
FACULTY OF SCIENCE AND BIO-
ENGINEERING SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

WSDM Web Development Adapted to
Website Genres, Design Patterns and,
Content Management Systems

Graduation thesis submitted in partial fulfillment of the requirements for the degree of
Master in de Ingenieurswetenschappen: Computerwetenschappen

Kevin Van Gyseghem

Promoter: Prof. Dr. Olga De Troyer
Advisor: Pejman Sajjadi

Academic year 2013-2014

FACULTEIT WETENSCHAPPEN EN BIO-
INGENIEURSWETENSCHAPPEN
VAKGROEP COMPUTERWETENSCHAPPEN

WSDM Web Development Adapted to
Website Genres, Design Patterns and,
Content Management Systems

Masterproef ingediend in gedeeltelijke vervulling van de eisen
voor het behalen van de graad
Master in de Ingenieurswetenschappen: Computerwetenschappen

Kevin Van Gyseghem

Promoter: Prof. Dr. Olga De Troyer
Advisor: Pejman Sajjadi

Academiejaar 2013-2014

i

Abstract

The purpose of this thesis is to adapt the Web Semantic Design Method
(WSDM) for implementations that use a Content Management System (CMS).
The problem is that the models of the WSDM methodology specify every-
thing in much detail, which does not match the level of control one have
when using a CMS. An adapted WSDM methodology, called WSDM-Lite, is
proposed to solve this problem.

This thesis introduces the concept of Web Design Patterns (WDPs) which
are conceptual descriptions of features that can be found in websites. These
WDPs roughly match functionality that can be found in installable modules
for CMSs. The WDPs are reusable components that are modeled together
using a feature assembly diagram.

WSDM-Lite uses website genres to speed up the development process. By
de�ning Web Genre Patterns (WGP) web developers can reuse conceptual
models of web applications and adapt them to the need of their own project.
The conceptual models of a website genre contain commonly used WDPs.

To further streamline the modeling process in WSDM-Lite a support tool
is introduced as a Software as a Service application (SaaS). The application
does not only provide the necessary tools to create the various models of a
WSDM-Lite project, but also automates a lot of work and improves the over-
all quality of a design. An e-commerce example project is discussed. Multiple
approaches are discussed to automate website generation from these models,
each with their own bene�ts and drawbacks.

The result of the thesis is the new, adapted, WSDM version: WSDM-
Lite. This methodology is a more compact version of WSDM that works
well with implementations based on CMSs. Patterns, website genres, and a
support tool are used to speed up and improve the design process.

ii

Abstract

Het doel van deze thesis is de Web Semantic Design Method (WSDM) method-
ologie aan te passen aan implementaties die gebruik maken van een Content
Management Systeem (CMS). De originele versie van WSDM vereist veel de-
tail in de verschillende modellen, dit strookt met het gebruik van een CMS
waarin er vooral met grotere componenten wordt gewerkt zoals bijvoorbeeld
installeerbare modules.

In deze thesis wordt een aangepaste methode, WSDM-Lite, voorgesteld.
Deze methode maakt gebruik van web design patronen (WDP). WDP zijn
conceptuele beschrijvingen van features in een web applicatie. Deze patronen
komen overeen met de grootte van installeerbare modules in een CMS. Een
totaalbeschrijving van een web applicatie wordt gegeven door deze patronen
in een feature assembly diagram te plaatsen.

WSDM-Lite gebruikt ook website genres om het modeleerproces te ver-
snellen: website genre patronen(WGP) zijn herbruikbare conceptuele mod-
ellen die gebruikt kunnen worden door de web ontwikkelaar en kunnen aangepast
worden aan de noden van het project. Deze WGP bevatten vaak gebruikte
WDP in een speci�ek website genre. Verder wordt het modeleerproces ook
versnelt door een ondersteunende applicatie, een "Software as a Service"
(SaaS) applicatie. Deze applicatie bevat niet alleen de nodige tools om de
verschillende modellen aan te maken maar automatiseert handelingen van de
web ontwikkelaar en heeft invloed op de algemene kwaliteit van het design.
Een E-commerce voorbeeld werd uitgewerkt.

Verschillende mogelijkheden, elk met voor en nadelen, werden besproken
om de modellen van WSDM-Lite te gebruiken om automatisch de web appli-
catie deels op te zetten. Het resultaat van deze thesis is een nieuwe WSDM
versie: WSDM-Lite. WSDM-Lite is een compacte WSDM versie dat nog
steeds de principes volgt van de originele maar gebruikt maakt patronen,
website genres en een ondersteunende applicatie.

iii

Acknowledgements

First of all I want to express my gratitude towards the promotor of this the-
sis, Prof. Dr. Olga De Troyer for all the insights and proof-reads. I also
want to thank the Advisor, Pejman Sajjadi, for all the help with the thesis
and the critical view towards the contents of it.

I also wish to thank all the lecturers during my time at the VUB who
gave me the competences to complete this thesis.

Contents

1 Introduction
1.1 Problem Statement . 2
1.2 Thesis Contribution . 2
1.3 Thesis Structure . 3

2 Background
2.1 Original WSDM Version . 4

2.1.1 Mission Statement Speci�cation 4
2.1.2 Audience Modeling . 5
2.1.3 Conceptual Design . 10
2.1.4 Implementation Design 13
2.1.5 Implementation . 15

2.2 Feature Assembly Framework 15

3 Related work
3.1 WCMS Based WSDM Version 17
3.2 WEM . 20
3.3 WebRatio . 20
3.4 Website Genres . 21

4 WSDM-Lite
4.1 Mission Statement Speci�cation 24
4.2 Website Genre Selection . 25
4.3 Audience Classi�cation and Characterization 25
4.4 Conceptual Modeling phase 25

4.4.1 Patterns . 26
4.4.2 Specifying the Conceptual Models 30

4.5 Navigational Design . 30
4.6 Site Structure Design . 31
4.7 Template Design . 32

5 WSDM-Lite tool support

v CONTENTS

5.1 Initialization . 34
5.1.1 Mission Statement Speci�cation > Audience Classi�-

cation . 34
5.1.2 Audience Classi�cation > Audience Characterization,

Conceptual Design, Navigational Design and Site Struc-
ture Design . 35

5.1.3 Website Genre Selection > Conceptual Design 35
5.1.4 Conceptual Design > Navigational Design 35
5.1.5 Navigational Design > Site Structure Design 36

5.2 Repositories for WGP and WDP 36
5.2.1 WGP Repository . 36
5.2.2 General WDP Repository 36
5.2.3 Local WDP Repository 36
5.2.4 Maintaining Repository Quality 37

5.3 Model Modi�cations: Validation, Automatic Updates and,
Noti�cations . 37
5.3.1 Mission Statement Speci�cation: Adding Target Users 38
5.3.2 Website Genre Selection: Changing the Website Genre 38
5.3.3 Audience Classi�cation: Modi�cation to the Audience

Classi�cation . 38
5.3.4 Conceptual Design: Modifying the Feature Assembly

Diagram . 40
5.3.5 Modi�cations in the Navigational Design and the Site

Structure Design . 41
5.4 Model Validations . 41
5.5 Requirement Satisfaction . 42

6 WSDM Design of support tool
6.1 Mission Statement Speci�cation 43
6.2 Audience Classi�cation . 44

6.2.1 Visitors . 44
6.2.2 Web Designers . 44

6.3 Audience Characterization . 51
6.4 Conceptual Design . 51

6.4.1 Task and Information Modeling 51
6.4.2 Navigational Design 68
6.4.3 Site Structure Design 68
6.4.4 Template Design . 68

6.5 Implementation . 68
6.5.1 Application Core . 68
6.5.2 Project Overview . 69

vi CONTENTS

6.5.3 Mission Statement Speci�cation and Website Genre
Selection . 69

6.5.4 Audience Classi�cation 69
6.5.5 Audience Characterization 69
6.5.6 Conceptual Model . 76
6.5.7 Navigational Design 76
6.5.8 Site Structure Design 76
6.5.9 Template Design . 76

7 Example: E-commerce
7.1 Mission Statement Speci�cation and Website Genre Selection . 81
7.2 Audience Classi�cation and Audience Characterization 82
7.3 Conceptual Model . 83

7.3.1 Initialization of the Conceptual Model 83
7.3.2 Adapting the Conceptual Design 86
7.3.3 Modeling the Details 86

7.4 Navigational Design . 89
7.5 Site Structure Design . 89
7.6 Template Design . 91

8 Website Generation
8.1 Installing a CMS . 96
8.2 Approach 1: The WSDM-Lite Support Tool in the Role of

Web Developer . 96
8.2.1 Technical . 96
8.2.2 Linking Components on WDP Level 97
8.2.3 Linking Components on WGP and WDP Level 98
8.2.4 Module Market Place with Search 99
8.2.5 Conclusions . 101
8.2.6 Alternative Technical Setup 101
8.2.7 Other Advantages of Connection WDPs and Modules . 101

8.3 Approach 2: Strictly Limit the Mapping 102
8.3.1 Limited WDP for each Website Genre 102

8.4 Approach 3: Extend the Support Tool with Implementations
for the Website Genres . 103

8.5 Conclusion . 104

9 Future Work
9.1 Tool Support . 105
9.2 User Studies . 105
9.3 User Roles . 106

vii CONTENTS

9.4 Template Design . 106

10 Conclusion

1
Introduction

In the last two decades the manner in which web applications are built has
come a long way. Early systems used an ad hoc development approach but it
became soon clear that there was a need for a more disciplined approach. A
new �eld of study "Web Engineering"[20][11] emerged and several web design
methods or methodologies were developed such as WebML[6], OOWS[21],
WSDM[25], . . .

WSDM, introduced by De Troyer and Leune in 1998[25], is a very inter-
esting web design method for two reasons. Firstly, WSDM not only provides
the modeling techniques needed to develop web applications, but also a step-
by-step approach where each step is based on the results of previous steps,
ending up with the �nal product. Next, WSDM is also using an audience-
driven approach[25] rather than data-driven or organization-driven.

The domain of the web is more than any other technology a fast evolving
domain. We see a clear trend in the use of CMS-based applications: Drupal1

had on 10th of May 2014 more than 907.084 installations2 and WordPress3

1http://www.drupal.com
2https://drupal.org/project/usage/drupal
3http://www.wordpress.com

2 CHAPTER 1. Introduction

has over 409 million people reading articles4 each month with a clear growing
trend. These are only two of the more popular CMS.

1.1 Problem Statement

Although WSDM is an interesting web development approach, the original
method does not consider the use of CMS to implement the web system, while
the popularity of CMS-based web applications is only increasing. Moreover,
there is a clear mismatch between these two technologies: The levels of ab-
straction in which WSDM requires the developer to model a web application
does not match the level of control one has when using a CMS. Sajjadi [18]
already investigated how to adapt WSDM to recent developments in the web
domain.

Besides the practical mismatch between the levels of abstraction we also
wish to solve a conceptual mismatch: One of the reasons why CMSs are used
is because they provide a readymade core with the possibility to extend it
with various components. This is bene�cial for a fast deployment strategy.
Modeling everything from scratch by hand does not match with this approach
and web developers would be tempted to omit the models even though they
have clearly shown their bene�ts.

1.2 Thesis Contribution

In this thesis we will discuss a new lightweight WSDM, called WSDM-Light,
for the development of web applications using a CMS, while still closely ad-
here to the principles of the original WSDM. As an extention of this new
methodology, we will provide a supporting tool which speeds up the model-
ing phases even more. Such a tool has several advantages:

• A consistent interface across each type of modelling technique reducing
the learning time

• Information collected in earlier modeling phases are used to initialize
later phases, using the power of a methodology and speeding up the
modeling process.

4http://en.wordpress.com/stats/

3 CHAPTER 1. Introduction

• Using website genres, models using common structures found across
the web are provided.

• A repository containing several conceptual models for a website genre
that relate to the setup of di�erent CMSs.

We will also discuss shortly other possible bene�ts of the tool such as trace-
ability, collaboration, and (partial) website generation.

1.3 Thesis Structure

In chapter 2 we will give background information about technologies used in
the rest of the thesis. Chapter 3 discusses related work with pro's and cons
of the approaches. Next we will introduce the adapted WSDM methodology,
WSDM-Lite. Chapter 5 introduces a support tool for the new WSDM-Lite
methodology, of which will the design will be described with the WSDM
methodology in chapter 6. An example project using the new methodology
and tool can be found in chapter 7. In chapter 8 partial website generation
will be discussed based on WSDM-Lite and the support tool. Future work is
discussed in chapter 9 and chapter 10 concludes this thesis with a summary.

2
Background

2.1 Original WSDM Version

WSDM stands for Web Semantic Design Method and is an audience driven
web development methodology that uses a �ve-step process starting from a
mission speci�cation and ending with the implementation. It provides a clear
methodology to develop the web system as the output of each phase is the
input for the next. The original WSDM method will be used as basis for the
new methodology but will be changed where necessary to meet the goals of
this thesis. We will give a short overview of the di�erent steps (�gure 2.1)
of the original WSDM method [8]. The di�erent phases are illustrated for a
�ctive e-commerce website.

2.1.1 Mission Statement Speci�cation

The �rst step that has to be done is re�ecting on the purpose of the system
and the targeted users. These speci�cations will be used to make design
decisions later on and determine the borders of the project. In the end
the e�ectiveness of the system can be coupled back to these speci�cations.
The mission statement speci�cation is written in natural language and must
specify the purpose, subject and target users of the system. The mission
statement for the example is given in Table 2.1.

5 CHAPTER 2. Background

Figure 2.1: WSDM Steps

2.1.2 Audience Modeling

The �rst phase is a very incomplete description of the system but provides
us with a focus where to go. Since WSDM is an audience-driven method the
next step is to model the audience of the system. WSDM starts from the
requirements of the audience and therefore does not have the problems that
come from a poor underlying design or an organization or data driven design
[5].This is done in two sub-phases, the �rst one called "audience classi�ca-
tion" and the next "audience characterization".

6 CHAPTER 2. Background

The purpose of the e-commerce website is to provide a platform for music
lovers where they can (1) buy their favorite albums, (2) get background
information about the band and their activities and (3) buy merchandising
of the bands.

The subjects of the website are band albums, merchandising and related
information such as biography, discography, concerts, news, reviews, etc.

The target users are general music fans that listen to the genres Rock,
Poprock, Indierock and Britpop and fans of speci�c band belonging to this
genre.

Table 2.1: Example

Audience Characterization

It is clear that di�erent users of a system have di�erent needs. The audience
classi�cation re�nes the targeted users denoted in step 1 (Mission statement
speci�cation) and turns them into audience classes; this classi�cation is based
on speci�c functional and informational requirements. All members of an au-
dience class have the same set of requirements. If di�erent members have
di�erent requirements, a new audience class has to be added.

Some audience classes have the same needs as another audience class but
need more. WSDM uses audience class subtyping in this situation. An au-
dience class B has the same needs as an audience class A but B has extra
needs. The people of the class B belong also to the class A and are a subset
of it. In this way there is no redundancy while specifying requirements. The
notation used by WSDM in illustrated in Figure 2.2

class subtyping.png

Figure 2.2: Audience class subtyping

The �rst thing we have to do in the audience classi�cation is identify the
people possibly involved and determine if they are part of the target audience

7 CHAPTER 2. Background

of the system. This is done by �rst considering the activities of the organi-
zation related to the purpose of the system. For the example this results in
the following activities:

• Ordering music albums

• Ordering merchandising

• Providing information about bands and their background

• Providing news and reviews about bands and their albums and con-
certs.

The next thing we have to do is identify the people involved and assign
them to target users. This is visualized in �gure 2.3.

Figure 2.3: Involved activities and target users

Now we need to identify and specify the di�erent requirements for the
di�erent user. Because this is an example we will not specify all the require-
ments in full detail:

• E-Commerce support sta� (ESS)

8 CHAPTER 2. Background

1. Process orders

2. Respond to customer questions

3. Manage the product database

4. Add promotions

• Music Fans (MF)

1. Place order

2. Search for bands

3. Search for albums

4. Search on song titles

5. Browse on genre

6. Listing to an album using a streaming service

7. Pose questions about the products or service

• Music Reporters (MR)

1. Add news about a band

2. Add reviews about a band concert

3. Add reviews about albums

Until now we divided the target users into groups and added requirements
to each group. Now we need to classify them into a real audience classes.
This can be done by using the matrix requirement method [5]. An NxN
matrix, with N the total number of requirements, is created. Every row and
column is a representation of a requirement, in the same order. The entry
on each position is the answer to the question "Does every user that has the
requirement of this row, also have the requirement of this column?". The
matrix for our example is given in table 2.2.

The audience classes are then derived from this matrix. Identical rows
de�ne an audience class. If the set of "Y" values of an audience class A
is a subset of another audience class B, it is its superclass in the audience
classi�cation, since B elaborates the requirements of class A. In our example
we end up with the audience classi�cation visualized in �gure 2.4.

9 CHAPTER 2. Background

. Requirement 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 ESS.1 Y Y Y Y N N N N N N N N N N
2 ESS.2 Y Y Y Y N N N N N N N N N N
3 ESS.3 Y Y Y Y N N N N N N N N N N
4 ESS.4 Y Y Y Y N N N N N N N N N N
5 MF.1 N N N N Y Y Y Y Y Y Y N N N
6 MF.2 N N N N Y Y Y Y Y Y Y N N N
7 MF.3 N N N N Y Y Y Y Y Y Y N N N
8 MF.4 N N N N Y Y Y Y Y Y Y N N N
9 MF.5 N N N N Y Y Y Y Y Y Y N N N
10 MF.6 N N N N Y Y Y Y Y Y Y N N N
11 MF.7 N N N N Y Y Y Y Y Y Y N N N
12 MR.1 N N N N Y Y Y Y Y Y Y Y Y Y
13 MR.2 N N N N Y Y Y Y Y Y Y Y Y Y
14 MR.3 N N N N Y Y Y Y Y Y Y Y Y Y

Table 2.2: Example

Figure 2.4: Audience Classi�cation

Audience Characterization

In the audience characterization phase we take each audience class derived in
the previous phase and specify their characteristics if relevant. Our website
will be published in English, so characteristics about English skills are also
relevant. The details of the audience characterization can be found in table

10 CHAPTER 2. Background

2.3.

Music Fan Music reviewer E-Commerce support
Understanding of English Flawless English writing

skills, A broad knowledge
about music, Adult

Good English writing
skills, Good knowledge
about the products,
Adult

Table 2.3: Example

The audience characterization does not follow the inheritance suggested
by the audience classi�cation. This is illustrated by another example: Imag-
ine we are developing a website for a university. The audience classes for this
websites are parents which need only information and students which need
information and functionality to check courses. The students are in this case
a child class of the parents, but the age of the parents (+- 36 or above) is
clearly di�erent than the average age of students (+-18 to 25).

2.1.3 Conceptual Design

We now have a better knowledge about the users that will be using our
system. Based on the output of the previous phases we can now model our
web system in our user-centered methodology. The conceptual design phase
consist �rst of task and information modeling, and then the navigational
design. Instead of making a complete model of the tasks and information
needed in the system, WSDM starts from the requirements of each audience
class and adds small pieces of task and information models to it. Only later
on will they be merged into one big global model. This has some advantages
described in [8].

Task and Information Modeling

Task Model

The task models are based on ConcurTaskTrees [22] but are modi�ed to
better suit web systems [8]. They describe the tasks associated with the
requirements on a conceptual level. In our example, the task "Search for
albums" is modeled using the adapted CTTs in �gure 2.5.

11 CHAPTER 2. Background

Figure 2.5: CTT model for the task "Search for albums"

Information Model

The information model uses the ORM graphical notation[13] to specify ob-
ject chunks associated with a task model. For each elementary task such
an object chunk must be created. An object chunk is a part of an ORM
diagram that describes the information needed by the task at hand. WSDM
extended the ORM language to deal with data handling like we see on the
web with sending and processing forms[7]. The object chunk related to the
"Show album" task can be found in �gure 2.6.

Figure 2.6: Object chunk for the task 'Show album' (IN: *a Album)

12 CHAPTER 2. Background

Navigational Design

In this step we again depart from the audience classes. For each audience class
a navigation track is created to specify how a user can navigate through the
system. Such an audience track is actually a subsystem of the whole system
that only depicts the information and functionality required by the speci�c
user class. An audience track is derived from the task models created for an
audience class. Once all audience tracks are de�ned, they are combined into
a navigational structure by the means of navigational links. The hierarchy
of the navigational tracks of the audience classes follows the hierarchy of
the audience classes themselves de�ned in the audience classi�cation phase.
The output of this phase is reached when the navigational structure model
is augmented with navigational aid links and semantic links and we end up
with the navigational model.

This conceptual navigational structure is composed of components and
the di�erent links between them. Components are navigational units that
group information and functionality conveyed in one or more object chunks
[8].

For each task model, a navigational task model is created. An example
task model can be found in �gure 2.7.

Figure 2.7: Navigational task model

By creating and combining the navigational task models of each task
model, a navigational track for the audience class is created (�gure 2.8).

After this phase, the di�erent audience class tracks are combined into a
single structure called the conceptual navigational structure. This is done

13 CHAPTER 2. Background

Figure 2.8: Navigational track

using the same hierarchy as the audience classi�cation model. After this se-
mantic and navigational aid links are added.

2.1.4 Implementation Design

We now have reached a complete conceptual design for our web system.
To achieve a complete description ready for implementation, the conceptual
models have to be extended by implementation details. This is done by de�n-
ing the site structure design, the presentation design, and the logical design.

Site Structure Design

The site structure design model is an extension of the conceptual naviga-
tional model and speci�es how the di�erent components should be grouped
on pages. Graphically, a page symbol is drawn around one or more compo-
nents to specify they should be on the same page. These pages are abstract
pages because they can adapt to data. For example: the content of the show
album page is di�erent per album.

In the case of our example scenario, each component is put on a di�erent
page but the search functions are placed on the same page (�gure 2.9).

14 CHAPTER 2. Background

Figure 2.9: Site structure

Presentation Design

The web is a very visual environment and until now we did not yet specify
any visualization details. In this phase, the look and feel of the entire web
system is de�ned as well as standard templates for the di�erent pages de-
�ned in the site structure design. Some pages may look alike and others may
di�er. Therefore di�erent templates may be created for the di�erent pages.
Templates ensure a consistent look and feel of the web system.

A template can consist of a header, footer, sidebars, . . . but must at least
have one editable region where the content of the page can be �lled in. In
this editable region the concepts of the components are placed using a grid
system with rows of cells. Content can thus be placed in these cells.

In this phase also a style needs to be provided ensuring consistency across
the system. This is done by using a Cascaded Style Sheet (CSS). The output
of the presentation design is thus a set of templates, linked to the di�erent
pages of the site structure design and a style.

Logical Design

If there is no existing data source available a complete data model has to
be constructed using the di�erent object chunks de�ned in the conceptual

15 CHAPTER 2. Background

phase. This complete data model can then be transformed to, for example,
a relational database model using the 7STEP algorithm [14].

2.1.5 Implementation

In this phase the actual web system is implemented based on the di�erent
models created in the previous phases. This can be done by hand coding or
by using web implementation frameworks or tools.

2.2 Feature Assembly Framework

Feature assembly [1] [30] is a high level modeling technique that �nds its ori-
gins in software product lines. A software product line is a group of closely
related programs that share some components or so called features. A feature
diagram is a visual representation of such a program in terms of its features
and the relation between these feature.

Feature assembly is used to model variability in software products of a
same family. When we look at websites we see that websites of a certain
type have a common base and only di�er in some features. We can say that
a software family is closely related to a genre of websites and that these gen-
res vary in features but have a lot of commonalities. Websites genres will be
discussed in more detail in the next chapter.

Features are high level descriptions of components in a software system
and di�erent types of relationships between features can be expressed. Fea-
ture models are usable in our WSDM-Lite version because they hold the level
of abstraction we are looking for in our adapted version. In Feature Assem-
bly, relationships between features are categorized as:
Decomposition relations:

• Mandatory - the subfeature(s) are required, and

• Optional - the subfeatures are optional

Speci�cation relations:

• An abstract feature can have di�erent option features. A cardinality
m:n indicates the minimum (m) and the maximum number of option
features (n) to be selected for the abstract feature.

Constraints:

16 CHAPTER 2. Background

• Exclusion - the two features cannot be selected in the same product,

• Required - the selection of one product requires the selection of another
product.

In �gure 2.10 an example is given from [1]

Figure 2.10: Feature Assembly Diagram Example

The feature assembly diagram shows an overview of the complete system.
The problem with using the feature assembly diagram for web applications
as-is is not enough as demonstrated by the example speci�ed in �gure 2.10:
a feature 'Import template' is shown. By seeing the name of the feature we
get a general idea what the feature will do but it does not contain enough
information to attach an implementation to this. Questions such as 'what
information does a template contain?' and 'in what format can a template
be imported' are not answered in the diagram. More information will need to
be attached to a feature, but the feature assembly diagram is a good start to
model a general overview of a web application. There exist many graphical
notations for feature diagrams which are interchangeable in the WSDM-Lite
methodology. In this thesis we will use the feature assembly notation.

3
Related work

In this chapter we will look at related work. We will �rst discuss the WCMS
based WSDM version proposed by Sajjadi [18] which will be the basis of the
new WSDM-Lite methodology. Next we will discuss the Web Engineering
Method (WEM) which is one of the only methodologies designed for CMSs.
Next we will discuss WebRatio, which is a support tool for the WebML[6]
method. Last we will discuss website genres which will play a large role in
initializing models for the WSDM-Lite methodology.

3.1 WCMS Based WSDM Version

An alternative version of the legacy WSDM for CMS was already proposed
by Sajjadi [18]. The version, called WCMS based WSDM, follows roughly
the same methodology as the legacy WSDM but is modi�ed to the needs of
CMS-Based web development. The di�erent steps of this methodology are
illustrated in �gure 3.1. The method uses web design patterns as building
blocks for the conceptual design of the application. These web design pat-
terns are incorporated in to a feature assembly diagram to design, on a high
conceptual level, the system.

These patterns are classi�ed in several possible website genres. By decid-
ing on a website genre early in the methodology the web developer can select,

18 CHAPTER 3. Related work

Figure 3.1: Phases of WCMS-Based WSDM

but is not limited to, existing web design patterns. A prede�ned feature as-
sembly diagram per website genre can be used to initialize the conceptual
design. This approach is based on the fact that recognition is much easier
than recall. The idea behind the proposed method is sound but it still lacks
depth and needs more elaboration. As discussed in the background chapted
a feature assembly diagram alone is not enough to give a conceptual design
of a system. The combination of features in the feature assembly diagram

19 CHAPTER 3. Related work

and the proposed high level design patterns in the WCMS based WSDM is
a good suggestion but there is not yet a clear de�nition of such patterns.
We will propose a de�nition of a web design pattern that can be used as
features in the feature assembly diagram containing enough information to
conceptually model the system.

The WCMS based WSDM suggests only one feature assembly diagram for
the whole system. When we look at for example an E-Commerce website,
we can have customers and support sta� audience classes. Both audience
classes need for example a feature 'browse products' but a customer needs a
feature 'shopping cart' while the support sta� needs 'order processing'. Dif-
ferent feature assembly diagrams per audience class seems more suitable in
this situating. By using the inheritance of the audience class hierarchy we
can develop a smart way that eliminates most of the content duplication that
would arise in these situations.

The WCMS based WSDM version suggests only one feature assembly di-
agram per website genre that contains mandatory features with the core of
the website genre and optional features to be selected by the website designer
to model the required system. We believe a more open approach will allow
the method to follow the quickly evolving world wide web: a website genre
can have multiple feature assembly diagrams of which the web designer can
select one that relates the most to the required system. There will also be
no distinction between mandatory and optional features: a feature that is
considered here as 'mandatory' has a high probability of being present in the
feature assembly diagrams of the website genre, but we cannot foresee all the
cases in which a feature must or must not be present. Therefore we will not
put restrictions on this.

Both the original WSDM version as the WCMS based WSDM version
display phase evolutions in multiple dimensions. The high level conceptual
design contains both the feature assembly con�guration and the high level
model of design patterns. We believe that a linear progress of consecutive
phases is easier to follow and such an approach will be used in the adapted
WSDM version.

The phase 'Component/Module selection' will not be a part of the adapted
WSDM version since we believe that phase is part of the implementation
phase rather than the implementation design: in the original WSDM version
coding is part of the implementation phase. When we use a CMS we ac-

20 CHAPTER 3. Related work

tually select code that was already created and is grouped inside a module.
By installing such a module we actually add code to the application. The
di�erence is that this code wasn't written by the designer himself.

3.2 WEM

The GX Web Engineering method (WEM) [28] was developed at the com-
pany GX and is speci�cally designed for the GX WebManager CMS. The
method is based by combining techniques from other web or software de-
velopment techniques such as UML-Based Web Engineering and the Uni�ed
software development process.

Because it was developed in a company it has some unique considerations
that make it well-suitable for business environments such as proposal con-
struction for client validation which act as some kind of requirement analysis,
and based on this module selection is done.

Although the method seems very business-oriented the activities relate
very closely to general software development phases. However, because it is
based on the modules of a speci�c CMS of one company, this approach is to
narrow for universal use.

3.3 WebRatio

WebRatio1[2] is a software program based on the WebML2[6] web design
method. WebML is not a CMS speci�c approach but the fact that it has
also a tool supporting it makes it interesting for us. WebRatio is an Eclipse-
based environment to develop models for the web project (see �gure 3.2).
WebML is not a true methodology, i.e. WebRatio does not follow a step-
by-step approach but a project is divided is several 'folders' and each folder
contains speci�c models. WebML is now evolving (and WebRatio with it) to
support the IFML[12] (Interaction Flow Modeling Language) standard for
visual modeling language. Based on the IFML model, WebRatio can gener-
ate a full web application in Java code.

1www.webratio.com
2www.webml.org

21 CHAPTER 3. Related work

IFML is becoming a more populair technique and holds some interesting
properties. It is a platform independent interaction �ow modeling technique
that allows us to model di�erent views and connections between them acti-
vated by triggers. It focuses on the 'view' part of an MVC application which
a lot of web applications use. It references controller actions and model in-
formation to complete the design.

IFML contains techniques to deal with more recent developments in rich
internet applications (RIA). Containers can be nested and in case of an XOR
view the di�erent containers can be translated in the implementation as
tabbed panes.

IFML is on itself a good way to design a web application because it is in-
dependent of the actual implementation. IFML however talks about 'views'
and 'container' which roughly map 1-to-1 with pages and elements on web
pages. The philosophy behind the conceptual phase of WSDM is that we
model the tasks and information at hand and not how these tasks are trans-
lated into a page-like structure. Therefore IFML is not suitable to use in the
conceptual phase of a WSDM version. An IFML model could be added to a
WSDM version in the implementation phase. Adding an IFML model could
be useful to better connect the more abstract models of the conceptual phase
and an actual implementation. However, in WSDM-Lite we higher the level
of abstraction and do not which to talk about details happening on every
page. Therefore, IFML has no place in our new WSDM-Version.

WebRatio is a commercial application and provides a broad set of extra
functionality that saves the developer a lot of work. However, WebRatio
is not implementation independant so it is strongly advisable to use the
generated Java code. Once the code is generated, it is still advisable to
continue using WebRatio to update the design of the web application and
generate new code.

3.4 Website Genres

Sajjadi[18] observed that many websites are based on similar patterns and
more and more, websites can be categorized[23] in di�erent genres. However,
the categorizations of these genres are based on vague descriptions and some
genres may overlap, but Sajjadi argued that it could be useful to identify
certain patterns that we see in these genres and reuse them when we are
creating a website belonging to this genre.

22 CHAPTER 3. Related work

Figure 3.2: WebRatio screenshot

Sajjadi identi�ed several common website genres. In the adapted WSDM
version we do not wish to limit ourselves to a �xes set of website genres.
Instead we let web designers de�ne their own website genres and commonal-
ities in them. When there are a large amount of projects being created these
website genres will start to emerge. Designs for web applications that are
often being reused imply that these web applications belong to a common
website genre. The work of Sajjadi will not be used as a catagorization for
projects but as possible designs to start from. The catagorization of web
applications in WSDM-Lite will use the principle of a folksonomy: possible
website genres will emerge out of the projects already done with the WSDM-
Lite methodology.

In previous paragraph we mentioned that web applications of a same
genre have commonalities between them. This implies that websites have
common features but still di�er. It is impossible to de�ne a �xed set of com-
monalities that all websites in a website genre share and which are optional.
We cannot model a modal web application and use it as basis for all appli-
cations in that genre. To account for we must allow a website genre to be
modeled in di�erent ways.

As an example website genre, we take e-commerce websites. We can
identify several patterns for such as a homepage portal, product overviews,
�lters, checkout, ...[26] . If there are a lot of website genres containing only
a product overview and others contain every pattern. This will result in two
populair designs for the e-commerce website genre and other designs. Other

23 CHAPTER 3. Related work

designs that are less popular will be displayed with less importance (for ex-
ample: in an ordered list). Di�erent designs for one website genre will need
to have a rating to weed out the bad designs and let the good designs emerge.

By using a folksonomy for the website genre and a rating for the designs
of these website genres, the methodology is robust enough to follow trends
on the web without changing the methodology itself. If new trends emerge
and a new genre of websites pops up, the folksonomy will evolve with it and
the new trend will show up as a website genre.

4
WSDM-Lite

In this chapter we introduce the new WSDM-Lite methodology. We will
explain in detail what is changed and why it is changed. Keep in mind that
the main purpose of the changes introduced are the need to adopt the level
of abstraction to the use of CMS systems. The WSDM-Lite methodology
consists of following phases:

1. Mission statement speci�cation

2. Website genre selection (new)

3. Audience modeling

4. Conceptual modeling (adapted)

5. Navigational modeling (adapted)

6. Structural modeling (adapted)

7. Template modeling (adapted)

4.1 Mission Statement Speci�cation

The mission statement speci�cation phase de�nes the boundaries of a project
and is not directly related to the implementation by means of a CMS. There-

25 CHAPTER 4. WSDM-Lite

fore this phase will remain the same as in the legacy WSDM method and
requests the web developer to specify the purpose, subject and target users
of the system.

4.2 Website Genre Selection

Using the information we reviewed in the related work, we saw that there
exist website genres that have a lot of commonalities. More and more, web-
sites belong to a website genre. By specifying a website genre we de�ne the
scope of the project, speci�ed in the mission statement speci�cation, further.

Using this genre we can look up speci�cations in some kind of repository
and reuse work of others to speed up our process.

4.3 Audience Classi�cation and Characteriza-

tion

The WSDM-Lite method is still an audience-driven methodology so the au-
dience modeling is still an early and important phase in the method. The
audience of the website is already speci�ed at a high level of abstraction and
is not a�ected by the use of a CMS later on. Therefore the audience modeling
phase remains the same as in the legacy WSDM version.

4.4 Conceptual Modeling phase

The purpose of the conceptual modeling is to design the website independent
of the actual implementation. We create models to specify how our website
will be structured but these models should not be based on any CMS that
could be used to implement the website. In the original WSDM version, there
were very detailed models of elementary tasks and the data these tasks were
used. When these models are used to implement a web application based on
a CMS, we have a mismatch between the level of detail in our models, and
the level of control we have when installing modules or components. There-
fore it is useless to model components in detail while we will not change
the ready-made components of a CMS. To solve this, we propose conceptual
models that do take into account that a CMS will be used to implement the
website, but we abstract from which CMS we will use. Therefore, we model

26 CHAPTER 4. WSDM-Lite

possible CMS components conceptually as web design patterns.

Furthermore, we keep the concept of web site genre. But, instead of pro-
viding a model for each website genre, i.e., composed of web design patterns
and relations between them (as done by Sajjadi[18]), we also consider them
as patterns. We call these patterns, Website Genre Patterns.

We �rst discuss the di�erent types of patterns used and how we represent
them. Next, we describe the adapted conceptual modeling phase.

4.4.1 Patterns

Website Genres and Patterns

As stated by Sajjadi[18] and explained in the related work in section 3.1, a
web design pattern can be seen as a feature in the feature assembly diagram
and the website genre as a product line. We can even go further because
some patterns can belong to many genres. For example: A login can belong
to an e-commerce website but also to a community website. In such a case
we better consider all websites as a product line and use the website genres
merely as a classi�cation for patterns, where patterns can belong to many
classeswebsite genres.

Web Design Pattern (WDP)

Every CMS is using the concept of modules, components, plug-ins, . . . In this
way, CMSs are extensible and customizable. Just like in the legacy WSDM
methodology we �rst model the structure of the website at a conceptual level,
meaning that we consider these modules without considering their actual im-
plementation. A conceptual 'module' can be called a Web Design Patterns
(WDP) (Sajjadi). It is possible that we need more than one actual module to
implement a WDP, or that none exist and we have to implement it ourselves.
It is up to the person who implements the system to �nd a good match and
adopt where necessary.

There are two extreme cases we need to consider when conceptually mod-
eling a pattern:

1. It is not always possible or needed to model details when using a CMS.
For example: If we want to use a "login" functionality, and we will use
the functionality provided by the CMS, it is not needed to model this
functionality in detail.

27 CHAPTER 4. WSDM-Lite

2. It is possible that a very speci�c module we want is not yet available.
In this case there is other choice than to implement it.

These two extreme cases show us that the level in which we need to model
a pattern may di�er greatly when using a CMS. Our pattern de�nition will
take this into account by providing optional speci�cations which can be omit-
ted in case 1 and added in case 2. It is also possible to omit details in a �rst
phase of the design and add details later on when it has been decided upon
the CMS to use for the implementation and the limitations and functionality
provided by the CMS are known.

A web design pattern consists of following speci�cations:

• Pattern name (required): The name of the pattern is a unique
identi�er within the boundaries of the project.

• Website genre (optional): The name(s) of the website genre(s) the
pattern belongs to.

• Problem (required): What problem the pattern solves.

• Solution (required): The solution the patterns o�ers to solve the
problem.

• When to use (optional): (cfr. "context" Le Van Huyen [17]) De-
scriptions or situations in which the pattern can be applied.

• Warnings (optional): (cfr. "problems" Sajjadi[18]) Issues that may
arise when using this pattern.

• Rational (required): Describes how the goal is accomplished by the
pattern.

• Structure (optional): More concrete information is speci�ed here
about the navigation structure (CTTs) and object chunks (ORM Dia-
grams).

• Related patterns (optional): A list of related patterns can also
be presented. This gives the web developer the possibility to have
associative[4] navigation next to the top-down navigation from the web-
site genres. For example: when we browse to the list of WDP of the
e-commerce website genre and we look at the WDP 'Cross-selling', the
WDP 'Up-Selling' will be a related pattern because they are both tech-
niques used to sell more to a customer.

28 CHAPTER 4. WSDM-Lite

The data model (ORM-notation) of a web design pattern can be seen in
�gure 4.1

Figure 4.1: ORM information model of a WDP

Reusing Web Design Patterns

An advantage of patterns is that they can be reused in as long as they are
accessible and searchable. When a pattern is stored in a repository that can
be searched by a community, the pattern de�nition could be extended with
a more elaborate human readable description, tags, rating, commenting, etc.

Note that a pattern does not always need to be reused as-is but can be
modi�ed in the context of a web project.

Designing New Patterns

Everyone is free to design patterns. If they are not relevant for other people
they can be kept private to the web project; when they are relevant for other

29 CHAPTER 4. WSDM-Lite

people they can be shared and the community can decide on the importance
and quality of the pattern by e.g., some kind of rating system.

Website Genre Patterns (WGP)

In the second phase of the WSDM-Lite methodology, a website genre is se-
lected. Based on this website genre, patterns common to this website genre
can be proposed to the designer. For example: for the e-commerce website
genre, the patterns products, checkout, payment terminal and many more
can be proposed. Some web design patterns will require others or exclude
some other patterns.

Web design patterns with relations between them can also be seen as
patterns but on a higher level. Therefore, to capture this idea, we introduce
the concept of Website Genre Patterns (WGP) and provide a de�nition.
To express the relationships between the web design patterns in a Website
Genre Pattern, we propose to use Feature Assembly technique. Features are
used to represent the web design patterns. The feature will hold the pat-
tern's name as label, and the information about the pattern can be stored
inside the feature. The relationships between the features are expressed as
relationships and constraints.

A WGP contains the following information:

• Website genre name (required): A WGP belongs to a website
genre. The name of the website genre is actually the website genre for
which te pattern is created (For example: E-commerce), but the actual
'genre' of the website is not a clearly de�ned set of genres but rather
the combinations of WGP with the same website genre name.

• Feature Assembly Diagram (required): A WGP contains a set of
WDP (features) and relations between them speci�ed using the feature
assembly technique.

• Description (optional): A human readable description of the mod-
eled system.

• Related CMS (optional): Website Genre Patterns that are being
reused imply that they are already used before. Therefore at least one
developer has implemented this conceptual model and chosen a suitable
CMS. By adding this information to the WGP it can save a developer
time during the implementation phase of the project.

30 CHAPTER 4. WSDM-Lite

4.4.2 Specifying the Conceptual Models

Based on the website genre, speci�ed in the second phase of the method,
the WGP associated to this website genre is proposed to the designer. As
we represent the WGP by means of a feature model, the designer can now
select the required WDPs (features) with respect to the relationships and
constraints speci�ed. However, we want to provided the necessarily �exibility.
Therefore, this (con�guration) diagram is only used as a starting point for
the web developer and may be modi�ed or completed.

Di�erent Audience Classes

Di�erent audience classes may not have access to each feature in our design.
Therefore, and similar as in the legacy WSDM, this needs to be speci�ed.
Making a di�erent con�guration diagram for each audience class can ac-
complish this. However, we also explore the subclass properties of audience
classes stating that a sub-audience class inherits the requirements from its
parent audience class(es). By also using inheritance on the models we can
elaborate the diagram of class A with the features for class B when B is a
sub-audience-class of A. This makes sense because a class B is a subclass of
A if it has the same requirements as A, but more. Therefore, class B should
have at least the same features as A. We use the e-commerce example to il-
lustrate this: �gure 4.2 has only the registration and login WDP, while �gure
4.3 also has various product features.

Figure 4.2: Conceptual model of parent audience class

4.5 Navigational Design

In the navigational design of the legacy WSDM, the links between all tasks
in the system were modeled. Because, in WSDM-lite, we do not model each
task in detail in the conceptual phase, but use patterns, we cannot do this
in the same way as in the navigational design of the legacy WSDM where

31 CHAPTER 4. WSDM-Lite

Figure 4.3: Conceptual model of child audience class

we created a task navigational model component for each individual task.
The purpose of this task navigational model was to express the process logic
(i.e., work�ow) of the task. In these navigational models, several components
could be grouped into transactions. Very often, these transactions were nec-
essary to group tasks that have a single goal (e.g., paying a purchase).

In WSDM-lite, we have modi�ed the navigational design phase such that
it omits the creation of atomic components (corresponding to atomic tasks)
but takes the features of the conceptual phase as building blocks for the
navigational design. This avoids the need to model process logic between
atomic tasks and transaction, which will usually be cover by a module in the
CMS. In practice we only need to take the feature assembly con�guration
model for each audience class, remove the edges between the features and
replace them by links of the navigational design. We can also apply the
inheritance of the feature assembly diagrams to the navigational design. An
example is given in �gure 4.4

4.6 Site Structure Design

In the structural design, which was called the implementation phase in the
legacy WSDM, the conceptual design is taken as starting point and the fea-
tures are grouped onto pages. Visually we take our navigational model liter-
ally and draw pages around features that should be on the same page. The
same inheritance structure is used as in the conceptual and the navigational

32 CHAPTER 4. WSDM-Lite

Figure 4.4: Example of a navigational design

modeling phase. There are three possible scenarios:

1. A feature maps exactly to one page, then we draw one page around the
feature.

2. Several features belong to the same page (for example: search band,
search album, ...), then we draw a page so that it contains all these
features.

3. It is also possible that a feature is spread across multiple pages (if it
a complex process or it contains a lot of information). To keep our
model clean, we will not draw several pages around this single feature
but just draw one page, and indicate that multiple pages are possible
by writing a * in the upper right corner. This relates to the notations
in regular expressions. An example is given in �gure 4.5.

4.7 Template Design

A web application needs to have a consistent look and feel. To ensure this,
we design page templates that are used in the di�erent pages de�ned in

33 CHAPTER 4. WSDM-Lite

Figure 4.5: Example of a site structure design

the previous phase. There are two levels of detail on which we can design
templates. It is up to the web developer to choose one of these two:

1. Each CMS uses a template system of its own. The templates are already
programmed in HTML, JavaScript, etc. and the templates (or elements
of templates) are then used appropriately by the CMS on the correct
pages.

2. Already programming a template for the CMS can be too early for
this design stage. Therefore we can still use the template approach of
the original WSDM version. The high-level presentation design con-
cepts(tables, lists, ...), forms and events are not available in the tem-
plate design of WSDM-Lite because the data for these concepts is not
modeled at this level of detail. Grids with rows and cells will still be
used but the cells can be designed freely as the web developer chooses.

5
WSDM-Lite tool support

To further streamline the methodology WSDM-Lite users would bene�t of
having a support tool which helps them in various ways to speed up the design
process and even improve the design itself by enforcing consistency. We will
now discuss various functionalities such a tool may have and the bene�ts for
the method. In the next chapter we will describe the implementation of a
proof of concept of such a tool.

5.1 Initialization

In WSDM-Lite the models of one phase are based on the information collected
in a previous phase. This means that when a designer �nishes a phase and
goes to the next, the tool can use the results of the phase to initialize the
next phase. We will give an overview in which cases this is possible.

5.1.1 Mission Statement Speci�cation > Audience Clas-

si�cation

In the mission statement speci�cation we have to specify the target users.
The target users are not yet formulated as true audience classes, as this is part
of the audience classi�cation phase. However, in the audience classi�cation
phase we can use these preliminary identi�ed target user groups to assign

35 CHAPTER 5. WSDM-Lite tool support

requirements to them. Next, Afterwards, the requirement matrix can be
created and the audience classes can be derived. This ensures that all targets
users identi�ed in the mission statement will be taken into consideration.
Identifying new target users, during audience classi�cation, should force a
revision of the mission statement.

5.1.2 Audience Classi�cation > Audience Characteriza-

tion, Conceptual Design, Navigational Design and

Site Structure Design

The result of the audience classi�cation phase is a set of audience classes
structured in an audience hierarchy. The audience characterization and the
models of the conceptual design, the navigational design and site structure
design need to be speci�ed for each audience class. Based on the audience
classi�cation we can already initialize these phases to account for the di�erent
audience classes.

5.1.3 Website Genre Selection > Conceptual Design

The website genre selection and the conceptual design are not directly con-
secutive phases, but the conceptual design is based on the website genre
selection. The idea behind the website genre selection is that websites from
this genre have a lot of commonalities. These commonalities can be seen as
a website pattern and as a sets of possible web design patterns, modeled in
a feature assembly diagram. Therefore, the feature model associated with
the web site genre selected in the website genre selection can be presented
to allow the web designer to create a con�guration model from this feature
model, and possibly extend or adapt it as relevant for his web application.

5.1.4 Conceptual Design > Navigational Design

In the previous chapter we discussed that, in WSDM-lite, the navigation
model can easily be derived from the feature assembly con�guration models
of the di�erent audience classes. Therefore, the tool can initialize the nav-
igational design with the features of those conceptual design models. The
only thing left to do is specify the links between these features. As in the
legacy WSDM, the overall navigational design of the website can be derived
from the audience hierarchy. Also here, the tool can generate a �rst design
that the web designer can adapt if needed.

36 CHAPTER 5. WSDM-Lite tool support

5.1.5 Navigational Design > Site Structure Design

The site structure design uses the navigational design to assigns the features
to pages. The site structure design only adds extra information to this nav-
igational model. So, the navigational design can be directly copied to an
initial site structure design.

5.2 Repositories for WGP and WDP

In previous chapter, we introduced the concept of Web Design Patterns
(WDP) and Website Genre Patterns (WGP). The power of patterns is that
other web developers can be reused them. For this, we need a means to share
already created patterns with other developers.

5.2.1 WGP Repository

There can exist various website genre patterns for each website genre. When
the conceptual modeling phase is initialized, the web developer can pick one
of the available WGP from the WGP repository. When the web developer
cannot �nd a WGP to suit his needs, he can opt to not pick a WGP and
create a conceptual model from zero. If he wishes, he can share this new
conceptual model as WGP in the WGP repository.

5.2.2 General WDP Repository

The WDP repository must be available during the entire conceptual design
phase. When the web designer starts with a WGP or is creating one from
scratch, he should be able to add new features (WDP) to the feature assembly
diagram. Other designers may already have designed suitable WDP (for
example: a shopping cart), so by browsing the WDP repository these WDPs
can be added easily. When a WDP is not yet available, the developer can
add it to the repository when relevant.

5.2.3 Local WDP Repository

Some features used in a web design, may be speci�c to the application un-
der consideration and should therefore not be added to the general WDP
repository. However, there could also be a need to be able to reuse these
local WDPs. Consider, for example, the audience classi�cation in �gure 5.1 .
Both C and D extend the feature assembly diagram in the conceptual phase
of audience class B. F extends the diagram of E. When we add for example

37 CHAPTER 5. WSDM-Lite tool support

the feature 'Premium support' for the audience class C, it is not accessible
in E or F because the feature is not present in a common parent. To avoid
having to duplicate the feature to be able to use it in E or F, we introducing
a local WDP repository were we can access all features used in the current
design.

Figure 5.1: Example audience classi�cation hierarchy for local WDP reposi-
tory use

5.2.4 Maintaining Repository Quality

By allowing everyone to add patterns in the repository we make sure we have
a wide range of WDP available. This will however also imply that people
can add patterns that are badly designed or too speci�c to be reused. By
introducing a score based on the quantitative usage and a rating system we
can assign a relative quality to the patterns and move the good patterns to
the foreground and hiding the bad patterns in the background.

5.3 Model Modi�cations: Validation, Automatic

Updates and, Noti�cations

WSDM is an iterative methodology, meaning that a few iterations may be
needed before the design is �nished. Therefore it is for example possible that
we add a feature to the conceptual phase in a second iteration; however the
navigational design was initialized with the features from the �rst iteration.
The new feature still needs to be added to the navigational design. It would
be possible to propagate the adding of the new feature to the navigational
design and site structure design, but we believe that this would confuse the
web developer because the feature does not only needs to be added, but
links and pages must be added in respectively the navigational design and
site structure design. Instead, we propose to do validations on the models
and give warnings when inconsistencies are found. In some cases it may be
possible to do automatic updates in later phases.

38 CHAPTER 5. WSDM-Lite tool support

5.3.1 Mission Statement Speci�cation: Adding Target

Users

When we add a target user group we need to be able to assign requirements to
it in the audience classi�cation phase. Adding the target users to the audience
classi�cation phase can be done automatically because it only adds an extra
column to the matrix table but it has no e�ect until the web designer assigns
requirements to it. We do not need to update any other phase because the
added target users are not a new audience class since it has no requirements
assigned. Only after assigning requirements to this new audience class and
creating the audience hierarchy again, a new audience class is created and
this may have an impact on the rest of the design.

5.3.2 Website Genre Selection: Changing the Website

Genre

It is improbable that one would want to change the website genre after a
complete iteration, but it is plausible. The website genre is used to initialize
the conceptual design phase, but the initialization was already completed
in the �rst iteration. This means that the conceptual design was already
initiated once and processed by the website designer. We assume that a web
designer created a conceptual model that is for the most part correct and
only needs some minor modi�cations. If a project changes from the website
genre 'E-Commerce' tot 'Blog', the e-commerce may still be present but the
blog part gets a more prominent role. The conceptual model still needs to
contain the WDP for the e-commerce. Therefore, changing the website genre
after the �rst iteration will have no automated e�ect on the conceptual design
phase but it is up to the website designer to update it.

5.3.3 Audience Classi�cation: Modi�cation to the Au-

dience Classi�cation

Adding a new Audience Class

When a new audience class is added after the requirement matrix was �lled,
a conceptual model for this audience class must be created. The conceptual
models use the same inheritance as the audience classi�cation. If we look at
�gure 5.2, and B is the new audience class that was added, the conceptual
model for audience class B extends the one for audience class A. Which
means that when we look at the conceptual model for B at this moment, all
the WDPs and relations of the conceptual model of A are visible and we are

39 CHAPTER 5. WSDM-Lite tool support

able to add new WDPs and relations that are only applicable for audience
class B. This means that we do not need to initiate the conceptual model of
B because a model is already available thanks to the inheritance. It is up to
the website designer to extend this model for the audience class B with the
extra requirements added which causes B to be a child class of A.

Figure 5.2: Example audience classi�cation hierarchy when adding audience
class

Removing an Audience Class

When an audience class is removed from the audience classi�cation, the au-
dience characterization, its conceptual model and navigational model are no
longer relevant and should therefore also be removed. This can be done au-
tomatically. The site structure design is a combination of the navigational
models of all audience classes, so features in this model only need to be
removed when they do not belong to any other audience class.

Updating an Audience Class

Updating an audience class means adding or removing requirements that be-
long to this audience class. These updates are particularly complex when
these changes modify the tree structure (hierarchy) of the audience classi�-
cation. When the parent class of an audience class A (�gure 5.3) shifts from
B to C, the conceptual model no longer extends the conceptual model of
audience class B but that of C.

Thanks to the local WDP repository we can identify identical features
in the diagram of audience class B and audience class C. This enables us to
keep the features that extend the parent diagram and also keep the relations
to features in the parent diagram. Relations to features that are present in
diagram B but not in C are lost. The web developer can be noti�ed of these
removals. These changes also a�ect the navigational and the site structure
design.

40 CHAPTER 5. WSDM-Lite tool support

Figure 5.3: Example audience classi�cation hierarchy when updating an au-
dience class

5.3.4 Conceptual Design: Modifying the Feature As-

sembly Diagram

Just like in the previous section, we need to consider the three possible cases
to modify the feature diagram: add, update and remove.

Adding a WDP

When adding a feature, we can either add a completely new feature or a fea-
ture from the local repository. When adding a completely new feature , the
tool can add this feature to the navigational design for the current audience
class and to the site structure design. For both models the feature will be
added but it won't have any connections, which makes the models invalid.
Therefore, the developer needs to be noti�ed of this. In the next section, we
will make sure this invalidation remains visible to the developer the entire
time.

When adding a feature from the local repository, it only needs to be added
to the navigational design. The site structure design is a combination of the
navigational designs of all audience classes, since the feature was in the local
repository it was already present in the site structure design from another
audience class. We add the feature to the navigational design in the same
way as we would add a new feature.

Updating a WDP

A feature or WDP is a relatively complex dataset, however, the only modi�-
cation that would a�ect other phases of the design is the modi�cation of the
name. However, changing the name of a WDP can be easily automatically
propagated in the design. We do not need to update the name in other audi-
ence classes since we use the concept from the local repository. This ensures

41 CHAPTER 5. WSDM-Lite tool support

that in the di�erent audience classes, we are talking about the same WDP.

Removing a WDP

A developer could remove a WDP in the conceptual design phase when it
is no longer needed. Therefore it can also be removed in the navigational
design of that audience class. The site structure design is a combination of all
navigational models of all audience classes. So the WDP that was removed
in the conceptual phase can only be removed from the site structure design
if it isn't being used in the conceptual model of another audience class. If
this would be the case, the combination of all navigational designs would still
contain the feature.

5.3.5 Modi�cations in the Navigational Design and the

Site Structure Design

Both the navigational designs and the site structure design are 1-to-1 map-
ping from the conceptual design. Until now a modi�cation only a�ected later
phases. If we would allow a developer to modify the features here, previous
phases would also be a�ected. To control the complexity of possible updates
we do not allow the developer to modify features in these phases. If the de-
veloper wants to modify the features, he needs to go back to the conceptual
phase. Modi�cations to the links in the navigational design and pages in the
site structure design will not a�ect other phases.

5.4 Model Validations

By using speci�c tools for each type of model we have the obvious advan-
tage that we can do some validations on them. For example: "Is the feature
con�guration model free of inconsistencies", or "Is each feature in the site
structure design assigned to at least one page?". The checking of the internal
structure of a model is outside the scope of the thesis.

Consistency between models should also be ensured. For example: "Is
each audience class captured in the site structure design". In principle, these
kinds of inconsistencies cannot occur as the tool uses the models of previous
phases to initiate the model in later phases, and, as discussed in the previous
sections, warning and �ags can be raised when a model update has an impact
on a later model. In previous section we discussed several automatic updates
when modifying a model. In some cases, updating one model causes another

42 CHAPTER 5. WSDM-Lite tool support

model to invalidate. Because we have these model validations, correcting
the whole methodology after updating one model boils down to �xing the
errors from the model validations. The user does not need to manually check
everything again.

5.5 Requirement Satisfaction

At the moment we did not discuss any relation between the requirements
and the features. In the methodology, the website genre initiates the con-
ceptual phase. It would however not be unreasonable to say that a website
genre could also initiate the requirements and the requirements in turn could
initiate the conceptual phase. This approach would even further help the
developer to design the system.

The problem with such an approach is that requirements are in natural
language. Natural language is inherently ambiguous so we cannot do an er-
rorless interpretation of the requirements to the conceptual phase.

It would however still be useful to check if the conceptual design ful�lls all
requirements. This validation is an extra e�ort a designer could do, but is not
part of the methodology itself. By checking for each feature the requirements
it ful�lls, we create a manual mapping. This mapping has two bene�ts:

1. After we completed this mapping we can generate a list of requirements
that are yet to be ful�lled. This ensures that the developer does not
forget an important requirement in the system.

2. When updating a requirement, we can see the di�erent features that im-
plement this requirement. We have immediately the link to the features
we need to update to accommodate the change in the requirement.

6
WSDM Design of support tool

In previous chapters we discussed the adaption of the original WSDMmethod-
ology because it does not work well with implementations that use CMSs. In
this chapter, we will discus the design of the support tool. The support tool
is a web application. Therefore, WSDM can be used for its design. However,
because of its complexity, we will not use a CMS. Therefore, we have used
the original WSDM method instead of our own WSDM-Lite version.

6.1 Mission Statement Speci�cation

Subject: The subject of this tool is the design of web application projects
which will be implemented using a CMS. These designs are divided into
several di�erent phases (or views): the mission statement speci�cation, the
audience classi�cation, the audience characterization, the conceptual model,
the navigational model, the site structure design and the template design.
The actual implementation is not part of the design. The output of each
phase is a model.

Purpose: The purpose of the tool is to support a web engineer to design
the web application. The program needs to provide tool support to create
the models as well as meta-support such as: initialization, validation, collab-
oration, etc.

44 CHAPTER 6. WSDM Design of support tool

Target users: The target users of this tool are web designers. In a later
stage, more users could be added since mostly more people than only the
web designers are involved in web projects.

6.2 Audience Classi�cation

Web development projects are private projects. Therefore we will put most
of its functionality after a login.

6.2.1 Visitors

1. Visitors should be able to sign up for an account. We do not require
much personal information of this visitor. He should provide his e-mail
address and a password which will be used to log in. We will also
ask for the web designerâ��s name in order to have a more personal
interaction after logging in.

2. Visitors should be able to login when they have already created an
account. The login uses their e-mail address and a password.

6.2.2 Web Designers

Because the WSDM-Lite methodology is divided into di�erent phases, we
will sort the requirements accordingly. We will start by the more general
requirements not related to any speci�c phase.

Projects

1. A web designer should be able to manage multiple projects. He must
be able to get an overview of all of his active projects and in which
phase they are. Besides the models the project also must get a title so
that is easily recognizable.

2. The project consists of the di�erent phases of the WSDM-Lite method-
ology. Each phase must be �nished completely before going to the next.
In the phases where this can be checked this must be enforced. In cases
where this cannot be checked it must be encouraged.

45 CHAPTER 6. WSDM Design of support tool

Mission Statement Speci�cation

3. In the mission statement speci�cation, the web developer needs to enter
the subject, purpose and target users of the web application to be
built. All of these are mandatory. It must be possible to add some
minimal styling (bold, italic, underlining, colors, listing) to the subject
and purpose.

Website Genre Selection

4. In this phase a web designer must be able to select a website genre
for the new application. The possible selections are those which are
available in the WGP repository. The possibilities must be sorted in
such a way that the more popular are visible more prominent and the
WGPs that are not frequently used are in the background.

Audience Classi�cation

5. The audience classi�cation should be initialized by the data entered in
the mission statement speci�cation. The target user groups must be
initialized as the columns of the requirement matrix. These target user
groups are not yet real audience classes until the requirement matrix
is �lled and they are placed in an audience hierarchy and doubles are
removed.

6. The WSDM-Lite methodology does not enforce any structure in the
requirements so they can be entered in any structure. A text-document
like structure such as in this chapter is recommended. The requirements
still need to be individually addressable so they can be used in the
requirement matrix.

7. Requirements themselves must be able to have minimal styling options
(bold, italic, underlining, listing, ...).

8. Web designers must be able to assign requirements to target user groups
while still having a good overview of the requirements and the possible
target user classes.

9. Web designers must still be able to add or remove target user classes
in this phase in case they forgot any.

10. Web designers must be able to �lter requirements per (set of) target
user groups to get a better insight in their requirements.

46 CHAPTER 6. WSDM Design of support tool

11. The web designer can verify the requirements matrix which results
in an audience classi�cation hierarchy. Only when this veri�cation is
completed the project can continue to the next phase. Each time the
requirement matrix is changed, also by adding a new row, the matrix
needs to be veri�ed before the designer can continue.

Audience Characterization

12. The audience characterization must be initialized with the models re-
sulting from the audience classi�cation phase, namely the audience
classi�cation.

13. The more frequently used characteristics must be suggested such as
language, country, age, ... It is impossible to foresee all types of char-
acterization so web designers must be able to add their own character-
istics.

14. The audience characterization does not follow the inheritance result-
ing from the audience class hierarchy but it must be easy to assign a
characterization to more than one audience class since there is a high
probability that they will share some characteristics.

Conceptual Modeling Phase

15. The conceptual model takes as input both the website genre selection
phase and the audience classi�cation phase. To initialize this phase the
website designer must select one of the WGPs related to the website
genre phase. This WGP will be used as starting point for the conceptual
phase. The web developer needs to select a WGP corresponding to the
selected website genre from the WGP repository.

16. The web designer must be able to switch between the conceptual models
of the audience classes in a transparent way, so he knows at all times
which conceptual model is visible.

17. The conceptual models use the inheritance of the audience classi�ca-
tion. Features and relations of the feature assembly diagram of a parent
class P are also visible in a child class C. You can look at this as having
a paper with a diagram P and a second, transparent paper that adds
a second layer C to P.

18. Features can only be deleted at the top-level audience class. When a
feature is present in audience class A (�gure 6.1), it is also visible in B

47 CHAPTER 6. WSDM Design of support tool

and C thanks to the inheritance. We cannot remove this feature in B
because this will a�ect A (a feature cannot be present in A and not in
B). Therefore, we can only delete features at the top level where they
are visible.

Figure 6.1: Audience Classi�cation Example Situation

19. When we delete a feature at level A (�gure X), we only delete the
feature at this level. The feature gets two new top-level audience class
locations: B and C. We can then delete the feature in both places again
to completely remove the feature from the conceptual model. When the
project has a more complex audience classi�cation structure, this can
become cumbersome. Therefore a second 'delete' action needs to be
introduced which deletes the feature from the whole (sub-)tree. This
can again only be done at the top level.

20. Adding features again needs to be done at the top level. When we add
a feature to the conceptual model of audience class A in �gure X, this
feature will be also accessible in B and C.

21. When a feature is added, this can either be a completely new feature,
a feature from the general WDP repository, or from the local WDP
repository.

• When adding a new WDP, the mandatory speci�cations (name,
problem, solution and rational) need to be added immediately.
Other speci�cations can be done later.

• The local WDP repository contains all distinct patterns that are
being used in the current project. When this WDP is inserted, no
copy is made but simply a reference to the already used pattern.
Duplication should be avoided.

• The general WDP repository contains all shared patterns of all
projects. These WDPs can be �ltered on website genre and are
sorted on popularity.

• When viewing a pattern from one of the repositories, the user can
navigate to the related patterns

48 CHAPTER 6. WSDM Design of support tool

22. Modifying a feature can be done from anywhere and the changes will
be visible in all places.

23. The features in the feature assembly diagram of the conceptual model
only display the name of the WDP. When the user clicks on it he can
access the rest of the WDP information and modify this.

24. The problem, solution, when to use, rational and warnings are blocks
of text which can be edited.

25. Related patterns and the website genre can only be optionally speci�ed
when sharing the WDP in the WDP repository. Patterns that are not
shared do not bene�t from this information.

26. CTTs and object chunks can be added as much as the web designer
seems �t. Both can be given a name for recognition purposes but don't
have a speci�c purpose in the design of the project.

27. Both for the CTT models and the ORM models a speci�c modeling
tool needs to be provided which allows the designer to easily create
models in these languages.

28. The CTT, ORM and Feature assembly diagram models need to be
validated against their modeling language syntax. Only when these
validations are successfully completed the web designer is allowed to
complete this phase and go to the next.

Navigational Design Phase

29. The input of the navigational design is the models created in the con-
ceptual design phase. The way the inheritance is used stays the same.
The features that are present in the models also stay the same. The no-
tation of the features is adapted to the navigational notation described
in the WSDM book chapter [8]. All relations between features are re-
placed by navigational links to initialize the model. Some of these links
will need to be removed and other will need to be added.

30. Features cannot be modi�ed in this phase to avoid unnecessary compli-
cations and confusion for the web designer. If the web designer wants to
modify features (add, edit or remove) he has to go back to the previous
phase.

31. Speci�c modeling tools need to be provided to the web designer in order
to create a valid navigational model.

49 CHAPTER 6. WSDM Design of support tool

32. The web designer must be able to switch between the navigational
models of the audience classes in a transparent way, so he knows at all
times which conceptual model is visible.

33. The navigational model needs to be valid before the web designer can
continue to the next phase. This means that all WDPs should have at
least one link associated with it in order to be connected to the main
application.

Site Structure Design Phase

34. The site structure design needs to display the navigational models sim-
ilar to the previous phase but they can't be edited anymore. When
changes need to be made to these models, the web designer has to
return to the previous phase.

35. In the site structure design phase the web designer has access to the
right modeling tools to group the features into web pages. An '*' icon
can be added to grouped features which will be displayed on more than
one page.

36. The grouping of WDPs onto pages follows the same hierarchy as the
conceptual and navigational models: If features X and Y are on the
same page for the site structure design for audience class A, they are
also on the same page for audience class B and C. B and C could
however add extra features to this page.

Template Design

37. The web designer may choose not to use the WSDM-Lite template
design phase and instead design the template for the CMS itself directly.
In this case, the template design phase is removed from the available
phases in the project.

38. The template design is initialized by the site structure design. Each
grouping of pages result into one editable region in a template (Head-
ers and footer of a template may remain the same for example). For
groupings containing a '*' icon more editable regions for a template
may be created at will.

39. The correct tools need to be provided described in the presentation
design phase in the WSDM Book chapter[8].

50 CHAPTER 6. WSDM Design of support tool

Cross-Phase Requirements

40. How phases should be initialized is discussed in section 5.1

41. How the tool should handle updates after the �rst iteration is discussed
in section 5.3

Navigational Requirements

42. The web developer should be able to easily navigate and jump to other
WSDM-Lite phases of the project. In the �rst iteration the web de-
veloper should not be able to jump ahead to a phase that was not yet
initialized.

Requirement Matrix

Because we only have one target users group we have a fairly simple require-
ment assignment as seen in table 6.1.

Requirement Visitors Web Designers
Visitor.1 Yes Yes
Visitor.2 Yes Yes
Web developer.1 No Yes
Web developer.. . . No Yes
Web developer.N No Yes

Table 6.1: Example

Which results in the audience classi�cation seen in �gure ??.

Figure 6.2: Audience Classi�cation

51 CHAPTER 6. WSDM Design of support tool

6.3 Audience Characterization

Web developers: Web developers are people who are experienced in creating
websites and but have a background in computer sciences. They understand
the need for a methodical approach to developing web applications and are
able to model these in various aspects. They have an understanding of how
WSDM-Lite works as described in chapter 4.

6.4 Conceptual Design

6.4.1 Task and Information Modeling

We now give the task and related information models. Because the support
tool is still in a prototyping phase we will not give the object chunks with all
the related actions but just the base ORM diagrams of the object chunks.
Giving all the object chunks would lead us to far from our purpose. When
possible, the o�cial data model of models will be given.

52 CHAPTER 6. WSDM Design of support tool

F
igure

6.3:
T
ask

m
odel

53 CHAPTER 6. WSDM Design of support tool

Figure 6.4: Information model for the mission statement speci�cation

Figure 6.5: Information model for the website genre selection

54 CHAPTER 6. WSDM Design of support tool

F
igure

6.6:
T
ask

m
odel

for
the

A
udience

C
lassi�cation

P
hase

55 CHAPTER 6. WSDM Design of support tool

Figure 6.7: Information model for a requirement

Figure 6.8: Information model for an audience class

56 CHAPTER 6. WSDM Design of support tool

Figure 6.9: Task model for audience characterization

Figure 6.10: Information model for audience characterization

57 CHAPTER 6. WSDM Design of support tool

F
ig
ur
e
6.
11
:
T
as
k
m
od
el
fo
r
th
e
co
nc
ep
tu
al
m
od
el
in
g
ph
as
e

58 CHAPTER 6. WSDM Design of support tool

Figure 6.12: Information model for a WGP

59 CHAPTER 6. WSDM Design of support tool

Figure 6.13: Information model for a conceptual model

60 CHAPTER 6. WSDM Design of support tool

Figure 6.14: Information model for a WDP

61 CHAPTER 6. WSDM Design of support tool

Figure 6.15: Information model for a CTT [10]

62 CHAPTER 6. WSDM Design of support tool

Figure 6.16: Information model for an object chunk [19]

63 CHAPTER 6. WSDM Design of support tool

Figure 6.17: Task model for the navigational design phase

Figure 6.18: Information model for the navigational model

64 CHAPTER 6. WSDM Design of support tool

F
igure

6.19:
T
ask

m
odel

for
the

site
structure

design
phase

65 CHAPTER 6. WSDM Design of support tool

Figure 6.20: Information model for the site structure model

66 CHAPTER 6. WSDM Design of support tool

Figure 6.21: Task model for the template design phase

67 CHAPTER 6. WSDM Design of support tool

Figure 6.22: Information model for the template design phase

68 CHAPTER 6. WSDM Design of support tool

6.4.2 Navigational Design

The navigational model can be found in �gure 6.23.

6.4.3 Site Structure Design

The navigational model can be found in �gure 6.24.

6.4.4 Template Design

Because the �rst implementation will be a prototype, no presentation design
will be created since the prototype will be used to explore various possibilities.
Fragments of the presentation design can be found in the screenshots in the
description of the implementation.

6.5 Implementation

An implementation base was set up for an evolutionary prototyping, i.e., the
initial prototype should be able to result in the �nal product. The base con-
tains login and registration for new users, project management and naviga-
tion through the di�erent phases of the WSDM-Lite design. The implementa-
tion status of the di�erent phases di�ers, some are completely implemented,
others are only visual prototypes.

6.5.1 Application Core

The application is implemented as a "software as a service" (SaaS) [27] ap-
plication. The application will be hosted on one location on which users
can register and create projects. The application's implementation is based
on the CakePHP1 framework for backend implementation and a MVC struc-
ture and Twitter bootstrap2 is used to make the visualization nicely viewable
across di�erent devices. Two open source projects, both called CakeStrap3
4, were used to speed up the implementation process. One project imple-
mented the CakePHP bakery while the other one already implemented the
login (Figure 6.25) and registration (Figure 6.26). Some improvements to
the design were made.

1http://cakephp.org/
2http://getbootstrap.com/
3https://github.com/hugodias/cakeStrap
4https://github.com/Rhym/cakeStrap

69 CHAPTER 6. WSDM Design of support tool

6.5.2 Project Overview

The project overview page (Figure 6.27) was implemented and gives the web
developer access to project management (add, edit or delete project). When
clicking on a project the web developer goes to the current WSDM-Lite phase
of the project.

6.5.3 Mission Statement Speci�cation andWebsite Genre

Selection

As speci�ed in the site structure design of the WSDM-Lite support tool, the
mission statement speci�cation and the website genre selection can be found
on one page (�gure 6.28). For the purpose and subject the rich text editor
TinyMCE5 was used. For adding and removing target users jQuery6 was
used to give the experience of a rich internet application (RIA). This phase
is completely implemented. On the bottom navigational aid links can be seen
to the other phases which can be found in every phase.

6.5.4 Audience Classi�cation

The audience classi�cation is initialized by the target user groups speci�ed
in the mission statement speci�cation as seen in the available columns in
�gure 6.29. Assigning a requirement to an audience class can simply be done
by checking the checkbox in the correct column of a requirement. Editing,
removing and reordering requirements or titles can be done by using the icons
on the right. Adding a requirement or title in the correct place is done by
hovering over a requirement or title above the targeted place, a menu will
appear below to either add a requirement (+ sign) or a title (H1 to H3). This
phase is completely implemented.

6.5.5 Audience Characterization

In the audience classi�cation phase it is possible to enter characteristics about
an audience class in a very open manner. Changing to another audience class
is done by clicking the button (�gure 6.30) and selecting another audience
class. For this phase only a static prototype is provided.

5http://www.tinymce.com/
6http://jquery.com/

70 CHAPTER 6. WSDM Design of support tool

Figure 6.23: Navigational model

71 CHAPTER 6. WSDM Design of support tool

Figure 6.24: Site structure model

Figure 6.25: Screenshot: login

72 CHAPTER 6. WSDM Design of support tool

Figure 6.26: Screenshot: registration

Figure 6.27: Screenshot: projects

73 CHAPTER 6. WSDM Design of support tool

Figure 6.28: Screenshot: mission statement speci�cation and website genre
selection

74 CHAPTER 6. WSDM Design of support tool

Figure 6.29: Screenshot: mission statement speci�cation and website genre
selection

75 CHAPTER 6. WSDM Design of support tool

Figure 6.30: Screenshot: mission statement speci�cation and website genre
selection

76 CHAPTER 6. WSDM Design of support tool

6.5.6 Conceptual Model

In the conceptual model phase we see the feature assembly diagram (�gure
6.31). Again we have a button to change to another audience class. We can
click on a feature to see and modify the rest of the WDP speci�cations (�gure
6.32). This overview overlays the conceptual design schema. It still remains
available in the background. Here we can for example add and edit a CTT
(�gure 6.33). The CTT modeling tool is completely implemented, but for
the rest of the phase only a prototype is provided.

6.5.7 Navigational Design

In the navigational design (Figure 6.34) we have a very similar design as
in the conceptual modeling phase. The same features are visible but got
another notation. The relations of the conceptual design phase have been
removed and replaced by links. On this page we can only add or remove links.
Clicking on a feature won't have any e�ect. We can change the audience class
again by clicking on the button. For this phase only a visual prototype is
provided, no interaction is possible.

6.5.8 Site Structure Design

In the site structure design (Figure 6.35) we see the same model as in the
navigational design. The actions we can do on this model have changed
however. We can only create pages and assign features to them. We can
either add a page as a single page or as a set containing multiple pages,
depicted with the * icon. The button to change the audience classes is again
present. Pages can be given a name to identify them in the template design
phase. For this phase only a visual prototype is provided, no interaction is
possible.

6.5.9 Template Design

The last phase is the template design phase. This phase is not mandatory in
the support tool so the web developer is allowed to leave this phase empty.
The developer can select a page out of the list speci�ed in previous phase.
When a page was designated as 'multiple' in the previous phase, more than
one page template can be created. The speci�cation of page design template
consists of adding rows to a grid and cells to rows. These cells can be of
various types and a design image can be uploaded to give a cell a graphical
representation.

77 CHAPTER 6. WSDM Design of support tool

Figure 6.31: Screenshot: mission statement speci�cation and website genre
selection

78 CHAPTER 6. WSDM Design of support tool

Figure 6.32: Screenshot: mission statement speci�cation and website genre
selection

79 CHAPTER 6. WSDM Design of support tool

Figure 6.33: Screenshot: mission statement speci�cation and website genre
selection

80 CHAPTER 6. WSDM Design of support tool

Figure 6.34: Screenshot: mission statement speci�cation and website genre
selection

Figure 6.35: Screenshot: mission statement speci�cation and website genre
selection

7
Example: E-commerce

After our discussion in chapter 4 about the WSDM-Lite methodology and
the discussion of the support tool in chapter 5, we will present an example.
The website to be designed is similar to the one given as example in section
on the original WSDM (section 2.1), in order to show the di�erence between
the two methods. We also use the example to illustrate the use of the support
tool.

7.1 Mission Statement Speci�cation and Web-

site Genre Selection

The mission statement speci�cation is exactly the same as in the original
WSDM version, but now we can enter the information in the support tool as
seen in �gure 7.1.
To minify the number of di�erent screens the website genre selection is on
the same page as the mission statement speci�cation in the support tool.
The website genre for this project is obvious e-commerce.

82 CHAPTER 7. Example: E-commerce

Figure 7.1: Mission statement speci�cation and website genre selection of
music e-commerce

7.2 Audience Classi�cation and Audience Char-

acterization

The audience classi�cation is also the same as in the legacy WSDM ver-
sion. Again we can enter the requirements in the tool. By entering each
requirement individually we can connect a requirement to a WDP as dis-
cussed in section 5.5. Note that the user can decide in which order to place
the requirements. By checking the appropriate checkboxes to the right of
each requirement as seen in �gure 7.2, the user does the audience classi�-
cation, i.e., he indicates which requirement belongs to which audience. The
checkboxes matrix contains the same data as the requirement matrix, but is
represented in the order chosen by the user (i.e., designer).

The result of this phase is exactly the same audience classi�cation as in
the legacy WSDM version since requirements are not directly related to an
implementation strategy. The output of this phase is the audience classi�ca-
tion, provided for the example in �gure 7.3. The audience characterization
(�gure 7.4 and 7.5) is also exactly the same as in the original WSDM version.

83 CHAPTER 7. Example: E-commerce

Figure 7.2: Audience classi�cation of music e-commerce

Figure 7.3: Audience classi�cation hierarchy of music e-commerce

7.3 Conceptual Model

7.3.1 Initialization of the Conceptual Model

From the conceptual phase on, the di�erence with the original WSDM version
becomes more notable. When opening the conceptual phase for the �rst time,
the tool suggests several WGP to select from as seen in �gure 7.6. It is up
to the designer to select the one most appropriate for his system.

84 CHAPTER 7. Example: E-commerce

Figure 7.4: Audience characterization of visitor class

Figure 7.5: Changing audience class for audience characterization

Figure 7.6: Selection of a WGP from the WGP repository

After selecting a WGP the conceptual model is initiated and the designer
is able to modify the WGP to the needs of the project. Because he selected

85 CHAPTER 7. Example: E-commerce

a WGP and did not create a new one, he sees WDPs in the WGP that
may be he did not think of (see �gure 7.7). In this example, the designer
chooses not to remove them from the design because it gives the web shop a
more complete design. The WDP 'Product recommendations' is for example
added which was not present in the requirements phase. It can be added to
the requirements in a next iteration.

Figure 7.7: Conceptual design

The WGP is a conceptual design for the whole system but doesn't take
the di�erent audience classes into account. To do this we take a top-down
approach in the audience classi�cation model: the designer starts with the
visitor class and removes all WDPs that are not relevant for this class. The
WDPs that are removed from the conceptual model for this class but are
not (yet) removed for the classes that extend the visitor class (and their chil-
dren). The e�ect of the removal of a WDP is that the conceptual models of
the child-audience-classes of the visitor class extend its conceptual model by
one WDP, the one that was removed.

In this project, the shopping cart and the quick �ow checkout are not
available to the visitor class neither for the e-commerce support sta�. By re-
moving these WDPs they become only available for the music fans and music
reviewers. Removing a WDP is simply done by selecting it and pressing the
delete button.

86 CHAPTER 7. Example: E-commerce

When a WDP should not be present for any audience class, the WDP
should be removed for each audience class. To make this more user-friendly,
the tool introduces a second way to delete the WDP such that it is removed
for all classes and disappears in the project. Removing a WDP from all con-
ceptual schema's is done by clicking right on a WDP and clicking the action
'remove all'.

A top-down approach needs to be taken because when we should remove a
WDP from a child audience class and this WDP remains present in the parent
class, then the audience classi�cation will violate the de�nition given for the
audience subclassing by WSDM, i.e., an audience class can only extend the
requirements of the parent class.

7.3.2 Adapting the Conceptual Design

Once the initial conceptual model is divided properly to the di�erent audi-
ence classes, the designer can start adding extra WDPs. More experienced
users will be able to do this concurrently with the task described in the pre-
vious section. When we go over the requirements of our example, we notice
that the requirements 'Process orders' , 'Add reviews about albums' and
'Add reviews about a band concert' are not covered by the current concep-
tual model, so we will have to add WSPs to satisfy these requirements.

The review system actually consists of two parts: The reviews related to
the products and the review management system for the music reviewers to
manage their work. The reviews may be available for the visitors, music fans,
music reviewers, and e-commerce sta�. Based on the inheritance concept of
the conceptual models we should add it to the class closed to the root of the
audience hierarchy because the WDP will then be present in all child classes
as well. In this case, this is the root itself, the visitor class. The conceptual
schema of the Music Reviewer audience class is given in �gure 7.8.

The order processing is added to the conceptual schema of the e-commerce
support sta�, which does not contain the review management (�gure 7.9).

7.3.3 Modeling the Details

By now, the designer has modeled the global structure of the web application.
We added for example the 'Order processing' WDP to the system, but the
details of this new WDP are not yet speci�ed. Until now we only gave it a
name but the designer can elaborate this WDP more as discussed in chapter
4. We illustrate this for the 'Review' WDP:

87 CHAPTER 7. Example: E-commerce

Figure 7.8: Conceptual design of music reviewer audience class

Figure 7.9: Conceptual design of the support sta� audience class

88 CHAPTER 7. Example: E-commerce

• Problem: If a new album comes out people do not know yet a lot
about it. If they don't know a lot about an album they will hesitate to
buy it.

• Solution: By providing professional reviews about albums and bands
the visitors of the website they learn to know the band and get more
inclined to buy an album.

• Rational: The review contains a score for the quality of the album (
1 to 5 stars), a number by number discussion and a conclusion. The
review also contains references to older work and youtube movies of
this older work. People can listen to that and will probably know the
older songs.

• Object chunk: :

Figure 7.10: Object chunk for 'Review'

Each WDP in the conceptual modal should be more elaborated with at
least the problem statement, solution and rational. Optionally warnings can
be speci�ed and the structure. The structure contains speci�cations about

89 CHAPTER 7. Example: E-commerce

the task (CTT) and the used information (ORM object chunk). Most of the
conceptual model was initiated by the WGP, which contains already exist-
ing WDPs. These existing WDPs already provide detail information. All
the designer needs to do is verify whether the speci�ed information meets
the project requirements. For our example we need to modify the object
chunk for the "product" WDP such that it contains the information about
our products (i.e., albums with release date, artist, ...). See �gure 7.10.

The conceptual phase for our project is now �nished.

7.4 Navigational Design

The navigational design determines which WDPs are accessible from which
WDPs. It is possible that links between components are not cross page hy-
perlinks but, for example, anchor links. Anchor links can even be omitted if
the WDPs are small and they are closely positioned to each other on a single
page.

When the conceptual phase is completed, a corresponding navigational
design model is initiated automatically for each audience class. This model
contains every WDP of the conceptual schema for this audience class with
all links, by default, replaced by navigational links since WDPs that are con-
nected in the conceptual schema also tend to be connected in a navigational
design.

We again take a top-down approach for creating the navigational design,
since the links that are added in the navigational design of a parent class
will be inherited by the child class. In �gure 7.11 we see the full navigational
design for the music reviewers audience class, which inherits from the music
fans and the visitor class.

7.5 Site Structure Design

In the structural design, we model the pages that will be available in the
web application. When opening this phase in the tool, the designer sees the
navigational design from the previous step. The only action he can do now
is selecting components and assigning them to a page or a set of pages. This
phase is closely related to the next phase where the design of the structure

90 CHAPTER 7. Example: E-commerce

Figure 7.11: Navigational design for music e-commerce

of these pages is made.

Note that the inheritance is di�erent from the original WSDM version.
In the original WSDM version, the navigational design had inheritance in
the sense that the music reviewer track would connect to the music fan track
and all the links of the music fan track would be available. Here we have
inheritance in the same way as for the previous phases: by going to a lower
audience class in the audience hierarchy we expand the model with WDPs
only relevant for that audience class.

The structural design for the music reviewer track is shown in �gure 7.12.
We see that some WDPs are displayed on just one page (Contact Form),
some WDP are displayed on several pages (Review management) and some
are displayed with other WDPs on just one page (Product). The product
page could contain a content table with anchor links to go to the di�erent
parts on the page.

91 CHAPTER 7. Example: E-commerce

Figure 7.12: Navigational design for music e-commerce

7.6 Template Design

The structure of our example website is now well de�ned and we have de-
�nedmodeled the di�erent pages that will be available in the system. The
only thing left to model is the structure of the individual pages. As discussed
in chapter 4, there are two possibilities: create a template directly for a con-
tent management system or use the template modeling technique from the
original WSDM version. In this example we will do the latter. The pages we
need to design are:

1. Product overview (Product navigation)

2. Product details

3. Shopping cart

4. Privacy policy

5. Company information

6. Contact form

7. Shopping cart

8. Quick �ow checkout*

92 CHAPTER 7. Example: E-commerce

• Enter customer information

• Enter delivery information/method

• Choose payment method

• Summary

• Con�rmation page

9. Review management*

• Reviews overview

• Create review

• Edit review

It is possible that one design will be used for more than one page such
as the privacy policy and the company information. In this example we will
limit ourselves to the design of the product overview (�gure 7.13) and the
product details (�gure 7.14). Both are based on a free available template1.
More speci�cs about the design of the templates can be found in [8].

1http://themes.shopify.com/themes/minimal/styles/music

93 CHAPTER 7. Example: E-commerce

Figure 7.13: Page design for a product overview

94 CHAPTER 7. Example: E-commerce

Figure 7.14: Page design for product details

8
Website Generation

Models specify applications by describing them at various levels of abstrac-
tion and by speci�c views on the application. The application can be im-
plemented based on these models. To speed up the implementation, and to
ensure that all models are followed when implementing the system, it is use-
ful to research to which extend and with which limitations these models can
be used to (partially) generate the application. A discussion of implemen-
tation generation for WSDM was already done [29], we will take a similar
approach here but using the speci�cations of WSMD-Lite. There are several
possibilities, each with their own bene�ts and drawbacks. We discuss them
in this chapter. The focus is on an implementation based on a CMS. In the
�rst approach the WSDM-Lite support tool will try to exactly replicate the
actions a web designer would undertake to install and con�gure a CMS. It
will become clear that this approach is very open and due to this fact it
will be very hard to partially generate a website. Therefore we will intro-
duce a second approach in which the WSMD-Lite methodology itself will be
restricted and a best possible website will be generated. A third approach
will restrict the WSDM-Lite methodology even further and we see that the
methodology approaches a new domain.

96 CHAPTER 8. Website Generation

8.1 Installing a CMS

We can identify several steps common to installing any CMS. Source �les of
a CMS must �rst be uploaded to a webhosting with supporting technologies
(PHP, MySQL, ...) (1). Most CMS like drupal1[24] or wordpress2[3] have a
wizard-installation that can be used after all �les are uploaded. This instal-
lation is a user-friendly way of setting up the rest of the CMS. However, on
a technical level this boils down to three actions: rewriting a con�guration
�le with for example the database connection information (2), setting up �le
and folder permissions (3), and initializing the database with the tables and
content needed for the CMS to work (4). All four actions can be done rela-
tively easy on a technical level and this won't be the issue when we want to
initialize the CMS. Installing custom modules also consists of these 4 actions
or less, depending on the type of module. The real problem for automated
(partial) website generation consists of selecting an appropriate CMS and se-
lecting appropriate modules. This is more a semantic issue because we need
to select existing modules and map these to features we used conceptually.
This mapping may no be an easy task. We will use the term 'modules' for
the installable of interchangeable parts in CMS although they each CMS uses
a di�erent term for this concept (e.g., plug-ins in WordPress).

8.2 Approach 1: TheWSDM-Lite Support Tool

in the Role of Web Developer

8.2.1 Technical

In the technical setup of this �rst approach the WSDM-Lite support tool
takes over the role of the web developer manually installing a CMS and
the modules. The WSDM-Lite tool is able to upload a CMS to a speci�c
webhosting using FTP, setting up the �le permissions, writing con�guration
�le data and making a connection to a database to initialize the database.
All these actions can be implemented relatively easily using a server side
language such as PHP, ASP, or Java.

1www.drupal.com
2www.wordpress.com

97 CHAPTER 8. Website Generation

8.2.2 Linking Components on WDP Level

Approach

In the semantic part we discuss the selection of a speci�c CMS and it's
modules. A �rst naive approach could be to have corresponding modules
attached to conceptual WDPs. The advantage of this approach is that we
have a fairly straightforward mapping. Several modules of di�erent CMS can
be attached to a WDP. To generate the web application the tool could select
the CMS that best covers the required WDPs, i.e., for which all or the most
WDPs has a related module. The modules can then be installed directly.

Issues

This naive technique is very straightforward but a number of issues arise
when using this approach. We will try to eliminate these issues in other
approaches we will discuss further on.

• Number of WDPs: Across all the WGPs there exist a lot of features.
Each feature can in turn be modeled in several ways. This will result
in a lot of WDPs. Maintaining relations between all those WDPs and
the related implemented modules is a near impossible task.

• Number of CMSs: There exist a lot of CMSs. One WDP may have
related implementations in tens of CMSs.

• Number of modules: Several modules may implement a certain
WDP.

• Number of CMS Versions: Some CMS do not update with back-
ward compatibility. For examples: modules implemented for Drupal 6
are not usable in Drupal 7. The modules and the CMS in which they
are available need to be tracked.

With the four issues mentioned we clearly see the bigger issue of the vastness
of possible connections: #WDPs x #CMS x #modules x #CMSVersions
= #Total number of possible connections. Maintaining these connections
as WSDM-Support tool administrator is clearly not possible. A possible
solution could be crowd sourcing, however, there are still other issues that
make this approach infeasible:

• Level of abstraction:When we take for example the WDP products
and reviews, these can be implemented individually for a speci�c CMS

98 CHAPTER 8. Website Generation

but a better solution would be a module where they are both combined.
If we map the WDP to modules on WDP level we cannot (easily) take
this into account.

• Features provided by CMS core: Some features may be provides
by the core of the CMS. When all CMSs provide the feature, this is no
problem but consider the following example. A shopping cart is directly
available in the CMS OsCommerce but not in the CMS Drupal. If we
have a mapping between WDPs and modules we cannot (easily) take
this situation into account.

• Con�icting CMS selection: Imagine the situation where we create
a new WDP, which will be quite common in projects. This WDP has
no implemented module associated with it. It is possible that this
component can only be realized in for example Drupal, but for the
other WDPs WordPress would be a better �t. This has as consequence
that the wrong CMS may be selected.

• Motivation for crowdsourcing: WDPs and WGPsare not a �xed
set but can be created and shared freely by web developers. Which
means that quite a lot new patterns will be created. When a WDP has
no related module, the web developer has search for it manually. Web
developers may not have a lot of incentive to couple a found module
back to the WDP and make it available to other web developers since
they don't have a direct bene�t from doing this, unless they will use it
again in a later project.

• Technical representation of the modules: This approach assumes
we have a database of modules available in the WSDM-Support tool.
This database must for each module hold the �les of the module, the
con�guration settings, the �le permissions, and the database structure.
Together with the number of possible connections it is impossible to
maintain this manually.

8.2.3 Linking Components on WGP and WDP Level

Approach

Instead of having a mapping between WDPs and modules, we could asso-
ciate a WGP design to a speci�c CMS and a set of modules. Instead of
automatically �nding a suitable CMS, modules related to WDPs, and veri-
fying if there is a combination of versions that work, this combination could

99 CHAPTER 8. Website Generation

be speci�ed beforehand. You can look at it as a 'snapshot' of an installed
CMS with all the needed modules for that WGP. When a combination of
features is implemented by one module, only one module must be speci�ed.
When features are already implemented by the core of the speci�ed CMS, no
module needs to be added.

Issues

Solved issues:

Number of WDPs, Number of CMSs, Number of modules, Number of CMS
Versions, Level of abstraction, Features provides by CMS core

Issues that still remain:

Con�icting CMS selection, Motivation for crowdsourcing, Technical repre-
sentation of the modules

New issues:

• Number of WGP: A set or one CMS and several modules still need to
be speci�ed for each WGP. Because each WGP contains several WDPs,
it is reasonable to say that there will be less WGP than WDPs, so an
improvement is made. However, maintainability will still remains an
issue.

• Updates of WGP: A WGP is mainly used as a basis to design a web
project. The web designer can add and remove WDPs in order that the
design �ts the requirements. When the designer updates the conceptual
model the modules speci�ed in the WGP will no longer match the
required ones. This can be �xed in a limited way by de�ning which
WDP use which module. If there are no more connections between a
module and WDPs, the module is no longer needed and doesn't need to
be installed. However, for added WDPs no modules may be available
in the preselected CMS.

8.2.4 Module Market Place with Search

Approach

When we look at the websites of WordPress or Drupal , we notice that both
have a searchable index of all the available modules. If one would be able to
combine these indexes for a large number of CMSs and make a similar page

100 CHAPTER 8. Website Generation

in the WSDM-Lite tool, a web developer could �nd suitable modules across
CMSs and connect the WDP with modules in a module selection phase at
the end of the method as suggested by Sajjadi[18]. The critical issue with
this approach is that these indexes of modules are not freely available and
have limited and rather simplistic search mechanisms, which make it hard to
search easily for a suitable module.

Based on the vast modules available at both WordPress and Drupal,we
suggest that it would be possible to setup a similar platform attached to the
WSD-Lite tool where developers can add their own modules because there
are no real di�erences in incentive to uploading a module to for example
the Drupal site. By allowing developers to upload their modules directly to
the WSDM-Lite platform more meta-information could be added such as the
website genre so that the module can be found easily.

Issues

Extra issues solved:

Technical representation of the modules (the developer knows how it should
be installed), Con�icting CMS selection (mapping can be done during the
search), Motivation for crowdsourcing (mapping can be done during the
search), Number of WGP (matching is done manually at runtime), Updates
of WGP (�nding modules is only done after WGP are updated).

Issues that still remain:

All issues mentioned in the two approaches before are solved

Extra issues:

• Success of marketplace: Although people seem to upload their mod-
ules to the website of a speci�c CMS, it is unlikely that a lot of people
will do this for the WSDM-Lite tool: a big incentive is the fact that
these website have a lot of tra�c and the chance that their module will
actually be downloaded and used is large. The WSDM-Lite tool is a
new project and at this moment still a prototype. Developers won't
have a lot of downloads when they add their module to our system. On
the other hand, when there are not a lot of modules available in the
marketplace, the marketplace won't be successful, which is a vicious
circle.

101 CHAPTER 8. Website Generation

8.2.5 Conclusions

The �rst two approaches are based on a manual maintenance of the mappings
between the conceptual model and implementation modules by the web de-
veloper of the project. Maintainability is one of the biggest issues that comes
with this approach but technically it should be possible.

The third approach uses a marketplace similar to the marketplaces of
speci�c CMS tools. The mapping of the conceptual model to an imple-
mentation is still done by the web developer but is supported by a search
engine. Modules are directly linked to the conceptual model so users can
use this mapping. This approach seems the most appropriate one to keep
on working, however it is unlikely that enough developers will maintain the
WSDM-Lite marketplace.

8.2.6 Alternative Technical Setup

In practice, the choice of CMS is sometimes based on more than the availabil-
ity of modules but also on issues such as overall quality of the CMS, possi-
bilities to expand, personal experience, and so on. Therefore we could opt to
provide module selection only for a particular CMS, e.g., Drupal, because of
its quality, popularity, community support, etc. An extra WSDM-Lite mod-
ule could be developed for this CMS that connects to the WSDM-Lite tool
through an API. The WSDM-Lite support tool doesn't need to decide any-
more which CMS to choose and doesn't need to maintain available modules
of every CMS. This makes the WSDM-Lite tool more maintainable and the
data collected in the WSDM-Lite tool can be also used by any application. A
lot of web hosting servers do not allow external connections to the database,
which was a requirement of the original setup. By doing all communication
between the WSDM-Lite support tool and a CMS, we do not only resolve
this issue, but we can make the communication more secure[16].

8.2.7 Other Advantages of Connection WDPs and Mod-

ules

The link between a WDP and a module is used to initialize the CMS when a
website is constructed. This link can also be used over time to validate if the
documentation is still valid with the CMS. When a module is removed from
the CMS in the administration panel of the CMS, the WDP will have lost
its connection and the web developer can be warned of this. When a new
module is installed, this module won't have any connection in the conceptual

102 CHAPTER 8. Website Generation

design. The web developer can be warned of this and update the models
accordingly.

8.3 Approach 2: Strictly Limit the Mapping

It is clear that the biggest problem with translating a conceptual design into
a mapping between WDPs and modules is the amount of possible connec-
tions between the vast number of WDPs and the vast number of implemented
modules. There are no means to automate these connections so everything
has to be done manually. Although this manual labor can be done by a group
of people, it is still cumbersome.

Only by exhaustively limiting the options in the conceptual design we
can create a more realistic setting in which actual website generation seems
more possible. The main di�erence between this approach and the ones
mentioned before is that previous approaches were additions to the current
WSDM-Lite methodology and this approach also restricts the WSDM-Lite
methodology. The technical setup of this approach can be either the original
or the alternative setup discussed in previous section.

8.3.1 Limited WDP for each Website Genre

The WSDM-Lite methodology introduced in thesis allows for web developers
to create their own WDPs. On the other hand, we have the vast amount of
available modules. We can limit the number of possible connections to cre-
ate and maintain by limiting the available WDP and/or limiting the modules
that relate to these WDP. In this approach, we will do both.

First we limit the number of available WDPs for the web designer. Web
developers are no longer allowed to create their ownWDPs. This signi�cantly
decreases the number of available WDP. Secondly, we merge all possible
WDPs of a feature into one, but ensure that this single feature is adaptable
enough to account for most variations. This results in a limited and �xed set
of WDPs that can be used in a project of a speci�c website genre.

Next we limit the number of available modules. The easiest thing to do
is to select modules of only one CMS. Next we will select for each WDP
available in the conceptual phase, which was a �xed and limited set, one
module. Because we merged several WDPs into one we need the module that
implements the most common cases. Note that modules that implement the

103 CHAPTER 8. Website Generation

most common cases, directly relates to the popularity of that module, which
is information that is provided by most module indexes.

Issues

The problem with this approach is that is very restrictive. We have no control
over which modules will be installed. This issue is not that hard to overcome
because when the website is installed, we can still remove the module if it
does not �t our needs and install another one.

Another problem is that the designer can no longer model a WDPs, which
restricts the web developer in using only commonly used features and he will
have no possibilities to include new features in his website. This issue can
be overcome by not completely restricting the WDPs. A web developer is
encouraged to use the available WDPs, which relate to a module, but is al-
lowed to create own WDPs. Custom created WDPs are not related to an
implemented module and these WDPs will not be available in the generated
website. They should be added manually. WDPs which are commonly used,
have a high probability of being available to web developers as implemented
modules. When we select the module that is most frequently used, we have
the least probability the module will need to be removed and replaced by
another.

For custom WDPs are WDPs which do not belong to the most popular
ones in the website genre, the probability of an implemented module being
available is also low and the web developer would have to create his own
custom module anyway.

8.4 Approach 3: Extend the Support Tool with

Implementations for the Website Genres

Until now we only discussed installing modules. When we wish to take all
models into consideration for the website generation, things become more
complicated: we need to use the structure speci�cations (CTTs and object
chunks) of the WDPs to con�gure the modules, use the navigational models
to set up navigational paths of the web application and divide these modules
into pages using the site structure design. This implies that we do not only
need to install and con�gure the modules, but also the core of the CMS.

104 CHAPTER 8. Website Generation

An approach in this direction was made by Mouratidou, Despoina[9] who
modi�ed the WSDM methodology to a lightweight methodology but only for
the website genre of web shops. All models were used to (partially) generate
a web shop in one of three CMSs: WordPress, Joomla and XCart.

CMSs are still not fully adapted to match the models for 100

8.5 Conclusion

In this chapter, we have investigated possible options to partially generate
websites using WSDM-Lite. However, this turns out to be harder than ex-
pected. The problem why this will be nearly impossible is the maintainability
of mapping conceptual designs to the various CMSs, modules and versions.
Only when we limit the possible features and as a consequence the possible
subsets of these features we obtain a more realistic scenario. There is a clear
tradeo� between the complexity we can model and the amount of the web
application that can be generated. In the complete and open WSDM-Lite,
we can create our own features (WDP) and describe their contents. This
gives us a lot of freedom in modeling but it becomes hard to generate a web-
site based on functionality provided by a CMS. By restricting the modeling
possibilities we create more maintainable solutions but we are no longer able
to model the most complex applications.

9
Future Work

This chapter discusses possible future work. We consider work in the context
of the tool support, as well as work in the context of the method itself.

9.1 Tool Support

The tool implemented for this thesis was a prototype and proof of concept.
Only some phases of the WSDM-Lite method are implemented and usable.
The development of a complete software program requires a lot more work
since there are about 7 di�erent modeling tools to be implemented.

9.2 User Studies

The proposals in this thesis still need to be evaluated. This can be done
by applying the method on real case scenario's and by web developers. The
reason why this is not yet done is because the existence of tool support is
vital for this. Testing the methodology with real -life case studies without
a tool will be time consuming and laboriously and therefore the evaluation
obtained in this way may not re�ect correctly the quality of the method.

106 CHAPTER 9. Future Work

9.3 User Roles

The methodology focuses only on the web developers in the project. In a real
life project more stakeholders are often involved, such as customers, users,
project managers, analysts, senior management, quality assurance staf, ...[15]
Because the data of each model is individually accessible, views on these
models could be created for the other stakeholders. For example, a list of
s could be generated and be associated with a cost price. This would allow
business people of software companies to generate automatic proposals for
their clients. This idea is similar to the WEM [28].

9.4 Template Design

More recently, websites are accessed more and more on mobile devices as seen
in �gure 9.1, data collected by ShopVisible 1. The template design phase is
still based on a premises that websites have a certain grid and that grid
doesn't change to the width of the screen a website is viewed upon. More re-
cent technologies such as Twitter Bootstrap2 have shown that a design should
be able to adapt to the device it is showed on for a better user experience.
WSDM-Lite should take this new trend into account either by allowing dif-
ferent but related templates for each possible width or, and preferably, have a
template system that uses the same column approach as the implementation
would have.

1http://www.shopvisible.com/pdf/in�uence-impact-2013-review.pdf
2http://getbootstrap.com/

107 CHAPTER 9. Future Work

Figure 9.1: ShopVisible

10
Conclusion

In the introduction we stated that the original WSDM version is not compat-
ible with implementations using a CMS because they fundamentally di�er
in the level of abstraction in which web application are modeled in WSDM
and the level of control of the con�guration of a CMS. In chapter 4 we intro-
duced the concept of web design patterns which match on a conceptual level
the modules that can be installed in a CMS. A feature assembly diagram
of these WDP was used to depict the global structure of a web application.
The navigational design and the site structure design phases were adapted
to the use of this feature assembly diagram in the conceptual phase to follow
the philosophy of the original WSDM version in which the output of a phase
could be used as input of the next. The use of a CMS signi�cantly reduces the
workload of implementing a web application. The use of WSDM-Lite reduces
the workload of modeling such an application in contrast to a WSDM design.

Website genre patterns were introduced which contain commonly used
global website structures, which were modeled using the feature assembly di-
agram and WDPs. Using website genre patterns a designer no longer needs
to model a web application from nothing but by personalizing a commonly
used design. This reduces again the workload of a web developer.

By constructing a WSDM-Lite support tool we further reduced the work-

109 CHAPTER 10. Conclusion

load of a web developer. The program provides the necessary tools and
support to create the models of the WSDM-Lite methodology in an e�cient
manner. The tool does not only provide the means to create the models but
can also take over work from the web developer and even improve the design.
The design of the tool was elaborated with a WSDM design since it is not
based on a CMS because of its complexity. The introduced concepts were
shown in a realistic example for a music e-commerce.

Several approaches were discussed in which the models of WSDM-Lite
could be used to partially generate a CMS. The possibilities of this gener-
ation was directly related to the restrictions imposed on the WSDM-Lite
methodology.

List of Figures

2.1 WSDM Steps . 5
2.2 Audience class subtyping . 6
2.3 Involved activities and target users 7
2.4 Audience Classi�cation . 9
2.5 CTT model for the task "Search for albums" 11
2.6 Object chunk for the task 'Show album' (IN: *a Album) . . . 11
2.7 Navigational task model . 12
2.8 Navigational track . 13
2.9 Site structure . 14
2.10 Feature Assembly Diagram Example 16

3.1 Phases of WCMS-Based WSDM 18
3.2 WebRatio screenshot . 22

4.1 ORM information model of a WDP 28
4.2 Conceptual model of parent audience class 30
4.3 Conceptual model of child audience class 31
4.4 Example of a navigational design 32
4.5 Example of a site structure design 33

5.1 Example audience classi�cation hierarchy for local WDP repos-
itory use . 37

5.2 Example audience classi�cation hierarchy when adding audi-
ence class . 39

5.3 Example audience classi�cation hierarchy when updating an
audience class . 40

6.1 Audience Classi�cation Example Situation 47
6.2 Audience Classi�cation . 50
6.3 Task model . 52
6.4 Information model for the mission statement speci�cation . . . 53
6.5 Information model for the website genre selection 53
6.6 Task model for the Audience Classi�cation Phase 54

111 LIST OF FIGURES

6.7 Information model for a requirement 55
6.8 Information model for an audience class 55
6.9 Task model for audience characterization 56
6.10 Information model for audience characterization 56
6.11 Task model for the conceptual modeling phase 57
6.12 Information model for a WGP 58
6.13 Information model for a conceptual model 59
6.14 Information model for a WDP 60
6.15 Information model for a CTT [10] 61
6.16 Information model for an object chunk [19] 62
6.17 Task model for the navigational design phase 63
6.18 Information model for the navigational model 63
6.19 Task model for the site structure design phase 64
6.20 Information model for the site structure model 65
6.21 Task model for the template design phase 66
6.22 Information model for the template design phase 67
6.23 Navigational model . 70
6.24 Site structure model . 71
6.25 Screenshot: login . 71
6.26 Screenshot: registration . 72
6.27 Screenshot: projects . 72
6.28 Screenshot: mission statement speci�cation and website genre

selection . 73
6.29 Screenshot: mission statement speci�cation and website genre

selection . 74
6.30 Screenshot: mission statement speci�cation and website genre

selection . 75
6.31 Screenshot: mission statement speci�cation and website genre

selection . 77
6.32 Screenshot: mission statement speci�cation and website genre

selection . 78
6.33 Screenshot: mission statement speci�cation and website genre

selection . 79
6.34 Screenshot: mission statement speci�cation and website genre

selection . 80
6.35 Screenshot: mission statement speci�cation and website genre

selection . 80

7.1 Mission statement speci�cation and website genre selection of
music e-commerce . 82

7.2 Audience classi�cation of music e-commerce 83

7.3 Audience classi�cation hierarchy of music e-commerce 83
7.4 Audience characterization of visitor class 84
7.5 Changing audience class for audience characterization 84
7.6 Selection of a WGP from the WGP repository 84
7.7 Conceptual design . 85
7.8 Conceptual design of music reviewer audience class 87
7.9 Conceptual design of the support sta� audience class 87
7.10 Object chunk for 'Review' . 88
7.11 Navigational design for music e-commerce 90
7.12 Navigational design for music e-commerce 91
7.13 Page design for a product overview 93
7.14 Page design for product details 94

9.1 ShopVisible . 107

List of Tables

2.1 Example . 6
2.2 Example . 9
2.3 Example . 10

6.1 Example . 50

Bibliography

[1] Lamia Abo Zaid, Frederic Kleinermann, and Olga De Troyer. Feature as-
sembly: A new feature modeling technique. In Je�rey Parsons, Motoshi
Saeki, Peretz Shoval, Carson Woo, and Yair Wand, editors, Concep-
tual Modeling â�� ER 2010, volume 6412 of Lecture Notes in Computer
Science, pages 233�246. Springer Berlin Heidelberg, 2010.

[2] Roberto Acerbis, Aldo Bongio, Marco Brambilla, and Stefano Butti.
Webratio 5: An eclipse-based case tool for engineering web applications.
In Luciano Baresi, Piero Fraternali, and Geert-Jan Houben, editors,Web
Engineering, volume 4607 of Lecture Notes in Computer Science, pages
501�505. Springer Berlin Heidelberg, 2007.

[3] Aaron Brazell. WordPress Bible. Wiley Publishing, 1st edition, 2010.

[4] Vannevar Bush and Jingtao Wang. As we may think. Atlantic Monthly,
176:101�108, 1945.

[5] Sven Casteleyn and Olga De Troyer. Structuring web sites using audi-
ence class hierarchies. In Hiroshi Arisawa, Yahiko Kambayashi, Vijay
Kumar, HeinrichC. Mayr, and Ingrid Hunt, editors, Conceptual Model-
ing for New Information Systems Technologies, volume 2465 of Lecture
Notes in Computer Science, pages 198�211. Springer Berlin Heidelberg,
2002.

[6] Stefano Ceri, Piero Fraternali, and Aldo Bongio. Web modeling language
(WebML): a modeling language for designing web sites. Computer Net-
works, 33(1-6):137 � 157, 2000.

[7] Olga De Troyer, Sven Casteleyn, and Peter Plessers. Using ORM to
model web systems. In Robert Meersman, Zahir Tari, and Pilar Herrero,
editors, On the Move to Meaningful Internet Systems 2005: OTM 2005
Workshops, volume 3762 of Lecture Notes in Computer Science, pages
700�709. Springer Berlin Heidelberg, 2005.

114 BIBLIOGRAPHY

[8] Olga De Troyer, Sven Casteleyn, and Peter Plessers. WSDM: Web
semantics design method. In Gustavo Rossi, Oscar Pastor, Daniel
Schwabe, and Luis Olsina, editors, Web Engineering: Modelling and
Implementing Web Applications, Human-Computer Interaction Series,
pages 303�351. Springer London, 2008.

[9] Mouratidou Despoina. WSDM-lite: A lightweight web design method-
ology for web shops. Master's thesis, Vrije Universiteit Brussel, 2014.

[10] Lucio Davide Spano Fabio Paterno, Carmen Santoro. Concur task trees
(ctt). http://www.w3.org/2012/02/ctt/#ctt. Accessed: 2014-08-12.

[11] A Ginige and San Murugesan. Web engineering: an introduction. Mul-
tiMedia, IEEE, 8(1):14�18, Jan 2001.

[12] Object Management Group. Interaction �ow modeling language (ifml).
Technical report, March 2013.

[13] Terry Halpin. ORM/NIAM object-role modeling. In Peter Bernus, Kai
Mertins, and GÃ¼nter Schmidt, editors, Handbook on Architectures of
Information Systems, International Handbooks on Information Systems,
pages 81�101. Springer Berlin Heidelberg, 1998.

[14] Terry Halpin and Tony Morgan. Information Modeling and Relational
Databases. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2 edition, 2008.

[15] Hubert F. Hofmann and Franz Lehner. Requirements engineering as a
success factor in software projects. IEEE Softw., 18(4):58�66, July 2001.

[16] M. Hondo, N. Nagaratnam, and A. Nadalin. Securing web services. IBM
Syst. J., 41(2):228�241, April 2002.

[17] Le Van Huyen. Design patterns for the web semantics design method.
Master's thesis, Vrije Universiteit Brussel, May 2010.

[18] Seyed Pejman Sajjadi Karmaseh. Adapting the website design method
WSDM towards recent common practices in web development. Master's
thesis, Vrije Universiteit Brussel, June 2012.

[19] John Krogstie, T. A. Halpin, and Keng Siau. Information Modeling
Methods and Methodologies. IGI Global, Hershey, PA, USA, 2004.

115 BIBLIOGRAPHY

[20] San Murugesan, Yogesh Deshpande, Steve Hansen, and Athula Ginige.
Web engineering: a new discipline for development of web-based sys-
tems. In San Murugesan and Yogesh Deshpande, editors, Web Engi-
neering, volume 2016 of Lecture Notes in Computer Science, pages 3�13.
Springer Berlin Heidelberg, 2001.

[21] Oscar Pastor, Joan Fons, Vicente Pelechano, and Silvia Abrahao. Con-
ceptual modelling of web applications: The OOWS approach. In Emilia
Mendes and Nile Mosley, editors, Web Engineering, pages 277�302.
Springer Berlin Heidelberg, 2006.

[22] Fabio Paternò, Cristiano Mancini, and Silvia Meniconi. Concurtask-
trees: A diagrammatic notation for specifying task models. In Proceed-
ings of the IFIP TC13 Interantional Conference on Human-Computer
Interaction, INTERACT '97, pages 362�369, London, UK, UK, 1997.
Chapman & Hall, Ltd.

[23] Chaman Thapa, Osmar Zaiane, Davood Ra�ei, and AryaM. Sharma.
Classifying websites into non-topical categories. In Alfredo Cuzzocrea
and Umeshwar Dayal, editors, Data Warehousing and Knowledge Dis-
covery, volume 7448 of Lecture Notes in Computer Science, pages 364�
377. Springer Berlin Heidelberg, 2012.

[24] Todd Tomlinson. Beginning Drupal 7. Apress, Berkely, CA, USA, 1st
edition, 2010.

[25] O.M.F. De Troyer and C.J. Leune. WSDM: a user centered design
method for web sites. Computer Networks and {ISDN} Systems, 30(1-
7):85 � 94, 1998. Proceedings of the Seventh International World Wide
Web Conference.

[26] D.K. Van Duyne, J.A. Landay, and J.I. Hong. The Design of Sites:
Patterns for Creating Winning Web Sites. Prentice Hall, 2007.

[27] Toby Velte, Anthony Velte, and Robert Elsenpeter. Cloud Computing, A
Practical Approach. McGraw-Hill, Inc., New York, NY, USA, 1 edition,
2010.

[28] Inge Van De Weerd. WEM: A design method for cms-based web imple-
mentations. Technical report, institute of information and computing
sciences, utrecht university, 2005.

[29] Kevin Van Wilder. Implementation generation for WSDM using web
applications framework. Master's thesis, Vrije Universiteit Brussel, 2009.

116 BIBLIOGRAPHY

[30] Lamia Abo Zaid, Frederic Kleinermann, and Olga De Troyer. Feature
assembly framework: Towards scalable and reusable feature models. In
Proceedings of the 5th Workshop on Variability Modeling of Software-
Intensive Systems, VaMoS '11, pages 1�9, New York, NY, USA, 2011.
ACM.

