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Samenvatting

Sinds de opkomst van smartphones en tablets, zijn multi-touch- en gebaar
gebaseerde interactie ingeburgerd in het dagelijks leven van mensen. In deze
thesis, zouden wij graag de overgang van een traditionele toetsenbord-en-
muis setup naar een natuurlijke gebaren gebaseerde interactie nog verder
willen bevorderen. Recente vooruitgangen in camera technologie, zoals de
Kinect van Microsoft, laten ons toe om de bewegingen van lichamen te de-
tecteren. Hierdoor wordt het mogelijk om te interageren met huishoudelijke
apparaten met behulp van gebaren zonder de nood van een fysieke afstands-
bediening. Het is echter verre van triviaal om computers te programmeren
voor het herkennen van specifieke bewegingen in real time uit een continue
stroom van video-informatie.

Eerst moet een gebaren spotting analyse toegepast worden om aanwijzingen
te vinden of en wanneer een persoon een gebaar uitvoert of niet. Dit is be-
langrijk voor zogenaamde ‘always-on’ interfaces omdat we moeten proberen
onbedoelde activaties van huishoudelijke apparaten te beperken. Een gebaren
classificatieproces beslist vervolgens welk gebaar uiy een vooraf gedefinieerde
set van gebaren was uitgevoerd. Voor huisautomatisering varieert dit van
het in- of uitschakelen voor een apparaat tot het wijzigen van de tv-zender
of het geluidsvolume. Tot slot wordt een locatie schatting gebruikt om het
herkende gebaar te koppelen aan een specifiek apparaat.

In dit werk laten we zien hoe Mudra, een regel-gebaseerd gebaren herken-
ning aanpak, kan worden gebruikt voor het spotten van een gesture door het
efficiënt afleiden van semantische informatie uit een continue input stream.
Daarnaast hebben we een hybride aanpak ontwikkeld door de integratie
van Mudra en iGesture met behulp van XML-RPC. Hiermee tonen we aan
hoe extra gesture classificatietechnieken gunstig zijn voor het optimaliseren
van hoge precisie. Tevens ontwikkelden we een hulpprogramma voor kamer
modelatie met als doel gebaren interactie met de KNX-ondersteunde huis-
toestellen mogelijk te maken. Ten slotte hebben we onze aanpak met enkele
gebaren gevalueerd die gebruikt kunnen worden voor toekomstige gebaren
interactie.
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Abstract

Since the emergence of smartphones and PCs, multi-touch and gesture-based
interaction have been introduced in people’s everyday life. In this thesis, we
would like to push this change from the traditional keyboard-and-mouse
setup to natural, gesture-based interaction even further. Recent advances in
camera vision technology, such as the Microsoft Kinect, allows us to track
the movement of human bodies. This might allow us to interact with home
appliances using gestures without requiring any physical controller at all.
However, programming computers to recognise specific movements in real-
time from a continuous stream of video information is far from trivial.

First, a gesture spotting analysis has to be performed to find important
cues whether and when a person was performing a gesture or not. This is
important for so-called ‘always-on’ interfaces as we we need to try to limit
unintended behavior towards home appliances. Next, a gesture classification
process takes care of deciding which gesture of a predefined vocabulary was
executed. For home automation, this varies from enabling or disabling a
device to changing the tv channel or lowering the sound volume. Finally,
target estimation deals with directing the decoded gesture to a specific de-
vice.

In this work, we show how Mudra, a rule-based gesture recognition ap-
proach, can be used for gesture spotting by efficiently deriving semantic
information from the continuous input stream. We developed a hybrid ap-
proach by integrating Mudra and iGesture using XML-RPC and demon-
strate how additional gesture classification techniques are beneficial for op-
timising high precision. A room modeling tool was developed to target ges-
tural interaction with the intended KNX-based home appliances, and finally
we evaluated our approach with a scenario of deictic and iconic gestures that
could be used for future human-home automation interaction.
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Chapter 1

Introduction

1.1 Context

1.1.1 Home Automation

Home automation means that one can remotely control one or more appli-
ances in or around his house. These appliances may include lights, heating,
audio sources, etc. This allows for improved convenience and comfort. There
is a wide range of possibilities from quite simple to very complex. A simple
example can be that one has a button in the bedroom that turns off all the
lights in the house. A more complex task can be the control of multiple
audio speakers in every room of the house. All the audio data is stored on
a central server and one can define which music should be played in which
room. This interaction between human and computer is typically done using
a touchscreen from a dedicated control panel, a tablet or a smartphone.

Figure 1.1: Typical example of a touchscreen device for home automation
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A particular branch of home automation, called “assistive domotics”,
focuses on supporting elderly and disabled people in their day to day live
in order that they do not need to go to a healthcare facility [3]. Examples
include that the resident hears a warning when he or she forgot to take the
required medication. Another example can be that sliding doors automati-
cally open when the wheel chair of the resident comes near it.

What we try to achieve with this thesis, is targeted to average users and al-
lowing them to control home appliances with gestures. This could be a more
user-friendly approach, compared to the current approaches where buttons
and touchscreens are still mostly fixed at a particular location (e.g. built into
walls) or require users to carry dedicated hardware (e.g. a remote control or
smartphone).

1.1.2 Poses and Gestures

A pose is a position of the human body or parts of the human body. Fig-
ure 1.2 illustrates this using fingers for the peace sign. A gesture is broader
than a pose and captures the dynamic movement of body parts over a period
of time. An example is sign language where not only the poses are important
but where the complete movement also contains semantic information.

Figure 1.2: A well known gesture is the peace sign

With the recent change in affordability of 3D cameras, such as Microsoft
Kinect1 and SoftKinetic DepthSense2, the movement of body parts can be
cheaply and accurately monitored by a computer. Gestures can be divided in
several categories like beat (rhythmic beating of body parts), deictic (point-
ing in a certain direction) or iconic (use of body parts to match the situation
one tries to narrate like indicating the size of a certain object) [18].

1Microsoft Xbox Kinect camera, http://www.xbox.com/kinect, [24-May-2012]
2SoftKinetic DepthSense camera, http://www.softkinetic.com/solutions/

depthsensecameras.aspx, [24-May-2012]
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1.1.3 Practical use of gestures in home automation

Gestures can be practical for controlling home automated appliances. Imag-
ine someone is watching television in his living room: if he wants to raise
the volume, he needs to search the remote control and press the volume
button. Furthermore, in a household, one has often more than one televi-
sion and having multiple remote controls can be confusing. With gesture
recognition, this can be done much simpler by just raising a hand.

This is a realistic scenario as major firms are introducing camera-based
interaction. For example, on CES 2012 (Consumer Electronic Show) in Las
Vegas, Samsung presented a line of smart televisions3. These are televisions
with a built-in microphone and a camera. They can be completely controlled
via voice and gestures.

Figure 1.3: Samsung TV with built-in camera and microphone (on top)

3Tweakers News: http://tweakers.net/nieuws/79232/

samsung-laat-gebruikers-tv-bedienen-met-spraak-en-gebaren.html, [24-May-
2012]
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Other examples include the Kinect of Microsoft which allows users to
play games by moving body parts, as shown in Figure 1.4.

Figure 1.4: People playing with Kinect
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1.2 Problem description

In order to invoke certain home automation functionality, gestures have to be
understood by a computer. This is the research field of gesture recognition
where algorithms are developed to recognize a gesture from a certain input.
As gesture recognition has been a research subject for more than 30 years [2],
we noticed that existing solutions are either focusing on low-level features
(e.g. pixel-based camera input) [1, 8, 15] or high-level features (e.g. finger
trajectories for multi-touch devices) [11,16].

However, the newly introduced 3D cameras support accurate skeleton-
tracking solutions, which allows us to use high-level features for camera-
based gesture recognition. They generate a skeleton from the human body
in a continuous stream of data. The Kinect camera and the Microsoft Kinect
SDK 4 for instance, can recognize the shape of a person and extract the co-
ordinates of different body parts like head, shoulder, wrist, etc. As a result,
the programmer receives a constant stream of coordinates of body parts. It
is this stream of coordinates that can be used to perform high-level gesture
recognition.

In the ideal case, what we want is that one would have a gesture recog-
nition algorithm that can handle this continuous stream. Furthermore, it
should be as accurate as possible, optimised for high precision and it should
not require a large amount of time to add a new gesture. There are roughly
3 categories of gesture recognition algorithms:

1. Declarative rules: these algorithms are designed to handle a constant
stream of input data. Adding a gesture is done by defining the char-
acteristic points of a gesture, and some spatio-temporal constraints
on these points. The letter ‘Z’ will normally have four characteristic
points. A possible spatio-temporal constraint can be that the gesture
must be performed within a certain timespan. The algorithm will
read the continuous stream of input data (which are coordinates) and
check whether the coordinates go through the characteristic points of
the gesture while respecting the spatio-temporal constraints. On the
downside, these algorithms do not scale well for curved motion tra-
jectories [6] which translates in lower accuracy if developers generalise
gestures for multiple users.

2. Template matchers: these algorithms will compare the input data
(which we call a sample) with a collection of stored gestures (which
we call templates). They will check if the sample matches with a tem-
plate. To do the matching, both the sample as well as the templates
need to have a limited length. This length can be different but it can-

4Microsoft Kinect SDK, http://www.kinectforwindows.org, [24-May-2012]
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not be unlimited and should be well segmented (i.e. the start and stop
point should be defined). Therefore, these algorithms cannot easily
handle a continuous stream of data as input.

3. Machine learning: these algorithms will try to learn a model of differ-
ent gestures. However, this requires that the user repeats the gestures
over and over so the algorithm can learn them. Therefore, adding new
gestures can take a considerable amount of time which is not ideal for
our scenario as we are still in the exploration phase of these kinds of
interfaces.

As one can conclude, neither of these algorithms offer the ideal blend of
being able to handle a continuous stream of data, support the fast adding
of gestures, combined with high precision. Additionally, there is a lack of
modeling tools that integrate home appliances with gestural interaction.

1.3 Approach

Our gesture detection approach consists of a hybrid, two phase filtering.
The stream of input data goes through a first filter which is declarative
rules. For this we based ourselves on existing work of Mudra [7] where
high-level features from multi-touch input where used to easily spot ges-
tures. As mentioned before, these declarative rules lack accuracy so there
is a need for verification. This is where the second filter comes in place.
We will verify the potential matches of the declarative rules with a tem-
plate classifier. When the template classifier confirms that the gesture is
correct, we have correctly identified a gesture. By using the combination of
declarative rules and a template matcher, we combine the good properties
of both algorithms. It can handle continuous streams of data, the algorithm
does not need to learn the gestures and it should obtain high accuracy. We
have extended the iGesture framework to 1) allow users to easily design new
gestures and generate rules in a semi-automated manner and 2) to use the
existing template-based classifiers of iGesture to verify the results of Mudra.

To target these gesture recognition results to home appliances, we have
built a 2D room modeling application where both cameras and devices can
be located. This allows us to interpret the direction of a deictic gesture
to a home appliance. This modeling application is also integrated with the
current state of the art KNX home automation protocol. This protocol is a
network layer capable of interacting with all devices in the room. Finally,
we provide an evaluation of a number of gestures that can be used in home
automation environments and highlight the limitations of current work.
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Chapter 2

Related Work

2.1 Camera-based gesture recognition

2.1.1 Color-based recogniser

A lot of work has been done already using traditional color-based cameras,
such as webcams but also more expensive HD cameras. The main problem
with these devices is that it is very hard to extract the human body parts.

To extract the hand or arm of a person from the image, one needs to do skin
color featuring [15]. This means that one has to be able to extract areas
with a skin color. As one can imagine, this is not an easy thing to achieve.
There are many variations in skin color worldwide. Furthermore, as one has
only a two dimensional image, it is very difficult to precisely extract the
direction to which one is pointing.

2.1.2 Time of flight

A time of flight camera, such as SoftKinetic’s DepthSense camera, use light
pulses. The light pulses are emitted and reflected by objects [4]. The camera
then gathers the reflected light. By measuring the time between emitting
the light and receiving it, one can easily calculate the distance to the camera.
This can be done with the following formula:

Time measured =
2 ∗ distance to object

speed of light

One can easily understand that the signal travels 2 times the distance: first
from the camera to the object and second from the object back to the
camera. The speed of light is a constant (3 * 108 m/s).
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The time needed for the light pulses defines the minimal distance that
one can measure with a time-of-flight camera. The light pulse can only
be received when one is not emitting light at the same time. Imagine one
has a light source that can be turned on and off within a time span of 70
milliseconds. Using the formula from above, we can transform it into:

Distance to object =
time measured ∗ speed of light

2

If we fill in the data (time measured = 70 ms, speed of light constant), we
get 10.5m as result. Objects must be at least this far away from the camera,
otherwise the light pulse will be back while we are still emitting light.

This allows developers to use 3D information for 1) extracting the human
body parts and 2) interpreting deictic gestures.

2.1.3 Structured light

The most prominent example of a structured light sensor is the Microsoft
Kinect camera. Microsoft launched the Kinect in November 2010 as an
extra input device for their game console Microsoft Xbox 360. It allowed
the user to play games with gestures and spoken commands. Already one
month later, on December 2010, an open source driver was released in order
to connect the Kinect to a PC. The driver was released by PrimeSense, who
delivered the depth sensing reference design for the Kinect. About half a
year later, on June 2011, Microsoft launched the official SDK. Next to skele-
ton tracking, it offers also advanced audio capabilities like recording sound,
echo cancelation and connection with the Microsoft Speech SDK.

The camera has 2 parts: a projector and an infrared VGA camera. The
projector projects a map of infrared dots across the room. These dots are
not placed at random positions but on such positions that a camera can
correlate a position to a pattern of dots. The infrared camera sees this pat-
tern of dots. This data is sent to a PC via a USB connection where a three
dimensional image is generated. With this image, skeleton tracking can be
applied.

8



Figure 2.1: Properties of Kinect

There are a few disadvantages when using the Kinect in a home envi-
ronment. The first disadvantage of using the Kinect in home automation
is its limited range, as shown in Figure 2.2. There are two camera modes:
default and near mode. Near mode gives better results at short distance but
worse results on a further distance, compared with the default mode1. This
difference is realized by using different firmware for the camera. In both
cases, a Kinect camera will only detect people within a depth range of a few
meters. This can be problematic in larger rooms where one probably needs
more than one Kinect to cover the entire room.

Figure 2.2: Measurable distance with a Kinect in normal and near mode

1Kinect Near-mode: http://blogs.msdn.com/b/kinectforwindows/archive/2012/

01/20/near-mode-what-it-is-and-isn-t.aspx, [24-May-2012]
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A second disadvantage of using the Kinect is its sensitivity for light
sources. The infrared VGA camera of the Kinect has difficulties with read-
ing the infrared dots when there is direct sunlight. Especially in the context
of home automation this can be problematic. A possible solution for this
problem is to use another type of camera which does not have this depen-
dency.
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2.2 Gesture recognition algorithms

2.2.1 Rules

Most popular solutions for gesture recognition are based on template or ma-
chine learning algorithms. Generally they require a clear definition of the
begin and end point of the gesture (i.e. segmentation). This is often enforced
by letting the user stand still before and after the gesture [13]. In daily use,
this is not a practical solution. What a user wants is that he can do his
gesture without pausing. Therefore, the software must be able to spot the
gestures from a continuous stream of data. This process is called gesture
spotting.

Ideally, one wants to have a clear separation of concern between the one
developing the general application and the one developing the different ges-
tures. Therefore, a good solution should have the following properties:

• Modularization
It should be possible to implement an additional gesture without the
necessity to have a deep knowledge about the already implemented
gestures.

• Composition
It should be possible to create a complex gesture by composing it from
simpler gestures. It not only makes the code of complex gestures easier
to read but it also reduces the duplication of code.

• Temporal and spatial operators
When one tries to extract meaningful gesture data from a stream of
data, the use of spatial and temporal operators comes in handy. By
offering this functionality to the developer, he can more easily define
the gestures.

A possible solution for good gesture spotting is the use of declarative
rules. With these rules, one can define control points with their correspond-
ing spatial and temporal constraints. A gesture is recognized if it goes
through all control points while respecting all spatial and temporal con-
straints.

These rules provide a number of powerful properties, in addition to the
ones defined above:

• Non-subsequent event matching
Events that do not match the constraints are skipped but can be reused
as a starting point of another gesture.
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• Negation
One can for instance specify that there are no points allowed with
relative y-values (compared to a control point) larger than a certain
threshold

• Overlapping sub-matches are allowed

A possible implementation of this approach is Mudra [7]. We will extend
the implementation in the context of our work.

Mudra

There are two types of complexity in coding: accidental and essential com-
plexity. Accidental complexity is caused by using inappropriate software
engineering tools. By selecting a more appropriate software language or
framework, the accidental complexity can be reduced. Essential complexity
is the complexity inherent to the problem one tries to solve and it cannot
be reduced. Mudra was developed because current frameworks for multi-
touch gesture recognition are often not adequate [10] and therefore generate
a lot of accidental complexity. By introducing a new programming language,
Mudra tries to reduce the accidental complexity [7], compared to existing
implementations currently available for programmers.

To obtain a separation of concerns between the one developing the general
application and the one developing the different gestures, Mudra is based
on a three-layered architecture, as shown in Figure 2.3.

Figure 2.3: Mudra architecture

The infrastructure layer is responsible for the communication between
the hardware and Mudra. It has two parts: a hardware bridge and a trans-
lator. The hardware bridge is responsible for extracting the data from the
device. If one has multiple devices, then it will also have multiple hardware

12



bridges. In many cases, the hardware bridge is the SDK provided with the
hardware. All these devices will probably have a different way for repre-
senting their data. Therefore, the extracted data needs to be sent to the
translator which translates the data in a uniform format that is understand-
able by Mudra. After the data is translated, it is sent to the Mudra core
layer.

Mudra stores the data from the infrastructure layer in its fact base. This
is a collection of all the facts that it can use to check compliance with the
rules. Possible facts can be coordinates but also triggered gestured from the
past. For the sake of performance, in a rule one can define the maximum
timespan for a gesture. Mudra will automatically remove all facts from the
fact base that are older than the maximum timespan allowed. These rules
are defined in the application layer and sent to Mudra, which will store them
in the rule base. The inference engine will combine the fact base with the
rule base to check if there are any matches. If a match is found, Mudra will
notify the application about it.

13



2.2.2 Template matchers

Template matchers are one mean to recognise gestures. The idea is to cal-
culate similarity values between a gesture and several stored samples. This
section will discuss the algorithm “Dynamic Time Warping” [5] algorithm
which is an example of a template matcher.

Dynamic Time Warping

This algorithm is used to calculate the similarity between two time-series,
not necessarily with the same length. Distance measuring (such as Euclidean
distance) cannot be used for measuring the similarity between two time-
series. As an example, if there are two time series which are identical but out
of phase, the Euclidean distance will give a large distance. DTW overcomes
this problem because it ignores global and local shifts in time.

One-dimensional DTW The algorithm will try to match two one-dimen-
sional time series, called x and y. Every possible matching between x and y
is called a warping path. A matrix with size |x| * |y| is created to represent
the matching of individual points. Afterwards, a warping path can be drawn
on the matrix, as shown in Figure 2.4. Each cell in the matrix represents
the accumulated minimum warping cost so far.

Figure 2.4: matrix with warping path
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To reduce the number of different warping paths, some constraints are
applied:

• the warping path must start at (1, 1)

• the warping path must end at (|x|, |y|)

• the warping path must be continuous, i.e. if the algorithm is in (i, j),
the next element in the path must either be (i, j), (i+ 1, j), (i, j + 1)
or (i+ 1, j + 1).

• the warping path must have a monotonic behaviour, i.e. it cannot move
backwards

In general, one is only interested in the path that gives the “best” match.
This means that we are looking for the path with the lowest normalised total
wrapping costs, given by:

min
1

|w|

|w|∑
k=1

DIST (wki, wkj)

DIST (wki, wkj) represents the distance between point i in time serie x and
point j in time serie y. The best path is calculated by first calculating each
cell of the previously defined matrix with the following formula:

C(i,j) = DIST(i, j) + min{C(i−1,j), C(i,j−1), C(i−1,j−1)}

Afterwards, the wrapping path is found by back-tracking from position
(| x |, | y |) to position (1, 1).

Optimisation DTW is a computationally quite costly algorithm because
each cell in the matrix needs to be calculated. This makes DTW less suitable
for real-time recognition. However, the original method can be optimised.
When having a (reasonable) good match, the warping path will lie near the
diagonal, as can be seen in Figure 2.4. By constraining the warping path so
that it cannot drift too far from the diagonal, the algorithm does not need
to calculate the entire matrix anymore.

N-dimensional DTW To go from two one-dimensional vectors to two
N-dimensional vectors, only the distance function needs to be changed in
order that it can handle N-dimensional vectors. The new distance function
is:

DIST(i, j) =

√√√√ N∑
n=1

(in − jn)2
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Templates

As seen before, DTW is an algorithm that compares an input sequence
with a sequence stored on the computer. The stored sequence is called a
template. There is a separate template for each gesture that needs to be
recognised. In general, users give more than one sample for a template.
There are several ways of handling more than one sample. One can return
the smallest distance of the samples, or the average distance.

Classification

Classification means that the algorithm will try to match the input time
series with all the templates. The template with the lowest distance is re-
turned. The matching with the different templates can happen in parallel.

In some cases, the best match can still be quite poor. This is the case
when the input-data does not have an obvious match with one of the tem-
plates. In this case, one expects that the algorithm will return a message to
say that no good match has been found. To realise this, a simple threshold
is added.
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2.2.3 Machine learning

Machine learning algorithms perform gesture classification by learning the
underlying model of a gesture. This section will discuss the technique called
Hidden Markov Models(HMMs) [14]. It is used for the recognition of ges-
tures that one can not model but where closely related data is available.

Markov model

When there is direct access to the data (reality) that needs to be recognised,
the modeling of the data can happen in two ways: by using a deterministic
system or a non-deterministic system. In the case of a deterministic sys-
tem, the reality is modelled by a finite state machine where each state has
only one successor and one predecessor. In contrast, each state in a non-
deterministic system can have multiple predecessors and successors. Every
possible transition from one state to one of its successors has a probability
which can be different, depending on the current state and its successors.
All these transition probabilities are stored in a time-independent matrix
which is called a state transition matrix.

A Markov assumption means that one assumes that when modeling the
reality, the current state of the model only depends on the previous states
of the model and not on any other data. Furthermore, if the current state
only depends on the n previous states, this is called an order n model. For
instance, the current state of a first order model only depends on the previ-
ous state. Each system that can be modelled in this way, is called a Markov
process. The corresponding model is called a Markov model.

Hidden markov model

A Markov process can sometimes not be powerful enough to model the real-
ity. This is the case when there is no access to the data one wants to model
but rather to closely related data. For instance, when applying Markov
modeling to speech recognition problems, one cannot access the vocal chord
or the position of the tongue themselves, but rather data coming from vari-
ous sensors (e.g. microphone) that allows to capture the produced sound.

Therefore, to model this the Markov model is extended with an extra pair
of states. As a result, a Markov model now has two pair of states: the states
one can observe (e.g. sound of a person) and the “hidden” states one can
not observe (e.g. vocal chords). Subsequently, the notion of the probability
of being in a certain observable state, given a hidden state is introduced.
These probabilities are stored in a time-independent matrix, called a confu-
sion matrix.
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A hidden Markov model is a Markov model which has the following pro-
porties:

• It has a vector which indicates the probability of starting in a certain
hidden state at time 0.

• It has a state transition matrix which indicates the probability of going
to a certain hidden state, giving the current hidden state.

• It has a confusion matrix which indicates the probability of being in a
specific observable state, given a hidden state.

Problems

In general, HMMs are used to solve the following three types of problems.

Problem 1: evaluation This section discusses the problem of calculating
the probability of an observed sequence, given a HMM. For instance with
speech recognition: when one has a separate HMM for each word, which
HMM has the highest probability given a certain speech sample? The easi-
est way to calculate the probability of an HMM is by taking every possible
permutation of hidden states and calculate for each permutation the proba-
bility for generating the observed sequence. However, in a real-life example,
this becomes infeasible due to the large amount of permutations.

Therefore, a forward algorithm is used. First, the notion of partial proba-
bility is introduced:

αt(j) = Pr(observation |hidden state is j) ∗ Pr(all paths to state j at time t)

The chance of seeing the observation at time t in state j is equal to the
chance of having the observation in state j, multiplied with the chance of
any path to j in time t. The probability for all paths to state j at time t
can be calculated with the following recursive algorithm:

time t = 1 :Pr(all paths to state j at time t) is equal to the initial probabilities.

time t+ 1 :Pr(all paths to state j at time t+ 1) is equal to:

all states∑
x=1

Pr(all paths to state x at time t) + Pr(paths from x to j)

The total probability of a given HMM is calculated by adding up the proba-
bilities of the states at the last time unit. This algorithm is much faster than
the previously discussed method because it eliminates unnecessary duplicate
calculations.
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Problem 2: decoding To improve the modeling of the reality, one often
wants to know which hidden states are visited and in which sequence they
are visited. This can be done by using the Viterbi algorithm [14]. It will
keep track of the most probable path for getting into a certain intermediate
state. To achieve this, the algorithm uses the notion of partial probability
like defined in the previous problem. Calculating the most probable path is
done by using the following recursive algorithm:

δ(i, t) is the path with the highest probability to get to state i in time ts.

δ(j, t+ 1) = max
all i

[δ(i, t) ∗ Pr(paths from i to j)]

Calculating the best path to j in time t+ 1 is done by taking the best paths
for every state at time t and multiplying them with the chance of going from
that state to state j. The path with the highest probability will be a new
path to j in time t + 1. The back tracing is done by using pointers to the
previous state.

Problem 3: learning The training of an HMM is typically done using the
Viterbi or BaumWelch [14] algorithms. Given a sequence of observations,
these algorithms will incorporate knowledge. These algorithms are a case
of the expectation maximization algorithm. The algorithm will start with
some random chosen initial values for the parameters (initial distribution,
transition probabilities and emission probabilities) and try to optimize them.

Remarks Hidden Markov models have already been successfully applied
to numerous domains such as speech and gesture recognition. However, the
main disadvantage of these types of learning techniques is that they require
a large number of samples before they are able to grasp the model of the
gesture, which is perfectly normal. However, for our use case, we would like
to experiment with a number of gestures and perform rapid prototyping as
we are unaware which gesture interaction descriptions are more natural than
others. Additionally, the learning of a robust garbage state that allows for
high precision is also hard to achieve with few training data.
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2.3 Home automation

In this section, we argue why gestures are a good candidate to be applied in
home automation. Furthermore, we will also discuss the important proper-
ties one needs to take into account when defining gestures in the context of
home automation.

2.3.1 Why gestures?

Traditional remote controls have many problems [9]. They are often covered
with too many small buttons. The text labels on or next to the buttons are
cryptic and often so small that they are difficult to read. Furthermore, one
needs to have the remote always near in order to use it.

Portable touchscreens (e.g. Tablet or mobile phones) are emerging to be
used as a remote control. However, they often have the same problem as
traditional remote controls. Moreover, they have a dynamic interface which
makes them potentially harder to learn for elderly persons.

Although voice control seems the ideal solution, there are also problems
with this modality. The first problem is inferior speech recognition with
surrounding noise. This noise can come from other people having a conver-
sation, or music from the TV or music installation. The second problem
is that speech is not always the most graceful interface. One can imagine
somebody is giving a party and the host wants to dim the lights in the room
during a conversation. First, he needs to ask his visitors to be quiet. Then,
he needs to loudly state a sentence like “computer, lower lights to level 2”.
This is clearly not an ideal solution. If one would have gestures, the lights
could be dimmed discretely via a gesture.

The amount of gestures one can easily remember is limited. This amount
can be reduced by using it in conjunction with various types of contextual
awareness. Possible options are:

• Only gestures: this means that one has a different gesture for each
function. There is no awareness of location so if one has multiple
televisions in the house, he needs to have a different gesture for each
television.

• Gestures and location awareness: this means that gestures within one
room/space need to be different. However, gestures can be reused
in different rooms. When one has two televisions, one in the living
room and one in the bedroom, he can use the same gesture for both
televisions.
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• Gestures and direction awareness: the subtle difference with the previ-
ous option is that with direction, we do not only know in which room
one is, but also in which direction he is pointing. One can imagine
a living room with multiple lights. If one wants to turn on a specific
light, he can do the gesture for turning on the light while pointing in
the direction of the corresponding light. If there would be no aware-
ness of direction, one would have a different gesture for each light in
the room.

• Gestures and speech: in this case, speech recognition can be used to
reduce the amount of possible gestures. For instance, one can have
a gesture for higher. By first pronouncing the correct appliance (e.g.
television, thermostat or light), followed by the up gesture, one can
easily control different appliances in his home with a small amount of
gestures.

2.3.2 Important properties

A very important property that one needs to take into account is the proba-
bility that one will be seated while executing the gestures. One can imagine
that this probability is quite high for controlling the television. User tests
showed that downward motions cannot be effectively executed by seated
users [12]. Therefore, one should avoid designing gestures with downward
movements when there is a high probability that they will be executed in a
seated position.

Another property that is important to consider is the available space. When
one is sitting on a couch with other people, one does not want to hit or dis-
turb the others while performing a gesture. This has mostly implications on
the available horizontal space.

What also needs to be taken into consideration is the accuracy of the camera
and the tracking of persons. When one has poor tracking capabilities, the
gestures need to be large enough so that the tracking errors remain marginal.
This can sometimes be conflicting with the previous property which limits
the available horizontal space.
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2.4 Comparison

In this section, we will compare the different algorithms and explain why we
have chosen for a combination of declarative rules with a template matcher.

Template
matcher

Machine
learning

Declarative
rules

Need for start and end points Yes Usually No

Large sample data No Yes No

Precision High High Low

Decidability Medium Medium High

Modularization High Medium High

It is clear that a template matcher needs a start and end point, as ex-
plained earlier. Declarative rules are designed to work without start and end
points. Machine learning is the only of the three categories listed above that
needs training. For precision, declarative rules scores notably worse than the
two other contenders. Decidability expresses how easy it is to decide if we
have a valid gesture or not. This is medium for template matchers because
they mostly return a score value with an unbounded range. This implies
that one needs to find an individual threshold for each gesture. With ma-
chine learning, it returns a probability value between 0 and 1 which makes
it much easier to decide. However, one still needs some kind of threshold.
With declarative rules, it is very simple: it matches the rules or it does not,
there is no in-between.

When one builds a modularized system, adding a single gesture does not
cause many changes to the system. This is clearly the case with template
matchers as one just needs to add a template for this gesture without chang-
ing the templates of any other gesture. For machine learning algorithms, one
can argue that this is harder to achieve since access to the complete training
data is required. This data is typically not provided since only the “learned
model” is required to classify gestures, which makes it impossible to extend
the system. Adding a gesture to a system with declarative rules is as simple
as just adding the rules for this gesture, without changing anything to the
other rules.

In the ideal case, one wants a system where one has no need for start and end
points, as little training as possible, obtain high precision, high decidability
and high modularization. As one can see, there is no single algorithm that
satisfies all our requirements. However, we think that by combining declar-
ative rules with a template matcher, we can get very close to achieving this
goal.
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The declarative rules ensure that we do not need fixed start and end points.
Neither of them needs extensive training data which is one of the require-
ments. We estimate that the precision will be high as the template matcher
will check the possible matches generated by the declarative rules. The mod-
ularization will be high since both subsystems support this property. We
estimate that the decidability will not be as high as with declarative rules,
but we hope that this will be a small price to pay for the enhanced precision.
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Chapter 3

Proposed solution

This chapter explains our proposed solution in a general way. First we
will show our gesture recognition process (sections 3.1 to 3.4) and then
discuss our tools for gestures for home automation (sections 3.5 to 3.5.2).
Implementation details are discussed in chapter 4.

3.1 General architecture

We used a Microsoft Kinect camera which is connected to a PC via a USB
connection. Using the Microsoft Kinect SDK, we obtain the coordinates of
the different persons and their body parts. This gives us a continuous stream
of coordinates of body parts (with an identifier of the corresponding per-
son). What we want to achieve is that we can accurately recognize gestures
from this continuous stream of coordinates. To achieve this, we propose a
two-phase filtering where we do a first filtering with a declarative rule sys-
tem. This system on its own is not accurate enough. Therefore, we have a
verification by introducing a second filtering based on a template matcher.
A gesture is only correctly identified if the template matcher confirms the
gesture recognized by the declarative rule system.
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Figure 3.1: Architecture of our solution

Figure 3.1 provides an overview of the structure of our solution. The
data received from the camera is sent to a first system where it is filtered by
declarative rules. Afterwards, these potential matches are verified by a sec-
ond system using a template matcher. If the gesture is correctly identified,
we will send the corresponding command to a central control unit which
communicates with the different appliances.

3.2 Skeleton tracking

There are different cameras out there that can be connected to a PC. When
a camera is connected to a computer, one mostly receives a video stream.
To perform gesture recognition, we need to be able to recognize the per-
sons and their body parts from this video stream. This is called skeleton
tracking. Some cameras offer this functionality as part of their SDK. When
this is not the case, one can always implement an existing algorithm for the
recognition of people and their body parts from a continuous video stream.
As implementing such an algorithm falls out of the scope of this thesis, we
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decided to go for a camera that already offers skeleton tracking with their
SDK.

Figure 3.2: kinect skeleton tracking example

As this is a research thesis and not an industry project, the price of
the camera also plays an important role. Therefore, we decided to use a
camera that combines an affordable price with an SDK that offers skeleton
tracking which lead us to choose Microsoft’s Kinect camera. The camera is
connected to our computer via a USB connection. Every time the SDK has
processed a new image frame, a function is called where we can extract the
coordinates of all the body parts. An example of the skeleton tracking of
the Microsoft Kinect can be seen in Figure 3.2 1. On the left hand side, one
can see the green lines with dots which represent the joints of the skeleton.
On the right hand side, one can see a depth view.

3.3 Segmentation using declarative rules

What we get as input is a continuous stream of data. If one wants to imple-
ment gesture recognition for real use cases, the first thing a developer needs
to deal with is gesture spotting. This is the extraction of potential gesture
matches from a continuous stream of data. We achieve this by describing
gestures in declarative rules. These rules express temporal or spatial con-
straints.

1Kinect Explorer: http://blogs.msdn.com/b/csharpfaq/archive/2012/02/06/

start-coding-for-the-kinect.aspx, [24-May-2012]
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To make this more concrete, we will illustrate this with the example of
a Z gesture. In Figure 3.3, one can see a plot of a part of a continuous
stream of coordinates, expressed in mm. The full blue line represents the
x coordinates and the dotted red line represents the y coordinates. The
stream contains the Z gesture where one starts at the upper left corner of Z
and ends at the lower right corner of Z.

Figure 3.3: Chart showing coordinates of a Z gesture.

As one can see, our gesture starts around time 6 (expressed in frames).
We move our hand to the right while remaining more or less leveled. This
can be seen on the chart as the x coordinate rises from 100 to 700 while
the y coordinate remains more or less the same. The change in position
starts around time 6 and ends around time 17. This is a first characteristic
property of the gesture that must be encoded in a declarative rule. The rule
will encompass that the x coordinate must raise with around 600 mm while
the y coordinate must stay more or less leveled. It can be extended with a
time constraint that this part of the gesture should have a certain minimum
and/or maximum duration in ms.

This first movement is followed by a movement from the upper right of
Z to the lower left of Z. One can see this on the chart as the x coordinate
declines while at the same time, the y coordinate increases. Note that for
technical reasons, going down implicates an increase in the y coordinate.
This will be explained later on in this thesis. The movement starts around
frame 20 and ends around frame 30. This is a second characteristic property
that needs to be encoded in a declarative rule. It must encompass that the
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x coordinate must drop around 700 mm while the y coordinate must incline
with around 400 mm.

The last movement is a horizontal one where the x coordinate increases
while the y coordinate remains more or less leveled. It starts around frame
36 and ends around frame 45. This movement can be encoded in a similar
way as the first movement of this gesture. In total, one needs three spatial
constraints to describe the Z gesture. It can be further optimized by adding
time constraints. These time constraints may apply on the duration of the
entire gesture or on the duration of a subpart. A matching engine will an-
alyze the continuous stream of data and search for patters that match with
one of the defined sets of declarative rules.

A potential implementation of declarative rules with matching engine is
Mudra. It has been developed at the VUB and written in the programming
language C. As the SDK of the camera has an interface in C#, one needs to
find a way to send the continuous stream of data from the SDK in C# to
the complex event processing engine in C. We have achieved this by using
the OSC-protocol. OSC stands for open sound control 2. It is a protocol
developed to transmit continuous streams of data, which makes is suitable
for our case. The matching engine will process the incoming stream of data
and do gesture spotting. However, one needs to understand that these po-
tential matches do not offer a high level of accuracy. Therefore, in addition
a verification step is needed.

3.4 Verification: template matcher

Potential matches found by the gesture spotting engine, need to be verified
because they have a low accuracy. This verification can be done by using
another algorithm to check if we get the same result. As these potential
matches have a finite length, and therefore a clear begin and end point,
we can choose from a wide range of algorithms to perform this verification.
Possibilities include template matching algorithms or machine learning al-
gorithms.

To keep our solution as general as possible, we decided to extend the open
source gesture recognition framework iGesture [17]3. Therefore, the user can
extend the framework with the gesture recognition algorithm of his choice.
As we preferred an algorithm that does not require training, we opted for a
template matching algorithm. We choose to implement one of the most well-
known template matching algorithms, Dynamic Time Warping (DTW) [5].

2OSC: http://opensoundcontrol.org/, [24-May-2012]
3iGesture: http://www.igesture.org/, [24-May-2012]
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By choosing for a template matching algorithm, we must be able to define
templates in the gesture recognition framework. Therefore, we also needed
to extend it with the input modality of the Kinect Camera. To keep our
solution as general as possible, we opted to use OSC as protocol for transfer-
ring the coordinates. This is the same protocol that we use for transferring
the stream of coordinates from the Kinect SDK to Mudra, our segmentation
tool. If one wants to use a different camera than the Microsoft Kinect, he
would only need to create an OSC server to send the coordinates.

Figure 3.4: Adding sample to gesture

If one wants to add samples to implement a new gesture, the first thing
one needs to do in iGesture is to create a gesture set. We called it arrows
in the example one can see in Figure 3.4. In this gesture set, one can define
all the gestures he wants, like R in our example. Each gesture consists of
one or more samples. In the Figure 3.4, we have already added 3 samples
to the gesture R and we are adding a fourth sample. An overview of all the
gestures in a gesture set is generated by selecting the gesture set, as seen in
Figure 3.5.
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Figure 3.5: Overview of the gestures

The gesture recognition framework (iGesture) is written in Java while
our declarative rules system (Mudra) is written in C. Mudra needs to send
potential matches to iGesture. This is clearly not a continuous stream of
data. Therefore, we decided to use XML-RPC for the communication be-
tween these two entities. By using XML-RPC, we also make it possible
to easily switch to another gesture recognition framework if someone wants
to do this. One just has to make sure that the new gesture recognition
framework has an XML-RPC library that is listening on a certain port.

Mudra was extended for this thesis to export the following procedures:
initialise, recognise and remove, as shown below.

// I n i t i a l i s e s a r e c o g n i s e r in the iGesture framework v ia
//XML−RPC.
//Format : ( i g e s t u r e : i n i t i a l i s e <name> <algor ithm>

<gesture−set >)

// Proce s s e s a number o f MFacts through the r e g i s t e r e d
// r e c o g n i s e r in the iGesture framework v ia XML−RPC.
//Format : ( i g e s t u r e : r e c o g n i s e <name> <f a c t s> <thresho ld>

<max−matches>)
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//Removes a r e c o g n i s e r in the iGesture framework v ia
//XML−RPC.
//Format : ( i g e s t u r e : remove <name>)

The first procedure will initialize the algorithm one wants to use. The
second procedure will compare a sample with a defined set of gestures and
do the recognition. Finally, remove will remove an instance of the algorithm.
We use this initialise-recognise-remove cycle as some algorithms might need
training. This training can be done once we are in the initialiseAlgorithm
procedure and one can from then on use the trained instance for all the sam-
ples.

We added functionality so one can automatically generate the declarative
rules that correspond with a given gesture. First, one does a gesture as
shown in Figure 3.6.

Figure 3.6: Initial gesture

Afterwards, one can simple select the different characteristic points of the
gesture using the left mouse button. The characteristic points are indicated
with a circle. For our example, we have four characteristic points which can
be seen in Figure 3.7.
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Figure 3.7: Select characteristic points

To generate the declarative rules, one simply clicks with the right mouse
button. A frame will appear with the corresponding code. The frame with
code for our example can be seen at Figure 3.8.

Figure 3.8: Frame with declarative rules

At the moment, one can do only single handed gestures. This limitation
has been introduced for complexity reasons: the support of multiple hands
is technically possible but it makes the automatic generation of declarative
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rules substantially more complex and can therefore be seen as a potential
future extension.

3.5 Home automation

Once a gesture has been recognized, a corresponding action needs to be ex-
ecuted. As mentioned before, we target the context of home automation.

In general, a home automation system has a central control unit which
is responsible for the communication with the different controllable appli-
ances. A possible central control unit is the Gira Homeserver 4. We can
send commands to this control unit via an IP socket. These commands are
just strings with no mandatory format. For the sake of readability, we en-
courage to use an OSC-format for the strings. This means that a string has
the following pattern:

/room/ app l i ance / s t a t u s

When one wants to turn on a light in the living room, he will send a string
like /living/light1/on to the central control unit. Based on the incoming
string, the central control unit will send the necessary commands to the
different appliances using the KNX protocol. This protocol is a standard
and widely used in home automation. To make it more concrete with an
example: one can for imagine a multimedia room where the user does a
specific gesture. The gesture is recognized and the corresponding command
is sent to the central control unit. This unit will send commands to dim
the lights, close the curtains and turn on the beamer, like shown in Figure
3.9. This protocol specification was done in collaboration with a Flemish
company called Pattyn Domotica5.

4Gira Homeserver,http://www.gira.com/nl_BE/produkte/homeserver.html, [25-
May-2012]

5Pattyn Domotica, http://www.pattyndomotica.be, [25-May-2012]
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Figure 3.9: An example of a multimediaroom

3.5.1 Modeling room

Location awareness is achieved by the limited range of the Kinect camera.
This allows us to infer whether a user is in the living room or in the kitchen.
However, there are still multiple appliances in the room that require inter-
action. Imagine that one has multiple lights in the living room. If we want
to control them independently from each other with gestures, we have two
possibilities. We can define different gestures for each light unit or we need
to combine our gesture with pointing into the direction of a specific light
unit. To know in which direction a person is pointing, we can define the
line that goes through the person’s shoulder and wrist. With the equation
of this line, we can calculate the distance of all objects to this line.
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Take (x1, y1) as the coordinates of the shoulder and (x2, y2) as the co-
ordinates of the wrist. We can draw a unique line through these two points.
Define vector v as the vector perpendicular of this line and vector r as the
vector between (x0, y0) and the beginning of the line. Calculating the dis-
tance d from any point (x0, y0) to this line, is done by projecting the vector
r onto vector v. As a result, we get the following formula:

d = |v.r| = |(x2−x1).(y1−y0)−(x1−x0).(y2−y1)|√
(x2−x1)2+(y2−y1)2

By ordering all relevant objects on distance, we can find the object with
the nearest distance. In our example where we want to control different
light units, we can take all the light units and calculate their distance to
the imaginary line from our shoulder to our wrist. The light unit with the
smallest distance to this line is the correct light unit.

To know where all the controllable elements are located in a room, we need
to have a model of the room. Each controllable element, for example a
light unit or a television, is represented by an object. It contains a location
and a dictionary with a mapping from the gestures to the corresponding
commands. To improve the usability, we also created a visualization tool in
order that one can see the different elements, as shown in Figure 3.10.
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Figure 3.10: A screenshot of our pointing application

The rectangle represents the walls of the room. The location of the
Kinect is represented by the letter K. Each controllable appliance is repre-
sented by a circle at its corresponding location. When a person stretches his
arm, a line appears to indicate the direction to which the person is pointing.
As one can see in the example of Figure 3.10, the person is pointing to the
lowest appliance that can be controlled.

Target estimation Using this room modeling tool, we can now estimate
which appliance is targeted by the user. Using the results from Mudra, the
iGesture service and the KNX protocol definition, we have a feature complete
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software stack to achieve gesture-based home automation as illustrated in
Figure 3.1.

3.5.2 Gesture set

When defining gestures, one often needs to find a balance between a gesture
that is large enough so the camera can detect it but small enough so one does
not disturb other people. When one defines a simple gesture like moving a
hand upwards, one needs to bring into account that this gesture will likely
be a sub-gesture of other gestures. To make it more concrete with an exam-
ple, one can clearly see that drawing a vertical upwards line is a sub-gesture
of drawing a P in the air. This makes the definition of gestures harder as
one has to manually encode all the possible sub-gesture combinations.

This problem becomes even more substantial when we start talking about
hovering. Imagine one is sitting in his multimedia room and has an overview
of all available films on a screen. Most intuitively, one selects a film by mov-
ing the arm left/right/up/down until he selected the wanted movie. This is
called hovering. To start the film, one obviously has to perform a gesture.
Performing this gesture will inevitably lead to changing the selected movie
as one is moving his arm in a direction. This is not workable as one will
always start a movie he did not want to see.

There are multiple solutions for this problem. The first solution would
be that one uses voice commands to activate and deactivate the hovering.
When one is in a hovering state, the gesture recognition will be disabled. If
the right film is selected, one deactivates the hovering and start the movie
with a gesture. A second solution would be to use the left arm for hovering
and the right arm for gestures.

Due to time constraints, we limit ourself to a basic set of deictic and iconic
gestures that allow us to evaluate the feasibility of our approach. It also al-
lows us to precisely define problematic scenarios and offer room for software-
based improvements as mentioned in section 6.

3.5.3 Conclusion

We created a feature complete software stack to achieve gesture-based home
automation. The movements are captured by a 3D camera which is in our
case Microsoft’s Kinect. To do the gesture spotting, we use a declarative
rule approach. A possible implementation of this approach is Mudra which
is what we used in this setup. As the Kinect SDK has a C# interface and
Mudra has a C interface, we transferred the continuous stream of coordi-
nates from the Kinect SDK to Mudra via the OSC protocol. The gestures
spotted by Mudra lack accuracy, therefore we foresee a verification phase.
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The verification is achieved by checking the spotted gesture of Mudra with
a template matcher. For the sake of flexibility, we opted to use an open
source gesture recognition framework so one can add his favorite gesture
recognition algorithm. Our choice felt on the iGesture framework. To proof
the extensibility of the framework, we extended it with one of the most
well-known template matching algorithms: Dynamic Time Warping. As
iGesture is written in Java while Mudra is written in C, we used XML-RPC
to transfer the spotted gesture from Mudra to iGesture. When the template
matcher confirms the spotted gesture, we have correctly identified a gesture.

Afterwards, one needs to execute the actions that correspond to the rec-
ognized gesture. If one has multiple light units in one room and one wants
to control them individually with the same gesture, the software needs to
know in which direction one is pointing to find the nearest relevant light
unit. Therefore, we created an application where one can model the room
and add the different units with their corresponding location. When the
nearest unit is found, the corresponding command is sent to the central
control unit which will do the communication with the necessary appliances
using the KNX protocol.

For an enhanced user experience, we also extended iGesture with the possi-
bility to automatically generate the declarative rules. One just needs to do
the gesture and indicate the characteristic points with the mouse.
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Chapter 4

Implementation

This chapter will discuss in detail our implementation of the proposed solu-
tion.

4.1 Skeleton tracking

To read data from the Kinect camera, there are two possibilities: the official
Kinect SDK from Microsoft1 and the semi-open source projects OpenNi,
NITE and OSCelleton2. The official SDK has interfaces in C# and Visual
Basic. However, it supports only Windows as operating system. The official
SDK was only released in autumn 2012. Before that, there was only the
OpenNI solution.

OSCelleton reads the data from the Kinect and sends it to a specified port
of an IP address. The protocol used is OSC as one could have guessed
from the name of the application. Because OSCelleton exists already for
a few months, most applications use this library. However, testing re-
vealed that the Kinect SDK of Microsoft has a higher precision. There-
fore, we decided to use the official SDK. For ease of use, a OSCelleton
compatible solution was made for the Microsoft Kinect SDK. We imple-
mented our own OSC server in C# and made it open source at https:

//github.com/Zillode/OSCeleton-KinectSDK. Because of this, the rest
of our setup does not know whether the data comes from the official SDK
or OSCelleton. Developers can now easily switch between these two options
without making any changes to the rest of their code. This possibility for
switching is needed because the official SDK of Microsoft only supports the
Windows operating system. If one has another operating system, OSCel-
leton will be the only option.

1http://www.microsoft.com/en-us/kinectforwindows/
2https://github.com/Sensebloom/OSCeleton
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An OSC message starts with “/Joint” and has the following fields: the id of
the skeleton joint, the id of the corresponding user, three floats representing
the coordinate in mm and an integer representing the time from start in
milliseconds. A possible example of joint message would be:

/ Joint , 1 , 15 , 256 . 56 , 95 . 53 , 867 . 71 , 16080

The id of the person is 1 and we track a joint with id 15. The coordinates
of this joint are (256.56 mm, 95.53 mm, 867.71 mm) and the corresponding
time is 16.08 seconds after we started recording. In the table below, one can
see the different joint points with the corresponding id.

Id Microsoft SDK OSCelleton Id Microsoft SDK OSCelleton

1 Head head 13 ElbowRight r elbow

2 ShoulderCenter neck 14 WristRight r wrist

3 Spine torso 15 HandRight r hand

4 HipCenter waist 16 / r finger

5 / r collar 17 HipLeft l hip

6 ShoulderLeft l shoulder 18 KneeLeft l knee

7 ElbowLeft l elbow 19 AnkleLeft l ankle

8 WristLeft l wrist 20 FootLeft l foot

9 HandLeft l hand 21 HipRight r hip

10 / l finger 22 KneeRight r knee

11 / r collar 23 AnkleRight r ankle

12 ShoulderRight r shoulder 24 FootRight r foot

To enhance debugging, we extended the Microsoft SDK with the record-
ing of the coordinates. The coordinates are stored in a CSV file. This CSV
output was implemented to be compatible with the Mudra CSV system,
which allows developers to easily test recorded gestures without having to
perform the movement in front of the camera.

4.2 Segmentation: declarative rules

We use a declarative rules approach, namely Mudra, to perform gesture
spotting. Mudra takes a stream of OSC messages as input. The message
contains the id of the joint point, the id of the corresponding user, a coordi-
nate and a number representing the time passed since one started recording.

To make the reader familiar with Mudra, we will discuss its syntax with
an example. Mudra uses declarative rules for expressing the control points
and the corresponding constraints. This is the same gesture as we discussed
in our proposed solution.
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1 ( de f template zGesture ( s l o t j o i n t ) )
2 ( set−de fau l t−timespan ” zGesture ” 5000)
3 ( d e f r u l e zGesture
4 ( Jo int ( j o i n t 15) ( x ?x1 ) ( y ?y1 ) ( on ?on1 ) )
5 ( Jo int ( j o i n t 15) ( x ?x2 ) ( y ?y2 ) ( on ?on2 ) )
6 ( t e s t ( time : be f o r e ?on1 ?on2 2000))
7 ( t e s t ( space : within−radius−t r a n s l a t e ?x1 ?y1 ?x2 ?y2
8 600 0 150))
9 ( Jo int ( j o i n t 15) ( x ?x3 ) ( y ?y3 ) ( on ?on3 ) )

10 ( t e s t ( time : be f o r e ?on2 ?on3 2000))
11 ( t e s t ( space : within−radius−t r a n s l a t e ?x1 ?y1 ?x3 ?y3
12 −100 400 150))
13 ( Jo int ( j o i n t 15) ( x ?x4 ) ( y ?y4 ) ( on ?on4 ) )
14 ( t e s t ( time : be f o r e ?on3 ?on4 2000))
15 ( t e s t ( space : within−radius−t r a n s l a t e ?x1 ?y1 ?x4 ?y4
16 550 400 150))
17 =>
18 ( a s s e r t ( zGesture ( j o i n t 15) ( on ?on1 ) ) ) )

In the first line, we define the name of our gesture. Afterwards, we de-
fine the maximum time-span of our gesture, in this case 5000 milliseconds (5
seconds). One needs to find a balance between a long enough timespan to
be able to complete the gesture, but on the other hand, keep the timespan
as short as possible for better performance. The timespan is linear with the
amount of data that Mudra needs to take in consideration. Now, we can
start with the definition of our control points.

In line 4 and 5, we define our first two control points. These control points
have a joint, a location and a time-indication. The joint is linked to a joint
of the skeleton of the person. In this case, joint 15 corresponds with the
right hand. A joint has also a coordinate (with x and y) which we bind to
the variables x1 and y1. Next to this, a joint also has a time in milliseconds,
which is bound to the variable on1.

In line 6, we define a time constraint that the first control point should
happen before the second control point and the maximum time difference
between these control points is 2000 milliseconds (= 2 seconds). In the next
line, we define a spatial constraint between these two control points. We
define that the difference in x-coordinates should be 600mm and the differ-
ence in y-coordinates should be 0mm. However, in reality, gestures done
by the user are not that exact. Therefore, we foresee a margin so that the
user should pass this second control point within a radius of 150mm. This
sequence of defining control point, add time constraint and add spatial con-
straint is repeated for the rest of the control points. This happens in line 7
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to 16.

In rule 17 and 18, we declare that if all the conditions are met, the ges-
ture should be asserted.
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4.3 Second filtering: template matcher

We integrated iGesture within Mudra to apply a verification step. The veri-
fication happens with the use of a template matching algorithm. Therefore,
we need to define templates in iGesture with the Kinect as input modality.
As iGesture did not offer support for the Kinect camera, we had to add
support for it ourselves.

4.3.1 Extending iGesture for camera-based sample recording

Spatial scaling This is realized in iGesture by creating a new type of
input, OSC input. We have added an OSC listener which listens on a pre-
defined port for OSC messages. Once received, these messages will be pro-
cessed and the coordinates will be displayed on the screen. A problem faced
during the implementation was the scaling of the display. When one does a
gesture, we cannot predict if the person will do a small gesture or a large ges-
ture. Therefore, a fixed scale is not appropriate. If one does a large gesture,
it will not fit on the screen. On the other end, if one does a small gesture,
one will barely be able to see the gesture on the screen. As a solution, we
have chosen to use an automatic scaling. We start with an initial scale, ideal
for small gestures, and automatically zoom out whenever needed.

Segmenting samples from continuous input Another problem that
arises is when recording samples of an endless stream of coordinates is to
define the a start and end point. To solve this problem, we added voice
(de)activation on the Microsoft Kinect SDK. By using voice commands like
“camera on” or “camera off”, one can control the streaming of coordinates.
This is achieved with the help of the Microsoft Speech SDK. In Figure 4.1,
one can see a state machine explaining how to control the Kinect camera
with voice commands.

Figure 4.1: State machine for voice control Kinect
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4.3.2 Semi-automated rule generation

These two additions to iGesture allows average users to easily add new
samples to the system using a camera-based input modality. Next, we show
how basic rules are generated from these newly defined samples. First, the
user needs to select the characteristic points of the gesture. This is done
by selecting them with the left mouse button. Every time the user presses
the left mouse button, we retrieve the coordinate and add it to an array
of points. When the user has selected all the characteristic points, he can
simply generate the code by pressing the right mouse button. An algorithm
will loop over the array of points and generate a string which contains the
declarative rules. This string is showed in a new frame that pops up. Figure
4.2 shows a state diagram of this procedure.

Figure 4.2: State machine for generating declarative rules

The algorithm is quite straight forward. First, we have the following
lines of fixed text:

1 ( de f template zGesture ( s l o t j o i n t ) )
2 ( set−de fau l t−timespan ” zGesture ” 5000)
3 ( d e f r u l e zGesture
4 ( Jo int ( j o i n t 15) ( x ?x1 ) ( y ?y1 ) ( on ?on1 ) )
5 ( not ( and ( zGesture ( on ? onz ) )
6 ( t e s t ( time : with in ?on1 ? onz 2 000 ) ) ) )

These lines mean that we define a gesture with the name zGesture and
this gesture has a default maximum timespan of 5 seconds. We define a
first point of the gesture and code that there must be a default minimum
timespan of 2 seconds between two occurrences of this gesture.

Then, we use a for-loop to loop over the characteristic points. For each
point, we calculate the distances (in x and y) between this point and the
previous point in the array. The distances are encoded into the following
temporal constraints (for each point):

1 ( Jo int ( j o i n t 15) ( x ?x ( i +1)) ( y ?y ( i +1)) ( on ?on ( i +1)))
2 ( t e s t ( space : within−radius−t r a n s l a t e ?x ( i ) ?y ( i ) ?x ( i +1)
3 ?y ( i +1) d i f fX d i f fY 150))
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4 ( t e s t ( time : be f o r e ?on ( i ) ?on ( i +1) 1000))

In the first line, we define a new point (the (i) and (i+1) must be re-
placed with the index in the for-loop). In the second line, we say that the
distance between the previous point and the current point should be the
distance that we calculated with a maximum allowed variation of 150 mm.
Finally, we code that the time difference between these two points should
be 1 second or less.

After the for-loop is completed, we need to add the following final state-
ments:

1 =>
2 ( i g e s t u r e : r e c o g n i s e ”dtw” ( s e l e c t−f a c t s−between ” Jo int ”
3 ?on1 ?on ( number−of−po in t s ) ) 0 . 4 3)
4 ( a s s e r t ( zGesture ( j o i n t 15) ( on ?on1 ) ) ) )

We define that found gestures needs to be sent to iGesture. The algorithm
used is DTW and we need to send all data between the first characteristic
point and the last characteristic point. The results of the template matcher
needs to be filtered with a minimum accuracy of 0.4 (40%) and we want to
have the best 3 results. Finally, the gesture should be stored as a fact in the
fact base of Mudra.

4.3.3 DTW for hand trajectory classification in iGesture

As iGesture did not provide the classifier we required, we implemened Dy-
namic Time Warping. Section 2.2.2 already explains how this algorithm
works and we did a straight forward implemention for iGesture.

4.3.4 Service oriented iGesture

When Mudra has spotted a gesture, it will send the gesture to a gesture
recognition framework for verification. This communication with the frame-
work happens with XML-RPC so that we are independent of framework
used.

Mudra will make the following calls to the iGesture recognition service:

1. Instantiate the algorithm one wants to use
Mudra will call the function initialiseAlgorithm with an XML-
RPC struct as parameter. This struct contains the fields algorithm
(a string containing the name of the algorithm one wants to use),
gestureset (the name of the gestureset that needs to be used for the
recognition), threshold (a double representing the minimum accuracy
required) and name (the name one wants to give to this instance).
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2. Perform the recognition
Every time Mudra finds a potential match, it will call the recognise2D
or recognise3D function. This will do the recognition with a previous
instantiated algorithm of step 1. The recognize function takes a struct
and an array as parameters. The struct has two fields: name (the
name of the instantiated algorithm one wants to use) and threshold (if
one wants a different accuracy then the default one specified in step
1). The array contains the points of the gesture. Each point is a struct
with four fields: X, Y, Z (floats representing the coordinate) and ON
(which represents the time corresponding with this point).

3. Delete the instance of the algorithm
When one wants to close the application, we need to delete our instan-
tiated algorithms. This is done by calling the function removeAlgorithm

with the name of the instantiated algorithm as parameter.

Each template matching system that supports these functions can be used
in combination with Mudra. We have extended iGesture with the func-
tionality described above. It has an XML-RPC listener that will listen on
a certain port for incoming calls for one of these three functions. If the
initialiseAlgorithm function is called, it will initiate the algorithm in
iGesture and store it in a dictionary with the corresponding name. When
the recognise2D function is called, it will take the corresponding algorithm
from the dictionary with initiated gesture recognition algorithms and do
the recognition with the input data. Afterwards, the results are filtered on
accuracy and the maximum amount of results allowed. Finally, when Mu-
dra calls the removeAlgorithm function, the initiated algorithm is removed
from the dictionary of initiated algorithms.

46



4.4 Home automation

Once a template matcher has confirmed the gesture, a corresponding action
needs to be taken. Some gestures are unique and therefore, one does not
need to know in which direction a person is pointing. If this is the case, we
can simply execute the corresponding action by sending the right commands
to the central control unit. This is achieved by sending the command to a
buffer. A separate thread is responsible for popping the messages from the
buffer and sending them to the central home automation control unit. This
control unit is accessible via an IP connection.

However, it might be the case that your gesture is not unique. This is
for instance the case when one has multiple light units that one can control
separately but when there is only one gesture available to turn on a light.
By checking in which direction the person is pointing while performing the
gesture, the application can know which light the person wants to turn on.
One can achieve this by taking the coordinates of the shoulder and wrist of
the arm and calculate the line that goes through it. The distance from each
object to this line can easily be calculated with the formula explained in the
previous chapter. This assumes that you know where all your controllable
units are located. To achieve this, we have created a model to represent a
room.

This model consists of the following objects:

• Element
This represents a controllable element like a light unit. Each element
has a location (in x, y) and a hashtable which contains the names of
all relevant gestures for this appliance with their corresponding com-
mands.

• Person
This represents a person. It has an OSC listener to receive the coordi-
nates of the person. It has one function which is called strechedArm.
It will look which arm is stretched and return a hash set with the
coordinates of the shoulder / hand of the stretched arm. If neither of
the two arms is stretched, an exception is thrown.

• Room
This represents the room. A room has a width and length, expressed
in cm. A room also has a Person and an arraylist of Elements. A room
also holds the position of the Kinect camera. We need to know this
because the coordinates we receive from the Kinect are relative to the
Kinect. If one knows the exact coordinate of the Kinect, one can easily
calculate the absolute position a person. Finally, the most import
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function is findPoint. It will look in which direction the person is
pointing and return the corresponding element. If no element is found
near, an exception is thrown.

When one has done a gesture and the corresponding element has been found,
the element is queried for the command which corresponds with the given
gesture. This command is then added to the buffer with commands that
need to be executed.
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Chapter 5

Validation

We tested our setup with eight different gestures. It is a mix of commonly
used gesture and gestures that are hard to detect with a rules approach only.
The commonly used gestures are swipe left and swipe right. These do not
need further explanation as everyone knows how they look like.

A first set gestures that are harder to detect are the letter T and arrow
up. In Figure 5.1 one can see these two gestures on the left, with their
characteristic points on the right.

Figure 5.1: Characteristic points
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As one can see, when one is doing a T or an arrow up, one will likely
also trigger the other gesture. Using smaller circles is not a good solution as
this creates the problem that it will not trigger when the gesture performed
by a user is not exactly the same, although it is conceived by the user to
be the same. Therefore, we use larger circles and a validation step with a
template matcher to define which one of those two gestures it is. A second
set of gestures that we use faces similar problems. It contains square, circle
and triangle gestures.

We used 5 persons to test our setup. They all have no experience with
doing gestures for a camera. Neither of them has a mobile phone with a
touch interface. Their experience with computers varies from almost noth-
ing (just doing some surfing) to using it all day long in a professional context.
The results of the test are shown below:

Left
swipe

Right
swipe

T Arrow
up

Square Circle Triangle

Recognized by
Mudra (in %)

100 100 100 80 80 60 80

Number false pos-
itives per gesture
by Mudra

0 0 0.8 0.6 0.2 1.4 1

Recognized by
Mudra + DTW
(in %)

100 100 100 80 80 40 40

Number false
positives per
gesture by Mudra
+ DTW

0 0 0 0 0 0.2 0.4

As one can see, we get a significant decline in the amount of wrongly
identified gestures by doing verification with DTW. Like discussed earlier,
when one does the gesture T, he will likely also trigger the gesture arrow
up which is confirmed by our testing. By doing verification with a template
matcher, we were able to filter out the unintended triggering of the arrow
up.

However, this approach is not completely flawless. When doing a cir-
cle or triangle, we achieve a decline in wrongly identified gesture but we
were not able to completely eliminate it. This is caused because template
matching algorithms do not always give perfect results. To test this further,
we also tested the template matcher with another input modality: a tradi-
tional mouse. We created a new gesture set with the mouse and tested it
afterwards.
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Figure 5.2: Gesture set created with mouse

Figure 5.3: Testing with mouse of gesture set

As one can see in Figure 5.3, this is not the result one likes to see. We
also tested it with another gesture recognition algorithm (signature [17] 1)
but it gave similar results. We think this problem can be solved by using
advanced machine learning algorithm for the verification or improving the
rules by an expert developer or more advanced tooling.

1Signature, algorithm, http://www.igesture.org/algo_signature.html, [25-May-
2012]
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Chapter 6

Future work

6.1 Multiple cameras

As discussed earlier, the Kinect camera only has a limited range of a few me-
ters. When one has a large room, this range will be insufficient. A possible
solution for this problem could be to use multiple Kinect cameras. However,
a few problems arise when one tries to do this.

A first problem that arises is that there is only support for connecting one
camera at the time to a computer. This means that one needs to have a
separate computer for each camera which makes it an expensive solution.

A second problem that might arise is the overlap in ranges. When two
or more cameras project an infrared grid on the same place, this might have
an effect on the accuracy. This needs to be further investigated. If multiple
cameras recognize the same gesture at the same time, we obviously want
that the corresponding action of the gesture is executed only once. This can
be achieved with a low level fusion of the different cameras. Furthermore,
there also needs to be a strategy if multiple cameras detect different gestures
at the same time.

6.2 Scanning rooms

At the moment, one has to manually encode the different controllable ob-
jects with their location. This can be quite time consuming as one needs
to manually measure the width/length of the room and the location of the
different objects.

A possible solution can be that one is able to use the Kinect to “scan”
the room. This can be done with a SLAM (Simultaneous Localization and
Mapping) algorithm. The result is 3D map where the user can indicate the
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location of the controllable objects in the room. This can be further ex-
tended with a user interface where one also can annotate the objects with
the commands they understand.

6.3 Other extensions

Another extension might be to add person recognition. If this can be
achieved, one can have person-specific gestures.

As discussed earlier, doing verification with template matchers does not al-
ways give the expected result. Therefore, future work might be to test with
different algorithms like machine learning and different template matchers
to make a comparison which algorithm gives the best result.
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Chapter 7

Conclusion

To perform gesture recognition with a 3D camera, an algorithm is required
that is capable of handling a continuous stream of coordinates of multi-
ple body segments of a person. However, the current state of the art ges-
ture recognition algorithms for continuous streams (declarative rules, ges-
ture spotting approaches) focus on high recall. Therefore, they will often
generate false positives. This represents a major problem since we try to
apply gesture recognition in the context of home automation. Home ap-
pliances should not be triggered unintentionally. For instance, one would
not like to have the stereo equipment suddenly start playing at maximum
volume because the gesture recognition algorithm falsely identified a gesture.

To tackle this problem, we came up with a hybrid rule- and template-based
gesture recognition solution. First, we spot the gestures based on declarative
rules. This gives us potential matches. Because of the high recall and low
accuracy, a verification step is needed. Therefore, we verify the potential
matches with a template matching algorithm. When the template matcher
confirms the gesture, we have correctly identified the gesture and the corre-
sponding action must be executed. In our thesis, this would be the control
of different appliances in a house.

To show a proof of concept, we created a full software stack to provide ab-
stractions for the recognition of gestures and the controlling of appliances.
We have chosen Mudra for the gesture spotting with declarative rules and
iGesture as a gesture recognition framework to do the verification. The
choice for a gesture recognition framework was done based on the fact that
one could easily extend it with the algorithm of his preference. To proof
that this can easily be done, we added the algorithm of our choice: Dy-
namic Time Warping.

The first thing that needed to be done was connecting our input device,
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the Microsoft Kinect camera, to Mudra for the gesture spotting. As the
Kinect SDK (C#) and Mudra (C) did not have an interface in a shared
programming language, we opted to send the stream of coordinates from
the Kinect SDK to Mudra via the OSC protocol. OSC is a protocol de-
signed to cope with continuous streams of data. Secondly, the verification
is done by sending potential matches found by Mudra to iGesture where
they will be checked with a template matcher. As Mudra (C) and iGesture
(Java) should also be decoupled using a networking layer, we opted to use
XML-RPC for communication between these two entities. To make it easier
for developers, we also extended iGesture so one can easily automatically
generate the necessary declarative rules by allowing to select the character-
istic points. Once this is done, an algorithm will automatically generate the
corresponding declarative rule.

If a gesture is identified and verified, the corresponding action needs to be
executed. If one can only control one appliance in the room with a gesture,
we can send the necessary commands to the home automation central con-
trol unit. This control unit will communicate with the different appliances
using the KNX protocol. However, if one can control multiple appliances
in the room using the same gesture (e.g. activate), we need to estimate the
direction one is pointing to in order to infer which appliance he wants to
control. Therefore, we need to have a model of the room to know where
all the appliances are located. To achieve this, we created a separate tool
where one can easily define the different elements in the room with their
corresponding location. Once we calculated which is the nearest relevant el-
ement in the room, we can send the corresponding command to the central
control unit.

Finally, to demonstrate our approach, we did a small user test with five
participants. Each participant was asked to do a number of gestures. The
results show that Mudra is able to correctly spot most gestures in the con-
tinuous stream of information and that the number of false positives was
reduced by using additional classification techniques from iGesture. How-
ever, the false positive gestures were not totally excluded. For future work
we therefore advice to improve the declarative rule generation based on
more advanced features, and to experiment further with other gesture sets.
Nevertheless, our architectural contributions were shown to be fully func-
tional and pushed gestural interfaces for home automation one step closer
to reality.
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