
FACULTY OF SCIENCE AND BIO-ENGINEERING SCIENCES
DEPARTMENT OF COMPUTER SCIENCE

Enriching the XLink Standard with
RSL Metamodel Features

Master thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science in de Ingenieurswetenschappen: Computerwetenschappen

David Sverdlov

Promoter: Prof. Dr. Beat Signer
Advisor: Ahmed O.A. Tayeh

Academic year 2015-2016

FACULTEIT WETENSCHAPPEN EN BIO-INGENIEURSWETENSCHAPPEN
VAKGROEP COMPUTERWETENSCHAPPEN

Enriching the XLink Standard with
RSL Metamodel Features

Masterproef ingediend in gedeeltelijke vervulling van de eisen voor het behalen van de
graad
Master of Science in de Ingenieurswetenschappen: Computerwetenschappen

David Sverdlov

Promotor: Prof. Dr. Beat Signer
Begeleider: Ahmed O.A. Tayeh

Academiejaar 2015-2016

i

Abstract

Digital documents do not exist in isolation but rather share connections with other
documents. Based on this fact and the hyperlink concept, various existing digi-
tal document formats support limited features of linking (i.e. unidirectional and
embedded hyperlinks) to other documents. Moreover, various hypermedia models
and applications have been proposed to enable the linking between documents and
to overcome the limitations of the linking features offered by existing document
formats. The Resource Selector Link (RSL) metamodel and the XML Linking
Language (XLink) standard are well known, recent link models that support vari-
ous linking features. The XLink standard that is recommended by the World Wide
Web Consortium (W3C) has been designed to support only the advanced linking
features in XML documents such as bi- and multi-directional hyperlinks. In con-
trast to XLink, the RSL metamodel is flexible and extensible, which allows for
support of linking to most existing and emerging document formats. Moreover,
RSL supports other important hypermedia features such as the management of
user access rights, supporting overlapping hyperlinks and context resolvers.

In this thesis, we investigate the possibilities to enrich the XLink standard with
important features of the RSL metamodel. Our investigation leads to an enhanced
XLink standard that does not invalidate its original W3C specification and allows
the linking across existing as well as emerging document formats. Our enhanced
XLink standard further supports advanced hyperlink features such as user access
rights and the resolution of overlapping hyperlinks. As a proof of concept, we
use the enhanced XLink standard in an existing cross-document link service that
supports the linking across existing as well as emerging document formats.

ii

Declaration of Originality

I hereby declare that this thesis was entirely my own work and that any addi-
tional sources of information have been duly cited. I certify that, to the best of my
knowledge, my thesis does not infringe upon anyone’s copyright nor violate any
proprietary rights and that any ideas, techniques, quotations, or any other material
from the work of other people included in my thesis, published or otherwise, are
fully acknowledged in accordance with the standard referencing practices. Fur-
thermore, to the extent that I have included copyrighted material, I certify that I
have obtained a written permission from the copyright owner(s) to include such
material(s) in my thesis and have included copies of such copyright clearances to
my appendix.

I declare that this thesis has not been submitted for a higher degree to any other
University or Institution.

iii

Acknowledgements

My greatest gratitude goes towards my promoter Prof. Dr. Beat Signer and my
supervisor Ahmed O. A. Tayeh for their patience and guidance on this long road.
There have been several obstructions along the way, but Ahmed always believed
in me and kept pushing me to work hard and keep seeing the end goal. Even while
ill or on vacation, he has been with me until the end. I wish him all the best with
his family, his research and any challenges he might be faced with.

With the endless amount of support she has given me, I can safely say that my
mother, Alinoë Van Looveren, has been an essential contributor to the completion
of this thesis. She is hands down the most supportive, intelligent, forgiving and
loving person I have ever had the fortune of knowing. I am extremely grateful
to her, my stepfather and my siblings for all their encouragements and musical
talents that often accompanied me while working on this thesis.

My dear friends, Quentin, Mathijs, Kenny, Elke, Jo, Nick, Toon and Inge also
receive an acknowledgement for all the support, suggestions and most importantly,
the occasional distractions they have provided me with. I am very grateful to have
met these amazing people and to be able to call them my friends.

Eric Gijbels is also an important person who must be mentioned in this acknowl-
edgement. For it was with his input, his level-headed pushing, that this thesis took
a turn in the right direction when it really needed it. The same goes for the con-
versations I have had with Jacqueline. It has been really helpfull being able to talk
about anything and always receive solid advice.

For their time and effort put into proofreading, spell-checking and answering an-
noying questions, I extend my gratitude to Ahmed, Rani, Mathijs, Elke, Quentin
and Audrey.

To any other family members, friends or acquaintances that have shown interest or
taken any part in this thesis and have not yet been mentioned, thank you. This has
been quite an interesting and educational experience, especially since it happened
during a time when there was a lot going on in my life. The completion of this
thesis finalises my student career, which I will remember fondly, and opens the
doors for new adventures.

Contents

1 Introduction 1
1.1 Context . 1
1.2 Problem Statement . 4
1.3 Objectives . 5
1.4 Thesis Structure . 5

2 Background 6
2.1 History of Linking Documents 6
2.2 Linking in Document Formats 12

2.2.1 Resource Selector Link Metamodel 14
2.2.2 XLink . 18

2.3 Comparison of RSL and XLink 26
2.4 Summary . 30

3 An Enhanced XLink Standard 31
3.1 Embedded XLink Links . 31
3.2 Virtual Documents . 33
3.3 Links with Extra Attributes . 36

3.3.1 Overlapping Selectors 37
3.3.2 Links of Links . 38
3.3.3 Data Ownership and Access Rights Management 39

3.4 XML Schema . 40
3.4.1 Selector Plugins . 41
3.4.2 Extending the Master Schema 41
3.4.3 Schema Plugins . 41

3.5 Summary . 42

4 Implementation 43
4.1 Master Schema . 43
4.2 RSL Implementation Structure 44
4.3 XLink Implementation . 45

4.3.1 Class Generation via Java Architecture for XML Binding . 45

v CONTENTS

4.3.2 IServerInterfaceImp2 . 46
4.3.3 Mapping Link Objects 48
4.3.4 Plugin Management . 48

4.4 Summary . 49

5 Conclusions and Future Work 51

A Appendix 54

1
Introduction

1.1 Context

Digital documents seldomly exist on their own, separated from each other. Most
digital documents share direct or indirect associations with other documents. An
association in this context can be defined as a relationship between different el-
ements that share some sort of connection. An example of a direct association
could thus be an actual hyperlink or a reference to another document, while an
indirect association could just refer to the similarity of content. The existence of
these associations, or links as they are called, is essential for maintaining structure
and creating connections between all digital documents. This does not only apply
to local resources stored on a personal computer but also to the immense amount
of documents on the Web. Without these links on the Internet, every web page
would exist in isolation and users would be unable to navigate from one page to
another without manually entering the address of the next page.

Not all of these direct and indirect associations, however, can be fully realised
through current linking possibilities. While most linking solutions used today
provide the basic means to create and visualise hyperlinks, many limitations still
exist. Current methods of linking, for example, allow the owner of a website to
create standard hyperlinks on their web pages via the HyperText Markup Lan-

2 CHAPTER 1. Introduction

guage (HTML). For creating links in the Microsoft Word desktop application,
users can click on the ‘hyperlink’ button to open an interface that assists them in
creating a link to a different section, web page or another document entirely. Links
that are stored in the source document, such as the HTML and Word hyperlinks
we just mentioned, are called embedded links. A link that only allows navigation
from one point to another, but not the other way around, is said to be unidirec-
tional. Considering the World Wide Web (WWW) can be seen as an immense
connected network of documents and web pages, all connected via hyperlinks, it
is interesting to see the widespread use unidirectional and embedded links have
seen. Since the first version of the Hypertext Markup Language, it has been pos-
sible to create these links via the anchor tag (‘<a>’). In Figure 1.1, an example is
presented of a hyperlink on a web page that sends the user to the VUB home page
when clicked.

Figure 1.1: An HTML hyperlink on a web page referring to a different website

HTML hyperlinks have the ability to link to entire web pages and third-party
resources. Via anchors (‘#’), they can even address parts of web pages, but these
anchors are limited to HTML documents only. They cannot be used to link to
specific parts of other document types. For instance, it is currently not possible on
the Web to create a hyperlink leading to the third page of a PDF document.

Document types with some forms of integrated linking, such as Microsoft Word
or PDF documents, provide different ways of defining a hyperlink to a website or
to a part of the document itself. Unfortunately, these forms of integrated linking
still lack a feature allowing the user to link to parts of other document types.
Standard hyperlinks are limited to connecting two entities and they can also only
be traversed in one direction: from the source of the link to the target destination.

While this is a fairly common limitation of document formats and programs today,
more advanced document linking and annotating solutions are being developed.
There have been several attempts to create applications that offer linking and an-
notation properties, yet none of them had significant success.

In an effort to define a standard for linking in XML documents, the World Wide

3 CHAPTER 1. Introduction

Web Consortium1 (W3C) created the XML Linking standard (XLink) [8]. XLink
overcomes the shortcomings of existing linking solutions by offering advanced
hyperlinks such as bi- and multidirectional hyperlinks. With XLink hyperlinks,
multiple snippets of XML documents can be linked with each other. This can be
seen in Figure 1.2 and Figure 1.3.

Figure 1.2: Uni- and bidirectional links

Figure 1.3: Examples of a multi-target link, a multi-source link and a
multi-source, multi-target link

Since the XLink standard is limited to solely linking in XML documents, Signer
and Tayeh have presented an application to create and browse links between dif-
ferent types of documents [28]. At the core of this application lies the Resource
Selector Link (RSL) metamodel [27], a flexible linking model which supports
several advanced linking features, such as bi- and multidirectional links and user
rights management. The RSL metamodel specifies three main concepts (referred
to as entities): resources, selectors and links. While a resource is a reference to a
(local or remote) document, a selector can be specified to address a part of a re-
source. The link concept in this metamodel connects two entities with each other.
An RSL link can then, for example, connect two selectors with each other or a
selector and a resource or a link and a resource, etc. When linking different parts
of different documents, we speak of cross-document linking. The three compo-
nents of this extensible model can also be associated with properties, which allows
applications to add custom features to the model.

1https://www.w3.org/

https://www.w3.org/

4 CHAPTER 1. Introduction

1.2 Problem Statement

The XLink standard possesses several interesting and powerful aspects, such as
the ability to create complex link structures and to separate links from content
via link databases (or linkbases). However, an unavoidable disadvantage of the
XLink standard is that cross-document linking is restricted to XML-based docu-
ments only. The standard makes use of XPointer expressions to navigate through
XML-based document trees and select certain parts. Thus, parts of document
types that are not tree-structured cannot be addressed by the XLink standard. This
limiting factor could be one of the reasons XLink has not attained wide-spread
use and visibility by various linking solutions. Since the XLink recommendation
has been designed with a focus on the linking essentials, it lacks some features
that other hypermedia models do have. In the RSL metamodel, for example, there
is support for access rights management. This makes it possible to define content
ownership and to specify the (in)accessibility of different items to different users.
Another feature provided by the RSL model is context resolvers. An application
can evaluate context resolvers, which are associated with RSL entities (links, re-
sources and selectors), and depending on the context, the entity will be shown
or hidden. For example, a link could contain a context resolver that only makes
it visible/accessible on week days or during the day time. Overlapping selectors
are best explained by imagining a link that selects a full paragraph and another
link that selects just one word inside that previous paragraph. This example is
illustrated in Figure 1.4. In HTML web pages and many other document types,
overlapping selectors are not allowed because the applications do not know which
selector the user desired to use (when clicked on the overlapping selection). The
RSL metamodel provides a solution to this problem by placing each selection on
a different layer. With these features, in combination with its properties, the RSL
metamodel can be considered to be a sufficiently flexible and extensible linking
model. However, the RSL metamodel is not a recommended standard, whereas
XLink is. Standards are important and beneficial in many ways. They have been
incrementally designed to ensure that the best practices for Web development are
implemented. Interoperability between different devices, backwards compatibil-
ity with previous versions also classify as perks of the usage of standards. Since a
linking standard already exists, it is worthwhile investigating how XLink could be
enhanced to possess more features than it initially does and how to support several
key features that are beneficial for cross-document linking. The functionalities
that we would like to enhance XLink with are the ones observed (and previously
mentioned) in the RSL metamodel, namely resolving overlapping selectors, pro-
viding user rights and access rights management, being able to create links from
and to links, and supporting context resolvers.

5 CHAPTER 1. Introduction

Figure 1.4: Document A containing two link sources (a word and a paragraph)
that overlap each other

1.3 Objectives

In this thesis we investigate how the XLink standard can be enhanced for cross-
document linking for any document type, including those that are not XML-based.
In order to do this, we provide a comparison between the XLink standard and
the RSL metamodel which shows the strengths and weaknesses of each of these
linking models. We provide a functional one-to-one mapping between the XLink
and RSL linking models and evaluate a proof of concept implementation in the
cross-document linking and browsing solution, presented in [27]. Support for
various popular document types will be implemented to show the effectiveness of
the extensible plug-in architecture.

1.4 Thesis Structure

In Chapter 2, a detailed background of linking in documents and the two linking
models is presented, followed by an extensive comparison of the XLink standard
and the RSL metamodel. The comparison depicts a clear idea of which features we
want to enrich the XLink standard with. Chapter 3 evaluates several strategies of
enhancing the XLink standard and Chapter 4 revolves around the implementation
of this enhanced XLink standard in a link service. Chapter 5 presents an evaluation
of the enhanced XLink method, conclusions and future work.

2
Background

In this chapter, an overview of the history of linking on the Web and in document
formats is discussed. The advantages and limitations of various linking strate-
gies are evaluated, focussing on two linking models, namely the RSL metamodel
and the XLink standard. An in-depth comparison of these two models is also
presented.

2.1 History of Linking Documents

Around the Second World War, an enormous amount of scientific research was
being conducted and information started sprouting all over. For researchers, this
resulted in increasing difficulty to effectively store, locate, organize and share their
work, as well as finding articles of colleagues relevant to their research fields. In
1945, the Atlantic Monthly published a paper written by Vannevar Bush about a
vision of a device that would be able to store and organize this enormous flow
of information [4]. In this paper, titled As We May Think, Bush described a me-
chanical device designed for digital document management that would connect
information in a way very much like that of the human mind: via associations.
The device, named “Memex”, can be seen in Figure 2.1. The Memex resembles a
regular desk, equipped with several distinctive items. Two touch-sensitive screens

7 CHAPTER 2. Background

can be observed in the centre, a glass plate on the left and a panel with buttons on
the right. The two screens allow users to view the contents stored on the machine
and make annotations to them.

The described links, or trails as they were called in the paper, served the purpose
of connecting information between documents with each other. Trails could be
created by using the screens to view documents and a stylus or keys to mark the
information to be linked. Trails could be given certain tags, which in turn could be
used to retrieve links by entering them via the key pad. The microfilm, on which
the documents were stored, had the added benefit of being removable: as such,
these microfilms could be shared amongst colleagues.

The vision of the Memex shows a remarkable resemblance to the desktop com-
puters we currently use in our everyday life, which is astonishing considering the
technology to realise it did not even exist back then. The notion of creating trails
between documents to link information has led to the rise of several linking ap-
plications. Bush’s vision is often considered the first step towards hypermedia
systems and projects including Project Xanadu [21], Sun’s Link Service [24] and
Chimera [1].

Figure 2.1: The Memex as described by Vannevar Bush in the article “As We
May Think”

8 CHAPTER 2. Background

Project Xanadu, founded in 1965 by Ted Nelson, can be seen as one of the first hy-
pertext projects. Nelson, who evidently also coined the term hypertext, wanted to
break away from the idea that computer systems should be made to simulate phys-
ical paper as best as possible [20]. By attempting to mimic real paper, applications
would also inherit the limitations of paper documents. One of the limitations of
physical documents is that a piece of paper provides a fixed, two-dimensional area
for static content, while a computer system could present data in a completely dif-
ferent way. Books contain a sequential order of pages, but information could also
be presented in a non-sequential way or in a way that makes better use of the
three-dimensional space. A computer could present information in a 3D envi-
ronment or on an endless canvas. According to the team behind Project Xanadu,
the possibilities for a fully potential hypermedia system should not be limited
by trying to mimic the real world. With no other systems supporting linking in
documents, Project Xanadu introduced a new linking concept called transclusion.
Transclusion is the term for the procedure of including parts of documents in other
documents.

“A link connects two things which are different. A transclusion
connects two things which are the same.” — Ted Nelson.

This concept is illustrated in Figure 2.2, where document A contains another doc-
ument (document B). Since document B is transcluded inside the other document,
any changes made to document B would be directly visible in document A.

Figure 2.2: Example of a transclusion where document B is directly embedded in
another document, document A

9 CHAPTER 2. Background

Inspired by the associative trails presented in the Memex, Project Xanadu imple-
mented bidirectional links between documents. As we have mentioned earlier,
bidirectional links are links that allow users to navigate from one point of a hy-
perlink to another and back. This is an important feature as in this matter, link
integrity can be maintained in a setting where documents are constantly changing.
Suppose one has two documents (document A and document B) with a unidirec-
tional link from document A to document B and document B is removed, the link
would be left dangling. It is only logical then that these links are called dan-
gling links. This concept is illustrated in Figure 2.3. If the link would have been
bidirectional, then document B’s embedded link could be followed to find and
update/remove document A’s link so it is not left dangling.

Figure 2.3: Example of the dangling links problem with embedded links

Whereas the idea for Project Xanadu was founded in 1965, an implementation has
only been introduced in 1998 under the name Unadax Green1. This application,
consisting of a front-end and a back-end, could track versions and changes of a
document and visualise these in a side-by-side comparison window.

During the seventies, popular document types were not as rich as they are to-
day but rather plain and simple. In other words, they did not have any linking
features. Text files just stored the text content without any way of linking related
content.The first notion of linking in document formats was introduced by markup
languages Generalized Markup Language (GML) and Scribe [25]. A markup lan-
guage allows documents to include structural and/or representational instructions
for document visualising applications. These instructions, specified in tags, allow
documents to specify their own formatting, which will be interpreted by appro-
priate viewing programs. The kind of linking done by Scribe was not yet about
creating hyperlinks to other documents but rather about providing structural links
that were used to reference local sections and footnotes. These links are called
cross-references. With the actual text of a document being separated from its
formatting, the Scribe markup language introduced the notion of separation of

1http://udanax.xanadu.com/green/index.html

http://udanax.xanadu.com/green/index.html

10 CHAPTER 2. Background

content and visualisation. Structural tags are used to indicate how content should
be structured and can be used to include smaller files in bigger documents. With
this principle, main documents can divide content into different sections and then
include those. This technique is still used a lot in HTML, where other pages,
scripts and stylesheets are included in a main document. The Standard Gener-
alised Markup Language (SGML)2, was the first markup language to interpret a
tag (<link>) that defines a hyperlink to another resource. An example snippet
of an SGML document containing a link can be seen in Listing 2.1.
< a r t i c l e >
< header >
< t i t l e > Smal l SGML document
< a u t h o r s >David S v e r d l o v
< a b s t r a c t > A b s t r a c t o f a s m a l l SGML document
<body >
<block > Th i s i s a s m a l l b l o c k of t e x t c o n t a i n i n g a l i n k e lement , p o i n t i n g t o t h e

< l i n k u r l =" h t t p : / / vub . ac . be ">VUB</ l i n k > w e b s i t e .
</ a r t i c l e >

Listing 2.1: SGML example of a small document

These links, however, are unidirectional and embedded, which means that they
originate in the document they are defined in (the source) and point to a location
(the target) that is unaware of any incoming links. We have previously discussed
the drawbacks of links with these properties. Another issue with these documents
is that ownership is usually required to create a link in a document, since the link
would become embedded in the document itself. Most pages in the early Web 1.0
were static pages with predefined content that could not be edited. In the Web 2.0,
where dynamically generated content became the new way of the Web, many more
possibilities have emerged for users to add their own input, which could include
links [23]. As such, users are still unable to post a link to their personal website
on just any web page, unless there is a dedicated space for users to dynamically
change content, like a forum or a comment section.

Several open hypermedia systems like Chimera [1], Sun’s Link Service [24] and
Intermedia [32] started managing links externally to solve the limitations of hav-
ing them embedded in the documents themselves. An advantage of managing
links separately from content is the complete link overview. This means that an
application knows every participating link of a document, inbound or outbound,
and retrieve the associated resources. An outbound link is a link in a document
that targets another document, while an inbound link is a link coming from another
document. If links were only stored embedded in the documents themselves, an
application would have to open a file, grab the links, look up the target documents

2https://www.w3.org/MarkUp/SGML/

https://www.w3.org/MarkUp/SGML/

11 CHAPTER 2. Background

for their links, etc. Furthermore, managing the links externally allows us to cre-
ate links from documents to which we do not have the access rights. After all,
if documents cannot be accessed, embedded links cannot be inserted. Integrity
of links can also not be guaranteed when links are embedded in the documents
themselves, since when a document would be removed, all links targeting that
document would be left dangling, as can be seen in Figure 2.3. If document B
would be removed, the embedded link in document A would be left dangling.

The first worldwide hypermedia system was founded by Tim Berners-Lee and
is now known as the world wide web (WWW) [2]. The WWW introduced web
pages, written in the HyperText Markup Language (HTML), which could display
elements like text, images and embedded hyperlinks. These hyperlinks can define
direct associations to web pages or parts of web pages. These links only provide
a simple way of linking documents or media types (e.g. images) and there are
several drawbacks to this technique. Unfortunately, the WWW neglected most
of the more advanced features for linking documents. Firstly, HTML links are
unidirectional. When a user clicks on a unidirectional hyperlink on a web page,
they will be directed towards the target but cannot click a link to go back to the
source of the link. However, most browsers do keep a list of visited web pages
and allow users to navigate back to previous pages. While this list allows users to
navigate links backwards, a website still has no way of knowing how many links
are targeting it or where they are located. Secondly, hyperlinks are embedded in
the web pages. They are bound to it and users do not have the required rights to
edit them (for adding their own links, for example). Hyperlinks defined in HTML
can only have one target document and can only be edited by the author of the
source document. It is not possible, for example, to make a link from a source
element to more than one target location. In HTML, an element can only be
the starting source of one link. Unidirectional links prevent the creation of more
complex linking structures.

In order to improve the linking in XML documents, the W3C published the XML
Linking Language (or XLink) [9]. The XLink specification provides a structure to
separate the links from content again. Other hypermedia models such as the RSL
metamodel found their way to multiple hypermedia applications.

More and more sophisticated document formats started emerging, with more fea-
tures and possibilities with every new format. Document formats such as OOXML
and later PDF became popular working formats for text processing but they also
worked with embedded, unidirectional links. Aside from the limitations coming
from the links, these document formats also did not support any form of version
management or access rights management. The next section will review various
linking mechanisms in different document formats and see what is available today.

12 CHAPTER 2. Background

2.2 Linking in Document Formats

Most of the formats that are popular today still only provide limited ways for
creating links between different parts of documents, to parts of other resources or
to entire documents. There are plenty of document formats that can support the
linking to web pages and these links can be presented in various ways, e.g. as a
footnote, as a clickable image in a sideshow, as a hyperlink on a web page, etc.
Table 2.1 lists various document types and their linking mechanisms, which will
be discussed further on.

Format Hyperlink Type Supported Target Resources
HTML Unidirectional web resources, entire third-party documents
LATEX Unidirectional web resources, entire third-party documents

PDF Unidirectional
web resources, entire third-party documents, parts

of PDF documents

XML
Uni-, bi- and

multidirectional
web resources, entire third-party documents, parts

of XML-based documents

DocBook Unidirectional
web resources, entire third-party documents, parts

of other DocBook documents
OOXML Unidirectional web resources, parts of other OOXML documents

Table 2.1: Comparing links in different file types, based on [28]

The most used form of linking is seen in pages on the Web. Web pages can link
internally by targeting different sections of the same website or link externally to
other websites and third-party resources.
<html >

<body >
<p> Come v i s i t t h e <a h r e f =" h t t p : / / www. vub . ac . be ">VUB</ a> </p>

</ body >
</ html >

Listing 2.2: Simple link in HTML

In Listing 2.2, an example of a basic hyperlink of a web page is shown where
the user will be directed towards the VUB website when they click on the word
‘VUB’. The behaviour of the hyperlink can be controlled to a certain degree, such
as forcing the website to be loaded in the current window or to open in a new tab
(depending on browser settings). The example links in Listing 2.3 show how this
can be achieved.

13 CHAPTER 2. Background

<html >
<body >

<a h r e f =" h t t p : / / www. vub . ac . be "> Open l i n k h e r e </ a>
<a h r e f =" h t t p : / / www. vub . ac . be " t a r g e t =" _b l an k "> Open l i n k i n new t a b / window
</ a>

</ body >
</ html >

Listing 2.3: A link that opens in the current tab and one that opens a new
tab/window

We have already mentioned that these links exhibit rather simple behaviour and
they are constrained by several limitations. A possible solution for the limitation
brought forth by unidirectional links would be to create extra links, going from
the target back to the source of the link. This, however, is not always possible.
For example, if you want to create a bidirectional link between your website and
another, you need the access rights of the other page in order to create the link
back to your website. A different problem rises when attempting to create multi-
source hyperlinks in HTML. One could create an identical link at every source
location, but this would create a problem when they need to edit the link (e.g. to
change the destination). That problem being that one would have to manually find
and edit every link, which is not feasible in the slightest.

While PDF documents can contain links to websites, they can also contain cross-
reference links for navigating in the document itself. For example, PDF docu-
ments provide the structure to allow users to jump to a specific page or section by
clicking on the title in the table of contents or to navigate to a reference by clicking
on the citation or to jump to a footnote of a page by clicking on the number of the
footnote. These links can be visualised in different ways by various PDF viewers.
For example they can be made noticeable by changing the cursor icon while the
user hovers above it or by surrounding clickable content by coloured borders.

Aside from the aforementioned document formats, there are many more types of
document formats which provide linking features, whether or not it is internal
or remote linking. In Table 2.1, the linking mechanisms of different file formats
and their abilities is portrayed [28]. What can be deduced from this table, is that
every evaluated document format can link to web resources and to entire party
documents but in a limited, unidirectional way. XML documents are the only
document type that also support bi- and multidirectional links (via XLink). The
problem with unidirectional links is that targeted resources or documents have
no way of knowing that they are being linked to and thus have no way to link
back to the target structures. Another important limitation of embedded links
in HTML pages is that only the author of the document can manage the links.
It is not possible to create custom links in a web resource one does not have

14 CHAPTER 2. Background

permissions for. This is the problem created by embedding links in documents
themselves, since they might only be accessible to a very select group of people.
While most of the aforementioned file formats (except OOXML) can also link to
entire third-party documents, cross-document links to specific parts (or selections
as we will call them) are not supported by their current linking mechanisms. A
PDF document, for example, cannot link to an image in a Word document and a
Word document cannot create a particular link to a selection of text in a TXT file.

2.2.1 Resource Selector Link Metamodel

The Resource Selector Link metamodel allows hypermedia systems to handle ex-
tensibility and store data in a structured way. An application implementing the
RSL metamodel can easily extend itself with new resource types by adding the
corresponding plugins. The RSL metamodel consists of three main parts; re-
sources, selectors and links. Their components are grouped as subclasses of a
more general term entity. This allows us to specify that a link can have multiple
target- and source entities, which in turn can again be links. The RSL metamodel
has been implemented in several hypermedia applications, such as the iServer [26]
and the open cross-document linking service [28].

entity

link

Links

selector

Selectors

resource

Resources

(1,*)(1,*)

(1,1) (0,*)

(0,*) (0,*)

RefersTo

HasTargetHasSource

partition

HasProperties

parameter

Properties
(0,*) (0,*)

HasResolver

contextResolver

Context
ResolversEntities

(0,*) (0,*)

Figure 2.4: RSL metamodel core components, based on [27]

Resources are an abstract concept and represent an existing media type in the
system. This could, for example, be a PDF document, an image or a video. Since
we sometimes only want to link to a part of a resource, the notion of selectors
has been introduced. A selector belongs to only one resource (but a resource can
have multiple selectors) and addresses a part of the resource. There are different
kinds of behaviour amongst selectors, according to the resource type. A selector
for a text file could simply be a start- and end-index, while a selector for an image
could be a rectangle, placed at a certain position in the image. Lastly, there is the

15 CHAPTER 2. Background

third kind of entities; links, which create associations between entities. We can
link two resources, two selectors, a resource and a selector, two links, a link and
a resource, and so on. The RSL metamodel states that a link can have multiple
sources and multiple targets, allowing links with more than two participants.

This metamodel brings a lot of powerful features to Table 2.1: context resolvers
are one of them. A context resolver is a function that can be associated with
an entity (resource, selector or link) and returns a boolean value which indicates
whether or not the entity should be visible. A link can therefore have a different
context resolver on each of its targets, which will be shown depending on the right
circumstances. This allows us to control the link behaviour in different situations.

Properties are also an important factor of the RSL metamodel. As one can see
on the left hand side in Figure 2.4, an entity can have any number of properties.
Rather than having pre-defined (and thus fixed/static) properties in the metamodel,
RSL entities can have properties associated with them in the form of key/value
pairs. This concept contributes to the flexibility of RSL.

The metamodel is also able to manage user rights. For this, it differentiates be-
tween creators, users that have access and users that do not have access. Since
this feature is defined at the entity level, which can be seen in Figure 2.5, an ap-
plication can assign user rights to resources, selectors and links. Each entity is
modelled to be created by only one individual. RSL classifies users as individu-
als or groups, whereby a group can consist of individuals or even other groups.
The relationships between users and entities can be denoted by CreatedBy,
AccessibleTo and InaccessibleTo.

user

Users

parameter

Preferences

group

Groups

entity

Entities

(0,*)

(0,*)

(0,*)
(0,*)

(0,*)

HasMembers

AccessibleTo

individual

IndividualsCreatedBy

InaccessibleTo

(0,*)

(0,*)

(0,*)

(1,1)

partition

Has
Preferences

(0,*)

Figure 2.5: User rights- and access management, based on [27]

16 CHAPTER 2. Background

Sometimes two selectors of a same resource overlap, for example when a first
selection spans over a paragraph and a second selection specifies only one word
within that paragraph. This would be a problem when a user clicks on that word
within the paragraph. In order to resolve which link to follow, the RSL metamodel
introduces layers. Each selector is placed on a different layer and a resource can
have zero to many layers, which can be activated and deactivated to view the
different selectors. An application visualising a resource can thus get all the layers
and provide the user with opens to filter or switch between different layers in case
they overlap.

selector resource
(1,1) (0,*)

RefersTo

layer

Layers

OnLayer |HasLayers|

Selectors Resources

(1,1)

(0,*) (0,*)

(0,*)

layer

Active
Layers

Figure 2.6: Participation of layers in the RSL metamodel, based on [27]

2.2.1.1 RSL Implementations

An open cross-document linking and browsing service has been presented [28].
The link service has been presented as a solution to the limitations of contempo-
rary open hypermedia systems and integrated document linking possibilities. The
application has been designed to easily support current document types, as well
as be extensible for emerging ones. In order to support modularisation of the two
plugins responsible for supporting various document types, the link service makes
use of the Open Service Gateway initiative (OSGi) framework [11]. This Java
framework allows modularisation and dynamic extensibility, so that functionality
can be added to a system without needing to redeploy it. The OSGi is also used
in the Eclipse Integrated Development Environment (IDE) to install new software
modules without the need to redistribute a new version of the application.

17 CHAPTER 2. Background

“The modularity layer of OSGi provides a mechanism for divid-
ing a system into independent modules, known as bundles, that are in-
dependently packaged and deployed and have independent lifecycles”
— OSGi and Equinox: Creating Highly Modular Java Systems [19]

The link service can open documents of supported types by either local visual
plugins or third party applications (such as the Google Chrome3 browser, for ex-
ample). Links can be created via the user interface and they are stored in a local
database. The external managing of links solves the limitations of embedded links,
discussed earlier in this chapter. The application makes use of an RSL metamodel
implementation and this general structure can be seen in Figure 2.7.

Figure 2.7: Internal structure of the linking service, based on [29]

A screenshot of the link service can be seen in Figure 2.8. In this figure, one
can observe three opened documents, namely a text (.txt) file at the top left, a
Wikipedia web page (opened via a third-party viewer, Google Chrome) at the
bottom left, and a PDF document at the right hand side. The link sources and
targets are visualised by yellow highlights. In order to create links, one must first
select a source and the application will present a button to confirm the selection.
(Not visible in the screenshot.)

3https://www.google.com/chrome/

https://www.google.com/chrome/

18 CHAPTER 2. Background

Figure 2.8: Screenshot of the open cross-document linking and browsing service

2.2.2 XLink

XLink or the XML Linking Language is a standard defined by the World Web
Consortium4 in an attempt to improve the linking in XML documents. The first
version of the XLink standard was released in 2001 [9] and was updated 9 years
later to version 1.1 [10], which is also a W3C recommendation and fully back-
wards compatible with version 1.0. This standard was not intended to be used as
a standalone technology but rather as an implementation by other systems. XLink
specifies which attributes need to be present in elements to create valid links. The
XLink namespace must be present in an XML document that wishes to use XLink
attributes. The name is conventionally prefixed by the tag xlink and should have
the following value: http://www.w3.org/1999/xlink

Links formed with valid XLink attributes can be divided into two types: simple
and extended links. These types and other XLink topics will be discussed in the
following subsections.

4https://www.w3.org/

http://www.w3.org/1999/xlink
https://www.w3.org/

19 CHAPTER 2. Background

2.2.2.1 XLink Links

A simple XLink link consists of exactly one source and one target. This type of
link is unidirectional and can best be compared to an HTML hyperlink, which it
was designed to mimic. An example of a simple link embedded in an XML doc-
ument is provided in Listing 2.4. Notice that an element with the xlink:type
attribute transforms the element into the specified value of that attribute. A sim-
ple XLink link is only valid to the XLink standard if it contains the attribute
xlink:type="simple", and an attribute xlink:href pointing to the tar-
get document. In this case, the type of this XLink element is simple, for it is a link
without many possibilities. The example shown in Listing 2.4 presents an XML
document containing customers, where the second customer element contains a
simple link that targets the website of that customer.
<?xml v e r s i o n =" 1 . 0 " ?>
< c u s t o m e r s xmlns : x l i n k =" h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k ">

< c u s t o m e r i d =" 123 ">Asus < / cus tomer >
< c u s t o m e r i d =" 456 " x l i n k : t y p e =" s i m p l e " x l i n k : h r e f ="www. hp . com">HP</ cus tomer >

</ cus tomers >

Listing 2.4: Simple embedded XLink in an XML document

Extended links demonstrate XLink’s ability to create more complex links. An el-
ement with the extended link status, i.e. attribute xlink:type="extended",
is a container for an arbitrary amount of nodes participating in the link. These
sources and targets are defined by means of resources, locators and arcs. A re-
source is a reference to a local file, whereas a locator can reference a remote
document. These resources and locators can be seen as nodes in a graph link
structure, which can be interlinked via arcs. An arc defines a connection between
two labelled locators. It specifies what the source and targets are as well as which
traversal behaviour is linked with this connection. The locators are referenced
via their xlink:label attributes. By defining multiple arcs, an XLink link
can form bidirectional, multi-source and multi-target compositions. The target (or
source) of an arc can also be another link. A simple link is in fact a special form
of an extended link, where there is exactly one arc, coming from the source and
going to the target. In Listing 2.5 we show two examples of extended links in an
XML file.

20 CHAPTER 2. Background

< l i n k i d =" 123 " x l i n k : t y p e =" e x t e n d e d ">
< l o c a t o r x l i n k : l a b e l =" word " x l i n k : h r e f =" word . doc " x l i n k : t y p e =" l o c a t o r " / >
< l o c a t o r x l i n k : t y p e =" l o c a t o r " x l i n k : h r e f =" pdf . pdf " x l i n k : l a b e l =" pdf " / >
< a r c x l i n k : t y p e =" a r c " x l i n k : from=" word " x l i n k : t o =" pdf " / >
< a r c x l i n k : t y p e =" a r c " x l i n k : from=" pdf " x l i n k : t o =" word " / >

</ l i n k >

< l i n k i d =" 456 " x l i n k : t y p e =" e x t e n d e d ">
< l o c a t o r x l i n k : h r e f =" s t e v e . t x t " x l i n k : l a b e l =" p a r e n t " x l i n k : t y p e =" l o c a t o r " / >
< l o c a t o r x l i n k : h r e f =" s a r a h . t x t " x l i n k : l a b e l =" p a r e n t " x l i n k : t y p e =" l o c a t o r " / >
< l o c a t o r x l i n k : h r e f =" p e t e r . t x t " x l i n k : l a b e l =" c h i l d " x l i n k : t y p e =" l o c a t o r " / >
< l o c a t o r x l i n k : h r e f =" l i l l y . t x t " x l i n k : l a b e l =" c h i l d " x l i n k : t y p e =" l o c a t o r " / >
< a r c x l i n k : t y p e =" a r c " x l i n k : from=" p a r e n t " x l i n k : t o =" c h i l d " / >

</ l i n k >

Listing 2.5: Two extended XLink examples

The first link in Listing 2.5 is a single-source, single-target bidirectional link.
There are two locators specified and two arcs are used to create the bidirectional-
ity. The second extended link specifies an arc traversal from each parent to each
child. Since there are multiple locators with the parent label, each one of them
will be taken as a source of the link. Evidentially, this is the same scenario for the
(child) targets.

2.2.2.2 XLink Link Elements

An XLink resource is an element that represents a local file and can be interlinked
via arc traversal (much like normal locators). Resources are identified via the
attribute xlink:type="resource". A resource does not necessarily have
to contain any content: it can also be empty and function as a starting resource
for a link. The resource element can hold role, title and label attributes.
The label attribute is used by arcs to refer to the different resources. Title and
role, however, are semantic attributes, meaning that they optionally specify the
meaning of a resource in a link. This can be done by specifying a link to a schema.

As mentioned above, an XLink locator object is a representation of a document.
Locator elements are recognized via the xlink:type="locator" attribute,
no matter how the XML element itself is named (e.g. loc or locator). At
the minimum, they require the xlink:href attribute to be present, so that the
location of the document is known. If the locator points towards an XML-based
document, an XPointer expression can be appended to the href value to select a
particular element inside the resource. An example inspired by a presentation of
the W3C is shown in Listing 2.6.

21 CHAPTER 2. Background

< l o c a t o r x l i n k : t y p e =" l o c a t o r " x l i n k : h r e f =" h t t p : / / www. w3 . org / # x p o i n t e r (i d (’
b r a d f o r d ’) / l i [3]) " / >

Listing 2.6: Locator element referencing a part of a website via an XPointer
expression

This locator references the third element of a list with id ‘bradford’ on the website
of the W3C. In other cases, a simple pound character (#) can be used to refer to a
part of a document, if the id exists. This is how HTML pages can make references
to part of their documents.
< l o c a t o r x l i n k : t y p e =" l o c a t o r " x l i n k : h r e f =" h t t p s : / / en . w i k i p e d i a . o rg / w ik i / XLink#

E x t e n d e d _ l i n k s " / >

Listing 2.7: Locator element referencing a specific section of a website via native
HTML referencing

Arcs, in the context of linking with XLink, specify the traversal behaviour be-
tween the nodes of a link. These nodes can be either resources or locators. An
arc element is considered a valid XLink arc if it contains the ‘from’ and ‘to’ at-
tributes (i.e. xlink:type="arc", xlink:from and xlink:to). The value
for the ‘from’- and ‘to-’ attributes must be labels from resources and/or locators
located within the same element that forms the extended link. Extra behaviour can
also be specified via the XLink xlink:show and xlink:actuate attributes.
Possible values for these fields are onLoad, onRequest, new, replace and
embed.

2.2.2.3 Linkbases

The XLink standard defines a very practical way for XLink applications to store
and access links from external link databases, called linkbases. When using
linkbases, links are stored externally and there is a healthy separation of links
and content. The term healthy separation refers to the various drawbacks related
to embedded links, which have been mentioned previously. The linkbase must
be an XML file, as stated in the standard. Linkbases make management of links
an easier task since the links in this XML file can easily be read, edited, shared,
exported and imported. An application retrieving arcs from a linkbase must be
cautious for circular link structures. This can occur when a document links to a
second one, the second one links to a third one, and the third one links back to the
first document. An example of a linkbase can be found in Appendix A.6.

22 CHAPTER 2. Background

2.2.2.4 XLink Implementations and Applications

In an attempt to provide a layer between a Simple API for XML (SAX) parser and
Java applications working with XML documents, XLinkFilter has been devel-
oped. It is meant to be an open source project which isolates Java programs from
the specific details of the XLink specification. The code is available for download
on the XLinkFilter website5. Note that the website has last been updated at the
end of 1998, three years before XLink became a W3C recommendation. The fil-
ter is derived from John Cowan’s ParserFilter, which has been removed from their
website. An attempt has been made to inquire about this, but was left unanswered.

SXLink is the XLink implementation and Scheme Application Program Inter-
face [15, 16]. It fully supports the XLink interface and provides an API to process
multiple XLink documents with the Scheme programming language. The API
provides methods for links validation, which could be accurately summarised as
traversing the link’s nodes (resources, locators) to see if they all still exist. The
API can retrieve remote documents through the standard HTTP protocol for this.
SXLink can also be used for link resolution. This is the process of changing
all XLink links to the outbound format, resulting in a so-called resolved docu-
ment. This resolution can be done to improve traversal between documents, as the
source of every related link can be found in the document itself. Another available
SXLink feature is node inclusion, which will substitute the source of a link for the
target document. The output documents are represented in the SXML [14] format,
representing XML files in terms of symbolic expressions.

A lightweight application called xlinkit has also been developed that generates
XLink links from XML resources and a set of rules [22]. The resulting XLink
links are put into a linkbase, which can be browsed by certain applications. Ac-
cording to the paper describing xlinkit, the xlinkit website6 used to contain some
examples and demonstrations but this is no longer the case at the time of writing.

Goate is a HTTP proxy designed to handle the advanced XLink linking features
in standard HTML browsers [18]. The proxy attempts to map XLink features
like bi- and multidirectional links to the simple HTML anchor tags (<a>). To
circumvent the problem that most documents on the internet do not provide write
access, Goate acts as a proxy that transforms documents before they are loaded
and shown in the browser. For multi-target links, Goate creates a pop up list with
the destinations, which allows users to choose where they want to be directed to.
A screenshot of such a pop up list can be seen in Figure 2.9.

5http://www.simonstl.com/projects/xlinkfilter/
6http://www.xlinkit.com

http://www.simonstl.com/projects/xlinkfilter/
http://www.xlinkit.com

23 CHAPTER 2. Background

Figure 2.9: Screenshot of the Goate destination pop up lists, based on [17]

Just like Goate, XLinkProxy is a web application that makes use of an HTTP
proxy filter to support the functionalities of XLink in web browsers [5]. It uses
external linkbases and alters the HTML documents with links while they are being
loaded. A screenshot of the XLinkProxy interface can be seen in Figure 2.10. The
figure shows an intuitive user interface in the left frame, where a user can add
links, remove links and add linkbases.

Figure 2.10: Screenshot of the XLinkProxy interface, figure from [12]

24 CHAPTER 2. Background

Another big XLink application is the open source tool called the Amaya web edi-
tor. The free Amaya browser, made possible by the W3C, allows users to directly
annotate and/or edit documents in the browser. The motivation behind its creation
was to combine as many standards as they could, including the XLink standard.
A screenshot of the tool creating an annotation is provided in Figure 2.11.

Figure 2.11: Screenshot of the Amaya browser creating an annotation

2.2.2.5 XLink Limitations

We have already discussed some current limitations of the XLink specification.
The most prominent problem being that XLink has been designed to navigate
through XML-based documents, i.e. document types that have a coherent tree
structure. There is no provided support for other file types, such PDF files, music
or videos. In Section 3 we propose a solution to this limitation. XLink does allow
overlapping sources yet does not specify any way of displaying this to the viewer
or resolving which one is activated first. Unfortunately, XLink has not been able
to reach the surface of the Web and remains unknown to many. Nonetheless, there
are several notable implementations of XLink, with its biggest documented use
by the Extensible Business Reporting Language (XBRL) and the Amaya browser.

25 CHAPTER 2. Background

2.2.2.6 XPointer

The XPointer [7] standard was designed to address parts of XML-based docu-
ments. It uses XPath [6] expressions to navigate in these documents. Elements,
or ranges, can be selected via their ID or via relative position towards each other
and/or their parents. An example of a simplified linkbase is shown in Listing 2.8.
Via the XPointer expression shown in Listing 2.9 an application can retrieve the
link element from the linkbase with identification number 1234.
< l i n k b a s e >

< l i n k i d =" 1234 " . . . / >
< l i n k i d =" 2345 " . . . / >
< l i n k i d =" 3456 " . . . / >

</ l i n k b a s e >

Listing 2.8: Example of a simplified linkbase layout

x p o i n t e r (i d (" 1234 "))

Listing 2.9: XPointer expression grabbing an object via their identification
number

In order to navigate in a valid XML-like structured document, one can also use
an XPointer expression to follow a certain path of elements. When such paths
start with one forward slash (/), the evaluation begins at the root of the document.
A double forward slash (//) can start from any point in the document that is still
valid for the whole expression. Instead of the name of an element, an index N can
be given to select the n-th child of an element. Note that some expressions can
produce a collection of results rather than a single item.
x p o i n t e r (/ l i n k b a s e / l i n k)
x p o i n t e r (/ / a rc)
x p o i n t e r (/ 1 / 1)

Listing 2.10: Different XPointer expressions

XPointer is currently not supported by browsers but it can be used via XLink in
specific situations. If the target (or locator) of an XLink link points to an XML
document, an XPointer expression can be appended to select a part of the docu-
ment. This is accomplished by adding #xpointer(*) to the end of the URL
and replacing the asterisk by a valid XPointer expression. An example is given in
Listing 2.11, where a hyperlink is made to target the element in a linkbase with id
1234.
<a x l i n k : t y p e =" s i m p l e " x l i n k : h r e f =" l i n k b a s e . xml# x p o i n t e r (i d (’ 1 2 3 4 ’)) "> Link 1234

</ a>

Listing 2.11: XPointer expression used to reference a link by their ID

26 CHAPTER 2. Background

The XPointer specification has a built-in fail-safe mechanism that allows us to pass
multiple expressions (which are evaluated from left to right), which will move
to the next expression if the first one fails. These expressions are divided by
regular spaces. This mechanism could prove to be useful for specifying a backup
selection in case the first expression should fail. Suppose a linking application
contains a link to a selection of a document. The application could append a fail-
safe expression that selects the whole document, in case the first expression could
not address the selector. Listing 2.12 demonstrates how a selector could then be
structured. The example depicts a scenario of a selector that wants to target the
selector of another link. If this XPointer expression should fail, the entire link
would then be addressed.
< s e l e c t o r x l i n k : t y p e =" s e l e c t o r "

x l i n k : h r e f =" l i n k b a s e . xml# x p o i n t e r (/ l i n k [i d = ’ 1 2 3 4 ’] / s e l e c t o r [0])
l i n k b a s e . xml# x p o i n t e r (/ l i n k [i d = ’ 123 4 ’]) " / >

Listing 2.12: Example of a selector addressing another selector, with a fail-safe

2.3 Comparison of RSL and XLink

In this section, we present a comparison between the RSL metamodel and the
XLink standard. The criteria for this comparison are summarised in Table 2.3
and include various features of each of the models. As already discussed in Sec-
tion 2.2.1, it is clear that the RSL metamodel provides a many features for de-
scribing links. It supports advanced links like bidirectional links and links with
multiple sources and multiple targets. Since RSL links connect entities, and links
themselves are entities, links that connect links with each other are also possible.
The concept of these links over links is shown in Figure 2.12. The central link ob-
ject, coloured in blue in the figure, connects two other links (which are coloured
in green). One can observe that each link object is an entity (illustrated via the
dotted lines), which allows such structures to be formed.

27 CHAPTER 2. Background

Figure 2.12: Main (blue) RSL link connecting two other links (green)

The same concept for a possible XLink implementation can be seen in Figure 2.13.
In the figure three links in a linkbase are visualised. Once more, the colour blue
is used to highlight the main link and green the other links. To connect the other
links, the locators of the main link can refer to the linkbase file and the ID’s of the
links inside. The linkbase principle allows for XLink links to be stored out of line
and to be shared via the accessible XML files.

Figure 2.13: Main (blue) XLink link connecting two other links (green)

28 CHAPTER 2. Background

As the properties can be associated with any entity, seen in Figure 2.4, the RSL
model can be easily extended with extra features. If, for example, an application
using the RSL metamodel wants to add the features of expiring links (links that
will be deleted after a certain period of time), an extra property could be added to
the ‘entity’ element, named expires-at.

For the powerful W3C recommended linking model XLink, these properties are
not part of the supplied set. Despite the big limitation that XLink was created
for linking in XML-based documents, its strength partially comes from the ability
to create complex linking structures via locators and arcs. The locators and arc
elements can be viewed as nodes and arcs of mathematical graphs. As an XLink
link structure can contain an arbitrary amount of locators and arcs, the links can
have any form from simple single-source and single-target to multi-source and/or
multi-target. Even though the RSL metamodel does also allows the creation of
bi- and multidirectional links, it does not suffer from the limitation of not being
able to support every document type. A large amount of document types cannot
describe a part of themselves via XPointer expressions (which are used by XLink).
Table 2.2 lists various types of document types and how a corresponding selection
can be made.

Document Type Selector Format
Text Start- and end- index

Image
X,Y position from top-left corner, width and height of

rectangle
Video Start- and end- time
PDF Page index, X,Y position, width and height of rectangle
XML XPointer / XPath expression

Excel
Expression selection various row/column/cell

combinations

Table 2.2: Different selection strategies in various document types

Through the user management component supported in the RSL metamodel, a link
service implementing RSL can introduce the functionality of user access rights.
Via these access rights, users can have ownership of entities (such as links) and
an entity can also associate which users can or cannot access it. A scenario is
sketched in Figure 2.14 where an individual (Ind. C) created two links. One link
that is accessible to anyone in one of the two groups and on that is only accessible
to another individual (Ind. D). Individual D in this example does not have access
rights to the first link created by individual C. User rights introduce many possi-
bilities in regards to individual users and groups. A system that can distinguish

29 CHAPTER 2. Background

or manage rights differently per person can provide the option to create private,
restricted and fully public links. In the XLink standard this functionality is un-
fortunately not provided. All standard XLink links would thus be available to all
users.

Figure 2.14: Example of links with different user access rights

Both linking models store links externally. In RSL a link simply points to other
source- and target entities. Figure 2.13 an XLink linkbase example shows the
effective use of a linkbase. Both linking models perform the good behaviour of not
embedding links in the documents themselves, but rather storing them separately.
The disadvantages of embedded link have already been discussed in Section 2.1
and will not be repeated in this section. For the comparison it suffices to note that
both models support external links.

Extensibility for the features (and similar ones) is not specified in the XLink rec-
ommendation but attributes and elements may be added to XML elements con-
taining XLink links, as long as they remain valid according to the standard. By
defining specific attributes, extra functionality can also be added to XLink links
without breaking the important notion of being a standard.

The limitation of XLink only being able to link in XML-based documents explains
why it is infrequently used. Furthermore, the lack of special built-in features is
another indicator. By making use of the possibility to add elements and attributes
to XLink links, the XLink standard might gain a lot more appreciation than it has
so far garnered.

An overview of the previously mentioned comparison features can be found in
Table 2.3.

30 CHAPTER 2. Background

Feature RSL metamodel XLink standard
Advanced (complex) links Supported Supported
Solution for overlapping

selectors
Yes, via layers

Supported but no solution
provided

Support for every

document type
Yes

No, XML-based document
types only

Separating links from

content
Yes Yes

Recommended standard No Yes
Usage since introduction Frequent Seldom

Extensibility Yes Yes, via additional attributes

Table 2.3: Comparison of RSL and XLink features

2.4 Summary

Throughout this chapter, we have looked at the history of linking in documents.
Early document types started with no linking features, after which more and more
features were introduced. We discussed that embedded and unidirectional links
are too limited for the realisation of more advanced links, such as bi- and multidi-
rectional, multi-source and multi-target links. Open hypermedia projects have in
their own way tried to change the way links are used and created, for example by
storing the links outside of the documents themselves. However, this always in-
troduced new limitations of their own. We have seen the emergence of the XLink
standard, published by the W3C, and how its limitation (only being able to link to
XML-based document types) has prevented the standard from being more widely
used. The RSL metamodel has proven to be a powerful, extensible and useful
linking model with a lot of extra features. We compared the XLink standard and
the RSL metamodel and concluded that the XLink standard has a lot of potential
if it were able to link to every document type.

3
An Enhanced XLink Standard

In this chapter we discuss several strategies of how the XLink standard can be
enhanced to be used for cross-document linking in all document types. Not only
analysing the advantages and disadvantages of each approach, an investigation
will also be conducted on how important linking features presented by the RSL
metamodel can be included.

3.1 Embedded XLink Links

The first stage of research revolved around inserting the enhanced XLink links
in the resources where they originate from. Several document formats already
adopted the technique of storing links inside the documents themselves, including
Microsoft’s Office Open XML (OOXML), the OpenDocument [31] (ODF) ISO
standard and DocBook [30]. An example of an embedded link in the DocBook
format, provided by DocBook: The Definitive Guide [30], is shown in Listing 3.1.

32 CHAPTER 3. An Enhanced XLink Standard

<!DOCTYPE s e c t 1 PUBLIC " − / /OASIS / / DTD DocBook XML V4 . 1 . 2 / / EN"
" h t t p : / / www. o a s i s−open . o rg / docbook / xml / 4 . 1 . 2 / docbookx . d t d ">

< s e c t 1 >< t i t l e >Examples o f < sgml tag >Link </ sgml tag > </ t i t l e >
<para >
In t h i s s e n t e n c e < l i n k l i n k e n d = ’ n e x t s e c t ’> t h i s </ l i n k > word i s
h o t and p o i n t s t o t h e f o l l o w i n g s e c t i o n .
</ para >
<para >
There i s a l s o a l i n k t o t h e s e c t i o n c a l l e d
<quote >< l i n k l i n k e n d = ’ n e x t s e c t ’ end te rm =" n e x t s e c t . t i t l e " / > </ quote >
i n t h i s s e n t e n c e .
</ para >
< s e c t 2 i d = ’ n e x t s e c t ’>< t i t l e i d = ’ n e x t s e c t . t i t l e ’>A S u b s e c t i o n < / t i t l e >
<para >
Th i s s e c t i o n on ly e x i s t s t o be t h e t a r g e t o f a c o u p l e o f l i n k s .
</ para >
</ s e c t 2 >
</ s e c t 1 >

Listing 3.1: Example of a link in DocBook, based on [30]

Aside from being XML-based document types that do not utilise the XLink stan-
dard, the aforementioned document types also only support simple hyperlinks.
The beneficial features such as bi- and multidirectional links are completely ne-
glected.

Embedding advanced XLink hyperlinks in XML-based documents would be a
great improvement of the way links can currently be created in documents. An
example of an extended link in an HTML document is shown in Listing 3.2. In this
example, an image is participating in an extended link that targets two websites.
If we follow the code from top to bottom, we find an HTML document with an
XLink link in it. Inside the link are three locators and one arc. The first locator
actually doubles as a standard img tag, showing a picture. The following two
locators are links to different websites and the arc links the image to the two
websites.
<html xmlns : x l i n k =" h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k ">
< l i n k x l i n k : t y p e =" e x t e n d e d ">

< l o c x l i n k : t y p e =" l o c a t o r " x l i n k : l a b e l ="T" h r e f ="www. vub . ac . be " / >
< l o c x l i n k : t y p e =" l o c a t o r " x l i n k : l a b e l ="T" h r e f ="www. u l b . ac . be " / >
< a r c x l i n k : t y p e =" a r c " x l i n k : from="F" x l i n k : t o ="T" / >

</ l i n k >
</ html >

Listing 3.2: Example of an image on a web page linking to two websites

This method does come with its limitations. As it requires inserting XLink links,
the source documents must be XML-based documents and they must be editable
by anyone. Thus, it does not provide a valuable solution to the cross-document
linking problem (i.e. being able to link between different parts of different docu-
ments).

33 CHAPTER 3. An Enhanced XLink Standard

Because the links are embedded, documents containing link targets cannot know
which documents are linking to them. The targeted document is unaware of the
documents containing links to it. In the example shown in Listing 3.2, the two
websites do not know of all the inbound links and can therefore not display any
indication that they are being linked to. In order to find all the incoming links,
every known document would have to be searched for links, which is practically
impossible for obvious reasons. Furthermore, if an application wants to embed
links into documents, it will need access rights, which they are usually not granted.
The VUB website is a good example of this: one cannot simply edit it to add a
link in the code.

Since this technique does not fully support cross-document linking with XLink,
we do not go into how other rich linking features (as seen by the RSL metamodel)
could be achieved. Instead, the next section entails an overview of storing links in
different documents.

3.2 Virtual Documents

To solve the limitations introduced by the first approach, we can extract the links
and selectors from the documents themselves and store them in different loca-
tions. This can be realised via XLink linkbases, an important part of the XLink
standard. In addition to these linkbases, for each linked document we store some
additional information like the document’s path, filename, as well as its selectors.
In this approach, the linking service can resolve a link by accessing the linkbase
and reading the virtual documents for the location and selectors of the associated
resources. With the file location and selectors known, an application can then
open the actual documents and highlight the obtained selectors.

To better explain this process, an example is shown in Figure 3.1, where the virtual
documents are coloured in a light-blue color and an example of their contents is
given in the yellow note.

34 CHAPTER 3. An Enhanced XLink Standard

Figure 3.1: Storing information in virtual documents

For every new link or selector an application needs to add information to existing
virtual documents or create new ones if they do not already exist. The manage-
ment of this system can get quite tedious and will require a lot of space when
the service is scaled towards a large number of documents and links. Figure 3.1
depicts a lot of interactive steps for simply displaying one XLink.

This approach even works for non-XML-based document types because we store
the selector and other data in a virtual document that is an XML file itself. Be-

35 CHAPTER 3. An Enhanced XLink Standard

cause of this, a selector can make use of XPointer expressions to grab a certain
selector, regardless of the document type it is from. A scenario is presented in
Listing 3.3, Listing 3.4, and Figure 3.2, where a linkbase contains a link between
two selections of a PDF document. The selectors, which for a PDF document are
made up of a page index, an X-position, a Y-position, a width and a height value,
are each given an ID when stored in the corresponding virtual document. The
href attribute of the link locator elements (seen in Listing 3.4) is pointing to the
selector information via an XPointer expression.

Figure 3.2: Visualisation of the example of a link using virtual documents

<?xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8" s t a n d a l o n e =" yes " ?>
< v i r t u a l >

<id >123 </ id >
<path >c : / u s e r s / u s e r / documents / f i l e . pdf < / pa th >
< f i l e n a m e > f i l e . pdf < / f i l e n a m e >
<mime> a p p l i c a t i o n / pdf < / mime>
< s e l e c t o r s >

< s e l e c t o r >
<id >1 </ id >
<page >1 </ page >
<x >0 </x>
<y >0 </y>
<width >100 </ width >
< h e i g h t >100 </ h e i g h t >

</ s e l e c t o r >
< s e l e c t o r >

<id >2 </ id >
<page >50 </ page >
<x >0 </x>
<y >0 </y>
<width >100 </ width >
< h e i g h t >100 </ h e i g h t >

</ s e l e c t o r >
</ s e l e c t o r s >

</ v i r t u a l >

Listing 3.3: How a virtual document could look like

36 CHAPTER 3. An Enhanced XLink Standard

<?xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8" s t a n d a l o n e =" yes " ?>
< l i n k b a s e >

< l i n k x l i n k : t y p e =" e x t e n d e d ">
< l o c a t o r x l i n k : t y p e =" l o c a t o r " x l i n k : l a b e l ="F" x l i n k : h r e f =" v i r t u a l / v i r t u a l 1 2 3 .

xml# x p o i n t e r (/ / s e l e c t o r / i d =1) " / >
< l o c a t o r x l i n k : t y p e =" l o c a t o r " x l i n k : l a b e l ="T" x l i n k : h r e f =" v i r t u a l / v i r t u a l 1 2 3 .

xml# x p o i n t e r (/ / s e l e c t o r / i d =2) " / >
< a r c x l i n k : t y p e =" a r c " x l i n k : from="F" x l i n k : t o ="T" / >

</ l i n k b a s e >

Listing 3.4: Linkbase link accessing selectors via the virtual document technique

3.3 Links with Extra Attributes

We can eliminate the need to look up a file location from the path in the virtual
documents by storing the real location in the links themselves as added metadata.
Bullet 4.4 of the XLink standard1 states that elements with XLink attributes are
allowed to add non-XLink attributes, while remaining a valid standard. We use
this fact to append all the data from the virtual documents in the elements con-
taining the links in the linkbase. While we can just create attributes to specify the
URI, the name and the MIME type, the problems remains of how to specify the
selector data, since most file types rely on different selection strategies.

We have investigated whether or not it is possible to specify the selector data via
XPointer expressions. Unfortunately, this standard has been specifically designed
to navigate through the structure of parsed XML and tree-structured documents.
There are no possible arguments that could be passed to an XPointer expression
that could make it address parts of documents that are not XML-based. As we
cannot extend XPointer for navigating non-XML based document types, this idea
was disregarded as a possible solution. Looking into the XML language, a special
node type which can hold instructions for an application was found, called Pro-
cessing Instructions (PI). These special XML nodes can be retrieved via special
XQuery [3] and XPath expressions. An XML processor ignores these instructions
because they are meant for the application and the processor would not be able
to make sense of them. Processing instruction elements start with “<?” and end
with the “?>” tag. A processing instruction is made up of a name and a target.
Since these instructions must be queried and cannot be retrieved in context, the
name should be an unique identifier. This can be achieved by formulating an al-

1https://www.w3.org/TR/xlink/#integrating

https://www.w3.org/TR/xlink/#integrating

37 CHAPTER 3. An Enhanced XLink Standard

gorithm to name the processing instructions, like concatenating the link ID, the
locator label and a tag (selection). We can then retrieve the selector data via
XPointer expressions. A link using PI to define selector information could then
look like the snippet presented in Listing 3.5.
< l i n k b a s e xmlns : x l i n k =" h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k ">

< l i n k i d ="WORDtoPDF" x l i n k : t y p e =" e x t e n d e d ">
< l o c a t o r x l i n k : t y p e =" l o c a t o r " x l i n k : h r e f =" word . doc " x l i n k : l a b e l =" from " / >
< l o c a t o r x l i n k : t y p e =" l o c a t o r " x l i n k : h r e f =" f i l e . pdf " x l i n k : l a b e l =" t o ">

<?WORDtoPDF_to_SELECTOR x=50 y=100 w=200 h=300 ?>
</ l o c a t o r >
< a r c x l i n k : t y p e =" a r c " x l i n k : from=" from " x l i n k : t o =" t o " / >

</ l i n k >
</ l i n k b a s e >

Listing 3.5: Linkbase example

Then, from the application we can query the selector information from the link by
checking each locator if they contain a processing instruction. The query for the
previously described selector will take the following XPointer expression:
p r o c e s s i n g−i n s t r u c t i o n () [name () ="WORDtoPDF_to_SELECTOR"]

Listing 3.6: Processing Instruction example

This method, however, also suffers from a couple of drawbacks, such as the fact
that we need to be able to validate the processing instructions for validity and
security. While it is possible and good practice to validate an XML file (such as a
linkbase) via a schema definition (.XSD file), processing instructions are simply
ignored by the validator and can therefore present a risk factor when its code is
executed in the application. This leads us to embedding the selector metadata in
the link itself as extra attributes. Since the data required by selectors of different
document types can vary, the validating XML schema must be able to distinguish
these differences. For this, we make use of XML instances, which will specify
which attributes are needed, depending on the value of the MIME type.

In order to have a complete mapping of the enhanced XLink standard with the
RSL functionality, our proposed solution will need to support the same features.
We now discuss those features, which have also been described in chapter 2, fol-
lowed by a section about the validation schema and its extensibility.

3.3.1 Overlapping Selectors

In the RSL metamodel [27], the concept of layers has been introduced to handle
the problem of certain selectors overlapping each other. An example is that a
paragraph could be the anchor of one selector and a word inside that paragraph

38 CHAPTER 3. An Enhanced XLink Standard

could be the anchor of another selector. If that word would be activated (clicked),
we would have to resolve which link the user meant to follow. The XLink standard
does allow selectors to span over the same content but provides no solution for
resolving the links. We tackle the problem of overlapping links in the same way
the RSL metamodel does: by placing each selector on a different layer. In a
linkbase we can assign a new layer level as an additional attribute to a newly
created link or selector. This way an application can retrieve the layer attributes
and find an appropriate way to visualise it.

Listing 3.7 shows a link in a linkbase with two locators that overlap. The first
locator (of a text file) selects all characters between index 200 and 540, whereas
the second locator selects interval 290 to 300, which causes overlap with the first
one. Each locator element has received a different value for the layer-attribute so
the application can handle it.
< l i n k b a s e xmlns : x l i n k =" h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k ">
< l i n k x l i n k : t y p e =" e x t e n d e d ">

< l o c a t o r x l i n k : h r e f =" u r l / f i l e . t x t " x l i n k : l a b e l =" t e x t S e l e c t P a r a g r a p h " l a y e r =" 14 ">
< s e l e c t o r x s i : t y p e =" t e x t _ p l a i n ">

<from >200 </ from >
<to >540 </ to >

</ s e l e c t o r >
</ l o c a t o r >

< l o c a t o r x l i n k : h r e f =" u r l / f i l e . t x t " x l i n k : l a b e l =" t e x t S e l e c t W o r d " l a y e r =" 15 ">
< s e l e c t o r x s i : t y p e =" t e x t _ p l a i n ">

<from >290 </ from >
<to >300 </ to >

</ s e l e c t o r >
</ l o c a t o r >

</ l i n k >
</ l i n k b a s e >

Listing 3.7: Introducing layers to XLink locators

3.3.2 Links of Links

In the RSL metamodel every link is modelled as an entity. In this matter, a link can
have another link as a target or as a source. This feature can also be supported by
our solution because the links are stored in a linkbase, which is an XML document
and can be pointed at via an XPointer expression. To create a link of links, the
locators have to reference the linkbase (and in particular the ID of the wanted
link). In the Listing 3.8, we create a link from an image to the ‘word-to-pdf’ link
defined in Listing 3.5. Alternatively, links that link one link to another are also
possible.

39 CHAPTER 3. An Enhanced XLink Standard

< l i n k b a s e xmlns : x l i n k =" h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k ">

< l i n k i d =" IMGtoLINK" x l i n k : t y p e =" e x t e n d e d ">
< l o c a t o r x l i n k : t y p e =" l o c a t o r " x l i n k : h r e f =" image . j p g " x l i n k : l a b e l =" from "

/ >
< l o c a t o r x l i n k : t y p e =" l o c a t o r " x l i n k : h r e f =" l i n k b a s e . xml#WORDtoPDF" x l i n k :

l a b e l =" t o " / >
< a r c x l i n k : t y p e =" a r c " x l i n k : from=" from " x l i n k : t o =" t o " / >

</ l i n k >

< l i n k i d =" LINKtoLINK " x l i n k : t y p e =" e x t e n d e d ">
< l o c a t o r x l i n k : t y p e =" l o c a t o r " x l i n k : h r e f =" l i n k b a s e . xml#IMGtoLINK" x l i n k :

l a b e l =" from " / >
< l o c a t o r x l i n k : t y p e =" l o c a t o r " x l i n k : h r e f =" l i n k b a s e . xml#WORDtoPDF" x l i n k :

l a b e l =" t o " / >
< a r c x l i n k : t y p e =" a r c " x l i n k : from=" from " x l i n k : t o =" t o " / >

</ l i n k >

</ l i n k b a s e >

Listing 3.8: Creating links that connect other links

The links in the above linkbase create a structure that can be seen in Figure 3.3.

Figure 3.3: Visualisation of a link linking links

3.3.3 Data Ownership and Access Rights Management

The XLink specification lacks any internal support for data ownership manage-
ment. As we have mentioned before, XLink does allow additional (non-XLink)
attributes to be present in elements with XLink attributes, without impairing its
standard status. For data ownership, we can manage a database of users and
groups (in the same way that RSL handles this). The same is applicable to ac-
cess rights: these can be specified by defining them in the metadata. Listing 3.9
shows an example linkbase with a public and a semi-private link.

40 CHAPTER 3. An Enhanced XLink Standard

< l i n k b a s e xmlns : x l i n k =" h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k ">

< l o c a t o r x l i n k : t y p e =" l o c a t o r " x l i n k : c r e a t e d B y =" 111 " a c c e s s i b l e T o =" 1 " / >

< l i n k i d =" PUBLIC_link " x l i n k : t y p e =" e x t e n d e d " c r e a t e d B y =" 127 " a c c e s s i b l e T o =" 1 "
>
<!−− i f 1 were t o b e l on g t o a p u b l i c u s e r group −−>

< l o c a t o r x l i n k : t y p e =" l o c a t o r " x l i n k : h r e f =" word . doc " x l i n k : l a b e l =" from " / >
< l o c a t o r x l i n k : t y p e =" l o c a t o r " x l i n k : h r e f =" f i l e . pdf " x l i n k : l a b e l =" t o " / >
< a r c x l i n k : t y p e =" a r c " x l i n k : from=" from " x l i n k : t o =" t o " a c c e s s i b l e T o =" " / >

</ l i n k >

< l i n k i d =" PRIVATE_link " x l i n k : t y p e =" e x t e n d e d " c r e a t e d B y =" 127 " a c c e s s i b l e T o ="
52 "> <!−− 52 might be a s p e c i a l s e l e c t e d u s e r s group −−>

< l o c a t o r x l i n k : t y p e =" l o c a t o r " x l i n k : h r e f =" word . doc " x l i n k : l a b e l =" from " / >
< l o c a t o r x l i n k : t y p e =" l o c a t o r " x l i n k : h r e f =" f i l e . pdf " x l i n k : l a b e l =" t o " / >
< a r c x l i n k : t y p e =" a r c " x l i n k : from=" from " x l i n k : t o =" t o " / >

</ l i n k >
</ l i n k b a s e >

Listing 3.9: User- and access rights

In Listing 3.9, we see a createdBy field which resembles the identifier of the
user. The implementation of these identifiers is left to the application using this
linking model. They can then also select the users or user group which can access
the content of the link. When the user chooses the target group from an interface,
the group identifier number is determined and inserted by the system.

3.4 XML Schema

In terms of integrity, we have created one master XML schema (XSD) that defines
what valid links must resemble. It specifies exactly how links in the linkbase must
be formed, which are valid and which are not. In order to comply to the W3C
XLink standard, the links, resources, locators and arcs must provide the required
XLink attributes. These are imported in the master schema via the xlink names-
pace (see Section 2.2.2). In addition to the standard attributes, the extra metadata
attributes enhancing XLink are also specified in the schema. Links, resources,
locators, and arcs can each specify the following attributes: accessibleTo,
inaccessibleTo, createdBy. Additionally, the layer attribute is also
available for selectors. The schema can be used to validate linkbases upon im-
porting/exporting XLink links or to check the integrity of an active linkbase. We
dive deeper into the exact creation of this schema in section 4.1.

41 CHAPTER 3. An Enhanced XLink Standard

3.4.1 Selector Plugins

Different file types may have different versions of how they select parts of their
documents. Also, emerging document formats would require a way to be able
to be integrated into the system. We support this feature in the master schema
by having an abstract selector type. This abstract selector validates elements and
attributes that are shared for every document type. A new document type plugin
schema can then extend this type with its own, custom attributes. We refer to the
Appendix A.2 for example plugin schemas. In the linkbase, selectors can specify
the type of the selector via xsi:type. The name of this selector type would
then represent the MIME type of the file type it is meant for, with the limitation
that forward slashes are prohibited in XML CNAME values. We handle this by
substituting the forward slash with an underscore.

3.4.2 Extending the Master Schema

In order to support a new document type selector in the master schema, a type spe-
cific schema must be injected into the master schema. This can be done via eX-
tensible Stylesheets Language Transformations (XSLT) [13]. The master schema
will include a schema of document type specific selectors and this schema will be
transformed via a XLink plugin tracker (see Chapter 4). The XSLT code for this
injection can be seen in Appendix A.4. Removing a plugin from the schema is
also possible with a different XSLT code, which can be found in Appendix A.5.
Note that the tag ###LOCATION### is where the application should substitute
the location of the plugin schema.

3.4.3 Schema Plugins

The schema plugins must follow certain specifications in order to be valid. First,
they must be valid XML schema definitions and secondly, the abstract selector
class must be subclassed. For a proof of concept, two representative file types
(PDF and TXT) selectors are presented in Appendix A.2. The two schema plug-
ins each specify the MIME type of their respective document format as the name
of their type and then extend the abstractSelector with their selector at-
tributes. The plugin for text documents specifies two extra attributes, from and
to, which specify a selection in a text document. The PDF selector requires a
page index, an X and a Y position and a width and length of the desired rectangle.
As we can see from the two examples, creating schemas for new document types
is relatively easy and requires little code.

42 CHAPTER 3. An Enhanced XLink Standard

3.5 Summary

In this chapter we have investigated the possibilities for enriching the XLink stan-
dard with features of the RSL metamodel. These features include linking function-
ality such as user rights management, context resolver handling and overlapping
selector resolution. In the first approach, we suggested the embedding of XLink
links in different document formats. Unfortunately, this resulted in several hard
limitations such as requiring the access rights to edit the documents. Apart of
the access right, this approach is still limited to XML-based document formats,
since only these are able to integrate the XLink links. For these limitations, we
explored the idea of creating one XML document per resource, containing the
necessary linking information. These XML documents, which we called virtual
documents, stored information such as the filename, MIME type, location and se-
lectors of the associated resource. In order to create an XLink link between two
resources, an application could then refer to the appropriate selector (stored in the
virtual XML document) by means of an XPointer expression.

This approach, however, introduced a large amount of steps in the creation of a
simple link and the maintenance of these virtual documents would not scale well
in an application with an immense amount of links and resources. Further research
allowed us to drop the virtual documents, by moving their data into the links as
additional attributes. The aforementioned RSL features can also be supported in
the links by thoughtfully defining which attributes will be used for what. The
final solution then consists of having all the links in linkbases and the extra data,
such as the selector information and the RSL features, is embedded in the links
themselves via attributes. The validation of these enhanced links can be performed
via an XML schema definition, created for the enriched XLink links, which aim
to support existing as well as emerging document formats.

4
Implementation

In this chapter we will elaborate on the implementation of the XLink enhanc-
ing solution and its integration with the open cross-document link service [28].
The XSD schema that defines and validates our enhanced XLink links will be ex-
plained in greater detail, together with the place where document plugin validators
are added. Furthermore, the Java implementation for the mapping (via converters)
in the application will be discussed.

4.1 Master Schema

The XML schema definition (XSD) document, which in this context will be re-
ferred to as the master schema, lies at the basis of the implementation. The final
version of the master schema can be found in Appendix A.1. The core of this
schema has been created with the requirements of valid XLink links in mind.
Conforming to the XLink standard, all the required elements and attributes are
stated in the schema. The attributes that enable the enriched linking features
(e.g. user access right, layers, ...) have been added in the basic schema. As
we have investigated in the research phase, the metadata required for and by
selectors will be stored as additional attributes of the element that carries the
xlink:type="selector" attribute. The complex type declaration for the

44 CHAPTER 4. Implementation

selector element has been defined as an abstract element that contains several
common attributes, which are used by every selector (regardless of the document
type). Selector schemas specific for new or different document types must extend
the abstract base class in order to be correctly used in linking applications that con-
form to the master schema. Links that do not conform to the master schema are
not deemed valid and will be removed by our implementation. Listing 4.1 displays
the specification of the abstract selector type. The first attributes defined, are the
ones responsible for the enriched features. For instance, via the accessibleTo
attribute, a selector can specify which individuals or groups are allowed to access
it. After these attributes, the XLink related attributes are specified in compliance
to the original XLink standard.
<xsd : complexType name=" a b s t r a c t S e l e c t o r " >
xsd : a t t r i b u t e t y p e =" xsd : s t r i n g " name=" a c c e s s i b l e T o " use =" o p t i o n a l " / >
xsd : a t t r i b u t e t y p e =" xsd : s t r i n g " name=" i n a c c e s s i b l e T o " use =" o p t i o n a l " / >
xsd : a t t r i b u t e t y p e =" xsd : s t r i n g " name=" c r e a t e d B y " use =" o p t i o n a l " / >
xsd : a t t r i b u t e t y p e =" xsd : i n t e g e r " name=" l a y e r " use =" o p t i o n a l " / >
xsd : a t t r i b u t e r e f =" x l i n k : t y p e " f i x e d =" l o c a t o r " / >
xsd : a t t r i b u t e r e f =" x l i n k : h r e f " i d =" h r e f " / >
xsd : a t t r i b u t e r e f =" x l i n k : l a b e l " use =" o p t i o n a l " / >
xsd : a t t r i b u t e r e f =" x l i n k : t i t l e a t t r " use =" o p t i o n a l " / >
xsd : a t t r i b u t e r e f =" x l i n k : r o l e " use =" o p t i o n a l " / >
</ xsd : complexType >

Listing 4.1: Master schema snippet: abstract selector type

Two schema plugins of selectors of representative document types are presented
and can be found in Appendix A.2. In the plugin for PDF document types, we
see an extension of the selector base class (abstractSelector) with five ad-
ditionally required attributes: the page index, X-position, Y-position, width and
height.

4.2 RSL Implementation Structure

Before we jump into the implementation of the XLink related classes, we evaluate
how the code supporting the RSL metamodel is structured in the core of the open
cross-document link creating and visualisation browser. The implementation is
completely done in Java and the Eclipse1 SDK version 4.2.1 is used to run the
application. The Resource Selector Link metamodel is the core of the link service
and explains why most of the bundles are RSL related. Bundle com.rsl.core
contains the heart of the RSL metamodel implementation. It includes the basic

1https://www.eclipse.org

https://www.eclipse.org

45 CHAPTER 4. Implementation

classes for Entity, Resource, Selector, Link, Layer, User, Group, etc. Communica-
tion with the database is performed by the com.rsl.databasemanager bun-
dles, and communication to the Web is done via sockets, REST and TCP classes
located in the com.rsl.communication.protocols bundles. Overall the
structure of the RSL implementation is straightforward, so we put focus on the
relevant bundles: those in charge of supporting plugins.

In order to add a new document type in the RSL implementation, two types plugins
must be introduced. One that is the data plugin and one that is the visual plugin.
The data plugin must extend the default Resource and the Selector classes.
This is where appropriate class members can be added (e.g. start- and end index
for text files). The visual plugin must subclass the DefaultPanel and override
the relevant default methods with its document type specific features.

The com.rsl.userInterface bundles contains the packages that are re-
sponsible for tracking plugins, visualising documents and communicating with
the user interface. The two most relevant classes for our enhanced XLink im-
plementation will be MainGUI, responsible for starting and initialising the link
service, and iServerInterfaceImp2, responsible for implementing the RSL
interface and the database operations.

4.3 XLink Implementation

In this section we discuss the implementation of the enhanced XLink standard in
the link service. By now we have the master schema which specifies how the links
should be defined, we have seen how the RSL metamodel has been implemented
in the link service and we will add our enhanced XLink component to the system.

4.3.1 Class Generation via Java Architecture for XML Binding

The classes for our enhanced XLink solution have been generated with the JAXB
schema compiler (xjc). This tool, included in the Eclipse SDK, is used to create a
mapping between XML schemas and Java classes annotated by the Java Architec-
ture for XML Binding (JAXB). The generated output of xjc is a collection of Java
classes that all have JAXB annotations. These annotations allow an application to
easily serialise object instances to XML documents and vice-versa. By using this
technology, with the master schema, the implementation would be immediately
ready to be integrated in the link service.

46 CHAPTER 4. Implementation

In order to be able to generate the classes via xjc, the original XLink schema defi-
nition2 had to be stored and referenced locally from within the master schema. The
original XLink schema definition, however, introduced a name clash error which
prevented xjc from completing its execution. The title attribute also appears as an
element in this schema, which is not allowed by the xjc compiler. This has been
circumvented by renaming all the occurences of the name of the title attribute in
the XLink schema definition and then generating the classes. To restore the code
to the valid XLink norm, the edited names have been restored in the annotations
for the XML metadata. The XML metadata annotations define how the elements
in the XML document are (de)serialised as, so editing them from titleattr
back to title would have successfully reverted the required change to generate
the classes. The command used to generate these classes is shown in Listing 4.2.
The first argument is the master schema, the second argument specifies the out-
put directory and the last argument specifies the package name. A selection of
generated classes can be found in Appendix A.12.
x j c "C : \ Use r s \ d a v i d \ t h e s i s \ e n r i c h e d _ x l i n k \ mas te r_schema . xsd "
−d "C : \ Use r s \ d a v i d \ t h e s i s \ e n r i c h e d _ x l i n k \ o u t p u t "
−p com . x l i n k . gen

Listing 4.2: Command used with the xjc tool to generate the classes

4.3.2 IServerInterfaceImp2

In the link service, the RSL interfaces and database interactions are combined
and used in the IServerInterfaceImp2 instance. This rather large class
contains all the methods which we will be using for our XLink implementation
integration. As we have mentioned before, the db4o database packages will be
reused for the users’ management. This means that the ID’s of individuals and
groups all remain the same. For our enhanced XLink solution, a custom version
of this class will be implemented.

The main customisation will be the disabling of the communication between the
RSL objects and the db4o database, since the links will be stored in our linkbase.
Because of the automatic generation of the enhanced XLink classes, it does not
take much code to (de)serialise the links in the linkbase and keep the instances
in the working memory of the application. During the application life-cycle, the
GUI will consult/alter the objects in memory and only write (serialise) these back
into the linkbase upon closing the program. During the de-serialisation, a schema

2http://www.w3.org/1999/xlink.xsd

http://www.w3.org/1999/xlink.xsd

47 CHAPTER 4. Implementation

definition can be added to validate the XML links while they are being processed.
By passing the links through the master schema, the link service can prevent badly
defined links from entering the system.

Figure 4.1 shows, in a simplified way, how the relevant structure was in the
original link service. We observe a model-view-controller pattern, where the
iServerInterfaceImp2 plays the role of the controller. In our custom ver-
sion of this class, we introduce a linkbase which will be used to store the links.
The structure of our implementation can be seen in Figure 4.2. The RSL com-
ponents have not been completely removed, so the mapping between the mod-
els can be evaluated. The mapping between these two linking models can best
be evaluated by having the link service read the links from a linkbase and con-
verting them to RSL objects. These RSL objects can then be altered by the
iServerInterfaceImp2 and converted back to XLink links at the end of
the link service life cycle.

Figure 4.1: Structure of the original application

Figure 4.2: Structure of the enriched XLink implementation

48 CHAPTER 4. Implementation

4.3.3 Mapping Link Objects

The top level conversion between XLink objects and RSL objects is described in
pseudo-code in Listing 4.3. By top level we mean the focus on resources, selectors
and links. Lower level conversion is not that interesting, except for the different
selectors, since a lot of properties are just literally copied over.
For a l l RSL l i n k : c r e a t e XLink l i n k

For a l l RSL s o u r c e : add l o c a t o r t o XLink l i n k
For a l l RSL t a r g e t : add l o c a t o r t o XLink l i n k

For a l l RSL s o u r c e : c r e a t e an a r c from t h e l o c a t o r o f t h e s o u r c e t o t h e
l o c a t o r o f t h e t a r g e t

Listing 4.3: Pseudo code explaining how the conversion between RSL links and
XLink links is performed

The assumption here is that each of the RSL link’s sources will link to all the
RSL link’s targets. If the RSL source/target resource has a selector specifying a
certain part of it, we must call upon the selector plugins to see if they know how to
convert the selector data. Plugin converter classes that match the document type,
know which attributes are associated with the document type, and which XLink
selector subclass is needed to convert the selection.

4.3.4 Plugin Management

Plugins for the application must subclass AbstractSelector. These plugin
classes could (and should) be generated from their schema definitions via xjc to be
compliant to the other classes. The plugin schema definition should be comprised
of just one complexType, with as name the MIME type of the type of document it
wants to represent. One must bear in mind that forward slashes are not accepted
and should be replaced by underscores. The content of the complexType should
be an extension of the base, which is abstractSelector, and contain only
the attributes that are required for the document type specific selector.

Once the object class has been generated, a plugin converter class also needs to
be implemented. Note that this is only necessary for the proof of concept imple-
mentation where both RSL and XLink are used in the application to demonstrate
the mapping functionality. The required plugin converter class should be a sub-
class of BaseConverter. This is an abstract class that provides two methods. One
is for mapping an RSL selector to an XLink selector and one for the other way
around. The Converter class, which implements the singleton pattern, con-
tains a list of plugin converters and also offers two main public methods. The first
takes an RSL selector object as input and will iterate the list of known converters,
each one trying to convert the object. If a converter matches the MIME type of

49 CHAPTER 4. Implementation

the RSL resource, it will create an XLink selector of this document type, which
will be returned to the original caller. If the entire list is iterated and not a single
converter matched the given MIME type, an exception will be thrown as the appli-
cation will have no way of knowing which selector metadata needs to be extracted
and information would get lost. The second method does the opposite: it accepts
an AbstractSelector representing a selector object for XLink links and converts it
via one of the known converters into an RSL selector. This process is shown in
Figure 4.3 and the code can be found in Appendix A.7.

Figure 4.3: Converters data flow

4.4 Summary

In this chapter we have presented an XML schema definition that we named the
master schema. It defines exactly how our enhanced XLink standard should be
used (i.e. which elements and attributes are optional/required). The schema uses
an abstract type for the selectors, so plugins can extend it and add the attributes
required to make a selection of their document type. We have then used the master
schema with the JAXB schema compiler to generate Java classes for our enhanced
XLink solution. Since these generated classes are annotated with JAXB metadata,
they can be easily serialised into linkbases. These classes have been introduced

50 CHAPTER 4. Implementation

to the link service, where we have located the most controlling class and imple-
mented an edited version. The edited version now uses linkbases to store the
links when the application is shut down. During start-up, the link service will
de-serialise our linkbase and convert the enhanced XLink links to RSL objects
via various plugin converters. When the application is stopped, the RSL links in
memory will be converted back and the XLink links are serialised to the linkbase,
demonstrating the mapping between the two linking models.

5
Conclusions and Future Work

Cross-document linking on the Web is still not a common practice. The introduc-
tion of the XLink standard by the W3C was a big step in the right direction, but it
still lacks some important features that can be found in other linking models. One
of these unsupported features is cross-document linking in all document types,
since XLink is limited to linking in XML-based documents only. Another one
is the absence of user rights management (i.e. being able to claim ownership or
to decide who can and cannot view your links). Factors like these have undoubt-
edly led to the emergence of new linking models, such as the Resource Selector
Link (RSL) metamodel. The RSL metamodel does possess multiple sophisticated
linking features, but it has the drawback of not being a standard. Standards on
the Web are important guidelines for maintaining stability and compatibility of
different technologies. Therefore, we investigated how the XLink standard can
be enhanced with additional linking features and how it can be made to support
linking in existing as well as emerging document formats.

In our research, we have explored several approaches to the presented problem.
The first approach consisted of embedding the XLink links in the documents them-
selves. The advantage there was that the source of the link was the document itself.
However, this did not allow the XLink standard to practise cross-document linking
in non-XML-based document types, which is the first feature we would prefer to
support. Since the main problem of XLink is that it can only address parts of XML

52 CHAPTER 5. Conclusions and Future Work

documents, we reason that the unsupported target documents need to be made ac-
cessible. This resulted in a second approach, where we associate XML documents
with each linked document. These virtual documents, as we call them, store in-
formation about their associated document such as the filename, document type,
location and selectors. Since the virtual documents know the document type it is
associated with, correct selector data can be stored in them. Via this method, the
XLink standard can link to parts of every document type via linking to a selector
in the virtual document. Other linking features, inspired by the RSL metamodel,
could enrich the XLink standard by adding their attributes to the XLink elements.
The XLink standard allows any elements and attributes to be added to link el-
ements, as long as they do not clash with the attributes of the XLink standard.
For example, to associate ownership of links, a createdBy attribute could be
added to the link. While this approach looked quite promising, we predict that
overhead will be caused by the virtual documents. By this overhead we refer to
the reality that managing these virtual documents would not scale well to a larger
environment. In order to move on from managing all these virtual documents, the
selector data would have to be stored in the links as well. This leads us to the final
solution: embedding all the data of these linking feature requests via attributes in
the links.

We then deduced which attributes are required and which are optional for creat-
ing these enhanced XLink links. For example, attributes such as createdBy
and accessibleTo enforce user rights and by also adding the document type
specific selector attributes, cross-document linking remains possible for all the
formats. This sounds good, but with so many new variables in play, the enhanced
links need to be validated by means of XML schema definitions. We then created
said ‘master’ schema to validate the enriched XLink links. By means of plugin
schemas, the master schema definition is able to validate links with selector data
of different document types. This solution has then been implemented in a link
service application that initially used the RSL metamodel. The implementation
has been done via serialisable XLink objects, which makes it an effortless task to
read and write links from and to the link database (linkbase). To demonstrate the
mapping between our enhanced XLink model and the RSL metamodel, we keep
using RSL elements in the working memory of the application, but convert them
to XLink links for storage in a linkbase. The conversion of XLink and RSL links
can also be easily extended via converter plugins to support new document types.
A limitation of this solution is that all links are read into the memory all at once
when the application starts. For a proof of concept this suffices, but for a larger
application this should be further optimised.

Potential future work for the presented solution can exist of extending the master
schema with even more linking features. These features could be inspired from

53 CHAPTER 5. Conclusions and Future Work

other linking documents or perhaps a survey could present us with desired features
that do not exist yet. Furthermore, in the current master schema, selector plugins
are directly injected via XSLT transformations. It would be better if the master
schema imported just one schema that collected all the plugins. Because of the
mapping demonstration, the RSL core is still lingering in the link service. For
future work, one could potentially remove the RSL model completely so that the
enhanced XLink standard is the only linking model in the application.

A
Appendix

Master Schema

<xsd : schema xmlns : xsd=" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema"
xmlns : x l i n k =" h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k ">

<xsd : import namespace=" h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k "
schemaLoca t ion =" x l i n k . xsd " / >

<xsd : i n c l u d e schemaLoca t ion =" h t t p : / / wilma . vub . ac . be / ~ d s v e r d l o / x l i n k / m a s t e r _ t x t .
xsd " / >

<xsd : i n c l u d e schemaLoca t ion =" h t t p : / / wilma . vub . ac . be / ~ d s v e r d l o / x l i n k / m a s t e r _ p d f .
xsd " / >

<xsd : e l e m e n t name=" l i n k b a s e ">
<xsd : complexType >

<xsd : sequence >
<xsd : e l e m e n t name=" l i n k " minOccurs=" 0 " maxOccurs=" unbounded ">

<xsd : complexType >
<xsd : sequence >

<xsd : e l e m e n t name=" r e s o u r c e " minOccurs=" 0 " maxOccurs=" unbounded ">
<xsd : complexType >

<xsd : a t t r i b u t e t y p e =" xsd : s t r i n g " name=" a c c e s s i b l e T o " use =" o p t i o n a l " / >
<xsd : a t t r i b u t e t y p e =" xsd : s t r i n g " name=" i n a c c e s s i b l e T o " use =" o p t i o n a l " / >
<xsd : a t t r i b u t e t y p e =" xsd : s t r i n g " name=" c r e a t e d B y " use =" o p t i o n a l " / >
<xsd : a t t r i b u t e r e f =" x l i n k : t y p e " f i x e d =" r e s o u r c e " / >
<xsd : a t t r i b u t e r e f =" x l i n k : l a b e l " use =" o p t i o n a l " / >
<xsd : a t t r i b u t e r e f =" x l i n k : t i t l e a t t r " use =" o p t i o n a l " / >
<xsd : a t t r i b u t e r e f =" x l i n k : r o l e " use =" o p t i o n a l " / >

</ xsd : complexType >

55 APPENDIX A. Appendix

</ xsd : e lement >

<xsd : e l e m e n t name=" l o c a t o r " minOccurs=" 0 " maxOccurs=" unbounded " t y p e =
" a b s t r a c t S e l e c t o r " / >

<xsd : e l e m e n t name=" a r c " minOccurs=" 0 " maxOccurs=" unbounded ">
<xsd : complexType >

<xsd : a t t r i b u t e r e f =" x l i n k : t y p e " f i x e d =" a r c " / >
<xsd : a t t r i b u t e t y p e =" xsd : s t r i n g " name=" a c c e s s i b l e T o " use =" o p t i o n a l " / >
<xsd : a t t r i b u t e t y p e =" xsd : s t r i n g " name=" i n a c c e s s i b l e T o " use =" o p t i o n a l " / >
<xsd : a t t r i b u t e t y p e =" xsd : s t r i n g " name=" c r e a t e d B y " use =" o p t i o n a l " / >
<xsd : a t t r i b u t e r e f =" x l i n k : a r c r o l e " f i x e d =" h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k /
p r o p e r t i e s / l i n k b a s e " / >

<xsd : a t t r i b u t e r e f =" x l i n k : t i t l e a t t r " use =" o p t i o n a l " / >
<xsd : a t t r i b u t e r e f =" x l i n k : from " use =" o p t i o n a l " / >
<xsd : a t t r i b u t e r e f =" x l i n k : t o " use =" o p t i o n a l " / >
<xsd : a t t r i b u t e r e f =" x l i n k : show " use =" o p t i o n a l " / >
<xsd : a t t r i b u t e r e f =" x l i n k : a c t u a t e " use =" o p t i o n a l " / >

</ xsd : complexType >
</ xsd : e lement >

</ xsd : sequence >

<xsd : a t t r i b u t e r e f =" x l i n k : t y p e " f i x e d =" e x t e n d e d " / >
<xsd : a t t r i b u t e t y p e =" xsd : s t r i n g " name=" a c c e s s i b l e T o " use =" o p t i o n a l " / >
<xsd : a t t r i b u t e t y p e =" xsd : s t r i n g " name=" i n a c c e s s i b l e T o " use =" o p t i o n a l " / >
<xsd : a t t r i b u t e t y p e =" xsd : s t r i n g " name=" c r e a t e d B y " use =" o p t i o n a l " / >

<xsd : a t t r i b u t e r e f =" x l i n k : r o l e " use =" o p t i o n a l " / >
<xsd : a t t r i b u t e r e f =" x l i n k : t i t l e a t t r " use =" o p t i o n a l " / >

<xsd : a t t r i b u t e r e f =" x l i n k : show " use =" o p t i o n a l " / >
<xsd : a t t r i b u t e r e f =" x l i n k : a c t u a t e " use =" o p t i o n a l " / >
<xsd : a t t r i b u t e t y p e =" xsd : s t r i n g " name=" i d " / >

</ xsd : complexType >
</ xsd : e lement >

</ xsd : sequence >
</ xsd : complexType >

</ xsd : e lement >

<xsd : complexType name=" a b s t r a c t S e l e c t o r " >
<xsd : a t t r i b u t e t y p e =" xsd : s t r i n g " name=" a c c e s s i b l e T o " use =" o p t i o n a l " / >
<xsd : a t t r i b u t e t y p e =" xsd : s t r i n g " name=" i n a c c e s s i b l e T o " use =" o p t i o n a l " / >
<xsd : a t t r i b u t e t y p e =" xsd : s t r i n g " name=" c r e a t e d B y " use =" o p t i o n a l " / >
<xsd : a t t r i b u t e t y p e =" xsd : i n t e g e r " name=" l a y e r " use =" o p t i o n a l " / >
<xsd : a t t r i b u t e r e f =" x l i n k : t y p e " f i x e d =" l o c a t o r " / >
<xsd : a t t r i b u t e r e f =" x l i n k : h r e f " i d =" h r e f " / >
<xsd : a t t r i b u t e r e f =" x l i n k : l a b e l " use =" o p t i o n a l " / >
<xsd : a t t r i b u t e r e f =" x l i n k : t i t l e a t t r " use =" o p t i o n a l " / >
<xsd : a t t r i b u t e r e f =" x l i n k : r o l e " use =" o p t i o n a l " / >

</ xsd : complexType >

</ xsd : schema >

Listing A.1: Master schema

56 APPENDIX A. Appendix

Text Plugin for the Master Schema

<xs : schema xmlns : xs=" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema">

<xs : complexType name=" t e x t _ p l a i n ">
<xs : complexConten t >

<xs : e x t e n s i o n base =" a b s t r a c t S e l e c t o r ">
<xs : a t t r i b u t e name=" s e l e c t F r o m " t y p e =" xs : i n t e g e r " / >
<xs : a t t r i b u t e name=" s e l e c t T o " t y p e =" xs : i n t e g e r " / >

</ xs : e x t e n s i o n >
</ xs : complexConten t >

</ xs : complexType >

</ xs : schema >

Listing A.2: Schema plugin for text files

PDF Plugin for the Master Schema

<xs : schema xmlns : xs=" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema">

<xs : complexType name=" a p p l i c a t i o n _ p d f ">
<xs : complexConten t >

<xs : e x t e n s i o n base =" a b s t r a c t S e l e c t o r ">
<xs : a t t r i b u t e name=" s e l e c t X " t y p e =" xs : do ub l e " / >
<xs : a t t r i b u t e name=" s e l e c t Y " t y p e =" xs : do ub l e " / >
<xs : a t t r i b u t e name=" se l ec tW " t y p e =" xs : do ub l e " / >
<xs : a t t r i b u t e name=" s e l e c t H " t y p e =" xs : do ub l e " / >
<xs : a t t r i b u t e name=" s e l e c t P a g e " t y p e =" xs : i n t e g e r " / >

</ xs : e x t e n s i o n >
</ xs : complexConten t >

</ xs : complexType >

</ xs : schema >

Listing A.3: Schema plugin for PDF files

57 APPENDIX A. Appendix

XSLT Adding Plugins to the Master Schema

<?xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8" ?>

<!−− Thi s XSLT document a l l o w s t h e i n s e r t i o n o f a new f i l e f o r m a t s e l e c t o r p l u g i n
.

The i n c l u d e t a g i s t o be i n s e r t e d below t h e import of t h e XLink schema
d e f i n i t i o n .

David Sverd lov , 2015 −−>
< x s l : s t y l e s h e e t v e r s i o n =" 1 . 0 "

xmlns : x s l =" h t t p : / / www. w3 . org / 1 9 9 9 / XSL / Trans fo rm "
xmlns : xsd=" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema">

<!−− Copy e v e r y t h i n g i n t h e schema −−>
< x s l : t e m p l a t e match=" xsd : schema ">

< x s l : copy >
< x s l : apply−t e m p l a t e s / >

</ x s l : copy >
</ x s l : t e m p l a t e >

<!−− When copy ing import , add t h e p l u g i n below i t −−>
< x s l : t e m p l a t e match=" xsd : i m p o r t ">

< x s l : copy−of s e l e c t =" . " / >
###LOCATION###

</ x s l : t e m p l a t e >

<!−− Copy i n s t r u c t i o n s (r e c u r s i v e) −−>
< x s l : t e m p l a t e match="@∗ | node () ">

< x s l : copy >
< x s l : apply−t e m p l a t e s s e l e c t ="@∗ | node () " / >

</ x s l : copy >
</ x s l : t e m p l a t e >

</ x s l : s t y l e s h e e t >

Listing A.4: XSLT script to add a plugin to the master schema

XSLT Removing Plugins from the Master Schema

<?xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8" ?>

< x s l : s t y l e s h e e t v e r s i o n =" 1 . 0 "
xmlns : x s l =" h t t p : / / www. w3 . org / 1 9 9 9 / XSL / Trans fo rm "
xmlns : xsd=" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema">

<!−− Copy e v e r y t h i n g i n t h e schema −−>
< x s l : t e m p l a t e match=" xsd : schema ">

< x s l : copy >
< x s l : apply−t e m p l a t e s / >

</ x s l : copy >
</ x s l : t e m p l a t e >

<!−− When copy ing i n c l u d e , add t h e p l u g i n below i t −−>
< x s l : t e m p l a t e match=" xsd : i n c l u d e [@schemaLocation = ’###LOCATION### ’] ">

58 APPENDIX A. Appendix

</ x s l : t e m p l a t e >

<!−− Copy i n s t r u c t i o n s (r e c u r s i v e) −−>
< x s l : t e m p l a t e match="@∗ | node () ">

< x s l : copy >
< x s l : apply−t e m p l a t e s s e l e c t ="@∗ | node () " / >

</ x s l : copy >
</ x s l : t e m p l a t e >

</ x s l : s t y l e s h e e t >

Listing A.5: XSLT script to remove a plugin from the master schema

Linkbase Example

<?xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8" s t a n d a l o n e =" yes " ?>
< l i n k b a s e xmlns : x l i n k =" h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k ">

< l i n k x l i n k : t y p e =" e x t e n d e d "
c r e a t e d B y =" ahmed "
i d =" wsbcmahyf iwqf f j ch lnw ">

< l o c a t o r x s i : t y p e =" t e x t _ p l a i n "
s e l e c t F r o m =" 296 "
s e l e c t T o =" 305 "
x l i n k : t y p e =" l o c a t o r "
x l i n k : h r e f ="C : \ Use r s \ d a v i d \ LinkedDocuments \ epub . t x t "
x l i n k : l a b e l =" q q v e p u y c h s e c b c e h x s i n "
xmlns : x s i =" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e " / >

< l o c a t o r x s i : t y p e =" t e x t _ p l a i n "
s e l e c t F r o m =" 312 "
s e l e c t T o =" 319 "
x l i n k : t y p e =" l o c a t o r "
x l i n k : h r e f ="C : \ Use r s \ d a v i d \ LinkedDocuments \ epub . t x t "
x l i n k : l a b e l =" b y c i h s r u f p v p w a z b u h a h "
xmlns : x s i =" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e " / >

< a r c x l i n k : t y p e =" a r c "
x l i n k : from=" q q v e p u y c h s e c b c e h x s i n "
x l i n k : t o =" b y c i h s r u f p v p w a z b u h a h " / >
</ l i n k >

</ l i n k b a s e >

Listing A.6: Linkbase generated by the link service

59 APPENDIX A. Appendix

Converter Classes Package

package com . x l i n k . gen2 ;

import j a v a . u t i l . A r r a y L i s t ;

import com . r s l . c o r e . E n t i t y ;
import com . r s l . c o r e . S e l e c t o r ;
import com . x l i n k . gen . A b s t r a c t S e l e c t o r ;

p u b l i c c l a s s C o n v e r t e r {
p r i v a t e C o n v e r t e r _ i n s t a n c e ;
p r i v a t e A r r a y L i s t < BaseConve r t e r > _ c o n v e r t e r s ;

p u b l i c C o n v e r t e r () {
_ c o n v e r t e r s = new A r r a y L i s t < BaseConve r t e r > () ;

}

p u b l i c A b s t r a c t S e l e c t o r conver tToXLink (E n t i t y r s l E n t i t y) throws E x c e p t i o n {
f o r (B a s e C o n v e r t e r conv : _ c o n v e r t e r s) {

A b s t r a c t S e l e c t o r c o n v e r t e d = conv . conver tToXLink (r s l E n t i t y) ;
i f (c o n v e r t e d != n u l l) {

re turn c o n v e r t e d ;
}

}
throw new E x c e p t i o n ("RSL s e l e c t o r t y p e " + r s l E n t i t y . g e t C l a s s () + " n o t

c o n v e r t a b l e . ") ;
}

p u b l i c E n t i t y conver tToRSLLink (A b s t r a c t S e l e c t o r x L i n k L o c a t o r) throws E x c e p t i o n {
f o r (B a s e C o n v e r t e r conv : _ c o n v e r t e r s) {

E n t i t y c o n v e r t e d = conv . convertToRSL (x L i n k L o c a t o r) ;
i f (c o n v e r t e d != n u l l) {

re turn c o n v e r t e d ;
}

}
throw new E x c e p t i o n (" XLink s e l e c t o r t y p e " + x L i n k L o c a t o r . g e t C l a s s () + " n o t

c o n v e r t a b l e . ") ;
}

p u b l i c vo id a d d _ c o n v e r t e r (B a s e C o n v e r t e r conv) {
_ c o n v e r t e r s . add (conv) ;

}

p u b l i c C o n v e r t e r g e t _ i n s t a n c e () {
i f (_ i n s t a n c e == n u l l) {

_ i n s t a n c e = new C o n v e r t e r () ;
}
re turn _ i n s t a n c e ;

}

}

Listing A.7: Converter singleton

60 APPENDIX A. Appendix

package com . x l i n k . gen2 ;

import com . r s l . c o r e . E n t i t y ;
import com . r s l . c o r e . S e l e c t o r ;
import com . x l i n k . gen . A b s t r a c t S e l e c t o r ;

p u b l i c a b s t r a c t c l a s s B a s e C o n v e r t e r {

p u b l i c A b s t r a c t S e l e c t o r conver tToXLink (A b s t r a c t S e l e c t o r x L i n k S e l e c t o r , S e l e c t o r
r s l S e l e c t o r) {

System . o u t . p r i n t l n (" B a s e C o n v e r t e r RSL−>XLink ") ;
re turn x L i n k S e l e c t o r ;

}

p u b l i c E n t i t y convertToRSL (S e l e c t o r r s l S e l e c t o r , A b s t r a c t S e l e c t o r x L i n k S e l e c t o r)
{

r s l S e l e c t o r . setName (x L i n k S e l e c t o r . g e t L a b e l ()) ;
re turn r s l S e l e c t o r ;

}

p u b l i c a b s t r a c t A b s t r a c t S e l e c t o r conver tToXLink (E n t i t y e n t i t y) ;
p u b l i c a b s t r a c t E n t i t y convertToRSL (A b s t r a c t S e l e c t o r s e l e c t o r) ;

}

Listing A.8: BaseConverter abstract class

package com . x l i n k . gen2 ;

import j a v a . awt . geom . Rec tang le2D ;
import j a v a . math . B i g I n t e g e r ;

import org . r s l . pd f . d a t a . ∗ ;

import com . r s l . c o r e . E n t i t y ;
import com . x l i n k . gen . A b s t r a c t S e l e c t o r ;
import com . x l i n k . gen . A p p l i c a t i o n P d f ;
import com . x l i n k . gen . TypeType ;

p u b l i c c l a s s P d f C o n v e r t e r ex tends B a s e C o n v e r t e r {

@Override
p u b l i c A b s t r a c t S e l e c t o r conver tToXLink (E n t i t y e n t i t y) {

t r y {
System . o u t . p r i n t l n (" P d f C o n v e r t e r RSL−>XLink ") ;
/ / Cas t t o c o r r e s p o n d i n g p l u g i n
PDFSe lec to r r s l S e l e c t o r = (PDFSe lec to r) e n t i t y ;

/ / Cr ea t e o b j e c t t o r e t u r n
A p p l i c a t i o n P d f x L i n k S e l e c t o r = new A p p l i c a t i o n P d f () ;

/ / S p e c i f i c f i e l d s
i n t page Index = r s l S e l e c t o r . g e t P a g e I n d e x () ;
x L i n k S e l e c t o r . s e t S e l e c t P a g e (B i g I n t e g e r . va lueOf (page Index)) ;
Rec tang le2D r e c t = r s l S e l e c t o r . ge tRec () ;
x L i n k S e l e c t o r . s e t S e l e c t X (r e c t . getX ()) ;
x L i n k S e l e c t o r . s e t S e l e c t Y (r e c t . getY ()) ;
x L i n k S e l e c t o r . s e t S e l e c t W (r e c t . ge tWid th ()) ;
x L i n k S e l e c t o r . s e t S e l e c t H (r e c t . g e t H e i g h t ()) ;
x L i n k S e l e c t o r . s e t T y p e (TypeType .LOCATOR) ;

61 APPENDIX A. Appendix

PDFResource t e x t R e s o u r c e = (PDFResource) r s l S e l e c t o r . g e t R e s o u r c e () ;
x L i n k S e l e c t o r . s e t H r e f (t e x t R e s o u r c e . g e t P a t h ()) ;

/ / L e t s u p e r have h i s way
conver tToXLink (x L i n k S e l e c t o r , r s l S e l e c t o r) ;

re turn x L i n k S e l e c t o r ;
} ca tch (E x c e p t i o n e) {

e . p r i n t S t a c k T r a c e () ;
re turn n u l l ;

}
}

@Override
p u b l i c E n t i t y convertToRSL (A b s t r a c t S e l e c t o r x L i n k S e l e c t o r) {

t r y {
/ / Try t o c a s t
A p p l i c a t i o n P d f x L i n k P d f S e l e c t o r = (A p p l i c a t i o n P d f) x L i n k S e l e c t o r ;

/ / Cr ea t e RSL e n t i t y
Double x = x L i n k P d f S e l e c t o r . g e t S e l e c t X () ;
Double y = x L i n k P d f S e l e c t o r . g e t S e l e c t Y () ;
Double wid th = x L i n k P d f S e l e c t o r . g e t S e l e c t W () ;
Double h e i g h t = x L i n k P d f S e l e c t o r . g e t S e l e c t H () ;
B i g I n t e g e r page Index = x L i n k P d f S e l e c t o r . g e t S e l e c t P a g e () ;
Rec tang le2D r e c t = new Rectang le2D . Double (x , y , width , h e i g h t) ;
PDFSe lec to r s e l e c t o r = new PDFSe lec to r (r e c t , page Index . i n t V a l u e ()) ;
PDFResource r e s o u r c e = new PDFResource (x L i n k P d f S e l e c t o r . g e t H r e f ()) ;
s e l e c t o r . s e t R e s o u r c e (r e s o u r c e) ;
/ / l e t s u p e r have i t s way
convertToRSL (s e l e c t o r , x L i n k P d f S e l e c t o r) ;

re turn s e l e c t o r ;
} ca tch (E x c e p t i o n e) {

e . p r i n t S t a c k T r a c e () ;
re turn n u l l ;

}
}

}

Listing A.9: Converter for the PDF document type

package com . x l i n k . gen2 ;

import j a v a . math . B i g I n t e g e r ;

import org . r s l . t e x t . d a t a . T e x t R e s o u r c e ;
import org . r s l . t e x t . d a t a . T e x t S e l e c t o r ;

import com . r s l . c o r e . E n t i t y ;
import com . x l i n k . gen . A b s t r a c t S e l e c t o r ;
import com . x l i n k . gen . T e x t P l a i n ;
import com . x l i n k . gen . TypeType ;

p u b l i c c l a s s T e x t C o n v e r t e r ex tends B a s e C o n v e r t e r {

@Override
p u b l i c A b s t r a c t S e l e c t o r conver tToXLink (E n t i t y e n t i t y) {

t r y {

62 APPENDIX A. Appendix

System . o u t . p r i n t l n (" T e x t C o n v e r t e r RSL−>XLink ") ;
/ / Cas t t o c o r r e s p o n d i n g p l u g i n
T e x t S e l e c t o r r s l T e x t S e l e c t o r = (T e x t S e l e c t o r) e n t i t y ;

/ / Cr ea t e o b j e c t t o r e t u r n
T e x t P l a i n x L i n k S e l e c t o r = new T e x t P l a i n () ;

/ / S p e c i f i c f i e l d s
i n t from = r s l T e x t S e l e c t o r . g e t S t a r t () ;
i n t t o = r s l T e x t S e l e c t o r . ge tEnd () ;
x L i n k S e l e c t o r . s e t S e l e c t F r o m (B i g I n t e g e r . va lueOf (from)) ;
x L i n k S e l e c t o r . s e t S e l e c t T o (B i g I n t e g e r . va lueOf (t o)) ;
x L i n k S e l e c t o r . s e t T y p e (TypeType .LOCATOR) ;
T e x t R e s o u r c e t e x t R e s o u r c e = (T e x t R e s o u r c e) r s l T e x t S e l e c t o r . g e t R e s o u r c e () ;
x L i n k S e l e c t o r . s e t H r e f (t e x t R e s o u r c e . g e t P a t h ()) ;

/ / L e t s u p e r have h i s way
conver tToXLink (x L i n k S e l e c t o r , r s l T e x t S e l e c t o r) ;

re turn x L i n k S e l e c t o r ;
} ca tch (E x c e p t i o n e) {

e . p r i n t S t a c k T r a c e () ;
re turn n u l l ;

}
}

@Override
p u b l i c E n t i t y convertToRSL (A b s t r a c t S e l e c t o r x L i n k S e l e c t o r) {

t r y {
/ / Try t o c a s t
T e x t P l a i n x L i n k T e x t S e l e c t o r = (T e x t P l a i n) x L i n k S e l e c t o r ;

/ / Cr ea t e RSL e n t i t y
B i g I n t e g e r from = x L i n k T e x t S e l e c t o r . g e t S e l e c t F r o m () ;
B i g I n t e g e r t o = x L i n k T e x t S e l e c t o r . g e t S e l e c t T o () ;
T e x t S e l e c t o r s e l e c t o r = new T e x t S e l e c t o r (from . i n t V a l u e () , t o . i n t V a l u e ()) ;
T e x t R e s o u r c e r e s o u r c e = new T e x t R e s o u r c e (x L i n k T e x t S e l e c t o r . g e t H r e f ()) ;
s e l e c t o r . s e t R e s o u r c e (r e s o u r c e) ;

/ / L e t s u p e r have i t s way
convertToRSL (s e l e c t o r , x L i n k T e x t S e l e c t o r) ;

re turn s e l e c t o r ;
} ca tch (E x c e p t i o n e) {

e . p r i n t S t a c k T r a c e () ;
re turn n u l l ;

}
}

}

Listing A.10: Converter for the text document type

63 APPENDIX A. Appendix

Custom IServerInterfaceImp2

package com . x l i n k . gen ;

. . .

import j a v a x . xml . b ind . JAXBContext ;
import j a v a x . xml . b ind . M a r s h a l l e r ;
import j a v a x . xml . b ind . U n m a r s h a l l e r ;

import com . r s l . c o r e . ∗ ;
import com . r s l . d a t a b a s e m a n a g e r . ∗ ;
import com . r s l . d a t a b a s e m a n a g e r . DatabaseManager . DbSource ;
import com . x l i n k . gen . ∗ ;
import com . x l i n k . gen . L i n k b a s e . Link . Arc ;
import com . x l i n k . gen2 . C o n f i g s ;
import com . x l i n k . gen2 . C o n v e r t e r ;
import com . x l i n k . gen2 . P d f C o n v e r t e r ;
import com . x l i n k . gen2 . T e x t C o n v e r t e r ;

import com . r s l . p l u g i n . t r a c k e r . ∗ ;

/∗ ∗
∗ T h i s c l a s s p r o v i d e s i m p l e m e n t a t i o n o f RSL i n t e r f a c e s + API f o r (CRUD)

o p e r a t i o n s w i t h Db4o
∗
∗ Shou ld be enhanced t o be a s i n g l e t o n
∗
∗ @author ahmed t a y e h ahmed . tayeh@vub . ac . be
∗
∗ E d i t e d by David S v e r d l o v t o s u p p o r t t h e enhanced XLink s t a n d a r d
∗ ! ! Only i n c l u d e d t h e changes i n t h i s v e r s i o n ! !
∗
∗ /

p u b l i c c l a s s I S e r v e r I n t e r f a c e I m p 2 implements R S I n t e r f a c e {

p r i v a t e HashMap< S t r i n g , E n t i t y > m a p _ e n t i t i e s = n u l l ;
p r i v a t e HashMap< S t r i n g , Resource > m a p _ r e s o u r c e s = n u l l ;
p r i v a t e HashMap< S t r i n g , S e l e c t o r > m a p _ s e l e c t o r s = n u l l ;
p r i v a t e HashMap< S t r i n g , Link > map_ l inks = n u l l ;
p r i v a t e HashMap< S t r i n g , Layer > m a p _ l a y e r s = n u l l ;

p r i v a t e C o n v e r t e r c o n v e r t e r = n u l l ;

/∗ ∗
∗ C o n s t r u c t s a new I S e r v e r I n t e r f a c e I m p i n s t a n c e .
∗ /
p u b l i c I S e r v e r I n t e r f a c e I m p 2 (HashSet b u n d l e s) {

i f (ge tDa tabaseManage r () == n u l l) {
s e t D a t a b a s e M a n a g e r (DatabaseManager . ge tDa tabaseManage r (DbSource . Db4o , nul l ,
b u n d l e s)) ;

System . o u t . p r i n t l n ("Nov 6 −−− I n i t i a l i s i n g t h e DB") ;

System . o u t . p r i n t l n (" Apr 17 −−− Imp lemen t ing wi th XLink ") ;

m a p _ e n t i t i e s = new HashMap< S t r i n g , E n t i t y > () ;
m a p _ r e s o u r c e s = new HashMap< S t r i n g , Resource > () ;

64 APPENDIX A. Appendix

m a p _ s e l e c t o r s = new HashMap< S t r i n g , S e l e c t o r > () ;
map_ l inks = new HashMap< S t r i n g , Link > () ;
m a p _ l a y e r s = new HashMap< S t r i n g , Layer > () ;

/ / Grab t h e c o n f i g f i l e
t r y {

/ / D e s e r i a l i z e l i n k b a s e
JAXBContext c o n t e x t = JAXBContext . n e w I n s t a n c e ("com . x l i n k . gen2 ") ;
U n m a r s h a l l e r m2 = c o n t e x t . c r e a t e U n m a r s h a l l e r () ;
byte [] encoded = F i l e s . r e a d A l l B y t e s (P a t h s . g e t (" c : \ \ c o n f i g f i l e . xml ")) ;
C o n f i g s c f g = (C o n f i g s) m2 . unmarsha l (new S t r i n g R e a d e r (new S t r i n g (encoded ,

S t a n d a r d C h a r s e t s . UTF_8))) ;
/ / l oad j a r
/ / add c o n v e r t e r s
System . o u t . p r i n t l n (" S t a t i c c o n f i g f i l e r e a d ! ") ;
c o n v e r t e r = new C o n v e r t e r () ;
c o n v e r t e r . a d d _ c o n v e r t e r (new T e x t C o n v e r t e r ()) ;
c o n v e r t e r . a d d _ c o n v e r t e r (new P d f C o n v e r t e r ()) ;

} ca tch (E x c e p t i o n e) { e . p r i n t S t a c k T r a c e () ; }

/ / Grab t h e l i n k s , c o n v e r t them and p u t RSL o b j e c t s i n memory
O b j e c t F a c t o r y f a c t o r y = new O b j e c t F a c t o r y () ;
t r y {

/ / D e s e r i a l i z e l i n k b a s e
JAXBContext c o n t e x t = JAXBContext . n e w I n s t a n c e ("com . x l i n k . gen ") ;
U n m a r s h a l l e r m2 = c o n t e x t . c r e a t e U n m a r s h a l l e r () ;
byte [] encoded = F i l e s . r e a d A l l B y t e s (P a t h s . g e t (" c : \ \ m y l i n k b a s e . xml ")) ;
L i n k b a s e base = (L i n k b a s e) m2 . unmar sha l (new S t r i n g R e a d e r (new S t r i n g (encoded ,
S t a n d a r d C h a r s e t s . UTF_8))) ;

/ / f o r each XLink l i n k (l) : c r e a t e RSL l i n k o b j e c t
f o r (L i n k b a s e . Link l : ba se . g e t L i n k ()) {

System . o u t . p r i n t l n (" Found a l i n k i n t h e l i n k b a s e . . . ") ;
Link r s l L i n k = new Link () ;
s e t L i n k A s s o c i a t i o n s (r s l L i n k) ;
r s l L i n k . setName (l . g e t I d ()) ;
i f (l . g e t C r e a t e d B y () != n u l l) {

I n d i v i d u a l i n d = g e t I n d i v i d u a l (l . g e t C r e a t e d B y ()) ;
i f (i n d != n u l l) {

r s l L i n k . s e t C r e a t o r (i n d) ;
}

}

/ / add l o c a t o r s as r e s o u r c e s
f o r (A b s t r a c t S e l e c t o r s e l : l . g e t L o c a t o r ()) {

/ / A l so c o n v e r t i n c o n v e r t e r

S e l e c t o r s o u r c e S e l = (S e l e c t o r) c o n v e r t e r . conver tToRSLLink (s e l) ;

s o u r c e S e l . s e t S e l e c t o r A s s o c i a t i o n s ((B i d i r e c t i o n a l A s s o c i a t i o n) db . r e a d (
B i d i r e c t i o n a l A s s o c i a t i o n . c l a s s , " t y p e == \ " " + " k r e f e r s T o "+" \ " ") . g e t F i r s t () ,

(B i d i r e c t i o n a l A s s o c i a t i o n) db . r e a d (B i d i r e c t i o n a l A s s o c i a t i o n . c l a s s , " t y p e
== \ " " + " onLayer "+" \ " ") . g e t F i r s t ()) ;

System . o u t . p r i n t l n (" S e l " + s o u r c e S e l) ;

Resource r = m a p _ r e s o u r c e s . g e t (s e l . g e t L a b e l ()) ;
i f (r == n u l l) {

i f (s o u r c e S e l . g e t R e s o u r c e () == n u l l) {
r = new Resource () ;

} e l s e {
r = s o u r c e S e l . g e t R e s o u r c e () ;

65 APPENDIX A. Appendix

}
s e t R e s o u r c e A s s o c i a t i o n s (r) ;
r . setName (s e l . g e t L a b e l ()) ;
m a p _ r e s o u r c e s . p u t (s e l . g e t L a b e l () , r) ;

}
r . s e t U r i (s e l . g e t H r e f ()) ;
/ / c r e a t e s e l e c t o r and add t o r e s o u r c e
System . o u t . p r i n t l n (" Resource : " + r) ;
s o u r c e S e l . s e t R e s o u r c e (r) ;
r . a d d S e l e c t o r (s o u r c e S e l) ;
i f (s e l . g e t L a y e r () != n u l l) {

Layer s o u r c e L a y e r = m a p _ l a y e r s . g e t (s e l . g e t L a y e r () . t o S t r i n g ()) ;
i f (s o u r c e L a y e r == n u l l) {

s o u r c e L a y e r = new Layer () ;
m a p _ l a y e r s . p u t (s e l . g e t L a y e r () . t o S t r i n g () , s o u r c e L a y e r) ;

}
s o u r c e L a y e r . s e t P o s i t i o n (s e l . g e t L a y e r () . i n t V a l u e ()) ;
s o u r c e S e l . s e t L a y e r (s o u r c e L a y e r) ;

}

m a p _ s e l e c t o r s . p u t (r . getName () +" s " , s o u r c e S e l) ;

} / / end l o c a t o r loop

f o r (Arc a r c : l . g e t Ar c ()) {
/ / For each arc , add ’ from ’ t o s o u r c e s and ’ t o ’ t o t a r g s
S t r i n g from = a r c . getFrom () ;
S t r i n g t o = a r c . ge tTo () ;

Resource s o u r c e = m a p _ r e s o u r c e s . g e t (from) ;
i f (s o u r c e == n u l l) {

s o u r c e = new Resource () ;
s e t R e s o u r c e A s s o c i a t i o n s (s o u r c e) ;
s o u r c e . setName (from) ;
m a p _ r e s o u r c e s . p u t (from , s o u r c e) ;

}
Resource t a r g e t = m a p _ r e s o u r c e s . g e t (t o) ;
i f (t a r g e t == n u l l) {

t a r g e t = new Resource () ;
s e t R e s o u r c e A s s o c i a t i o n s (t a r g e t) ;
t a r g e t . setName (t o) ;
m a p _ r e s o u r c e s . p u t (to , t a r g e t) ;

}

/ / Add s o u r c e s and t a r g e t s t o r s l l i n k
r s l L i n k . addSource (s o u r c e) ;
r s l L i n k . a d d T a r g e t (t a r g e t) ;

map_ l inks . p u t (r s l L i n k . g e t I d () , r s l L i n k) ;

}
}

} ca tch (E x c e p t i o n e) { e . p r i n t S t a c k T r a c e () ; }
}

} / / I S e r v e r I m p

66 APPENDIX A. Appendix

/ / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
/ DONE WITH GUI

/ / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

p r i v a t e s t a t i c I D a t a b a s e C o n n e c t o r db = n u l l ;

/ / Handle DataBase
/∗ ∗

∗ Used by s u b c l a s s e s t o s e t t h e i S e r v e r databaseManager .
∗ @param db t h e DatabaseManager t o be s e t .
∗ /

p r o t e c t e d synchronized void s e t D a t a b a s e M a n a g e r (DatabaseManager d a t a b a s e) {
db = d a t a b a s e ;

/ / db . r e s e t D b () ;
A b s t r a c t R s l E l e m e n t . s e t C t r (db . g e t I n i t I d ()) ;
i n i t A s s o c i a t i o n s () ;

} / / se tDatabaseManager

/∗ ∗
∗ Checks whe ther t h e a s s o c i a t i o n s are i n t h e d a t a b a s e i f n o t i t c r e a t e s t h e

a s s o c i a t i o n s
∗ w i t h t h e s p e c i f i e d c a r d i n a l i t i e s as men t ioned i n t h e model .
∗ /

p r i v a t e vo id i n i t A s s o c i a t i o n s () { . . .
} / / i n i t A s s o c i a t i o n s

/∗ ∗
∗ R e s e t s t h e i S e r v e r d a t a b a s e .
∗ /

@Override
p u b l i c synchronized void r e s e t D a t a b a s e () {

/ / TODO Auto−g e n e r a t e d method s t u b
db . r e s e t D b () ;
A b s t r a c t R s l E l e m e n t . s e t C t r (0) ;

}

/∗ ∗
∗ I n i t i a l i z e and s t a r t s t h e auto−commit f u n c t i o n o f t h e i S e r v e r .
∗ @param amount t h e s p e c i f i e d amount o f i n t e r a c t i o n s be tween two commits .
∗ @param timeMs t h e s p e c i f i e d t i m e i n m i l l i s e c o n d s be tween two commits .
∗ /

@Override
p u b l i c synchronized void autoCommit (i n t amount , i n t timeMs) {

/ / TODO Auto−g e n e r a t e d method s t u b
db . s t a r tAu toCommi t (amount , timeMs) ;

}

p u b l i c synchronized void closeDB () {
System . o u t . p r i n t l n (" W r i t i n g t o l i n k b a s e ") ;
t r y {

/ / S e r i a l i z e l i n k b a s e (w r i t e memory t o l i n k b a s e)
JAXBContext c o n t e x t = JAXBContext . n e w I n s t a n c e ("com . x l i n k . gen ") ;
S t r i n g W r i t e r w r i t e r = new S t r i n g W r i t e r () ;
M a r s h a l l e r m = c o n t e x t . c r e a t e M a r s h a l l e r () ;
m. s e t P r o p e r t y (M a r s h a l l e r . JAXB_FORMATTED_OUTPUT, Boolean . TRUE) ;

67 APPENDIX A. Appendix

m. s e t P r o p e r t y (M a r s h a l l e r . JAXB_ENCODING, "UTF−8") ;

/ / B u i l d l i n k b a s e
L i n k b a s e base = new L i n k b a s e () ;

/ / f o r each l i n k i n memory . . . c r e a t e XLink
f o r (Link r s l L i n k : map_ l inks . v a l u e s ()) {

System . o u t . p r i n t l n (" Found a l i n k i n memory . . w r i t i n g t o l i n k b a s e ") ;
L i n k b a s e . Link x l i n k = new L i n k b a s e . Link () ;
x l i n k . s e t T y p e (TypeType .EXTENDED) ;
x l i n k . s e t I d (r s l L i n k . getName ()) ;
i f (r s l L i n k . g e t C r e a t o r () != n u l l) {

I n d i v i d u a l i n d = r s l L i n k . g e t C r e a t o r () ;
i f (i n d != n u l l) {

x l i n k . s e t C r e a t e d B y (i n d . g e t L o g i n ()) ;
}

}

/ / For each RSL source , add them as l o c a t o r s
f o r (E n t i t y r e s o u r c e _ e n t i t y : r s l L i n k . g e t S o u r c e s ()) {

System . o u t . p r i n t l n ("RSL l i n k has s o u r c e : " + r e s o u r c e _ e n t i t y . t o S t r i n g ()) ;

i f (r e s o u r c e _ e n t i t y . g e t C l a s s () == Resource . c l a s s) {
Resource r e s o u r c e = (Resource) r e s o u r c e _ e n t i t y ;
System . o u t . p r i n t l n ("RSL l i n k has REsource u r i : " + r e s o u r c e . g e t U r i ()) ;
i f (r e s o u r c e . g e t S e l e c t o r s () == n u l l) {

A b s t r a c t S e l e c t o r s o u r c e = new A b s t r a c t S e l e c t o r () ;
s o u r c e . s e t H r e f (r e s o u r c e . g e t U r i ()) ;
s o u r c e . s e t L a b e l (r e s o u r c e . getName ()) ;
x l i n k . g e t L o c a t o r () . add (s o u r c e) ;

} e l s e {
f o r (S e l e c t o r r e s o u r c e _ s e l e c t o r : r e s o u r c e . g e t S e l e c t o r s ()) {

System . o u t . p r i n t l n (" s o u r c e (r e s o u r c e) has s e l e c t o r : " + r e s o u r c e _ s e l e c t o r
. t o S t r i n g ()) ;

A b s t r a c t S e l e c t o r s o u r c e = c o n v e r t e r . conver tToXLink (r e s o u r c e _ s e l e c t o r) ;
s o u r c e . s e t L a b e l (r e s o u r c e _ s e l e c t o r . g e t R e s o u r c e () . getName ()) ;
x l i n k . g e t L o c a t o r () . add (s o u r c e) ;

}
}

} e l s e {
A b s t r a c t S e l e c t o r s o u r c e = c o n v e r t e r . conver tToXLink (r e s o u r c e _ e n t i t y) ;
S e l e c t o r r e s o u r c e _ s e l e c t o r = (S e l e c t o r) r e s o u r c e _ e n t i t y ;
Resource r e s o u r c e _ s e l e c t o r _ r e s o u r c e = r e s o u r c e _ s e l e c t o r . g e t R e s o u r c e () ;
i f (s o u r c e . g e t H r e f () == n u l l) {
System . o u t . p r i n t l n (" Nohref found ") ;
Resource r = r e s o u r c e _ s e l e c t o r . g e t R e s o u r c e () ;

}
s o u r c e . s e t L a b e l (r e s o u r c e _ s e l e c t o r . getName ()) ;
x l i n k . g e t L o c a t o r () . add (s o u r c e) ;

}

}

/ / For each RSL t a r g e t , c r e a t e an arc from e v e r y s o u r c e
f o r (E n t i t y r e s o u r c e _ e n t i t y : r s l L i n k . g e t T a r g e t s ()) {

System . o u t . p r i n t l n ("RSL l i n k has t a r g e t : " + r e s o u r c e _ e n t i t y . t o S t r i n g ()) ;

i f (r e s o u r c e _ e n t i t y . g e t C l a s s () == Resource . c l a s s) {
Resource r e s o u r c e = (Resource) r e s o u r c e _ e n t i t y ;
i f (r e s o u r c e . g e t S e l e c t o r s () == n u l l) {

A b s t r a c t S e l e c t o r t a r g e t = new A b s t r a c t S e l e c t o r () ;

68 APPENDIX A. Appendix

t a r g e t . s e t H r e f (r e s o u r c e . g e t U r i ()) ;
t a r g e t . s e t L a b e l (r e s o u r c e . getName ()) ;
x l i n k . g e t L o c a t o r () . add (t a r g e t) ;

} e l s e {
f o r (S e l e c t o r r e s o u r c e _ s e l e c t o r : r e s o u r c e . g e t S e l e c t o r s ()) {

A b s t r a c t S e l e c t o r t a r g e t = c o n v e r t e r . conver tToXLink (r e s o u r c e _ s e l e c t o r) ;
t a r g e t . s e t L a b e l (r e s o u r c e _ s e l e c t o r . g e t R e s o u r c e () . getName ()) ;
x l i n k . g e t L o c a t o r () . add (t a r g e t) ;

}
}

} e l s e {
A b s t r a c t S e l e c t o r t a r g e t = c o n v e r t e r . conver tToXLink (r e s o u r c e _ e n t i t y) ;
t a r g e t . s e t L a b e l (r e s o u r c e _ e n t i t y . getName ()) ;
x l i n k . g e t L o c a t o r () . add (t a r g e t) ;

}

f o r (E n t i t y a r c _ s o u r c e : r s l L i n k . g e t S o u r c e s ()) {
Arc a r c = new Arc () ;
a r c . s e t T y p e (TypeType .ARC) ;
a r c . se tFrom (a r c _ s o u r c e . getName ()) ;
a r c . s e t T o (r e s o u r c e _ e n t i t y . getName ()) ;
x l i n k . g e t A rc () . add (a r c) ;

}
}

/ / add l i n k t o base
base . g e t L i n k () . add (x l i n k) ;

}

m. m a r s h a l (base , w r i t e r) ;
S t r i n g b u f f e r = w r i t e r . g e t B u f f e r () . t o S t r i n g () ;
System . o u t . p r i n t l n (b u f f e r) ;
P r i n t W r i t e r o u t = new P r i n t W r i t e r (" c : \ \ m y l i n k b a s e . xml ") ;
o u t . p r i n t (b u f f e r) ;
o u t . c l o s e () ;

} ca tch (E x c e p t i o n e) { e . p r i n t S t a c k T r a c e () ; }

db . c loseDb () ;
}

/∗ ∗
∗ C a l l s t h e commit f u n c t i o n o f t h e c u r r e n t d a t a b a s e .
∗ /

/ / Handle R e s o u r c e s

/∗ ∗
∗ C r e a t e s a new r e s o u r c e i n s t a n c e .
∗ @param name t h e name o f t h e r e s o u r c e i n s t a n c e .
∗ @param c r e a t o r t h e i n d i v i d u a l who c r e a t e s t h e r e s o u r c e i n s t a n c e .
∗ @return t h e new r e s o u r c e i n s t a n c e .
∗ @throws C a r d i n a l i t y C o n s t r a i n t E x c e p t i o n
∗ /

@Override
p u b l i c Resource c r e a t e R e s o u r c e (S t r i n g name , Resource r e s o u r c e , I n d i v i d u a l

c r e a t o r) throws C a r d i n a l i t y C o n s t r a i n t E x c e p t i o n {
/ / TODO Auto−g e n e r a t e d method s t u b

69 APPENDIX A. Appendix

/∗ s e l e c t o r . s e t S e l e c t o r A s s o c i a t i o n s ((B i d i r e c t i o n a l A s s o c i a t i o n) db . read (
B i d i r e c t i o n a l A s s o c i a t i o n . c l a s s , " t y p e == \ " " + " r e f e r s T o " + " \ " ") . g e t F i r s t () ,
(B i d i r e c t i o n a l A s s o c i a t i o n) db . read (B i d i r e c t i o n a l A s s o c i a t i o n . c l a s s , " t y p e ==

\ " " + " onLayer " + " \ " ") . g e t F i r s t ()) ;
∗ /

s e t R e s o u r c e A s s o c i a t i o n s (r e s o u r c e) ;
r e s o u r c e . setName (name) ;
r e s o u r c e . s e t L a b e l (name) ;
r e s o u r c e . s e t C r e a t o r (c r e a t o r) ;

/ / db . c r e a t e (r e s o u r c e) ;
m a p _ r e s o u r c e s . p u t (name , r e s o u r c e) ;

re turn r e s o u r c e ;
}

/∗ ∗
∗ R e t u r n s t h e r e s o u r c e w i t h t h e s p e c i f i e d name .
∗ @param name t h e name o f t h e r e s o u r c e which has t o be r e t u r n e d .
∗ @return t h e r e s o u r c e w i t h t h e s p e c i f i e d name .
∗ /

@Override
p u b l i c Resource g e t R e s o u r c e (S t r i n g name) {

/ / TODO Auto−g e n e r a t e d method s t u b
/ / r e t u r n (Resource) db . read (Resource . c l a s s , " name == \""+ name + " \ " ") . g e t F i r s t ()

;
re turn m a p _ r e s o u r c e s . g e t (name) ;

}

/∗ ∗
∗ R e t u r n s t h e r e s o u r c e w i t h t h e s p e c i f i e d i d .
∗ @param i d t h e i d o f t h e r e s o u r c e which has t o be r e t u r n e d .
∗ @return t h e r e s o u r c e w i t h t h e s p e c i f i e d i d .
∗ /

@Override
p u b l i c Resource g e t R e s o u r c e (long i d) {

/ / TODO Auto−g e n e r a t e d method s t u b
/ / r e t u r n (Resource) db . read (Resource . c l a s s , " i d == \""+ i d + " \ " ") . g e t F i r s t () ;
re turn m a p _ r e s o u r c e s . g e t (" "+ i d) ;

}

/∗ ∗
∗ Updates t h e s p e c i f i e d r e s o u r c e i n s t a n c e .
∗ @param group t h e s p e c i f i e d r e s o u r c e t o be upda ted .
∗ /

@Override
p u b l i c vo id u p d a t e R e s o u r c e (Resource r e s o u r c e) {

/ / TODO Auto−g e n e r a t e d method s t u b
/ / db . up da t e (r e s o u r c e) ;
m a p _ r e s o u r c e s . p u t (r e s o u r c e . getName () , r e s o u r c e) ;

}

/∗ ∗
∗ C r e a t e s a new s e l e c t o r i n s t a n c e .
∗ @param name t h e name o f t h e s e l e c t o r i n s t a n c e .
∗ @param l a y e r t h e l a y e r on which t h e s e l e c t o r i s d e f i n e d .
∗ @param r e s o u r c e t h e r e s o u r c e t o which t h e s e l e c t o r r e f e r s t o .

70 APPENDIX A. Appendix

∗ @param c r e a t o r t h e i n d i v i d u a l who c r e a t e s t h e s e l e c t o r i n s t a n c e .
∗ @return t h e new s e l e c t o r i n s t a n c e .
∗ @throws C a r d i n a l i t y C o n s t r a i n t E x c e p t i o n
∗ /

@Override
p u b l i c S e l e c t o r c r e a t e S e l e c t o r (S t r i n g name , S e l e c t o r s e l e c t o r , Layer l a y e r ,

Resource r e s o u r c e ,
I n d i v i d u a l c r e a t o r) throws C a r d i n a l i t y C o n s t r a i n t E x c e p t i o n {

/ / TODO Auto−g e n e r a t e d method s t u b

s e t E n t i t y A s s o c i a t i o n s (s e l e c t o r) ;
s e l e c t o r . s e t S e l e c t o r A s s o c i a t i o n s ((B i d i r e c t i o n a l A s s o c i a t i o n) db . r e a d (

B i d i r e c t i o n a l A s s o c i a t i o n . c l a s s , " t y p e == \ " " + " k r e f e r s T o "+" \ " ") . g e t F i r s t () ,
(B i d i r e c t i o n a l A s s o c i a t i o n) db . r e a d (B i d i r e c t i o n a l A s s o c i a t i o n . c l a s s , " t y p e ==

\ " " + " onLayer "+" \ " ") . g e t F i r s t ()) ;
s e l e c t o r . setName (name) ;
s e l e c t o r . s e t L a y e r A s s o c i a t i o n (l a y e r) ;
s e l e c t o r . s e t R e s o u r c e (r e s o u r c e) ;
s e l e c t o r . s e t C r e a t o r (c r e a t o r) ;
r e s o u r c e . a d d S e l e c t o r (s e l e c t o r) ;

m a p _ s e l e c t o r s . p u t (name , s e l e c t o r) ;
/ / db . c r e a t e (s e l e c t o r) ;
re turn s e l e c t o r ;

}

/∗ ∗
∗ R e t u r n s t h e s e l e c t o r w i t h t h e s p e c i f i e d name .
∗ @param name t h e name o f t h e s e l e c t o r t h a t has t o be r e t u r n e d .
∗ @return t h e s e l e c t o r w i t h t h e s p e c i f i e d name .
∗ /

@Override
p u b l i c S e l e c t o r g e t S e l e c t o r (S t r i n g name) {

/ / TODO Auto−g e n e r a t e d method s t u b
/ / r e t u r n (S e l e c t o r) db . read (S e l e c t o r . c l a s s , " name == \""+ name + " \ " ") . g e t F i r s t () ;
re turn m a p _ s e l e c t o r s . g e t (name) ;

}

/ / g e t T e x t S e l e c t o r

/∗ ∗
∗ R e t u r n s t h e s e l e c t o r w i t h t h e s p e c i f i e d i d .
∗ @param i d t h e i d o f t h e s e l e c t o r t h a t has t o be r e t u r n e d .
∗ @return t h e s e l e c t o r w i t h t h e s p e c i f i e d i d .
∗ /

@Override
p u b l i c S e l e c t o r g e t S e l e c t o r (long i d) {

/ / TODO Auto−g e n e r a t e d method s t u b
/ / r e t u r n (S e l e c t o r) db . read (S e l e c t o r . c l a s s , " i d == \""+ i d + " \ " ") . g e t F i r s t () ;
re turn m a p _ s e l e c t o r s . g e t (" "+ i d) ;

}

/∗ ∗
∗ C r e a t e s a new l a y e r i n s t a n c e .
∗ Note t h a t t h e l a y e r i n s t a n c e i s s e t on a c t i v e by d e f a u l t .
∗ @param name t h e name o f t h e l a y e r i n s t a n c e .

71 APPENDIX A. Appendix

∗ @return t h e new l a y e r i n s t a n c e .
∗ /

@Override
p u b l i c Layer c r e a t e L a y e r (S t r i n g name) {

/ / TODO Auto−g e n e r a t e d method s t u b
Layer l a y e r = new Layer () ;

l a y e r . setName (name) ;
l a y e r . s e t A c t i v e (t rue) ;
/ / db . c r e a t e (l a y e r) ; / / W i l l a lways make a new l a y e r now
m a p _ l a y e r s . p u t (name , l a y e r) ;

re turn l a y e r ;
}

/∗ ∗
∗ C r e a t e s a new l a y e r i n s t a n c e .
∗ Note t h a t t h e l a y e r i n s t a n c e i s s e t on a c t i v e by d e f a u l t .
∗ @param name t h e name o f t h e l a y e r i n s t a n c e .
∗ @param p o s i t i o n t h e p o s i t i o n o f t h e l a y e r i n s t a n c e .
∗ @return t h e new l a y e r i n s t a n c e .
∗ /

@Override
p u b l i c Layer c r e a t e L a y e r (S t r i n g name , i n t p o s i t i o n) {

/ / TODO Auto−g e n e r a t e d method s t u b
Layer l a y e r = new Layer () ;
l a y e r . setName (name) ;
l a y e r . s e t P o s i t i o n (p o s i t i o n) ;
l a y e r . s e t A c t i v e (t rue) ;
/ / db . c r e a t e (l a y e r) ;
m a p _ l a y e r s . p u t (name , l a y e r) ;

re turn l a y e r ;
}

/∗ ∗
∗ R e t u r n s t h e l a y e r w i t h t h e s p e c i f i e d name .
∗ @param name t h e name o f t h e l a y e r which has t o be r e t u r n e d .
∗ @return t h e l a y e r w i t h t h e s p e c i f i e d name .
∗ /

@Override
p u b l i c Layer g e t L a y e r (S t r i n g name) {

/ / TODO Auto−g e n e r a t e d method s t u b
re turn m a p _ l a y e r s . g e t (name) ;
/ / r e t u r n (Layer) db . read (Layer . c l a s s , " name == \""+ name + " \ " ") . g e t F i r s t () ;

}

/∗ ∗
∗ R e t u r n s t h e l a y e r w i t h t h e s p e c i f i e d i d .
∗ @param i d t h e i d o f t h e l a y e r which has t o be r e t u r n e d .
∗ @return t h e l a y e r w i t h t h e s p e c i f i e d i d .
∗ /

@Override
p u b l i c Layer g e t L a y e r (long i d) {

/ / TODO Auto−g e n e r a t e d method s t u b
/ / r e t u r n (Layer) db . read (Layer . c l a s s , " i d == \""+ i d + " \ " ") . g e t F i r s t () ;

re turn m a p _ l a y e r s . g e t (" "+ i d) ;
}

72 APPENDIX A. Appendix

/∗ ∗
∗ C r e a t e s a new l i n k i n s t a n c e be tween a s o u r c e and a t a r g e t e n t i t y .
∗ Note t h a t t h i s method c a l l doesn ’ t a s s o c i a t e t h e l i n k / t a r g e t t o a c e r t a i n

c o n t e x t .
∗ @param name t h e name o f t h e l i n k i n s t a n c e .
∗ @param s o u r c e t h e s o u r c e e n t i t y o f t h e l i n k i n s t a n c e .
∗ @param t a r g e t t h e t a r g e t e n t i t y o f t h e l i n k i n s t a n c e .
∗ @param c r e a t o r t h e i n d i v i d u a l who c r e a t e s t h e l i n k i n s t a n c e .
∗ @return t h e new l i n k i n s t a n c e .
∗ @throws C a r d i n a l i t y C o n s t r a i n t E x c e p t i o n
∗ /

/∗
p u b l i c L ink c r e a t e L i n k (S t r i n g name , E n t i t y source , E n t i t y t a r g e t ,

I n d i v i d u a l c r e a t o r) t h r ows C a r d i n a l i t y C o n s t r a i n t E x c e p t i o n {
/ / TODO Auto−g e n e r a t e d method s t u b
L ink l i n k = new Link () ;

s e t L i n k A s s o c i a t i o n s (l i n k) ;
l i n k . setName (name) ;
l i n k . s e t C r e a t o r (c r e a t o r) ;
l i n k . addSource (s o u r c e) ;
l i n k . addTarge t (t a r g e t) ;
db . c r e a t e (l i n k) ;

r e t u r n l i n k ;
}
∗ /

@Override
p u b l i c Link c r e a t e L i n k (S t r i n g name , HashSet < E n t i t y > s o u r c e s ,

HashSet < E n t i t y > t a r g e t s , I n d i v i d u a l c r e a t o r)
throws C a r d i n a l i t y C o n s t r a i n t E x c e p t i o n {

Link l i n k = new Link () ;
s e t L i n k A s s o c i a t i o n s (l i n k) ;
l i n k . setName (name) ;
l i n k . s e t C r e a t o r (c r e a t o r) ;

f o r (E n t i t y e : s o u r c e s) {
l i n k . addSource (e) ;

}
f o r (E n t i t y e : t a r g e t s) {

l i n k . a d d T a r g e t (e) ;
}
/ / db . c r e a t e (l i n k) ;
/ / db . commit () ;

map_ l inks . p u t (name , l i n k) ;
re turn l i n k ;

}

/∗ ∗
∗ R e t u r n s t h e l i n k w i t h t h e s p e c i f i e d name .
∗ @param name t h e name o f t h e l i n k which has t o be r e t u r n e d .
∗ @return t h e l i n k w i t h t h e s p e c i f i e d name .
∗ /

@Override

73 APPENDIX A. Appendix

p u b l i c Link g e t L i n k (S t r i n g name) {
/ / TODO Auto−g e n e r a t e d method s t u b
/ / r e t u r n (L ink) db . read (L ink . c l a s s , " name == \""+ name + " \ " ") . g e t F i r s t () ;
re turn map_ l inks . g e t (name) ;

}

Listing A.11: Custom IServerInterfaceImp2 class, stripped to our changes

74 APPENDIX A. Appendix

Generated Classes for the Enriched XLink Standard

/ /
/ / T h i s f i l e was g e n e r a t e d by t h e JavaTM A r c h i t e c t u r e f o r XML B i n d i n g (JAXB)

R e f e r e n c e I m p l e m e n t a t i o n , v2 .2.4 −2
/ / See <a h r e f =" h t t p : / / j a v a . sun . com / xml / j a x b "> h t t p : / / j a v a . sun . com / xml / jaxb
/ / Any m o d i f i c a t i o n s t o t h i s f i l e w i l l be l o s t upon r e c o m p i l a t i o n o f t h e s o u r c e

schema .
/ / Genera ted on : 2 0 1 6 . 0 4 . 2 2 a t 0 4 : 5 4 : 4 4 PM CEST
/ /

package com . x l i n k . gen ;

import j a v a . math . B i g I n t e g e r ;
import j a v a x . xml . b ind . a n n o t a t i o n . XmlAccessType ;
import j a v a x . xml . b ind . a n n o t a t i o n . XmlAccessorType ;
import j a v a x . xml . b ind . a n n o t a t i o n . X m l A t t r i b u t e ;
import j a v a x . xml . b ind . a n n o t a t i o n . XmlSeeAlso ;
import j a v a x . xml . b ind . a n n o t a t i o n . XmlType ;
import j a v a x . xml . b ind . a n n o t a t i o n . a d a p t e r s . C o l l a p s e d S t r i n g A d a p t e r ;
import j a v a x . xml . b ind . a n n o t a t i o n . a d a p t e r s . XmlJavaTypeAdapter ;

/∗ ∗
∗ <p>Java c l a s s f o r a b s t r a c t S e l e c t o r complex t y p e .
∗
∗ <p>The f o l l o w i n g schema f r a g m e n t s p e c i f i e s t h e e x p e c t e d c o n t e n t c o n t a i n e d

w i t h i n t h i s c l a s s .
∗
∗ <pre >
∗ & l t ; complexType name=" a b s t r a c t S e l e c t o r ">
∗ & l t ; complexCon ten t >
∗ & l t ; r e s t r i c t i o n base ="{ h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema } anyType ">
∗ & l t ; a t t r i b u t e name=" a c c e s s i b l e T o " t y p e ="{ h t t p : / / www. w3 . org / 2 0 0 1 /

XMLSchema } s t r i n g " />
∗ & l t ; a t t r i b u t e name=" i n a c c e s s i b l e T o " t y p e ="{ h t t p : / / www. w3 . org / 2 0 0 1 /

XMLSchema } s t r i n g " />
∗ & l t ; a t t r i b u t e name=" c r e a t e d B y " t y p e ="{ h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema }

s t r i n g " />
∗ & l t ; a t t r i b u t e name=" l a y e r " t y p e ="{ h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema }

i n t e g e r " />
∗ & l t ; a t t r i b u t e r e f ="{ h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k } t y p e f i x e d =" l o c a t o r ""/ >
∗ & l t ; a t t r i b u t e r e f ="{ h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k } h r e f "/ >
∗ & l t ; a t t r i b u t e r e f ="{ h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k } l a b e l "/ >
∗ & l t ; a t t r i b u t e r e f ="{ h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k } t i t l e a t t r "/ >
∗ & l t ; a t t r i b u t e r e f ="{ h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k } r o l e "/ >
∗ & l t ; / r e s t r i c t i o n >
∗ & l t ; / complexCon ten t >
∗ & l t ; / complexType >
∗ </ pre >
∗
∗
∗ /

@XmlAccessorType (XmlAccessType . FIELD)
@XmlType (name = " a b s t r a c t S e l e c t o r " , namespace = " ")
@XmlSeeAlso ({

A p p l i c a t i o n P d f . c l a s s ,
T e x t P l a i n . c l a s s

})
p u b l i c c l a s s A b s t r a c t S e l e c t o r {

75 APPENDIX A. Appendix

@XmlAtt r ibute (name = " a c c e s s i b l e T o ")
p r o t e c t e d S t r i n g a c c e s s i b l e T o ;
@XmlAtt r ibute (name = " i n a c c e s s i b l e T o ")
p r o t e c t e d S t r i n g i n a c c e s s i b l e T o ;
@XmlAtt r ibute (name = " c r e a t e d B y ")
p r o t e c t e d S t r i n g c r e a t e d B y ;
@XmlAtt r ibute (name = " l a y e r ")
p r o t e c t e d B i g I n t e g e r l a y e r ;
@XmlAtt r ibute (name = " t y p e " , namespace = " h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k ")
p r o t e c t e d TypeType t y p e ;
@XmlAtt r ibute (name = " h r e f " , namespace = " h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k ")
p r o t e c t e d S t r i n g h r e f ;
@XmlAtt r ibute (name = " l a b e l " , namespace = " h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k ")
@XmlJavaTypeAdapter (C o l l a p s e d S t r i n g A d a p t e r . c l a s s)
p r o t e c t e d S t r i n g l a b e l ;
@XmlAtt r ibute (name = " t i t l e a t t r " , namespace = " h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k ")
p r o t e c t e d S t r i n g t i t l e a t t r ;
@XmlAtt r ibute (name = " r o l e " , namespace = " h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k ")
p r o t e c t e d S t r i n g r o l e ;

/∗ ∗
∗ Gets t h e v a l u e o f t h e a c c e s s i b l e T o p r o p e r t y .
∗
∗ @return
∗ p o s s i b l e o b j e c t i s
∗ { @link S t r i n g }
∗
∗ /

p u b l i c S t r i n g g e t A c c e s s i b l e T o () {
re turn a c c e s s i b l e T o ;

}

/∗ ∗
∗ S e t s t h e v a l u e o f t h e a c c e s s i b l e T o p r o p e r t y .
∗
∗ @param v a l u e
∗ a l l o w e d o b j e c t i s
∗ { @link S t r i n g }
∗
∗ /

p u b l i c vo id s e t A c c e s s i b l e T o (S t r i n g v a l u e) {
t h i s . a c c e s s i b l e T o = v a l u e ;

}

/∗ ∗
∗ Gets t h e v a l u e o f t h e i n a c c e s s i b l e T o p r o p e r t y .
∗
∗ @return
∗ p o s s i b l e o b j e c t i s
∗ { @link S t r i n g }
∗
∗ /

p u b l i c S t r i n g g e t I n a c c e s s i b l e T o () {
re turn i n a c c e s s i b l e T o ;

}

/∗ ∗
∗ S e t s t h e v a l u e o f t h e i n a c c e s s i b l e T o p r o p e r t y .
∗
∗ @param v a l u e
∗ a l l o w e d o b j e c t i s

76 APPENDIX A. Appendix

∗ { @link S t r i n g }
∗
∗ /

p u b l i c vo id s e t I n a c c e s s i b l e T o (S t r i n g v a l u e) {
t h i s . i n a c c e s s i b l e T o = v a l u e ;

}

/∗ ∗
∗ Gets t h e v a l u e o f t h e c r e a t e d B y p r o p e r t y .
∗
∗ @return
∗ p o s s i b l e o b j e c t i s
∗ { @link S t r i n g }
∗
∗ /

p u b l i c S t r i n g g e t C r e a t e d B y () {
re turn c r e a t e d B y ;

}

/∗ ∗
∗ S e t s t h e v a l u e o f t h e c r e a t e d B y p r o p e r t y .
∗
∗ @param v a l u e
∗ a l l o w e d o b j e c t i s
∗ { @link S t r i n g }
∗
∗ /

p u b l i c vo id s e t C r e a t e d B y (S t r i n g v a l u e) {
t h i s . c r e a t e d B y = v a l u e ;

}

/∗ ∗
∗ Gets t h e v a l u e o f t h e l a y e r p r o p e r t y .
∗
∗ @return
∗ p o s s i b l e o b j e c t i s
∗ { @link B i g I n t e g e r }
∗
∗ /

p u b l i c B i g I n t e g e r g e t L a y e r () {
re turn l a y e r ;

}

/∗ ∗
∗ S e t s t h e v a l u e o f t h e l a y e r p r o p e r t y .
∗
∗ @param v a l u e
∗ a l l o w e d o b j e c t i s
∗ { @link B i g I n t e g e r }
∗
∗ /

p u b l i c vo id s e t L a y e r (B i g I n t e g e r v a l u e) {
t h i s . l a y e r = v a l u e ;

}

/∗ ∗
∗ Gets t h e v a l u e o f t h e t y p e p r o p e r t y .
∗
∗ @return
∗ p o s s i b l e o b j e c t i s
∗ { @link TypeType }
∗

77 APPENDIX A. Appendix

∗ /
p u b l i c TypeType ge tType () {

i f (t y p e == n u l l) {
re turn TypeType .LOCATOR;

} e l s e {
re turn t y p e ;

}
}

/∗ ∗
∗ S e t s t h e v a l u e o f t h e t y p e p r o p e r t y .
∗
∗ @param v a l u e
∗ a l l o w e d o b j e c t i s
∗ { @link TypeType }
∗
∗ /

p u b l i c vo id s e t T y p e (TypeType v a l u e) {
t h i s . t y p e = v a l u e ;

}

/∗ ∗
∗ Gets t h e v a l u e o f t h e h r e f p r o p e r t y .
∗
∗ @return
∗ p o s s i b l e o b j e c t i s
∗ { @link S t r i n g }
∗
∗ /

p u b l i c S t r i n g g e t H r e f () {
re turn h r e f ;

}

/∗ ∗
∗ S e t s t h e v a l u e o f t h e h r e f p r o p e r t y .
∗
∗ @param v a l u e
∗ a l l o w e d o b j e c t i s
∗ { @link S t r i n g }
∗
∗ /

p u b l i c vo id s e t H r e f (S t r i n g v a l u e) {
t h i s . h r e f = v a l u e ;

}

/∗ ∗
∗ Gets t h e v a l u e o f t h e l a b e l p r o p e r t y .
∗
∗ @return
∗ p o s s i b l e o b j e c t i s
∗ { @link S t r i n g }
∗
∗ /

p u b l i c S t r i n g g e t L a b e l () {
re turn l a b e l ;

}

/∗ ∗
∗ S e t s t h e v a l u e o f t h e l a b e l p r o p e r t y .
∗
∗ @param v a l u e
∗ a l l o w e d o b j e c t i s

78 APPENDIX A. Appendix

∗ { @link S t r i n g }
∗
∗ /

p u b l i c vo id s e t L a b e l (S t r i n g v a l u e) {
t h i s . l a b e l = v a l u e ;

}

/∗ ∗
∗ Gets t h e v a l u e o f t h e t i t l e a t t r p r o p e r t y .
∗
∗ @return
∗ p o s s i b l e o b j e c t i s
∗ { @link S t r i n g }
∗
∗ /

p u b l i c S t r i n g g e t T i t l e a t t r () {
re turn t i t l e a t t r ;

}

/∗ ∗
∗ S e t s t h e v a l u e o f t h e t i t l e a t t r p r o p e r t y .
∗
∗ @param v a l u e
∗ a l l o w e d o b j e c t i s
∗ { @link S t r i n g }
∗
∗ /

p u b l i c vo id s e t T i t l e a t t r (S t r i n g v a l u e) {
t h i s . t i t l e a t t r = v a l u e ;

}

/∗ ∗
∗ Gets t h e v a l u e o f t h e r o l e p r o p e r t y .
∗
∗ @return
∗ p o s s i b l e o b j e c t i s
∗ { @link S t r i n g }
∗
∗ /

p u b l i c S t r i n g g e t R o l e () {
re turn r o l e ;

}

/∗ ∗
∗ S e t s t h e v a l u e o f t h e r o l e p r o p e r t y .
∗
∗ @param v a l u e
∗ a l l o w e d o b j e c t i s
∗ { @link S t r i n g }
∗
∗ /

p u b l i c vo id s e t R o l e (S t r i n g v a l u e) {
t h i s . r o l e = v a l u e ;

}

}

Listing A.12: Generated AbstractSelector class

79 APPENDIX A. Appendix

/ /
/ / T h i s f i l e was g e n e r a t e d by t h e JavaTM A r c h i t e c t u r e f o r XML B i n d i n g (JAXB)

R e f e r e n c e I m p l e m e n t a t i o n , v2 .2.4 −2
/ / See <a h r e f =" h t t p : / / j a v a . sun . com / xml / j a x b "> h t t p : / / j a v a . sun . com / xml / jaxb
/ / Any m o d i f i c a t i o n s t o t h i s f i l e w i l l be l o s t upon r e c o m p i l a t i o n o f t h e s o u r c e

schema .
/ / Genera ted on : 2 0 1 6 . 0 4 . 2 2 a t 0 4 : 5 4 : 4 4 PM CEST
/ /

package com . x l i n k . gen ;

import j a v a . u t i l . A r r a y L i s t ;
import j a v a . u t i l . L i s t ;
import j a v a x . xml . b ind . a n n o t a t i o n . XmlAccessType ;
import j a v a x . xml . b ind . a n n o t a t i o n . XmlAccessorType ;
import j a v a x . xml . b ind . a n n o t a t i o n . X m l A t t r i b u t e ;
import j a v a x . xml . b ind . a n n o t a t i o n . XmlType ;
import j a v a x . xml . b ind . a n n o t a t i o n . a d a p t e r s . C o l l a p s e d S t r i n g A d a p t e r ;
import j a v a x . xml . b ind . a n n o t a t i o n . a d a p t e r s . XmlJavaTypeAdapter ;

/∗ ∗
∗ <p>Java c l a s s f o r l o c a t o r T y p e complex t y p e .
∗
∗ <p>The f o l l o w i n g schema f r a g m e n t s p e c i f i e s t h e e x p e c t e d c o n t e n t c o n t a i n e d

w i t h i n t h i s c l a s s .
∗
∗ <pre >
∗ & l t ; complexType name=" l o c a t o r T y p e ">
∗ & l t ; complexCon ten t >
∗ & l t ; r e s t r i c t i o n base ="{ h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema } anyType ">
∗ & l t ; group r e f ="{ h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k } l o c a t o r M o d e l "/ >
∗ & l t ; a t t Gr o u p r e f ="{ h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k } l o c a t o r A t t r s "/ >
∗ & l t ; / r e s t r i c t i o n >
∗ & l t ; / complexCon ten t >
∗ & l t ; / complexType >
∗ </ pre >
∗
∗
∗ /

@XmlAccessorType (XmlAccessType . FIELD)
@XmlType (name = " l o c a t o r T y p e " , p ropOrde r = {

" t i t l e "
})
p u b l i c c l a s s Loca to rType {

p r o t e c t e d L i s t < T i t l e E l t T y p e > t i t l e ;
@XmlAtt r ibute (name = " t y p e " , namespace = " h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k " ,
r e q u i r e d = t rue)
p r o t e c t e d TypeType t y p e ;
@XmlAtt r ibute (name = " h r e f " , namespace = " h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k " ,
r e q u i r e d = t rue)
p r o t e c t e d S t r i n g h r e f ;
@XmlAtt r ibute (name = " r o l e " , namespace = " h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k ")
p r o t e c t e d S t r i n g r o l e ;
@XmlAtt r ibute (name = " t i t l e a t t r " , namespace = " h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k ")
p r o t e c t e d S t r i n g t i t l e a t t r ;
@XmlAtt r ibute (name = " l a b e l " , namespace = " h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k ")
@XmlJavaTypeAdapter (C o l l a p s e d S t r i n g A d a p t e r . c l a s s)
p r o t e c t e d S t r i n g l a b e l ;

80 APPENDIX A. Appendix

/∗ ∗
∗ Gets t h e v a l u e o f t h e t i t l e p r o p e r t y .
∗
∗ <p>
∗ T h i s a c c e s s o r method r e t u r n s a r e f e r e n c e t o t h e l i v e l i s t ,
∗ n o t a s n a p s h o t . T h e r e f o r e any m o d i f i c a t i o n you make t o t h e
∗ r e t u r n e d l i s t w i l l be p r e s e n t i n s i d e t h e JAXB o b j e c t .
∗ T h i s i s why t h e r e i s n o t a <CODE>s e t </CODE> method f o r t h e t i t l e p r o p e r t y .
∗
∗ <p>
∗ For example , t o add a new i tem , do as f o l l o w s :
∗ <pre >
∗ g e t T i t l e () . add (newItem) ;
∗ </ pre >
∗
∗
∗ <p>
∗ O b j e c t s o f t h e f o l l o w i n g t y p e (s) are a l l o w e d i n t h e l i s t
∗ { @link T i t l e E l t T y p e }
∗
∗
∗ /

p u b l i c L i s t < T i t l e E l t T y p e > g e t T i t l e () {
i f (t i t l e == n u l l) {

t i t l e = new A r r a y L i s t < T i t l e E l t T y p e > () ;
}
re turn t h i s . t i t l e ;

}

/∗ ∗
∗ Gets t h e v a l u e o f t h e t y p e p r o p e r t y .
∗
∗ @return
∗ p o s s i b l e o b j e c t i s
∗ { @link TypeType }
∗
∗ /

p u b l i c TypeType ge tType () {
i f (t y p e == n u l l) {

re turn TypeType .LOCATOR;
} e l s e {

re turn t y p e ;
}

}

/∗ ∗
∗ S e t s t h e v a l u e o f t h e t y p e p r o p e r t y .
∗
∗ @param v a l u e
∗ a l l o w e d o b j e c t i s
∗ { @link TypeType }
∗
∗ /

p u b l i c vo id s e t T y p e (TypeType v a l u e) {
t h i s . t y p e = v a l u e ;

}

/∗ ∗
∗ Gets t h e v a l u e o f t h e h r e f p r o p e r t y .
∗
∗ @return

81 APPENDIX A. Appendix

∗ p o s s i b l e o b j e c t i s
∗ { @link S t r i n g }
∗
∗ /

p u b l i c S t r i n g g e t H r e f () {
re turn h r e f ;

}

/∗ ∗
∗ S e t s t h e v a l u e o f t h e h r e f p r o p e r t y .
∗
∗ @param v a l u e
∗ a l l o w e d o b j e c t i s
∗ { @link S t r i n g }
∗
∗ /

p u b l i c vo id s e t H r e f (S t r i n g v a l u e) {
t h i s . h r e f = v a l u e ;

}

/∗ ∗
∗ Gets t h e v a l u e o f t h e r o l e p r o p e r t y .
∗
∗ @return
∗ p o s s i b l e o b j e c t i s
∗ { @link S t r i n g }
∗
∗ /

p u b l i c S t r i n g g e t R o l e () {
re turn r o l e ;

}

/∗ ∗
∗ S e t s t h e v a l u e o f t h e r o l e p r o p e r t y .
∗
∗ @param v a l u e
∗ a l l o w e d o b j e c t i s
∗ { @link S t r i n g }
∗
∗ /

p u b l i c vo id s e t R o l e (S t r i n g v a l u e) {
t h i s . r o l e = v a l u e ;

}

/∗ ∗
∗ Gets t h e v a l u e o f t h e t i t l e a t t r p r o p e r t y .
∗
∗ @return
∗ p o s s i b l e o b j e c t i s
∗ { @link S t r i n g }
∗
∗ /

p u b l i c S t r i n g g e t T i t l e a t t r () {
re turn t i t l e a t t r ;

}

/∗ ∗
∗ S e t s t h e v a l u e o f t h e t i t l e a t t r p r o p e r t y .
∗
∗ @param v a l u e
∗ a l l o w e d o b j e c t i s
∗ { @link S t r i n g }

82 APPENDIX A. Appendix

∗
∗ /

p u b l i c vo id s e t T i t l e a t t r (S t r i n g v a l u e) {
t h i s . t i t l e a t t r = v a l u e ;

}

/∗ ∗
∗
∗ l a b e l i s n o t r e q u i r e d , b u t l o c a t o r s have no p a r t i c u l a r
∗ XLink f u n c t i o n i f t h e y are n o t l a b e l e d .
∗
∗
∗ @return
∗ p o s s i b l e o b j e c t i s
∗ { @link S t r i n g }
∗
∗ /

p u b l i c S t r i n g g e t L a b e l () {
re turn l a b e l ;

}

/∗ ∗
∗ S e t s t h e v a l u e o f t h e l a b e l p r o p e r t y .
∗
∗ @param v a l u e
∗ a l l o w e d o b j e c t i s
∗ { @link S t r i n g }
∗
∗ /

p u b l i c vo id s e t L a b e l (S t r i n g v a l u e) {
t h i s . l a b e l = v a l u e ;

}

}

Listing A.13: Generated LocatorType class

/ /
/ / T h i s f i l e was g e n e r a t e d by t h e JavaTM A r c h i t e c t u r e f o r XML B i n d i n g (JAXB)

R e f e r e n c e I m p l e m e n t a t i o n , v2 .2.4 −2
/ / See <a h r e f =" h t t p : / / j a v a . sun . com / xml / j a x b "> h t t p : / / j a v a . sun . com / xml / jaxb
/ / Any m o d i f i c a t i o n s t o t h i s f i l e w i l l be l o s t upon r e c o m p i l a t i o n o f t h e s o u r c e

schema .
/ / Genera ted on : 2 0 1 6 . 0 4 . 2 2 a t 0 4 : 5 4 : 4 4 PM CEST
/ /

package com . x l i n k . gen ;

import j a v a . math . B i g I n t e g e r ;
import j a v a x . xml . b ind . a n n o t a t i o n . XmlAccessType ;
import j a v a x . xml . b ind . a n n o t a t i o n . XmlAccessorType ;
import j a v a x . xml . b ind . a n n o t a t i o n . X m l A t t r i b u t e ;
import j a v a x . xml . b ind . a n n o t a t i o n . XmlType ;

/∗ ∗
∗ <p>Java c l a s s f o r a p p l i c a t i o n _ p d f complex t y p e .
∗
∗ <p>The f o l l o w i n g schema f r a g m e n t s p e c i f i e s t h e e x p e c t e d c o n t e n t c o n t a i n e d

w i t h i n t h i s c l a s s .

83 APPENDIX A. Appendix

∗
∗ <pre >
∗ & l t ; complexType name=" a p p l i c a t i o n _ p d f ">
∗ & l t ; complexCon ten t >
∗ & l t ; e x t e n s i o n base ="{} a b s t r a c t S e l e c t o r ">
∗ & l t ; a t t r i b u t e name=" s e l e c t X " t y p e ="{ h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema }

do ub l e " />
∗ & l t ; a t t r i b u t e name=" s e l e c t Y " t y p e ="{ h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema }

do ub l e " />
∗ & l t ; a t t r i b u t e name=" s e l e c t W " t y p e ="{ h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema }

do ub l e " />
∗ & l t ; a t t r i b u t e name=" s e l e c t H " t y p e ="{ h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema }

do ub l e " />
∗ & l t ; a t t r i b u t e name=" s e l e c t P a g e " t y p e ="{ h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema }

i n t e g e r " />
∗ & l t ; / e x t e n s i o n >
∗ & l t ; / complexCon ten t >
∗ & l t ; / complexType >
∗ </ pre >
∗
∗
∗ /

@XmlAccessorType (XmlAccessType . FIELD)
@XmlType (name = " a p p l i c a t i o n _ p d f " , namespace = " ")
p u b l i c c l a s s A p p l i c a t i o n P d f

ex tends A b s t r a c t S e l e c t o r
{

@XmlAtt r ibute (name = " s e l e c t X ")
p r o t e c t e d Double s e l e c t X ;
@XmlAtt r ibute (name = " s e l e c t Y ")
p r o t e c t e d Double s e l e c t Y ;
@XmlAtt r ibute (name = " se l ec tW ")
p r o t e c t e d Double se l ec tW ;
@XmlAtt r ibute (name = " s e l e c t H ")
p r o t e c t e d Double s e l e c t H ;
@XmlAtt r ibute (name = " s e l e c t P a g e ")
p r o t e c t e d B i g I n t e g e r s e l e c t P a g e ;

/∗ ∗
∗ Gets t h e v a l u e o f t h e s e l e c t X p r o p e r t y .
∗
∗ @return
∗ p o s s i b l e o b j e c t i s
∗ { @link Double }
∗
∗ /

p u b l i c Double g e t S e l e c t X () {
re turn s e l e c t X ;

}

/∗ ∗
∗ S e t s t h e v a l u e o f t h e s e l e c t X p r o p e r t y .
∗
∗ @param v a l u e
∗ a l l o w e d o b j e c t i s
∗ { @link Double }
∗
∗ /

p u b l i c vo id s e t S e l e c t X (Double v a l u e) {
t h i s . s e l e c t X = v a l u e ;

}

84 APPENDIX A. Appendix

/∗ ∗
∗ Gets t h e v a l u e o f t h e s e l e c t Y p r o p e r t y .
∗
∗ @return
∗ p o s s i b l e o b j e c t i s
∗ { @link Double }
∗
∗ /

p u b l i c Double g e t S e l e c t Y () {
re turn s e l e c t Y ;

}

/∗ ∗
∗ S e t s t h e v a l u e o f t h e s e l e c t Y p r o p e r t y .
∗
∗ @param v a l u e
∗ a l l o w e d o b j e c t i s
∗ { @link Double }
∗
∗ /

p u b l i c vo id s e t S e l e c t Y (Double v a l u e) {
t h i s . s e l e c t Y = v a l u e ;

}

/∗ ∗
∗ Gets t h e v a l u e o f t h e s e l e c t W p r o p e r t y .
∗
∗ @return
∗ p o s s i b l e o b j e c t i s
∗ { @link Double }
∗
∗ /

p u b l i c Double g e t S e l e c t W () {
re turn se l ec tW ;

}

/∗ ∗
∗ S e t s t h e v a l u e o f t h e s e l e c t W p r o p e r t y .
∗
∗ @param v a l u e
∗ a l l o w e d o b j e c t i s
∗ { @link Double }
∗
∗ /

p u b l i c vo id s e t S e l e c t W (Double v a l u e) {
t h i s . s e l ec tW = v a l u e ;

}

/∗ ∗
∗ Gets t h e v a l u e o f t h e s e l e c t H p r o p e r t y .
∗
∗ @return
∗ p o s s i b l e o b j e c t i s
∗ { @link Double }
∗
∗ /

p u b l i c Double g e t S e l e c t H () {
re turn s e l e c t H ;

}

/∗ ∗

85 APPENDIX A. Appendix

∗ S e t s t h e v a l u e o f t h e s e l e c t H p r o p e r t y .
∗
∗ @param v a l u e
∗ a l l o w e d o b j e c t i s
∗ { @link Double }
∗
∗ /

p u b l i c vo id s e t S e l e c t H (Double v a l u e) {
t h i s . s e l e c t H = v a l u e ;

}

/∗ ∗
∗ Gets t h e v a l u e o f t h e s e l e c t P a g e p r o p e r t y .
∗
∗ @return
∗ p o s s i b l e o b j e c t i s
∗ { @link B i g I n t e g e r }
∗
∗ /

p u b l i c B i g I n t e g e r g e t S e l e c t P a g e () {
re turn s e l e c t P a g e ;

}

/∗ ∗
∗ S e t s t h e v a l u e o f t h e s e l e c t P a g e p r o p e r t y .
∗
∗ @param v a l u e
∗ a l l o w e d o b j e c t i s
∗ { @link B i g I n t e g e r }
∗
∗ /

p u b l i c vo id s e t S e l e c t P a g e (B i g I n t e g e r v a l u e) {
t h i s . s e l e c t P a g e = v a l u e ;

}

}

Listing A.14: Generated PDF plugin class

/ /
/ / T h i s f i l e was g e n e r a t e d by t h e JavaTM A r c h i t e c t u r e f o r XML B i n d i n g (JAXB)

R e f e r e n c e I m p l e m e n t a t i o n , v2 .2.4 −2
/ / See <a h r e f =" h t t p : / / j a v a . sun . com / xml / j a x b "> h t t p : / / j a v a . sun . com / xml / jaxb
/ / Any m o d i f i c a t i o n s t o t h i s f i l e w i l l be l o s t upon r e c o m p i l a t i o n o f t h e s o u r c e

schema .
/ / Genera ted on : 2 0 1 6 . 0 4 . 2 2 a t 0 4 : 5 4 : 4 4 PM CEST
/ /

package com . x l i n k . gen ;

import j a v a . math . B i g I n t e g e r ;
import j a v a x . xml . b ind . a n n o t a t i o n . XmlAccessType ;
import j a v a x . xml . b ind . a n n o t a t i o n . XmlAccessorType ;
import j a v a x . xml . b ind . a n n o t a t i o n . X m l A t t r i b u t e ;
import j a v a x . xml . b ind . a n n o t a t i o n . XmlType ;

/∗ ∗
∗ <p>Java c l a s s f o r t e x t _ p l a i n complex t y p e .
∗

86 APPENDIX A. Appendix

∗ <p>The f o l l o w i n g schema f r a g m e n t s p e c i f i e s t h e e x p e c t e d c o n t e n t c o n t a i n e d
w i t h i n t h i s c l a s s .

∗
∗ <pre >
∗ & l t ; complexType name=" t e x t _ p l a i n ">
∗ & l t ; complexCon ten t >
∗ & l t ; e x t e n s i o n base ="{} a b s t r a c t S e l e c t o r ">
∗ & l t ; a t t r i b u t e name=" s e l e c t F r o m " t y p e ="{ h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema }

i n t e g e r " />
∗ & l t ; a t t r i b u t e name=" s e l e c t T o " t y p e ="{ h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema }

i n t e g e r " />
∗ & l t ; / e x t e n s i o n >
∗ & l t ; / complexCon ten t >
∗ & l t ; / complexType >
∗ </ pre >
∗
∗
∗ /

@XmlAccessorType (XmlAccessType . FIELD)
@XmlType (name = " t e x t _ p l a i n " , namespace = " ")
p u b l i c c l a s s T e x t P l a i n

ex tends A b s t r a c t S e l e c t o r
{

@XmlAtt r ibute (name = " s e l e c t F r o m ")
p r o t e c t e d B i g I n t e g e r s e l e c t F r o m ;
@XmlAtt r ibute (name = " s e l e c t T o ")
p r o t e c t e d B i g I n t e g e r s e l e c t T o ;

/∗ ∗
∗ Gets t h e v a l u e o f t h e s e l e c t F r o m p r o p e r t y .
∗
∗ @return
∗ p o s s i b l e o b j e c t i s
∗ { @link B i g I n t e g e r }
∗
∗ /

p u b l i c B i g I n t e g e r g e t S e l e c t F r o m () {
re turn s e l e c t F r o m ;

}

/∗ ∗
∗ S e t s t h e v a l u e o f t h e s e l e c t F r o m p r o p e r t y .
∗
∗ @param v a l u e
∗ a l l o w e d o b j e c t i s
∗ { @link B i g I n t e g e r }
∗
∗ /

p u b l i c vo id s e t S e l e c t F r o m (B i g I n t e g e r v a l u e) {
t h i s . s e l e c t F r o m = v a l u e ;

}

/∗ ∗
∗ Gets t h e v a l u e o f t h e s e l e c t T o p r o p e r t y .
∗
∗ @return
∗ p o s s i b l e o b j e c t i s
∗ { @link B i g I n t e g e r }
∗
∗ /

p u b l i c B i g I n t e g e r g e t S e l e c t T o () {

87 APPENDIX A. Appendix

re turn s e l e c t T o ;
}

/∗ ∗
∗ S e t s t h e v a l u e o f t h e s e l e c t T o p r o p e r t y .
∗
∗ @param v a l u e
∗ a l l o w e d o b j e c t i s
∗ { @link B i g I n t e g e r }
∗
∗ /

p u b l i c vo id s e t S e l e c t T o (B i g I n t e g e r v a l u e) {
t h i s . s e l e c t T o = v a l u e ;

}

}

Listing A.15: Generated text plugin class

Bibliography

[1] K. M. Anderson, R. N. Taylor, and E. J. Whitehead Jr. Chimera: Hyperme-
dia for Heterogeneous Software Development Environments. ACM Trans-
actions on Information Systems, 18(3):211–245, 2000.

[2] T. Berners-Lee, M. Fischetti, and M. L. Foreword By-Dertouzos. Weaving
the Web: The Original Design and Ultimate Destiny of the World Wide Web
by Its Inventor. HarperInformation, 2000.

[3] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, J. Siméon,
and M. Stefanescu. XQuery 1.0: An XML Query Language, 2002.

[4] V. Bush. As We May Think. Atlantic Monthly, 176(1):101–108, 1945.

[5] P. Ciancarini, F. Folli, D. Rossi, and F. Vitali. XLinkProxy: External
Linkbases with XLink. In Proceedings of DocEng 2002, ACM Symposium
on Document Engineering, McLean, USA, November 2002.

[6] J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0. [online:
https://www.w3.org/TR/xpath], November 1999.

[7] S. DeRose, E. Maler, and R. Daniel Jr. XML Pointer Language (XPointer)
Version 1.0. [online: https://www.w3.org/TR/WD-xptr], January 2001.

[8] S. DeRose, E. Maler, and D. Orchard. XML Linking Language (XLink) Ver-
sion 1.0. [online: https://www.w3.org/TR/2000/PR-xlink-20001220], June
2001.

[9] S. DeRose, E. Maler, and D. Orchard. XML Linking Language (XLink) Ver-
sion 1.0. [online: https://www.w3.org/TR/2000/PR-xlink-20001220], June
2001.

[10] S. DeRose, E. Maler, D. Orchard, and N. Walsh. XML Linking
Language (XLink) Version 1.1. Technical report, W3C, May 2010.
http://www.w3.org/TR/xlink11/.

89 BIBLIOGRAPHY

[11] R. Hall, K. Pauls, S. McCulloch, and D. Savage. OSGi in Action: Creating
Modular Applications in Java. Manning Publications, 2011.

[12] A. D. Iorio, G. Montemari, and F. Vitali. Beyond Proxies: XLink Support
in the Browser. In Proceedings of ITA 2005, International Conference on
Internet Technologies and Applications, Wrexham, UK, September 2005.

[13] M. Kay et al. XSL Transformations (XSLT) Version 2.0. W3C Recommen-
dation, 23:52–71, 2007.

[14] O. Kiselyov. SXML Specification. SIGPLAN Not., 37(6):52–58, June 2002.

[15] K. Lisovsky and D. Lizorkin. XSLT and XLink and their Implementation
with Functional Techniques. Russian Digital Libraries Journal, 6(5), 2003.

[16] D. Lizorkin and K. Y. Lisovsky. Implementation of the XML Linking Lan-
guage XLink by Functional Methods. Programming and Computer Soft-
ware, 31(1):34–46, 2005.

[17] D. Martin and H. Ashman. Goate: An Infrastructure for New Web Linking.
In Proceedings of the International Workshop on Open Hypermedia Systems
at Hypertext 2002 Conference, Maryland, USA, June 2002.

[18] D. Martin and H. Ashman. Goate: XLink and Beyond. In Proceedings of the
Thirteenth ACM Conference on Hypertext and Hypermedia, HYPERTEXT
2002, pages 142–143, New York, USA, 2002. ACM.

[19] J. McAffer, P. VanderLei, and S. Archer. OSGi and Equinox: Creating
Highly Modular Java Systems. Addison-Wesley Professional, 2010.

[20] T. H. Nelson. Complex Information Processing: a File Structure for the
Complex, the Changing and the Indeterminate. In Proceedings of ACM 1965,
20th ACM National Conference, Cleveland, USA, August 1965.

[21] T. H. Nelson. Literary Machines. Mindful Press, 1982.

[22] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelsteiin. xlinkit: A Con-
sistency Checking and Smart Link Generation Service. ACM Transactions
on Internet Technology, 2(2):151–185, 2002.

[23] T. O’reilly. What is Web 2.0: Design Patterns and Business Models for the
Next Generation of Software. Communications & strategies, (1):17, 2007.

[24] A. Pearl. Sun’s Link Service: A Protocol for Open Linking. In Proceedings
of Hypertext 1989, 2nd ACM Conference on Hypertext and Hypermedia,
Pittsburgh, USA, November 1989.

90 BIBLIOGRAPHY

[25] B. K. Reid. Scribe: A Document Specification Language and Its Com-
piler. Phd thesis, Carnegie-Mellon University Computer Science Depart-
ment, Pittsburgh, USA, 1980.

[26] B. Signer. Fundamental Concepts for Interactive Paper and Cross-Media
Information Spaces. Books on Demand GmbH, 2008.

[27] B. Signer and M. C. Norrie. As We May Link: A General Metamodel for Hy-
permedia Systems. In Proceedings of ER 2007, 26th International Confer-
ence on Conceptual Modelling, Auckland, New Zealand, November 2007.

[28] A. A.O. Tayeh and B. Signer. Open Cross-Document Linking and Browsing
based on A Visual Plug-in Architecture. In Proceedings of WISE 2014, 15th
Web Information System Engineering Conference, Thessaloniki, Greece, Oc-
tober 2014.

[29] A. A.O. Tayeh and B. Signer. A Dynamically Extensible Open Cross-
Document Link Service. In Proceedings of WISE 2015, 16th Web Infor-
mation System Engineering Conference, Miami, USA, November 2015.

[30] N. Walsh and L. Muellner. DocBook: The Definitive Guide, volume 1.
O’Reilly Media, Inc., 1999.

[31] R. Weir. OpenDocument Format: The Standard for Office Documents. IEEE
Internet Computing, 13(2):83–87, 2009.

[32] N. Yankelovich, B. J. Haan, N. K. Meyrowitz, and S. M. Drucker. Interme-
dia: The Concept and the Construction of a Seamless Information Environ-
ment. IEEE Computer, 21(1):81–83, 1988.

	Introduction
	Background
	An Enhanced XLink Standard
	Implementation
	Conclusions and Future Work
	Appendix

