
Faculty of Science
Department of Computer Science
and Applied Computer Science

Identification and Distribution of
Cross-Media Entities in a Peer-to-Peer
Environment

Graduation thesis submitted in partial fulfillment of the
requirements for the degree of Master in Computer Science

Barry d’Hoine

Promoter: Prof. Dr. Beat Signer
Advisors: Bruno Dumas

June 2014

Abstract

The goal of this thesis is to design and implement a general distributed cross-
media server. The cross-media environment contains entities that need to be iden-
tified and distributed in a peer-to-peer environment.

Before providing the design and the implementation of the distributed cross-media
server, the state of the art to design distributed cross-media systems is explored.

The cross-media server is designed using a hypermedia model. The features and
properties of existing hypermedia models are compared and then evaluated. The
hypermedia model that is used for the cross-media server is a domain independent
and open model.

To support data distribution, existing distribution protocols are explored that can
be used in a hypermedia environment. The distribution protocol focusses on con-
tent distribution. The distribution is done by using a distributed hash table.

A mechanism for identifying data in the distributed cross-media server is also
needed. Different identification mechanisms are compared and then evaluated.
A suitable identification mechanism for a distributed cross-media server is se-
lected.

Using the features and properties of the models and protocols explored, the re-
quirements of the distributed cross-media server are identified. The contribution
of this thesis is that a design is provided for the distributed cross-media server in
a domain independent way that is also extendable. After the design phase, the
distributed cross-media server is implemented.

I

Samenvatting

Het doel van deze thesis is om een generieke gedistribueerde cross-media server
te ontwerpen en te implementeren. De cross-media omgeving bevat entiteiten dat
geı̈dentificeerd moeten worden in een gedistribueerd peer-to-peer omgeving.

Voor er een ontwerp en een implementatie gegeven wordt zullen bestaande oplossin-
gen om een gedistribueerde cross-media server te ontwerpen verkend worden.

De cross-media server is ontworpen door gebruik te maken van een hyperme-
dia model. De functies en eigenschappen van bestaande hypermedia modellen
worden vergeleken en vervolgens geëvalueerd. Het hypermedia model dat ge-
bruikt wordt voor de cross-media server is een domein onafhankelijk en open
model.

Om data distributie te ondersteunen worden bestaande distributie protocollen dat
in een hypermedia omgeving kunnen gebruikt worden verkend. Het distributie
protocol zal verantwoordelijk zijn voor de distributie van de inhoud. Het distribu-
tie protocol maakt gebruik van een gedistribueerde hash tabel.

Een mechanisme om data te identificeren in een gedistribueerde cross-media server
is ook onderzocht. Verschillende identificatie mechanismen worden vergeleken en
vervolgens geëvalueerd. Na de vergelijking en de evaluatie wordt een gepast iden-
tificatie mechanisme dat kan gebruikt worden in een gedistribueerde cross-media
server gekozen.

Door gebruik te maken van de functies en eigenschappen van de verkende mod-
ellen en protocollen worden de vereisten van de cross-media server bepaald. De
bijdrage van deze thesis is dat een domein onafhankelijk en uitbreidbaar ontwerp
word gegeven voor een gedistribueerde cross-media server. Na de ontwerp fase is
de gedistribueerde cross-media server geı̈mplementeerd.

II

Acknowledgments

This thesis could not be written without the support and help of various people. In
this section I want to express my gratitude to these people.

First of all I want to thank the VUB for giving me the opportunity to write this
thesis and in particular the members of the WISE research group. A special thank
word goes out to Bruno Dumas, my supervisor during the whole process. He
provided fresh insights, many helping hands and a good guidance. I also want to
thank Prof. Dr. Beat Signer to promote this thesis.

I also want to thank my family for all the support they gave me to come to this
point in my life. In particular I want to thank my parents for giving me the oppor-
tunity and motivation to study.

Last but not least, I want to thank my friends and girlfriend for standing by me
whenever I needed them.

Barry d’Hoine
Mechelen, 2014

”In the middle of difficulty lies opportunity” - Albert Einstein

III

Contents

Contents 1

1 Introduction 2
1.1 Structure . 3
1.2 Focus . 3
1.3 Example of Cross-Media Data 4

2 State of the Art 5
2.1 Hypermedia Systems . 5

2.1.1 Definition . 5
2.1.2 History . 6

2.1.2.1 oN-Line System 7
2.1.2.2 Project Xanadu 7
2.1.2.3 Knowledge Management System 8
2.1.2.4 Intermedia . 9
2.1.2.5 NoteCards . 9
2.1.2.6 Overview . 10

2.1.3 Dexter Reference Model 11
2.1.4 Evaluation . 12
2.1.5 RSL Model . 14

2.1.5.1 Core . 14
2.1.5.2 User Abstraction 15
2.1.5.3 Layers . 15

2.2 Distributed Systems . 16
2.2.1 Overview . 16
2.2.2 Prefix-based Routing . 17

2.2.2.1 Chord Protocol 19
2.2.3 Key-Based Routing Using the XOR Metric 20

2.2.3.1 XOR Metric 21
2.2.3.2 Kademlia Protocol 21

1

2.2.4 Secure Key-Based Routing 24
2.2.4.1 Type of Attacks 24

2.3 Load Balancing . 26
2.3.1 Introduction . 26
2.3.2 Load Balancing in Dynamic Systems 27

3 Distributed Cross-Media Server 29
3.1 Requirements . 29
3.2 Object Identity . 30
3.3 Object Identification . 31

3.3.1 Identification Concepts 31
3.3.1.1 Object Identifiers 32
3.3.1.2 Keys . 33
3.3.1.3 Surrogates . 33

3.3.2 Identifiers for Decentralised Distributed Systems 34
3.3.2.1 Uniform Resource Identifiers 34
3.3.2.2 Object Identifiers 36
3.3.2.3 Digital Object Identifiers 37
3.3.2.4 Universally Unique Identifiers 38
3.3.2.5 Comparison 41

3.3.3 Object Identity in the RSL Model 43

4 Implementation 45
4.1 Previous Implementations . 45

4.1.1 iServer . 46
4.1.2 Distributed Link Server 46

4.2 Architecture . 47
4.2.1 RSL . 47
4.2.2 S/Kademlia . 49

4.2.2.1 Storage . 50
4.2.2.2 UUID . 52

4.2.3 RLS Node Features . 53
4.2.3.1 Parameters . 54

4.2.4 Test Cases . 55
4.2.5 Versioning . 57

5 Conclusions 59
5.1 Future Work . 61

Bibliography 63

2

List of Figures 68

List of Tables 69

3

1 Introduction

This thesis will describe how one can design and implement a distributed cross-
media server. A distributed cross-media server is a hypermedia system that is
distributed across several heterogenous nodes. The desirable features of a hyper-
media system will be explored and a discussion about the impact on the design of
the distributed cross-media server will be pointed out. Taking into consideration
the design of the targeted distributed cross-media server, a study about identifica-
tion features and the distribution of data will be provided.

The distribution of the system is done by using nodes that cooperate. Every node
should have the same functionality. No central authority should be needed to make
the nodes cooperate. Every node has equal functionality but not every node should
be identical. Nodes can differ in some node specific characteristics like memory,
CPU, bandwidth, etc. The distributed system is deployed as an overlay network
of nodes and should not be visible to the end user.

While designing a distributed system one needs to take into account scalability,
availability and load balancing. The base model for the cross-media server is the
Resource-Selector-Link (RSL) model that is described in [44]. The RSL model
was designed as a general meta-model for object-oriented hypermedia systems
that enables cross-media linking. To achieve the cross-media linking, concepts of
hypermedia systems are applied [43].

To implement a cross-media server, an exploration of the state of the art is needed.
The main challenges for the design are choosing the identification mechanism and
defining the algorithm for the distribution, with respect to a distributed hyperme-
dia system and without changing the main properties of the targeted distributed
cross-media server. While designing the system, there is also the need to pre-
serve all the core features of the used RSL model without losing the generality
and openness of the model.

4

CHAPTER 1. INTRODUCTION 1.1. STRUCTURE

1.1 Structure

After the introduction chapter, the second chapter explores the state of the art
for designing a distributed cross-media server. In the first section of the state
of the art a full coverage of hypermedia systems is given followed by a section
about distributed systems. A small section about load balancing concludes the
first chapter.

In the hypermedia systems section, previous efforts to design a hypermedia system
are covered. We also explore why many new hypermedia systems are designed
based on existing hypermedia systems and why some of the systems were not
further developed. Then, the motivation for designing the RSL model is given and
the RSL model itself is described briefly.

In the distributed systems section a short overview of distributed systems, with
respect to hypermedia systems, is given. Finally, prefix and key-based routing
mechanisms are covered.

After the state of the art is explored, the design choices for the distributed cross-
media are summed up in the third chapter. An overview is given about identifi-
cation of data. Existing identification mechanisms that can be used for our dis-
tributed cross-media server are discussed. The identification of data, in the context
of the RSL model, is also discussed.

The fourth chapter gives all the details regarding the implementation of the dis-
tributed cross-media server. First, in the introduction, an overview of the exist-
ing implementations of RSL are discussed. Afterwards, existing technologies and
frameworks are selected to speed up the implementation. The details about the
actual implementation, test for the implementation and some simulations are de-
scribed afterwards.

Finally, in the fifth chapter a conclusion of the thesis is given, together with some
remarks about the distributed cross-media server and the implementation in gen-
eral. The future work is pointed out in the last section of the fifth chapter.

1.2 Focus

The focus throughout the thesis is on distributed hypermedia systems that are open
and domain independent. When designing such systems we need to identify what
the wished features of such systems are and what the consequences are when we
are combining existing state of the art solutions. Another problem that needs to be

5

CHAPTER 1. INTRODUCTION 1.3. EXAMPLE OF CROSS-MEDIA DATA

solved is how identification and distribution of data should be done in distributed
hypermedia systems. The research question of this thesis is: ”How should we
design a distributed cross-media server and how can data be identified in such a
system”.

1.3 Example of Cross-Media Data

An example that can help to have a mental picture of how to model linked data in a
cross-media environment is the concept of a news site that contains news articles.
A news article has many properties, functional as well as structural, that can be
used as an example of data that is stored in the distributed cross-media server.
A news article for example has a logical document structure with a title, some
paragraphs and some references. Links to related news articles can be embedded
in the news article as well as some images and videos. Another property of a news
article is that it can be commented by other external users.

6

2 State of the Art

2.1 Hypermedia Systems

The first section will provide a definition of a hypermedia system. A hyperme-
dia system will be used as a framework to enable cross-media linking in the dis-
tributed cross-media server implementation. In the second section, an overview of
historical and still existing hypermedia systems is given. The third section will in-
troduce the Dexter model, the first effort towards a general and open hypermedia
system. The fourth section will evaluate and compare all the previously explored
hypermedia systems.

In the last section, the most important features and properties of the RSL model, a
new effort towards a general and open hypermedia system using meta modelling
principles, will be explored. A full coverage about the details of the RSL model
can be found in [44]. Later in the thesis, more details will follow about RSL that
are relevant for the distributed cross-media server implementation.

2.1.1 Definition

Due to the lack of a generally accepted definition of what a hypermedia system is,
we define it, based on the definition given in [1], as a system with the following
features:

• The information space of a hypermedia system is built up using several
small units of information, usually called cards, frames, nodes, etc.

• Some of the information units are interconnected by the concept of links.
Traversing the information from unit to unit is possible by following links.

• Information structures are built up from the creation, editing and linking of
information units.

7

CHAPTER 2. STATE OF THE ART 2.1. HYPERMEDIA SYSTEMS

• For hypermedia systems it should also be possible to access, edit, create or
delete information in a collaborative way. We call these kind of systems
shared hypermedia systems and they can be designed as a distributed sys-
tem.

2.1.2 History

When designing a hypermedia system one must first have a good idea what a hy-
permedia system is and where the concept of a hypermedia system came from. A
hypermedia system is the generalisation of the concepts of hypertext with features
like audio, video, graphics, etc. [1]

Hypermedia systems are accessed in a non-linear way, like newspapers or phone
books. This is the key point where a hypermedia system is distinguished from a
multimedia system.

The first signs of the concept of hypertext, which led to the research and develop-
ment of hypermedia systems, was described by Vannevar Bush [7] by introducing
the concept of the memex in 1945. The memex is a hypothetical system that can
be used to browse linked data. The memex uses the concept of trails to link data
from different scientific libraries. The ability to create notes for the linked data is
also described for the memex.

A first effort towards the generalisation of the hypertext concept was done by
Ted Nelson. In [34], hypertext is defined by Ted Nelson as a linked, written or
pictorial entity in such a complex way that it is not convenient to easily present
or represent it as a physical document. The entity itself could contain some other
entities like annotations, additions or footnotes from other authors. The global
hypertext system should gradually grow in time to contain more and more data
from the current knowledge that is written down in documents.

A survey of Jeff Conklin [12], that was made much later than the work of Ted
Nelson, states that a hypertext system should have support for two types of links,
within and between document links. Conklin also states that there should be ob-
jects in a database and links between those objects should exist on the conceptual
and the database level. Conklin claims that the concept of hypertext is rather
simple but that it can have a huge impact on the use of plain text documents,
commonly used those days.

As computer systems evolved to more complex systems, the hypertext concept
was not general enough to cover the concept of linked data any more. The newer
systems started to have support for a larger variety of data types such as video,

8

CHAPTER 2. STATE OF THE ART 2.1. HYPERMEDIA SYSTEMS

graphics, etc. The natural extension of the hypertext concept to support linking of
the newer data types was called hypermedia and should also be interpreted as a
non-linear system.

In the next subsections a few historical hypertext and hypermedia systems will
be briefly discussed. They all had some contribution to the current state of hy-
permedia systems. To conclude this section an overview and comparison of the
discussed systems is given.

2.1.2.1 oN-Line System

After the introduction of the memex of Vannevar Bush, it took a while until a
framework was designed and implemented that is related to the hypermedia con-
cept. In 1963, 18 years after the introduction of the memex, Douglas Engelbart
designed a framework [17] that is referenced as the oN-Line System (NLS) or
Augment.

Five years later the NLS system was implemented and demonstrated at the Fall
Joint Computer Conference in San Francisco. The demo is these days called ”The
Mother of all Demos” because it demonstrated most of the fundamental concepts
of modern personal computing, including hypertext.

NLS was designed to have an interaction between a human user and a computer
system. A human user could for example introduce a file into the system. The
new file is divided in different segments by the system. Every file as well as every
segment, which is called a statement, has an identifier. The identifiers can be used
to create some reference links between both files and statements, and thus also
parts of other files. The system supported both hierarchical and non-hierarchical
links.

The NLS system provided a database to store information, a mechanism to select
some parts of the stored information and a view of the targeted information. An-
other important concept of the NLS system was that it provided a mechanism to
edit or view information in a collaborative way. Unlike most of the early imple-
mentations of hypermedia systems, the NLS system could be distributed on the
early Arpanet, one of the first package switched networks using TCP/IP.

2.1.2.2 Project Xanadu

In parallel with the work of Douglas Engelbart, Ted Nelson, another hypertext vi-
sionary, was designing another hypertext system. The core concept of the system,

9

CHAPTER 2. STATE OF THE ART 2.1. HYPERMEDIA SYSTEMS

the comparison of side-by-side interconnected documents, was first described in
1960. After some years of research on the new system, it was only in 1967 that
the system was called Project Xanadu [34].

Some believe that Project Xanadu was designed as an attempt to create the World
Wide Web but the goal of the project was far more ambitious [35]. The goal of
Project Xanadu was to create a system where linking of documents is not broken
throughout different versions and where side-by-side comparison and navigation
is possible. Also the support for annotations in built into the system. The anno-
tations and information about those annotations, can be accessed by the Project
Xanadu system. Another important requirement in the design of the system is that
copyright protection is also taken into account.

The backend of the Project Xanadu system was eventually implemented after a
few years. The focus of the project was mostly on the back-end. During the
design phase, a strong separation between the front-end and the back-end was
made, this was due to the fact that the ambition of Project Xanadu was to store
and link all the literary works of the whole world [12].

2.1.2.3 Knowledge Management System

Another important system throughout the history of distributed hypermedia sys-
tems is Knowledge Management System (KMS) [1]. KMS was implemented and
the implementation is based on the ZOG system that was developed in 1972 at
Carnegie-Mellon University. KMS was developed as a collaborative large-scale
hypermedia system based on a conceptual data model. The implementation of
KMS was released in 1983 and is actually the commercial version of ZOG. The
implementation was accompanied with a graphical interface.

In the KMS system the data set that needs to be stored and linked is divided into
different frames. Every frame consists of a title. Below the title a description
of the topic of the frame is found, and a set of numbered menu items of text
called selections are defined. To provide a linking mechanism between frames,
selections are used. A user can select an item by calling the corresponding menu
item number and the selected frame will appear on the screen. In ZOG and KMS
it is only possible to view one frame at the time.

The conclusion of the developers of ZOG and KMS is that the underlying data
model has a serious impact on the visualisation of the model. They experienced
that changes in the data model reflected on changes in the visualisation of the
model.

10

CHAPTER 2. STATE OF THE ART 2.1. HYPERMEDIA SYSTEMS

2.1.2.4 Intermedia

At Brown university, where a lot of research is done on hypertext, the Interme-
dia [51] system was designed. It is built on the know-how of 20 years of research
and three other previously designed systems. One of those system is the Hypertext
Editing System (HES) [9] that was designed by Ted Nelson and Andries van Dam
in 1968. Another system that was used as basis for the design is the File Retrieval
and Editing System (FRESS) [48] that was implemented in 1969.

Using all the information of hypertext systems that were previously designed and
implemented, a new attempt was made to create a collaborative system to manage
linked data. Intermedia was designed as both an authoring and reading tool with-
out making a distinction of specific types of users. The system was implemented
as a multiuser environment.

Not only the back-end was designed carefully to provide a tool for linked data to
use on a large scale, also a lot of attention was given on the visualisation of the
linked data and browsing through the large data space. A mechanism was intro-
duced to filter parts of the linked data. On the visualisation level a mechanism
was introduced to support context-dependent visualisations called webs. Two dif-
ferent visualisations, a global map and a local map, can be used to browse the
linked data. The global map targets an entire linked data object and has a within
data navigation mechanism. The local map provides a view of a single data object
together with the closest links in the hyperspace within the selected webs.

2.1.2.5 NoteCards

The NoteCards [22] system was developed at Xerox PARC in 1987. The initial
goal of the NoteCards system was to design a tool for information analysis. The
designers of the NoteCards system found out that analysts followed a recurring
methodology to produce analytic reports. The NoteCards system should help an-
alysts to make a better analysis of existing collection of ideas.

In the NoteCards system, electronic notecards are interconnected by using typed
links. The system was designed for users to represent collections of related ideas.
The system should also help users to create a structured and searchable informa-
tion space.

Because of the open architecture it is possible to build applications written in
Lisp on top of the NoteCards system. In this way a customised browser can be
created for the notecards. Another way to extend the NoteCards system is to create

11

CHAPTER 2. STATE OF THE ART 2.1. HYPERMEDIA SYSTEMS

new types of nodes that can be represented as an information chunk in a digital
notecards.

2.1.2.6 Overview

In Fig. 2.1 a timeline of all the previously discussed hypermedia systems is shown.
The first item on the timeline is the introduction of the memex concept. About two
decades later the first generation hypermedia systems were released and followed
each other up in the next 10 years. After the release of the first generation hy-
permedia systems, a gap of about a decade is seen between the release of second
generation hypermedia systems. The hypermedia systems on the timeline are con-
sidered state of the art systems that had an enormous impact on similar systems
that were released during the same period or later.

1945 1950 1955 1960 1965 1970 1975 1980 1985

M
em

ex

NLS
Pro

jec
t Xan

ad
u

HES
FRESS

ZOG
KM

S
In

ter
med

ia

Note
Car

ds

Fig. 2.1: Timeline of hypermedia systems

An overview of some important features of the discussed hypermedia systems
are summarised in Table 2.1. The first column, the system column, shows which
hypermedia system we are considering. In the next column, the hierarchy column,
the support for hierarchical structures is given. The graph-based (graph) column
defines the support for non-hierarchical links. The attributes (attr.) column shows
if the system has support to add user-defined attribute/value pairs to a node or link.
The support for typing of links is found in the column link type. If the system
supports more than one version for a node or link it can be found in the versions
column. In the last column, the concurrency (concur.) column, the support for
users to concurrently edit or access data is shown. In [12] a broader overview is
given of the history of hypermedia systems.

Table 2.1 shows that every historical hypermedia systems focussed on certain fea-
tures and lacked at least one of the other features. No system leaves room to
support all of the features that can be used in a hypermedia system. This makes it
particularly hard to compare them by using a general paradigm.

12

CHAPTER 2. STATE OF THE ART 2.1. HYPERMEDIA SYSTEMS

System Hierarchy Graph Attr. Link type Versions Concur.
NLS/Augment Yes Yes Yes Yes Yes Yes
Project Xanadu No Yes Yes Yes Yes No

ZOG Yes No No No No Yes
KMS Multiple Yes No Fixed Yes Yes

Intermedia Yes Yes Yes Yes No Yes
NoteCards Multiple Yes Nodes Yes No Yes

Table 2.1: Comparison of the features of historical hypermedia systems

2.1.3 Dexter Reference Model

The first effort towards the design of a general and open hypermedia system was
found in the Dexter model [20] that was published in 1990. The design of the
Dexter reference model is a part of the DeVise Hypermedia System project. The
intent of the Dexter model was to provide a reference model that is used as a com-
mon basis for several hypermedia systems. A standard terminology is introduced
and the minimal functionality is described for the model. Furthermore, a basis is
provided to work towards open hypermedia systems that can exchange informa-
tion. The openness was introduced to compare different hypermedia systems. It is
hard to compare for example, NLS with KMS, because the first system supports an
arbitrary length for documents and the second system has a fixed frame size.

G. Specht: Information Systems 2-4

2-7

The Dexter Model at a Glance

• Model consists of three layers and two interfaces

Contains tools for presentation
user interaction, dynamics

Contains the network
consisting of nodes and links

Contains the data structure and
content of the nodes

Runtime Layer

Storage Layer

Anchoring

Within-Component Layer

Presentation Specification

2-8

The Three Layers

• The Storage Layer describes the network of nodes and links (most
important layer). Storable hypermedia objects are called components.
The three types of basis components are:

– Atom
– Link
– Composite Component (used for (hierarchical) structure)

• The Within-Component Layer describes the structure and the content
of the components (nodes, links); e.g. data structures for text, images,
animations, etc. . This layer is system specific and not described any
further in the Dexter model (defined for instance in ODA (Open
Document Architecture, ISO 8613), IGES, etc.)

Fig. 2.2: Dexter reference model

The Dexter model is defined by three layers, the within-component layer, the stor-
age layer and the runtime layer. The within-component layer contains the data
structure and the content of the nodes. The storage layer defines the network of
nodes and links. The runtime layer provides the presentation of the components
towards the user. Hypermedia objects that are stored in the storage layer are called
components.

In the Dexter model, two interfaces are defined, the presentation specification and

13

CHAPTER 2. STATE OF THE ART 2.1. HYPERMEDIA SYSTEMS

the anchoring interface. The anchoring mechanism is responsible for the link-
ing. The presentation specification defines how the components are presented in
the runtime layer. A visual representation of the Dexter model can be found in
Fig. 2.2.

The Dexter reference model was a good first effort but it also has some issues, as
described in [18] where some of the limitations of the model and design issues are
pointed out. The main issue in the Dexter model is the fact that the data outside the
components could not be used inside the hypermedia system itself. There is also
no support for extensibility in the model. The mechanism of anchors is not well
defined, they introduce a conceptual weakness for the model itself. The Dexter
model defines a strict separation of the three layers but this separation is broken
by the anchors.

2.1.4 Evaluation

Because both the NLS and the Project Xanadu systems were developed in times
where the targeted hypermedia system was actually a hypertext system, some lim-
itations and domain specific constraints are embedded in the core of the systems
themselves. This makes it particular hard to have support for newer hypermedia
features.

The KMS implementation lacks a well-defined general data model even though
the focus was on prividing a solid data model. Although they wanted to have a
simple data model because otherwise the system would become too complex, they
made some restrictions in the core data model. When the data model needed to
change to support new features, it also had an impact on the visualisation and this
made it hard to have an evolutionary system that should be up and running on a
large scale for a long period.

For the Intermedia system, many features were designed and implemented but
a feature that is lacking is the support for versioning. Another drawback of the
Intermedia system is that the links themselves are not part of the data, so links
cannot be embedded into a new object.

Some issues of the NoteCards system are described in [21]. An important issue is
the lack of a hypermedia construction. Only nodes in the form of cards and links
are supported by the system. Another issue is that the system can be accessed
in a concurrent manner but is was designed as a single-user system without the
support of collaboration.

The Dexter model, that can be seen as the start of third generation hypermedia

14

CHAPTER 2. STATE OF THE ART 2.1. HYPERMEDIA SYSTEMS

systems, was a good first effort towards a general and open hypermedia system,
but as stated before some issues are inside the core of the model itself.

Although there were many efforts after the introduction of the Dexter model to
design a solid model for hypermedia systems, there is still the need for a better
model. The Adaptive Hypermedia Application Model (AHAM) [13] for example
added the lacking support of a user abstraction to the Dexter model. The AHAM
system enables adaption based on a user model that is persistent throughout the
system.

Another step toward a general and open hypermedia system is found at the in-
troduction of the Fundamental Open Hypertext Model (FOHM) [32]. Because
hypermedia systems were evolving toward more open and interoperable systems,
the focus shifted toward component based frameworks. A problem with the ex-
isting component based systems is that most of the components of those systems
are incompatible between other systems. The FOHM was introduced after in-
vestigating the common features between all the domain specific components. A
common data model was introduced together with some domain-independent op-
erations.

An important feature to come to an open hypermedia server is to separate re-
sources from links on the conceptual level. When links can be managed on their
own abstraction level it will make the system more flexible and enables the support
of new link features. Those features are for example bidirectional links, multi-
source and multi-target links. One of the historical hypermedia systems that uses
the concept of external links is the Hyper-G system [2].

The main problem of many of the hypermedia systems is that they are designed
for a specific domain. Another problem is that some other hypermedia systems in-
clude technical details in the core of the model and lose in that way their generality
and uniformity. Another fact is that there is a strong need for a mechanism to sup-
port extensibility when designing hypermedia systems. The user abstraction and
data ownership concept is also mostly absent inside the core of the hypermedia
model.

There are a variety of hypermedia models proposed, implemented and even still
in development. Some of those are extensions of older hypermedia systems and
others try to differentiate from the existing hypermedia systems. There are a lot of
abandoned as well as running projects regarding the design and implementation of
hypermedia systems. This is a strong indication that there still is no solid reference
model that can be used as a base for a hypermedia system.

15

CHAPTER 2. STATE OF THE ART 2.1. HYPERMEDIA SYSTEMS

2.1.5 RSL Model

All the problems described in the evaluation of the previous section are the main
driving force to introduce a new model that can be used for hypermedia systems.
A new approach was used to design a model that is open and general. This model
is the RSL model and is explained in the following sections.

The RSL model is a link model for hypermedia systems. The model is actually a
metamodel inspired by metamodelling concepts of the database community. The
model of RSL is defined using the semantic, object-oriented data model OM [36].
This allows us to use it as an operational model for data management and for the
design of the target system.

Because RSL is a well-defined conceptual metamodel, it leaves room for gener-
ality and flexibility. This is not only true for the model but also for the targeted
system. The core of the RSL model tries to be as general as possible. The model
provides a plug-in mechanism to support extensibility and this leaves room to
build domain specific systems using RSL in the core.

2.1.5.1 Core

The core concept of the RSL model are the entities. An entity of the RSL model is
an abstract concept and defines a partition of three subtypes: links, selectors and
resources. The core link metamodel can be found in Fig. 2.3.

are represented by objects of type link grouped into the Links collection. The
shaded ovals represent associations between entities of two collections.

entity

link

Links

selector

Selectors

resource

Resources

(1,*)(1,*)

(1,1) (0,*)

(0,*) (0,*)

RefersTo

HasTargetHasSource

partition

HasProperties

parameter

Properties
(0,*) (0,*)

HasResolver

contextResolver

Context
ResolversEntities

(0,*) (0,*)

Fig. 1. Core link metamodel

The most general concept within our hypermedia metamodel is the generic
notion of an entity (similar to components in the Dexter model). Note that
all instances of entities are further classified and grouped by the collection
Entities. While an entity represents only an abstract concept, there are three
specific forms of entities described by three di↵erent subtypes: the resource,
the selector and the link types.

The simplest type of entity is the resource type representing an entire in-
formation unit. While a resource is still an abstract concept, all types of media
to be handled by the hypermedia system have to provide a specific extension of
the resource type based on a plug-in mechanism. Our implementation of the
hypermedia model, known as iServer, currently supports a variety of di↵erent
resource types for web pages, movie and sound clips, images, Flash movies, phys-
ical objects marked with RFID tags as well as interactive paper. Note that we
have a subtyping relationship between the resource and entity type but the
specialisation of resources is also reflected in the model by designing Resources

as a subcollection of the Entities collection.

Often we want to define links between not only entire resources but also
specific parts of resources. For example, the anchor of a link within a web page
addresses a specific part of an HTML document using the href anchor tag.
Therefore, as a second subtype of the entity type, we introduce the concept
of a selector which is a construct enabling parts of the related resource to be
addressed (similar to reference objects in FOHM [8]). Again the specialisation of
Entities is reflected by the Selectors subcollection. An association RefersTo

represents the fact that a selector is always associated with exactly one resource,
whereas each resource can have more than one referencing selector. The cardi-
nality constraints specified at the source and target points of the associations
indicate the possible level of participation of individual objects. Thus (1,1)

at the source point of the RefersTo association indicates that each selector is

Fig. 2.3: Core link metamodel of RSL

A resource is also an abstract concept. All the media types handled by a hy-
permedia system are defined as an extension of an resource by using the plug-in
mechanism. To address specific parts of resources that can be linked, selectors
are introduced. A selector is another abstract concept and should be designed for

16

CHAPTER 2. STATE OF THE ART 2.1. HYPERMEDIA SYSTEMS

every type of resource. To support the linking of data, the abstract concept of links
are introduced. A link is always between entities and is directed from one or more
sources to one or more targets. Two types of links are supported, navigational and
structural links.

To keep the core of the RSL model general and flexible, different properties can be
associated with entities. Context-dependent handling of entities is another mech-
anism that is supported inside the core of RSL.

2.1.5.2 User Abstraction

Another important concept that should be included for hypermedia systems is a
user abstraction. This enables sharing, collaboration and data ownership. In RSL,
the user model provides data ownership for every entity. Every user is a part of a
partition of individuals and groups. A group contains users but can also be empty.
Some entities are defined to be accessible or inaccessible to certain users. This
enables collaborative authoring of links and resources. An entity is always owned
by an individual who created the entity. The model for the user abstraction can be
found in Fig. 2.4.

resolver for handling access rights has to be provided by all systems implementing
our hypermedia metamodel and is presented in the next section as part of the
user management component.

4 User Model

In order to support both personalisation and the sharing of links and resources,
we need a notion of data ownership combined with di↵erent levels of access
rights. While most early hypermedia systems did not deal with an explicit rep-
resentation of users as part of the model, some adaptive hypermedia models
(e.g. AHAM [7]) introduced the concept of user models in the core of the sys-
tem. However, while those user models typically deal with the aggregation and
storage of user access patterns, our user model only provides functionality for
managing data ownership and access rights at the entity level. The richer user
models investigated by the adaptive hypermedia community could be integrated
as a domain-specific extension of our metamodel. Note that even more recent
link models such as the XLink standard do not provide the concept of data own-
ership nor do they deal with the definition of link access rights. By defining the
access rights at the entity level, we can define individual permissions for links,
resources and selectors. The representation of the fundamental user management
component in our model is illustrated in Fig. 2.

user

Users

parameter

Preferences

group

Groups

entity

Entities

(0,*)

(0,*)

(0,*)
(0,*)

(0,*)

HasMembers

AccessibleTo

individual

IndividualsCreatedBy

InaccessibleTo

(0,*)

(0,*)

(0,*)

(1,1)

partition

Has
Preferences

(0,*)

Fig. 2. User management

A user can either be an individual or a group. Users can be classified in
di↵erent groups represented by the collection Groups, where a group itself can
be part of other groups. Each entity is created by exactly one individual user
having full control over its content. Note that the collaborative authoring of links
and resources is possible due to the fact that the creator can define read and
write access rights for other groups of users or individuals. The two associations
AccessibleTo and InaccessibleTo are introduced to define access rights in a
flexible way. The set of individuals having access to a specific entity is defined
by the groups and individuals associated by AccessibleTo minus the groups

Fig. 2.4: User abstraction in RSL core

2.1.5.3 Layers

Due to the fact that the RSL model has selectors over resources and that links
can be nested, problems can arise when a link over a resource is to be activated.
There should also be support for a link resolution mechanism. That mechanism is
provided by the concept of layers in the RSL model. The model for the RSL layers
is shown in Fig. 2.5.

17

CHAPTER 2. STATE OF THE ART 2.2. DISTRIBUTED SYSTEMS

selector resource
(1,1) (0,*)

RefersTo

layer

Layers

OnLayer |HasLayers|

Selectors Resources

(1,1)

(0,*) (0,*)

(0,*)

layer

Active
Layers

Fig. 3. Layers

Each selector is associated with exactly one layer and we do not allow overlap-
ping selectors on the same layer, thereby forcing overlapping link source selectors
to be defined on separate layers. In the case that a concrete selection would re-
turn several links by activating multiple overlapping selectors, by definition, the
link bound to the selector on the uppermost layer will be selected.

The OM model supports collections of four di↵erent behaviours—sets, bags,
rankings and sequences—to cater for collections with and without multiple oc-
currences of elements and with or without an explicit ordering. This also applies
to associations. A selector’s associated resource defines the set of available layers
over the association |HasLayers| and the vertical bars indicate that this is a
totally ordered association (ranking) that provides an explicit ordering of the
layers. Furthermore, it is possible to activate and deactivate specific layers by
adding them to or removing them from the ActiveLayers collection. The order
defined by this association is used to choose the appropriate layer in the case that
a selection addresses multiple overlapping selectors. Note that a selector can only
be associated with a layer defined by its related resource over the |HasLayers|
association.

Specific layers may be activated, deactivated and dynamically reordered en-
abling us to generate context-dependent links by resolving a particular selection
to di↵erent selectors depending on the current set of active layers and the order
of layering defined by the associated resource. An application may also control
the navigational behaviour by switching the active layer set as a result of a user
repeatedly providing the same selection.

6 Structural Links

As explained earlier, links are already first class objects in our model. By using
links to describe structural components as well as navigational relationships
between di↵erent resources, we place structure on the same level as resources
and navigational links. Note that we do not give priority to structure over data
as sometimes proposed by structural computing [17] but rather consider them
to be on the same level.

Fig. 2.5: Layer model for RSL

To support the link resolution mechanism, each selector in on exactly one layer.
No overlapping selectors can be on the same layer. When several links are as-
sociated with an entity, the link that will be handled is the selector that is on the
top layer. This is possible because layers maintain an order. As you can see in
Fig. 2.5, a resource consists of a totally ordered sequence of layers. Some of the
layers can be active, meaning that it is also possible to deactivate some layers as
well. Note that reordering of layers can take place even at runtime.

2.2 Distributed Systems

2.2.1 Overview

When taking a look at the state of the art in distributed computing and in particular,
systems labelled as peer-to-peer systems, a broad overview is given in [3]. Most
of the concepts and architectures found in this section are based on that survey.
The label ”peer-to-peer system”, as they use in the survey, can actually be dropped
because we only look at fully decentralised, structured, distributed systems.

We can divide distributed systems in three categories based on the following use
cases: communication and collaboration, distributed computation and content dis-
tribution. The focus for the distributed cross-media server is on the content distri-
bution type of systems because these kind of distributed system are best suited for
the core features of a hypermedia system. In the survey, a framework is provided
to analyse different content distribution architectures.

The survey studies existing distribution mechanisms in terms of distributed object
location, routing mechanisms, replication, caching, migration, encryption, access

18

CHAPTER 2. STATE OF THE ART 2.2. DISTRIBUTED SYSTEMS

control, authentication, identity, anonymity, deniability, accountability, reputation
and resource management. Some nonfunctional requirements are also investi-
gated. Characteristics such as security, scalability, performance, fairness and re-
source management are considered.

The field of distributed systems is rapidly evolving and has gained a lot of attention
by researchers. Many new architectures are proposed and researched but many
core concepts are maintained and stay relevant for many architectures.

Using a distributed architecture is a good design pattern when designing systems
that can and will grow. Distributed systems tend to scale well. They also provide
the possibility to have a self organising architecture in a highly transient node
population. All these properties are not hard requirements but they are natural
properties that should be found in a distributed architecture.

All the nodes in the system should be heterogenous in terms of functionality.
There are also distributed systems that take other approaches but these are not
discussed here. Another requirement of the distributed architecture for our cross-
media server is that it should be fully decentralised. The main reason for this is
that there are no bottlenecks or single points of failure introduced when using a
fully decentralised system.

Because the linked data should be handled by the RSL model, the focus of the
distribution is in the routing of requests and locating data in the distributed system.
In distributed systems that focus on routing and location, the global system is built
up as an overlay network of nodes. Between the nodes in the network, messages
and requests are routed in an efficient manner to locate content.

If we look at the state of the art of these systems we find two major infrastructures
that use routing and location-based architectures. All these systems implement a
Distributed Hash Table (DHT). The first is a prefix-based routing mechanism that
is used in Chord [46]. The second is a key-based routing mechanism, based on
the XOR metric as found in Kademlia [30].

2.2.2 Prefix-based Routing

Prefix based routing is found in systems like Pastry [40]. As described by Pastry,
the identifiers of nodes and keys are considered as a sequence of digits with a base
2m bits. The routing is done by passing messages to the nodes that are numerically
closer to closer to the key that should be found. While passing messages, the
routing algorithm tries to forward a message to a node that has a prefix that is
longer than the prefix of the current node and the key that should be found. If there

19

CHAPTER 2. STATE OF THE ART 2.2. DISTRIBUTED SYSTEMS

is no such node it tries to forward it to an equally long prefix that is numerically
closer. This routing mechanism is only possible when every node maintains some
routing information.

The Chord protocol, which is similar to Pastry, is a very simple protocol that
only provides one operation, i.e. mapping a key to a node. The protocol does
not describe a put or get command, which is common in distributed systems for
storing and locating data. Obviously these commands can be built easily on top
of the Chord protocol. Chord is designed to adapt to nodes joining and leaving
the system and the system should stay operational in a continuously changing
environment.

A variant of consistent hashing, like described in [27], is used in Chord. No
restriction is made on the type of the consistent hashing function. A standard
consistent hashing function like SHA-1 can be used as well. The consistent hash-
ing function is used to assign keys to nodes. This mechanism provides a simple
and basic load balancing mechanism because each node will get roughly the same
number of keys assigned. When a node joins or leaves the system only a small
fraction of the keys will be moved.

In the algorithm, a Chord node needs information about O(logN) nodes for ef-
ficient routing, where N is the total number of nodes. Lookups are handled in
O(logN) messages. A join or a leave command will result in a production of
O(log2N) messages. Chord has guaranteed but slow success rate for node lookups
when node information is in an inconsistent state. The guarantee can be made as
long as a every node has at least one piece of information. In Chord, an algorithm
is defined for keeping the routing information of the nodes in a consistent state
when the system changes over time.

Chord was designed for systems that need load balancing, decentralisation, scala-
bility and availability. The Chord protocol does not provide any means of authen-
tication, caching or replication. These functions are left to the upper layer that
uses the Chord protocol.

The Chord protocol was further developed and this led to a new protocol, Ko-
orde [26]. Koorde is based on a combination of the Chord protocol and properties
of the Bruijn graphs [14]. The Koorde protocol has lower bounds for lookup re-
quests and should store less routing information. In Koorde for example, when a
node has two neighbours it will find a key in O(logN) steps. The problem with
this protocol is that it does not perform well in a highly transient node population.
In hypermedia systems it is often the case that nodes leave and join the system
constantly while others remain longer in the system. For this reason Koorde is not
explored deeper.

20

CHAPTER 2. STATE OF THE ART 2.2. DISTRIBUTED SYSTEMS

2.2.2.1 Chord Protocol

In the Chord protocol, every node is assigned an identifier by hashing its IP ad-
dress. All the assigned identifiers are ordered in an identifier circle. Every node
will have keys assigned to it, starting from its own identifier until the identifier of
his successor. The example in Fig. 2.6 shows an identifier circle that has 10 nodes.
There are 5 keys stored inside the identifier circle. The examples for the Chord
protocol are taken from [46].

K38

N8

N14

N38

N42

N51

N48

N21

K10

K24

K30

K54

N56

N32

N1

Figure 2: An identifier circle consisting of 10 nodes storing five keys.

hash function, as the meaning will be clear from context. Similarly, the term
“node” will refer to both the node and its identifier under the hash function.
The identifier length m must be large enough to make the probability of two
nodes or keys hashing to the same identifier negligible.

Consistent hashing assigns keys to nodes as follows. Identifiers are ordered
in an identifier circle modulo 2m. Key k is assigned to the first node whose
identifier is equal to or follows (the identifier of) k in the identifier space. This
node is called the successor node of key k, denoted by successor(k). If identifiers
are represented as a circle of numbers from 0 to 2m − 1, then successor(k) is
the first node clockwise from k.

Figure 2 shows an identifier circle with m = 6. The identifier circle has 10
nodes and stores five keys. The successor of identifier 10 is node 14, so key 10
would be located at node 1. Similarly, keys 24 and 30 would be located at node
32, key 38 at node 38, and key 54 at node 56.

Consistent hashing is designed to let nodes enter and leave the network with
minimal disruption. To maintain the consistent hashing mapping when a node n
joins the network, certain keys previously assigned to n’s successor now become
assigned to n. When node n leaves the network, all of its assigned keys are
reassigned to n’s successor. No other changes in assignment of keys to nodes
need occur. In the example above, if a node were to join with identifier 26, it
would capture the key with identifier 24 from the node with identifier 32.

The following results are proven in the papers that introduced consistent
hashing [11, 13]:

Theorem 4.1. For any set of N nodes and K keys, with high probability:

1. Each node is responsible for at most (1 + ε)K/N keys

2. When an (N + 1)st node joins or leaves the network, responsibility for
O(K/N) keys changes hands (and only to or from the joining or leaving
node).

7

Fig. 2.6: Identifier circle in Chord

To speed up node lookups and make the protocol more scalable, nodes in Chord
will store additional routing information. The routing information will be stored
in a finger table. If the identifier space consists of m bit identifiers, then every
node will maintain a finger table with at most m entries. Entries in the finger
table will contain Chord identifiers and the endpoint of the node. An example of
a finger table for a node is shown in Fig. 2.7(a). In Fig. 2.7(b) the lookup path is
shown using the finger table routing information.

To ensure that a lookup can take place in O(logN) steps, the routing informa-
tion needs to be refreshed when the system changes over time. There are three
possibilities when a key is looked up:

• The routing information is relatively fresh and the lookup takes O(logN)
steps.

• The successor pointers are correct but the entries in the finger table are
inaccurate. Lookups will still be correct but slower.

• The successor pointers are incorrect or keys are not yet transferred to the
correct nodes. In this case the lookup can fail and it is left to the upper layer
using Chord to take actions.

21

CHAPTER 2. STATE OF THE ART 2.2. DISTRIBUTED SYSTEMS

Notation Definition
finger[k] first node on circle that succeeds (n+

2k−1) mod 2m, 1 ≤ k ≤ m
successor the next node on the identifier circle;

finger[1].node
predecessor the previous node on the identifier

circle

Table 1: Definition of variables for node n, using m-bit identifiers.

N1

N14

N38

N51

N48

N21

N32

+32

+1

+2
+4

+8
+16

N42

N8 + 1 N14
N8 + 2 N14
N8 + 4 N14
N8 + 8 N21
N8 +16 N32
N8 +32 N42

Finger table
N8

(a)

N1

lookup(54)

N8

N14

N38

N42

N51

N48

N21

N32

N56K54

(b)

Figure 4: (a) The finger table entries for node 8. (b) The path a query for key 54
starting at node 8, using the algorithm in Figure 5.

nodes closely following it on the identifier circle than about nodes farther away.
Second, a node’s finger table generally does not contain enough information to
directly determine the successor of an arbitrary key k. For example, node 8 in
Figure 4(a) cannot determine the successor of key 34 by itself, as this successor
(node 38) does not appear in node 8’s finger table.

Figure 5 shows the pseudo-code of the find successor operation, extended to
use finger tables. If id falls between n and n’s successor, find successor is done
and node n returns its successor. Otherwise, n searches its finger table for the
node n′ whose ID most immediately precedes id, and then invokes find successor
at n′. The reason behind this choice of n′ is that the closer n′ is to id, the more
it will know about the identifier circle in the region of id.

As an example, consider the Chord circle in Figure 4(b), and suppose node
8 wants to find the successor of key 54. Since the largest finger of node 8 that
precedes 54 is node 42, node 8 will ask node 42 to resolve the query. In turn,
node 42 will determine the largest finger in its finger table that precedes 54, i.e.,
node 51. Finally, node 51 will find out that its own successor, node 56, succeeds
key 54, and thus will return node 56 to node 8.

Since each node has finger entries at power-of-two intervals around the iden-

10

(a) Chord finger table for node 8

Notation Definition
finger[k] first node on circle that succeeds (n+

2k−1) mod 2m, 1 ≤ k ≤ m
successor the next node on the identifier circle;

finger[1].node
predecessor the previous node on the identifier

circle

Table 1: Definition of variables for node n, using m-bit identifiers.

N1

N14

N38

N51

N48

N21

N32

+32

+1

+2
+4

+8
+16

N42

N8 + 1 N14
N8 + 2 N14
N8 + 4 N14
N8 + 8 N21
N8 +16 N32
N8 +32 N42

Finger table
N8

(a)

N1

lookup(54)

N8

N14

N38

N42

N51

N48

N21

N32

N56K54

(b)

Figure 4: (a) The finger table entries for node 8. (b) The path a query for key 54
starting at node 8, using the algorithm in Figure 5.

nodes closely following it on the identifier circle than about nodes farther away.
Second, a node’s finger table generally does not contain enough information to
directly determine the successor of an arbitrary key k. For example, node 8 in
Figure 4(a) cannot determine the successor of key 34 by itself, as this successor
(node 38) does not appear in node 8’s finger table.

Figure 5 shows the pseudo-code of the find successor operation, extended to
use finger tables. If id falls between n and n’s successor, find successor is done
and node n returns its successor. Otherwise, n searches its finger table for the
node n′ whose ID most immediately precedes id, and then invokes find successor
at n′. The reason behind this choice of n′ is that the closer n′ is to id, the more
it will know about the identifier circle in the region of id.

As an example, consider the Chord circle in Figure 4(b), and suppose node
8 wants to find the successor of key 54. Since the largest finger of node 8 that
precedes 54 is node 42, node 8 will ask node 42 to resolve the query. In turn,
node 42 will determine the largest finger in its finger table that precedes 54, i.e.,
node 51. Finally, node 51 will find out that its own successor, node 56, succeeds
key 54, and thus will return node 56 to node 8.

Since each node has finger entries at power-of-two intervals around the iden-

10

(b) Lookup path on node 8 for key 54

Fig. 2.7: Finger table and lookup path in Chord

To ensure that lookups will succeed with a high probability in O(logN) steps,
the stabilisation algorithm was introduced in Chord. It is resistant when nodes
simultaneously join the system and when messages are lost in transmission. The
stabilisation algorithm will be run periodically on every node. The node asks
his successors for their predecessors. The node then has to decides if the retrieved
predecessors should actually be successors of the node itself. It will also announce
his own presence in the network every time the stabilisation algorithm is executed.
More details about the design and performance of the Chord protocol can be found
in [46].

2.2.3 Key-Based Routing Using the XOR Metric

In Kademlia, which is a key-based routing protocol that uses the XOR metric,
DHT features are combined that are not commonly combined in other protocols.
Nodes learn about the system automatically when messages travel through the
system because messages always originate from nodes in the routing table of a
receiving node and thus can exchange useful information in any message. The
messages travel in a parallel and asynchronous way to avoid timeouts and large
delays. Messages can be passed trough low-latency paths using the routing infor-
mation stored inside the nodes.

Like in most DHT implementations, Kademlia also uses an identifier space and
every node and data has a key that will map to a corresponding node or the data
on the node. The nodes will store data assigned to a key that is close to its own
key into the identifier space. The notion of closeness will be determined by the
XOR metric. The node identifier will be used in the routing algorithm to locate

22

CHAPTER 2. STATE OF THE ART 2.2. DISTRIBUTED SYSTEMS

nodes that contain specific keys.

The Kademlia protocol uses only one algorithm for all the routing and is thus
less complex than other DHT implementations like Pastry [40]. Pastry is also
a well-know key-based routing protocol but it uses two algorithms to lookup a
key. A problem with using these two algorithms is that the metrics used in both
algorithms are not similar. This degrades the performance and makes the protocol
more complex.

2.2.3.1 XOR Metric

The XOR metric is used as a measure of distance between two points in the key
space. If we talk about closeness this will be reflected in the distance defined by
the XOR metric in this section. The XOR metric is symmetric and is the origin
of the learning ability of the system as messages pass trough the system. This is
because Kademlia can route information to any node within a specified interval.
Chord for example is not symmetric, so it cannot learn useful information while
routing messages.

In Kademlia we define the distance d between two identifiers, x and y, as the
bitwise exclusive or (XOR) interpreted as an integer, d(x, y) = x ⊕ y. You can
see that the XOR topology is symmetric because ∀x, y : d(x, y) = d(y,x).

The XOR metric is also unidirectional. This means that for a given point x in the
key space there is a distance ∆ > 0 and exactly one point y, such that d(x, y) = ∆.
The unidirectionality implies that all the lookups for a key from any node converge
along the same path. This means that key lookups can be cached along those
paths.

2.2.3.2 Kademlia Protocol

In the Kademlia protocol, every node is considered as a leaf of a binary tree. An
internal node in the binary tree determines a node with a specific prefix. For a node
with some prefix, the binary tree is divided into several subtrees not containing
the node and thus having a different prefix. This partitioning is used in the routing
algorithm. Every Kademlia node will have information about at least one node in
its subtrees in the partition.

For every prefix with length i, a list of triples 〈IP address, UDP port, Node ID〉 is
stored for nodes at a distance between 2i and 2i+1. These lists are called k-buckets.

23

CHAPTER 2. STATE OF THE ART 2.2. DISTRIBUTED SYSTEMS

Those lists can contain maximum k triples, k can be interpreted as the system-
wide replication parameter. Nodes are assigned to an appropriate k-bucket by
using the shortest unique prefix of their identifier. By using this mechanism, sev-
eral disjoint paths are spanned between the overlay network of nodes.

The k-buckets are sorted by time a node was last seen. Least recently seen nodes
are located at the top of a k-bucket. The least recently seen nodes remain, as
long as they are alive, longer in the k-buckets than newer nodes. This makes it
hard to flood the routing tables that are stored in the nodes. In this manner, the
replacement policy provides protection against some types of Denial-of-Service
(DoS) attacks. Every time a node receives a message, it updates the corresponding
k-bucket.

In Fig. 2.8 the location of a node with prefix 0011 in the binary tree is shown as a
black dot. The partitioning where the node with prefix 0011 needs contacts is also
shown. In Fig. 2.9 the lookup for a key is explained. The node with prefix 0011
will lookup a node with prefix 1110 by contacting a node that is closer, according
to the XOR metric, in the identifier space. The lookup will always converge to the
correct node because of the partitioning and the routing information present in the
k-buckets. The examples for the Kademlia protocol are taken from [30].

Space of 160−bit numbers

0
0

0

0

0

00

00
0

0
0

00
0

1

1

1
1 1

1

1

1 1

1

1

1 1

1

111

00...0011...11

0

0

1

2

3

4

0

0

0

0

0

0

0

00

00
0

0
0

00

0

1

1

1
1 1

1

1

1 1

1

1

1 1

1

111

00...0011...11 Space of 160−bit numbers

Fig. 2.8: Partitioning of a binary tree in Kademlia

The motivation for the replacement policy for the routing information is based on
analysis of the Gnutella network in [19]. A measurement study of peer-to-peer file
sharing systems was done and those results can be used for hypermedia systems
as well. They conclude for example that nodes that are alive for more than one
hour will stay alive for a long time with a very high probability.

The Kademlia protocol is built by using four commands: ping, store, findNode

24

CHAPTER 2. STATE OF THE ART 2.2. DISTRIBUTED SYSTEMS

Space of 160−bit numbers

0
0

0

0

0

00

00
0

0
0

00
0

1

1

1
1 1

1

1

1 1

1

1

1 1

1

111

00...0011...11

0

0

1

2

3

4

0

0

0

0

0

0

0

00

00
0

0
0

00

0

1

1

1
1 1

1

1

1 1

1

1

1 1

1

111

00...0011...11 Space of 160−bit numbers

Fig. 2.9: Looking up a node with prefix 1111 in Kademlia

and findV alue. The ping command checks if a node is still online. The store
command will tell a node to store a 〈key, value〉 pair. The findNode command
will return 〈IP address, UDP port, Node ID〉 triples for a specific key for the k
closest nodes it is aware of. The findV alue command will return exactly the
same as findNode, unless it has received a store command, then it returns the
stored value for the given key.

A recursive algorithm is used to locate the k closest nodes. The initiator of the
lookup will send α parallel, asynchronous findNode requests to the α closest
nodes it is aware of. In the recursive step the initiator will resend the findNode
command to nodes it learned about in the previous steps. If all the α lookups fail
the request will be sent to the k closest nodes that were not already contacted. The
parameter α is the concurrency parameter that allows a tradeoff between band-
width, lowest-latency paths and delay-free fault recovery. If α = 1 the Kademlia
algorithm resembles the algorithm of the Chord protocol.

To store a 〈key, value〉 pair, the store command is sent to the k closest nodes
using the key that needs to be stored. Every node also republishes the stored 〈key,
value〉 pairs to keep them alive. Every β hour the original publisher of a 〈key,
value〉 pair needs to republish the pair. After β hours, 〈key, value〉 pairs that are
not republished are removed. This is done to keep information in the caches up to

25

CHAPTER 2. STATE OF THE ART 2.2. DISTRIBUTED SYSTEMS

date and that no unnecessary information is stored for a long period. β is typically
24 as in [30] but it can tweaked for specific domains.

When a node needs to lookup a key, it will look for the k closest nodes of the
key by using the findV alue command. When a value is returned the lookup will
end. If a lookup succeeds, the requesting node will send a store command to
the closest node it saw that does not already contain the value. This is done for
caching purposes. More details, optimisations and implementation details about
the Kademlia protocol can be found in [30].

2.2.4 Secure Key-Based Routing

The Chord and Kademlia protocol are two of the many protocols that implement
a DHT. The problem with most DHT implementations is the lack of security mea-
surements. Most of the protocols trust all nodes in the overlay network. Many
attacks use this assumption or they abuse the algorithm that is responsible for
the routing. The most important security problems for DHT implementations are
identified and described in [45] and [10].

As stated in the summary of [30], the Kademlia key-based routing protocol has
provable consistency and performance, latency-minimising routing and a sym-
metric unidirectional topology. If we consider these properties and the fact that
Kademlia provides some parameters that can be tweaked for domain specific sys-
tems, we conclude that it is a very promising protocol that can be used for the
distributed cross-media server but it is still not perfect.

Most of the issues that arise for completely decentralised distributed systems are
security concerns. In [5], a practical approach toward secure key-based routing is
given for the Kademlia protocol. By using the problems identified in [45] and [10]
a more secure version of the Kademlia protocol is proposed. Most of the known
problems have a theoretical solution but the protocol that is proposed in [5] pro-
vides concrete solutions. The attacks that are covered are attacks both on the
key-based routing mechanism and the storage layer. The secure key-based rout-
ing protocol is called S/Kademlia.

2.2.4.1 Type of Attacks

First of all, no assumptions are made regarding the security measures for the un-
derlying network. This means that there are several attacks possible on the under-
lay network. These attacks will lead to a DoS for the overlay network. Attacks

26

CHAPTER 2. STATE OF THE ART 2.2. DISTRIBUTED SYSTEMS

on the underlay network are possible by using IP address spoofing, lack of data
authentication, packet sniffing and packet modification. To authenticate nodes and
to ensure the integrity of messages traveling inside the network, a cryptographic
or supervised signature can be used.

On the overlay network on the other hand, several attacks are also possible. We
distinguish the following type of attacks.

• Eclipse attacks: Adversarial nodes are placed inside the overlay network in
such a way that messages pass through at least one adversarial node. In this
way the attacker can gain control over a specific part of the overlay network.

• Sybil attacks: An attacker tries to insert many nodes inside the overlay net-
work until he controls a part of the overlay. The difference with the eclipse
attack is that the routing tables are not the driving force of the attack but the
number of nodes inserted into the network.

• Churn attacks: An attacker will try to destabilise the overlay by continu-
ously and simultaneously letting nodes join and leave the network. The
amount of nodes joining an leaving the overlay is called the degree of churn
inside the network.

• Adversarial routing: Instead of abusing the routing algorithm, adversarial
routing will let a node return adversarial routing information. By passing
wrong routing information, the structure of the overlay network stored in-
side the routing tables will not be correct.

If we disallow nodes to freely choose their identifier, it will be harder to perform
eclipse attacks. As investigated and proven in [16], it is not possible to completely
prevent sybil attacks but it is possible to make them hard to perform. The problem
is that in completely decentralised systems, it is hard to limit the number of nodes
that can join the network. Only system resources can be used as a measure to pre-
vent many micro nodes joining the network to perform sybil attacks. The impact
of a churn attack is minimised due to the replacement policy in the k-buckets in
the Kademlia protocol. Adversarial routing depends on the concurrency factor α
and the impact will be inversely proportional to α. The algorithm can, depending
on α, detect adversarial routing if the network still has a portion of nodes that can
be trusted.

Another important attack is the DoS attack where an adversarial node tries to con-
sume all the resources of another node. The secure protocol should provide a way
to allocate resources avoiding that all resources of a node will be used and thus
lead to a DoS. Inside the DHT 〈key, value〉 pairs will be stored and it should not be
possible, or at least very difficult, for adversarial nodes to modify the stored pairs.

27

CHAPTER 2. STATE OF THE ART 2.3. LOAD BALANCING

This can be achieved by replicating the stored pairs in a secure neighborhood. The
secure node neighborhood should be provided by the protocol.

2.3 Load Balancing

2.3.1 Introduction

The protocols that were covered for the distribution are all implementations of a
DHT. Those algorithms typically tend to spread the load but they will introduce
a O(logN) imbalance. Furthermore, the distributed system we target can contain
many heterogeneous nodes. This will lead to a further imbalance of the system.
These statements were identified in [39]. Three schemes are provided that will
balance the load from 80% to 95% compared to the optimal value, in structured
distributed systems that use a DHT abstraction. In [39] they also state that their
proposed load balancing schemes are orthogonal and complementary to caching
mechanisms.

Other load balancing algorithms are already proposed, like in Chord or [8], but
all those load balancing algorithms make assumptions that the system is static and
that node keys are uniformly distributed. In [8] they claim that their algorithm
should also work in dynamic systems but their algorithm is designed for a static
environment and no proof if given for a dynamic environment.

The core concept of the load balancing mechanism is the existence of virtual
servers. For the DHT protocol, a virtual server looks like a node but every physi-
cal node can contain multiple virtual servers. The storage and routing will happen
at the virtual server level. By introducing the virtual servers and balancing the
load among them, the path length for lookups will also increase. Load balancing
is important when you target a scalable and responsive system. The path length
for lookups can be shortened by letting the routing tables contain more informa-
tion as stated in [30]. This makes it possible to make systems targeted to a certain
bound on the path length by aligning the size of the routing information with the
load balancing algorithm.

Three assumptions were made when the load balancing schemes were designed:

• The type of the node resource that is balanced is not restricted but can be
only one. This means that one can balance the storage or the bandwidth for
example, but not both.

• There is only load moved from heavily loaded nodes to lightly loaded nodes.

28

CHAPTER 2. STATE OF THE ART 2.3. LOAD BALANCING

• The load on a virtual server is stable or the load of a virtual server can be
predicted while the load balancing algorithm is active.

Taking into consideration the assumptions listed before, three schemes are pro-
posed to achieve load balancing:

• One-to-one scheme: A light node will periodically contact random nodes.
If the contacted node is heavy then the virtual servers of the heavy node are
transferred to the contacting node without making that node heavy.

• One-to-many scheme: A heavy node will contact light nodes and will trans-
fer some of its virtual servers to the lightest nodes.

• Many-to-many scheme: Information about light and heavy nodes is col-
lected and maintained in different directories inside the system. An algo-
rithm then runs on the different directories to transfer load from heavy nodes
to light nodes. This is a solution that will run in a centralised way for all the
different directories.

2.3.2 Load Balancing in Dynamic Systems

As stated in the future work in [39], load balancing should also be possible in
dynamic systems. In [33], a load balancing algorithm is proposed for dynamic
structured distributed systems. The load balancing algorithm proposed is negli-
gibly worse than a centralised algorithm. The dynamic version of the algorithm
is more suitable for distributed systems that possibly implement a hypermedia
system.

As stated before most of the distributed systems that use a DHT abstraction tend
to have an O(logN) imbalance. The imbalance implied by the DHT is not the
only imbalance that can be introduced in the overlay network. A non uniform
distribution of the objects in the identifier space will further increase the imbal-
ance.

Further, no assumptions should be made regarding the load of a node. Systems can
be highly dynamic and will have some degree of churn. Another thing to notice is
that there can be a skewed arrival pattern for objects. All the previous properties
lead to a further imbalance of the system. The heterogeneity of nodes on the other
hand, will make the proposed algorithm more scalable and will contribute to the
solution provided.

The dynamic load balancing algorithm targets structured distributed systems that
should have the following properties:

29

CHAPTER 2. STATE OF THE ART 2.3. LOAD BALANCING

• A dynamic storage is used by continuously inserting and deleting data.

• A notable degree of churn is present.

• Keys for identifying data can be skewed.

The load balancing algorithms state that they need to transfer virtual servers inside
the DHT but this can be done in two ways. The first is that the keys of objects are
changed. This is not a good approach because the keys are also used for lookups.
So the second and better option is to change the keys of the virtual servers that
act as the nodes inside the DHT. This can be achieved by using the leave and join
operations. More details about the algorithm, that uses a combination of the one-
to-many and many-to-many schemes defined in [39], can be found in [33]. Note
that this is in contrast with the security measurement that nodes should not be able
to freely choose their identifier.

Both the static and dynamic load balancing scheme can only balance one type of
resource. It would be better if we could balance multiple resources. As stated
in [25], multiple resource balancing is a multidimensional-vector packing prob-
lem. That problem is described in [11] and is proven to be NP hard. Another fact
is that sometimes balancing multiple types of resources can lead to contradictions.
In [25] a solution is provided to achieve multiple resource load balancing for cloud
cache systems. The findings in [25] can contribute to find a multiple resource load
balancing algorithm for a dynamic structured distributed system.

30

3 Distributed Cross-Media Server

3.1 Requirements

Based on the requirements of previously designed distributed hypermedia sys-
tems [41], a summary of all the key features of the distributed cross-media server
are pointed out in this section. The targeted distributed cross-media server should
provide a way to support the following concepts:

• Links: The key feature of the cross-media server is to support the concept
of linking data.

• Scalability: No limits should be implied by the choice of the architecture
on the scale of the system. The system should remain to operate well as the
dataset grows. A DHT will be used to provide a distribution of the data.
Distributed systems tend to scale well. The size the of nodes and the data
that can be stored on the nodes should also not be restricted. The nodes will
be placed in an overlay network that will make all the data of the system
accessible.

• Persistency: The data that is stored in the DHT should be stored perma-
nently throughout the lifetime of the data. The persistency of the data should
be handled by the core of the system. When data needs to be stored the con-
cept of a put command will be used. When retrieving data a get command
will be used.

• Extensibility: The design of the system should allow a way to extend the
supported hypermedia types. In this way the system will be future proof.
This is important if we want to keep using the system when new media
types need to be supported.

• Openness: The system should be able to communicate with any other hy-
permedia system by providing a standardised way to interpret the data. To

31

CHAPTER 3. DISTRIBUTED CROSS-MEDIA SERVER 3.2. OBJECT IDENTITY

achieve this we need to design the hypermedia system in a domain indepen-
dent way.

• Availability: When data is stored in the system, every node or user that
has access to that data should be able to locate it. Because we are dealing
with a dynamic system the availability of the data is not trivial. The system
should be stable enough when it is running to locate data. In dynamic sys-
tems, mechanisms to handle requests than can fail when the system changes
should be provided.

• Performance: When the system scales it should alway remain performant
and responsive.

• Concurrency: Data should be stored in a multi-user context. This also
means that concurrent access of data should be supported.

• Balancing: When the system grows, one way to achieve a performant sys-
tem with high availability is to balance the load of the system. This does not
need to be done by the DHT only, there needs to be support to apply load
balancing schemes.

• Versioning: Objects that contain data should be able to support different
versions. While changing an object to another version, the linked items
should be retained. The versioning should be done on the data as well as
the structural entities.

• Ownership: Because we are operating in a concurrent, multi-user context,
data ownership should be supported in the core of the system. This is done
by providing a user model that allows sharing of data.

• Portability: The system should be portable in such a way that the design
does not make any assumptions for the nodes that will store the data. An
overlay network of heterogenous nodes should be supported and every used
algorithm should take this into account.

• Security: Security measurements should also be provided but these must
not all occur in the core. As stated before, some attacks can occur in dis-
tributed systems and most of the attacks can be solved or made harder.

3.2 Object Identity

If we want to store objects in a database, the object-oriented database system
manifesto [4] states that identity needs to be supported. As stated before the

32

CHAPTER 3. DISTRIBUTED CROSS-MEDIA SERVER 3.3. OBJECT IDENTIFICATION

RSL model is defined using a semantic, object-oriented data model. In an object-
oriented system every existing object needs the ability to be identified regardless
of the attributes and properties of the object itself. This means that there are two
different questions one needs to ask about objects:

• How are we going to identify objects? If we want to compare objects we
need a way to determine if they are identical. This means that we are check-
ing if we are really talking about the same objects or that the objects are
equal.

• How can we share objects? This is a direct consequence of the identification
question. If you are sharing object information you also need to support the
updating of objects by only manipulating the object itself.

When we choose an identifier it needs to be a singular reference and naming for
an object. We also need to take into consideration that an identifier will never
be reused and is created and deleted together with the creation and deletion of the
object [29]. If we specify an identifier we also need to specify the semantics of the
identifier regarding versioning, distribution and location information. This does
not imply that these semantics need to be integrated into the identifier but one
must leave room on the implementation part to support it in later phases.

The location information for an identifier is shifting away from a physical loca-
tion. In decentralised distributed systems that support replication there needs to
be support for location-independent routing [24]. Replication is used to increase
availability, durability and locality. Queries will be routed using location informa-
tion that is not bound to a physical server.

3.3 Object Identification

3.3.1 Identification Concepts

In the literature the terms object identifier (oid), keys and surrogates are frequently
used. It is important to clear out the conceptual and practical differences between
them. In some cases they are just referred to as an identifier in general. Differ-
ent types of identifiers in the context of object-oriented databases are described
in [50]. In the following sections the findings of [50] will serve as a lead and will
be explored further in the context of decentralised distributed systems.

33

CHAPTER 3. DISTRIBUTED CROSS-MEDIA SERVER 3.3. OBJECT IDENTIFICATION

3.3.1.1 Object Identifiers

As stated before, when we design a system that will store objects, object identity
needs to be supported. When we store objects these objects will always be ab-
stractions on a certain level, that are represented in a conceptual model. We need
a proper name for an object to distinguish every object that is introduced. The
proper name should be unique. Proper names should not change when the state of
the objects is changed. This leads to two assumptions:

• Each object will have a unique identity that differs from the identity of any
other object, now, in the past and in the future.

• The identity of an object always remains the same, independent of the state
of the object.

The two assumptions above are not always satisfied because not all objects are
discrete. When some objects are merged identity cannot be preserved but it is not
practical to introduce these kind of objects inside a database. An example of this
is if you have two piles of sand and you put them together you get a new pile of
sand. Mostly the two assumptions will be satisfied and when designing objects
one must take into consideration to meet the assumptions.

To identify objects, object identities need to be simulated by using a globally
unique proper name. These proper names are called object identifiers (oids). Ev-
ery object can have only one oid and the oid is preserved for that object only. Oids
are found in the field of conceptual modelling and are technically speaking very
hard to implement because every implementation is only a subset of all possible
data without the need to prevent overlaps. Even if there should not be an overlap,
no overview is possible for all past, present and future systems. A constraint that
one must keep in mind is that when using oids, only a finite amount of objects can
be represented. Oids have the single purpose to differentiate between objects and
allow persistence over time.

Objects do not come naturally with an oid. The mechanism that will take care of
assigning oids to objects is called an oid distributor. An oid distributor should be
a unique instance but the responsibility of the oid distributor can be divided and
delegated as is needed in distributed systems. However the fraction of the oids as-
signed should be divided, the different delegates together form the oid distributor.
When an oid distributor assigns an oid to an object it should also ensure that no
oid is already assigned to it.

A problem with oids and other identification mechanisms is that it is impossi-
ble to ensure authentication in such systems. When an object contains some un-

34

CHAPTER 3. DISTRIBUTED CROSS-MEDIA SERVER 3.3. OBJECT IDENTIFICATION

changeable properties, a link can be made between these properties and the oid
will provide some form of authentication. The problem with these unchangeable
properties is that it also assumes in some way that objects are introduced with an
already existing oid. Thus solving the authentication problem leads to a contra-
diction regarding oids.

3.3.1.2 Keys

If we talk about databases, the concept of oid’s is too general even when it is a
necessity to design a good database. Oid’s are found more frequently in the field
of modelling than in the database field or as an implementation concept. A key
consists of one or more attributes of an object that should be unique when they
are combined, when considering objects that are relevant to it. Also note that a
key is a database concept that is information carrying and oids do not carry any
form of information. A key can be updatable but this can be prohibited by the
definition of the key inside the database scope. A key should only be unique
within the database concept unlike an oid which should be globally unique, thus
also between different databases.

3.3.1.3 Surrogates

Surrogates are also identifiers but they are always assigned by the system on object
creation. The surrogate is kept invisible towards the user and is maintained by
the system. When an object is updated, a surrogate stays unchanged. All the
surrogates assigned should be unique across all possible states of the database. A
comparison of oids, keys and surrogates can be found in Table 3.1.

oid’s keys surrogates
no information contains information no information
not updatable updatable not updatable

globally unique unique in single db state unique in all db states
visible to user visible to user invisible to user

assigned by oid distributor can be assigned by user assigned by db

Table 3.1: Comparison of oids, keys and surrogates

35

CHAPTER 3. DISTRIBUTED CROSS-MEDIA SERVER 3.3. OBJECT IDENTIFICATION

3.3.2 Identifiers for Decentralised Distributed Systems

Now that different types of conceptual identifiers are defined for objects, we can
start looking for a suitable identifier that can be used in a decentralised structured
distributed system. Keys and surrogates are less suitable for decentralised sys-
tems. It is more natural to mimic the concept of oids in decentralised systems.
Also note that the oid distributor will be composed of many different delegates.
This is because we target a fully decentralised distributed system. If there is a sin-
gle oid distributor a centralised authority is introduced. Some mechanisms have
already been proposed to identify objects or resources and are investigated further
in a distributed context.

3.3.2.1 Uniform Resource Identifiers

In [6], Uniform Resource Identifiers (URI) are defined. URIs are introduced to
provide a simple and extensible way to identify a resource by means of a compact
sequence of characters. The notion of a resource can be taken in the most general
way. A resource is anything, abstract or physical, that can be identified by a URI.
A resource identifier does not imply accessibility. Uniformity is introduced to
be able to use different types of URIs in the same context. It allows embedding
semantics in different types of resource identifiers.

The notion of identifier for a URI is used to identify something with the scope
of identification. It is thus a definition of a general concept that will serve in
a specific identification context. The identification mechanism will be used to
distinguish a resource from any other resource. The identity of a resource is not
revealed by a URI but it can be. The URI specification does not define identifiers
to identify the same resource over time but most of the URI schemes do provide
persistency over time for a URI. A URI can be interpreted in a user defined context
but the interpretation of the URI should always be consistent regardless of the
context.

A URI also does not make a restriction to singular identification, it can also be
used to identify sets and provide mappings. If we consider other identifiers, it
should also be possible to come up with a construction for composed or mapped
identification. The identifiers of the objects that are singular references are then
used for a new resource that is a compound of the other resources. If an object is
then updated the compound object will be updated also if we model object identity
as described in the previous sections.

Every URI starts with a scheme name that will define the scope of the identifiers

36

CHAPTER 3. DISTRIBUTED CROSS-MEDIA SERVER 3.3. OBJECT IDENTIFICATION

that are assigned. For each scheme, syntactic constructions and restrictions can
be defined that do not collide with the general URI syntax. A general syntax is
defined so that every URI can be parsed in a scheme independent way. The han-
dling of the scheme specific URI syntax should be handled on the layer of the
scheme itself. If a URI is used in some specification it will be able to support dif-
ferent URI schemes because of the general syntax but scheme dependent handling
should be provided as new schemes arise. Some examples of URIs are given in
Table 3.2.

http://www.ietf.org/rfc/rfc2396.txt
ldap://[2001:db8::7]/c=GB?objectClass?one
news:comp.infosystems.www.server.unix
tel:+32-3-827-12-11
urn:oasis:names:specifications:docbook:dtd:xml:4.1.2

Table 3.2: Examples of URIs

URIs can also be divided into two subclasses based on their uses. A URI can be
used as a locator, a name or both. When we want to identify and locate a resource
we will talk about Uniform Resource Locators (URL). The other subclass of URIs
consists of Uniform Resource Names (URN). These type of URIs use the urn
scheme. URNs are used to identify a globally unique and persistent resource.
Note that the class of URIs must not be bound to a specific scheme. Different
URIs in a specific scheme can be used to locate, name or both locate and name a
resource.

A URI is built from a specific set of characters. These character are the letters of
the Latin alphabet, digits and some limited set of special characters. How a URI
is interpreted only depends on the used characters. The main reason URIs are
built using characters is because a URI could be constructed by different kind of
systems and thus also by using a keyboard for example. In a URI, one can embed
useful information to make the URI more readable and learnable. Even though a
limited set of characters is used, other characters can be encoded into a URI by
using percent-encoded octets, if the scheme allows it. More about the details on
the syntax can be found in [6].

We are targeting a system in which the objects are distributed and where an iden-
tifier is location independent so only the subclass of the URNs will be useful for
the identification of the objects. The URN mechanism can be used by the rout-
ing algorithm of the DHT algorithm to locate an object. Some parts of the URI
specification should not be used. An example is the use of fragments by using
the ’#’ character. This has a historical use to refer to specific parts of a resource.

37

CHAPTER 3. DISTRIBUTED CROSS-MEDIA SERVER 3.3. OBJECT IDENTIFICATION

However this should be handled by the RSL selectors. When using URIs, some
specific encodings can be used that are platform dependent. Every node that will
use URIs will have to take this platform dependency into account.

3.3.2.2 Object Identifiers

In the class of the URN scheme for URIs a special namespace is proposed for
object identifiers. We will make the division between the scheme and the con-
cept by respectively using the uppercase abbreviation OID for the scheme and the
lowercase abbreviation oid for the concept. As stated before an oid is a general
modelling concept. The OIDs defined here are more of an implementation con-
cept. In [31] an OID is defined as a tree of nodes where each node is a sequence
of digits and entities are assigned to a node in the tree. The representation is a
sequence of characters that is limited to digits and a dot. A dot is used to separate
between subtrees. No leading zeros should be used in the digit sequences. The
most significant digit is on the left side and the least significant on the right side.
Some examples of OIDs are given in Table 3.3. The scheme name urn and the
oid namespace are defined case insensitive.

urn:oid:1.2
urn:oid:1.2.62.1
urn:oid:0.9.2323.192232.100

Table 3.3: Examples of OIDs using URIs

In [31] is stated that the assignment of OIDs should be unique for every resource
and that OIDs cannot be reused. This uniqueness is parallel to the conceptual oids.
There are standards defined for how OIDs should be assigned and some OIDs are
reserved. Once an entity receives and OID it can assign OIDs in its own subtree
for that particular OID. For example if we register RSL as an ISO assigned OID we
can assign urn:oid:1.28 as OID. If we then want to create RSL entities, every
entity will have that prefix in its own OID. An entity for RSL will for example
have an OID like urn:oid:1.28.0.19873. Thus once we have received a
registered node for our use, we are free to assign any node to an object in our
subtree.

It is possible to embed some semantics in OIDs but it is not recommended. Every
collection of objects in RSL for example can represent a subtree. There are many
possibilities when regarding OIDs but one thing that should certainly not be done
is embed location information in an OID. Objects can be on different locations or
the physical location can change on certain points in time.

38

CHAPTER 3. DISTRIBUTED CROSS-MEDIA SERVER 3.3. OBJECT IDENTIFICATION

3.3.2.3 Digital Object Identifiers

Another effort in providing a system to identify objects is described in [38]. The
objects are identified by using Digital Object Identifiers (DOI). Not only DOIs
but a whole DOI system to create and work with DOIs is defined. A DOI is a
location-independent name for an entity in a digital network. DOIs are used to
identify objects, allow persistence of objects and provide means to exchange in-
formation inside digital networks. DOIs are managed by the International DOI
Foundation and are accepted since 2012 as the ISO 26324:20121 standard. DOIs
are in general used for combining persistent identification with current informa-
tion about objects.

The DOI system consists of four components: A specified numbering syntax, a
resolution service, a data model and implementation procedures. The DOI sys-
tem allows reusing existing numbering standards and metadata schemes within
the DOI system. The DOI system itself is built by combining several existing
standards. The combination of the standards is further developed to provide a
consistent system.

The first component in the DOI system is the syntax. A DOI is represented as
an opaque string and contains a unique naming authority and a delegation part.
The delegation part allows embedding existing identifiers. The naming authority
occurs first in the string followed by a ’/’ character. After the ’/’ character the
delegation part follows. Both parts are also referred to as the DOI prefix and the
DOI suffix. Some examples of DOIs are given in Table 3.4.

doi:10.1234/NP8348
doi:10.5678/ISBN-0-7623-2323-5
doi:10.2224/2004-10-ISO-DOI

Table 3.4: Examples of DOIs

The second component in the DOI system is the DOI resolution mechanism. In the
resolution component a DOI identifier will be used to request the information that
is bound to the identifier. A resolution can return multiple results. The resolution
component is based on the Handle System [47]. The Handle System is a secure
name resolution and administration service. A client can use a DOI identifier and
send it to the DOI system. The DOI system then returns the URI, XML, Data,
etc., that is associated with the DOI to the requesting client.

1http://www.iso.org/iso/catalogue detail.htm?csnumber=43506

39

http://www.iso.org/iso/catalogue_detail.htm?csnumber=43506

CHAPTER 3. DISTRIBUTED CROSS-MEDIA SERVER 3.3. OBJECT IDENTIFICATION

The third component in the DOI system is the DOI data model. In this compo-
nent a data dictionary is provided as well as a framework to apply the dictionary
to the data. The dictionary contains entries to describe relations between DOIs.
The data model was introduced to support interoperability and reusability inside
the model. The interoperability data dictionary provides the relations between
different systems. The reusability is driven by ontology-based dictionaries.

The fourth component in the DOI system are the collections of DOI implementa-
tion procedures. The DOI system is implemented as a general and flexible iden-
tification and resolution service. The implementation procedures are provided
to enable users to create domain specific implementations. The implementation
component provides the low level identification and resolution. The data model
component should be used also to add more semantics to the data for reusability
and interoperability when using this component.

The DOI system is a complete system to identify data, resolve identifiers and
provide semantics to the data. The DOI system is a standardised system but the
resolution component could also be handled by the distributed system itself by
means of a DHT. The DOI system represents a complete system that uses an OID
like system to build and assign identifiers. The mechanism to identifying the data
and the architecture of the DOI system is a good starting point to learn how an
identification mechanism for distributed systems can work.

3.3.2.4 Universally Unique Identifiers

Universally Unique IDentifiers (UUID) were first defined as a DCE standard and
later as an ITU-T recommendation and got accepted as an ISO/IEC standard. Both
are revised to be compatible. In [28] on the other hand, UUIDs are declared in
the URN namespace and are sometimes referred to as Globally Unique IDentifiers
(GUID). In this section those kind of UUIDs will be further investigated.

A UUID is a fixed size 128 bit identifier that can be assigned without requiring
a central authority. The 128 bit fixed size is relatively small compared to some
other unique identifiers and makes it usable for sorting, ordering, hashing, storing
and other programming purposes. Even without the presence of central authority,
up to 10 million UUIDs can be generated by the UUID generation algorithm,
per machine, per second. The URN UUIDs are an ITU-T recommendation and
are accepted as the ISO/IEC 9834-8:2005 standard and is revised in the ISO/IEC
9834-8:2008 standard2 standard.

2http://www.iso.org/iso/home/store/catalogue ics/catalogue detail ics.htm?csnumber=53416

40

http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=53416

CHAPTER 3. DISTRIBUTED CROSS-MEDIA SERVER 3.3. OBJECT IDENTIFICATION

A UUID can be represented by the URN scheme by converting the 128 bit se-
quence into a string. Every field in the UUID is treated as an integer and rep-
resented as a zero-filled hexadecimal digit string. An example of a UUID rep-
resented in the URN scheme is urn:uuid:573fd550-f5f5-11e2-b778-
-0800200c9a66.

When a UUID is generated, it should be unique across space and time inside the
UUID space. A UUID contains a time field so it is only valid in a specific time
interval. Somewhere around the year 3400, UUIDs will rollover. Because of the
nature of UUIDs, they can be used for both objects that have a short lifetime like
sensor data but also for long living objects like documents.

The UUID algorithm can use three different approaches to generate UUIDs. The
first approach is to use the MAC address of a machine to guarantee uniqueness,
the second approach is to use a random or pseudo-random number generator and
the third approach uses cryptographic hashing in combination with specific text
strings defined by the UUID requestor. Apart from the validation using the times-
tamp portion of a UUID it is not possible to validate UUIDs. Two algorithms
cannot produce the same UUIDs, with the assumption that each algorithm gener-
ates unique UUIDs.

A UUID consists of 16 octets, numbered from zero to fifteen. The most significant
bits of a UUID are always encoded in the leftmost positions. Octets zero to three
contain the low field of the timestamp, octets four and five the middle field of the
timestamp, octets six and seven the high field of the timestamp multiplexed with
the version number of the UUID, octet eight the high field of the clock sequence
multiplexed with the variant and octet nine the low field of the clock sequence.
Octets ten to fifteen are used for the spatially unique node identifier. In Fig. 3.1
the octet format of a UUID is shown with four octets per line.

0 1 2 3

Time Low
Time Mid Time High & Version

Clock High &
Variant

Clock Low Node Identifier

Node Identifier

Fig. 3.1: General UUID octet format

The variant defines how a UUID is formatted. The variant is set in the most
significant bits (msb) of octet eight. The variants defined by [28] will have bits
zero to two set to 10x, where x can be any binary value. The variant values
0xx, 110 and 111 are reserved for backward compatibility and future definition.

41

CHAPTER 3. DISTRIBUTED CROSS-MEDIA SERVER 3.3. OBJECT IDENTIFICATION

The version number on the other hand defines the algorithm used for the UUID
generation. The version number is set on the 4 msb of the timestamp field. The
possible values for the version are shown in Table 3.5. For the hashing based
algorithms and the random or pseudorandom algorithm, the bits will be set using
the hashed name or will be filled in randomly. For the time-based variant more
details will follow in this section. A full specification that covers all versions
except the DCE Security version can be found in [28].

Bits Version Description
0001 1 Time-based version
0010 2 DCE Security version
0011 3 Name-based version using MD5 hashing
0100 4 Random or pseudo-random version
0101 5 Name-based version using SHA-1 hashing

Table 3.5: Overview of UUID versions

The timestamp of a UUID is represented in the first 60 bits of the bit sequence.
For the time-based algorithm the UTC time is stored in the bit sequence, as a count
of 100 nanosecond intervals since 00:00:00.00, 15 October 1582. Another time
format is possible but the used time format must be used consistently inside the
whole UUID space. For the random or pseudo-random algorithms the timestamp
is filled in as a 60 bit random generated value. For the hashing based algorithms
the timestamp is set using the octets of a hashed name space identifier.

The clock sequence in a UUID is used to avoid generating duplicate items when
a clock is set backwards in time or if a node identifier changes. A new clock
sequence should be generated if no guarantee can be given by the system that the
timestamp it will use will be set later than previously generated timestamps. If
this is not the case the clock sequence should be a random value. Otherwise the
information about the previous clock sequence can be used. For a node identifier
change, a similar approach is used. The first clock sequence for a node should
always be initialised as a random value, independent of the node identifier. As for
the timestamps, the clock sequence is set by a similar approach for the algorithms
that use hashing and random numbers.

The node identifier part in the time-based version will be constructed using a IEEE
802 MAC address that is available on the machine. If a real MAC address is not
available a random or pseudo random generated value can be used. To ensure that
there is no overlapping between both mechanisms the two leftmost bits will be
used. The leftmost bit will differentiate between global and local addresses and
the second leftmost bit will differentiate between unicast or multicast. A schema

42

CHAPTER 3. DISTRIBUTED CROSS-MEDIA SERVER 3.3. OBJECT IDENTIFICATION

for a UUID using a real MAC address can be found in Fig. 3.2. If we use the
time-based variant for a UUID we can conclude that every node will be able to
generate in total 272 unique UUIDs if we allow the UUID’s to roll over. In practice
this number will be a lot smaller due to the time dependancy.

Time UTC Version Time UTC Variant Clock MAC
48 bits 0 0 0 1 12 bits 0 1 12 bits 48 bits

Fig. 3.2: Time-based UUID schema using a real MAC address

If we take the UUID 573fd550-f5f5-11e2-b778-0800200c9a66, no-
tice that in the third group the first hexadecimal digit is 1, which has binary repre-
sentation 0001 and thus informs us that it is a time-based generated UUID. The
first hexadecimal value of the fourth group is b, which has binary representation
1011 and thus informs us in the two first bits that it is the IETF variant specified
in [28]. The last group will tell us the MAC address that generated this UUID
is 08:00:20:0c:9a:66. If the MAC address embedded in a UUID should
not be visible due to security or privacy concerns it is possible to bypass this by
reserving new MAC addresses or to apply cryptography.

3.3.2.5 Comparison

When looking at the different identifiers, URIs, OIDs and DOIs have a similar
approach but they all differ on some key concepts. To compare the different types
of identifiers, an overview about the length of the identifier, the degree of central-
isation to use the identifiers, the guaranteed uniqueness and the semantics that are
embedded in the identifier itself will be given. The summary of the comparisons
can be found in Table 3.6.

If we look at the identifier length of URIs, OIDs and DOIs we see that they can
have an arbitrary length. The variable length is good when you need support for
many identifiers but if you take a look at the length from a programmer’s point
of view, the variable length can introduce some issues. First of all, because the
length is not fixed, the size to store the identifiers is also not bound. Sorting and
ordering of URIs and DOIs is not trivial. No natural or standardised sorting is
defined for the URIs and DOIs. For the OIDs one can use the tree abstraction
for ordering and sorting. The UUIDs are a 128 fixed size bit sequence. As stated
before, this lends itself well to support storing, sorting and ordering.

When comparing the degree of centralisation, we notice that for the URIs, OIDs
and DOIs, some centralised authority should be used to reserve specific parts of

43

CHAPTER 3. DISTRIBUTED CROSS-MEDIA SERVER 3.3. OBJECT IDENTIFICATION

URIs OIDs DOIs UUIDs
Arbitrary length Arbitrary length Arbitrary length Fixed length

Centralised
scheme

reservation

Centralised OID
reservation

Centralised
prefix reservation

Fully
decentralised

Reserved scheme
uniqueness

Reserved OID
tree uniqueness

Reserved prefix
uniqueness

Unique by
algorithm

Parsed Parsed Resolved Interpreted
Embedded

scheme
semantics

Embedded
subtree semantics

Embedded prefix
semantics

No semantics

Table 3.6: Comparison of identifiers

the identifiers. These reservations of a URI scheme, an OID tree node and a DOI
prefix are needed to give a scope for the identifiers where there can be a guarantee
of uniqueness. The uniqueness is only guaranteed for the reserved parts of the
identifier. The uniqueness of the other part of the identifier must be guaranteed
when an identifier is assigned to an object. In fully decentralised systems the use
of reserved parts in the identifiers can lead to another centralisation but it does not
imply it. One can for example take an UUID as the numbering used in the suffix,
for a prefix in the DOI system that was reserved before the system is used.

Because UUIDs have a fixed length, UUIDs must not be parsed and can be inter-
preted. This is also the case when a UUID is represented as a string. URIs and
OIDs on the other hand are defined in such a way that they can always be parsed,
no matter what the identifiers are used for or which scheme or object tree is used.
For the URIs, the syntax is defined in a general way such that a URI can always
be parsed. For the OIDs, the syntax is also strictly defined and the sequence of
digits and dots that represents a OID can always be parsed. For the DOI system a
resolver component is provided that should be used to resolve DOIs.

Every identifier discussed has some form of semantics embedded in the identifier.
When we talk about embedded semantics, we refer to object specific information
that is placed into the identifier. The MAC address for the UUIDs for example
has no semantic meaning for the object that needs to be identified itself. A MAC
address is not even required for all algorithms that generate UUIDs and should not
be referred to as semantic embedded information of the identifier. For URIs, every
scheme has his own semantics. By using a defined scheme, some classification
for the objects is embedded into the identifier itself. For the OIDs and DOIs the
reserved subtree and the reserved prefixes are also a way of embedding semantic

44

CHAPTER 3. DISTRIBUTED CROSS-MEDIA SERVER 3.3. OBJECT IDENTIFICATION

classification of objects into the identifier. Furthermore it is possible for URIs,
OIDs and DOIs to embed more semantic information in the identifiers but it is not
recommended to do it due to security considerations.

When discussing all the identifiers, it looks like UUIDs are more suitable to be
used in distributed systems. This is because every node in the distributed system
can generate a UUID in a standardised way. A UUID can be represented as a
URN, and thus also as a URI. One can argue to use the URI system but then we
lose the strong points of using a UUID itself. The URIs, OIDs and DOIs are more
targeted towards systems that allow some degree of centralisation but they can be
used in a fully decentralised way also. The strength of the DOI system is that
every step for the identification can be done by using the four components but this
is also the weakness when we want to use it in a distributed way.

The time-based UUIDs are actually very useful because a cross-media server is a
networked system and should have at least one MAC address available for every
node. When using the time-based UUIDs as identifiers every node in the dis-
tributed systems mimics a delegate of an oid distributor. A UUID is not actually
an oid but a key. In the cross-media server we assign keys and do not allow keys
to be changed.

The fact that UUIDs are not designed for a specific domain is not a problem.
A UUID can be used in any context. A machine can for example generate five
UUIDs and four of those can be used in another system that runs on the same
node.

One of the concerns of using UUIDs is a scalability concern. Because of the
fixed size and the limit on UUID generation in combination with the rollover
period, using UUIDs can become problematic in the future. In practice, 10 million
UUIDs per MAC address, per second, will be for most distributed systems now
and in the future, a good upper bound. If this limit will become too small it is
always possible to extend the algorithm to support UUIDs that contain more bits
as seen for example in the IPv4 to IPv6 transition [15]. There a transition of 32 bit
identifiers to 128 bit identifiers is described and a similar approach can be used if
necessary.

3.3.3 Object Identity in the RSL Model

In the distributed cross-media server a UUID will be generated on a node when
an RSL object is created. The UUID is thus assigned on object creation and that
UUID will not be used again if the object is deleted from the system. For UUIDs

45

CHAPTER 3. DISTRIBUTED CROSS-MEDIA SERVER 3.3. OBJECT IDENTIFICATION

one needs to take into consideration the rollover property because of the times-
tamp field. Otherwise UUIDs will be regenerated and objects will have the same
UUID.

When considering objects that will be created when using the RSL metamodel, the
creator of an object will have a large impact on determining the uniqueness of an
object when we look at it at the semantic level. If two different users create an
object with the same attributes and properties the objects should not be the same.
For example if somebody creates a resource and another user creates the same
resource those two objects should not be the same. On the system level on the
other hand, the state of the object should not contribute to the identifier.

There are different kinds of equality that can be discussed. On the user level for
example, objects can also be equal. Let us say two users both create a resource
with the same data. Both objects can be equal but they are certainly not the same
object on the system level. To compare objects in RSL we need to introduce
algorithms depending on the object classes. For equality of a general entity the
properties of that entity influence the equality. If we look at links for example, the
source and target properties are important when considering equality.

If we use the UUIDs as suggested previously we can identify every object. When
we embed information of one object inside another and we update the original
embedded object, only the original object needs to be updated because we use
identifiers that can be used as a reference to another object. For example, if we
have two different links to a resource and we change some properties of the re-
source, the links pointing to those resources do not need to be updated but only
the resource itself.

46

4 Implementation

Our goal is to implement a distributed cross-media server. In the implementation
phase existing implementations of protocols and frameworks will be combined to
speed up the implementation. The use and reuse of already tested code should
lead to a more stable system.

As the research pointed out, some interesting work is already done in the field of
hypermedia systems and DHT protocols. To support many of the desired features
of the distributed cross-media server, the RSL model can be used in combination
with the existing DHT protocol S/Kademlia. Some properties or requirements
are fulfilled as a direct consequence of the overall design of the distributed cross-
media server that is provided in this thesis.

The goal is not to design a new state of the art system or to completely re-
implement existing algorithms, protocols or models but to combine state of the art
systems without losing some of the properties of the standalone systems. Some
changes need to be made to the existing implementations to combine existing
frameworks and protocols to implement the distributed cross-media server. These
changes are also necessary to support all the desired features and properties of the
targeted system or to leave room for desired features in future work.

4.1 Previous Implementations

In the sections about the state of the art, important first and second generation
hypermedia system implementations are explored and reviewed. For the third
generation hypermedia systems, which came after the Dexter reference model,
no overview is given for the implementations. Those implementations will not
be considered because the RSL model is a successor of those third generation
hypermedia models. The hypermedia systems we consider in this chapter are
previous implementations that are designed using the RSL model.

47

CHAPTER 4. IMPLEMENTATION 4.1. PREVIOUS IMPLEMENTATIONS

As stated before, this thesis is not the first implementation of a distributed hyper-
media system but also not the first implementation that uses the RSL model in the
core to implement a hypermedia system. There were two important implementa-
tions of the RSL model. The first implementation is the iServer [44] platform, the
second implementation is a cooperative iServer extension [42] that is based on the
iServer platform.

4.1.1 iServer

The RSL model was not only published as a model but it was also implemented as
iServer, a platform for cross-media information management. The iServer plat-
form was used as the core framework of some hypermedia projects that need
mechanisms to link digital and physical data. One of the most interesting use
cases was the use of the iServer platform in the iPaper [37] framework. The iPa-
per framework provides a solution to support interactive paper. Promising results
were achieved with the iPaper framework.

The iServer implementation has support for extensibility through the plug-in mech-
anism but also the iServer implementation itself has been extended through time.
The changes that needed to be done to extend the functionality of the iServer plat-
form itself, even though some of them were extensions of the core model, did
not have an impact on the applications that were using the iServer framework.
The applications evolved in parallel with the iServer framework and kept working
without any changes at the application level.

4.1.2 Distributed Link Server

Because the iServer platform did not provide any mechanisms that enable collab-
orative authoring, a distributed link service was designed and implemented [42].
In the newly designed cross-media environment, it is possible to share links as
a collaborative information space. To ensure that links have a certain quality, a
mechanism of user and link rating is designed for the system.

As stated in [42], the peer-to-peer-based distributed link service is not designed to
be a distributed hypermedia system based on peer-to-peer technology. The goal
was to design an architecture that allows the sharing of link metadata. This makes
the design of the cross-media environment not very useful for the targeted cross-
media server but a similar link rating mechanism can be used to rate links in the
distributed cross-media server. However it is considered as future work. Some

48

CHAPTER 4. IMPLEMENTATION 4.2. ARCHITECTURE

research needs to be done on the consequences of a user model in combination
with a link rating system.

4.2 Architecture

4.2.1 RSL

The implementation of the distributed cross-media server uses an already existing
cross-media server implementation that is based on the iServer platform. The
existing implementation is an object-oriented Java implementation that uses the
class AbstractRslElement as a parent for every RSL object. All the RSL-related
classes can be found in the org.mobricant.iserver.rsl package.

As discussed in the section about object identity, the RSL implementation should
be modified to support UUIDs for the identification of objects. This change is
made in the AbstractRslElement class. The class will generate a new UUID
when a new RSL object is generated and stores it in the uuid field which can
be accessed by the getUUID method. The UUID of an RSL object can not be
changed, is assigned on object creation and is never reused even when the object
is deleted. The UML class diagram of the AbstractRslElement class can be
found in Fig. 4.1.

The UUIDs that are generated are version 1 UUIDs and thus a MAC address needs
to be available. Because we are working in a networked environment a MAC
address should be available on the system that creates a node. A new class is
created to generate UUIDs. The UUID class can be found in the org.mobricant.-
iserver.distributed package. The UML class diagram is shown in Fig. 4.2

Before a UUID is generated the UUID class will check if there is a MAC address
available and if it is not available an exception is thrown. For generating the
UUIDs, an external library is used because the built in Java version can only
generate version 4 random UUIDs. As discussed before we don’t want version
4 UUIDs, what we need are version 1 UUIDs. The library for generating version
1 UUIDs that is used in the implementation is developed by Johann Burkard. The
library allows to generate, parse, clone and compare UUIDs. The UUID library is
available at the developers website1.

To support the identification mechanism using UUIDs the equals method of the
AbstractRslElement class needs to be implemented using UUIDs. To compare

1http://johannburkard.de/software/uuid/

49

http://johannburkard.de/software/uuid/

CHAPTER 4. IMPLEMENTATION 4.2. ARCHITECTURE

Fig. 4.1: RSL UML class diagram

two RSL objects their UUIDs need to be compared. This is done by using the
equals method of the UUID class that compares the UUIDs.

The most important feature of the distributed cross-media server is that a mech-
anism for linking data should be implemented. This feature is supported in the
RSL model by the concept of links over entities. A link, a selector and a re-
source are subclasses of entities. The provided mechanism of linking data will be
a linking mechanism for links, resources and selectors. The classes that represent
these core concepts are in the implementation present as the Entity, Resource,
Selector and Link classes. The classes are shown in the UML class diagram in
Fig. 4.1.

More details about the linking mechanism can be found in section 2.1.5 that covers
the RSL model in detail. All the corresponding classes that are present in the
metamodel are also represented in the implementation.

To support a multi-user environment, the user model that is present in the RSL

50

CHAPTER 4. IMPLEMENTATION 4.2. ARCHITECTURE

Fig. 4.2: UUID UML class diagram

model is used. The implemented user model will provide an abstraction for a user
and user groups that provides mechanisms for data ownership and data sharing.
As can be seen in the UML class diagram in Fig. 4.1, no further changes should
be made to the other RSL classes to support key-based routing because all the
changes are done in the AbstractRslElement class.

Two other properties that should be supported by the system are found in the core
of the RSL model. The first property is extensibility and is provided by using the
plug-in mechanism. The second property is the openness and is a property that
results from the design of the RSL model.

4.2.2 S/Kademlia

The implementation of the DHT is done by using the Kademlia protocol in com-
bination with some of the security features described earlier in this document. An
existing implementation of S/Kademlia2, that is based on the openkad3 Kadem-
lia implementation is modified to support the key-based routing algorithm using
UUIDs as keys and to support the features of RSL in the lookup phase.

The S/Kademlia implementation was done in Java and uses the open source depen-
dency injection framework Guice [49] that is developed by Google. Dependency
injection enables developers to inject new dependencies into existing classes by
using modules, injectors and providers.

The security problems that were described in previous sections regarding the
Kademlia protocol are solved in the S/Kademlia protocol design. The system
is still not waterproof for attacks but it should be rather hard to abuse the prop-
erties and operations of the system to perform attacks on the underlay or overlay
network.

2https://code.google.com/p/skademlia/
3https://code.google.com/p/openkad/

51

https://code.google.com/p/skademlia/
https://code.google.com/p/openkad/

CHAPTER 4. IMPLEMENTATION 4.2. ARCHITECTURE

The S/Kademlia implementation that is used adds a node authentication mech-
anism to prevent eclipse attacks by hashing the UUIDs used to identify nodes.
Lookups in the network will be routed through k disjoint paths where k is the
replication parameter of the Kademlia protocol. This will ensure that lookups
succeed with up to k-1 adversarial neighbours for a node. The data that travels
through the overlay network will be validated by comparing the hashed key in the
message with the hashed key of the data. An identifier is assigned to the storage
layer and checked at delivery to make sure that messages that travel through the
overlay network are destined for a specific storage layer.

The caching of data along the lookup paths in Kademlia will increase the avail-
ability of data and the performance of the cross-media server by speeding up data
retrieval. In combination with the ability to lookup nodes in an asynchronous
way the system will have a good responsiveness compared to other DHT proto-
cols.

4.2.2.1 Storage

The storage is done by using the S/Kademlia interface. The S/Kademlia interface
is defined in the SkademliaInterface class that can be found in the il.technion.-
ewolf.kbr.SKademlia package. The interface is implemented in the SKademlia-
Net class that is inside the net subpackage. The UML class diagram can be found
in Fig. 4.3

As can be seen in the class diagram in Fig. 4.3 the Key class is used as an ab-
straction of a key. Objects of the Key class represent the keys that are used in
the routing algorithm provided by the S/Kademlia implementation. If we take a
look at Fig. 4.2 you can see that the UUID class has a method toKey to convert
a UUID object to a Key object.

To store data in the overlay network the securedPutV alue method is defined.
This method executes a put operation that is implemented in the PutOperation
class. All the operations of S/Kademlia can be found in the il.technion.ewolf.kbr.-
SKademlia.op package.

When a put operation is performed the existing implementation does not store the
information in the overlay network as described in [5]. In the modified implemen-
tation the secure siblings are used to generate a list of secure neighbour nodes. A
store message will be send to those nodes as well.

The method securedGetV alues that takes a Key and an User object as argu-
ments is added to the interface of S/Kademlia. This is done to enable looking up

52

CHAPTER 4. IMPLEMENTATION 4.2. ARCHITECTURE

Fig. 4.3: S/Kademlia interface UML class diagram

RSL elements for a certain user. The securedGetV alues method will check the
identifier assigned to the storage layer before performing a get operation. If the
storage identifiers match then the get operation is executed.

For the GetOperation class, which is used for executing get operations, a new
field is added to the class. The added field is the user field. The user field
contains the User object of the requesting user and needs to be set by using the
setUser method.

The storage of data is handled by the AgeLimitedDHTStorage class. This class
implements the DHTStorage interface. All the storage related classes can be
found in the il.technion.ewolf.kbr.SKademlia.storage package. The UML class
diagram for the interface and the implementation can be found in Fig. 4.4.

The DHTStorage interface is also changed to perform searches based on incom-
ing get messages that support RSL objects. These messages will provide a key for
the RSL object that needs to be found and the User object for the user that need to

53

CHAPTER 4. IMPLEMENTATION 4.2. ARCHITECTURE

Fig. 4.4: DHT storage UML class diagram in S/Kademlia

access the object. When a search method is called for a specific user, the storage
is searched for an object that maps to the key that is accessible for that user.

The RSL implementation uses abstract interfaces in the database layer and could
also be rewritten to support dependency injection. In this way new database im-
plementations could be added without modifying existing code. In the current
distributed cross-media server implementation the storage is implemented in the
AgeLimitedDHTStorage class without using any database abstraction. The im-
plementations uses an in memory database.

4.2.2.2 UUID

To support UUIDs for nodes some changes need to be made to the Secure-
KademliaModule class. This class is the core class of the S/Kademlia imple-
mentation. It provides most of the dependencies and binds all of the components
that enable the key-based routing and storage. The SecureKademliaModule can
be found in the il.technion.ewolf.kbr.SKademlia.net package.

The SecureKademliaModule class provides the node object that is used in the

54

CHAPTER 4. IMPLEMENTATION 4.2. ARCHITECTURE

S/Kademlia implementation to represent contact information. The node provider
is modified in such a way that every node is assigned a new UUID on node cre-
ation.

4.2.3 RLS Node Features

Every RLS node in the system has equal functionality. This node abstraction is
not to be confused with the node abstraction that is provided in the S/Kademlia
implementation by the Node class. An RSL node should be seen as a building
block in the overlay network.

The node functionality is implemented in the RSLNode class. The RLSNode
class can be found in the org.mobricant.iserver.distributed package. In Fig. 4.5
the UML class diagram is shown for the RSLNode class.

Fig. 4.5: Node UML diagram

Every node has four fundamental operations: a join, a put, a get and a leave
command. The join command will contact a bootstrap node in the overlay net-
work. The two nodes will exchange the information that is necessary to join the
overlay network.

When constructing a node, the UDP port on which the node listens for incoming
traffic should be provided. When a node is created a new SecureKademlia-
Module object is created. The SKademliaNet class is used for the key-based
routing. The DHT will be handled by the SkademliaInterface and the stor-
age layer is handled by the AgeLimitedDHTStorage class. When creating an

55

CHAPTER 4. IMPLEMENTATION 4.2. ARCHITECTURE

RSLNode object a UUID to identify the node is generated. This UUID can be
retrieved using the getUUID method.

For every node, a user must be set to create and lookup RSL objects. This is
because every RSL object needs to have a creator set and not every RSL object
must be accessible to every RSL user. The setUser method can be used with a
User object as parameter to set the current user operating on an RSL node.

As in most DHT implementations, a put and get command are provided to store
and locate data in the overlay network. The put command will store an instance
of a subclass of the AbstractRslElement class in the overlay network. The put
command uses the S/Kademlia interface to store data in the DHT. A get command
will lookup an RSL object by locating it in the network using the key-based routing
algorithm. The UUID of the object is converted to a Key object and that key is
used to perform the lookup. Like the put command, the get command also uses
the S/Kademlia interface to lookup data based on a UUID key.

A leave method is provided to close all the sockets that the RSL node uses for
communication in the network. When a leave command is executed in the net-
work no data is moved. In some scenario’s it is possible that the data on a node
that leaves the network needs to be transferred to other nodes.

4.2.3.1 Parameters

As explained in [30] and [5] some properties of the system can be changed by ad-
justing some parameters of the Kademlia and S/Kademlia protocol. These proper-
ties can be found in the SecureKademliaModule class. By using named prop-
erties provided by the Guice framework some parameters are set.

The α parameter is set using the named property openkad.net.concurrency. The k
parameter is set using the named property openkad.bucket.kbuckets.maxsize. For
the storage layer, the β replication parameter is set as the named property dht.-
storage.checkInterval. In the SecureKademliaModule class more named prop-
erties can be found. The named properties openkad.net.udp.port and openkad.-
keyfactory.keysize that represent respectively the UDP port and the key size are
overridden in theRSLNode constructor to set the right UDP port the node should
listen to and the correct key size for UUIDs.

56

CHAPTER 4. IMPLEMENTATION 4.2. ARCHITECTURE

4.2.4 Test Cases

To have a good overview on the internals of the distributed cross-media server
a logger is used. The logging is done by using a lightweight Java library called
Minlog4 developed by EsotericSoftware. There are different levels of logging
available. The error log will output critical errors that break the application. In-
formation messages are shown in the info log. There is also a debug and trace
log available that can be used during the further development and debugging of
the application. More information about the Minlog library can be found on the
developers website.

Some test case are implemented using the JUnit testing framework. An over-
lay network is simulated and some operations are performed. These tests can be
found in the RSLTests class in the org.mobricant..iserver.distributed package.
The tests defined in the RSLTests class are basic unit tests that always need to
succeed.

The first test is that the system should be able to create an RSL node. After the test
to create a node, some networks are built up using an arbitrary number of nodes
by performing join operations using a bootstrap node. Afterwards some networks
are built up using the previous approach and data is put inside the network using
the put command. After putting the data in the network the data is queried in the
network using the get command. All data that was put in the network should be
found afterwards. The last test will check if only data can be retrieved from the
network that should be accessible for a specific user.

Not only unit tests are run. Also some statistical data is collected regarding the
implementation by performing some simulations. The simulations are run in an
overlay network consisting of 100 nodes with a replication parameter of 8. The
network is always built up in a random order. This means that a new node will
contact a random bootstrap node to join the network.

A first simulation is run to see how the load is balanced in the overlay network.
The load we investigate is implied by the DHT implementation and no further
balancing is done using a load balancing scheme. The simulation will start with
the network previously described and the results of the simulation are shown in
Fig. 4.6. An equal number of resources are put in the overlay network by using
random nodes to perform the put command.

For every node a dot is plotted in Fig. 4.6. This dot represents how much load is
present on the node. The load is defined as the number of resources on the node

4http://github.com/EsotericSoftware/minlog

57

http://github.com/EsotericSoftware/minlog

CHAPTER 4. IMPLEMENTATION 4.2. ARCHITECTURE

Fig. 4.6: Average load on every node with caching

divided by the total number of nodes in the overlay network. A line is fitted for
the scatter plot to see the balance in the system. The used numbers for the load
are the average load of a node after running five simulations.

As can be seen in Fig. 4.6, the load is spread with a variation of 5% from the
linear fit. This is a good starting point to achieve a balanced system. The load
balancing schemes given in section 2.3 can be used to further balance the load in
the system. This is considered as future work. The distributed cross-media server
was designed in such a way that the virtual node approach can be implemented on
top of the current design.

The second simulation is run to check how much of the resources can still be
found when nodes concurrently leave the network. The initial setup is like in the
simulation to determine the load. The resources are also put in the overlay network
in a similar way. In Fig. 4.7 the success rate of the get commands is shown when
a fraction of the total number of nodes leave the system.

The random get commands are generated in a similar way like the data is put in
the overlay network. Random nodes that are still in the overlay network are used
to get the resources that were put in the overlay network. The success rate is
shown as a fitted polynomial that results from the average success rate when the
simulation is run five times.

In the resulting plot shown in Fig. 4.7 we see that the network will find only a frac-
tion less than the percentage of nodes that left the network. This is normal because
no resources are moved when a leave command is performed. Also when the frac-
tion that concurrently leaves system increases, the system will not completely fail

58

CHAPTER 4. IMPLEMENTATION 4.2. ARCHITECTURE

Fig. 4.7: Plot of get command success rate when nodes leave the network

to route requests.

The tests and simulations show that the implementation can serve as good base
for a general implementation of a distributed cross-media server. The operations
that need to succeed in the test cases succeed with a success rate of 100%. The
first simulation shows that the load is balanced rather good without any extra load
balancing schemes and that concurrent leaving of nodes will not introduce a high
error rate on the routing mechanism. A remark that need to be made regarding the
tests is that the testing environment is rather small and the simulations should also
be done in overlay networks that contain much more nodes. This is anticipated by
changing the concurrency parameter of the Kademlia protocol.

4.2.5 Versioning

Versioning was not implemented in the system but the design did not make any
restrictions or assumptions about one version systems. The identifiers could be
mapped to the latest version of a resource and identifiers for other versions can be
constructed by appending a new ID to the UUID. Also for the caching features of
Kademlia, the introduction of versioning should generate problems with backward
compatibility. The changes that need to be made are in the storage layer and this
will handle the announcement of fresh data and renewal of the caching along the
paths.

As motivated by David Hicks, the need for a version control framework for hyper-
media systems is very important. In [23], Hicks provides a design for a version
control framework for open hypermedia environments. The version control frame-

59

CHAPTER 4. IMPLEMENTATION 4.2. ARCHITECTURE

works supports versioning on both the data level and the structural level.

60

5 Conclusions

Even though the research about hypermedia systems started in the sixties, there
is still no globally accepted definition and solution for hypermedia systems and
in particular for distributed hypermedia systems. Many efforts have been made to
design state-of-the-art systems but most of them focussed on the data model only
or on the visualisation only. This thesis provides a clear domain independent view
on what a hypermedia system is and which features it should support.

Some important core features described in the design phase of this thesis are not
globally present on all the systems that were designed or implemented. Even
on the link level, not all systems support multi-source and target links for ex-
ample. Other features that are lacking in many systems are the existence of a
user model and this also has great implications on concurrency and collaboration.
Many implementations provide a domain specific approach and leave no room for
evolution.

When all the problems regarding the existing and historical hypermedia systems
were identified, a new approach was used to design a model that can be used in a
domain independent way. This was done by using concepts of the metamodelling
domain for the design of a general hypermedia model. What is still lacking in
the RSL model is a well defined mechanism for the identification of data that will
have no impact on the openness and generality of the model.

After exploring the state of the art of distributed systems, the conclusion is that
this domain has more mature solutions for the problems of distributing data with
respect to hypermedia systems. Many efforts were made with success to define
protocols to enable a distributed system without making assumptions about the
domain it will be applied to. This thesis provides a design for a distributed sys-
tem hypermedia system by identifying all the features and properties it should
support. On overview of how the design requirements are met can be found in
Table 5.1

One thing we need to note is that the investigation of the protocols for distribution

61

CHAPTER 5. CONCLUSIONS

Requirement Solution
Links RSL Link concept
Scalability Property of distributed systems, use of UUIDs
Persistency Sending store message to k-closest nodes on put command,

age limited DHT storage layer
Extensibility RSL plug-in mechanism
Openness Property of the RSL metamodel
Availability Lookup over disjoint paths, update routing information

when messages travel through the system
Performance Caching on k-closest nodes when find value did not gener-

ate response, lookup over disjoint path
Concurrency Implementation allows concurrent querying
Balancing Natural load balancing of a DHT, node design leaves room

for versioning in future work
Versioning UUIDs leave room for versioning in future work
Ownership RSL User model
Portability No assumptions are made about nodes or the systems where

a node should be run on.
Security S/Kademlia security measure, least recently used nodes re-

placement policy in k-buckets

Table 5.1: Overview of solutions to requirements

are targeted towards content distribution even though there are also state of the art
protocols for communication and collaboration. The core of a hypermedia system
is content distribution but also collaboration is an important feature. However it
should be built on top of the data distribution.

The focus on content distribution is done without taking into consideration the
concept of linked data. Further research should be done to identify the place
where the load balancing should be modified or inserted with respect to the links.
This is due to the fact that content distribution typically does not link data together.
Mostly only data with a specific key is looked up and no related data is defined
or retrieved. This can be integrated in the distribution protocol as well as the load
balancer.

Another contribution of the thesis is that a mechanism is provided to identify data
in distributed hypermedia system. The identification of data is investigated in such
a way that it does not make assumptions about the implementation or domain of
the distributed hypermedia system. Also no assumptions are made about the nodes
that exist in the distributed hypermedia system.

62

CHAPTER 5. CONCLUSIONS 5.1. FUTURE WORK

After combining the state of the art solutions, promising results were achieved.
The impact of combining and slightly adapting the RSL model and the S/Kademlia
protocol had no impact on the desired features of the targeted distributed cross-
media server. Both of the used solutions did not introduce any restrictions on each
other.

When integrating the UUIDs into RSL no restrictions are implied for the model.
Only a way of identifying data is introduced in the implementation. Because
S/Kademlia does not make any restrictions on the key space where identifiers are
assigned from, integrating the UUIDs as keys for the key-based routing mecha-
nism does not break the algorithms of S/Kademlia.

To support the concepts of RSL no dramatic changes needed to be made in the core
of the S/Kademlia implementation. All the changes that are made are actually
mechanisms to support or enable RSL in a convenient way. This means that a
generic solution is provided and that any existing extension to RSL can use the
distributed system that is implemented.

All the points summed up in this section can make us conclude that the design of
the distributed hypermedia system provided in this thesis can be used as a starting
point for any other distributed hypermedia system and that the identification in
such a system can be done in such a way that it does not make restrictions for
future work or domain specific implementations.

As a summary, these are the contributions of this thesis:

• Definition of a hypermedia system.

• Design for a domain independent distributed cross-media server.

• Identification mechanism that can be used in a distributed cross-media en-
vironment.

• Bug resolved in the S/Kademlia implementation.

When reading the summery of the contributions we can see state that the research
question ”How should we design a distributed cross-media server and how can
data be identified in such a system” got solved throughout the thesis.

5.1 Future Work

A link rating mechanism, as found in the previous implementations of RSL, could
also be integrated into the distributed cross-media server to provide some quality

63

CHAPTER 5. CONCLUSIONS 5.1. FUTURE WORK

mechanisms for linked data in a collaborative cross-media environment.

As stated before, the versioning and load balancing of data is not present in the
current implementation. In future work, versioning could be supported by the
mechanism proposed in section 4.2.5. A load balancing scheme described in sec-
tion 2.3 can be used to further balance the load in the system.

Another feature that should be explored is the load balancing mechanisms that
make use of virtual servers. In a dynamic heterogenous system the load balancing
should be further explored to integrate hypermedia and RSL specific concepts into
the load balancing scheme.

In contrast to load balancing where the load is spread throughout the system, fur-
ther research needs to be done to clutter parts of data on specific nodes to have a
more performant and responsive system.

64

Bibliography

[1] R. Akscyn, D. McCracken, and E. Yoder. KMS: A Distributed Hyperme-
dia System for Managing Knowledge in Organizations. In Proceedings of
Hypertext 1987, pages 1–20, Chapel Hill, USA, November 1987.

[2] K. Andrews, F. Kappe, and H. Maurer. Hyper-G and Harmony: Towards the
Next Generation of Networked Information Technology. In Proceedings of
CHI 1995, pages 33–34, Denver, USA, May 1995.

[3] S. Androutsellis-Theotokis and D. Spinellis. A Survey of Peer-to-Peer Con-
tent Distribution Technologies. ACM Computing Surveys, 36(4):335–371,
December 2004.

[4] M. Atkinson, D. DeWitt, D. Maier, F. Bancilhon, K. Dittrich, and S. Zdonik.
The Object-Oriented Database System Manifesto. In F. Bancilhon, C. Delo-
bel, and P. Kanellakis, editors, Building an Object-Oriented Database Sys-
tem, pages 3–20. Morgan Kaufmann Publishers Inc., San Francisco, USA,
June 1992.

[5] I. Baumgart and S. Mies. S/Kademlia: A Practicable Approach Towards
Secure Key-based Routing. In Proceedings of ICPADS 2007, volume 2,
pages 1–8, Hsinchu, Taiwan, December 2007.

[6] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier
(URI): Generic Syntax. IETF RFC 3986, January 2005.

[7] V. Bush. As We May Think. Atlantic Monthly, 176(1):101–108, July 1945.

[8] J. Byers, J. Considine, and M. Mitzenmacher. Simple Load Balancing for
Distributed Hash Tables. In M. F. Kaashoek and I. Stoica, editors, Peer-to-
Peer Systems II, volume 2735 of Lecture Notes in Computer Science, pages
80–87. Springer, August 2003.

[9] S. Carmody, W. Gross, T. H. Nelson, D. Rice, and A. Van Dam. A Hypertext
Editing System for the /360. In M. Faiman and J. Nievergelt, editors, Per-

65

BIBLIOGRAPHY BIBLIOGRAPHY

tinent concepts in computer graphics, pages 291–330. University of Illinois
Press, December 1969.

[10] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach. Secure
Routing for Structured Peer-to-Peer Overlay Networks. SIGOPS Operating
Systems Review, 36(SI):299–314, December 2002.

[11] C. Chekuri and S. Khanna. On Multidimensional Packing Problems. SIAM
Journal on Computing, 33(4):837–851, April 2004.

[12] J. Conklin. Hypertext: An Introduction and Survey. IEEE Computer,
20(9):17–41, September 1987.

[13] P. De Bra, G.-J. Houben, and H. Wu. AHAM: A Dexter-based Reference
Model for Adaptive Hypermedia. In Proceedings of Hypertext 1999, pages
147–156, Darmstadt, Germany, February 1999.

[14] N. G. de Bruijn and P. Erdos. A Combinatorial Problem. Koninklijke Ned-
erlandse Akademie van Wetenschappen, 49(49):758–764, June 1946.

[15] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6). IETF RFC
2460, December 1998.

[16] J. R. Douceur. The Sybil Attack. In P. Druschel, M. F. Kaashoek, and
A. Rowstron, editors, Peer-to-Peer Systems, volume 2429 of Lecture Notes
in Computer Science, pages 251–260. Springer, October 2002.

[17] D. C. Engelbart and W. K. English. A Research Center for Augmenting
Human Intellect. In Proceedings of AFIPS 1968, Part I, pages 395–410, San
Francisco, California, December 1968.

[18] K. Grønbæk and R. H. Trigg. Design Issues for a Dexter-based Hyperme-
dia System. In Proceedings of ECHT 1992, pages 191–200, Milan, Italy,
November–December 1992.

[19] P. K. Gummadi, S. Saroiu, and S. D. Gribble. A Measurement Study of
Napster and Gnutella as Examples of Peer-to-Peer File Sharing Systems.
SIGCOMM Computer Communication Review, 32(1):82–82, January 2002.

[20] F. Halasz and M. Schwartz. The Dexter Hypertext Reference Model. Com-
munications of the ACM, 37(2):30–39, February 1994.

[21] F. G. Halasz. Reflections on NoteCards: Seven Issues for the Next Gen-
eration of Hypermedia Systems. In Proceedings of Hypertext 1987, pages
345–365, Chapel Hill, North Carolina, USA, November 1987.

66

BIBLIOGRAPHY BIBLIOGRAPHY

[22] F. G. Halasz, T. P. Moran, and R. H. Trigg. Notecards in a Nutshell. SIGCHI
Bulletin, 17(SI):45–52, May 1986.

[23] D. L. Hicks, J. J. Leggett, P. J. Nürnberg, and J. L. Schnase. A Hypermedia
Version Control Framework. ACM Transactions on Information Systems,
16(2):127–160, April 1998.

[24] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao. Distributed Object
Location in a Dynamic Network. Theory of Computing Systems, 37(3):405–
440, January 2004.

[25] Y. Jia, I. Brondino, R. J. Peris, M. P. n. Martı́nez, and D. Ma. A Multi-
resource Load Balancing Algorithm for Cloud Cache Systems. In Proceed-
ings of SAC 2013, pages 463–470, Coimbra, Portugal, March 2013.

[26] M. F. Kaashoek and D. R. Karger. Koorde: A Simple Degree-Optimal Dis-
tributed Hash Table. In M. F. Kaashoek and I. Stoica, editors, Peer-to-Peer
Systems II, volume 2735 of Lecture Notes in Computer Science, pages 98–
107. Springer, August 2003.

[27] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin.
Consistent Hashing and Random Trees: Distributed Caching Protocols for
Relieving Hot Spots on the World Wide Web. In Proceedings of STOC 1997,
pages 654–663, El Paso, USA, May 1997.

[28] P. Leach and M. Mealling. A Universally Unique IDentifier (UUID) URN
Namespace. IETF RFC 4122, July 2005.

[29] A. Lombardoni. Towards a Universal Information Platform: An Object-
Oriented, Multi-user, Information Store, volume 68. ETH Zurich, June 2007.

[30] P. Maymounkov and D. Mazières. Kademlia: A Peer-to-Peer Information
System Based on the XOR Metric. In P. Druschel, F. Kaashoek, and A. Row-
stron, editors, Peer-to-Peer Systems, volume 2429 of Lecture Notes in Com-
puter Science, pages 53–65. Springer, October 2002.

[31] M. Mealling. A URN Namespace of Object Identifiers. IETF RFC 3061,
February 2001.

[32] D. E. Millard, L. Moreau, H. C. Davis, and S. Reich. FOHM: A Fundamental
Open Hypertext Model for Investigating Interoperability Between Hypertext
Domains. In Proceedings of Hypertext 2000, pages 93–102, San Antonio,
Texas, USA, May 2000.

[33] Y. Mu, C. Yu, T. Ma, C. Zhang, W. Zheng, and X. Zhang. Dynamic Load
Balancing with Multiple Hash Functions in Structured P2P Systems. In

67

BIBLIOGRAPHY BIBLIOGRAPHY

Proceedings of WiCOM 2009, pages 5364–5367, Beijing, China, Septem-
ber 2009.

[34] T. H. Nelson. Complex Information Processing: A File Structure for the
Complex, the Changing and the Indeterminate. In Proceedings of ACM 1965,
pages 84–100, Cleveland, USA, 1965.

[35] T. H. Nelson. Xanalogical Structure, Needed Now More Than Ever: Parallel
Documents, Deep Links to Content, Deep Versioning, and Deep Re-use.
ACM Computing Surveys, 31(4es), December 1999.

[36] M. C. Norrie. An Extended Entity-Relationship Approach to Data Manage-
ment in Object-Oriented Systems. In R. A. Elmasri, V. Kouramajian, and
B. Thalheim, editors, Entity-Relationship Approach - ER ’93, volume 823 of
Lecture Notes in Computer Science, pages 390–401. Springer, July 1994.

[37] M. C. Norrie, B. Signer, and N. Weibel. General framework for the rapid
development of interactive paper applications. In Proceedings of CoPADD
2006, volume 6, Banff, Canada, November 2006.

[38] N. Paskin. Digital Object Identifiers for Scientific Data. Data Science Jour-
nal, 4:12–20, March 2005.

[39] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica. Load
Balancing in Structured P2P Systems. In M. F. Kaashoek and I. Stoica,
editors, Peer-to-Peer Systems II, volume 2735 of Lecture Notes in Computer
Science, pages 68–79. Springer, August 2003.

[40] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object Loca-
tion, and Routing for Large-Scale Peer-to-Peer Systems. In R. Guerraoui,
editor, Middleware 2001, volume 2218 of Lecture Notes in Computer Sci-
ence, pages 329–350. Springer, October 2001.

[41] D. E. Shackelford, J. B. Smith, and F. D. Smith. The Architecture and Im-
plementation of a Distributed Hypermedia Storage System. In Proceedings
of Hypertext 1993, pages 1–13, Seattle, USA, November 1993.

[42] B. Signer, A. de Spindler, and M. C. Norrie. A Peer-to-Peer-based Dis-
tributed Link Service Architecture. Technical Report TR636, ETH Zurich,
August 2009.

[43] B. Signer and M. C. Norrie. A Framework for Cross-media Information
Management. In Proceedings of EuroIMSA 2005, pages 318–323, Grinde-
wald, Switzerland, February 2005. IASTED/ACTA Press.

68

BIBLIOGRAPHY BIBLIOGRAPHY

[44] B. Signer and M. C. Norrie. As We May Link: A General Metamodel for
Hypermedia Systems. In C. Parent, K.-D. Schewe, V. C. Storey, and B. Thal-
heim, editors, Conceptual Modeling - ER 2007, volume 4801 of Lecture
Notes in Computer Science, pages 359–374. Springer, October 2007.

[45] E. Sit and R. Morris. Security Considerations for Peer-to-Peer Distributed
Hash Tables. In P. Druschel, F. Kaashoek, and A. Rowstron, editors, Peer-
to-Peer Systems, volume 2429 of Lecture Notes in Computer Science, pages
261–269. Springer, October 2002.

[46] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord:
A Scalable Peer-to-Peer Lookup Service for Internet Applications. SIG-
COMM Computer Communication Review, 31(4):149–160, August 2001.

[47] S. Sun, L. Lannom, and B. Boesch. Handle System Overview. IETF RFC
3650, November 2003.

[48] A. van Dam and D. E. Rice. On-line Text Editing: A Survey. ACM Comput-
ing Surveys, 3(3):93–114, September 1971.

[49] R. Vanbrabant. Google Guice: Agile Lightweight Dependency Injection
Framework. Apress, April 2008.

[50] R. J. Wieringa and W. de Jonge. The Identification of Objects and Roles
- Object Identifiers Revisited. Technical Report IR-267, Faculty of Mathe-
matics and Computer Science, Vrije Universiteit, December 1991.

[51] N. Yankelovich, B. J. Haan, N. K. Meyrowitz, and S. M. Drucker. Interme-
dia: The Concept and the Construction of a Seamless Information Environ-
ment. IEEE Computer, 21(1):81–96, January 1988.

69

List of Figures

2.1 Timeline of hypermedia systems 10
2.2 Dexter reference model . 11
2.3 Core link metamodel of RSL . 14
2.4 User abstraction in RSL core . 15
2.5 Layer model for RSL . 16
2.6 Identifier circle in Chord . 19
2.7 Finger table and lookup path in Chord 20
2.8 Partitioning of a binary tree in Kademlia 22
2.9 Looking up a node with prefix 1111 in Kademlia 23

3.1 General UUID octet format . 39
3.2 Time-based UUID schema using a real MAC address 41

4.1 RSL UML class diagram . 48
4.2 UUID UML class diagram . 49
4.3 S/Kademlia interface UML class diagram 51
4.4 DHT storage UML class diagram in S/Kademlia 52
4.5 Node UML diagram . 53
4.6 Average load on every node with caching 56
4.7 Plot of get command success rate when nodes leave the network . 57

70

List of Tables

2.1 Comparison of the features of historical hypermedia systems . . . 11

3.1 Comparison of oids, keys and surrogates 33
3.2 Examples of URIs . 35
3.3 Examples of OIDs using URIs 36
3.4 Examples of DOIs . 37
3.5 Overview of UUID versions . 40
3.6 Comparison of identifiers . 42

5.1 Overview of solutions to requirements 60

71

	Contents
	Introduction
	Structure
	Focus
	Example of Cross-Media Data

	State of the Art
	Hypermedia Systems
	Definition
	History
	oN-Line System
	Project Xanadu
	Knowledge Management System
	Intermedia
	NoteCards
	Overview

	Dexter Reference Model
	Evaluation
	RSL Model
	Core
	User Abstraction
	Layers

	Distributed Systems
	Overview
	Prefix-based Routing
	Chord Protocol

	Key-Based Routing Using the XOR Metric
	XOR Metric
	Kademlia Protocol

	Secure Key-Based Routing
	Type of Attacks

	Load Balancing
	Introduction
	Load Balancing in Dynamic Systems

	Distributed Cross-Media Server
	Requirements
	Object Identity
	Object Identification
	Identification Concepts
	Object Identifiers
	Keys
	Surrogates

	Identifiers for Decentralised Distributed Systems
	Uniform Resource Identifiers
	Object Identifiers
	Digital Object Identifiers
	Universally Unique Identifiers
	Comparison

	Object Identity in the RSL Model

	Implementation
	Previous Implementations
	iServer
	Distributed Link Server

	Architecture
	RSL
	S/Kademlia
	Storage
	UUID

	RLS Node Features
	Parameters

	Test Cases
	Versioning

	Conclusions
	Future Work

	Bibliography
	List of Figures
	List of Tables

