5

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36

Concurrency Brick with Three Game Moves 34
Simple Story Export Example 34
ATTAC-L Example Story 40
Game Engine Architecture (Gregory, 2009a) 41
Player and NPC Models 47
Available Items in Simulator 48
Scenario Log Panel o000 49
Game Move with “walks-to” L. 51
Game Move with “says to” 52
Game Move with “chats to” 53
Game Move with “sends to” (text) 55
Game Move with “sends to” (email) 56
Game Move with “gives to” L. 57
Game Move with “picks-up” 29
Game Move with “receives from” (text) 60
Game Move with “receives from” (email) 61
Game Move with “befriendson” 63
Game Move with “posts to” (Half-Life) 64
Game Move with “posts to” (Twitter) 65
Game Move with “replieson” 67
Game Move with “likes” oL 68
Game Move with “likeson” o0 69
Game Move with “tweets” 70
Game Move with “retweets” 71
Game Move with “follows on” 72
Main Menu e 74
Main Menu Interfaces. L. 75
Simulation Performing the “goes-to” Action (Park Scene) . . . 76
ATTAC-L Representation of the Game Move in Figure 4.24 . . 76
Inventory After Picking UpCD 78
ATTAC-L Representation of the Story in Figure 4.26 78
Conversation Using the “says to” Action 79
ATTAC-L Representation of the Game Move in Figure 4.28. . 79
Half-Life Overlay - Performing a “posts to” 80
ATTAC-L Representation of the Story with a Half-Life Post . 80
Half-Life Messenger Overlay 81
ATTAC-L Representation of the Story with Half-Life Messenger 81
Twitter Overlay - Performing a Tweet 82
ATTAC-L Representation of the Story with a Tweet 82

Text Messages Overlay 83

LIST OF FIGURES X

4.37
4.38
4.39
4.40
4.41

5.1
5.2
5.3
0.4
3.9
5.7
5.6
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21

5.22

5.23
0.24
5.25

D.1

ATTAC-L Representation of the Story with Text Messages . . 83

Compose Email Overlay 84
ATTAC-L Representation of the Story with Compose Email . 84
Email Inbox Overlay 85
ATTAC-L Representation of the Story with Email Inbox . . . 85
Isometric View of the Park Scene 88
Isometric View of the Office Scene 88
Isometric View of the House Scene 89
Nav Meshof Park 92
System Architecture 93
EscapeGUI Class 95
UML Class Diagram (Compact) 96
JSONParser Class 98
JSONMapping Namespace 99
Scenariolog Class 101
StoryFlowController Class 102
StoryFlowAction Class 104
Item, ItemDatabase and Inventory Class 106
PickingltemUp Class 108
CameraZoom Class 109
NotificationCreator Class 109
SmoothLookAt Class 110
AgentWalker Class 111
DialogManager Class 112
EmailTextMapping Namespace 113
FullTextMessage, FullEmailMessage and ComposeFEmailMes-

sage Class oL Lo 114
HalfLifeMapping Namespace, HalfLife and HalfLifeMessenger

Class o o o 115
Twitter Namespace and Twitter Class 116
Sequence Diagram Lo 119
Continue Button 121

UML Class Diagram 150

List of Tables

3.1 Game Engines Comparison

Listings

3.1
3.2
3.3
3.4
3.5
3.6
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
5.1
Al

Basic JSON Structure of a Simple Story 34
JSON Structure of a Choice, 36
Basic Structure of an Interpretation Object 37
Interpretation of a Game Move with a Value Brick. 38
Interpretation of a Passive Game Move 39
Interpretation of a Game Move with Inline Definition 39
JSON Representation of Figure 4.4 51
JSON Representation of Figure 4.5 52
JSON Representation of Figure 4.6 53
JSON Representation of Figure 4.7 55
JSON Representation of Figure 4.8 56
JSON Representation of Figure 4.9 58
JSON Representation of Figure 4.10. 59
JSON Representation of Figure 4.11. 60
JSON Representation of Figure 4.12. 61
JSON Representation of Figure 4.13 63
JSON Representation of Figure 4.14 64
JSON Representation of Figure 4.15. 65
JSON Representation of Figure 4.16 67
JSON Representation of Figure 4.17 68
JSON Representation of Figure 4.18 69
JSON Representation of Figure 4.19. 70
JSON Representation of Figure 4.20. 71
JSON Representation of Figure 4.21 72
JSON Representation of Figure 4.25. 76
Default Configuration File 120
JSON Representation of Figure 3.23 133

Introduction

In this first chapter, we start by describing the context of the thesis. Follow-
ing, we explain the objective created and present an outline of the rest of the
thesis.

1.1 Context

Games exist in different forms and in different genres. Digital gaming is
one of the biggest markets in the world. It has mainly been used for enter-
tainment purposes, however, new markets for games are expanding quickly.
Serious gaming is one of these fields that is receiving increased interest. A
serious game is a game where the main focus is not solely entertainment,
but also has a different goal, which is mainly situated in learning or training.
Serious games provide non-harmful environments where the player can train
or educate himself. Learning experience can be gained both by achieving
success or failure in these virtual scenarios. The advantage is that failure
does not imply the same consequences as it would in real life.

Friendly ATTAC (2012) (Adaptive Technological Tools Against Cyber-
bullying) is an interdisciplinary research project aimed towards developing
scenarios for serious games in the context of cyberbullying. The Friendly AT-
TAC project examines how serious games can serve a purpose in adjusting
the behavioral aspect amongst youngsters related to cyberbullying.

Problem 2

ATTAC-L is developed in the context of Friendly ATTAC and is a graph-
ical DSML (Domain Specific Modeling Language) that aims to ease the de-
sign of the serious game scenarios and allows involving non-technical people
in the design process. Graphical DSMLs have an advantage over textual
languages since the use of graphical notations makes it easier to grasp large
amounts of information more quickly and ease the communication with non-
technical people. Another benefit of the use of a DSML in the design process
is that the specifications can be made unambiguous and this allows to semi-
automatically generate the game based of the scenario. ATTAC-L uses a
natural language-based syntax. Statements in the language read like sen-
tences in natural language. A sentence is modeled by combining so-called
bricks; each of these bricks contains one (or more) words. Combined bricks
that form a sentence are called game moves. A typical game move consists
of a subject, verb, and a direct object (e.g., player walks to Carl). Next
to these bricks the language has three control structures: a choice, order
independence, and concurrency. In each of these structures we can place
game moves. A choice corresponds to an IF-statement or CASE-statement
in programming languages. Order independence allows its encapsulated game
moves to be executed in a random order. Concurrency allows all of its en-
capsulated game moves to be executed at the same time; this corresponds to
parallel threads in programming languages.

1.2 Problem

Although, the use of natural language allows non-technical people, e.g., ed-
ucators and scenario writers, to be involved in the design process, it is still
difficult for that kind of people to imagine how the scenario could look in
practice. In software engineering, fast prototyping is used to provide cus-
tomers with a first system. Such a prototype allows them to understand,
test, and verify the proposed system. This is what we also aim for: a fast
prototyping tool that gives the opportunity to the scenario modeler to pre-
view the different steps of a scenario before it is integrated in the actual game.
In other words, we are looking for a tool that simulates the scenarios, hence
the name of the tool: ATTAC-L Simulator. For this purpose we are faced
with the challenge of translating scenarios modeled in ATTAC-L into sce-
narios executed in a game environment that are appealing and informative.
As ATTAC-L only specifies scenarios, and not the game environment itself,
it will be necessary to assume a number of aspects of the game environment
in order to realize this simulation. This simulation includes: the simulation
of game moves and control structures; providing errors when inconsistencies

3 CHAPTER 1. Introduction

are detected in the scenarios.

1.3 Research Methodology

We use a research methodology based on Design Science (Peffers et al., 2007)
to achieve our research goal. This research methodology provides principles,
practices, and procedures to carry out research in disciplines oriented to the
creation of successful artifacts. The methodology consists of 6 steps: prob-
lem identification and motivation, definition of the objectives for a solution,
design and development, demonstration, evaluation, and communication.

Problem identification and motivation are explained in section 1.1 and
section 1.2. The definition of the objectives for a solution are discussed in
Chapter 4.

In section 4.2, the objectives are translated into a detailed list of require-
ments; these have to be accomplished to reach our solution. Next, the artifact
(simulator) has been designed and developed. This is described in Chapter
5.

In order to demonstrate the simulator, a scenario is modeled in ATTAC-L
and used as input for the simulator.

The user will be able to see his scenario simulated in a 3D environment
and the choices made in the simulation (by the user) influence the outcome of
the simulation. A preliminary evaluation was done by the WISE researchers
involved in the Friendly ATTAC project. It is also available for others. Cur-
rently, the simulator was extensively tested for debugging purposes. Next, it
was shared with the people involved. The simulator is able to simulate any
scenario modeled in ATTAC-L containing the supported verbs. Communi-
cation is done by means of the thesis.

1.4 Structure of the Thesis

The first chapter is the Introduction, we explain the context of the thesis
and continue by specifying the problem that has to be solved in this the-
sis as well as the research methodology followed. In the second chapter we
look at Related Work regarding frameworks for story building. Chapter 3
provides the Background information, reviewing the major topics covered in
this thesis: games, tools for implementing videogames and simulations, and
ATTAC-L. In chapter 4 we discuss the ATTAC-L Stmulator we made for the
thesis. We start by explaining the aim and context, we then list the require-
ments necessary to run the simulator. After, we explain its features. We

Structure of the Thesis 4

conclude this chapter by discussing the user interfaces. Chapter 5 discusses
the Implementation of the simulator. We start this chapter by defining the
key concepts in Unity, following we explain the system architecture and give
the design. In chapter 6 we draw Conclusions; we start by giving a summary
of the thesis and then explain the limitations and future work. We conclude
with explaining the limitations in language support.

Related Work

2.1 Frameworks for Story Building

In this section we look at existing frameworks for story building. The result-
ing game (or simulation) will be automatically or semi-automatically created
when the content —written or modeled in a specific format—is entered in these
frameworks.

We describe five frameworks in this section. Based on their goals we split
them in two groups; Learning Programming and Prototyping Tools.

2.1.1 Learning Programming

The main purpose of the frameworks discussed below is to teach the user
programming. This is done via different methods like drag & drop and tex-
tual. To make it engaging and fun for the users, their results (games or
simulations) can be shared with others.

Scratch

Scratch (MIT Media Lab, 2015) is a “media-rich programming environment”
which is created by the LifeLong Kindergarten research group at MIT’s Media
Lab. It allows you to create your own interactive stories, animations, and

—
|

Frameworks for Story Building 6

games. The main goal of Scratch is to give an introduction to programming
for those who have no experience with programming at all. This is why they
provide a drag & drop method of building blocks to code programs. One of
the benefits of this way is that there are no possibilities for syntax errors.

Scratch 2.0 is made in Flash (2015), which uses the ActionScript program-
ming language. The back-end of Scratch 2.0 is written in Python. Python is
a programming language that gets intepreted rather than compiled, mean-
ing that it gets executed immediately rather than translating it to another
language.

Figure 2.1 shows the graphical programming interface environment of
Scratch where users can drag & drop blocks to create a game (or simulation).
The example used is a starter project featured on the scratch website, it is

called “Dance Party”!.

Although game creation was not the first aim of this project, it can be
used for this purpose.

Dance Party

L by Scralchteam

Sprites
H [

F . scripts | Costumes

Motion E

[vore Biocks

-

Erv @
o ® 5 o
g2 3

?
i

oy
919
it

|
]

it

k]
g
%
9
i
<

9
g
ER K
H
I |-
R
H
il:

X: 240y 180

New sprite ‘@' / E‘] (o]

i
°
i

3 i
- L]
g g
ol: o)z

;
g’

3
%
H

left-right

[

Backpack

Figure 2.1: Programming Interface Environment of Scratch with Dance Party
Example

https://scratch.mit.edu/projects/10128067/, accessed 10/04/2015.

7 CHAPTER 2. Related Work

Greenfoot

Similar as Scratch. Greenfoot (2015) is an educational integrated develop-
ment environment which has the purpose to teach its users programming.
However, Greenfoot is for object oriented programming with Java. While
Scratch provides a visual way for coding, Greenfoot uses the traditional way,
textual, but combines this with a graphical, interactive output. The target
age group is also older than the one Scratch aims at. It is created by the
same developers who made BlueJ (2015).

Greenfoot is build in Java, as well as the games developed with it. Java
is a language that has to be compiled to machine code for it to be executed.

Figure 2.2 shows the programming interface of Greenfoot. The example
is “PoolGame”, a popular scenario taken from their website?.

Just like with Scratch, its main purpose is to teach the user how to
program. However, the game creation aspect can be used to create (serious)

games.

Scenario Edit Controls Help % P2DCollider - PoclGame

Class Edit Tools Options = EJ -

* P2DCollider is a base class to be derived from by more
spepcific colliders as (circle collider, edge collider)
* It is used as an collider in the physics system

Score

=~
M cameworld

Actor classes

Moves since last score
+ @author (Petter Vernersson)
* @uersion (2014-10-27)

;
public class P2DCollider
(
public P2DObject m_E2DObject;
'

* Enum for the available collider types to use L4 P2DACtor

oy =
public static enum CelliderIype { m
NONE_COL, CIRCLE_COL, EDGE_COL;
- TableEdge
}
I @ TableHole
* Returns the collider type, sheuld be overided by child classes
.
Backgroundimage
Other classes
GameChecker
P2DCollInfo
P2DCollider |
=
P2DCircle L
- = - - P2DEdge
P2D0bject
=
P2DRigidobj

PANStaticthi

() o) (o | 9

I

P

i

Space fast forward H toggle help markers R fast reset

Figure 2.2: Programming Interface Environment of Greenfoot with Pool-
Game Example

2http://www.greenfoot .org/scenarios/12394, accessed 10/04/2015.

Frameworks for Story Building 8

Alice

Alice (2015) is a free 3D object-oriented programming environment. In the
same way as Scratch, it has the objective to teach children an introduction
to programming. It allows to create an interactive game or video. The user
can put 3D objects in a virtual world, and animate them in Alice by creating
a program. Programming in Alice is done via drag & drop of graphical
elements to create a program, just like in Scratch.

The latest version of Alice is 3.1, it is different from its predecessors in
the way that it is designed with the purpose in mind of making the users
transition towards Java at the end. Alice is written in Java, just like Green-
foot.

Figure 2.3 shows the programming interface of Alice 3. The example is
a video on “Collision Detection” taken from the tutorial videos® on the Alice
website.

addObjectMoverFor Calien|

addMouseClickOnObjectListener add detail

Add Event Listener ¥

Figure 2.3: Programming Interface Environment of Alice 3

Shttp://www.alice.org/3.1/materials_videos.php, accessed 11/04/2015.

9 CHAPTER 2. Related Work

2.1.2 Prototyping Tools

In this section we describe frameworks where the focus is aimed towards
creating the narrative. When creating the educational part in serious games,
assistance from one or more field experts is necessary. The collaboration
between field experts and game developers is difficult. The frameworks as
discussed below aim to ease this collaboration.

e-Adventure

e-Adventure (2012) is a research project that aims to integrate educational
games and simulations in VLEs (virtual learning environments). Their goals
are: development cost reduction, instructor involvement in the development
process, and a white-box model aiding in the production of the games (Tor-
rente et al., 2010).

In e-Adventure, everything is accomplished with a point & click method.
There is no programming knowledge required to create a game or simulation.
The user imports images or videos, selects (or imports) characters, creates
conversations, etc. Every scene consists of one (or more) image(s), clickable
areas can be defined with certain behavior added to it (e.g. going to a next
scene, starting a conversation).

Figure 2.4 shows the programming interface of e-Adventure. The “PlayerOf-

fice” scene in the editor is shown in the “Fire Protocol” game®.

“http://e-adventure.e-ucm.es/course/view.php?id=29\&topic=1, accessed
11/04/2015.

Frameworks for Story Building 10

File Edit Adventure Chapters

Run Configuration About

Tools

| Appearance () ‘Dnmmamahn Element references | Active areas | Emsl

AE E=E= ‘Appearence block() Conditions () +
o 1 |
Chapter 1 |Appearance #2: No name 1
hd}
av
Background image of the scene
assets/background FlayerOffice, Select... View
Playeroffice O8] fosetsbacorundPayeroffc o [Lvew |
Foreground mask for the scene
I = a— 1
-1 Select...
Departmentarea
PP, Music of the scene
OfficeOnFire @ assetsfaudio/telephone.mp3 Select... Play

HallMiddle

Preview of the complete scane

TeacherOffices

Ocapiedoffice

HallEnd

StairsAndElevator

E‘]::,] Cutscenes

o

=

ﬁ Setitems

ﬁ Player

i l Characters

QJ Conversations

x
—'.Z Advanced features

.\;’ Adaptation profiles

Show/hicke compenents

e

Items

Figure 2.4: Programming Interface Environment of e-Adventure

80Days

The 80Days project (M. D. Kickmeier-Rust et al., 2008) is an European re-
search project that aims to meld educational subjects with the immersiveness
and entertainment of an attractive computer game. One game has been im-
plemented in the project, it is called “Feon’s Quest”, and it is aimed towards
teaching geography for 12 to 14 year olds (M. Kickmeier-Rust et al., 2011).
Feon is an alien that needs to discover and learn about other planets, this
time he landed on planet Earth. The player flies with the UFO and explores
different locations on Earth together with Feon.

To create a story, they used their Story Editor tool. This allows for
the creation of a story without writing a programming language. They de-
cided to extend the Story Editor with an authoring tool which allows non-
programmers to create entire games. This authoring tool is StoryTec (Gobel
et al., 2008), it is a rapid prototyping environment for the authoring process
of interactive applications like learning games. The 80Days project enhanced
StoryTec so that it would be able to cope with the addition of adaptation
and personalization in learning games. StoryTec can be used for example

11 CHAPTER 2. Related Work

to structure the game’s narrative, use videos or images, create interactive
behaviour, and change parameters for the adaptivity.
Figure 2.5 shows the StoryTec and Story Editor framework.

- EREEEEE

Meru Stage Earor]

Menu Story Editor

Propedy Ediod Pain & Chici 51

-

fory Edfor Bohupgen Edelsisrs ic - -

Dpen Actonsst Ednor

Opan Story Pacng Edaor

aaooads

Figure 2.5: StoryTec and Story Editor framework, retrieved from http://
storytec.de/index.php?id=49\&L=1 on 11/04/2015.

Frameworks for Story Building

12

Background

In this chapter we describe the background of our work. Our goal is to de-
velop a simulator for narrative-based scenarios for serious games. Therefore,
we will start by introducing Games, on which serious games are based, and
then we will give a more profound explanation of Serious Games. Continuing,
we will explain how games are in general implemented. The most common
way to implement a game is by using a game engine. Therefore, we will dis-
cuss Game Engines in more detail. We do so because this is also the obvious
technology to implement our simulator. We discuss well-known game engines
and compare them in order to decide which one to use in our work. After-
wards the language ATTAC-L and its associated tool for modeling scenarios
are described, as ATTAC-L is the language for which the simulator will be
developed.

3.1 Games

Gaming is one of the biggest markets in the world, generating a revenue of
over $100 billion in 2014'. Games have been used in various forms throughout
the years as a source of entertainment. Major game types that immediately

Thttp://www.statista.com /statistics /278181 /video-games-revenue-worldwide-from-
2012-t0-2015-by-source/, accessed 18/03/2015.

Games 14

pop up to mind are computer games, board games, card games, mind games,
puzzles, etc. This thesis focuses on computer games, also called digital games,
so henceforth when referring to games, computer games are meant.

Since computers are part of our daily life, are becoming more and more
accessible for everybody, and since people like to play, it does not come as a
surprise that computer games are also starting to play an important role in
everyday routine. Apart from the purpose of entertainment, games have the
potential to offer much more. For example, in multiplayer games we can see
that social (-and learning-) aspects play a huge role. The possibility to have
a virtual life where someone can safely practice social skills is something only
possible in multiplayer games (Kolo & Baur, 2004).

Gregory (2009a) define (most) 2D and 3D video games as soft real-time
interactive agent-based computer simulations. We will explain this concept
further:

Simulations
A game world is modeled mathematically so that computers can ma-
nipulate it. It would be too costly to include every small detail of the
world, so it is simplified. These kind of models are called simulations.
Mostly, these are simulations of real world situations, but also fictional
worlds can be simulated.

Agent-based
Most 3D computer games have a lot of objects, some examples are:
vehicles, weapons, NPCs (non-playable characters), etc. Agents are
objects that can interact with each other in one way or another.

Interactive
A game world state can change over time when the story progresses or
events occur. Different from a pure simulation, in a game the player
provides input (i.e., interacts with the game) in order to change the
game world state and the game has to respond in real-time, these are
the interactive temporal simulations.

Soft Real-time
A real-time system has time requirements. An example of an important
time requirement is the requirement of the screen to update at least 24
times per second. This will ensure that what the player perceives, is (an
illusion of) fluid motion. When the system is able to deal with a missed
time requirement and no severe consequences will occur, it is called a
soft real-time system. An example of a soft real-time system is a game
engine. An example of a hard real-time system is an aircraft control

15 CHAPTER 3. Background

system. In such a system, time requirements that are not respected
could result in dangerous or unacceptable situations.

Juul (2010) gave a brief but good definition of a game using six aspects
that are part of a game: rules, variable, quantifiable outcome, values assigned
to possible outcomes, player effort, player attached to the outcome and the
negotiable consequences. Klabbers (2003) gave a broader view on games
in general, saying that games are social systems. They are also models of
existing or imagined social systems, shaped by the players. He then made a
distinction between games for fun and games for scientific purposes.

3.1.1 Game Genres

The genre of a game is based on its gameplay, as opposed to books for
example, where the genre is based on their setting. Games can belong to
one specific genre, or they can be a mixture of genres. What follows is a list
of the most common game genres. We also specify per game genre some of
their subgenres and include a famous game title.

Action games
This genre is characterized by physical activities such as accuracy, re-
action time, and quick reflexes. Some subgenres of the action genre are:
fighting games, pinball games, MOBAs (Multiplayer Online Battle Are-
nas), and platform games. League of Legends (2015) is an example of
a MOBA action game.

Shooter games
The shooter genre focuses on combat with weapons. The most famous
subgenres are: first person shooters and third person shooters. Counter
Strike: Global Offensive (2015) is an example of a first person shooter
game.

Adventure games
Adventure games are characterized by puzzle-solving and exploration.
Examples of subgenres are: text adventures, graphic adventures and
visual novels. Sherlock Holmes: Crimes & Punishments (2014) is an
adventure game.

Role Playing games
Role Playing Games (RPG) are games where the player takes the role as
one (or more) of the characters defined in a world. A common denomi-
nator between these kinds of games is leveling up by gaining experience

Games 16

points. Some examples of subgenres are: MMORPGs (Massive Multi-
player Online RPG), Action RPGs, and Sandbox RPGs. An example
of a MMORPG is World of Warcraft (2015).

Simulation games
Simulation video games aim to achieve the goal of simulating a real
or fictional reality. Some subgenres are: Life Simulation, and Vehicle
Simulation. An example of a Simulation game is The Sims (2014).

Strategy games
Strategy games allow the player to control units and create tactics
in order to achieve victory. This type of game is probably the most
closely related to board games. The trend in this genre has shifted
from turn based systems to real-time systems. Some subgenres are:
Real-time Strategy, Tower Defense, Turn-based Strategy. An example
of a Strategy game is: StarCraft IT (2014).

Sport games
The main subject of a Sports game is a real life sport. One player
controls one person or an entire team and plays against another person
or a team (controlled by artificial intelligent agents or another player).
Some examples of subgenres are: Racing, (Physical) Sports. An exam-
ple of a Sports game is: FIFA (2014).

3.1.2 Narrative-based Games

There is a notable difference between a narrative and a story. Corman (2013)
defined a story to have “limited power” because they usually follow the same
pattern (beginning, middle and end). There are limited engaging possibilities
for the listeners because mostly the story is about the people involved. In case
of a narrative, Corman notes two main differences, they are open-ended and
they invite the listener to participate. We have different types of narratives:
linear narrative form, interactive narrative, and emergent narrative (Lindley,
2005). When a linear narrative form is used, the narrative is told in a
predefined order. When a user is able to change or choose the plot based on
different decisions or actions it is called an interactive narrative. Emergent
narrative studies how interactions among low level elements can lead to a
well-defined high level narrative form that is not represented in the observed
system.

Dickey (2006) notes that narrative plays a more prominent role in the fol-
lowing game genres: RPGs, action games, and adventure games. If we look
at genres like shooters and sports, narrative is typically not that important.

17 CHAPTER 3. Background

He then continues by specifying two game mechanisms that are commonly
used to convey narrative to the player. These are backstory and cut scenes.
Backstory tells the player what happened before the game started. This can
be presented to him in different ways (e.g. textual on the packaging or as
an intro video before starting the game). Cut scenes typically happen at
certain intervals during the game play when the player accomplished some-
thing. They are small intermezzos that explain more context regarding the
narrative.

An example of a game where the narrative plays a big role is the Mass
Effect (2012) trilogy. It is an action third person shooter RPG. The game
consists of a lot of interactions (see Fig. 3.1 for an example of an interactive
conversation) between the player and NPCs. Every choice made will influence
the rest of the game. When the player has completed Mass Effect 2 and
wants to play Mass Effect 3, he can choose to import a file. This file will set
over 1000 variables so the story continues from the decisions made in Mass
Effect 22. This is an example of a game which we previously defined as an
interactive narrative.

In the next section we will explain what serious games are and discuss a
classification system.

3.1.3 Serious Games

“The only source of knowledge is experience.”
(Albert Einstein)

Certain skills can only be acquired by performing them. This is where se-
rious games come into play, learning while playing. Small children learn by
playing. Kids are much more motivated when doing activities they deem to
be fun (e.g. playing a game), instead of doing work for school. Shute et
al. (2009) describe a solution to the methodological obstacles (e.g. keeping
a game engaging while making it educative) which are present when trying
to combine learning (schoolwork) and having fun (playing a game). They
use a two-stage approach for their solution. The first stage is used to collect
academically relevant data from students by using engaging games. This
data can then be used to approve the claim that important knowledge and
skills can be learned while playing. The second stage consists of adapting
existing, or designing new, engaging games that will monitor and support
the students’ acquisition of academically relevant skills.

2http://www.engadget.com/2010/06/15/interview-bioware-casey-hudson-on
-the-making-of-mass-effect-2/, accessed 04/04/2015.

Games 18

Kaidan: Commander. I'm glad to see you're okay. Losing Jenkins was hard on the crew. And I'm glad we
didn't lose you, too.

How are you holding up? Jenkins will be missed.

=N well talk later.

Soldiers die.

Figure 3.1: Example of an interactive conversation in Mass Effect 3
(retrieved from http://www.giantbomb.com/profile/dalai/blog/when-a
-dialogue-tree-has-too-many-leaves/76768/).

Note that serious games are not solely targeting kids or youngsters, they
can also play an important role in a business environment (Corti, 2006).
Therefore, serious games are defined as games used for purposes other than
entertainment alone (Susi et al., 2007). Serious games can be used to replace
or complement traditional class-based learning, but they can also be used for
situations where learning or training in real life would be too dangerous or
too expensive. In serious games, the player can train himself in a non-harmful
environment. These environments can be made as close as possible to real life
scenarios. The advantage is that failure in such a virtual environment does
not have the same consequences as it would have in real life, and in addition,
failure is also a way to learn. Typical examples of situations that would
have detrimental consequences when even the smallest mistake is made can
be found in, but not limited to, the military domain and the medical field
(surgery).

An example of a serious game is Pulse!! (2007), see Figure 3.2. Before
performing operations, the learner has to go through training scenarios which
teach him the skills to perform a successful operation. The operation scenar-

19 CHAPTER 3. Background

ios in the game are real-life cases, which need to be solved by using current
medical techniques.

Michael & Chen (2005, Part 2) mention six markets for serious games and
provide detailed information about each of them. The markets mentioned
are military games; government games; educational games; corporate games;
healthcare games; political, religious, and art games.

Figure 3.2: Scene from the serious game Pulse!! (retrieved from http://
www.paristechreview.com/2013/03/26/qui-peur-serious-games/).

3.1.4 Classification for Serious Games

Djaouti et al. (2011) propose a classification system, the G/P/S (Gameplay,
Purpose, and Scope) model, which classifies serious games based on their “se-
riousness” and “game-related” characteristics. We explain these three com-
ponents briefly:

Games 20

e The gameplay component gives information regarding the kind of game-
play used in the game. This is the ‘how it is played’.

e The purpose component gives information regarding the intended usage
of the scenario when the game was developed. This is the ‘for what’.

e The scope component refers to whom the game is intended. This is the
‘who uses it’.

We will give an example of the use of this classification, by using the game

Pulsell. We will first give a short description of the game and then discuss
the G/P/S model.

Pulse!!
Pulse!! was the first of a kind virtual game for training health care
professionals in clinical skills. 3D graphics create an interactive virtual
environment where civilian or military health care professionals practice
their skills in order to respond better when those incidents occur.

e Gameplay:
— Type: Game-based.
— Goals: Avoid, Match.
— Means: Manage, Select.

e Purpose:

— Purposes: Training.

e Scope:
— Markets: Healthcare.
— Target audience: 25-35 / 35-60, Professionals.

Djaouti et al. (2011) provide more examples on how the G/P/S classifi-
cation is used on other serious game titles.

Figure 3.3 shows the relationship between video games, serious games
and serious gaming given by Djaouti et al. We will start with the three main
components. Video games have already been discussed in section 3.1, we can
say that video games contain only a “game” dimension. Serious games are
the topic of this section. These games contain a “serious” dimension on top
of a “game” dimension. The last one, serious gaming is a much larger area.
This area covers all the serious games as well as the games that have been
“purpose shifted”.

A regular video game can become a serious game in two different ways,
these ways are called Purpose Shifting and Modding, as can be seen in Figure
3.3. An explanation of both is provided:

21 CHAPTER 3. Background

Purpose Shifting

There is no reason why entertainment games cannot be used in a serious gam-
ing context. If this happens we say that the game has been purpose shifted
and the serious role of the game is determined relative to the perspective of
the player. An example is Surgeon Simulator (2013). The game was released
in 2014 where the player takes on the role of a surgeon, having to perform
operations. In this game every finger has to be controlled separately, when
picking up tools or performing manoeuvres. It has to be noted that this
mechanism is intentionally implemented to be very difficult to handle, this
with the intent to provide a dark humor to the game. Surgeon Simulator
is not created with a serious purpose in mind; the hospital is just the stage
where an entertaining scenario is held in. Of course, Surgeon Simulator can
be used with a serious purpose in mind. This is what is defined as Purpose
Shifting: the process of creating specific scenarios, which are used to serve a
purpose different from entertainment, or a purpose the developers envisioned
for the game.

Modding

When a game is purpose shifted, no software modification is involved. When
software modification is possible, the person is able to create his own levels,
scenarios, weapons, etc. The result is called a Modification, or simply a
“mod”. A famous example is Day-Z (2015) which is a mod from ARMA 2
(2009), this mod turned out to be so successful it was later transformed into
a standalone game.

ARMA 2 is a first person shooter while Day-Z is a survival horror game
in a MMO (Massive Multiplayer Online) environment. This shows the power
of modding, it can transform the entire genre of a game. Tt is not far-fetched
that this way, any games (which allows modding) can be modded to include
a “serious” purpose.

3.2 Tools for Implementing Videogames and Sim-
ulations

Games can be created in different ways. In general, a game is build us-
ing a game engine. A game engine provides the core functionality typically
needed in games. Developing a game using a game engine requires good
programming skills and knowledge about game developing. There also exist
frameworks that allow composing games in an easier way, usually using drag

Tools for Implementing Videogames and Simulations 22

SERIOUS GAME

VIDEO GAME

Designed
(game)

Designed

serious + game)
g

"Purpose-shifted”
(serious)

SERIOUS
GAMING

Figure 3.3: The relationship diagram of Video, Serious Games and Serious
Gaming (Djaouti et al., 2011)

& drop functionality. The type of games and their complexity that can be
created with these frameworks is usually limited.

Because of the flexibility that game engines offer, we decided to use a game
engine to implement our simulation. For this reason, we discuss game engines
into more details. We conclude this section with a comparison of well-known
game engines and our choice for the implementation of our simulation.

3.2.1 Game Engines

A game engine exists of an extensive collection of tools that help with building
a game. Some of these tools are: level /scene editor, game asset import tools,
animation system, scripting languages or an API to program the game with.

Gregory (2009a) notes that a data-driven architecture is what makes the
difference between a game and a game engine. He proposes to use the term
game engine for software which can be extended and used as a basis for a wide
variety of other games without the need of major adjustments. However, as
he states, game engines are fine-tuned for a specific game genre. This used
to be more the case in the earlier days of game engines. Nowadays, this
phenomenon is not as clear-cut anymore as it used to be, but small benefits
(e.g. performance) will still be gained by using an engine for the specific
game genre it was originally designed for. Figure 3.4 shows some Game
Engines with regards to their reusability. Gregory (2009a) also talks about
the technological requirements needed for some of the most frequent game
genres.

23 CHAPTER 3. Background

Can be “modded” to

Cannot be used to buld Can be customized to build any game in a Can be used to build any
maore than one game make very simiar games specific genre game imaginable
e £ £ £
|_| J U L /U\
Pachan Hydro Thunder Enging |jorea E..r!rgine 4, Probably
Engine Sgurce Engine, .. mpossible

Figure 3.4: Reusability of Game Engines (Gregory, 2009a)

Creating a game with a game engine will require coding, however it is
just the game logic that needs to be coded. This is because game engines are
pieces of software which bundle a collection of underlying technology, some
important ones are: rendering, physics, networking, audio, etc. Rendering
deals with the image generation of 2D or 3D models in a scene. All these
technologies and more will be discussed below.

Runtime Game Engine Architecture

Figure 3.5 depicts all the major architectural runtime components of a typical
modern 3D game engine (according to Gregory (2009a)). In what follows,
we will explain only those components that are of interest for this thesis.
Gregory (2009a) explains all of these components in more detail.

Hardware

This layer is a representation of the system on which the game will run. Some
platforms, but not limited to, are Windows, Linux, Mac, PS4, XboxOne, and
iOS.

Platform Independence Layer

Most game engines provide the option to publish the game to multiple plat-
forms. The platform independence layer ensures that the game’s behavior
remains consistent across all the possible platforms.

Resource Manager

The resource manager provides a uniform interface to access game assets,
textures, materials, fonts, etc.

Tools for Implementing Videogames and Simulations 24

Rendering

There is not a single accepted way to design a rendering engine. However, a
layered architectural design that exists out of four components is common.
These are: low-level renderer, scene graph/culling optimizations, visual ef-
fects, and front end.

The goal of the low-level render is to render geometric primitives as fast
and as rich as possible. Nothing else is taken into account (e.g. viewpoints).
This is what the scene graph/culling optimizations takes into account, it
provides what primitives are visible and pass it on for rendering.

Game engines support a lot of different visual effects. Some examples of
visual effects used in the thesis are: particle effects (for a water fountain),
light mapping (pre-computed light on —mostly static— objects like benches),
and dynamic shadows.

Front end is important in our thesis since it is used for the in-game main
menu and other graphical overlays.

Collision and Physics

The term physics is also known as rigid body dynamics in the game industry.
Collision detection is usually tightly coupled with physics. Most game engines
use 3 party SDKs (Software Development Kit) as physics engine.

Skeletal Animation

Skeletal animation deals with 3D character meshes which exist of bones,
represented by vectors. When the characters (bones) move, the vertices are
correspondingly updated.

Human Interface Device (HID)

The input of the player can be obtained from different devices: keyboard
and mouse, joystick, controllers, etc. The HID is often made so that it can
separate the low-level details of the input interface on a specific platform
from the high-level game controls.

Gameplay Foundations

Gameplay is a concept that covers the action in game, the rules, abilities,
objects, objectives, etc. The purpose of this layer is to form a bridge between
the low-level systems in the engine and the code.

25 CHAPTER 3. Background

The games object model is the collection of all different objects that
compose it, including: the player, NPCs, weapons, vehicles, etc.

The scripting system is one (or more) scripting language(s) the game
engine supports to code specific rules and content. Thanks to the scripting
system, recompiling and relinking the game executable is not necessary. It
will allow changing the game logic and content by modifying or reloading the
code.

Game-Specific Subsystems

In this layer the features of the game itself are implemented. There are
a lot more game-specific subsystems than those shown in Figure 3.5, but
some worth mentioning are: game-specific rendering, player mechanics, game
cameras, and Al (artificial intelligence).

Game-specific rendering deals with the rendering of e.g. the terrain and
water. Player mechanics deal with animation and movement. Game cameras
deal with the cameras; this is what the player will see on the screen, most of
the game engines take care of this by providing scripts which do most of the
work. And last but not least, Al is used to implement realistic behaviors and
decision making. In the thesis, it is used for path finding within a navigational
mesh, in order to allow the characters to automatically find their own path
to the desired destination.

For people, object collision is something we do not think about. It is
just natural, e.g. two cars cannot magically pass through each other, they
will collide against each other. However, in the digital world, it has to be
explicitly stated that objects cannot pass through other objects.

Physics in games is used to compute for example the movement speed of
(large) objects under the influence of gravity. When a ball is kicked up, it
has to come down eventually.

Networking deals with the multiplayer aspect on games, how players can
connect to each other worldwide.

Last but not least, audio deals with all the sounds the game produces at
certain intervals. Detailed information on all these technologies can be found
in (Gregory, 2009b, Part 3), (Eberly, 2010), (Caltagirone et al., 2002).

In what follows, we will list and briefly discuss a couple of the well-known
game engines.

Well-known Game Engines

To compare different available game engines, we defined criteria to evaluate
the different game engines and which are important to consider in our deci-

Tools for Implementing Videogames and Simulations 26

sion. These criteria are: licensing, platform, engine and coding (i.e., support
for programming). We present the overview in a table. For each engine con-
sidered, the table also contains some general information. Table 3.1 provides
the overview.

We considered the following game engines: Unreal Engine (2015) devel-
oped by Epic Games®, CryEngine (2015) developed by Crytek?*, Source de-
veloped by Valve®, and Unity developed by Unity Technologies®. All of these
engines are well known and well documented. Unreal Engine and Unity are
known to have an excellent (community) support.

As far as it concerns licensing, all the listed engines are free for non-
commercial use. Things get more complicated when the engine will be used
for commercial use. Unreal Engine handles a 5% royalty on the gross rev-
enue per game, only if that revenue per calendar quarter is above $3000.
CryEngine launched EaaS (Engine as a Service) which is a subscription to
the CryEngine. It costs $9.90 per month and there are no royalties involved.
Other options with other terms are available, including purchasing a license
with the full source code’. Source engine handles the no royalty method
but it forces the developers to release their game on Steam® (not limited to
Steam only). Unity offers a lot of different plans, dependent on choosing the
personal edition or the professional edition®, however a royalty bonus is never
to be paid.

All of these game engines support multi-platform. All of them are able
to publish to Windows, Mac (exception of CryEngine), Linux, iOS, PS4, and
Xbox One. Unreal Engine and Unity also offer support for Virtual Reality
(Oculus Rift, Gear VR). It has to be noted that Unity has more deployment
platforms than listed in the table!?.

Next we talk about the different technologies supported by the engine. All
of the listed game engines support the same graphic engines, DirectX'! and
OpenGL'2. OpenGL is the graphics API which is usable on Windows, Linux,
and Mac, unlike DirectX, which is Windows exclusive. Collision detection
and rigid body dynamics are in the game development community known as

Shttp://epicgames.com/, accessed 22/03/2015.
‘http://www.crytek.com/, accessed 22/03/2015.
Phttp://www.valvesoftware.com/, accessed 23/03/2015.
fhttp://unity3d.com/, accessed 25/03/2015.
"http://cryengine.com/get-cryengine/ce-games, accessed 22/03/2015
®http://store.steampowered.com/, accessed 26/03/2015.
Yhttp://unity3d.com/get-unity, accessed 26/03/2015.

DOhttp://unity3d.com/unity/multiplatform, accessed 25/03/2015.

Uhttps://msdn.microsoft.com/en-us/library/windows/desktop/ee663274 (v=vs

.85) .aspx, accessed 26/03/2015.
P2https://www.opengl.org/, accessed 26/03/2015.

27 CHAPTER 3. Background

physics. Unreal Engine, Source, and Unity support PhysX'3, a physics engine
by Nvidia't. CryEngine has its own implementation of a physics engine. As
far as it concerns audio, they all support the FMOD audio engine. Each of
these game engines has their own implementation regarding networking.

Last but not least, we consider the support for programming. Unity is
the only game engine which does not allow (natively) to program in C++,
but rather in C#, JavaScript or Boo. Also visual scripting is supported.
Visual scripting is the concept of letting developers manipulate program el-
ements graphically instead of textually writing code. Previously, we gave
some examples of visual programming languages (see 2.1). In Unreal Engine
it is called Blueprints, CryEngine calls it Flow Graph, and Unity does not
support this natively but this can be acquired by using third party assets
from the Unity Asset Store'.

(Petridis et al., 2010) compared over 100 game engines using a framework
they suggested for high fidelity serious games. They went into more detail on
some of the big players as discussed above. They note that one of the most
important elements in the creation of serious games is the graphical quality.

Unity is the game engine chosen for the implementation of the thesis.
The low hardware requirements, the excellent documentation & (commu-
nity) support, the multi-platform deployment possibilities and the fact that
it has been used in the context of serious games'® multiple times, led to this
decision.

3.3 ATTAC-L

In this section we describe ATTAC-L. ATTAC-L is a domain specific mod-
eling language for specifying narrative-based serious games. This section
consists of three parts. Firstly we will explain the purpose of ATTAC-L.
Secondly we describe the language itself. Thirdly we talk about the interpre-
tation of game moves. An example at the end of this section will illustrate
how ATTAC-L is used to specify a complete narrative.

3.3.1 Purpose

ATTAC-L is a DSML (Domain Specific Modeling Language) (Luoma et al.,
2004) for specifying narrative-based serious games. It is developed in the

3http://www.geforce.com/hardware/technology/physx, accessed 26/03/2015.
Yhttp://www.nvidia.com/content/global/global.php, accessed 26/03/2015.
5https://www.assetstore.unity3d.com/, accessed on 26/03/2015.
6https://unity3d.com/industries/sim, accessed on 26/03/2015.

ATTAC-L 28

context of cyber bullying to specify scenarios about cyber bullying situations
for serious games against cyber bullying. However, the language can also
be applied in other domains than cyber bullying. DSMLs are graphical lan-
guages that use the vocabulary of the application domain. Abstractions are
provided to make the solution specification easier and more accessible for
domain experts and end users. A graphical representation has a clear advan-
tage over a textual representation in the fact that a large quantity of visual
information can be understood much faster than its textual counterpart.

Using a DSML will offer great benefits to non-technical people, as they
can be involved in the design process of the serious game. For instance,
understanding the causes and impacts of cyber bullying require knowledge
from different fields. Therefore there is a need to include social scientists,
health psychologists, computer scientists, domain experts, and game design-
ers (Van Broeckhoven & De Troyer, 2013) into the development process.
Since these persons are not always technically schooled, the DSML should
abstract from technical and implementation details and be easily understand-
able by all parties involved. A DSML has the advantage over natural language
that it is unambiguous and it will allow for the (semi-)automatic creation of
the actual game.

More information on DSMLs suggested in the context of game develop-
ment can be found in (Marchiori et al., 2011; A. W. Furtado & Santos, 2006;
A. W. B. Furtado & de Medeiros Santos, 2006).

3.3.2 Language Description

ATTAC-L makes use of a natural language like syntax; the sentences used
will appear as natural language but they have a strict syntax. The sentence
structure will usually exist of: subject, verb, and a passive object. There is
also a possibility to add an indirect object. Examples of these will be given
while describing the language.

Bricks

An action or a step defined in ATTAC-L is called a game move. Bricks are
the basic building blocks to define game moves. They contain a word (object,
verb, noun, etc.). Figure 3.6 shows some examples of bricks.

29 CHAPTER 3. Background

b player d : n Carl g
o walks-to g

|:| Playground |:|

b says o

fo o

I
=
= |
[

P a message q

0 Elisabeth g

Figure 3.6: Bricks

A game move is composed by connecting bricks to each other in such a
way that they form a non-ambiguous sentence. The structure of a game move
has to follow strict grammatical rules. It always has to contain a subject,
verb, and a passive object. An indirect object can also be introduced in a
game move, although only when the others are present as well. An example of
a game move containing a subject (“player”), verb (“walks-t0”), and a passive
object (“Carl”) is given in Figure 3.7 and a game move with an indirect object
(“Elisabeth”) in Figure 3.8.

E Tim Qives Ush
|:||Jla;.er| walks-to | Carln:| to Elisabeth

Figure 3.7: Regular Game Move Figure 3.8: Regular Game Move with
Indirect Object

Value Brick

Sometimes a passive object brick requires some more details to give it exact
meaning. Consider the example given in Figure 3.9; there are no details given
about what is exactly being said. To cope with this problem, a special “value
brick” is used. This brick contains one (or more) property name(s) and its
value(s). Figure 3.10 provides a game move for the action (verb) “says to”,
that also specifies what exactly is said. Note that a shorter version of Figure
3.10, by removing the passive object (“a message”), is also valid ATTAC-L.
This is only the case when the sentence will not become ambiguous when the
passive object is left out (as is not the case with “says to”).

ATTAC-L 30

E player Says a message EI E player says amessage | message :Hello Carll How are you? n

fo Carl |:| to e

Figure 3.9: Unclear Game Move Figure 3.10: Clear Game Move by us-
ing a Value Brick

Passive Voice

It is also possible to model a game move using a passive voice sentence
construction. Figure 3.11 shows a normal game move and Figure 3.12 shows
the passive voice of the same game move. Both are interpreted in the same
way.

|Z|IJ|EI‘:'EF| picks-up | Cd EI |:| Cd | is picked-up by ||:|Ia*,-er|:|

Figure 3.11: Normal Game Move Figure 3.12: Game Move in Passive
Voice

Inline Definition

NPCs can be dynamically assigned a name and used later to reference to
the dynamically selected character. An example of this is given in Figure
3.13. This game move will assign “X1” to a random (available) NPC in the
game world. In all the following game moves X1 can be used to refer to that
character.

|:| a person X1 walks-to | player | |

|_ X1 5ays i message ‘Hello player! [.:i

to [player

Figure 3.13: Inline Definition

31 CHAPTER 3. Background

Sequence Brick

A story consists of several game moves. These can be connected to eachother
by using a sequence brick as illustrated in Figure 3.14. An example of two
game moves connected is given in Figure 3.15.

R |:||Jla;.-er | walks-to | Tim | |
| player says E_|:1_e_s_s;_ég_1é"_":T—_E_I_Iﬁ_fil_'?!_""""."D:
[Tim

5 to

Figure 3.14: Sequence Brick Figure 3.15: Two Connected Game
Moves

Choice Brick

A choice brick as illustrated in Figure 3.16, corresponds to an IF-statement
or CASE-statement in programming languages. Using a choice brick, the
story can be split in two or more different game moves (or even entire plots).
A decision has to be made (either by the player or by the game itself) which
game move to follow.

Figure 3.16: Empty Choice Brick

Figure 3.17 shows an example of a choice brick with three choices.

ATTAC-L 32

player | says | message :HeyCar howareyou? &g |

to [Carl o

player | says | message :Hey Carl, youlook good! ©n

o | Carl o

to [Carl d

player | says | message :ldonotwantiotalktoyoul (x

Figure 3.17: Choice Brick with Three Choices

Order Independence Brick

An order independence brick, as illustrated in Figure 3.18, encapsulates two
or more different game moves. All of these game moves are executed one
after the other but in a random order.

Figure 3.18: Empty Order Independence Brick

Figure 3.19 shows an example of an order independent brick with three
game moves. Note that the order in which the player says something to Carl,
Elisabeth, or Tim is not specified. However, he will say “Hello” to all three
of them.

33 CHAPTER 3. Background

Figure 3.19: Order Independence Brick with Three Game Moves

Concurrency Brick

A concurrency brick, as illustrated in Figure 3.20, corresponds to parallel
threads in programming languages. All the game moves encapsulated in a
concurrency brick are executed at the same time (concurrent). However,
practically this is not always feasible, this is why we opted to implement
concurrency as order independence without the randomness factor (from first
to last).

Figure 3.20: Empty Concurrency Independence Brick

Figure 3.21 shows an example of a concurrency brick with three game
moves. Note that it is not always possible to visualize three people walking
to (possibly) three different locations. This is why we opted for the order
independent implementation. The order of execution will be from top to
bottom, one after the other.

O~ O Ut WN

ATTAC-L 34

player walks-to Tim o
Carl walks-to Elisabeth o
Vincent alks-to Mary o

Figure 3.21: Concurrency Brick with Three Game Moves

3.3.3 Language Export

To allow for the (semi-)automatic creation of the actual game, the narrative
must be converted into a data structure that is readable and understandable
by a computer. ATTAC-L models can be exported to JSON (JavaScript Ob-
ject Notation) format. Such a JSON file will be the input for our simulator,
which will visualize the narrative in a visual way. Therefore, we explain the
structure of such a JSON file.

Let us start by explaining the basic JSON structure with a simple story,
shown in Figure 3.22.

I:pla}-er | picks-up | Usb | |
|_\ player gives Ush g
' to Tim o

Figure 3.22: Simple Story Export Example

The translation of the story shown in Figure 3.22 is translated to:

{
" _entries": [
Ilgoll
i
" flow": {
|lg1’|: {
"_expr": [
{
"word_": "player",
" _next": [
{
"word_": "gives",

_next": [

35 CHAPTER 3. Background

15 "word_": "Usb"

20 "word_": "to",
21 " _next": [

23 "word_": "Tim"

28 i

29 P

30 "_interpr": {

31 " _subject": "player",

32 " _predicate": {

33 "_verb": "gives to",
34 "_direct": "Usb",

35 "_indirect": "Tim"

37 }

38 ¥o

39 "go": {

40 Il_nextll: llglll,

41 "_expr": [

42 {

43 "word_": "player",

44 " _next": [

45 {

46 "word_": "picks-up",
47 "_next": [

48 {

49 "word_": "Usb"
50 }

54 ¥

55 15

56 "_interpr": {

57 "_subject": "player",

58 " _predicate": {

59 "_verb": "picks-up",
60 " _direct": "Usb"

Listing 3.1: Basic JSON Structure of a Simple Story

As can be seen in Listing 3.1 the JSON consists of two main parts. Before
going into detail on these two, it is important to know that every game move
is labeled as “gx”, with the x being its unique number. We will call this the
game move label.

O~ O U WN

ATTAC-L 36

The first part is the " _entries" array. This contains references to all the
game move labels where the story starts. In most cases this will only contain
one label. If in rare occasions it has more than one, they are executed one
after the other. In our example it contains only “g0”.

The second part of the JSON is the " flow" object. This object contains
all game moves which are present in the story. As said earlier, every game
move is identified by its unique label. This label contains another JSON
object which consists of three parts. The first part is optional and contains
the next game move label to be executed if this one is completed. In our
example, g0 has a next (being gl) but gl has no next since the story ends
there, so it is omitted. The second part contains the " expr" (expression)
array, where every brick is translated into its word and its next connecting
brick. The third part contains the interpretation of the game move and will
be explained in great detail in the section below.

When we add control structures (choice, order independence, concur-
rency) to our story this also needs to be translated to JSON. These kinds of
game moves also have a unique label, specified in the same way. However, the
difference is that these structures do not have an " expr" and " interpr"
part; the only thing they have in common is the " next" . Control structures
have a " _type" field that tells what kind of structure it is (possibilities are:
cho, oin, con) and a " paths" field. The latter one contains all the game
move labels which are defined in the control structure.

The translation of Figure 3.17 is given in Listing 3.2, note that the details
of the game moves inside the choice are not included in the listing.

llgoll: {
||_type": "ChO",
"_paths": [
"gl" R
lngll)
"g3"
]
17

Listing 3.2: JSON Structure of a Choice

The structure for order independence and concurrency is the exact same,
with the only exception being the " type" is respectively “oin” and “con”.

Game Move Interpretation

The interpretation object is found in every valid ATTAC-L game move. Note
that if a game move does not contain an interpretation part, it is not valid
(exceptions are the control structures: choice, order independence, and con-
currency).

© o0~ Utk W

37

CHAPTER 3. Background

The " interpr" object consists of three elements, namely:

" 3 n
_ passive",

" subject", and " predicate". This can be seen in Listing 3.3.

_interpr":

{

"_passive": <true|false>,
" _subject": <noun-structure>,
" _predicate": {

"_verb": <verb-structure>,
"_direct": <noun-structure>,
"_indirect": <noun-structure>

Listing 3.3: Basic Structure of an Interpretation Object

The first element is " passive"; this is optional. If the sentence is modeled
in passive voice, the " passive" boolean is set to true. If not, it is omitted.

Before defining the other two elements, we first must define what a noun-
structure is. A noun can be expressed in different ways:

e By specifying “player”, which is a predefined entity in ATTAC-L. This
is directly translated to its string representation.

e By a string that starts with a capital letter, followed by numbers or
non-capital letters (no spaces). These refer to (pre)defined entities in
the story and are directly translated to its string representation.

e By an expression that refers to an entity in the story. In this case
a simple string is no longer sufficient so we defined a sub-structure
containing the following elements (note that all of these can be optional

except for

" noun"):

" det", this is the determiner, it says how the entity needs to be

[P SAN14 bA 14

selected. Possibilities are “a”, “an”, “any”, and “last”.

" noun", this is the type of the entity that needs to be selected.
There are no interpretations made on the meaning of the word,
but it is assumed to be a singular countable common noun. An
example is “person”.

" nom", this is the nominator, it is only present during inline

definition. This will contain the dynamically assigned name that
can be referenced to in later game moves.

" of", this occurs when the “of” proposition is used in a brick. Tt
contains the string of the brick after it. An example where " of"
is “T'im” is when using “posts to” “the hl-page of” “Tim”.

O~ O Ut W

— ===
W N = OO

14

ATTAC-L 38

— " attr", this is only present when there is a value brick in the

game move. This object will contain all the property names and
its values.

Now that we defined what a noun-structure is we can explain the remain-
ing two elements of the " interpr" field.

The next element is " subject", which is a noun-structure as explained
above. This is the subject of the game move, the one who invokes the action.

The last element is " _predicate", which describes everything (the action)
behind the subject. It consists of three parts:

e " verb", this is the action of the game move itself, represented as a

string.

e " direct", this is optional but will nearly always be present. This is the

primary passive object of the game move, which is directly influenced
by the action.

.H

_indirect", this is optional. If this is present, " direct" has to be
present as well. This is the secondary passive object of the game move,

it is indirectly influenced by the action.

The game move g0 in Listing 3.1 shows an example where the noun-
structure for subject is the “player” string representation. In the same listing,
gl shows an example of a predicate that contains an indirect.

The interpretation structure of a game move that contains a value brick,
as in Figure 3.10, is shown in Listing 3.4.

"_interpr": {
" _subject": "player",
" _predicate": {
"_verb": "says to",
"_direct": {
ll_detll: Ilall ,
"_noun": "message",
"_attr": {
"message": "Hello Carl! How are you?"
}
P

"_indirect": "Carl"

¥

Listing 3.4: Interpretation of a Game Move with a Value Brick

The interpretation structure of a game move defined in the passive voice,
as in Figure 3.12, is shown in Listing 3.5. We can see that the “ passive”
boolean is set to true.

O~ O Ut W

= O © 00~ Utk Wi

— =

39 CHAPTER 3. Background

"_interpr": {
" _passive": true,
"_subject": "player",
"_predicate": {
"_verb": "picked-up",
"_direct": "Cd4d"
}
}

Listing 3.5: Interpretation of a Passive Game Move

The interpretation structure of a game move that contains an inline def-
inition, as in Figure 3.13 (the first game move), is shown in Listing 3.6.

"_interpr": {
"_subject": {
" detll : Ilall
" _noun": "person",
n nom": lelll
Fo
" _predicate": {
"_verb": "walks-to",
"_direct": "player"
}

Listing 3.6: Interpretation of a Game Move with Inline Definition

3.3.4 Example Story

Figure 3.23 shows a complete story modeled in ATTAC-L. The story is about
Elisabeth losing her USB stick that contained her homework. She asks player
to find it for her, but he cannot find it. Elisabeth then notices that Carl
picked something up and asks if player can look into it. Carl found the USB
but is unsure what to do with it. The player has the choice to demand Carl
to give it back to Elisabeth or steal the homework on the USB and not tell
Elisabeth about it.

This story contains three choices and two order independent game struc-
tures. Based on the player’s choices, the story develops in a complete different
direction.

Appendix A lists the complete JSON representation of this story.

40

Jeked

1@ esinoky yse 0o ‘Auos we | mou of o} paau| Jafkerd

ueo | josbed-ysy uo

f0)__ssesidswojypuss nofuey | sbessewe | swewwod

10 abec-y 3 uo

D jeseoldowojypues | ebessowe | swewwiod w=oun

ueg | jo abedyam o

& Siuem asie ouM |
1@ __puomewoy sagesi3 punoj sakeidpue sy | sbessswe sisod uen

=

sskerd

akerd

sskerd

uyisgesi3 o

o

131 011 916 UED.
0K ‘3104 lI2i 12U} 13y MOWY A[E81 10U 0P |

Jeferd

“““““““““““““““““ safeid
otomawoy

18U fdo3 pue}i punay Jsnsu | pusiaid
10184 01 ¥2Eq Y BMD | pINOUS PIDISeA | skes | ued

““““““““““““““““““ ueo o

auepeoe Aqu puy nok pia
; ‘Kepay 19U oMawOL 19 BuILIEWOD Yous
1@ 85N 15U S0l 3uS W pio} Wiaes)3 peD hoH | shes

Jakeid

D juny e puz o | Jaked

“““““““““““““““““““““ [sstea |

h &1 PUNOS 3U 1S pue of nok
i@ pinog idn Buiawos Buppid ueo messni|

wegesi3

wegesi3)

Jakeld

@ __ ;218U 1150] N0K 2Ins NOA 21 W PULIOUUEY | | skes

e
abessaw e

BD 1 puynok diay ued| ‘ains sfes | Jefeid

ATTAC-L

&1 puy sw djay nof ued yomawoy
® __fw buuiguos yogs 85N Awlsor] Jakeid Ao

ATTAC-L Example Story

Figure 3.23

41

CHAPTER 3. Background

GAME-SPECIFIC SUBSYSTEMS

[‘Weapons]

[Power-Ups] [Vehicles]

Puzzles

[

J |

Game-Specific Rendering

Player Mechanics

Game Cameras

Al

)

Terrain Water Simulation State Machines & Camera Relative Caontrols Fixed Scripted/Animated Goals & Actions (Engine
Rendering & Rendering Animation (HID) Camera Camera Decision Making Interface)
b M t Player-Follow Debug Fly- Sight Traces & Path Finding
Ele ovemen Camera Through Camera Perception (A%

)

ron n amepla oundations
Front End G lay Foundat
HeadsUp Display Full-Mation In-Gams
[(HUD) Video (FMV) Cinematics (1GC) High-Level Game Flow Systerm/F S
In-Game Wrappers /
[- zrames (€] [Menus] [Attract Mode] Scripting System

)

Particles & Decal Environment

Systems Mapping

() (oo) ()

(

Animation State

Game-Specific

J[Inverse(i"(gematics] []

Tree & Layers Post-Processing
Scene Graph / Culling Optimizations LERP and) Sub-skeletal
P avrp Additive Blending Pl Py el Animation

Spatial
Subdivision (BSP
Trees, kd-Tree, ..}

Ceelusion &
PVS

&) () (o)

Low-Level Renderer

Profiling & Debugging

Animation
Decompression
Skeleton Mesh Ragdoll
Rendering Physics

Visual Effects Static World Dynamic Game Realtime Agent- Event/Messaging World Loading /
Elements Chject Model based Simulation System Streaming
PRT Lighting,
Light Mapping & HOR Li = -
ghting Subsurf. (Hierarchical Object 1
[Dynamic Shadows] [Scatter 1 Attachment J
Skeletal Animation Online Multiplayer Audio

[

Match- Making
& Game Mgmt.

)

[DSPEffects J

Object

(

Authority Palicy

J

[3D Audio Model J

Game State
Replication

Audio Playback /
Management

ollision & Physics

Human Interface
Device (HID)

Materials & Static & Dynamic Forces & Ray/Shape
[Shaders] Lighting] [i][Ve & s] [Izandling) - (Pl el] [Constraints] [Casting (Queries)
Primitive Viewports & Virtual Texturs & . . Memaory & - .
[Submission][Screens] [Surface Mgmt.] [ek D T e, il] [Performance Status] [(i Bl] [[l]
[Graphics Device Interface (DirectX & OpenGL)] In-Game Menus or Shapes / Physics / PhyswcGBDevice
Consoles Colidables Caollision Warld
Resources (Game Assets)
3D Model Texture Material Fort R Skelston Collision Fhysics Gams "
Resources Resource Resource ot Resourees Resources Resources Parametars Warld/Map el
Core Systems
Maodule Start-Up Memary Strings and Debug Printing Localization
[and Shut-Down][PRl][I Vg][Allocation] [it Ly][Hashed String Ids & Logging Senvices et (P
Parsers (CSV, Profiling / Status Engine Config Random Number Curves & RTTI/ Reflection Cbject Handles Asynchronous Memoary Card /0
XML, etc) Gathering (IN] files, atc.) Generator Surfaces Library & Serialization & Unigue lds File /0 (Clder Consoles)
Platform Independence Layer
Atomic Data Collections & File Netwaork Transport 5 5 Threading Graphics Physics/Collision
[Platform Detection] Types][Algorithms][System J[Layer (UDP/TCP)] [Hi-Res Timer] [Library J [Wrappers Wrapper

3rd Party SDKs

DirectX, OpenGL,
likgcm, Edge, etc

Hav ok, PhysX,
ODE etc.

[) {

) =)

STL/STL
Port

) Comn)

Granny, Havoc
Animation, etc.

)) (5

0s

Drivers

Hardware (PC, XBOX 360, PS3, etc)

Figure 3.5: Game Engine Architecture (Gregory, 2009a)

ATTAC-L 42

Unreal Engine CryEngine Source Unity

Information
' Unity

Developer Epic Games Crytek Valve Technologies
Latest Version 4 3 2 5)
Documentation Excellent Good Good Excellent
and Support
Licensing
Non-commercial Free Free Free Free

Use

Commercial Use

5% royalty
(if revenue +$3000)

0% royalty
$9.90 /month (EaaS)

0% royalty
(has to be released

0% royalty
Pers.Ed.: Free
Prof. Ed.: $75/

on Steam) month
Platform
E\lf;liiovfl’lé\fiz Windows, Mac,
08 Pj’S A Xbox7 Windows, Android, Windows, Android, Linux, iOS, PS4,
Deploys to One, HTfV[LB Oculus Linux, iOS, PS4, Linux, iOS, PS4, Xbox One, Wii
oy . Xbox One, Wii U Xbox One, Wii U U, Oculus Rift,
Rift, Gear VR, Gear VR
SteamOS ' T
Engine
Graphics DirectX, OpenGL DirectX, OpenGL DirectX, OpenGL DirectX, OpenGL
Physics PhysX Integrated physics — pp - PhysX
engine
Audio FMOD FMOD FMOD FMOD
. Unreal Engine CryNetwork, Source 2 Engine
Networking Networking CryLobby Networking UNET
Coding
Programming Ot Cit. LUA ot C+#, JavaScript,
Languages Boo
Visual Scripting | Blueprints Flow Graph N/A Via third-party

Table 3.1: Game Engines Comparison

assets

ATTAC-L Simulator

Based on the theoretical background of games, game engines, and ATTAC-L,
introduced in the Background chapter, we can now elaborate in this chapter
on the contributions made in this thesis. More in particular, we created an
application that allows simulating scenarios developed in ATTAC-L, hence
the name ATTAC-L Simulator. We start this chapter by repeating the aim
and context. From this aim and context, we derive the requirements for the
application. Next, we will describe the main features in the application used
to satisfy the requirements. We conclude this chapter by describing the user
interfaces available in the simulator.

4.1 Aim and Context

As explained in the introduction, the aim was to develop a fast prototyping
tool that gives the opportunity to a scenario modeler to preview the different
steps of a scenario after the scenario had been created with ATTAC-L and
before it is integrated in the actual game. In order to realize this, the textual
description given in the ATTAC-L story model needs to be converted into a
playable story that can be invoked and observed in a step-wise manner by
the modeler.

Although ATTAC-L is a general-purpose scenario modeling language, it
is currently mainly used in the context of the Friendly ATTAC project for

Requirements 44

the development of scenarios for a serious game against cyber bullying.

4.2 Requirements

Before designing the application, we specified the requirements for the soft-
ware. Some requirements are generally applicable but some of the require-
ments are derived from the current domain for which ATTAC-L is used, i.e.,
cyber bullying. As we mainly aimed for simulation scenarios related to cyber
bullying, we opted for creating an environment that provides the means for
this, e.g., different persons, social media like Half-Life and Twitter, mobile
phones, email, etc. Also the (ATTAC-L) verbs supported by the simulator
are specially targeted towards support for cyber bullying situations.

Below is the list of requirements divided into two categories: general
requirements and requirements specific for the domain under consideration
(cyber bullying). When needed requirements are also motivated briefly.

General requirements:

e R1. To start a simulation, the JSON representation of a story is re-
quired.

e R2. A simulation can be paused at any moment.

The modeler should be able to inspect each step and reflect if
needed.

e R3. The main menu can always be accessed while a simulation is
running.

The modeler should be able to stop a simulation or change options
at any time during a simulation.

e R4. A scenario log is visible while a simulation is running.

In order to follow the scenario, the modeler should be able to see
the current and past game moves.

e R5. Detailed feedback, warnings, and error messages are presented
during the simulation when an action finished, when an action makes
no sense (e.g., walking to yourself), or when an unsupported action is
defined.

45

CHAPTER 4. ATTAC-L Simulator

Since one of the purposes of the simulator is verification of the sce-
narios, the modeler should be notified when an error or a potential
problem occurs.

R6. The modeler can set several environment-related properties for the
simulation.

Allows changing the environment to provide a better match with
the story that is being simulated.

R7. The scene is changeable at any moment.

The modeler should be able to choose between the Park, Office
and House scene to select the one that is most suitable for the
story (part) to be simulated.

R8. The simulator provides a number of predefined persons (charac-
ters).

R9. The simulator provides a number of predefined items.
In many games, players and/or NPCs have to collect items.
R10. The simulator provides an inventory for storing items.

In many games, players are able to keep track of collected items
in an inventory.

R11. Every character is able to pick up items.

R12. An item that was picked up is removed from the scene and if the
player picked it up, it is added to the inventory.

R13. Every character is able to give items to any other character. The
player should be able to give any item in his inventory to any other
character.

This is also a common requirement for games.

R14. Every character (NPC or player) can walk to certain locations in
a scene.

Every character (NPC or player) can talk to any other character.

Domain specific requirements:

Features 46

e DRI1. Every character (NPC or player) has its personal Half-Life page.

e DR2. A character is able to post, reply, and like a message or befriend
a person with Half-Life.

e DR3. Every character (NPC or player) has its personal Twitter page.
e DRA4. A character is able to tweet and re-tweet a message with Twitter.
e DR5. Every character (NPC or player) has its personal phone.

e DR6. A character is able to send and receive text messages.

e DRY7. Every character (NPC or player) has its personal email inbox.
e DRS8. A character is able to send and receive emails.

e DR9. Current verbs used in ATTAC-L for the cyber bullying domain
are supported.

4.3 Features

In this section we explain the main features of the simulator. We start by
describing the different persons (characters) available. Following this, we
explain the inventory and the different types of items and how they are
interacted with. Next, we discuss the different locations we defined in each
scene. Then we explain the scenario log. Afterwards we explain how a
conversation is started. We then give an overview of the different social
media in the simulator. We also give an overview of the messaging system.
We conclude this section by listing all the verbs supported in the simulator
and give an example on how to use each of them.

4.3.1 Persons

Having persons are essential in many scenarios, including those for the do-
main of cyber bullying. Therefore, next to the player’s character, there are
8 NPC models available in the simulator (R8). These are: Carl, Elisabeth,
Joan, Justin, Kate, Mary, Tim, and Vincent. We opt for eight NPC char-
acters so that a story can contain up to nine different characters (player
included). This gives the flexibility to the modeler to create scenarios where
multiple characters are involved. Figure 4.1 shows the player model and the
8 NPC models. When a game move contains the word “a person” (e.g., player
goes-to a person), a random NPC or the player itself will be chosen (note

47 CHAPTER 4. ATTAC-L Simulator

(b) Carl

(f) Kate (g) Mary

(i) Vincent

Figure 4.1: Player and NPC Models

in this example “a person” can never become player, checks are made that
subject and direct will not become the same).

4.3.2 Items and Inventory

There are three types of items available in the simulator: a shovel, an USB,
and a CD (Figure 4.2) (R9). We chose to only implement these items because
they can be used in a meaningful manner in a cyberbullying scenario (e.g.,
a USB stick containing homework that has been lost and found). However,
new items can be added in the simulator. This is discussed in future work
(see section 6.3.4). Using the action (verb) “picks-up” with a direct object
(shovel, USB or CD) will cause the item to be in the player’s inventory
after the game move is completed (R10, R12). More information about the
inventory is given in section 4.4.3.

When using the action “gives to” an error message will be thrown if the
player does not have the corresponding item in his inventory (R5). If he

Features 48

does have the item, it is removed from his inventory when the game move
is completed (R12). Note that NPCs do not have an inventory, they can
however pick up items (R11), but checking whether the NPC has the item
or not is not done.

(a) Shovel

Figure 4.2: Available Items in Simulator

There is a finite amount of items that can be present inside each scene.
The maximum number of items allowed per scene at the same time is:

o Park: 32
e House: 16

e Office: 8

The amount of items placed in a simulation has to be between 0 and its
maximum. The exact desired amount per item can be set in the configuration
file. More details about the configuration file can be found in section 5.4.

4.3.3 Locations

Any character (NPC or player) can walk to certain locations in a scene (R14).
Some examples of locations are “Playground” or “Fountain” for the park scene.
All the defined locations per scene are listed in Appendix B.

4.3.4 Scenario Log

The Scenario Log panel always appears on the bottom left of the screen while
a simulation is running (R4). It keeps track of every game move executed.
When a game move is completed, it will turn white while the next one (if
any) will appear on top of the log in green. Figure 4.3 shows the scenario
log panel with a finished game move and the current game move running.

49 CHAPTER 4. ATTAC-L Simulator

gl: player picks-up Ush

Figure 4.3: Scenario Log Panel

4.3.5 Conversation

Any character (either an NPC or the player) can talk to any other character
in the environment (R15). In ATTAC-L, this is specified with the verb “says
to”. The condition for it to execute is that the two characters involved are
facing each other. If not, the character invoking the game move (the subject)
will walk towards the other character involved. When they are close enough
a conversation overlay is shown (see section 4.4.4).

4.3.6 Social Media

As social media is a crucial element in cyber bullying situations, we have
implemented two social media in our simulator: Half-Life (a kind of Face-
book!) and Twitter?. Half-Life also has a Messenger aspect. Their layouts
are discussed in section 4.4.5. Their functionality is discussed below.

"https://www.facebook.com/, accessed 13/04/2015.
*https://www.twitter.com/, accessed 13/04/2015.

Features 50

Half-Life

We have created the Half-Life social media in our simulator (DR1). The
possible verbs that trigger its use are: “posts on/to”, “likes (on)”, “replies(-
with) on”, and “comments on”. Before posting, commenting or liking on
someone else’s Half-Life page, both involved persons have to be friends (using

the “(be)friends on” verb) (DR2).

Half-Life Messenger

We have also implemented chatting functionality via the Half-Life Messenger.
The verbs that trigger the Messenger are: “chats to” and “says to”. Chatting
consists of two parts: a conversation and a message. Only one conversation
can exist between two persons. One conversation can have multiple messages.
The conversation with the newest message will always appear on top in the
left bar of the overlay, this also contains (a part of) the last message.

Twitter

We have recreated a simplistic version of Twitter in our simulator (DR3,
DRA4). The approval of Twitter was granted to use their layout for the purpose
of this simulator. The Twitter overlay is shown when a game move contains
one of the following verbs: “tweets”, “retweets”, and “follows on”. A person
can only post a message (a Tweet) on his own Twitter page. Retweeting a
Tweet copies the original Tweet to both the Twitter pages (it is indicated if

a Tweet is retweeted).

4.3.7 Messaging

As a lot of cyber bullying occurs through email and text messages, we have
implemented these two methods of messaging in our simulator. Their layouts
are discussed in section 4.4.6.

Text

Text messaging is possible in the simulator. In order to depict text messages
we use a phone overlay (DR5, DR6). The possible verbs that trigger the
phone overlay are: “sends to”, “texts to”, and “receives from”. A person can
have one conversation with every person, each of these conversations may
contain text messages that have been sent between each other.

O~ O Ut W

DN DN DN N BN DD b= e b e e e e e e
DU WN P, OO UURWN OO

51 CHAPTER 4. ATTAC-L Simulator

Email

Email messages contain two overlays. The first one is used when composing
an email and is triggered by the verbs: “sends to” or “(e)mails to” (DRS).
The result is a compose email overlay.

The second one is triggered when the verb is “receives from”, this results
in showing the email inbox of the subject of the game move (DR7, DRS).
As in text messages, persons also have conversations with each other where
emails are stored in.

4.3.8 Verb Support

In what follows, we explain all the verbs the simulator supports (DR9). We
will provide an explanation of all the supported verbs by using it in an
example modeled in ATTAC-L, while also giving its JSON representation.
Appendix C gives a recap of all the possible verbs.

walks-to & goes-to

|:|r.1ar;. | walks-to | Ju:-ar||:|

Figure 4.4: Game Move with “walks-to”

{
" _entries": [
llgoll
1
"_flow": {
Ilgoll: {
"_expr": [
{
"word_": "Mary",
" _next": [
{
"word_": "walks-to",
" _next": [
{
"word_": "Joan"
}
]
}
]
¥
P
"_interpr": {
"_subject": "Mary",
" _predicate": {
" _verb": "walks-to",
"_direct": "Joan"

27
28
29
30

O~ O Ut WN

Features 52

Listing 4.1: JSON Representation of Figure 4.4

Any character (NPCs or player) can walk to each other by using the
“walks-to” or “goes-to” verb. Figure 4.4 shows an example of a game move
using the “walks-to” verb and Listing 4.1 gives the JSON representation of
this game move. The subject will always walk towards the direct. If we
use the example above, Mary will walk towards Joan. The game move is
completed when Mary is in front of and facing Joan.

There is also a possibility to walk to an area in the scene. This requires
the direct to be a predefined location, more information on the locations that
are defined in the simulator can be found in section 4.3.3.

says to

The verb “says to” can be used in two different contexts: talking to someone
in person and talking (chatting) on Half-Life with another person. We will
explain the first case, talking to someone in person. The second case gives
the same result as the “chats to” verb and will be discussed there.

Epla;.er 5aY5 i message ‘Hello :|

Figure 4.5: Game Move with “says to”

{
" _entries": [
Ilgoll
1
" flow": {
|lgoll: {
"_expr": [
{
"word_": "player",
" _next": [
{
"word_": "says",
"attr_": {
"message": "Hello"
}
¥o
{
"word_": lltoll’
" _next": [

{

G W N

53 CHAPTER 4. ATTAC-L Simulator

"word_": "Carl"
}
]
¥
]
¥
15
"_interpr": {
"_subject": "player",
" _predicate": {
" _verb": "says to",
"_direct": {
"message": "Hello"
¥o
" _indirect": "Carl"
¥

Listing 4.2: JSON Representation of Figure 4.5

All characters can talk to each other, but not against themselves. When a
game move contains the verb “says to”, the subject and indirect are expected
to be characters (NPC or player). If this is not the case, an error will be
given and the scenario will be stopped (R5). If however, subject and direct
are both characters, the subject will walk towards the indirect (just as in
“walks-t0”) and the conversation will be shown (R5). See section 4.3.5 for
more information about the conversation overlay. If we use the example as
shown in Figure 4.5, with its JSON representation shown in Listing 4.2, player
will walk to Carl and say “Hello” to him. Note that the direct “a message”
can be omitted here, this is the only game move construction where this is
possible, because there is no ambiguity here.

chats to

As stated above, “chats to” and “says to” when used in a game move with
the construction as shown in example Figure 4.6, yield the same result.

E Joan chats a message

]
|)
fo the hl-page of | Vincent :[

message ‘Hello u|

Figure 4.6: Game Move with “chats to”

" _entries": [
|lgoll

i

"_flow": {

Features

o ~ >

10

12
13
14
15
16
17
18
19
20
21
22
23

25
26
27
28
29
30

32
33
34
35
36

38
39
40
41
42
43
44
45
46
47
48
49
50

52
53
54
55
56
57
58 %

ngou: {

54
"_expr": [
{
"word_": "Joan",
" _next": [
{
"word_": "chats",
" _next": [
{
"word_": "a message",
"attr_": {
"message": "Hello"
¥
+
]
¥o
{
"WOrd_": lltoll,
"_next": [
{
"word_": "the hl-page of",
" _next": [
{
"word_": "Vincent"
}
]
}
]
¥
]
¥
15
"_interpr": {
"_subject": "Joan",
" _predicate": {
" _verb": "chats to",
"_direct": {
" det": Ilall’
"_noun": "message",
" _attr": {
"message": "Hello"
¥
Ty
"_indirect": {
"_det": "the",
"_noun": "hl-page",
"_of": "Vincent"
+
¥
¥

Listing 4.3: JSON Representation of Figure 4.6

Every character (NPC or player) has its personal Half-Life page (hl-page).

Half-Life and Half-Life Messenger are overlays regarding social media, more
information about social media can be found in section 4.3.6. In the “chats
to” we only deal with the Messenger aspect of Half-Life. In the game move,

O~ O Ut W

W W W W NNDNDNDRNDNDN DN N o e e e e e e
WNHFRF OO NNAU R WNRFE OO NO U WNHO©

55 CHAPTER 4. ATTAC-L Simulator

we have to specify to whose Half-Life Messenger page we are chatting to.
As can be seen in the example Figure 4.6, the one sending “Hello” is Joan
and the recipient is Vincent. The JSON representation of this example is
depicted in Listing 4.3.

sends to (& texts to & mails to)

The “sends to” verb can be used for sending two different kinds of messages:
text and email. We will start by explaining sending a text message and
continue with an email message. We can already note that every character
(NPCs and player) has its personal phone (DR5) where text messages are
shown and its personal email inbox (DR7). More information about how the
messaging system overlays look like can be found in section 4.3.7.

E Carl sends a message imeasage ‘Hello :i

to player |:|

Figure 4.7: Game Move with “sends to” (text)

{
" _entries": [
Ilgoll
1
"_flow": {
"go": {
"_expr": [
{
"word_": "Carl",
" _next": [
{
"word_": "sends",
" _next": [
{
"word_": "a message",
"attr_": {
"message": "Hello"
}
}
]
¥
{
"word_": "to",
"_next": [
{
"word_": "player"
}
]
}
]
¥

"_interpr": {

~ O Ut W

Features

56

_subject":

" _predicate":

¥o

_verb":
_direct":

Carl",
{

"sends to",

{

" _det": "a",

_noun":

"_attr": {
"message": "Hello"

¥

_indirect":

"message",

"player"

Listing 4.4: JSON Representation of Figure 4.7

Any character can send a text message to any other character. In order
to send a text message the game move has to fulfill three requirements: the
verb has to be “sends to” or “texts to”, the direct object has to be either
“a message” or “a text”, and the value brick has to have one entry with the
property name “message” and a value filled in for the content of the message
being sent. An example of a game move containing a “sends to” verb is seen
in Figure 4.7, its JSON representation is seen in Listing 4.4.

E player

sends

o

d message

Kate q

Figure 4.8: Game Move with “sends to” (email)

{
" _entries": [
Ilgoll
i
"_flow": {
Ilgoll: {
"_expr": [
{
"word_":
" _next":
{

"player",

L

"word_":

_next":

{

"sends",

L

"word_":

"attr_": {

"subject":
"message":

"a message",

"Hello",
"How are

you?"

57 CHAPTER 4. ATTAC-L Simulator

24 "word_": "to",

25 " _next": [

26 {

27 "word_": "Kate"
28 ¥

32 ¥

33 1y

34 "_interpr": {

35 " _subject": "player",

36 " _predicate": {

37 "_verb": "sends to",

38 " _direct": {

39 |l_det’|: |la’|,

40 "_noun": "message",

41 Wl at b [

42 {

43 "subject": "Hello"
44 ¥o

45 {

46 "message": "How are you?"
47 ¥

48]

49 Fo

50 " _indirect": "Kate"

Listing 4.5: JSON Representation of Figure 4.8

Just like with text messages, email messages can be send to any character
in the simulator. A game move that sends an email message also has three
requirements to fulfill: the verb has to be “sends to” or “(e)mails to”, the
direct object has to be either “a message” or “a mail/an email”, and the value
brick has to have two entries with their values filled in and their property
names being “subject” and “message”. Figure 4.8 shows an example of a game
move where the player sends an email to Kate. The subject of this email is
“Hello” and the content of the email is “How are you?”. The JSON code of
this game move is shown in Listing 4.5.

gives to

E Vincent Qives Ush
to Elisabeth

Figure 4.9: Game Move with “gives to”

Features 58

25

" _entries": [

||gO’|
15
" _flow": {

"go": {

"_expr": [
{

9 "word_": "Vincent",
10 " _next": [
11 {
12 "word_": "gives",
13 "_next": [
14 {
15 "word_": "Usb"
16 }

O~ O Ut W

A~

20 "word_": "to",
21 " _next": [

23 "word_": "Elisabeth"

28 ¥

29 15

30 "_interpr": {

31 "_subject": "Vincent",

32 " _predicate": {

33 "_verb": "gives to",

34 " _direct": "Usb",

35 "_indirect": "Elisabeth"

Listing 4.6: JSON Representation of Figure 4.9

Using the “gives to” verb, any character can give an item to any other
character (R13). We have three items in the simulator: a shovel, an USB, and
a CD. When the game move is executed, the subject will walk towards the
indirect and hand over the item. When the subject is the player, we perform
a check to see if the item being given from player to another character is
indeed in the player’s inventory. Note that we do not make this check if the
giver is an NPC. More information about the inventory and items can be
found in section 4.3.2.

If we take the example as given in Figure 4.9, with its JSON code given
in Listing 4.6, Vincent will walk to Elisabeth and give the USB-stick as soon
as he is facing her. The feedback message provided will be: “Vincent gave
usb to Elisabeth” (R5).

59 CHAPTER 4. ATTAC-L Simulator

picks-up & grabs

|:||II|EI;.E:F| picks-up | cd |:|

Figure 4.10: Game Move with “picks-up”

-~

" _entries": [

||g0’|
15
" _flow": {

"go": {

"_expr": [
{

9 "word_":
10 "_next":
11 {

O~ O Ut W

12 "word_":
13 "_next":

20 I
21 15
22 "_interpr": {

"player",

L

{

}

"picks-up",

L

"word_":

23 "_subject": "player",

24 " _predicate":
25 " _verb":

"picks-up",

26 "_direct":

nedn

negn

Listing 4.7: JSON Representation of Figure 4.10

A game move with the “picks-up” or “grabs” verb implies that the direct
object contains the name of a known item in the simulator. When the subject
is player, the item that is picked up is added to the inventory (R12). In the
example given in Figure 4.10 with its JSON code in Listing 4.7, the player
will walk to where the CD is in the scene and pick it up. At this point
the item is removed from the scene and added to the player’s inventory. A
feedback message containing “picked up CD” is shown to complete the game
move (R5). More information about the inventory and items can be found
in section 4.3.2.

O~ O Utk W

Features

60

receives from

The “receives from” verb is used for the receipt of two different kinds of mes-
sages: text and email. We start the explanation of receiving a text message
and continue with the receipt of an email message. As said in the “sends to”
verb, every character (NPCs and player) has its personal phone where text
messages are shown and its personal email inbox. More information about
how the messaging system overlays look like can be found in section 4.3.7.

receives
from

amessage |
Kate |:|

E player

Figure 4.11: Game Move with “receives from” (text)

{
" _entries": [
Ilgoll
15
" _flow": {
Ilgoll: {
"_expr": [
{
"word_": "player",
" _next": [
{
"word_": "receives",
"_next": [
{
"word_": "a message",
"attr_": {
"message": "Hello"
¥
}
]
¥o
{
"word_": "from",
" _next": [
{
"word_": "Kate"
+
]
¥
]
¥
15
"_interpr": {
"_subject": "player",
" _predicate": {
"_verb": "receives from",
" _direct": {
’I_detll: Ilall ,
"_noun": "message",
" _attr": {

"message":

"Hello"

61 CHAPTER 4. ATTAC-L Simulator

42 ¥

43 ¥o

44 " _indirect": "Kate"
45 ¥

46 +

47 }

48 ¥

49 3

Listing 4.8: JSON Representation of Figure 4.11

Any character can receive a text message from any other character. The
modeling of the “receives from” verb in ATTAC-L has the same three require-
ments as the “sends to”: the verb has to be “receives from”, the direct object
has to be either “a message” or “a text”, and the value brick has to have one
entry with the property name “message” and a value filled in for the content
of the message being sent. The difference with “sends to” is that the result of
a “receives from” game move regarding a text message shows the perspective
from the indirect’s phone. An example of a game move containing a “receives
from” verb is given in Figure 4.11, its JSON representation is given in Listing
4.8.

E Justin receives a message subject ‘Hello
message -How are you? g

from Tn:l -----------------------------------

Figure 4.12: Game Move with “receives from” (email)

)

" _entries": [

||gO’|
1
"_flow": {
llgoll B {
"_expr": [

{

O~ O Ut W

©

"word_": "Justin",
"_next": [

{

— ==
N = O

"word_": "receives",
" _next": [

{

—= ==
ot s W

"word_": "a message",
"attr_": {
"subject": "Hello",
"message": "How are you?"

RERRESsxas
o
-
-
-

"word_": "from",

Features 62

" _next": [

{
"word_": "Tim"

}

¥
15
"_interpr": {
" _subject": "Justin",
" _predicate": {
" _verb": "receives from",
" _direct": {
ll_detll: Ilall ,
"_noun": "message",
" _attr": [
{
"subject": "Hello"

¥o
{

"message": "How are you?"
}
]
1,

" _indirect": "Tim"

Listing 4.9: JSON Representation of Figure 4.12

Just like with text messages, email messages can be received from any
character in the simulator. A game move that receives an email message
also has three requirements to fulfill: the verb has to be “receives from”, the
direct object has to be either “a message” or “a mail/an email”, and the value
brick has to have two entries with their values filled in and their property
names being “subject” and “message”. The difference with “sends to” is that
the result of a “receives from” game move regarding an email message shows
the email inbox from the subject’s perspective, instead of the compose mail
window. Figure 4.12 shows an example of a game move where Justin receives
an email from Tim. The subject of this email is “Hello” and the content of
the email is “How are you?”. The JSON code of this game move is shown in
Listing 4.9.

befriends on & friends on

In order to be able to post and comment on Half-Life, the involved characters
need to be friends on Half-Life. Befriending happens with the “befriends on”
or “friends on” verb. More information about Half-Life can be found in

63 CHAPTER 4. ATTAC-L Simulator

section 4.3.6.

E player befriends Carl
on Half-Life

Figure 4.13: Game Move with “befriends on”

1 {

2 " _entries": [

3 llgoll

4 1

5 "_flow": {

6 Ilgoll : {

7 "_expr": [

8 {

9 "word_": "player",

10 " _next": [

11 {

12 "word_": "befriends",
13 " _next": [

14 {

15 "word_": "Carl"
16 }

_= ==

© 0o

lanlinad
fa

on",

[\~
(=)

"word_":
"_next": [

[CECEN)
W0 =
.

"word_": "Half-Life"

ERBRR
—_
.
-
.

}

[\
<o

1
"_interpr": {
" _subject": "player",
" _predicate": {
" _verb": "befriends on",
" _direct": "Carl",
"_indirect": "Half-Life"

FEFESEFEE
-
.
.
(o)

40}

Listing 4.10: JSON Representation of Figure 4.13

Figure 4.13 shows an example of a game move befriending player and Carl
on Half-Life. Tts JSON code is given in Listing 4.10. Note that the indirect
has to be “Half-Life”. The result of befriending is that, apart from seeing
a new name in the friends list, friends can post, comment and like on each
other’s Half-Life page. Posting, commenting and liking is explained next.

Features 64

posts on & posts to

A message can be posted to either Half-Life or Twitter® using “posts on” or
“posts to”. Here we will first discuss the “posts to” for posting a message on
Half-Life. Posting a message on Twitter is explained right after.

E player posts a message i message ‘Hello | .:i

O~ O U W

to thehl-pagenf| Carl |:|

Figure 4.14: Game Move with “posts to” (Half-Life)

{
" _entries": [
Ilgoll
15
" flow": {
llgoll: {
"_expr": [
{
"word_": "player",
" _next": [
{
"word_": "posts",
"_next": [
{
"word_": "a message",
"attr_": {
"message": "Hello"
¥
}
]
¥o
{
Ilword_ll: lltoll’
" _next": [
{
"word_": "the hl-page of",
"_next": [
{
"word_": "Carl"
¥
]
+
]
¥
]
}
1
"_interpr": {
"_subject": "player",
" _predicate": {
"_verb": "posts to",
" _direct": {
’l_detll: lla" ,

Shttps://twitter.com/, accessed 15/04/2015.

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

O~ O U W

65 CHAPTER 4. ATTAC-L Simulator
"_noun": "message",
"_attr": {
"message": "Hello"
¥
¥o
" _indirect": {
Il_det": llthell’
"_noun": "hl-page",
"_Of": llCarlll
}
¥
}
}
¥
}

Listing 4.11: JSON Representation of Figure 4.14

Any character (NPC or player) can post on their own Half-Life page (hl-

page) or on the Half-Life page of a character which has been befriended in
a previous game move (DR2). This can be done by using the “posts on” or
“posts to” verb. When posting on your own Half-Life page, the subject and
indirect have to be the same. Figure 4.14 shows an example game move of
player posting a message (“Hello”) on the Half-Life page of Carl (we assume
that player has befriended Carl in a previous game move). Listing 4.11 shows
the JSON code for this example.

Epla;.er posts a message i message ‘Hello .:i

o the twitter-page of | playerq

Figure 4.15: Game Move with “posts to” (Twitter)

-~

" _entries": [
Ilgoll
15
" _flow": {
"gO": {
n_expru: [
{
"word_": "player",
" _next": [
{
"word_": "posts",
"_next": [
{
"word_": "a message",
"attr_": {
"message": "Hello"
}
}

-~

Features 66

"word_": "to",
"_next": [
{
"word_": "the twitter-page of",
"_next": [
{
"word_": "player"

}

}
15
"_interpr": {
"_subject": "player",
" _predicate": {
"_verb": "posts to",
" _direct": {
’l_detll: lla",
"_noun": "message",
"_attr": {
"message": "Hello"
}
¥o
" _indirect": {
’l_detll: llthell,
"_noun": "twitter -page",
"_Of": llplayerll

Listing 4.12: JSON Representation of Figure 4.15

Posting on Twitter is called “T'weeting”, it can only happen on a charac-
ter’'s own Twitter page. Subject and indirect have to be the same character
name in order to post a message (a “Tweet”) on Twitter. If this is not the
case, an error message is given saying that you can only post on your own
Twitter page (R5). Figure 4.15 shows an example of player posting a mes-
sage (“Hello”) on his own Twitter page. Listing 4.12 is the JSON code of this
example. Because the subject and indirect have to be the same character
name, the “posts on” verb is not the most desired one when posting to Twit-
ter. The “tweets” verb is a more efficient and cleaner way of posting a Tweet,
it is explained later.

replies on & replies-with to & comments on

When someone posts a message on Half-Life, it is possible to comment on
this post. This can be done by using the verb “replies on” or “replies-with

O~ O Utk W~

O i s s b s s s s S 0 W W W W W W W W WRNNDNNDNNDNNNNFH R e e
O OO0 U WNNHFHFOORJITDNUERE WNHF OO UERE WNFE OO0 Uk W~ OO

67 CHAPTER 4. ATTAC-L Simulator

to” or “comments on”. This implies commenting on the newest post on the
indirect’s Half-Life page.

E Vincent replies a message i message ‘Hello ||:i

on the hl-page ufl Carl |:|

Figure 4.16: Game Move with “replies on”

{
" _entries": [
Ilgoll
1o
" flow": {
llgO": {
"_expr": [
{
"word_": "Vincent",
" _next": [
{
"word_": "replies",
"_next": [
{
"word_": "a message",
"attr_": {
"message": "Hello"
+
}
]
Ty
{
llword " : n 01’1" ,
"_next": [
{
"word_": "the hl-page of",
"_next": [
{
"word_": "Carl"
¥
]
}
]
+
]
¥
15
"_interpr": {
" _subject": "Vincent",
"_predicate": {
"_verb": "replies on",
" _direct": {
Il_det": llall,
"_noun": "message",
"_attr": {
"message": "Hello"
+
Fo
" _indirect": {

" _det": "the",

51
52
53
54
55
56
57
58

O~ O Utk W

Features 68

" _noun": "hl-page",
n Of": llCarlll

Listing 4.13: JSON Representation of Figure 4.16

Figure 4.16 shows an example where Vincent comments (“Hello”) on a
post on the Half-Life page of Carl. We assume that Vincent and Carl have
befriended themselves on Half-Life already, and either Carl or someone else
posted a message on Carl’s Half-Life page previously. Listing 4.13 shows the
JSON code of this example.

likes & likes on

A post on Half-Life can be liked by anyone, including the creator of the post.
There are two ways to like a post, they have a different syntax but yield
the same result. We will explain both ways to like a post, starting with the
“likes” verb, and following with the “likes on” verb.

|:||Jla;.er | likes | Ia-atpl:--stn:i

Figure 4.17: Game Move with “likes”

{
" _entries": [
Ilgoll
1o
" flow": {
llgoll: {
"_expr": [
{
"word_": "player",
" _next": [
{
"word_": "likes",
"_next": [
{
"word_": "last post"
}
]
¥
]
}
1
"_interpr": {
"_subject": "player",
"_predicate": {
"_verb": "likes",

26
27
28
29
30
31
32
33
34

69 CHAPTER 4. ATTAC-L Simulator
" _direct": {
"_det": "last",
"_noun": "post"
}
I
}
}
¥
+

Listing 4.14: JSON Representation of Figure 4.17

Figure 4.17 implies that the subject (player) likes the last post on his
Half-Life page. This post can be one which he posted himself, or it can be
a post someone else posted on his page. Its JSON representation is given
in Listing 4.14. Note that the direct “last post” can be changed by “last

O~ U W

W W W N NDNDNDNDRN NN DN o e e e e e
N = O QOO Uk WNH OOk WNFEOO

message”, the result is the same.

E player likes last post |:|

on the hl-page of | Mary |:|

Figure 4.18: Game Move with “likes on”

{
" _entries": [
Ilgoll
1o
" flow": {
llgoll: {
"_expr": [
{
"word_": "player",
" _next": [
{
"word_": "likes",
"_next": [
{
"word_": "last post"
}
]
¥o
{
’lword_ll: " on’l ,
" _next": [
{
"word_": "the hl-page of",
" next": [
{
"word_": "Mary"
¥
]
}
]
}

Features 70

33 }

34 15

35 "_interpr": {

36 "_subject": "player",

37 " _predicate": {

38 "_verb": "likes on",

39 "_direct": {

40 "_det": "last",

41 "_noun": "post"

42 3,

43 " _indirect": {

44 "_det": "the",

45 "_noun": "hl-page",

46 "_Of": llMary"

47 }

48 }

49 ¥

50 }

51 }

52 ¥

Listing 4.15: JSON Representation of Figure 4.18
While “likes” implies liking a post on one’s own Half-Life page, with “likes
on” it is possible to specify the last post to like on anyone else’s Half-Life
page. Figure 4.18 shows an example where player likes the last post on the
Half-Life page of Mary. The JSON code for this example is given in Listing
4.15. As is the case with “likes”, the direct “last post” can be changed by
“last message” without changing the result. The indirect specifies on whose
Half-Life page to like the last post. Note that for liking someone else’s post,
it is also required to be friends on Half-Life.
tweets
As has been explained for the “posts on” verb, Tweeting can only be done on
one’s own Twitter page. However, when using the “tweets” verb, this problem
is not applicable anymore.
|:| Carl | tweets | amessage | message Hello g
Figure 4.19: Game Move with “tweets”

1 {

2 " _entries": [

3 |lgoll

4 P

5 "_flow": {

6 Ilgoll: {

7 "_expr": [

8 {

9 "word_": "Carl",

10 "_next": [

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

30
31
32
33
34
35

37
38
39
40

O~ O Ut W N

_ ==
N = O ©

71 CHAPTER 4. ATTAC-L Simulator
{
"word_": "tweets",
" _next": [
{
"word_": "a message",
"attr_": {
"message": "Hello"
}
}
]
¥
]
¥
15
"_interpr": {
"_subject": "Carl",
"_predicate": {
"_verb": "tweets",
"_direct": {
"_det": "a",
"_noun": "message",
" _attr": {
"message": "Hello"
}
}
¥
¥
}
¥
+

Listing 4.16: JSON Representation of Figure 4.19

As can be seen in Figure 4.19, when using “tweets”, there is no need to
specify an indirect. All Tweets using this verb will be posted on the subject’s
Twitter page. Listing 4.16 shows the JSON code for this example.

retweets
|:| Carl | retweets | Vincent |:|
Figure 4.20: Game Move with “retweets”
{
" _entries": [
||g0l|
[
"_flow": {
"g0": {
"_expr": [
{
"word_": "Carl",
" _next": [
{
"word_": "retweets",

Features 72

13 " _next": [
14 {

15 "word_": "Vincent"
16 }

17]

18 ¥

19]

20 ¥

21 15

22 "_interpr": {

23 " _subject": "Carl",

24 " _predicate": {

25 " _verb": "retweets",
26 "_direct": "Vincent"
27 ¥

28 T

29 }

30 ¥

31

Listing 4.17: JSON Representation of Figure 4.20

A post (Tweet) on Twitter can be re-tweeted by anyone by using the verb
“retweets”. This implies increasing the re-tweet counter on the corresponding
Tweet and the original Tweet will be copied to the subject’s (the one who
is re-tweeting) Twitter page, where it states that it is a re-tweeted Tweet.
The example given in Figure 4.20 will result in Vincent’s original Tweet to
be placed on Carl’s Twitter page. Note that we assume here that Vincent
has posted a Tweet at least once before on Twitter. Listing 4.17 gives the
JSON representation of this example.

follows on
IE Tim follows loan g
on Twitter g
Figure 4.21: Game Move with “follows on”
1 A
2 " _entries": [
3 Ilgoll
4 1
5 "_flow": {
6 Ilgoll: {
7 "_expr": [
8 {
9 "word_": "Tim",
10 " _next": [
11 {
12 "word_": "follows",
13 " _next": [

14 {

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

34
35
36
37
38

40

73 CHAPTER 4. ATTAC-L Simulator

"word_": "Joan"
}
]
Ty
{
llword ll: Ilonll’
"_next": [
{
"word_": "Twitter"
}
]
+
]
¥
1
"_interpr": {
" _subject": "Tim",
" _predicate": {
"_verb": "follows on",
" _direct": "Joan",
"_indirect": "Twitter"
¥

}

Listing 4.18: JSON Representation of Figure 4.21

It is also possible to follow someone on Twitter by using the “follows on”

verb. Figure 4.21, with its JSON representation given in Listing 4.18, gives
an example on how to follow someone on Twitter. In this example, Tim will
follow Joan; this means that all of Joan’s Tweets will be visible on Tim’s
Twitter page as well. The “following” counter is increased on Tim’s Twitter
page, while the “follower” counter is increased on Joan’s Twitter page.

4.4 User Interface

We start by explaining the main menu (R3) and how an ATTAC-L story
in JSON code can be pasted to start the simulation (R1). Afterwards we
show a screenshot of an ongoing simulation and explain what it shows. We
then explain and show the interface for the Inventory. Next, we explain
the user interface elements used for conversations and the social media, i.e.,
conversation overlay and the social media overlays. We conclude this section
by explaining how messages are displayed, i.e., the messaging overlays.

4.4.1 Main Menu

Upon launching the simulator, the main-screen is presented to the user (as
illustrated in Figure 4.22). The button “Paste JSON Code” opens a dialog

User Interface 74

in which ATTAC-L JSON code can be entered. This code represents the
textual form of an ATTAC-L storyline model that has to be simulated (Figure
4.23a). After clicking the “Options”™button, the Options dialog is shown
(Figure 4.23b). With this dialog, several environment-related properties can
be set for the simulation, such as a day- or night-environment or turn on or
off rainy weather (R6). Similar for the “Change Environment”-button, which
opens the Change Environment-dialog (Figure 4.23c). This dialog controls
whether the simulation should be run in a park, office or house environment
(R7). We opt for these three environments because most of the scenarios
developed are able to fit into one of these environments. The main menu can
always be accessed while a simulation is running by pressing the “ESC” key

(R3).

Paste JSON Code
Optfons

Change Environment

Quft

Figure 4.22: Main Menu

75 CHAPTER 4. ATTAC-L Simulator

Paste JSON Code

Optfons
Daytfme

® Day

Night Change Environment Layout

Weather *Pay

* No rain House

Clear Office

Raain

OK

Start Scenario

OK

(a) Paste JSON Code (c) Change Environment
Menu (b) Options Menu Menu

Figure 4.23: Main Menu Interfaces

4.4.2 Simulation

Figure 4.24 shows a screenshot during the execution of a simulation. This
example depicts a “goes-to” action, where the player goes to an NPC called
Elisabeth. The corresponding ATTAC-L model is shown in Figure 4.25, its
JSON is given in Listing 4.19.

As can be seen at the left side of the screen, there are two panels that
present information to the user. The top one reminds the user of the Hotkeys
(i.e., the different keyboard keys providing quick access to a particular overlay
in the simulator) available. The bottom panel is the Scenario Log (see section
4.3.4).

During a simulation, the user can click “P” once to pause the simulation,
this will cause the text “Paused” to appear on the screen in front of the
simulation. Clicking it twice will resume it again (R2).

User Interface 76

C t9.go to.main menu
P to pause
ec5 | to show inventory
Press T to show Twitter
Press F to show Half-life

Press C 1o show Half-ife
Messenger

] [
TIVEREIEERREER FREP™ |

Figure 4.24: Simulation Performing the “goes-to” Action (Park Scene)

|:|player | goes-to | Elisabeth|:|

Figure 4.25: ATTAC-L Representation of the Game Move in Figure 4.24

1 {

2 " _entries": [

3 Ilgoll

4 i

5 " _flow": {

6 "gO": {

7 "_expr": [

8 {

9 "word_": "player",

10 " _next": [

11 {

12 "word_": '"goes-to",
13 "_next": [

14 {

15 "word_": "Elisabeth"
16 }

= =

co ~3

“
[

19
20
21
22
23

25
26
27
28
29
30
31

77 CHAPTER 4. ATTAC-L Simulator

¥
1
"_interpr": {
"_subject": "player",
"_predicate": {
"_verb": "goes-to",
" _direct": "Elisabeth"
¥

}

Listing 4.19: JSON Representation of Figure 4.25

4.4.3 Inventory

The player is able to access the inventory by pressing “I” while the simulation
is running. This will pause the simulation and display the inventory of the
user in the middle of the screen as illustrated in Figure 4.26. We used the
ATTAC-L scenario given in Figure 4.27, so that we have picked up an item
(CD) first. Items that are inside the inventory have an icon and a tooltip
when hovering over them. It is also possible to rearrange items by dragging
and dropping them inside the inventory.

User Interface 78

Hotkeys

j/"Press ESC to go to main menu

s (o hide inventory

S

Inventory”

C

Scenario Log

Figure 4.26: Inventory After Picking Up CD

|:|player | picks-up cd

player | goes-to | Elisabeth|:|

Figure 4.27: ATTAC-L Representation of the Story in Figure 4.26

4.4.4 Conversation Overlay

The conversation overlay is shown when the game move contains the verb
“says to”. Figure 4.29 is an example game move containing this verb. The
resulting overlay is shown in Figure 4.28. The avatar shown on the left of
the message is the character that is currently talking.

79 CHAPTER 4. ATTAC-L Simulator

“‘ -._-.--I—h-

3 Hotkeys)

\ s ESC to go to main menu ‘ S\ | T S A S - B S
; Pregs (0 pause 1 \ 1 'l,“' —---!-!-ll=
t Press | to show inventory r 'l L ..-..-,.-‘

Press T to show Twitter

Press F to show Halr-lite G
N

: =
ex = [unt SRR

Hey Elisabeth! How are you feeling today?

e
L -

Figure 4.28: Conversation Using the “says to” Action

E player 5ays message ‘Hey Elisabeth! How are you feeling today? (:):]
to Elisabeth 4

Figure 4.29: ATTAC-L Representation of the Game Move in Figure 4.28

4.4.5 Social Media Overlays

In this section we discuss the visuals used for Half-Life, Half-Life Messenger,
and Twitter.

Half-Life

The ATTAC-L story given in Figure 4.31 starts by befriending player and
Carl, followed by Carl posting a message to the Half-Life page (hl-page) of
player. The resulting Half-Life overlay is shown in Figure 4.30. Note that all
the befriended persons are listed (by their name) in the bottom left of the

k
Press ESC to
Press P to pais
Press |
Press T o show Twitter
to show Half-life

Press C to show Half-life

g0: player befrien

User Interface

80

Half-Life overlay screen. The player’s Half-Life page can be brought up by
pressing the “F” key.

on Half-Life

Half-Life

Figure 4.30: Half-Life Overlay - Performing a “posts to”

E player befriends

on

Carl
HalfLife

2 message

the hl-page of

Figure 4.31: ATTAC-L Representation of the Story with a Half-Life Post

Half-Life Messenger

Figure 4.33 shows the ATTAC-L story with two conversations and three
messages. Figure 4.32 shows the resulting Messenger overlay for this story.
The player’s Half-Life Messenger can always be seen by pressing the “C” key.

Scenario Log

CHAPTER 4. ATTAC-L Simulator

E Elisabeth

chats

fo

a4 message

Inbox Other More

Carl New message Actions Search

Carl 21/04/2015 00:27|
.Yes she did. l am
going.

0:2
-Hey player! It is my
thday tomarrow and

player 21/04/2015 00:27
Hey Carl. Did Elisabeth also invite you to her party
tomorrow?

Carl
‘Yes she did. | am going.

21/04/2015 00:27

Hey player! It is my birthday tomorrow and | [&H

am holding a party. Want to join?

i
the hl-page of |

player

player chats a message Hey Carl. Did Elisabeth also invite you to her
1 party tomorrow?
to the hl-page of | Carl BB T
chats
o the hl-page of

Figure 4.33: ATTAC-L Representation of the Story with Half-Life Messenger

Twitter

Figure 4.35 shows an ATTAC-L game move where player tweets the message
“This is my first Tweet!”. The corresponding Twitter overlay is shown in
Figure 4.34. The player’s Twitter page can always be brought up by pressing
the “T” key.

User Interface 82

He
Press ESC to gy
Press P fo padse

Press | to show inventory

s Press T to show Twitter

5 Press F to show Half-ife

Press C to show Half-life
Messenger

Press M to show Text Messages

B

= @player TWEETS FOLLOWERS FOLLOWING
player
Tweets Tweets and Answers Photos and Videos

player player: @player - 21/04/2015 00:11 AM
@player This is my first Tweet!

Attac-| simulator character
Scenario Log Park

ijlayer | tweets | a message message :This is my first Tweetl [jf:]

Figure 4.35: ATTAC-L Representation of the Story with a Tweet

4.4.6 Messaging Overlays

In this section we discuss the visuals used for the text messages (phone) and
email messages (composing and inbox).

Text

The ATTAC-L story as given in Figure 4.37 starts with Carl sending a text
message to player. In the next game move, player sends a text message to
Carl. Figure 4.36 shows the result of the given example after the second
game move. The top of the phone overlay shows the owner of the phone by
means of a picture of the person and his name. The player’s phone can be
brought up by pressing the “M” key.

83 CHAPTER 4. ATTAC-L Simulator

Press ESC to g

Press P to pe

Press | to show iny|
+Press T to show Twitter
", Press F to show Half ifs

Press C to show Half-life
Messenger

Pre M to show Text Messages
i | Phone of
s player

Carl 21/04/2015 00:18
When are you leaving to the party?

player 21/04/2015 00:18
I am leaving in 5 minutes.

Scenario Log

g0: Carl text

Iﬂ texts amessage | When are you leaving to the party? oo
to payer W T

player | texts | amessage | iamieavingin § minites. i

to Carl |:| """"""""""""""""

Figure 4.37: ATTAC-L Representation of the Story with Text Messages

Email

The ATTAC-L story given in Figure 4.39 shows the player sending an email
to Carl. Note that we know it is an email since the value brick has two entries
(subject and message). Figure 4.38 shows the resulting composed email in
an email overlay.

User Interface 84

Press ESC te-go

Press P to pz

Press | to show inventory
+Preiss T to show Twitter
_ Press F to show Half-life

Press C to show Half-life
Messenger

]

New mail Mail composed by player

To: Carl
Subject: After the party

Message: Can | stay at your place after tonights party?

E player sends a message | subject -After the party =}
| message :Can | stay at your place after tonights party? d
to Carl q

Figure 4.39: ATTAC-L Representation of the Story with Compose Email

The ATTAC-L story given in Figure 4.41 starts with player receiving a
mail from Carl, followed by player receiving a mail from Mary. Figure 4.40
shows the resulting email inbox in the overlay. The left hand side of this
overlay shows the latest received mails. Note that the newest mail is the one
on top, and it is shown in greater detail on the right hand side of the overlay.
The owner of the inbox is shown by means of his/her picture at the top right.
The player’s email inbox can be brought up by pressing the “E” key.

CHAPTER 4. ATTAC-L Simulator

Press P to pads
Press | to show inver
% -Preiss T o show Twit
to show Half-life

how Half-life

how Text I

w Email

ario Log

From: Mary

Subject: Sleep over at Carl
Received at: 21/04/2015 00:22

Compose Mail Refresh
Received at: 21/04/2015 00:22

From: ary
Subject: Sleep over at Carl

From: Carl

Subject: Sleep over
Received at: 21/04/2015 00:22

Message: Hey player, | heard from Carl you want to stay there
too. It will be great fun.

E player receives a message subject

from Carl

~Sleep over
:Hey player, of course you can stay over tomorrow. The only problem is that Mary already claimed the bed.

player receives

from

amail | subject :SleepoveratCan T o
| message ‘Hey player, | heard from Carl you want to stay there too. It will be great fun. q
Mary d T

Figure 4.41: ATTAC-L Representation of the Story with Email Inbox

User Interface

86

Implementation

In this chapter, the implementation of the simulator using the Unity game
engine is described in more detail. We start by defining the most important
concepts in Unity that will be used in our simulator. We then give the system
architecture. Following this, we provide the design using UML and Sequence
diagrams. Finally we conclude this chapter by explaining the role of the
configuration file.

5.1 Concepts in Unity

As we decided to implement our Simulator with Unity (see section 3.2.1),
we start by elaborating on some of the key concepts of Unity used for the
implementation. We explain these concepts and indicate how they have been
used for the implementatin of our simulator.

5.1.1 Scene

A virtual world (i.e., an environment or level), is called a Scene. In our
simulator, we have three scenes, called the Park (Figure 5.1), the Office
(Figure 5.2), and the House (Figure 5.3). The scene is where the characters
are placed and the activities will take place.

Concepts in Unity 88

Figure 5.1: Isometric View of the Park Scene

Figure 5.2: Isometric View of the Office Scene

89 CHAPTER 5. Implementation

Figure 5.3: Isometric View of the House Scene

5.1.2 GameObject

When creating a game (or simulation) in Unity, every object is considered
a GameObject. Examples of GameObjects are: the player character, NPC
characters, lights, etc. All GameObjects present in the current scene are
organized in a hierarchical manner. Dragging one GameObject under another
creates the concept of “Parenting”. Every child will inherit the movement and
rotation of its parent. A GameObject is the basis for every logical component
of a game. They are containers for one or more Components, which take care
of behavior, positioning, visuals, physics, etc. Every GameObject always
contains a “Transform” component which cannot be removed. This contains
the position and orientation of the object. Multiple components can be
added to a single GameObject. Some examples of components used in our
simulator are: Animation, Box Collider, Nav Mesh Agent, Mesh Renderer,
Mesh Collider, GUIText, and Script. We explain them further.

e An Animation component is used to manage the animations of a 3D
model, e.g., the walk and idle animations of a character.

e A Box Collider creates a box around the GameObject and triggers an
event if something collides with it.

Concepts in Unity 90

A Mesh Collider has the same purpose, but for a more complex shape.
A mesh is a 3D figure built from flat polygons (mostly triangles), the
Mesh Renderer simply renders it onto the scene.

e Nav Mesh and Nav Mesh Agent components are used in conjunction
to deal with automatic path finding in a scene (see section 5.1.4).

o GUIText is used to place GUI-elements on the screen.

e Script allows attaching scripts to GameObjects. The scripts can be
written in C#, JavaScript or Boo. The scripts for our simulator are
written in C#.

5.1.3 Prefabs

A Prefab is a GameObject which has predefined components and settings.
A prefab can be seen as a template out of which new GameObjects (i.e.,
instances) can be created. Changes made to the prefab are also reflected
to all of its instances. However, changing components and settings for an
individual GameODbject based on a prefab remains possible.

In our simulator there are several prefabs used:

Notification
Whenever feedback is given (e.g., “player picked up shovel” or “player
befriended Carl on Half-Life”) the notification prefab is used to create
the GameObject that displays the message. It contains a “GUIText” in
which a message can be placed and has a script attached that scrolls
the text up and fades it out slowly.

Rain

Rain can be turned on or off in the main menu. When turned on,
the rain prefab is used to create the GameObject that makes it rain.
For performance reasons we chose to only make it rain in a radius
around the player. Since the camera stays attached to the player, it
gives the illusion it is raining in the entire scene. Every rain drop is a
GameObject; it has to be duplicated a lot to have the appearance of
rain, hence the need of a prefab.

Conversation Overlay
The way of showing a conversation between two characters is always the
same, independent of the characters involved or the scene. The conver-
sation prefab consists solely of a “Script” component. This script deals

91 CHAPTER 5. Implementation
with drawing the overlay on the screen and fitting the correct con-
versation text on top of it. More information about the Conversation
Overlay can be found in section 4.3.5.

Items

Several items can be present in the scene for the player to be picked
up. For now, we have three items defined in our simulator: a shovel,
an USB(-stick), and a CD. Each of these items has their own prefab.
These prefabs contain the following components: “Mesh Renderer” (its
shape), “Box Collider” (to check whether a character is on top of the
item), “Particle System” (for highlighting purposes), and a “Script”.
The latter handles the logic of picking up the item: first it checks if a
character is on top, continuing with displaying the pick-up animation of
the character, adding the item to the inventory (if the character is the
player); removing the item from the scene; and displaying a notification
message stating that the item is picked up. More information about
items can be found in section 4.3.2.

5.1.4 Nav Mesh

Nav Mesh (Navigational Mesh) is Unity’s built-in path finding system. Since
in the simulation characters move automatically, it allows us to provide in-
telligent and accurate movement for them. Traditional path finding in a 3D
world around 3D objects is slow because of the complexity of the objects.
This is why Unity uses a Nav Mesh; it is a simple 3D mesh coming from the
geometry of more sophisticated elements in a scene. Because of the “simplic-
ity” it is easier to navigate and find paths in the Nav Mesh. Figure 5.4 shows
the Nav Mesh for our Park scene, note that only the area selected in blue is
walkable.

System Architecture 92

Figure 5.4: Nav Mesh of Park

5.2 System Architecture

Figure 5.5 presents the high-level design of our simulator. In the next sub
sections, we describe the major components of the system and how they
interact with one another.

Note that a game engine consists of layers with components. A general
system architecture of a game engine has been given in section 3.2.1, Figure
3.5. Many of these components are also present in Unity, however we decided
not to depict them if they are of no or little importance in our simulator.

Game Specific
Subsystems

Rendering

Unity

93 CHAPTER 5. Implementation

Terrain Movement ltems Player-Follow
Rendering Camera
[Social Media Overlay
_ Feedback, | 11
) Warning and Main Menu [:
0 Error Messages Messaging Overlay
1 11
[Conversation Overlay
\ / Story Flow
/ Controller
T
=
(O Static
-4 Q@ Cameras e Text & Fonts
é E [] [Lighting Camera
oo Management
A _
(\ Inventory & Item
Core Systems Management
Platform Independence Layer [\
Advanced INI
g Parser
3rd Party SDKs
L) JSONObject

Figure 5.5: System Architecture

5.2.1 Unity

The Unity component consists of several technologies layered on top of each
other. These are systems that are being taken care of by Unity itself. The
most important ones are 3rd Party SDKs (e.g., DirectX, OpenGL, PhysX);

Bunduog

S)assy

System Architecture 94

Platform Independence Layer (e.g., Platform Detection, File System Access);
and Core Systems (e.g., Math Library, Memory Allocation).

5.2.2 Assets

The Assets component consists of third party libraries. We used two assets.
The first one is called JSONObject and it is used for the parsing of the JSON
input. The second one is called Advanced INI Parser and we use it to read
values from our configuration file.

5.2.3 Rendering

The Rendering component consists of a Low-Level Rendering and GUI com-
ponent. We will discuss both of them here.

Low-Level Rendering

The Low-Level Rendering component is part of the Rendering system of
a game engine. The main focus in this component is that the geometric
primitives are rendered as quickly and richly as possible. The viewpoint of
the player is not taken into account here. In our simulator, the corresponding
subcomponents are Text & Fonts, Cameras, and Static Lighting. As said,
these subcomponents are rendered as quickly as possible, they will receive
more attention in later components when they are needed.

GUI

Our GUI component deals with overlaying 2D graphics on the 3D scene for
the purpose of user interaction. Examples of such GUI components in our
simulator are: Feedback, Warning and Error Messages, Main Menu, Social
Media Overlay, Messaging Overlay, and Conversation Overlay.

5.2.4 Scripting

The Scripting component contains all our scripts written in C#. Scripts are
used to program the logic of the game. Some areas for which they are used
include: Inventory & Item Management; Camera Management (making sure
the camera keeps its viewpoint behind the player); Story Flow Controller (to
interpret the ATTAC-L story); and Social Media, Messaging, and Conver-
sation Overlay (to call the corresponding GUI overlays at the appropriate
time).

95 CHAPTER 5. Implementation

5.2.5 Game Specific Subsystems

This is the top-level component. It deals with features of the game. Examples
are: Terrain Rendering, Movement (making the characters move), Items,
Player-Follow Camera (to make sure if the player moves, the camera moves
with him).

5.3 Design

In this section we give the UML (Unified Modeling Language) class and
sequence diagram for the simulator. We provide explanations below each
figure.

Figure 5.6 shows a compact version of the UML class diagram of our sim-
ulator. This diagram only shows the classes, without methods and variables.
For the full diagram, refer to Figure D.1 in Appendix D. In the following
sections, a brief explanation of the different classes is given.

EscapeGUI

f=3 «C# classs
EscapeGUI

= Attributes
+ ..
+jp: JSOMParser
+ playerObj : GameObject
+ql : ScenarioLog
+ sfc: StoryFlowController

=l Operations
+..0)
+ EscapeGUI[)
- fwake)
- loadINI()
- OnGUI[)
- startGame(fileContent : String)
- Update()

Figure 5.7: EscapeGUI Class

When launching the simulator or pressing “ESC” during a simulation, the
main menu appears. This menu is defined in the EscapeGUI class, given in

96

Design

Figure 5.6: UML Class Diagram (Compact)

97 CHAPTER 5. Implementation

Figure 5.7, it is directly attached to our (empty) “Main Menu” GameObject
via a Script component. This means that this class will be executed as soon
as the simulator is started, and only stops executing when the simulator is
turned off. Because of this property, it takes care of the following:

Everything related to the main menu (options and environment chang-
ing).

Hotkey buttons behavior.

Reading the configuration file and setting the variables accordingly.

If a story is started, it checks whether the JSON code is valid and starts
the simulation or gives appropriate feedback.

As soon as the JSON is pasted in the input box and the Start Scenario
button is pressed, we launch the startGame method. Before the simulation
is started, we have to check the ATTAC-L JSON code for validity. We do
this by calling the parseJSONData method from the JSONParser class, it is
explained below. If the JSON is valid the StoryFlowController and QuestLog
classes are initialised and the simulation will be started. The data structure
used to store the JSON is explained below in JSONMapping.

The loadINI method is used to read the configuration file.

Design 98

JSONParser
.ﬁ «C# classs»
JSONParser
=l Attributes
T

+ entry : Lisk=5Skring =
+ houselocations : Dictionary =String, Yector3=
+ knownPCs ¢ Lisk <Skring =
+ knownPickupObiects : List=String =
+ knownterbs : Lisk<Skring =
+ officelocations § Dictionary <String, Yeckora=
+ parkLocations @ Dictionary <Skring, Yector3 >
=l Operations
+ getattribute(jsonattr : JS0MObject) : Attribute
+ getBxpressions(jsonBxpression : JIS0ONObject, gb : GameBridks)
+ getGameBrick{jsonBrick: JS0NObject, label : String): GameBricks
+ getGameControlStructures(jsonControl : JSONObject, label : String) : GameControlSrudures
+ getinterpretations(jsonInterpretation : 150N Object, ab : GameBridks)
+ getinterpreterattribute(js anattr : 15S0NObject) : Attibute
+ getNoun{jsonSubj: 1SOMNObject): NounPhrase
+ getPredicate{jsonPred : JSONObject) : Predicte
+ Is0OMParser(file : String)
+ parselsOnDatal)

Figure 5.8: JSONParser Class

Figure 5.8 shows the JSONParser class. In order to parse the JSON, we use
the JSONObject class!, it is freely available on the Unity Asset Store. Ev-
erything is stored in the data structure as explained below in JSONMapping.
We start by checking if the JSON format is valid and continue if it is. In
order to check if the contents of the JSON are eligible with our simulator,
we keep a list of: accepted verbs, known NPCs (names), known items, and
known locations (name and position) per scene.

lhttps://www.assetstore.unity3d.com/en/\#!/content/710, accessed
05/05/2015.

99 CHAPTER 5. Implementation
JSONMapping
JSONMapping
.ﬁ «C# class» .ﬁ «C# class»
GameBricks GameMowve
: S e
4 Attributes # Attributes
+ Operations | Operations i
. f23 «C# class»
— T GameMowve | = _predicate Predicate
'ﬁ «C# dlass» 1 | # Attributes
GameControlStructures 4 Operations
. _interpr, 1 L
#| Attributes A o -;Iasso) Interpreter Predicate | * Predicate
4 Operations - .
Interpreter
+ Attributes
+l Operations
Int: 't =
nterpreter _direct | 1
I - indirect
F-3 «C# class» —
—subject NounPhrase 1
A «C# class» A «C# class» NounPhrase | = Attributes A._...—Df
Expression Expression attr_ Attribute + | # Operations 1
+ Attributes = 1 | ® Attributes - NounPhrase | *

+l Operations

JSONMapping is a namespace which contains the following classes used to

+l Operations

store the JSON code (see Figure 5.9):

e GameMove (abstract class)

A GameMove contains all the elements that make up a game move. It
is either a construction of bricks (GameBricks) or a control structure
(GameControlStructures). The other classes mentioned in JSONMap-
ping are all mappings of elements which appear in every GameBricks
game move. We will explain the data structure as implemented in C#.

— GameBricks

Figure 5.9: JSONMapping Namespace

(the flowlabel) and an “_expr” element.

GameBricks is derived from GameMove and uses a string “ next”

=

Design 100

— GameControlStructures
GameControlStructures is derived from GameMove and uses a
string “_type” (cho, oid, or con) and a list of strings “ paths”
(every entry is a flowlabel).

e Fxpression
Expression is the mapping of the

“word 7 and “attr_”.

“

_expr” element, which contains

o Attribute
Attribute is the mapping of the possible “ attr” element, this occurs
when there is a value brick present. It contains a dictionary of string
values.

o I[nterpreter
Interpreter is the mapping of the “ _interpr” element, it always contains
a “ subject” and “ predicate” element, and optionally a “ passive”
element. The _subject element is defined as a NounPhrase, while the

_predicate is defined as a Predicate.

o NounPhrase
NounPhrase is the mapping of the “ det”, “ noun”, “ nom”, “ of”
and “_attr” fields.

e Predicate
Predicate contains a “ direct” and “_indirect” as a NounPhrase and
“ verb” as a string.

101 CHAPTER 5. Implementation

ScenarioLog

= «C# classs
Scenariolog

=| Attributes
+ currentGM : GameMove

+ guestLabelContent : Lisk<3tring =
+ scrollPosition : Vechor?
- windowRect : Rect
=| Operations
+ ScenarioLaogl)
- Swake()
- OnGUI)
- Update()
-WindowFunction{windowID : Integer)

Figure 5.10: ScenarioLog Class

The ScenariolLog class, given in Figure 5.10, deals with drawing the Scenario
Log panel on the left hand side of the screen. It requires an instance of a
GameMove so that it can retrieve the flowlabel and content of the current
game move being executed, and store it in a list for displaying in the panel.

Design 102

StoryFlowController

[f=3 «C# class=
StoryFlowController

=l Attributes

+currentGM : GameMove
+ entry Lisk<Skring=
+ gqameMoves : Lisk<GameMove =

—=| Operations
|l"|

+..0)
+ animateBxpr{gm : GameMove) : IEnumerator

+ parseEntryLine({gm_label : String) : IEnumerator

+ parseScenarial) : IEnumeratar

+ setltemsInEnvironment{shovelAmount: Integer,usbAmaunt : Integer, cdAmaount : Integer)
+ StoryFlowController)

- fwake)

- OnGUI[)

- Start()

- Update()

Figure 5.11: StoryFlowController Class

After the JSON code is entered in the designated input box in the main
menu, it will be validated and the simulation can be started. Upon clicking
the start button, the EscapeGUI class will attach the StoryFlowController
class (see Figure 5.11) to the player’s GameObject. Before the execution of
the first game move, the items are placed in the scene using setltemsInEnuvi-
ronment. The amount is decided by the values in the configuration file. As
soon as all the items are placed at random locations in the scene, we start
the simulation’s core loop parseScenario. This method contains a for-loop
which goes over the list of entries (most of the time this only contains one
entry), and starts the parseEntryLine method for each entry. This method
will check if the current game move is a brick or a control structure. If it
is a brick, we perform the simulation of the game move by calling the an-
imateErpr method. This method consists of a switch-statement, based on
the verb we call the appropriate simulation method in StoryFlowAction, de-
scribed below. After we simulated the first game move brick, we check if it
has a “ next” element and call parseEntryLine again with the next game
move. If the game move is a control structure, we perform the appropriate
action. For choice, we place the contents in a list and show the choice buttons

103 CHAPTER 5. Implementation

on the screen. The button chosen represents the game move to be executed
in the parseEntryLine method. For order independence or concurrency we
execute the parseEntryLine method one by one, by its contents. Note that
with order independence we shuffle the contents list first, so the order is
random.

Design 104

StoryFlowAction
[f=3 =C# class=
StoryFlowAction
= Attributes
+ ...

+ allLacations : Dickionary <Skring, Weckar3 >
+ dialogOverlayPrefab : Transfom

+ etmfccaunts ¢ Lisk<Email TextMapper =

+ hlAccounts: List<HLAccount=
+inventory : Inventory

+ notifPrefab : Transform

4+ pickUpTtemPrefab : Transfom

=+ bwitberAccounts Lisk<Twitterfccount =

=l QOperations

+..{)

+ doBefriendOnHL(): IEnumerator

+ doCommentOnHL{) : IEnumerator

+ doFollownTwitter(): IEnumerator

+doGiveTol): IEnumerator

4+ doHLMessenger() : IEnumerator

+ dolLikeOnHL{npcl ocation : String) : IEnumerator

+ doMessageNowAction{s : String) : IEnumemator

+ doPickupMNowAction() : IEnumerabor

+doPostToHL{): IEnumerator

+ doRetweet{) : IEnumerataor

+ doTalkingTofdtion{) : IEnumerator
doTweet() : IEnumerator

+ doWalkingAdtion{): IEnumerator

+ startPlayerEmailMessages()

+ startPlayerHL)
+ startPlayerHL Messenger)

+ startPlayerTextMessages()

+ startPlayerTwitter)

+ stopScenarioNow(errorMessage : Sring)
+ StoryFlowaction()

- Start()

- Update()

Figure 5.12: StoryFlowAction Class

The action to be simulated is based on the game move’s verb, these actions
are selected in a switch-statement in the StoryFlowController class. E.g.,
the verb “walks-to” is linked to the action “doWalkingAction”. All these
action methods are defined in the StoryFlowAction class (Figure 5.12). The

105 CHAPTER 5. Implementation

methods defined in this class that start with “do” deal with moving the player
or NPC, showing overlays, picking up items, etc. It basically performs what
is expressed in the game move. The methods with the prefix “start” get called
from the EscapeGUI class when the corresponding hotkey is pressed, these
methods show the overlays. The method stopScenarioNow is called when an
error occurs in the current game move, it will give detailed information about
the error before halting the simulation and returning to the main menu.

Design

Item, ItemDatabase & Inventory

A

= Attributes

= Operations

- Bwake()

«C# classw
ItemDatabase

+ ItemDatabase()

+ houseSpawnLocations ; List<KevYaluePair <Vector3, GameObiect ==
+ items : Lisk<Itemn=
+ officeSpawnLocations | Listk<kKewvaluePair <Yector3, GameObject ==
+ parkSpawnLocations § List<kKeyValuePair <Vector3, GameObijeck >

ItemDatabase | *

items, |, 1
L'

database [* 1

A

=l Attributes
+ itemDesc : 5tring
+ itemlIcon : TextureZD
+ itemID : Integer
+ itemMame : String

«C# class»
Item

=l Operations
+ Item{name : String, id : Integer, desc : String)
+ Ttem()
draggediem | 1 inventory | 1

Inventory

Inventory

Inventory

A «C# class»
Inventory

= Attributes
&
+ invenkory @ Lisk<Ikem:>
- database: ltemDatabase
- draggedItem : Item
= Operations
+..0)
+ addItemToInventory(word : String)
+ Inventory()
+inventoryContains(name: String): Boolean
+ removeltemFromInventory(word : String)
- createTooltip(item : Item) : String
- DrawInventory()
- OnGUI
- Start()
- Update()

Figure 5.13: Ttem, ItemDatabase and Inventory Class

107 CHAPTER 5. Implementation

Figure 5.13 shows the classes Item, ItemDatabase, and Inventory, and how
they interact with each other.

The Item class defines the data structure of an item, i.e. name, id, de-
scription, and an icon (2D texture).

The ItemDatabase contains a list where the items that are known in the
simulator can be defined. In our simulator this list contains three items: a
shovel, an USB, and a CD. Note that for the purpose of our simulator, a list
is sufficient. When a large collection of items is necessary, other implemen-
tations are required (e.g., a true database). This class also contains three
other lists (parkSpawnLocations, officeSpawnLocations, and houseSpawnLoca-
tions), each of these lists’ entries contain a KeyValuePair of its location in
the 3D scene (defined as Vector3) and a reference to its GameObject. These
locations are all the possible places where an item can be located in a scene.
The reference is required to be able to delete the item’s GameObject when
it is picked up, initially this is set to null. It is updated to match the item’s
prefab later.

The Inventory class contains methods for drawing the inventory on the
screen (called when the “I” hotkey is pressed), controlling the drag & drop
behavior, adding and removing items, etc. The Inventory class is attached
to a GameObject with a Script component, since there is only one inventory
available in the simulator (the player’s). Note that instead of creating a new
instance of Inventory every time (e.g. in StoryFlowAction or PickingltemUp),
the instance is retrieved from the GameObject.

Design 108

PickingltemUp
.ﬁ «C# classs
PickingItemUp
= Attributes
+ ..

+ itemTransform : Transform
+ pickedUp : Boolean

+ pickedUpByNPC: Boolean
+ putInInventory: Boolean
+ setToPickUp : Boolean
-inventory : Inventary

= QOperations
+ forcePickedUpTrueForNPC{pickupitem : Transform, npcMame : String, npcbj : GameObject, name: String)
+ PickingItemUp{)
+ setltemMName(n : String)
+ setltemToBePickedUp()
- OnTriggerEnter{other : Collider) : IEnumerator
- Start[)
- Update()

Figure 5.14: PickingltemUp Class

The PickingltemUp class, given in Figure 5.14, checks if the item where the
player or NPC is on top of is the item to be picked up. If it is, the item
is removed from the scene, added to the inventory (if it is player), and a
notification is shown containing information about what item is picked up
by who. The check for the correct item is necessary to avoid accidentally
picking up an item when walking over one, while going towards another.

All of our items are prefabs. When our items are about to be put in
the scene, we retrieve the item’s prefab and attach the PickingltemUp class
to it. We use the setliemName method to indicate what item the script
is being attached to. As it has been said above, the lists containing our
items is represented by entries with a KeyValuePair consisting of a Vector3
and a GameObject. The latter refers to the item’s prefab, containing the
PickingltemUp Script component.

109 CHAPTER 5. Implementation

CameraZoom

L =C# class=

CameraZoom

= Attributes
+ maxFov : Single
+ minFov: Single
+ sensitivity: Single
=l Operations

+ CameraZoom{)
- Start{)
- Update()

Figure 5.15: CameraZoom Class

This class changes the field of view of the camera by zooming in or out
with the mouse scroll wheel. CameraZoom (see Figure 5.15) is attached to
the camera’s GameObject. The EscapeGUI class takes care of disabling the
zooming functionality when the menu is open, and enabling it again when
closed. It does this by simply enabling or disabling the CameraZoom Script
component of the GameObject.

NotificationCreator

[A =C# class=
MotificationCreator

= Attributes
+ alpha: Single
+ color: Color
+ duration : Single
+scroll : Single
=] Operations
+ MotificationCreator)
- Start()
- Update()

Figure 5.16: NotificationCreator Class

Design 110

The NotificationCreator class (Figure 5.16) is put in a prefab as a Script
component, together with a GUIText. The class deals with showing an in-
formation message that slowly fades out over time.

SmoothLookAt

F=3 «C# classs=
smoothLookAt

= Attributes
+ damping : Single
+ minDistance : Single
+ property : 5tring
+ smooth: Boolean
+ target: Transform
- alpha: Single
-color : Color
-_myTransform : Transform

=l Operations

+ smoothLookAt)
- fwake[)

- Latellpdate()

- Start{)

- Update()

Figure 5.17: SmoothLookAt Class

Whenever an action occurs where movement happens and the player is not
involved in the game move, the camera needs to look to where the action
is happening. The SmoothLookAt class (Figure 5.17) takes a target (NPC’s
GameObject) where the camera locks on to, this will mostly be the subject of
the current game move that is being simulated. Note that the camera stays
attached to the player, but its view point is changed to be aimed towards
the target. As the target moves, the camera has to smoothly rotate to follow
the target.

111 CHAPTER 5. Implementation

AgentWalker

o] =C# class»
AgentWalker

=l Attributes
+ destination: Vector3
-agent : NavMesh&gent
= Operations
+ AgentWalker()
+ arrivedOrMot() : Boolean
+ setAgent(nma : NavMeshAgent)
+ setDestination{v3 : Vector3)

+ startMoving()
- Start()

Figure 5.18: AgentWalker Class

The AgentWalker class, given in Figure 5.18, is used to control the NavMe-
shAgents. Tt contains methods to set the agent, its destination, and check
whether he arrived at the destination already. It is used in StoryFlowAction
extensively to make a character start walking towards a set destination, and
continuing with the next game move only when he arrived.

Design 112

DialogManager

] #C# class:s

DialogManager

= Attributes
+ o
+ dialogClicked : Boolean
+ dialogMessageBox : TextureZD
+ dialogPictureBox : Texturez2D
+ dialogShow : Boolean
+ message : String
+npcGame0bject : GameObject
+ npcMame : String
+ npcPic @ Texture2D

=l Dperations
+ DialogManagen)
+ setParams(n : String, m : String)
- Swakel)
- OnGUI)
- Start()
- Update()

Figure 5.19: DialogManager Class

The DialogManager class (Figure 5.19) is put in a prefab as a Script compo-
nent. It deals with drawing the conversation overlay and the text inside of
it. This prefab is called every time two characters (NPCs or player) talk to
each other.

113 CHAPTER 5. Implementation

EmailTextMapping
£ EmailTextMapping
Yy «C# class» £y «C# class»
TextConversation EmailConversation
textConversations email Conversations
= Attributes = (= Attributes
+ . 1 1 + emails : List<Email >
=+ texts @ Lisk<Text= = Operations
=l Operations EmailTextMapper | EmailTextMapper | + CompareTo{ohj : Object): Integer

+ CompareTo(obj: Object): Integer A «C# clazss + EmailCanversation()

el Enalilane . EmailConversation IE

TextConversation | * = Attributes
+ emaiICnnve.rsations : Lisk <EmailConversation > emails,| 1
+ owner : String '
texts, 1 + textConversations ; Lisk<TextConversation > P «C# class»

A CE daz=» = Operations Email

+ EmailTextMapper()
Text -

+ sortEmailConversations() =l Attributes

= Attributes + sortTextConversations() + from : String

+ message : 5tring
+ subject : String
+timestamp : DateTime

+ message : 5tring
+ sender : String
+timestamp : DateTime

: +to : String
=l QOperations =l Operations
:_Crsﬂgarﬂn(ob]: Object): Integer + CompareTo{obi: Object): Inteqger

+ Email()

Figure 5.20: EmailTextMapping Namespace

EmailTextMapping is a namespace which contains the following classes to
store the email or text message information in (see Figure 5.20):

e EmailTextMapper
o Text

e TextConversation

e Email

e EmailConversation

EmailTextMapper represents the object of the person’s phone and inbox.
It contains an owner name and two lists with respectively textConversations
and emailConversations.

Design 114

Texting involves two characters, a sender and a receiver. Any character
can text with any other character. When two characters text to each other,
they are having a conversation. A conversation can have one or more texts.
A text message contains a sender, message, and timestamp.

The same story applies for emails and email conversations. Except that
an email contains a sender (from), receiver (to), subject, message, and times-
tamp.

FullTextMessage, FullEmailMessage & ComposeEmailMessage

~ «C# class» ~ «C# class» ~ «C# class»
FullTextMessage FullEmailMessage ComposeEmailMessage
=| Attributes =| Attributes =| Attributes
+ . + . + .
+ etm : Email TextMapper +emailClicked : Boolean + composeEmail Clicked : Boolean
+phoneClicked : Boolean + emailsTaDisplay : List <Email = +compaoser : String
=l Operations + etm : Email TextMapper +emailMessage : Email
+..0 = Operations = Operations
+Full TextMessage() + .0 + ComposeEmailMessage()
+zendTextMessageDetails{etmapper : Email TedMapper) +FullEmailMeszage]) +zendComposeEmailMessageDetailz(email : Email, anpsr : Sring)
- hwake() +sendEmailMessageDetails{etmapper : Email Tedvapper) - hwake()
- OnGUI[) - Bwakel) - OnGUI[)
- Update() - OnGUI[) - Update()
- Update()

Figure 5.21: FullTextMessage, FullEmailMessage and ComposeEmailMes-
sage Class

FullTextMessage, FullEmailMessage, and ComposeEmailMessage (see Fig-
ure 5.21) serve the same purpose, showing their corresponding overlays with
the correct information inside. These classes get called from the involved
methods inside the StoryFlowAction class.

«C# class»
HalfLife

Attributes

+..

+ hlaccount : HLAccount
#hlClicked: Boolean

Operations

+.)

+ HalfLife()

+ sendHLDetails(hla : HLAccount)
- Awake()

- OnGUI()
-Update()
«C# class»
HalfLifeMessenger
Attributes
+..

+ hlaccount : HLAccount
#+hIMessengerClicked : Boolean
Operations

+.)

+ HalfLifeMessenger)

+ sendHLMessageDetails(hla : HLAcoount)

- hwake()
- OnGUI()
-Update()

115

CHAPTER 5.

Implementation

HalfLifeMapping, HalfLife & HalfLifeMessenger

[

[A

HalfLife

[A

HalfLifeMapping

«C# class»
Post

Attributes

+ comments § List<Comment =

+ content : String

+ likes : Lisk<String =
+postDate : DateTime

+ postOwner : String

= Operations

+Equals{obj: Object): Boolean
+ GetHashCode(): Integer

+ Post()

Post | *

comments | 1

!
«C# class»

Comment

=l Attributes
+ comment : String
+ commentDate : DateTime
+ commentOwner : String

Operations
+ Comment()

HalfLifeMessenger

posts

HLAccount | =

A

HLAccount
«C# class»

HLAccount

=l Attributes

hlaccount

+ accountOwner : String

+ tonversations ; List<Conversation =
+friends: List<HLAccount>

+ posts ; List<Post=

== [=| Operations

1

HLAccount

+ HLAccount()
+ sortConversations)

= friends’|"1 hlaccount’|"

. «C# »
conversations A e

o Conversation
1

Attributes

F o

+ messages ; List <Message =
Operations

+ CompareTo{obj: Object): Integer
+ Conversation{)

Conversation | 1

messages, |, 1

.A «C# ;Iass»

Message

=l Attributes
+messageDate: DateTime
+ sender : String
+ text : String

= Operations
+ CompareTo{obj : Object): Integer
+Message()

Figure 5.22: HalfLifeMapping Namespace, HalfLife and HalfLifeMessenger

Class

Figure 5.22 shows the HalfLifeMapping namespace and the HalfLife and
HalfLifeMessenger classes.

HalfLifeMapping is a namespace which contains the following classes to
store the Half-Life information in:

HLAccount
Conversation
Message

Post

Comment

Design 116

Half-Life is divided in two parts, regular Half-Life and Half-Life Messen-
ger. Every character has its personal Half-Life (Messenger), so both have the
HLAccount in common. This contains the account owner’s name, a list of
friend names, list of conversations, and a list of posts.

When talking about Half-Life Messenger, it is similar as explained in
EmailTextMapping.

Half-Life on the other hand, consists of one or more posts which can
have comments on them. A post contains the name of who posted it, the
content, a list of names who liked it, a list of comments, and a timestamp.
A comment contains the name of who commented, the comment itself, and
the timestamp.

The HalfLife and HalfLifeMessenger classes deal with showing the correct
overlay and the information inside of it. These classes get called from the
involved methods inside the StoryFlowAction class.

TwitterMapping & Twitter

#» TwitterMapping

«C# classw 2 «C# class» 2 «C# classs
Twitter TwitterAccount Tweet
Attributes =l Attributes =l Attributes
+ .. + accountOwner : String TwitterAccount tweets + content : String
+ twhAccount : TwitterAccount + followerfccounts @ List<Twitterfccount= =+ date: DateTime
= twitterClicked : Boolean Twitter twhccount +followers : Integer = 1 +favorites : Integer
Operations = 1“ + following : Integer +replies : Integer

+.0

+ sendTwitterD etails(twhcc : TwitterAccount)

+ Followingaccounts ¢ Lisk<TwitkerAccount =
+ bweets ; List<Tweet =

+retweet : Boolean

"foll grAncAcoosts + retweets : Integer

+ Twitter() =l Operations 1 + tweetOwner : String

- Awakel) +Equals{obj: Object): Boalean =l Operations

- OnGUI{) + GetHashCode(): Integer TwitterAccount +Equals{obj : Object): Boolean
- Update() + TwitterAccount() + GetHashCode(): Integer

TwitterAccount | * followerAccounts | 1

=

+ retweetTweet(t : Tweet)

+ Tweet()

Figure 5.23: Twitter Namespace and Twitter Class

Figure 5.23 shows the TwitterMapping namespace and the Twitter class.
TwitterMapping is a namespace which contains the following classes to
store the Twitter information in:

o Twitter Account

o Tweet

Every character has its personal Twitter account. The information nec-
essary is kept inside TwitterAccount and consists of: the name of the owner,

117 CHAPTER 5. Implementation

a list of Tweets, the amount of followers and following, a list of follower
accounts and following accounts.

A person can only Tweet on his own Twitter page and retweet or favorite
someone else’s Tweet. The Tweet class consists of: name of the Tweet cre-
ator; the Tweet’s content; the number of replies, retweets, and favorites; a
timestamp; and a retweet boolean.

The Twitter class deals with showing the correct overlay and the infor-
mation inside of it. These classes get called from the involved methods inside
the StoryFlowAction class.

5.3.1 Sequence Diagram

Figure 5.24 gives a general high-level sequence diagram of our simulator.
We expect the simulator to run already. We will explain the different steps,
corresponding with the numbers on the diagram.

1. Show Main Menu

Since we expect the simulator to be running, the main menu is
shown. The GameObject with EscapeGUI attached to it takes
care of displaying this menu on the screen.

2. ATTAC-L Modeling Tool

The simulator user needs to model a scenario in the ATTAC-L
Modeling Tool. After this is done, it is exported in JSON format.

3. Paste ATTAC-L JSON Export

The simulator user pastes the JSON code of the scenario he mod-
eled in the corresponding input box in the main menu. As has
been said, EscapeGUI takes care of this.

3.1 Validate JSON

Before EscapeGUI starts the simulation, it needs to check if the
entered JSON is valid. It does this by sending the input (JSON) to
the JSONParser. This checks if the JSON is formatted correctly
and if there are no unknown verbs.

3.2 JSON Validated

If the JSON is valid, the JSONParser will put the corresponding
error flags (booleans) to false.

Design 118

3.3 Add QuestLog Script to GameObject

If all the error flags are set to false, this signals to the EscapeGUI
to start the simulation. First it adds the QuestLog script to a
GameObject so that the quest log becomes active for the rest of
the simulation.

3.4 Add StoryFlowController Script to GameObject

After QuestLog has been added to a GameObject (thus activated),
the same is done for StoryFlowController. This GameObject con-
trols the flow of the scenario simulation.

3.4.1 parseScenario()

The parseScenario() method consists of a loop that runs for every
element e (a flowlabel) in the list of entries. If the ATTAC-L
Scenario has multiple entries, this loop will run multiple times.

3.4.1.1 parseEntryLine(e)

In every iteration of the parseScenario() loop, parseEntryLine(e)
is called, where e is the current entry. This method consists of an
[F-clause, where we check if the sequence of bricks corresponding
to e (the sequence’s flowlabel) is a game move or a game control
structure. In the first case (3.4.1.1) we immediately perform the
simulation for the action by calling animateEzpr() (3.4.1.1.1), this
method contains a SWITCH-statement that maps all supported
verbs to actions in the StoryFlowAction class (3.4.1.1.2).

In the latter case and if the control structure is a choice, we show
the choice options on the screen (3.4.1.1.4). The option chosen
by the user is returned (3.4.1.1.5) and parseEntryLine(chosen) is
called with the chosen option. If the control structure is order
independence or concurrency, we call parseEntryLine(GCSPaths)
for each of its contents.

CHAPTER 5. Implementation

119

(swedsoglaunfouldasied (1L ¥E

{uasoyplaurinuzasied 19| | vE —l.

UBSOUD W@ S L LFE

SBUOYD MOUS FLCLEE [eacioya)

He

‘o

‘J UOHE|MWIS SA0J SWES) JO PUT ANON 22 L L EE
T
L

x9N E SEH ancp] aWweD juaung i jeurigudesied 18D £ 1L FE

I Y

BAOW HWED) MEINWIS LT L L'FE

qap, sanop awes o) GupuodsauoD poulap IBD T'L L FE

(hdamewnue (1L L vE

[ianopaweg)]

(]

(elaunfu3esied ;| L ¥E

[isn Anug w8 yzea Jod]

(dooy

{Joueusogasied || ¢'g

L ——-

algoaies o 1dusg Jajonuogmeld Alols PPy pE

1selgpewes olljdusg Bofiseny ppy €8

e
_“ PHEREA NOST TE

. |
NOSP S1EPIEA [L'E

E

uooymoH Alolg

nuapy UIBYy MOUS |

JBeRueoMeH A0S 7

7 Gopsenp 7

7 JOSIEINOST

Ingedessy

Vod¥a NOST TOVLLY #i58d €

195 JOIEINWIS

&

‘-~

1eo) Buyapoy 1-OWLLY 2

JO3E IS 1-DWLLY PS

iagram

: Sequence Di

Figure 5.24

N O U W N

Configuration File 120

5.4 Configuration File

Upon executing the simulator for the first time, a configuration file is created
in the same folder as the executable file. The configuration file is a plain .txt
file, written in .INI standards. The default values of the file can be seen in
Listing 5.1.

[Flow]
manual=false

[Items]
shovel=2
usb=3
cd=3

Listing 5.1: Default Configuration File

We can see from Listing 5.1 that there are four variables that can be
set. We will start by explaining the three variables in Items and afterwards
explain the Flow variable.

The number we place behind shovel, USB, or CD indicates the amount
of that particular item will be present in the scene. If this number is 0 or
negative, that item will not be present. Note that if the combined amount
of the three items is higher than the maximum amount possible (see Section
4.3.2 for the maximums), we reduce each item amount by one and check if
the total amount is below the maximum. If it is still too high, we repeat
the process. We will explain this by using an example. We assume the Park
scene is selected; its maximum amount of items is 32. In our configuration
file we set “shovel=30", “usb=5", “cd=5". The total amount of these three
items is 40, which is 8 above the maximum. This means that the simulator
will reduce the amount of all three items by one, and it will do this three
times. The total amount is now 31 (27 shovels, 2 USBs, 2 CDs). These
amounts will be placed in the simulation when the Park scene is chosen.

The “[Flow|” element contains one variable, a boolean, called “manual”.
When it is set to false, the simulation will ask for player confirmation after
each game move. A “continue” button has to be clicked every time to advance
to the next game move. Figure 5.25 shows this button at the bottom right
of the screen. If this variable is set to true, the simulation will only be
interrupted when player input is required (e.g., in the case of a choice or
during a conversation).

121 CHAPTER 5. Implementation

Hotkeys
ESC to go to main menu

Pregs Flie Talse

inventory
+ Prass T to show Twitter
Press I to show Half-life

Press C to show Half-life 1
Messenger
Press M to show Text m

"_.'""'."'_\"_".- m

WA

3
-

')
~

Figure 5.25: Continue Button

Configuration File 122

Conclusions

In this final chapter we conclude our thesis by summarizing the research and
work done. Next, we discuss the limitations of our work and propose future
work. We end this thesis by discussing the limitations in language support.

6.1 Summary

The purpose of this thesis was to create a simulator for the semi-automatic
play and verification of virtual scenario models, created with the ATTAC-L
language. We started this thesis by introducing the context and the prob-
lem. In chapter 2, we discussed related work regarding 5 frameworks for
story building and made a distinction based on their main purpose: learning
programming or prototyping tools. The frameworks discussed are Scratch,
Greenfoot, Alice, e-Adventure, and 80Days.

Chapter 3 gave definitions for games, narrative-based games, and serious
games. We also went into further detail on a classification for serious games.
In this chapter we also explained the main architecture of game engines.
After comparing different game engines, we decided to realize the simulator
by means of the Unity game engine. We have also described ATTAC-L and
its different components, as well as how they are used together to model a
scenario. We concluded this chapter by explaining how an exported ATTAC-
L scenario in JSON format looks; this export is the input for our simulator.

Limitations and Future Work 124

In chapter 4 we introduced our ATTAC-L simulator. We started by list-
ing the requirements necessary to be able to simulate a scenario using the
ATTAC-L simulator. Afterwards we explained the main menu and depicted
the simulation. Afterwards great detail was given to the different verbs that
can be used in an ATTAC-L scenario that have an action attached to it.
We concluded this chapter by explaining the different features (e.g. different
persons, the possible items, etc.) the simulator supports.

In chapter 5 we discussed the implementation of the simulator. We started
by explaining the key concepts in Unity that are used. We then depicted our
system architecture and explained the different components. Afterwards the
design of the system was explained in detail by means of the UML class
diagram and sequence diagram for the system. We concluded this chapter
with explaining the role of the configuration file.

6.2 Limitations and Future Work

In this section we discuss the limitations in our simulator and indicate how
they can be overcome in further work.

6.2.1 Limitation of the Simulation Overlays

The overlays that occur when the simulation is running (e.g., Email, Half-
Life, etc.) are not interactive and only show a “limited” amount of informa-
tion. We discuss how they can be improved.

Email Inbox

When looking at the email inbox overlay (shown by pressing the “E” hotkey
or with the “receives from” verb in a game move), only the latest (or current)
received email is shown in detail on the right hand side. The left hand side
contains a list of only the latest 5 emails received. In a next version of the
simulator the inbox can be made interactive, where the bar on the left side
is scrollable to show every email. Clicking one of these mails would show the
detailed version on the right.

Text Messages

When clicking the “M” hotkey or a game move containing the verb “sends
to”, the phone overlay with text messages are shown. Currently the phone
overlay only shows the last 4 received and/or sent text messages. When the
phone overlay is brought up, it only shows the message conversation with

125 CHAPTER 6. Conclusions

the last person who was communicated with (via text). In a future version,
the content of the phone can become scrollable so that more messages can be
shown. An inbox could also be created, just as with emails, for the phone’s
text messages. This inbox would contain the different text conversations with
other persons. Clicking on one of these conversations would show all the text
messages in this conversation.

Half-Life

The Half-Life overlay (“F” hotkey or the “posts to” verb) also has no interac-
tivity attached to it. It only shows the two latest posts on the corresponding
profile. As well as showing only the two latest comments (if any) on these
posts. The same solution can be brought up as with Email and Text, making
the main page (right side) of Half-Life a scrollable area so all the posts can
be seen. Another option could be to create a “Show Older” button, which
would show the next two posts. For the comments, a “Show All” button can
provide the functionality to show all the comments under each other.

Half-Life Messenger

The Half-Life Messenger overlay (“C” hotkey or the “chats to” verb) only
shows as many messages that can fit on the right side (7 at a time). This can
be solved by using a scrollable area or a “Show Older” button, as explained
above. The middle bar, contains all the conversations the Half-Life account
owner has with different characters. Currently this supports enough space
to show the conversation with every character available. However, if more
characters are added to the simulator, this available space will no longer be
sufficient. Making this into a scrollable area is also advised in this case.

Twitter

The Twitter overlay (“T” hotkey or the “tweets” verb) can only show the three
latest Tweets (or retweets) at the same time. The Tweet area can become
scrollable again to be able to see all the Tweets. Another solution could be
the “Show Older” button as explained above.

Limitations in Language Support 126

6.3 Limitations in Language Support

6.3.1 Verbs

Appendix C shows a list of all the verbs that can be used in our simulator.
New functionality (verbs) can always be added to the simulator. This can be
done by adding the new verb in the known verbs list in the JSONParser class.
Then, the verb must be added in the switch statement in the StoryFlowCon-
troller, where this launches the associated method (also to be implemented)
in StoryFlowAction.

6.3.2 Characters

There are 9 characters in our simulator (8 NPCs and the player’s character).
In order to add a new character to the simulator, the first thing that is
required is a 3D character model with animations (or compatible with the
other animations). A new GameObject has to be created for this NPC, with
an Animation, NavMeshAgent, and Mesh Renderer component attached to
it. The last thing we have to do, is add the name of the character to the list
of known NPCs in the JSONParser class.

6.3.3 Animations

The only animations that the player’s character and NPC have in common
are walking and idle. Only the player’s character has a pick-up animation
attached. This animation is not compatible with some of the other NPC mod-
els. A new pick-up animation can either be created or an already existing one
(which is compatible with all character models) can be used. Every character
(NPC and player’s character) has an Animation component attached to its
GameObject; the different animations get added in this component and can
be launched using code.

6.3.4 Items

Currently we only have three types of items in our scene that can be picked
up: a shovel, an USB, and a CD. In order to create a new pick-up item in
our simulator, we need to have a 3D model of the item. We should then
create a GameObject with the PickingltemUp script, Mesh Renderer, and
Box Collider component attached to it. Then it needs to be transformed into
a prefab. A new item has to be instantiated in the ItemDatabase class by
creating an instance of the Item class. We also have to add the name of the

127 CHAPTER 6. Conclusions

item to the known items list in the JSONParser class. There also has to be a
sprite in the Resources folder of Unity available, with the same name as the
item. This sprite is the icon shown if the item is in the inventory.

Limitations in Language Support 128

Bibliography

Adobe Flash [Computer software]. (2015). Retrieved from https://get
.adobe.com/nl/flashplayer/ on April 13, 2015.

Alice [Computer software|. (2015). Retrieved from http://www.alice.org/
on March 28, 2015.

ARMA 2 [Computer software|. (2009). Retrieved from http://www.arma2
.com/ on March 31, 2015.

BlueJ [Computer software|. (2015). Retrieved from http://bluej.org/ on
March 27, 2015.

Caltagirone, S., Keys, M., Schlief, B., & Willshire, M. J. (2002). Architecture
for a massively multiplayer online role playing game engine. Journal of
Computing Sciences in Colleges, 18(2), 105-116.

Corman, S. R. (2013). The difference between story and narra-
tive. Retrieved from http://csc.asu.edu/2013/03/21/the-difference
-between-story-and-narrative on April 3, 2015.

Corti, K. (2006). Games-based learning; a serious business application.
Informe de PizelLearning, 34 (6), 1-20.

Counter Strike: Global Offensive [Computer software|. (2015). Retrieved
from http://blog.counter-strike.net/ on March 30, 2015.

CryEngine [Computer software]. (2015). Retrieved from http://www
.cryengine.com/ on March 22, 2015.

Day-Z [Computer software|. (2015). Retrieved from https://dayzmod.com/
on March 31, 2015.

Dickey, M. D. (2006). Game design narrative for learning: Appropriating
adventure game design narrative devices and techniques for the design of
interactive learning environments. Fducational Technology Research and
Development, 54 (3), 245-263.

BIBLIOGRAPHY 130

Djaouti, D., Alvarez, J., & Jessel, J-P. (2011). Classifying serious games:
The g/p/s model. Handbook of research on improving learning and moti-
vation through educational games: Multidisciplinary approaches, 118-136.

e-Adventure [Computer software|. (2012). Retrieved from http://e
-adventure.e-ucm.es/ on March 28, 2015.

Eberly, D. H. (2010). Game physics. Taylor and Francis.

Fifa |[Computer software|. (2014). Retrieved from https://www.easports
.com/nl/fifa on March 30, 2015.

Friendly ATTAC. (2012). Adaptive Technological Tools Against Cyberbully-
ing. Retrieved from http://www.friendlyattac.be/en/ on February 21,
2015.

Furtado, A. W., & Santos, A. L. (2006). Using domain-specific modeling
towards computer games development industrialization. In The 6th oopsla
workshop on domain-specific modeling (dsm06).

Furtado, A. W. B., & de Medeiros Santos, A. (2006). Sharpludus: improv-
ing game development experience through software factories and domain-
specific languages. Universidade Federal de Pernambuco (UFPE) Mestrado
em Ciéncia da Computacdo centro de Informdtica (CIN).

Gobel, S., Salvatore, L., & Konrad, R. (2008). Storytec: A digital storytelling
platform for the authoring and experiencing of interactive and non-linear
stories. In Automated solutions for cross media content and multi-channel
distribution, 2008. axmedis’08. international conference on (pp. 103-110).

Greenfoot [Computer software|. (2015). Retrieved from http://www
.greenfoot.org/ on March 27, 2015.

Gregory, J. (2009a). Game engine architecture. In (Second ed., chap. 1).
CRC Press.

Gregory, J. (2009b). Game engine architecture. In (Second ed., chap.
10;11;12:13). CRC Press.

Juul, J. (2010). The game, the player, the world: Looking for a heart of
gameness. PLURAIS-Revista Multidisciplinar da UNEB, 1(2).

Kickmeier-Rust, M., Mattheiss, E., & Albert, D. (2011). Experiences with an
approach to an unobtrusive assessment of motivational states in immersive,
narrative learning environments. In Proceedings of the 7th european con-
ference on management leadership and governance: Ecgbl 2011 (p. 315).

131 BIBLIOGRAPHY

Kickmeier-Rust, M. D., Gébel, S.; & Albert, D. (2008). 80days: Melding
adaptive educational technology and adaptive and interactive storytelling
in digital educational games. In Proceedings of the first international work-
shop on story-telling and educational games (steg§08).

Klabbers, J. H. (2003). The gaming landscape: a taxonomy for classifying
games and simulations. In Digra conf.

Kolo, C., & Baur, T. (2004). Living a virtual life: Social dynamics of online
gaming. Game studies, 4 (1), 1-31.

League of Legends [Computer software|. (2015). Retrieved from http://
euw.leagueoflegends.com/ on March 30, 2015.

Lindley, C. A. (2005). Story and narrative structures in computer games.
Bushoff, Brunhild. ed.

Luoma, J., Kelly, S., & Tolvanen, J.-P. (2004). Defining domain-specific
modeling languages: Collected experiences. In 4 th workshop on domain-
specific modeling.

Marchiori, E. J., Del Blanco, A., Torrente, J., Martinez-Ortiz, 1., &
Fernandez-Manjon, B. (2011). A visual language for the creation of narra-

tive educational games. Journal of Visual Languages € Computing, 22(6),
443-452.

Mass Effect [Computer software|. (2012). Retrieved from http://
masseffect.bioware.com/ on April 4, 2015.

Michael, D. R., & Chen, S. L. (2005). Serious games: Games that educate,
train, and inform. Muska & Lipman/Premier-Trade.

MIT Media Lab. (2015). Scratch - Imagine, Program, Share. Retrieved from
https://scratch.mit.edu/ on March 27, 2015.

Peffers, K., Tuunanen, T., Rothenberger, M. A.,; & Chatterjee, S. (2007).
A design science research methodology for information systems research.
Journal of management information systems, 24(3), 45-77.

Petridis, P., Dunwell, 1., de Freitas, S., & Panzoli, D. (2010). An engine se-
lection framework for high fidelity serious games. In The 2nd international
conference on games and virtual worlds for-serious-applications (vsgames
2010), braga, portugal.

BIBLIOGRAPHY 132

Pulse!! |[Computer software]. (2007). Retrieved from http://
serious.gameclassification.com/EN/games/1017-Pulse/index.html
on March 30, 2015.

Sherlock Holmes: Crimes & Punishments [Computer software|. (2014). Re-
trieved from http://www.sherlockholmes-thegame.com/ on March 30,
2015.

Shute, V. J., Ventura, M., Bauer, M., & Zapata-Rivera, D. (2009). Melding
the power of serious games and embedded assessment to monitor and foster

learning. In Serious games: Mechanisms and effects (Vol. 2, pp. 295-321).
Routledge/LEA Philadelphia, PA.

Starcraft II [Computer software|. (2014). Retrieved from http://us.battle
.net/sc2/en/ on March 30, 2015.

Surgeon Simulator [Computer software|. (2013). Retrieved from http://
www . surgeonsim.com/ on March 31, 2015.

Susi, T., Johannesson, M., & Backlund, P. (2007). Serious games: An
overview.

The Sims [Computer software|. (2014). Retrieved from http://www.thesims
.com/ on March 30, 2015.

Torrente, J., Del Blanco, A., Marchiori, E. J., Moreno-Ger, P., & Fernandez-
Manjon, B. (2010). < e-adventure>: Introducing educational games in

the learning process. In Education engineering (educon), 2010 ieee (pp.
1121-1126).

Unreal Engine [Computer software|. (2015). Retrieved from https://www
.unrealengine.com/ on March 22, 2015.

Van Broeckhoven, F., & De Troyer, O. (2013). Attac-1: A modeling language
for educational virtual scenarios in the context of preventing cyber bully-
ing. In Serious games and applications for health (segah), 2013 ieee 2nd
international conference on (pp. 1-8).

World of Warcraft [Computer software|. (2015). Retrieved from http://
us.battle.net/wow/en/ on March 30, 2015.

O =1 DT W

Appendix A

Listing A.1 is the JSON representation of the ATTAC-L story shown in Figure

3.23 in section 3.3.4.

{
"_entries": [
llgoll
15
" flow": {
’lglsll: {
n e:XI)I.H [
{
"word_": "Elisabeth",
"_next" [
{
"word_": "says",
"attr_": {
"message": "Thank you very much!"
+
¥
{
"WOId_"Z lltoll’
" next": [
{
"word_": "player"
¥
]
}
]
¥
15
"_interpr": {
"_subject": "Elisabeth",
"_predicate": {
"_verb": "says to",
" _direct": {
"message": "Thank you very much!"
o
" _indirect": "player"
+
}
¥o
llgl5ll: {
ll_nextll: ’lglsll,
"_expr": [
{
"word_": "player",
" _next": [
{
"word_": "says",
"attr_": {
"message": "Here you go, Carl found your
}
¥o
{
llword_": ’ltoll’
" next": [
{
"word_": "Elisabeth"

UsSB!"

56
57

59
60
61
62
63
64
65
66
67
68
69
70
71
72

74
75
76
I
78

80
81
82
83
84
85

87
88
89
90
91
92
93
94
95
96
97
98

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

]
+
]
¥
15
"_interpr": {
"_subject": "player",
" _predicate": {
"_verb": "says to",
" _direct": {
"message": "Here you go,
¥o
" _indirect": "Elisabeth"
I
}
¥o
"814": {
Il_nextll: ’Ig15ll ,
"_expr": [
{
"word_": "player",
" _next": [
{
"word_": "gives",
"_next": [
{
"word_": "Usb"
¥
]
¥o
{
’Iword_ll . Iltoll R
" _next": [
{
"word_": "Elisabeth"
¥
]
}
]
¥
i
"_interpr": {
"_subject": "player",
"_predicate": {
"_verb": "gives to",
"_direct": "Usb",
" _indirect": "Elisabeth"
¥
}
¥o
Ilglsll: {
Il_nextll: "814" ,
"_expr": [
{
"word_": "Carl",
" _next": [
{
"word_": "gives",
" _next": [
{
"word_": "Usb"
}
]
¥o
{
’Iword_" . Iltoll .
"_next": [
{
"word_": "player"
¥
]
}
]
¥
15
"_interpr": {
" _subject": "Carl",
" _predicate": {
"_verb": "gives to",
"_direct": "Usb",
"_indirect": "player"
¥
I
Fo
’Ig12|l: {
Il_nextll: llglsll ,

"_expr": L

Carl found your USB!"

144
145
146
147
148
149
150

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

you

‘ "word_": "Carl",
"_next": [
{
"word_": "says",
"attr_": {
"message": "I do not really know her that well.
Here, you can give it to her."
}
¥o
{
"word_": "to",
" next": [
{
"word_": "player"
¥
]
}
]
}
15
"_interpr": {
" _subject": "Carl",
" _predicate": {
"_verb": "says to",
"_direct": {
"message": "I do not really know her that well. Here,
can give it to her."
¥o
" _indirect": "player"
+
}
¥o
tgii: {
"_next": "gl2",
"_expr": [
{
"word_": "player",
" _next": [
{
"word_": "says",
"attr_": {
"message": "Give it back to her, it is hers!"
+
¥o
{
"word_": "to",
" next": [
{
"word_": "Carl"
¥
]
}
]
}
[
"_interpr": {
"_subject": "player",
"_predicate": {
"_verb": "says to",
"_direct": {
"message": "Give it back to her, it is hers!"
o
" _indirect": "Carl"
+
}
¥o
"g20": {
"_expr": [
{
"word_": "Vincent",
"_next": [
{
"word_": "befriends",
" _next": [
{
"word_": "Carl"
¥
]
¥
{
"word_": "on",
"_next": [
{
"word_": "Half-Life"
B
]

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

¥
i
"_interpr": {
"_subject": "Vincent",
"_predicate": {
"_verb": "befriends on",
"_direct": "Carl",
" _indirect": "Half-Life"
¥
}
¥o
Ilgzlll {
"_expr": [
{
"word_": "Carl",
"_next": [
{
"word_": "befriends",
" _next": [
{
"word_": "Mary"
¥
]
¥o
{
llword ll: Ilonll
"_next": [
{
"word_": "Half-Life"
¥
]
+
]
¥
15
"_interpr": {
"_subject": "Carl",
"_predicate": {
"_verb": "befriends on",
"_direct": "Mary",
"_indirect": "Half-Life"
¥
+
o
lngSIl. {
"_expr": [
{
"word_": "Vincent",
" _next": [
{
"word_": "comments",
" _next": [
{
"word_": "a message",
"attr_": {
"message": "Send it to me
+
¥
]
Fo
{
’Iword_": "On",
" _next": [
{
"word_": "the hl-page of",
" _next": [
{
"word_": "Carl"
I
]
+
]
+
]
¥
1
"_interpr": {
"_subject": "Vincent",
" _predicate": {
"_verb": "comments on",
" _direct": {
Il_detll: ’Iall’
"_noun": "message",
" _attr": {
"message": "Send it to me please!"
}

3,

please!"

318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

397
398
399
400
401
402
403
404

" _indirect": {

Il_detll: "the",
"_noun": "hl-page",
"_Of": Ilcarlll
¥
}
}
e
lI824ll {
"_expr": [
{
"word_": "Mary",
" _next": [
{
"word_": "comments",
" next": [
{
"word_": "a message",
"attr_": {
"message": "Can you send it to me please?"
}
¥
]
¥o
{
Ilword_ll: "On",
" next": [
{
"word_": "the hl-page of",
" _next": [
{
"word_": "Carl"
+
]
¥
]
}
]
¥
15
"_interpr": {
"_subject": "Mary",
"_predicate": {
"_verb": "comments on",
"_direct": {
Il_detll: llall,
"_noun": "message",
" _attr": {
"message": "Can you send it to me please?"
}
¥o
"_indirect": {
Il_detll: llthell’
"_noun": "hl-page",
"_Of": llcarlll
¥
}
}
¥o
llg22": {
Il_typell: lloinll,
" _paths": [
Ilg23’l s
Ilg24ll
]
¥o
’Iglgll: {
Il_nextll: llg22”’
"_expr": [
{
"word_": "Carl",
"_next": [
{
"word_": "posts",
" _next": [
{
"word_": "a message",
"attr_": {
"message": "Me and player found Elisabeth’
s homework! Who else wants it?"
}
¥
]
¥o
{
Ilword_“: lltoll’
" next": [

{

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425

426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453

454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472

473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489

"the hl-page of",

"Don’t tell her but

send me

"word_":
" _next": [
{
"word_": "Carl"
¥
]
¥
]
}
]
¥
i
"_interpr": {
" _subject": "Carl",
"_predicate": {
"_verb": "posts to",
"_direct": {
n det": llall)
"_noun": "message",
" _attr": {
"message": "Me and player
Who else wants it?"
}
¥o
" _indirect": {
Il_detll: ’Ithell .
"_noun": "hl-page",
Il_ofll: "Carl"
¥
¥
}
Fo
’Ig18|l: {
"_IleXt": llglgll ,
Il_typell: ’Ioinll ,
"_paths": [
llgzoll ,
llg21"
]
¥o
lIgl?ll: {
Il_nextll: ’Iglsll ,
"_expr": [
{
"word_": "player",
" _next": [
{
"word_": "says",
"attr_": {
"message":
else I will tell on you!"
¥
T
{
llword " : "tO" .
"_next": [
{
"word_": "Carl"
¥
]
}
]
¥
15
"_interpr": {
" _subject": "player",
" _predicate": {
"_verb": "says to",
" _direct": {
"message": "Don’t tell her but
will tell on you!"
¥o
" _indirect": "Carl"
¥
}
¥o
llgloll: {
"_type": "ChO" ,
"_paths": [
llgllll ,
’Ig17’|
]
¥o
llg9ll: {
"_IleXt": llgloll ,
"_expr": [
{
"word_": "Carl",

found Elisabeth’s homework!

send me a copy too,

a copy too,

else I

490
491
492
493
494

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513

514
515
516
517
518
519
520
521
522
523
524
525
526
527
528

529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547

548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570

"_next": [
{
"word_": "says",
"attr_": {

"message": "Yes I did. Should I give it back to
her or pretend I never found it and copy her
homework?"

b

¥

{
"word_": "to",
"_next": [

{

"word_": "player"

}

]
}
]
}
15
"_interpr": {
"_subject": "Carl",
"_predicate": {
"_verb": "says to",
" _direct": {
"message": "Yes I did. Should I give it back to her or
pretend I never found it and copy her homework?"
},
" _indirect": "player"
}
}
¥s
"g8": {
"_next": "go",
"_expr": [
{
"word_": "player",
"_next": [
{
"word_": "says",
"attr_": {

"message": "Hey Carl, Elisabeth told me she lost
her USB stick containing her homework here
today. Did you find it by accident?"

b

¥o

{
"word_": "to",
"_next": [

{

"word_": "Carl"

}

]
}
]
+
15
"_interpr": {
" _subject": "player",
"_predicate": {
"_verb": "says to",
" _direct": {
"message": "Hey Carl, Elisabeth told me she lost her USB
stick containing her homework here today. Did you find
it by accident?"
P
" _indirect": "Carl"
}
}
},
g7 {
"_next": "g8",
"_expr": [
{
"word_": "player",
" _next": [
{
"word_": "says",
"attr_": {
"message": "Ok, I will go and ask him!"
}
¥o
{
"word_": "to",
" next": [

{

"word_": "Elisabeth"

571]

572 }

573]

574 }

575 1,

576 "_interpr": {

577 " _subject": "player",

578 " _predicate": {

579 "_verb": "says to",

580 "_direct": {

581 "message": "Ok, I will go and ask him!"

582 },

583 "_indirect": "Elisabeth"

584 }

585 }

586 ¥o

587 "g25": {

588 "_expr": [

589 {

590 "word_": "player",

591 "_next": [

592 {

593 "word_": "says",

594 "attr_": {

595 "message": "I need to go now I am sorry. Go ask it

yourself .”

596 }

597 },

598 {

599 "gyord_": "to",

600 "_next": [

601 {

602 "word_": "Elisabeth"

603 }

604]

605 }

606]

607 }

608 15

609 "_interpr": {

610 " _subject": "player",

611 "_predicate": {

612 "_verb": "says to",

613 "_direct": {

614 "message": "I need to go now I am sorry. Go ask it
yourself ."

615 },

616 "_indirect": "Elisabeth"

617 }

618 }

619 },

620 "g6": {

621 "_type": "cho",

622 " _paths": [

623 ug7||,

624 "g25"

625]

626 },

627 "gs": {

628 "_next": "g6",

629 "_expr": [

630 {

631 "word_": "Elisabeth",

632 " _next": [

633 {

634 "word_": "says",

635 "attr_": {

636 "message": "I just saw Carl picking something up!

Could you go and ask if he found it?"

637 }

638 ¥o

639 {

640 "wyord_": "to",

641 "_next": [

642 {

643 "word_": "player"

644 }

645]

646 }

647]

648 }

649 15

650 "_interpr": {

651 " _subject": "Elisabeth",

652 " _predicate": {

653 "_verb": "says to",

654 " _direct": {

655 "message": "I just saw Carl picking something up! Could

656
657
658
659
660
661
662
663
664
665
666
667
668
669
670

671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689

690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
27
728
729
730
731
732
733
734
735
736
737
738
739
740

you go and ask if he found it?"

Are you sure you

¥o
"_indirect": "player"
}
}
Io
llg4ll: {
ll_nextll: ’|g5ll ,
"_expr": [
{
"word_": "player",
"_next": [
{
"word_": "says",
"attr_": {
"message": "I cannot find it.
lost it here?"
}
¥o
{
llword_ll: ’ltoll)
" _next": [
{
"word_": "Elisabeth"
¥
]
}
]
}
15
"_interpr": {
" _subject": "player",
" _predicate": {
"_verb": "says to",
"_direct": {
"message": "I cannot find it.
here?"
o
" _indirect": "Elisabeth"
+
}
¥o
llgsll: {
ll_nextll: ’lg4ll ,
"_expr": [
{
"word_": "Carl",
" _next": [
{
"word_": "picks-up",
"_next": [
{
"word_": "Usb"
I
]
}
]
+
15
"_interpr": {
"_subject": "Carl",
"_predicate": {
"_verb": "picks-up",
"_direct": "Usb"
+
}
¥o
llg2ll: {
Il_nextll: lIgSIl ,
"_expr": [
{
"word_": "player",
" _next": [
{
"word_": "says",
" next": [
{
"word_": "a message",
"attr_": {
"message": "Sure,
}
¥
]
¥o
{
Ilword_“: lltoll R
" next": [

{

lost

Are you sure you

it

I can help you find it!"

741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771

772
773
774
775
776
s
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812

813
814
815
816
817
818
819
820
821
822
823
824
825

"This is not my problem. Leave me alone

Leave me alone!"”

"Hey player, I lost my USB stick

Can you help me find

"word_": "Elisabeth"
¥
]
}
]
¥
15
"_interpr": {
" _subject": "player",
"_predicate": {
"_verb": "says to",
"_direct": {
n detll: Ilall,
"_noun": "message",
"_attr": {
"message": "Sure, I can help you find it!"
+
Fo
"_indirect": "Elisabeth"
¥
}
¥o
"826". {
"_expr": [
{
"word_": "player",
" _next": [
{
"word_": "says",
"attr_": {
"message":
!Il
¥
Fo
{
llword ll: Iltoll,
" _mnext": [
{
"word_": "Elisabeth"
}
]
+
]
¥
15
"_interpr": {
"_subject": "player",
" _predicate": {
"_verb": "says to",
" _direct": {
"message": "This is not my problem.
¥o
" _indirect": "Elisabeth"
I
}
¥o
llglll: {
Il_typell: "ChO",
"_paths": [
" n
llg;Bl’l
]
¥o
llgoll: {
Il_nextll: ’Iglll’
"_expr": [
{
"word_": "Elisabeth",
" _next": [
{
"word_": "says",
"attr_": {
"message":
containing my homework.
it7?"
¥
¥o
{
’Iword_": Iltoll’
" _next": [
{
"word_": "player"
+
]
}
]
¥

826
827
828
829
830
831

832
833
834
835
836
837
838

"_interpr": {
" _subject": "Elisabeth",
" _predicate": {
"_verb": "says to",
"_direct": {
"message": "Hey player, I lost my USB stick containing my
homework. Can you help me find it?"

3,

" _indirect": "player"

Listing A.1: JSON Representation of Figure 3.23

Locations

Park

Office

House

Playground
Fountain

Football-field

Sitting-area

Cubicle
Small-cubicle

Meeting-room

Lounge
Entrance
Dining-room
Fire-place
Small-Bedroom
Double-bedroom
Small-bathroom
Living-room
Kitchen
Master-bedroom

Master-bathroom

Appendix B

Appendix C

Below we show all the verbs (actions) that are supported by our simulator.

Simulator Supported Verbs

o “walks-to” e “friends on”
e “goes-t0” e “posts on”
13 29

® 5ayS to ° “pOStS tO”

e “chats to” IR T »
e “replies on

e “sends to” B]] .
e “replies-with to

e “texts to”

e “comments on”
e “emails t0”

o “likes”
e “mails to”
s ” e “likes on”
e “gives to
[43 2
. o “tweet
e “picks-up”
43 27
® “grabs” ® “tweets
. 43 byl
e ‘“‘receives from” e ‘“retweets

e “befriends on” o “follows on”

Appendix D

Figure D.1 shows the complete UML class diagram of our simulator. Note that
some classes contain too many variables or methods to depict on this diagram,
this is why we opt to only display the important ones. Three dots indicate that
there are more methods or variables present than depicted.

P

Oamnesanosuos s
o+

soped £
< e
<cunosayisn s+

T wnoney 1 ﬁssﬂ:x

——
Owawuos -

Omepen-

Qinsuo-
Omseny-

s

Buuas : unownOe +

Quosesinions s sumgisod +
aonesdo = TS e PR <buasomn s -
Buns wawor+

-+ s s

snqme =

snqme =

Oeren+
[

(s s ez) gD
tessaa

oy -
(essgenqun +
opesdo £

<PRGORIED ED EEENE T USSR +

<costqgaues siopon

g

Quonesinicomey +

« [pocewpesiens

onends £
< s

+ [pecempoues

sy =

o E

oudasreews ¥

vpens-
Qunsamias

<ouas e +
s =

buddeinosc ¥

- | seamosc

seaost

iagram

UML Class Di

D.1

Figure

