
FACULTY OF SCIENCE AND
BIO-ENGINEERING SCIENCES
DEPARTMENT OF COMPUTER SCIENCE

May the Personal Information
Manager be With You:
A Ubiquitous Distributed PIM System

Graduation thesis submitted in partial fulfilment of the requirements for the degree of
Master of Science in Applied Informatics

Evgeni Ivakhnov

Promoter: Prof. Dr. Beat Signer
Advisor: Sandra Trullemans

Academic year 2014-2015



c©Vrije Universiteit Brussel, all rights reserved.



FACULTY WETENSCHAPPEN EN
BIO-INGENIEURSWETENSCHAPPEN
VAKGROEP COMPUTERWETENSCHAPPEN

May the Personal Information
Manager be With You:
A Ubiquitous Distributed PIM System

Afstudeer eindwerk ingediend in gedeeltelijke vervulling van de eisen
voor het behalen van de graad
Master of Science in de Toegepaste Informatica

Evgeni Ivakhnov

Promoter: Prof. Dr. Beat Signer
Advisor: Sandra Trullemans

Academiejaar 2014-2015



c©Vrije Universiteit Brussel, alle rechten voorbehouden.



i

Abstract

On a daily basis, people get in touch with the challenge of analysing and �ltering
a huge amount of information while performing professional and personal tasks.
Eventually, some user data is accumulated and stored in document �les such as,
emails, articles, notes, etc. Aggregation of those �les forms a certain information
space of the user. Creation and addition of each new document rises the question of
organising and (re)structuring the information space. While people already su�er
while re-�nding in the usual of organisational structures, the last decade they also
use multiple digital devices. Usually, people use di�erent devices to solve di�er-
ent tasks, while the set of the use cases of a device can be limited by its physical
characteristics. Moreover, people use di�erent cloud services, which means that
the information organisation problem becomes even more challenging. In the end
people want to have access to all their information regardless the device they are
working on. In order to synchronise personal �les over di�erent devices, people of-
ten fall back to uni�ed repository services. However, the �les that are controlled by
a cloud service are doomed to be isolated inside the cloud services. This is because
the service makes copies of �les and stores them on their server. Hence people use
multiple cloud services, but also multiple devices. So, a document �le can be copied
over di�erent devices and at the same time be used in multiple cloud services which
results in disastrous fragmentation of personal information space. One of the main
conceptual contributions of this thesis is the integration of di�erent devices and
cloud services in one single information space. This provides possibility to keep
track of documents which may be duplicated across isolated parts of one's personal
information space, in order to prevent inconsistency and fragmentation. Knowing
what is where, signi�cantly helps in the re-�nding, organising and structuring pro-
cess. Moreover, as it turns out, people not only access their information space while
ingesting or retrieving information, they tend to proactively re-explore their space
and re�ect on it. As people memorise something, they tend to create mnemonic
links between di�erent information pieces and events originating from that partic-
ular period of time. By recalling, the linked information pieces are often recalled as
well. For example, as in case of Facebook, people can explore photos, events, news,
etc. in a time based way using the timeline. Those information pieces can contain
additional links to things such as geographical tags or comments, which people
re-explore sometimes. However, there do not exist solutions which would make
re�ection ubiquitous, by making it possible to re�ect on all kinds of documents
while exploring it on all islands of one's information space. For that purpose an
application called EverSync has been implemented. This is an application which
successfully targets the described issues. In practise, EverSync can be extended
with plugins in order to support multiple isolated information spaces, mainly cloud
services. It is implemented using the client-server architecture in order to support
multiple user's devices. Moreover, it is a cross-platform application. Since people
�nd it easy to work with interfaces they have a familiarity with, it was a true



ii

challenge to design the interface for the EverSync. The result is ubiquitous, keeps
track of documents, their copies and blurs away the boundaries between devices,
services and social media.



Contents

1 Introduction

1.1 Information on the Desktop . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Information in the Cloud . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Literature Review

2.1 Challenges of PIM: storage and re-�nding . . . . . . . . . . . . . . 9
2.1.1 Keeping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Organising . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Re-�nding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Current PIM Systems . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Memex vision of the PIM concept . . . . . . . . . . . . . . . 16

2.3 Information Fragmentation in PIM . . . . . . . . . . . . . . . . . . 19
2.4 Information Fragmentation in the Cloud . . . . . . . . . . . . . . . 23

2.4.1 Users' Behaviour in the Cloud . . . . . . . . . . . . . . . . . 23
2.4.2 Types of Cloud Services . . . . . . . . . . . . . . . . . . . . 23
2.4.3 Solutions for Information Fragmentation . . . . . . . . . . . 25

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 EverSync Application

3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Object-Concept-Context Framework . . . . . . . . . . . . . . . . . 32
3.4 EverSync Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Implementation

4.1 Iterative User Interface Design . . . . . . . . . . . . . . . . . . . . 37
4.2 Client-server Communication Layer . . . . . . . . . . . . . . . . . . 42
4.3 Server-side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Client-side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5 EverSync Plugin Implementation . . . . . . . . . . . . . . . . . . . 47



iv CONTENTS

5 Proof of Concept � EverSync at Work

5.1 Use Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.1 Evernote plugin . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2.2 Facebook plugin . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.3 Flickr plugin . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 EverSync in practise . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Future work



1 CONTENTS



1
Introduction

Daily, while performing professional and personal tasks, a modern human being
gets in touch with the challenge of analysing and �ltering a huge amount of infor-
mation. Eventually, some user data is accumulated and stored in document �les:
emails, articles, notes, etc. Aggregation of those �les forms a certain information
space of the user. Creation and addition of each new document rises the question
of organising and (re)structuring the information space. Hereby, in process of time
few �le folders with organised documents inside, can evolve to huge stores of docu-
ments which are di�cult to maintain. Clearly, it is very challenging to concretise,
categorise and visualise the user's information space. This chapter will introduce
how computing devices and cloud services are incorporated in one's personal digital
information space. Why and how people use cloud in combination with their main
computers and mobile devices. Further, the main purpose and contributions of this
thesis will be explained, followed by the description of the overall thesis structure.

1.1 Information on the Desktop

With the emerging ubiquity of modern technology in all aspects of a human life,
the boundaries between facets of the physical identity in the real world and virtual
identity in the digital world get blurred [55]. However, the distinction between those
two worlds will never fade out completely since research on this popular psycho-
logical domain shows that it is of the deep human nature to cultivate and maintain
multiple identities [25]. Those identities consist of multiple facets and altogether



3 CHAPTER 1. Introduction

form the social-self [13]. This means that people behave di�erently depending on
the circumstances and tend to associate di�erent contexts and situations with their
di�erent identities and/or adopt their identity to the context of the problem [21].
This psychological subject of multifaceted identities not only involves questions
of individuals' behaviour in for example social networks, but also covers the sub-
ject of human-computer interaction in the broad sense, and in particular personal
information management using modern technology.

Depending on the facets of the developed identity, the behavioural patterns can
be categorised into aggregation and segmentation [57] of information. The mental
models that people use hereby is depicted in Figure 1.1. Suppose that each type of
�gure (a star, a cross or an octagon) stands for a di�erent type of information. This
can be books, photo's etc. Segregators try to segment their information in di�erent
information spaces. An illustration of segmentation by information type is shown
in Figure 1.1b. For example, people keep their books on a bookshelf and store their
photo's in one photo album. Of course, we could have supposed that the �gure
types stand for context related information pieces. Segmentation can be done not
only by information type. The important thing here to understand, is that some
people keep their things separated. Aggregators on the other hand, prefer to have
one single information space where they store all their personal information, for
example, a working desk.

(a) Aggregating (b) Segregating by type

Figure 1.1: Mental model of information management.

Regardless the approach, information storage implies (re)�nding in a later point
of time. Finding and storing information both require some e�ort. The di�erence
between the two mental models of information organisation lies in the phase of
the storing process which requires the most e�ort. Section 2.1 describes that the
aggregation o�ers very easy storing stage but require much more e�ort to re�nd
things [35]. Namely, less attention is given to classifying and sorting items which
makes it di�cult to search. Segmentation on the other hand exhibits a storing
phase with heavy cognitive load but then things can be found very easily.



4 CHAPTER 1. Introduction

Transposing the information organisation subject to the digital world does not
change human's nature and the concept of multifaceted identities remains. Either
way, information management solely relies on processes of categorisation, recogni-
tion and recall [35, 34]. This manifests in di�erent techniques to organise their �les
and di�erent organisational structures (i.e. �les and piles) that people use, which
is described more deeply in subsection 2.1.2. Additional challenge is keep track
of context related items. For example, an email about a presentation, a calendar
record about this presentation, powerpoint �les that will be presented and text
�les with the text to present. If the powerpoint and text �les can be "linked" by
placing them, for example, in one folder, the the email and the calendar record are
isolated in the mail messenger and calendar application respectively. This implies
uncontrolled fragmentation of information.

To solve the aforementioned organisational issues there exist solutions such
personal information management (PIM) systems. PIM systems help organising
personal information, o�er one single access point to all �les and foresee possibility
to create logical links between related items. However, mostly such PIM applica-
tions can only work with local �les. Meaning that the application only has access
to the �les on the device where it is installed. In order to support multiple devices
often cloud services are used.

1.2 Information in the Cloud

The concept of cloud computing in the broad sense of the term means providing
end users possibilities for remote access to dynamic computing resources and appli-
cations via a network connection. That is, the end user gets access to computing
resources in full compliance with his original requirements. The physical source
of the computing resources stays unknown, metaphorically speaking, it is some-
where in the clouds. In fact, the source itself is not important for the end user.
The solely important thing is the availability of a communication channel to the
cloud. As a rule, the cloud service can providing all kinds of computer resources,
including CPU, memory, disk space and communication systems. However, the
ideology of cloud technologies is more versatile. It provides convenient conditions
for performing all kinds of user tasks. Hereby, under the convenient conditions one
can understand a whole set of requirements for the service, including a high level
of security (in all aspects), �exibility and versatility, scalability and adaptability
to speci�c client needs.

Now that the concept of cloud is introduced, we can proceed and focus on
the aspect of how people use cloud services for storage of personal information.
Hereby, the processes of aggregation and segmentation described in the previous
section also hold for cloud use [57]. Before even actually using an application at its
full functional capacity, especially based on previous interaction experience with



5 CHAPTER 1. Introduction

similar applications and based on the application's presentation and interface de-
sign, a user creates certain predictions and expectations about how the application
works. That is called a conceptual model. As research shows, people though seem
to use cloud services di�erently for information management than their desktops
because of the con�icting conceptual models [26]. People use their desktop com-
puters for di�erent purposes than they use their mobile devices and cloud services.
The con�ict of the conceptual models can be explained by the fact that the most
research in this area is directed towards improvement of some particular type of
cloud service, for example [2]. Based on such research, various cloud solutions
for information storage and management have been developed, for example, Drop-
Box, Google Docs, iCloud, Evernote, etc. But each cloud application provides its
own set of functionalities, its own possibilities for interaction and its own unique
advantages. This also implies that each cloud application has its own set of lim-
itations and disadvantages. Hereby, Marshall and Tang state that people have
�ve di�erent use cases for cloud services: "personal cloud repository, shared cloud
repository, personal replicated store, shared replicated store, and synchronisation
mechanism" [36]. Using a cloud service as a personal cloud repository means that
people use it as a single storage place of their personal documents and information.
Shared cloud repository means that a cloud service is used as a sharing platform.
Whenever a document is downloaded of viewed by another person, mostly the
owner removes it from the cloud service. In comparison with the personal cloud
repository, the personal replicated store means that people use it not a single cen-
tral store place, but in combination with other services and storage space on their
devices and hard drives. Again, shared replicated store implies using the cloud ser-
vice to share information with other people. However, in case of replicated store,
people tend to keep information that has been shared in the cloud storage space
instead of deleting it. The last way of cloud service usage is when people store their
information on a cloud storage space in order to be able to access this information
on one of their other devices. In that case, the service is intended to keep users'
devices in sync.
There's done a lot of research on this �eld which shows that people use cloud ser-
vice for their daily challenges of personal information management [17, 40, 57].
However, those �ve use cases share one common issue � interaction with the cloud.
Most of the users' attention goes to the limitations of each application instead of
focusing on the interaction [24]. Another point of struggling is the isolation of in-
formation inside each application. Almost each cloud service which controls some
kind of information, isolates this information inside the scope of this service. For
example, �les inside the DropBox folder cannot be controlled by Google Docs or
vice versa. In fact, this is not only typical for cloud services but also holds for
local applications on a device. For example, the emails are isolated in the mail
messenger app and are not visible in the �le tray which is used to organise �les.
This problem is described more deeply in section 2.3.



6 CHAPTER 1. Introduction

1.3 Problem Statement

The �les that are controlled by a cloud service are doomed to be isolated inside
this cloud service. Here comes the fact that people not only use multiple cloud
services, but also multiple devices. So, a document �le can be copied over di�erent
devices and at the same time be used in multiple cloud services which in turn make
copies of it because of their isolation nature. As a result, if the user makes changes
to this particular �le either on one of the devices or via the application of one of
the cloud services, it does not necessarily mean that also other instances of that
�le will be updated. Hereby, in process of time, the user looses control of where
this particular �le is used and stored. Consider the following example situation in
order to outline the problem.

Benjamin is on a citytrip and takes beautiful photos with his iPhone. When he
arrives at his hotel room, Benjamin takes his Android tablet to surf on the internet
because he �nds its bigger screen more convenient. Then he surfs to Facebook
and decides to share his photos with friends. Of course, Benjamin has foresee such
scenario and have had installed DropBox applications on both: his iPhone and
his Android tablet. So, seamlessly his photos are synchronised on both devices.
Without any problem Benjamin selects the photo from his DropBox application
and uploads them to Facebook. Later this evening he decides to somehow record
his route so that he can remember it the next time he visits the city. So he creates
a note in Evernote and adds some of the pictures with the conjunctions and route
directions. At home Benjamin has a Mac computer and at the end of his vacation
when he arrives home, all his photos will be available on it since both Apple devices
are synchronised through iCloud.

So to summarise, Benjamin has his photos on:

• iPhone

• DropBox account and thus also on his Android tablet

• Facebook

• Evernote

• Mac desktop via iCloud

This implies the following problems. What if Benjamin �nds out that he has
made two almost identical photos and decides to remove one of them? Actually,
he has to remove it manually multiple times from each service and/or each device.
What if Benjamin decides to adjust contrast of his photos in Photoshop on his
desktop? Except of the iPhone, all the other copies won't be changed automatically.
Moreover, he has to remember where he has used and stored the photo that he
has adjusted in order to replace it with the improved version. After some period
of time, Benjamin won't be able to remember where he has copies of his photos.



7 CHAPTER 1. Introduction

Information fragmentation over cloud services is the main problem of personal
information management using multiple devices since current PIM systems have
no support for the cloud.

1.4 Thesis Contributions

Shortly, the main conceptual contribution of this thesis is the integration of di�er-
ent devices and cloud services in one single information space in order to provide
possibility to keep track of duplicated �les in order to prevent inconsistency in
fragmented personal information. The EverSync application has been developed
for this purpose. The application can be extended with plugins whereas a plugin
integrates a third party (cloud) service with EverSync. Moreover, EverSync is a
cross-platform application. This application contributes in di�erent ways to the
PIM research �eld. First of all because the EverSync application bridges the gap
between the cloud and the desktop. Secondly, the application is very extensible
due to its plugin system. Thirdly, EverSync integrates with current organisational
behaviour. And �nally, the application supports personal devices. Hence, by in-
stalling the EverSync application on each of user's personal devices and extending
it with plugins for the services where users stores his personal information, the
fragmented personal information space will be much more manageable.

1.5 Thesis Structure

In this section, a general thesis roadmap will be described by providing an outline
of the next following chapters. Firstly, in order to describe the research �eld of
the thesis, main concepts of personal information space are described in chapter 2.
This chapter contains an extensive literature review followed by the problem state-
ment. In general, this chapter provides a motivation for this thesis. Mostly, the
application development contains a phase of prototyping and de�nition of require-
ments before the implementation. The development of the EverSync application
for this thesis is not di�erent. The ?? contains description of those two early and
at the same time very important steps. In chapter 4 the most interesting aspects
of the implementation are described. Challenges and solutions are illustrated and
discussed. The subsequent chapter 5 contains illustrations and screenshots of how
the developed EverSync actually can be used. An example use case is shows how
the EverSync works in real circumstances. Finally, the chapter 6 concludes the dis-
sertation, wraps the main challenges and how they are solved with the developed
EverSync application. In this chapter any possible future work is also described.



8 CHAPTER 1. Introduction



2
Literature Review

In this chapter a description will be given of di�erent aspects of Personal Infor-
mation Management (PIM). Organising personal information space makes it easier
to re-�nd documents later. In fact, storage and re-�nding of information are the
main structural challenges of PIM. They will be introduced by a description of the
Memex system which was ahead of its time and intended to be the ultimate way
for information re-�nding by association. A description will be given of di�erent
types of information spaces and their interrelation. However, the issues around re-
�nding which will be discussed, get another dimension when the information space
spans multiple devices. As we will see, multi-device usage implies information frag-
mentation over the devices. This triggers di�erent challenges and their solutions.
After having discussed the state of the art, the main issues and challenges will be
summarised again.

2.1 Challenges of PIM: storage and re-�nding

A familiar sight � a working desk with a computer, couple of books, �les, sheets
of paper and sticky notes. People store their information everywhere and organ-
ise their physical and digital information space to be able to re-�nd things from
all these di�erent places. Nevertheless, organising information doesn't necessarily
mean ordering everything alphabetically or in some other strict order. Information
can follow more subtle organisational patterns where everything looks like a mess
at the �rst sight.
The PIM research targets the personal aspect of the study on how people keep,



10 CHAPTER 2. Literature Review

organise and re-�nd information. Those basic PIM activities were described in the
Keep, Organise and Re-�nd (KOR) Theory of W. Jones [27].

2.1.1 Keeping

Worldwide, an endless stream of information is being generated every day. Just
think about all the newspapers and thousands of emails that are daily sent. But not
all this information is meant and accessed by everyone. Some of this information
will always be public accessible (e.g. books in the library) while other information
such as an email will almost always remain private. This is the main di�erence
between the public information space and the private information space. People
do not want to keep every single piece of unordered information since they will not
use it anymore so it is not worth to keep. For example old, payed house rent bills.
Mostly people throw them away after having transferred the money. However,
keeping everything publicly accessible is not what people do neither. Both infor-
mation spaces are illustrated in the same Figure 2.1 in order to better understand
their interrelation. There are some information pieces that are strictly personal, for
example post-its and personal notes. This was not public and will not be public. It
is created to be private and therefore is part of the personal information space. The
public information space consists of things that can be accessed by everyone, for
example books in the library. However, there are information pieces which make
part of both spaces.

Personal
information
space

Private 
copy
of public

Public 
information
space

Figure 2.1: Information spaces intersection.



11 CHAPTER 2. Literature Review

For example, a historical textbook of pictorial arts which can be added to
someones personal information space. This book contains many little reproductions
of the original paintings (i.e. pages with images of the paintings). The original
canvasses are still publicly accessible in the museums, though they are copied to
someones personal information space via the textbook. These paintings are copied
to the personal information space. However, copying is not the only way of making
public information piece private. One can translocate it. Hence, buying the original
canvas and hanging it up in the living room is translocating. Of course, the other
way around is also possible. A writer publics his �nished book. It is then printed
many times and his original manuscript is copied into the private information
space namely the libraries. To illustrate the example of translocation from private
to public information space we can again use the example of paintings. Museums
posses mostly the original canvasses, not reproductions. Therefore, before being
exhibited, the canvas is translocated from the personal information space of the
painter to the public information space of the museum.

2.1.2 Organising

From the examples given in the previous section, it becomes very clear that the
information space of an information piece can change. However, whether only
you have access to it or multiple people, it has to be accessed anyhow. Accessing
means knowing where to go, look and search. To increase the easiness of re-�nding
and fasten this process, the documents have to be organised. There are di�erent
ways to organise the information. Although, the information can follow di�erent
organisational patters including the subtle ones where at the �rst sight everything
looks like a mess. The two main strategies of information organisation given by
Malone [35] are �les and piles. Files are indexed documents and the re-�nding
happens through recall. One has to recall where the information space is stored,
he has to go through the full path to get it. Piles are nameless collections of
unindexed documents and the re-�nding happens through recognition. By looking
at a pile of �les one will recognise it and use the spatial awareness to re-�nd the
desired document. However, there exist also a third strategy which is very widely
used. It is called mixing and partly combines the two previous approaches trying
to be the perfect match.

Files Piles

Groups Elements Groups Elements

Titled ? Yes No ?

Ordered ? Yes ? No

Table 2.1: Organising information of Files and Piles.



12 CHAPTER 2. Literature Review

Table 2.1 de�nes the strict rules to consider an organisational structure a pile
or a �les. The "Yes" make a characteristic obligatory and "No" not allowed. The
"?" means that this characteristic may occur, but it is not obligatory and not
disallowed. For example, all the elements of a �le have to be ordered and they all
have to be titled, while groups of �les can have no title and to order. Violation
one of the restrictions (i.e. "Yes" and "No") results in a mixing structure. In fact,
mixed organisational structures are the most popular ones. For example, in physical
space they use labeled �le trays. Documents inside each tray are unordered, but
each tray has its own label as can be seen in Figure 2.4b. A good example for
digital space are folders in Mac OS. Those are system folders, which of course have
a folder name, however they do not have to be ordered. A folder can consist of one
or more piles.

Files

One of the most popular strategies in organising personal information is �ling.
In this context, �les are organisational structures not documents. Filing can of
course be applied on both information spaces, namely digital on your computer
and physical on your desk.

(a) Digital �les (b) Physical �les

Figure 2.2: Files in di�erent information spaces

Files consist of documents but can of course contain other �les and form tree
structures, such as shown in Figure 2.2a. Depending on the object each �le has to
have a title (e.g. book title) or some other label (e.g. theme of a book). Further-
more, the documents need to be ordered by these labels. Again, depending on the
situation this can be an alphabetical order, based on the �le size or the chronolog-
ical order. The main restriction in this organisation strategy is that the �les are
assigned a place in the �le structure, and may not be moved around in order to
preserve the order. For example, public libraries implement this approach using



13 CHAPTER 2. Literature Review

the Universal Decimal Classi�cation Model [38] where each label is mapped to a
decimal number. The Figure 2.2 illustrates �les in personal information spaces.
However, there are classi�cation issues with this approach. First of all, what hap-
pens if a document belongs to multiple categories. For example, post-it notes.
They can be reminders with deadlines, shopping lists, to-do's, and they all have
a topic, creation date, etc. The ambiguity of classi�cation makes it impossible to
predict which of the adopted structures will be the most useful for later usage [15].
For example, ordering post-it note by topic might seem the most reasonable by
time of creation. But several days later at retrieval, it turns out that ordering by
date of creation would have been a better choice. Secondly, the attempt to provide
as much contextual information as possible with the conviction that this will ease
the re-�nding. But this leads to very long and knotty labels.

Piles

(a) Digital piles in Bumptop (b) Physical pile

Figure 2.3: Piles in di�erent information spaces

A second organisational structure are piles. Basically, these are stacks of doc-
uments. Figure 2.3a illustrates a typical digital pile organisation in Bumptop1

application. Figure 2.3b show physical pile, which is basically a stack with papers.
The documents are not strictly ordered and are not classi�ed into subsections.
Although a document may have a label, the pile as a whole may not. Neverthe-
less, the lack of labels on the document and no explicit order in the pile, makes
one think that re-�nding information is impossible. In fact, that's not true. The
spatial awareness which is basically the knowledge of where which information is
stored makes it possible to re-�nd documents [15]. In case of PIM, mostly the
user of a pile is the same person as the creator of it. Therefore at creation time

1http://www.bumptop.com



14 CHAPTER 2. Literature Review

of the pile this person certainly knew where is which document. This knowledge
fades over time and gets triggered again by recognition [35]. The actual recogni-
tion comes when browsing through a pile in order to �nd the desired document.
Since piles do not hold any order of documents, the worst case is that one has to
pass through every single document. But while doing so, all the encountered doc-
uments are recognised which triggers spacial memory [46]. Teevan [51] states that
recognition is easier than recall for humans and therefore more natural. However,
going through one pile might be done fast but doing so with multiple piles might
be very time consuming because one has to go through every single �le of each pile.
Thereby, instead of using labels, piles provide the possibility to preserve context
information. Documents can be rotated, �ipped up side down, deviate from the
centre of the pile pointing some particular direction. All this context information
may be used for easier re-�nding.

To summarise, this means that storing is fast and doesn't require any e�ort
because the newly added document doesn't have to be placed on a particular
position according to the overall ordering pattern and re-�nding is not that di�cult
because of the spatial awareness and recognition. However, re-�nding information
in one pile might be easy, using multiple piles makes it very challenging.

Mixing

(a) Digital mixing in Mac OS
(b) Physical mixing with sepa-
rators

Figure 2.4: Mixing structures in di�erent information spaces

An easier re-�nding of information is the main reason for organising stored
documents. Regardless the used strategy, this PIM activity has to be very per-
formant. Actually, people do not follow strictly only one organisational pattern.



15 CHAPTER 2. Literature Review

Mostly they mix the strategies and depending on the situation try to get the ad-
vantages of both approaches. Mixing can be considered as a combination of the
�ling and piling strategies in order to compromise their advantages.

2.1.3 Re-�nding

From the previous sections, one can conclude that adopting an organisational struc-
ture in your personal information space surely improves the re-�nd activity. How-
ever, not everything is �awless. Filing structure requires lots of e�ort at organising
phase, but it doesn't guarantee that the applied classi�cation is the one that is
needed at every re-�nding phase. A document may belong to di�erent classes
which may be di�erent at organising and re-�nding phases. Piling bypasses this
issue by not requiring any of such prescience while organising. However, having
multiple piles or big piles may result in passing through every single document in
every pile in case one really cannot trigger the spatial memory. Mixing structures
exist in di�erent varieties and combine advantages and disadvantages of the former
two organisational approaches. Another huge issue which is very common, is data
fragmentation. Although di�erent piles or �les can make part of one single infor-
mation space, they can be located on di�erent workplaces and devices. It is an
extremely challenging task for application designers to provide the most desirable
system which will implement the best of the di�erent organising approaches.
In the following sections di�erent services will be discussed more deeply, but lets
�rst sketch the current situation. Disregarding which type of organisation some-
one prefers and uses the most, the preferences will apply not only on physical �les
but will be transferred to the digital information space as well. For example for
�les, there exist solutions like Dropbox which will synchronise the �les between
one's devices. If devices are considered as distinct small instances of one's digital
information space, the it can be said that applications such as Dropbox combine
the di�erent information spaces. However, this 'combination' is not �exible and
basically synchronises an organisation structure between the devices disallowing
the user to have di�erent organisational structure on di�erent devices. This is
the so called System method. To solve this issue there exist applications such as
the Maistacker [30] and the Personal Information Dashboard [1] which makes the
synchronisation a more �exible manner by targeting the more uni�ed PIM system
implementation. However, as we shall see in the following sections, all those solu-
tions are database based. Database based means that these solutions are a form
of centralised storage place where all the �les are stored. Another drawback of
the most existing PIM applications is that they provide the possibility to manager
local �les only. At the current moment, none of the widely known systems include
user's information space from third party services such as Facebook for example.
Though, Facebook is part of one's information space since it stores the photo's.
And memorising where the user has his photo's stored and re-�nding all the 'copies'
is a serious challenge for a human brain. Nevertheless, as already has been said,



16 CHAPTER 2. Literature Review

those problems will be discussed more deeply in the following sections.

2.2 Current PIM Systems

In this section a description will be given of the main concepts about how PIM
systems work on a desktop. Beginning with Vannevar Bush and his Memex ma-
chine, which lies at the root of all current PIM systems, we will proceed to some
recent solutions. A brief explanation of their strong and weak sides will lead us to
the conclusion that some functional disabilities result into cloud use.

2.2.1 Memex vision of the PIM concept

Indexing eases searching and re-�nding information signi�cantly but it also has its
own disadvantages. We are all familiar with the situation of encountering a familiar
term (e.g. description of a process, phenomenon, formula) while reading a paper
which requires deeper explanation. This formula is not new, it is been explained
in the math course few weeks ago. But remembering this fact, doesn't guarantee
the retrieval of information. Was it mentioned in the math textbook or in the
slides? Or maybe it is been explained by the course assistant and the formula is
somewhere in your own notes? Knowing that this is a mathematical formula is
not enough. Organising the personal information space is of course essential for
information re-�nding, but in general it doesn't solve everything.

In 1945 Vannevar Bush described [14] the idea of a system suited for struc-
turing and storing information with possibilities for its replenishment, rewriting
and sharing with other terminals. This machine, which he called Memex (i.e.,
MEMory EXtender) was completely mechanical and as history shows was never
implemented. Vannevar Bush explained the colossally di�erences between the de-
composition of information in subclasses for index based storage and the human
associative memory. Our memory manages information using associations by build-
ing a network of paths from one concept to another. Memex looked as a writing
desk with projectors for displaying information. Memex was equipped with a sub-
system for dry photography which could be used to make new shots and add them
to the micro�lms storage and make new text documents. Figure 2.5 is a sketch of
the system with all its components.

All the information was stored on a micro�lm and could be accessed through a
keyboard, buttons and levers. The main advantage of using micro-�lm for storage is
its size and therefore the portability. Users could easily share information by inter-
changing their micro-�lms. Another interesting component of the Memex system
is the dual projector with the ability to cross-reference the text. Bush proposed to
make annotations to the documents which could make it possibly to switch between
di�erent documents. In fact, this was a system of cross-references, the prototype
of the modern hypertext, as we know it today. The principle of hypertext is to



17 CHAPTER 2. Literature Review

Figure 2.5: Memex � A hypothetical information retrieval and annotation system.

associate information through "links" into a coherent organisation. However, the
current hypertext implementation on the internet is not how Bush described it.
His intention was to have bidirectional references between documents. The entire
idea of memex was based on easier information re-�nding through associations.
As Bush stated: "The natural means of item binding is by association". It is not
the case with the current implementation of the hypertext system, see Figure 2.6.
There is no information on a webpage that can tell which and how many other
pages contain references to it, there is only one-way tra�c. This approach renders
such a trivial task as information re-�nding by association almost impossible.

Figure 2.6: Current implementation of hypertext system on the internet.

Memex was never built as described by Vannevar, but its ideas knew some real-
isations and are very actual nowadays. Especially for the PIM topic. The study on
how people organise their personal information, is the main goal of descriptive PIM



18 CHAPTER 2. Literature Review

research �eld. We are overwhelmed with information and the documents have often
contextual interconnection. For example, I received a powerpoint presentation via
email, created an �appointment� in the calendar application, created a reminder in
my reminder application to make some corrections in the powerpoint and already
made a note in Evernote with a draft of these corrections. All the information in
these documents is interconnected and yet it is created in di�erent applications,
stored on di�erent places and possibly on di�erent devices.

Memex was a solution for easier re-�nding of previously stored information
pieces by providing associative links between them. As we will see in the next
sections, the personal information gets fragmented over di�erent devices, but is
also cluttered over di�erent places on one single device. Therefore, providing links
between documents is a very challenging task. The description of the main chal-
lenges of information organisation will be followed up by a discussion of the core
activities involved in personal information management.

Inspired by the Memex, many researches tried to reincarnate it in many dif-
ferent ways. With the popularisation of the Internet, the idea of Memex lead
people to develop something like Semantic Web [10], an idea of Tim Berners-Lee
who designed the World Wide Web. This idea manifests the easier usage of the
web content by semantic links which make the re-�nding easier. Links are created
using the Resource Description Framework (RDF). Later, the ideas of Semantic
Web were transposed to the desktop, which resulted in the Semantic Desktop [44].
And one of the widely known implementations of the Semantic Desktop is the
Haystack [30, 31]. Haystack is an extensible application which uses RDF to create
links between information parts. It can be extended by plugins, in order to include
content from di�erent applications. However, cloud services are not supported yet.
The plugins basically scan the content of an application and import in into the
uni�ed triple repository, which makes Haystack an layer above all the installed
applications.

There also other PIM approaches, for example, using the time scale [19]. This
PIM approach is based on the idea to organise information and documents in a
chronological list, instead of classifying it in categories and is called LifeStreams.
Moreover, this approach supports the automatic document sorting in the timelines,
so that the user does not have to do it manually. There has been lots of research
on how personal information can be organised into timelines [5, 42]. As always,
theoretical research results into practical applications. On of the best known im-
plementations of this idea is the MyLifeBits [20], which was developed in 2002 Jim
Gemmell et al. So far, this implementation of the LifeStream can be seen as the
most succesfull since no other application has been so widely known.



19 CHAPTER 2. Literature Review

2.3 Information Fragmentation in PIM

Firstly, a description will be given of why there exist such a variety of devices. It
will be shown that the majority of the tasks get partitioned over di�erent (mobile)
devices because of their characteristics. Then, some observations will be made
about the fundamental issue concerning usage of multiple devices i.e., data frag-
mentation. Finally, other issues will be discussed that lie at the origin of data
fragmentation.

There exist a wide variety of devices: smartphones, PDA's, tablets, e-readers,
music players, notebooks, etc. We use them on a daily base for several activities
such as: reading mail, messaging, personal bookkeeping, entertainment, etc. They
are all di�ering in physical characteristics, size, weight, interaction and computing
capabilities, which makes one device more suitable for a particular task than an-
other. For example reading an email is easier on a tablet PC due to responsiveness
of its capacitive touchscreen, while an e-ink enabled e-reader is more suitable for
reading with less frequent scrolling and/or page �ipping. But even here, an e-
reader with bigger screen is easier for inspecting technical drawings and scheme's,
while its smaller variant is better for reading books and articles. The shortcomings
of one device, like very small screen for watching movies is a huge advantage in
concerning portability. The point of all this is to show that people do not use one
single device for everything. There exist di�erent tools, which people do buy and
use.

Market segmentation is very powerful marketing mechanism, it helps the com-
panies to increase their revenue and consumers to ful�l their needs [59]. But here
exist not only segmentation upon personal characteristics like gender, age, lifestyle
and revenue. Observation and analysis of the customer needs, which de�nes their
behaviour, lets companies develop market segmentation strategies. These con-
sumption attitudes can be measured [4, 3] and used in market segmentation, which
results in a whole variety of mobile devices. In general the sales are driven by (1)
utilitarian and (2) hedonic purchases. A utilitarian motivation incites to buy out of
a fundamental need to survive, mostly it concerns goods that are used daily (e.g.,
electricity). Hedonic motivation is based on desire which is arti�cially created by
marketers (e.g., the newest version of iPhone, while you already posses one of the
previous generations).
Those utilitarian and hedonic motivations to purchase, are de�ned by the product
as a 'whole' [59]. This mean that not only the physical form factors of the devices
are important, but also by the supported services. However the combination of
these two do not completely de�ne the usage of the device, but in contrast to a sta-
tionary desktop, mobile devices o�er an extended context space [45], for example,
geoposition, touchscreen, device orientation, etc. Besides the home environment, a
mobile device can come in handy on other locations or even on the move, when one
want to check some previously stored information. A study on the usage of mobile



20 CHAPTER 2. Literature Review

services [11] shows that people spend nearly an hour a day using mobile services
(on average) and the usage is determined by di�erent contextual patterns [56]. For
example, a �le manager application is mostly used at home, and listening radio
is mostly done while being on the move. Most unexpected tasks, such as reading
an important document before going to a meeting or showing a holiday photo to
your friend(s), are mostly done using mobile devices. All this information requires
to be always available and thus most likely not only accessible from one particular
device. Therefore it is organised and maintained via di�erent devices. In fact,
almost 70% of the tasks get partitioned over multiple devices [32].

Usage of multiple devices encourages people to start synchronising their data [41].
In the end people want to have access to all their information regardless the device
they are working on. For example, while sur�ng, it would be nice to have access
to their bookmarks which were created on the desktop [29]. It is not hard to share
browser resources [29] between mobile and PC (i.e., bookmarks, browser history,
search history, etc.). But having your bookmarks synchronised is just a fraction of
the device-independent challenge. Things get more complex when trying to organ-
ise the personal information space (PIS). The biggest arising problem is that most
devices and current services are not user-centric. They just do not `know' that
they are only a fraction of a bigger puzzle [37], so the implemented systems are
doomed to be in isolation. It requires a lot of organizational e�ort to manage in-
formation across devices. Oulasvirta and Sumari [41] and Dearman and Pierce [17]
have done the most signi�cant research on this topic, i.e. issues that people meet
using multiple devices (desktops, laptops, mobile devices).
In reality, almost 70% of the tasks get partitioned over a desktop and mobile de-
vices [32], and even more, users not only perform di�erent tasks on di�erent devices,
they split one task and solve the subproblems on di�erent devices.

The described isolation problem implies information fragmentation over multi-
ple devices [8] and consequently organisational challenges [17]. To decompose this
problem, di�erent synchronisation issues have been resolved. For example, syn-
chronising resources of a web browser [49, 16], synchronising contacts and address
books, automatic sharing information between mutually held devices and comple-
menting each other's interaction interfaces [23]. But such applications were mostly
designed for ad-hoc problem solving and do not support PIM related activities.
Therefore besides data fragmentation over di�erent devices caused by the multi-
device paradigm of modern life, data can also be cluttered over di�erent locations
on one device.
For example, email clients were not designed with PIM in mind, but are heavily
used for managing personal information. People send themselves emails with im-
portant information as reminders [28, 60], because while checking the mailbox, one
will see the (�agged) mail � reminder. The email clients are often used for storing
and managing the contact lists [61]. The mails are even organised into folder struc-
tures [6] for easier retrieval. But despite the fact that email can be used to store



21 CHAPTER 2. Literature Review

and manage information, it is not an all-round PIM solution. All the information
stays inside the email. For example, even if an email client provides a built-in
calendar, switching form client applications means loss of all the appointments.

Email is just an example, but most applications that try to unify the fundamen-
tal PIM functions of keeping, organising and re-�nding, do not provide support for
PIM activities and handle in isolation. Such application-centric approach results
in data fragmentation over di�erent applications.

To illustrate the described fragmentation problems, consider the following ex-
ample. An o�ce worker receives an important email with description of some
project. Firstly he creates a reminder, this even might happen inside the email
client. Then the whole project gets decomposed into atomic to-do tasks. Those
to-do's were created as a note in Evernote, because that's the program specially
designed for such tasks. Thirdly, now that all this is done, the project can be
started and initial document �les in the �le system are created.
All this means, that the next time that the worker wants to continue his work on
this project, he has to recall at least the following things: checking the mail client
for reminders, location in Evernote where stored the to-do's are stored, location on
the �le system of the �rst versions of the document. When the worker uses multiple
devices and wants to resume his work somewhere else than his o�ce computer, he
can foresee synchronisation. For example Dropbox synchs the �le system, Evernote
also has the possibility to synchronise, the emails can be retrieved via SMTP or
IMAP from the mail server. But what about the reminder inside the mail client?
Mostly they do not get synchronised. Besides that, if any of these applications is
not installed on one of the devices, it will be impossible for the worker to resume
his work on this device. To conclude we can say that the challenges concerning in-
formation re-�nding in one's personal information space are augmented with other
issues related to multi-device usage such as information fragmentation over devices.
Mainly, there are two fragmentation problems. (1) Physical fragmentation. The
devices form in fact standalone information spaces, instead of extending the exist-
ing one. In order to re-�nd something, one has also to remember on which device
it is stored. In case of a mobile device, spatial awareness might be neglected since
it does not preserve any contextual information. Therefore it is called a mobile
device, since it is not related to any location which can trigger cognition in terms
of re�nding. To solve this issue people synchronise their devices through cloud
services, see Figure 2.7.



22 CHAPTER 2. Literature Review

Figure 2.7: Di�erent devices in the cloud.

This approach should implement one single digital information space that spans
over all the devices. However, the synchronisation happens on the level of appli-
cations and the fact of having di�erent applications synchronised does not solve
all the problems. (2) Digital fragmentation. The consequence of the described
isolation problem of each application, is that only the data inside this particular
application will synchronised over di�erent devices. Applications do extend an ex-
isting information space on a particular device, but they do not have access to the
whole information space on the device. They also do not know which information
is stored in which application since they are all isolated from each other. There-
fore, the synchronisation happens only inside each application, synching its own
documents, see Figure 2.8 for illustration. For example, synchronising a contact
list over multiple devices mostly will not provide the possibility of accessing all the
emails that are received from that person.

Figure 2.8: Defragmentation over applications.



23 CHAPTER 2. Literature Review

2.4 Information Fragmentation in the Cloud

The phenomenon that modern technology in�uences the way that people approach
their daily challenges [54] is widely described in section 2.3. People use multiple de-
vices for di�erent purposes which leads to information fragmentation over devices.
Cloud services try to target this problem. In this section, we will discuss how peo-
ple use cloud service. The section then proceeds with a survey and evaluation of
several cloud services and PIM systems.

2.4.1 Users' Behaviour in the Cloud

As discussed in section 2.3, people tend to use di�erent devices for di�erent pur-
poses. For example, portable devices are used for di�erent purposes than a sta-
tionary desktop. While in case of devices, task separation happens based on the
physical characteristics of the device and the easiness of the performance of the
task, in case of cloud services it mostly happens based on the available function-
ality of the service. It is for example simply not possible to use Facebook as a
synchronisation tool for your �le system. It was not designed for that purpose and
does not provide the needed functionality for this. Marshall and Tang performed a
research on that �eld and found that people have �ve di�erent use cases for cloud
services [36]. As they state, people mainly use cloud service as a: "personal cloud
repository, as a shared cloud repository, personal replicated store, shared repli-
cated store, and synchronisation mechanism". This topic is more deeply discussed
in section 1.2. Considering their work in combination with other major researches
performed in this area, such as why [43] and how [33] people use social network
services, cloud storage services [18, 36], and any other cloud service in general [58],
user's behaviour in the cloud can mainly be classi�ed into following categories.
People use cloud services for organisation of their personal information. For this
organisational goal, di�erent individuals use cloud services in a variety of di�erent
ways. Some people try to use it a single storage point, as a synchronisation tool,
as an extension to their local storage. This is goal is can be achieved by services
such as Google Drive, iCloud, Dropbox etc. Then there is the communication goal.
Social network services are cloud services and are used to communicate upon the
documents and shared information, but also to extend each others personal infor-
mation space by text messages. And the �nal main goal of using cloud services is
the re�ection aspect. The best example of this is the timeline of Facebook. Peo-
ple proactively search re�ection [48] and therefore visit for example, Facebook or
Twitter service in order to re�ect on content and events in their life.

2.4.2 Types of Cloud Services

Now that we know three main behaviour patterns of users in the cloud and what
they need, we will discuss some widely known cloud services that ful�l those needs.



24 CHAPTER 2. Literature Review

Dropbox is one of the most popular and widely used cloud services. As pre-
viously described in section 1.2, Marshall and Tang state that it is mostly used
as a �le repository, a tool for sharing content and as a synchronisation tool [36].
Dropbox is a service that synchronises the folder structure and its content across
the devices. Dropbox also makes it possible to manage �les without 'syncing' any
device by providing a web interface where users can create folder hierarchies, up-
load and manage �les and �le versions. So, it can be said that Dropbox is not
such a pure �le system syncing application, but more a hybrid solution between
a cloud service and �le system application. When installed on a device, Dropbox
provides the possibility to selectively synchronise folders, detects �le modi�cations
and keeps everything in sync with the storage space on one of the Dropbox servers.
Therefore, it can be classi�ed as a uni�ed repository.
Another very very interesting cloud service is Evernote. In comparison with the
previously described service, Evernote implements a pile �le structure. In Evernote,
users can create notes, include �les in them and categorise all this in notebooks. So
as in pile structures, we have the notebooks (piles) and notes (documents) in them.
However, besides that, Evernote also makes it possible to assign several types of
tags to notes, to makes the re-�nding easier. Evernote also provides client appli-
cations for almost every popular operating system including for mobile devices.
However, there is no intervention into the actual �le system of the device, since
Evernote does not target to store or sync local �les. Though, if needed, �les can
be included in notes. But those �les will be duplicated and uploaded to the Ever-
note service, which means that there will be no further tracking of modi�cations
to the original �le content. Files inside notes have to be updated by the user, if
the content changes. Which means, that users have to remember which �les, and
in which notes are used. Since there is also no possibility to gather a list of all �les
imported into Evernote.
In comparison with the general document synchronisation tools such as previously
described Dropbox and Evernote, there exist cloud services which are targeted to
a more speci�c �le types. For example, Flickr is a cloud service for storage and
management of user's images and photos. Flickr o�cially provides client applica-
tions for operating systems used on mobile devices (i.e. iOS, Android) but also
a Windows and Mac application. Because Flickr provides an API for developers,
there multiple third party applications available to interact with Flickr. Besides its
main purpose of storing and sharing photos, Flickr also implements a social aspect
by providing the possibility to make comments on photos.
However, there are cloud services which mainly target that social aspect, such as
Facebook. It is also worth to mention that Facebook only provides client applica-
tions for operating systems used on mobile devices (i.e. iOS, Android, andWindows
Mobile). Of course, Facebook is a social network and does not position itself as
a PIM system. However, its content becomes part of someones personal informa-
tion space. People can upload images and photos while others users can make
comments and rate those photos by 'liking' them. Besides the photos, albums,



25 CHAPTER 2. Literature Review

calendar, contacts, favourite movies and music, geographic tags and visited party
events, those comments and 'likes' become part of someones information spaces as
well. The main property of Facebook which makes it so di�erent in comparison
with the non-social PIM systems, is that it is designed to let users modify (and
actually be part of) someone's else personal information space. In order to position
Facebook in the research �eld of PIM, we can rely on the feature of (endless) scroll
with all the events of a user. This makes Facebook a timeline PIM system, �rstly
described in 1996 by Freeman and Gelernter [19], long before the launch of Face-
book in 2004. Another rather unique feature provided by Facebook is the 'year
summary'. Around the period of New Year, Facebook summarises all the major
events of a user and reminds about them. This promotes and stimulates re�ection
on friendships and relations [50].

2.4.3 Solutions for Information Fragmentation

In what follows, a survey of some existing free cloud systems (free usage without
direct payment) will be described. The emphasis of the following systems lies on
the fact that they are private systems. They behave as cloud services, however,
the user preserves the full control and the ownership of the documents. Meaning
that the application has to be installed on one of the user's devices which will from
then on act as a central server and repository. The documents are accessible from
outside of the local network, depending on the fact if the service supports multiple
devices of course. The users decides and knows where the �les are physically stored,
owns and controls the information and documents, that is why those cloud services
are called the private cloud services. Note that those are �le management systems,
so they refer to �ling which is described in subsection 2.1.2.

Developed by Novell company, iFolder2 also implements some core functional-
ities of a private cloud � distribution over multiple servers, synchronisation of the
clients and web-interface.
The largest drawback of iFolder is that in the Linux world, only openSUSE o�ers
a full support. Only this Linux distribution gives the possibility for one-command
installation. The reason for this is that Novell company acquired SUSE Linux
in 2004. Of course, there exist several manuals to perform the installation on
other distributions [39]. However, unfortunately I was not able to install iFolder
on Ubuntu distribution. The speci�c package versions, which are needed for the
system to work are not available anymore on the o�cial Novell website. Probably,
someone with more technical background or experienced Linux user would be able
to handle the issue.

2https://www.novell.com/products/openenterpriseserver/features/

online-file-storage-ifolder.html Last accessed on 08-06-2015

https://www.novell.com/products/openenterpriseserver/features/online-file-storage-ifolder.html
https://www.novell.com/products/openenterpriseserver/features/online-file-storage-ifolder.html


26 CHAPTER 2. Literature Review

The second discussed system is called OwnCloud3. First impressions of using
this cloud system are good: modern web interface, possibility for online viewing
(txt, pdf, odf) and modifying (txt) documents. Management of tasks, calendar,
contact book, etc. Searching for content in documents. Synchronization happens
through WebDAV protocol, and the most important � here is possibility for mount-
ing local folders and external storage devices through FTP, Samba, etc. Despite
the fact that there are some minor bugs and instabilities, the project development
is very much ongoing. The whole OwnCloud project is open source, which is its
main advantage. All the issues can be checked on the Github account, and every
release shortens their amount. Besides that, OwnCloud provides di�erent client
applications for almost every operating system, including mobile devices. There is
also possibility for server-side �le encryption.

Thirdly is the SparkleShare4. According to the o�cial website, it has been
developed by couple developers who complained about the lack of a good collabo-
ration tool. That is the reason why this tool not only supports the privacy of the
information in the cloud, but is also intended for frequent collaboration. Sparkle-
Share is an open source [12] cloud application based on the Git versioning system,
and in fact, is a wrapper around Git. Therefore, the used approach is very sim-
ilar. A repository has to be created, and then a SparkleShare client connects to
it. The clients perform the automatic synchronization, which is in contrast to Git
very similar to Dropbox, and maintain the versioning between themselves and the
remote repository. Due to its Git base, arise several drawbacks which are typical
to such version systems. For example, each client has a complete local copy of
the repository, which is in case of lots big �les may be not suitable. To solve this
issue and not to duplicate the data locally, there exist so called �lazy� access using
git-fs, but it supports in this case solely read-only access to the repository. Also,
this assumes certain knowledge about Git, and can be completely inappropriate
for users not familiar to software development.

Then there is Syncany5 which is a very promising open source [22] Cloud system
supporting FTP, IMAP, WebDAV, Windows, NetBIOS/CIFS, SFTP/SSH, data
encryption, etc. But this project started in 2010 and is still in development phase.
On the o�cial website
(www.syncany.org) the developers report: "19 Oct 2013: Believe it or not, we are
still working on Syncany. We recently moved to Github for the main development."
A the moment of writing, the latest commit on Github was 3 hours ago, so the
development is still very much ongoing.

3https://owncloud.org Last accessed on 08-06-2015
4http://sparkleshare.org Last accessed on 08-06-2015
5https://www.syncany.org Last accessed on 08-06-2015

https://owncloud.org
http://sparkleshare.org
https://www.syncany.org


27 CHAPTER 2. Literature Review

The intention was to mention only the free systems (no payment needed). The
AeroFS6 provides fully private deployment for a fee, but is still worth to mention.
The free variant has just the same functionalities as the paid variant, but allows
only three clients and requires user authentication, while private cloud supports
unlimited number of clients and doesn't require any authentication at all.
In fact, AeroFS is a peer-to-peer network, which in contrast to other described
private cloud services, stores the �les not only on one central storage server. The
system is completely distributed and implements complex algorithms for data repli-
cation. Though, it is possible to assign the role of a central server to one of the
clients. This provides one single fundamental advantage, that is, extra data dupli-
cation in case that all the other clients get disconnected and you have to access a
�les which is actually stored on other device. Besides the fact that it only supports
3 clients for no charge, the are no client applications for mobile devices, which
is unacceptable for personal private cloud, however corporations that are used to
have private cloud do not expect their employees to work from mobile devices.

It is also worth to mention the Pydio7 which is a reincarnation of the former
AjaXplorer, with new interface design and an extended feature set. From a tech-
nical point of view Pydio can be described with the following properties: online
opening en viewing �les (txt, pdf, zip, images and multimedia), editing �les (txt,
doc, xls), assign di�erent access right to di�erent clients, adaptive user interface
for mobile devices (iOS, Android), �le search engine. External storage devices can
be connected through FTP(S), Samba, WebDAV, IMAP, POP.
Pydio is very similar to OwnCloud. Though, it provides some more extensive set
of document manipulation features via the web-interface, even relatively serious
image editing. Such functionalities are aimed to provide not only a cloud storage
system, but all-round cloud computing environment, which may be considered as
overkill. Though, such broad variety of functionalities makes Pydio very greedy for
computing resources of the server it is deployed on. It is worth to mention that, in
contrast to OwnCloud, it is not open source. However, it provides an API for easy
integration with third party plugins, including external �le versioning systems. In
fact, there are lots of external plugins which extend the core functionalities in every
possible way.

Finally, Amahi8 is actually a platform for a home server in the concept of a
smart home. Therefor, its media orientation is very noticeable because it supports:
Squeeze server, DLNA server, Gallery 2, UPnp server uShare, media streamers
Jinzora and Ampache, media libraries OpenDB and VCD-db, torrent clients, etc.

6https://www.aerofs.com Last accessed on 08-06-2015
7https://pyd.io Last accessed on 08-06-2015
8https://www.amahi.org Last accessed on 08-06-2015

https://www.aerofs.com
https://pyd.io
https://www.amahi.org


28 CHAPTER 2. Literature Review

It also provides possibility for functionality extension through plugins. From tech-
nical point of view, Amahi supports VPN, Samba, WebDAV (Outlook, iCal), etc.
Nothing extraordinary here.
Although the installation happens through the terminal, which expects certain IT-
knowledge from the user, Amahi will be persistent and very unceremoniously. It
will install a graphical con�guration panel, change the IP-address of the server,

enable the DHCP, restart the server, and in general �make itself at home�. Of
course, it can be easy for users with very little familiarity in setting up a server,
but the terminal installation indicates that Amahi expects it to be otherwise. Such
behavior can be very annoying, especially if you do not know when and how will
Amahi interfere the next time.

2.5 Summary

To summarise all this together, it can be said that the popularisation of mobile
devices is a recent phenomenon. Most research has been done within the last
decade, and is still very much ongoing in this active �eld. We discussed that peo-
ple can organise their information in di�erent ways, such �ling, piling and mixing.
Those three organisational structures can be applied on both, physical and digital
documents. We also discussed that in the daily life, people use multiple devices
to perform di�erent tasks. While this task separation between devices is mostly
based on the physical characteristics of the devices, people try to keep them in sync
through uni�ed repo applications. Task separation over devices implies informa-
tion fragmentation over those devices, which people try to solve in di�erent ways.
Mainly by using uni�ed repositories, which are inspired by the Memex machine.
People try to keep the devices in sync in order to ease their process of re-�nding in-
formation and documents. However, the uni�ed repositories may help to solve the
cross-device information fragmentation, they augment the problem of cross-service
information fragmentation since most of those services form an isolated informa-
tion space without being able to interact with each other and exchange information.
Oulasvirta and Sumari [41] wrote a paper about how people manage multiple de-
vices and inspired Dearman and Pierce [17] to perform signi�cant study of this
topic (almost 100 citations). There exist solutions for managing and synchronising
information (bookmarks, address book, etc.) and related activities which require
re-�nding of this information (browsing, reading emails, listening to music, etc.).
However, so far, there is not yet any ultimate solution for the cross-device and
cross-service information fragmentation problem. Moreover, while investigating
this subject in general, and in particular user's behaviour in the cloud, we found
out that besides the information storage goal, people use cloud services for at least
two other main reasons. Namely, for communication and re�ection. The com-
munication process extends the personal information spaces of the communicating



29 CHAPTER 2. Literature Review

individuals, while re�ection helps people to remember events, refresh friendship
relations and is commonly desired by people.



30 CHAPTER 2. Literature Review



3
EverSync Application

One of the contributions of this thesis to the PIM research �eld is the development
of an ubiqutious PIM application which is called EverSync. EverSync is developed
with the intention to solve several issues with the current PIM systems. In what
follows, requirements for the EverSync application will be discussed along with
functionalities the application will have and a description of the architecture.

3.1 Requirements

3.1.1 User Requirements

From the user perspective, EverSync has to implement the following required char-
acteristics and features. First of all, multiple fragmented pieces of personal infor-
mation space have to become accessible with easy re-�nding possibilities. By using
multiple devices and multiple (cloud) services, one's personal information gets scat-
tered across all those services and devices. In terms of PIM, di�erent devices and
cloud services where personal information is stored can be associated with di�erent
contexts. Hereby, we have already discussed in section 2.3 that most cloud services
make their own local copies of documents and therefore one particular document
can occur multiple times in one's personal information space. Hence, a document
can be available in di�erent contexts without any overview or possibility to track
where it is stored. EverSync application has to solve this issue through linking all
fragmented copies of duplicated document �les. Not only linking the duplicates
should be possible, but also linkage of the related documents. For example, given



32 CHAPTER 3. EverSync Application

a �les, the user want to know which other �les are used together with it in one of
the cloud services. Hence, EverSync has to track all devices and services in one's
personal information space, create links, and has to do it automatically. Hereby,
Victoria & Edwards state that user considerations and the degree of involvement
in automatic systems are crucial to make the system's behaviour predictable [7] for
the user. They discuss the challenges and importance of �nding the right level of
user control and involvement. So, whenever a link cannot be created automatically
by EverSync, there should be a possibility to fall back on user's input. For example,
in order to guarantee the correctness of the automated process, EverSync has to
require user intervention for linkage of which loose any original metadata, which is
the case with Facebook service. Once the user upload a photo, none of the original
metadata of names or any other "hooks" are left by the Facebook which makes the
automatic detection of the duplicate impossible unless we perform image recog-
nition. This intervention not only assures the coverage of more use cases which
otherwise would be unsupported, but also gives the users more sense of control and
provides linkage correctness.
The EverSync application should also provide not only an intuitive user interface,
but an interface which is familiar to the most computer users. Moreover, the in-
terface should make discovering of the information space more easy, which will
improve information re-�nding as well. Hereby, the user should be able to re�ect
on the content. In other words, it should be possible to triggers user's memorised
mnemonics links while discovering the information space.

3.1.2 Technical Requirements

From the technical point of view, EverSync should be extensible by plugins. Plugins
are integration units, pieces of glue between EverSync and an external (cloud)
service. EverSync should be �exible enough to let the plugins decide themselves
how data from that plugin should be represented. Visual representation in the
user interface, but also the internal entities representation should be decidable by
the plugin. Besides the plugins, EverSync should support multiple devices and
aggregate information from both, user's devices and cloud services. Aggregation
and document linkage should happen on the �y and in an automatic way. Note
that supporting multiple devices implies that also, that EverSync preferably should
be a cross-platform application.

3.2 Iterative User Interface Design

Despite the described variety of ways to store and retrieve information (i.e. �ling,
piling and mixing), people tend to associate a computer with the �ling approach [9].
This can be explained by the fact that mainly all operating systems only provide
access to �les and documents through folder navigation. As Bergman et al. de-
scribe [9], people are more familiar with this approach on an electronic device,



33 CHAPTER 3. EverSync Application

people �nd it more convenient to have folders on a computer and navigate through
them. The authors also state in their work that computer users almost do not use
the embedded search engine of the operating system. Therefore, folder navigation
is one of the key requirements for the EverSync PIM application. EverSync has to
provide a hierarchical view of folders and documents since it is the most convenient
way for computer users.

Figure 3.1: Prototype with single window and tooltips

In order to ful�l requirements from the previous section, an iterative design pro-
cess has been used and di�erent prototypes of the user interface were developed.
The user interface for the EverSync application has been developed in an iterative
way. Evaluation of each intermediary sketch during the iteration steps, eventually
made it easier to implement the �nal and most applicable interface.
The very �rst design choice was a single window with a hierarchical tree struc-
ture of all documents on a device, which in fact is very similar to the standard
"Explorer" in Windows operating system or the "Finder" from Macintosh. This
very �rst solution was suggested by the fact that on most devices, most operating
systems by default provide only the possibility to organise document in a hierar-
chical folder structure. The only di�erence with the standard �le explorer is that
EverSync should provide tooltips with additional information about documents.
Those tooltips would contain information about where the selected document is
used, to what it is linked and on which device it is stored, or any other plugin
speci�c information. Figure 4.1 depicts the �rst prototype. For example, in case
if EverSync had a plugin for Facebook installed, when hovering over a local photo
in the �le tree, the tooltip would appear and show that the photo was used in
Facebook, in which album, which comments it had, and so on.



34 CHAPTER 3. EverSync Application

Figure 3.2: Prototype with two windows

Such a straight-forward design is very simple and intuitive for the user computer
users are familiar with �le explorers. However, this approach does not provide any
sophisticated interaction with the user except for hovering over a �le in order to
get the tooltip containing information about that �le. Moreover, hovering over
implies that the cursor has to be kept on the �le in order to read the �le. This
can be problematic if the user has multiple applications open and implies even
more problems on mobile devices with a touch screen which do not have a cursor
at all. Furthermore, considering that this tooltip should be used for all types
of linked information, and thus contain information provided by multiple plugins
and EverSync clients, it would su�er from overload and become inappropriately
oversized.
Therefore, a second prototype has been developed which can be found in Figure 4.2.
In this case, the interface divides the application window vertically into two parts
with in fact two hierarchical �le trees. The idea was to have in the left part all the
�les on the local device (i.e. where the EverSync client application is running) and
the other connected devices which have EverSync client installed. The right part
should be initially empty on startup of the client application. Having �les from
local device and from other user's devices together in one �le tree at the left, should
blur the boundaries between all user's devices. By selecting a document in the left
window part, the user should get in the right sub-window a list of linked documents
by plugins. This should give the information in which cloud services the document
is used, where it is duplicated. In fact, this right window part is nothing more
than a replacement for the tooltip so that there is no need for hovering over. This
second design iteration solves the problem of potential oversizing and overloading
of the tooltip. The problem with that approach is that the right window part itself
limits the interaction with the content to one single layer of links. This leaded to



35 CHAPTER 3. EverSync Application

a re-evaluation of the designed prototype and the next design iteration.
So far, it was only possible to look up a document in the left �le tree and on the
right get a list of documents which are linked to that �le. For example, selecting
a photo in the local �le tree, and getting a list in which cloud services it is used.
Hereby, because plugins for cloud services are free to de�ne their own hierarchies
which will be displayed, it can be the following case. This selected photo is used
in a note in the Evernote service, and the plugin for Evernote which is installed in
the EverSync, shows three level hierarchies of the following type: {notebook; note;
note content}. So, on the right sub-window, the result should be a hierarchy of the
notebooks which contain the �le, respectively dependent notes of those notebooks
where the selected �le is used, and then �nally, all the �les per note. By selecting
�le.jpg left, the user gets on the right among others the Evernote with the list of
notes. Selecting one of these notes will show the collapsed content of that note,
which yields the list of notes of inside that note which have the desired �le. Then
again, user can select on one of those notes to see all the used �les in it, not only the
one was originally selected in the left sub-window. Of course, as already mentioned
several times, the plugins are free to create their own display hierarchies if needed,
which makes this example even more a valid use case. This way, user would be able
not only to see in which services the originally selected �le is used, but also which
related �les it has inside a note in Evernote. And it would be desirable to be able
to select one of the related documents in one of the notes in the right sub-window,
and explore the interrelations of the information space.

Figure 3.3: Prototype with sliding windows

The designed solution was, that whenever a user selects a document in the right
sub-window, the client interface would create an additional sub-window at the right,
applying the same logic of related �les. This endless window creation would make



36 CHAPTER 3. EverSync Application

it possible to be able to endlessly following links and discover related items and
documents. Of course, if the user would select some other �le not in the far most
right sub-window, all the windows at the right of it would become irrelevant and
would be pruned. This design approach is called a sliding window approach. This
prototype creates additional dependent �le trees on demand, as can be seen in
Figure 4.3. Selecting a document in the �rst �le tree, will result in a list of linked
�les in the second �le tree. Selecting a document on the second �le tree will trigger
creation of a third �le tree with linked �les and so on. If the user reselects a �le in
one of the previous trees, the subsequent �le trees will be replaced by one single tree
with �les linked to the newly selected �le. This �exible approach o�ers an intuitive
and clear overview of link dependencies. The browse path through linked �les is
persistent and can be tracked back through the �le trees. Moreover, this approach
is easily supported by mobile devices. However, the evaluation of this design choice
showed that his endless approach has its drawbacks. By drilling further more to
the right, user is able to see related documents, but completely looses the context
to the local �le system of the device, where are those related documents located
locally. If the user is interested in getting a list of documents which are linked
to one of the �les from the right window part, the user has to remember location
of that �le and restarting the whole process by looking up that document in the
left window part. In other words, the user can get a list of linked �les of only one
document at a time. To solve that issue, the next prototype has been enhanced
with dynamic content selection of the window parts. This approach can be seen
as a combination of the previous two. The improved mechanism implies selection
of a document in one of the window parts (i.e. one of the �le trees) which results
in rendering the linked �les in the other part of the window. Hence, selection of
one of the documents from the left sub-window will trigger a rendition of the �le
tree in the right sub-window. There, the �le tree contains the �rst level of the
related documents which are provided by the plugins. Selecting one of the items
at the right, dependently if the plugin has more levels of hierarchies, EverSync will
create a new sub-window for each hierarchy. Up until the point, where the user
selects a �le which is also stored on the currently used device. If that is the case,
then the selection happens of that �le happens in the very left sub-window which
contains only the local �les, and all the right sub-windows get pruned. Selection
of the related document in the right, will make the selection "jump" to the local
�le. This way, the EverSync client interface implements the �exible endless sliding
window and still preserves the context of the local �les making it a ubiquitous
interface.



37 CHAPTER 3. EverSync Application

Figure 3.4: Initial application window

The user interface of EverSync is a direct realisation of previously described
interface prototypes. This section demonstrates the working principle of the �nal
implemented user interface. Figure 4.4 shows the initial window when the applica-
tion client starts up. It contains only one vertical column (i.e. �le tree) with local
�les, which are �les on a particular device.

Figure 3.5: Browsing with sliding windows to third level

In fact, this window is just like a common �le browser of the �le system. Click-
ing and selecting a �le from that list will send a request to the server for linked
documents. The server collects all linked items and sends them back to the client.
This results in an additional vertical columns, but now only with items linked to the
selected one. The linked documents are separated based on the cloud service they



38 CHAPTER 3. EverSync Application

are from and represented in drop-down folder. Di�erent cloud services work with
di�erent types of documents, therefore those items cannot be only text documents.
Those can be multimedia documents or even comments in case of Facebook for
example. Once the new column with linked items is rendered, the user can again
select a �le from the those results. Figure 4.5 illustrates this process to the third
level. However, those steps can be repeated many times and the only limitation
are memory and computational capabilities of the device.

Figure 3.6: Reselecting another �le, indicated with red cross.

Figure 3.7: Result of reselecting a �le

Of course, reselecting a �le from one of the columns will in�uence the conse-
quent �le columns. The ones that are no longer relevant will be deleted, which is
illustrated in ?? where the "reselection" happens in the very �rst column with �les.



39 CHAPTER 3. EverSync Application

Which is intuitively logical since the newly selected item has potentially nothing in
common with the previously rendered documents. Note that everything happens
automatically and the application window becomes very interactive. The result
of the reselection is depicted in Figure 4.6. The implemented user interface of the
EverSync completely satis�es the described requirements. The application requires
from the user a certain level of intervention, which gives the user sense of control.
The application implements a standard way of representation of �le hierarchies,
which is important for new users since they do not have to adopt themselves to
the application. And thirdly, it provides a great overview of the linked �les. This
makes the application easy and convenient to use.

3.3 Conclusion

The chapter started with the discussion of the main requirements for the EverSync
application. From the user requirements perspective, �rst of all the application
has to support the re-�nding process. It has to make it possible to discover one's
information space fragmented across multiple devices and cloud service. However,
one's information space can consist not only of documents and �les on a desktop
or mobile devices, but also of other entities such as in comments, events, etc.
Some of those entities can stimulate re�ection, such as for example, photos from
last holiday. In fact, people access their information space in order to re�ect on
things. Therefore EverSync has to ease this process as well and make it more
ubiquitous, so that people to not have to perform additional steps but can re�ect
while exploring the their information space. Technically, EverSync should be able
to detect di�erent instances of the same �le in di�erent isolated parts of one's
personal information space, such a device or a service and store them in a uni�ed
repository to foresee persistency. Those �le duplicates should be synchronised.
This means that EverSync should support multi-device usage and in order to be
able to detect �les in a third party service, EverSync should be extensible with
plugins for services. All this should be accessible through a user interface where
most users are familiar with, and which provides ubiquiitousity. This interface has
been designed in several iterations and implements a sliding window mechanism.
Selecting a local �le will open a tree of places and services where this �le has been
used. Moreover, plugins will show which information inside the service where the
plugins interacts with, is related to the selected �le.



40 CHAPTER 3. EverSync Application



4
EverSync in Depth

In this section the implementation of the EverSync application will be explained
together with a brief discussion of the Object-Concept-Context framework which
lies at the base of the EverSync application. Then, the server, client and their
communication will be reviewed. Some interesting implementation details will be
discussed, together with some challenges and their solutions. The section will end
with explanation of how plugins are used to extend the application to let it support
di�erent cloud services. But �rstly, an explanation will be given of how the user
interface has been designed.

4.1 Architecture

In this section, the main concepts of the EverSync overall architecture are intro-
duced and explained. The di�erences between cloud services, plugins and client is
described. Also, the main components of application are discussed, followed by the
explanation of how they communicate.

In comparison to the most existing PIM systems which are mostly database
oriented and focused on one's local �les, EverSync application also targets digital
information spaces situated in third party services. While most PIM systems act
like individual databases with personal �les, people also make use of the (online)
services which create an additional information space. For example Flickr allows
people to upload and store photo's. Clearly those photo's were uploaded by the
user from a personal device and so it can be said that Flickr in a certain way



42 CHAPTER 4. EverSync in Depth

extends one's person information space. However, Flickr extends this information
space not only by acting as an online photo storage place, it makes it possible to
add an additional dimension to one's information space by letting users to make
comments for example. For example Facebook goes further in this direction and
provides features such as the famous 'Like' and 'Share' functionalities. From now,
lets introduce a new term asset, which stands for an item from one's personal
information space which is not by de�nition a �le. As has been made clear in
the example, both, a photo and a comment upon it, are related items and are
equal parts of a personal information space. The photo itself was placed by the
user into the third party service, it was uploaded, it is representable in the users
devices since it originates from it, and it has a �le extension after all. While the
comment upon it is created by some other user in the service itself and is not
something that has been transferred. Of course, if needed, a comment can be lo-
cally represented in the form of a text document, but this approach does not hold
for all items created in third party services. Think of the 'like' from Facebook
service which is certainly not text. Therefore, from now on all the items from a
personal information space will be called more generally assets. It is the goal of
EverSync application, to consolidate not only fragments of personal information
space from di�erent devices, but also to include information stored and created
by third party services, in other words, all user's assets. All those described ser-
vices can be integrated into the EverSync application through plugins. It can be
seen as an integration tool of a third party service to into the EverSync application.

EverSync application has to support multiple user's devices. This requirement
implies that the application has to support multiple clients. The decision has been
made to implement a client-server architecture. The server is the control and stor-
age point for the data. It manager clients and cloud services integration. The
plugins periodically check the third party service for updates such as �le modi�ca-
tions, creations and deletes. It it the plugins responsibility for keeping the content
up to date. Plugin installation only happens on the server side of the application.
However, when adding a new client, the server will push some information about
the installed plugins for better support. An example of such information is an icon
which will be rendered when representing linked �les from the corresponding cloud
service. This information push to new clients happens automatically and does not
require any intervention of the user. While the plugin is responsible for connec-
tion with the third party cloud service, clients on their turn are only connected
to the EverSync server via a TCP/IP socket connection. The server distinguishes
between new clients (i.e. clients which are connecting for the �rst time ever) and
already known clients. Hence, new clients have to go through an initialisation pro-
cess whereby the server assigns a unique id number and pushes plugin information.
Once a client is added to the network, it becomes part of the personal information
space and indirectly connects to other devices, which is illustrated with a dotted
line between clients in Figure 3.1.



43 CHAPTER 4. EverSync in Depth

Figure 4.1: Schematic representation of EverSync architecture

The overall client-server architecture of EverSync is illustrated in Figure 3.1.
The server of EverSync is the main core of the application and in fact serves as a
central communication point with the Object-Concept-Context (OC2) framework.
In fact, the whole server can be separated in three main components: (1) interac-
tion layer with the OC2, (2) layer connecting server and the client and (3) logic to
communicate with plugins. The OC2 framework lies at the base of the application
and is discussed in next section of this chapter. Brie�y, OC2 is responsible for
creation and persistence of links between di�erent resources. Those resources are
di�erent types of documents and �les used and stored in multiple cloud services
and user's devices. Those assets are stored in the OC2 as Digital Object and linked
together through Navigational Links. For the connected clients, the server will
be in charge to create links between related �les, but for the content from cloud
service, its the responsibility of the plugins. Moreover, the EverSync application is
�exible enough to let the plugins create their own structures using the navigational
links. This way, the Flickr plugin for example, uses only one level of hierarchy.
The Flickr plugin is in charge to create links between user's photo's and comments
upon those photos. So that when the user selects a photo, from the OC2 the related
digital objects are retrieved, which will be links to comments. There is only one
level de�ned by the Flickr plugin: {photo - comment}. But for example Evernote
can have three levels: {notebook - note - �le inside the note}. All those hierarchies
are �exible enough to be plugin speci�c.



44 CHAPTER 4. EverSync in Depth

4.2 Object-Concept-Context Framework

As stated by Trullemans [52], there are three classi�cations of PIM systems. The
�rst type of PIM systems are developed to track changes in the personal information
space such as addition, deletion or updates of the documents. Therefore, the re-
�nding mechanisms of these systems are also based on the tracked changes. The
second type of PIM systems are mainly focused on associating items by providing
possibilities to link di�erent types of documents. The created links however, are not
always easy accessible of re-�ndable since such applications give less attention to
interaction functionality. Finally, the third type of PIM systems, in contrast to the
second one, is mainly focused on user interaction. By implementing an extensive
user interface, such applications extend the set of possible user interactions in order
to provide an easier process of information re-�nding. However, Trullemans [52]
also concludes that the problem with the most PIM systems is that the developers
tend to focus either on the organisation of �les at low level, or on the interaction.
Where in the �rst case there is almost no interaction possible with the information
space and in the second case the functionality for linkage is hardcoded al low
level. This has lead to development of the Object-Concept-Context conceptual
framework [53] which provides the possibility to combine the advantages of the
two designs. In EverSync, the OC2 is used to link documents in di�erent cloud
services and on di�erent devices.

In this paragraph, the OC2 framework will be described. At the base of the
OC2 lies the Resource-Selector-Link (RSL) meta-model for hypermedia systems
which was developed by Signer and Norrie [47]. The Figure 3.2 depicts this OC2
framework, and illustrates that Entities collection contains sub-collections of Se-
lectors, Resources and Links. Hereby, Resources represent information pieces
which will be linked, such as digital and physical documents, multimedia items,
web pages etc. Selectors are intended for linkage of certain parts of a resource
instead of linking the whole document. The Links collection contains bidirectional
many-to-many links. Note that every instance of the Entity sub-collection can be
linked with another one. As can be seen in Figure 3.2, the OC2 framework the
Resources collection is extended with Concepts and Objects, which in their
turn can Physical Objects or Digital Objects. A resource can belong to only
one of these three sub-collections which means that a digital object cannot be
physical or vice versa and an object is not a concept. Hereby, Concepts are items
internal to the memory, while the Objects are external. Moving on to the Links
collection, we will see that the OC2 distinguishes between the Extent Links for
linking objects with concepts and Associative Links which are used as naviga-
tional links. Finally, there are two pairs hasExtSource & hasExtTarget and
hasAssocSource & hasAssocTarget for de�ning the source and the target of a
link.



45 CHAPTER 4. EverSync in Depth

Figure 4.2: OC2 framework as domain-speci�c RSL application as cited in [53]

4.3 Server-side

The server-side of EverSync is implemented in Java programming language. In
fact, the whole server code can be separated in three logical components which are:
(1) code responsible for the interaction with the OC2 framework, (2) connection
layer and (3) implementation of the logic for plugin support.

The server "listens" to the socket for the incoming connections. Detecting an
incoming connection will start the handshake process. After that, for each new
established connection, the server creates a new thread. Note that in case of a
network interruption or client shutdown, the server detects the disconnection and
stops the thread. Hence, each client has its own thread on the server where the
exchanged messages are read and interpreted. While the Server.java creates the
threads, the MessageRe�ect.java class is responsible for the interpretation of
the massages. As the class name already suggests, the messages are re�ected to
server functions. Usually, those functions are variations of the CRUD (create,
read, update and delete) methods for �les and their linked items. Message which
are re�ected to that kind of methods are passed through an additional layer of
abstraction, the FileEventHandler.java. Those �le events are forwarded to the
OC2 framework which is responsible for storage of links between documents.



46 CHAPTER 4. EverSync in Depth

Figure 4.3: Schematic representation of the IServerManager implementations

The interaction with the OC2 framework with the server is one of the crucial
points of the EverSync application. The implementation of the IServerMan-

ager is responsible for the actual functionality of interaction. Figure 4.8 illustrates
schematically how the IServerManager is implemented. As can be seen, there are
actually two types of the IServerManager. This can be explained by the fact, that
there two types of documents. The documents that are actually stored on one of
the devices and (copies) documents that are stored in one of the cloud services. The
IServerManagerEverSyncClient is responsible for storage of resource instances
representing the documents from one of the clients. The IServerManagerServi-

cePlugin consequently contains functionality to manage documents from the cloud
services. In fact, most of the functionality of those two manager types overlaps.
Therefore, their intersection is implemented in the IServerManagerSuper. The
IServerManagerInterface guarantees that the two manager types implement
the distinct functionality that is required.

4.4 Client-side

The client side of the application is mostly implemented in JavaScript and partially
in Java. The main reason for that is the pursuit of the high portability of the appli-
cation. The whole implementation process of the client has been started with the
TideSDK framework. This solution o�ers the possibility to develop a desktop appli-
cation using web technologies such as JavaScript, HTML, CSS, etc. and "bake" it
in a Chrome web browser. In fact, the compiled standalone application is a browser
with the webpages, which represent the actual application with its logic and inter-



47 CHAPTER 4. EverSync in Depth

face. However, the TideSDK has some limitations in functionality for interaction
with the actual device on which the client application is running. For example,
EverSync has to be able to detect �le addition and deletion. TideSDK o�ers an
API for interaction with the �le system, but a "watcher" for the �le system is not
provided. Moreover, an SQLite database is almost not supported by the JavaScript
world. After encountering those two and several other problems a decision has been
made to redirect the implementation and use an alternative for TideSDK. Instead
JavaFX has been chosen, which is basically a concurrent of TideSDK. This solu-
tion o�ers the same possibilities and even more, JavaFX can integrate Java code
into the "web app" which solves lots of problems. Hereby, JavaFX o�ers more
convenient ways for interaction with underlying operating system. Since the whole
client code was implemented in JavaScript as a web application, migration went
�uently. On one hand, implementing some parts of the program in Java and oth-
ers in JavaScript brings some distortion in the project coherence. On the other
hand, it makes it modular and portable since the implementation of the core logic
remains in JavaScript, and the modules for interaction with the operating system
are in Java. Using solely Java for implementation of the whole client side is not
an option since it wouldn't produce an application supported by all devices and
operating systems (e.g. iPhone). Moreover, the web approach for implementation
of an application o�ers a wide range of powerful libraries and tools (e.g. jQuery).
Furthermore, JavaScript is easy debuggable at runtime via the webbrowser console.
For the interface, some jQuery plugins were used such as w2ui.js and jQuery-

FileTree.js. The latter one is in fact the workhorse of the client since the main
interaction points with the user are the �le trees.

Figure 4.4: The MVC architecture of the client



48 CHAPTER 4. EverSync in Depth

The main client architecture follows a MVC pattern, which is depicted in Fig-
ure 4.9, where the clientModel.js is the model, the mainView.js is the view and
the serverConn.js is the controller. As explained earlier, by selecting a docu-
ment in the �le tree, the user gets another �le tree with linked items. In fact, the
mainView.js indirectly sends requests to the server via the serverConn.js. The
latter one is the main communication point, receives the responses and is in fact
the controller of the whole client.

4.5 Client-server Communication

With modularity and portability in mind, the server and client architecture of
the EverSync application have been developed in distinct programming languages.
While together they form one application, they are completely independent and
communicate with each other via TCP sockets. The reasons for such implementa-
tion approach will be discussed. Some encountered problems will be explained and
their solutions will be evaluated.

The information exchange between the server and clients happens through a
TCP/IP socket connection. Sockets are advantageous when messages come from
both directions, client and server. As with most client-server applications, in Ev-
erSync usually the client requests some information and gets a response. However
this is not always the case. For example, if the server cannot automatically detect
a link between two document instances, it will prompt the user to de�ne the link
manually via one of the clients. Hence, when the user sets a link between two doc-
uments via one of the clients, then the server will broadcast that those documents
are already linked, which will delete the prompt windows in other clients. This
broadcast message is initiated by the server and all clients will receive it at the
same time, without poking the server. Hence, the communication between clients
and the server is bidirectional in EverSync. TCP/IP sockets also make it possible
to have a connection with very little overhead. The WebSockets alternative solu-
tion has been rejected since the WebSockets are actually built on top of the normal
TCP/IP socket. Hence, the overhead of WebSockets can be disadvantageous when
it comes to the performance in mobile networks. More overhead usually also means
higher cost for the user for the sent data, since mobile internet is often more expen-
sive in terms of energy, money, etc. than normal Internet connection on a desktop.
The messages that are actually sent, are formed in the connection layer on top of
the plain sockets. The messages for information exchange are JSON's. Each mes-
sage has a type and parameters, if there are any. The module for interpretation of
messages on the server side is calledMessageRe�ect.java because most messages
received from a client are requests associated with a function or method. Hence,
the messages from clients are re�ected to server methods. The alternative on the
client side is called ServerConn.js, which is actually the controller in the MVC
pattern of the client.



49 CHAPTER 4. EverSync in Depth

(a) Already initialized client (b) New client

Figure 4.5: Messages exchange during a handshake with two types of clients

Any client-server communication is only possible after a handshake. Note that
the very �rst message of the handshake process is sent by the server. This is due
the fact that the server has to receive an incoming connection before starting to
respond it. Hence, connecting to the server will trigger the handshake process
initiated by the server which detects the incoming connection. There are two types
of handshake, the one with a client which connects for the �rst time ever (i.e. new
client) and a regular handshake. Both handshake types and the corresponding
message exchange is illustrated in Figure 4.7. A new client has to be "installed",
meaning that it has to receive a unique id number and become identi�able by the
server. During the installation step, also the application root folder will be assigned
to the client. Di�erent operating systems have di�erent system folder hierarchies,
consequently each operating system has its own root folder for the application. Also
the plugin information such as the service icons are pushed to the client. Note that
those messages are not illustrated in Figure 4.7b.

4.6 EverSync Plugin Implementation

In order to support a third party cloud service, the EverSync application requires
a plugin for that service. Of course, the EverSync application with its client-
server architecture fully synchronises multiple devices (i.e. clients) but in order
to be able to integrate a third party service, a plugin for the service has to be
implemented. And so, plugins form a crucial part of the application since none



50 CHAPTER 4. EverSync in Depth

of the services is supported by default. A plugin in fact implements the facade
pattern for the program that interacts with a cloud service. Plugins have access to
certain methods in order to foresee persistence, creation of links between documents
and the possibility to create a plugin-speci�c structure, and on the other hand,
the plugin itself also has to implement a number of methods for the EverSync
base application. For example, the base application periodically loops through all
installed plugins and calls the pollForChanges()method. Also, each plugin has to
have a init() and run() methods implemented. Clearly, a plugin implementation
for a certain service is just an implementation of an interface which can be inspected
in Listing 4.1. This gives a clear overview of what has to be implemented.

Listing 4.1: Plugin Implementation Interface

pub l i c i n t e r f a c e P lug i n In t e r f a c e {

pub l i c S t r ing getPluginName ( ) ;

pub l i c void i n i t ( Fi leEventHandler f i l eEventHand l e r ) ;

pub l i c void run ( ) ;

pub l i c HashMap g e t I n s t a l l a t i o n F i l e s ( ) throws Exception ;

pub l i c void r e p l a c eF i l e ( S t r ing fi leName , S t r ing f i l eU r i , byte [ ]
f i l eByteAr ray ) ;

pub l i c void pol lForChanges ( ) ;

pub l i c void handleOpenOnClientRequest ( EverSyncClient c l i e n t , S t r ing u r i ) ;
}

Clearly, a plugin has to have a name which will be visible for the user. It is
up to the programmer of the plugin to decide which name will be used, but most
likely this name will be identical to the name of the service for which the plugin
is implemented. In context of this thesis, three plugins for three di�erent services
were implemented: Facebook, Flickr and Evernote. The second listed method in
the interface is the one to initialise the plugin. A plugin has to have access to the
base EverSync application via the �le event handler in order to report �le changes.
This method can also be used for any initialisations needed, such as connection to
the third party service, creation of a internal database etc. Thirdly, there is also a
'run' method. This method is called whenever the whole EverSync server has been
initialised, the plugins have been initialised and everything is ready to run. Mostly
this method will be leaved empty, but this gives the possibility to execute any
custom code if needed. The fourth method listed in the interface is the one to get
the installation �les. The actual plugins for the third party services are installed
server side, however when a new EverSync client connects to the server, it will
receive installation �les for the plugins installed on the server. Those installation
�les are basically icons and a CSS �le in order to be able visualise properly �les or



51 CHAPTER 4. EverSync in Depth

any other assets internal to the service. For example the implemented plugin for
Evernote, besides the personal �les also tracks notes in which those �les occur, and
has therefore an icon in the installation �les to visually represent those notes. The
next and �fth listed method in the interface is used for replacing �les (i.e. updating
the �le content). It is used whenever a �le itself is updated or changed on one of the
clients or services. Remember that EverSync application is not only implemented
for an easy way of linking �les, one of its goals is also to maintain a certain data
integrity by keeping the linked �les synchronised and up to date with each other.
The data (i.e. �les) persistency is by default built into the clients which means the
�le changes, updates, deletions and �le creations are detected and sent to the server.
As described there, the clients populate a small database with the correspondent
creation and last update dates of �les, which is necessary to ensure data persistency
in case the client application (accidentally) goes down while the client device itself
is still in use. So when the client application starts up, it �rst checks updated �les
based on this so called '�le system snapshot'. This approach is also enforced by the
fact that the server-side of EverSync does not check or prevent data duplication.
In other words, uploading the same �le with the same properties from the same
device is allowed by the server. Since this can cause discrepancies, EverSync client
implementation is foreseen with the needed safe checks, and the same is required
from a plugin implementation. It is the clients and plugins that have to decide
which are new �les, which �les are updated and which are deleted. This approach
considerably reduces load on the back-end server and therefore improves overall
performance of the system as a whole. The sixth method in the interface is, as the
name indicates, used for polling changes from the third party service. The EverSync
periodically loops through all its installed plugins (using the PluginManager) and
calls this method. Of course, it is not an obligation to implement this method.
For example, if plugin designers decide to implement the actual connection with
the third party service using sockets, then there is no need anymore in polling
the service, hence there is no need to implement this method. In that case, the
method can be left empty and the creator of the plugin can use its own approach
to feed the data to the EverSync using the provided mechanisms. Finally, the
last provided method in the interface is the handleOpenOnClientRequest. Besides
providing the possibility provide an overview of the personal �les as a list of assets
along with their relations, the EverSync application makes it possible to actually
interact with these �les. Hence, listing and providing an overview of the �les is
not the one single use case of EverSync. Therefore, in order to open a �le, or
lets call it more general an asset, since the third party services not alway operate
with �les (for example, a comment on a Facebook photo is not a �le), we cannot
rely on the device and its installed applications to open it. EverSync relies to the
plugin which represents the service from where the asset originates. When opening
an asset via the context menu (by right-clicking on it), the EverSync application
will make a distinction between the local assets which are �les on the device(s),
and assets represented by one of the plugins. The local �les will be opened using



52 CHAPTER 4. EverSync in Depth

the default application associated by the operating system of the device with the
respective �le extension, and opening the 'remote' assets will result in a trigger of
the described handleOpenOnClientRequest method. The plugin will get an object
which represent the calling client, and a URI of the corresponding asset (which was
assigned by the plugin itself). Currently, the client API provide the possibility to
open a URL link in the default web browser and a byte array representing a �le by
the default application associated with a given �le extension. This creates enough
�exibility for the plugins to be able to handle such requests. For example in the
implemented Facebook plugin, whenever the user tries to open a comment upon a
photo, the plugin generates a web link to that comment, based on the given URI,
and using the client API makes the client open it in the web browser. Of course,
an alternative solution could be to create a temporary text �le with the comment
message in it and to let the client open it with the default text editor, which is
perfectly possible since all the needed functionality for it exists. The behaviour is
completely de�ned by the plugin designer, while the functional base exists.

4.7 Conclusion

The implemented EverSync application has been designed to satisfy the require-
ments from the previous chapter. Firstly, we discussed the architecture of the
application. EverSync has a client-server architecture in order to support multiple
devices. On each user's device, a client application has to be installed. The clients
are implemented in JavaScript in order to make them cross-platform using the
JavaFX. The server of EverSync is implemented in Java and can be considered as
a uni�ed repository with references and relations of user's documents and �les. In
order to store all those entities, which are called digital objects and the navigational
links between them, the server uses the OC2 framework. EverSync can be extended
with plugins for certain (cloud) services where user has personal �les, in order to
incorporate those �les in the uni�ed ubiquitous information space which EverSync
tries to provide. A plugin is a communication interface for the third party service
it is implemented for. Those plugins are installed on the server and if needed, the
server pushes certain system �les to the clients in order to properly visualise the
plugin items in the interface. In order to support third party applications.



53 CHAPTER 4. EverSync in Depth



5
Proof of Concept � EverSync at Work

The personal information space can contain lots of di�erent types of resources,
document �les are probably the most fundamental items. Therefore, in order to
point up the actuality and usefulness of the EverSync, a plugin for the Evernote
service has been developed. Evernote is a great solution to include di�erent types
of document �les in personal information space, however multimedia �les are also
supported. Hereby, personal information space is not limited to only storage places
for personal �les and documents. Social media and social network can become a
huge part of one's personal information space. Most popular example of social
network is of course Facebook. Facebook can contain di�erent types of personal
information, including photo's and their comments. Note that the comments are
actually added to someone's personal information space by other people. In this
section, the practical relevance of the EverSync application will be illustrated. The
description of the three implemented plugins for the application will be followed
by an explanation of the clients usage.

5.1 Plugins for Cloud Services

5.1.1 Evernote plugin

The main idea of Evernote is to help people to remember everything. This means
that the point of the application is to give the possibility to store notes, ideas,
photo's, etc. in order to use it later, which is the main principle of a PIM applica-
tion. As the name of the service denotes, Evernote is designed to make notes. On
the �rst sight Evernote looks like a text editor, however it provides functionality



55 CHAPTER 5. Proof of Concept � EverSync at Work

to add all kind of multimedia �les to a note. Since Evernote also provides client
applications for mobile devices, it makes it very convenient to add to a note photo's
or audio notes recorded with the mobile phone. Actually, Evernote has three key
features:

• Synchronization

This is the main principle of Evernote. The user installs a client on his
desktop and on his mobile device. From then on, notes created on one of the
devices will also be synchronized with client on other devices.

• Storing notes in di�erent notebooks

On the �rst sight, all the notes in Evernote do not follow any order and are
placed in a chaotic order. Nothing could be further from the truth. Notes
can be stored in di�erent notebooks and can be tagged (one note can have
multiple tags). While searching a note, user can use this information.

• Possiblity to add multimedia �les

It is very convenient in Evernote to add di�erent kind of media �les to a note.
This can be some audio recorded with a mobile phone of a photo or even a
document (i.e. pdf, text, etc.).

Developing an Evernote plugin for the EverSync in fact does not mean that
the EverSync will replace the Evernote client application. A plugin is intended to
interact with the Evernote server in order to get information about existing notes,
not to create notes through the EverSync application. This is important to under-
stand, the notes still have to be created using the Evernote client. After having
created a note using the Evernote client, this will be detected by the Evernote plu-
gin of EverSync. As a matter of fact, the plugin is responsible for service polling
in order to detect changes. As discussed in ??, the plugin implementation as per
plugin interface is required to implement the polling method. This method is called
on each plugin every minute. Of course, is desired, the plugin cal have an internal
polling loop which will poll with another frequency. Therefore, at most one minute
after creation of a new note, the plugin will detect it. For that, the plugin falls
back to the provided Evernote API. In this example of creation of a new note, the
detection of changes triggers a whole process to add a new note and the �les it
contains to the EverSync and its underlying OC2 framework. The process consists
of di�erent steps. Because the Evernote API provides the possibility to request
any changes (i.e. creations, deletes and modi�cations) of notes, the plugin stores
only the timestamp of the last polling moment. Unless poll happens the very �rst
time ever, the plugin makes a call to the Evernote API to get changes since the
last synchronisation time. However, as an example for illustration, let us consider
the initial poll. When started up, the plugin connects to the API and makes a
request to get a collection of all the notebooks of the user. In Evernote, there are
three levels of dependencies: notebooks, notes which are in those notebooks and
�les which are in those notes. Because of the �exibility of EverSync, each plugins



56 CHAPTER 5. Proof of Concept � EverSync at Work

is allowed to de�ne its own hierarchies, the Evernote plugin can make use of it.
However, the implemented version for this thesis only uses two levels, namely notes
and �les in them. So, to continue with our initial polling process, the plugin loops
through the collection of the user's notebooks and for each notebook it searches
for notes with �les. If a note contains �les, the plugin requests some additional
information for those �les such as, �le name and �le size. The next step is to add
all this information to the EverSync.

Figure 5.1: Browsing through Evernote content

The plugin asks the EverSync server to create a digital object for each note that
contains �les. Then, for each �le inside this note, the plugin asks EverSync again
to create a digital object for each �le and link it to the note that just has been
created. In this navigational link, the note can be seen as a parent and the �le
as a child. However, the plugin will ask the EverSync to create the digital object
for the �les using another server method, in order to notify EverSync that this is
something that can contain duplicates on user's devices. This is needed because a
note is something speci�c to Evernote, it is created and maintained inside Evernote,
it cannot be something that a user uploaded to Evernote from one of the devices,
while a �le in a note actually originates from of the user's devices. So, because
it was found on Evernote, most likely it will be duplicated in user's information
space, on one of the devices. By using this special method, the EverSync will
create a digital object in the underlying OC2, and search for digital objects from
the devices which can be linked. The search happens based on the �le name. So,
the �les with the same names will be considered by the EverSync as duplicates.
When the duplicates are found, on that point the EverSync linking component has
two digital objects per iteration to link: one representing the �le on one of the
devices, and the one that just has been created by the plugin. If the EverSync
would link those two by a navigational link, the note should be left unused and not
discoverable though the user interface. Therefore, the linking components creates



57 CHAPTER 5. Proof of Concept � EverSync at Work

a link between the digital object representing the 'local' �le from a user's device,
and the so called root taxonomy item of the hierarchy created by the plugin,
which in this case happens to be the note.

5.1.2 Flickr plugin

Flickr is a cloud service for storage, organisation and sharing of images and photos.
However, it also has a certain social aspect since users can make comments. As
with Facebook, comments become part of someone's personal information space.
Conceptually, Flickr allows users to create albums with photo's which can have
comments and stars (rank points). So basically, we could have again three level
hierarchy: album � photo � comment. The Flickr plugin is implemented in im-
plemented in a slightly di�erent way than the Evernote plugin to illustrate the
�exibility of EverSync. The implemented plugin only uses comments, which are
linked by the EverSync to user's local photos. So, the plugin neglects the albums
and considers only user's photo's stored in the cloud. Then, for each photo that
has a comment, the plugin asks the base EverSync to create a digital object for
it and immediately link it with all instances of that photo originating on user's
devices.

Figure 5.2: Viewing the Flickr comments upon an image

Again, the search and linkage of duplicates happens based on the �le name.
This is absolutely not the best solution for linkage, however, this is a limitation of
EverSync and can be improved without any modi�cations to the plugins. Hence,
the resulting structure build by the Flickr plugin has a one level hierarchy whereby
the user can select a photo on one of his devices and then be able to see who
commented this photo in Flickr. Again, by right clicking on the comment, user can
open the comment in Flickr itself, hence by going to the page in the web browser.



58 CHAPTER 5. Proof of Concept � EverSync at Work

Figure 5.3: Right clikcing on the comment to view it in browser.

By right clicking on the comment, as with other plugins, it is possible to open the
comment right in Flickr itself, as is illustrated in ??.

5.1.3 Facebook plugin

Facebook is one of the most popular social network services and does not need
much introduction. The last statistical reports state that in April 2015, Facebook
counted 145,308,764 unique visitors. Facebook provides di�erent kinds of social
interaction and photo sharing is one of them. Users can upload and share photos
while their friends can leave comments. Most likely those photo's are uploaded
from a device and therefore are copies of local �les. Facebook becomes part of
users' personal information space and extends it with new items, comments in this
case.

Figure 5.4: Browsing through Facebook comments.



59 CHAPTER 5. Proof of Concept � EverSync at Work

In comparison to the Flickr plugin, this implementation of Facebook plugin for
EverSync supports a two level hierarchy for comments and albums. This can be
motivated as follows. The user has to select a local photo in order to see where
and how it is used. So by selecting the photo in the 'local' �le tree, there is no
particular need to 'con�rm' this selection. However, in Facebook this photo can
be used in several albums. Therefore, when selecting a local photo, user will get
a collection of albums on Facebook where this photo is used. By selecting one
of these albums, the next hierarchy level are the comments upon that photo. So
at the end, the user has the following hierarchy: photo � album � comment. This
structure is realised in similar way as in the Evernote plugin. Plugin makes requests
to the Facebook API to get all albums. For each photo in those albums, it asks the
EverSync to create a digital object for this album. Then, for each comment upon
a photo, it asks the EverSync to create a digital object as well and immediately
calls the EverSync method to create a navigational link between the comment and
the album of the photo. After all this, the EverSync method is called for detection
of the local occurrences of the photo, and an automatic linkage of the photo to the
root taxonomy item of the Facebook plugin hierarchy, which is the album. This is
illustrated in ??

Figure 5.5: Link queue indicates two �les to be linked by user.

In comparison to the other two plugins, Facebook plugin bumped into the
EverSync limitation which had to be solved. The limitation consists of the already
described problem of linkage mechanism which is based on the �le names. Files
on di�erent cloud services and the local �les with the same names are considered
as di�erent instances of the same �le. The problem is that Facebook wipes all �le
information when it gets uploaded to Facebook. Hence, there is nothing left to
rely on, no �le name and no metadata in the EXIF �elds. The solution for this
problem is the so called link queue, which is indicated in ??.



60 CHAPTER 5. Proof of Concept � EverSync at Work

Figure 5.6: Initial pop-up of the link queue when the 'Add Link' button is clicked.

Figure 5.7: User selects a local �le.

Figure 5.8: User has to con�rm his selection by clicking the "Link" button.



61 CHAPTER 5. Proof of Concept � EverSync at Work

Since Facebook assigns new names (Facebook uses id's instead of �le names)
to the uploaded photos which means that automatic �le linkage with local original
does not work. The EverSync user has to manually link Facebook photo with the
local original �le. Every �le detected on Facebook is added to the link queue. This
queue is synchronised across the EverSync clients. The number of currently pending
items to link, is displayed on the button. When clicking on this button, user gets
a pop-up with all the pending items, as illustrated in a sequence of screenshots, ??
where the user gets the popup, ?? where the user selects a local �le to link with
and ?? where the user has to con�rm everything by clinking on the 'Link' button.
Of course, the link queue is a generic solution and is not limited to the Facebook
plugin. Therefore, the user gets a list of �les and their locations. In there, user
can select one of his local �les to let the EverSync create the actual link between
those items. While selecting a local �le, the client can only access the �les on
that particular device. That is why the queue is synchronised across the devices.
The user has actually to link the original �le from one of the devices that have an
instance of that �le.

5.2 Multi-Client Integration

Now that the plugins are explained, let's focus how the EverSync behaves using
multiple clients. In comparison to the technical perspective, from a conceptual
point of view a client is a special kind of a plugin. While plugins are implemented
to interact with third party services, clients are implemented to interact with user's
devices. Hence, they do not implement the same interface and they don not polls
to the services. Though, in the interface they are represented in the same way as
any other plugin.

Figure 5.9: Context menu options for �le on a single device.



62 CHAPTER 5. Proof of Concept � EverSync at Work

A user select a local �le in the most left �le tree, which results in a rendition of an
additional sub-windows with a �le tree next to it. Along with all the plugins, there
is a folder which is calledMy Devices. There, this folder mainly will contain only
one single �le. This indicates that the selected local �le has also another instance
on one of the users devices. It does not mean that there is only one single instance
of that �le. The interesting part comes when a user right clicks on that �le in
'My Devices'. There, the user will be able to see on which other clients the �le is
replicated. The clients that are currently not connected to the EverSync server will
be greyed out. For the ones that are available, the user can choose to open the �le
remotely. Of course, opening a �le locally is also possible. This is also applicable
for the cases when via a plugin, user sees that a local �le is used together with
other remote �les (�les on other devices) on the same location in the cloud service.
As for example, in Evernote a �le which is discoverable locally (on the client the
user currently operates) is used in a note A. When clicking on that note, the user
will be able to see other �les inside that note. And some of them might be not
replicated on the current devices. So clicking on such a �le, will result in another
additional sub-window being rendered with an indication where this �le is used.
Again, we can see there a 'My Devices' folder. By right clicking on the �le inside
it, we can see where this �le is stored, and we can open it locally.



63 CHAPTER 5. Proof of Concept � EverSync at Work



6
Future work

6.1 Discussion

While working with personal �les and documents, people apply three main organ-
isational approaches. There are three main organisational approaches which are
called �ling, piling and mixing. Organisation and re-�nding documents requires
time and e�ort. Depending of the applied organisational structure which can be
�ling, piling and mixing, the most e�ort is respectively required for adding some-
thing to the information space, re-�nding in the information space or the load is
equal for both processes. It is a true challenge for people to be able to organise
their personal document in such a way, that re-�nding and storing are as optimal
as possible. And as we have seen in chapter 2, besides the physical documents,
folders and papers, nowadays people also use electronic devices which extends peo-
ple's personal information space with digital documents. This means that the
digital �les users operate on and which they organise, share the same organisa-
tional challenges as the physical documents. Moreover, people tend to use multiple
devices and separate the tasks they perform on it, based on the characteristics of
the device. More portable device such as a smartphone, is much smaller than a
desktop computer which leads to the fact that people do not use it for the same
set of tasks. The very �rst problem is that one's personal information space get
fragmented across multiple devices. This problem has been targeted by several



65 CHAPTER 6. Future work

applications, which were inspired by the ideas of the Memex which was described
by the Vannevar Bush in 1945. Those applications are uni�ed repositories of one's
personal documents which are scattered across multiple devices. Conceptually, a
uni�ed repository can be compared to a central database with all documents or
at least references to them. Some of those uni�ed repositories are cloud services
by them selves, such as Dropbox. This brings us to another problem typical to
the last decade which has been solved yet. Those uni�ed repositories operate on
people's devices without incorporation of one's documents in the cloud. Along with
multi-device usage phenomenon, the mobile Internet knew a great popularisation.
This has lead to a promotion of a wide range of cloud services because disregarding
the device, people can use the functionalities that are provided by a cloud ser-
vice. There exist di�erent cloud services for di�erent purposes such as, Evernote
simpli�es the creation of quick notes on the way, Flickr provide the possibility to
manage and share photo's, Facebook also makes it possible to manage photo's but
mainly targets the social networking aspect and re�ection via the timeline. The
problem with those cloud service is that each one of them, forms a small piece of
one' personal information space since it contains personal documents, but in an
isolated way. For example, from the point the a photo gets uploaded to Facebook,
the photo gets actually duplicated to Facebook. And there is no single way to
track which personal photo's, from which devices are uploaded to Facebook, unless
the person recalls it or goes and compares the content of his device and Facebook
albums. This not only holds for Facebook but for most of the service. Creating
a note in Evernote for example, also implies document duplication to an isolated
part of personal information space. This is the second problem, information frag-
mentation not only across devices, but also across di�erent cloud services. Thirdly,
people access their information spaces not only at the moment of storage and the
need to re-�nd something. Over time, one can have the desire to re�ect on the
content. For example, in case of a calendar, to recall how some event was sched-
uled some time ago, or again, in case of photo's re�ect on how great the holidays
last year were. People proactively search for re�ection, and there exist PIM sys-
tems which are actually timeline based, such as Lifestreams. In the cloud, the best
example is Facebook which is basically timeline based. Moreover, once in a year,
around the year change, Facebook aggregates one's major events and happenings
to create a personal year survey. Hence, people not only their personal information
space for storage, but also for re�ection. Al those three challenges were discussed
in the requirements ??. Those requirements were realised in the implementation
of an application. From the technical point of view, the requirements contained
the following points. The application has to extensible to support di�erent (cloud)
services. The user interface has be ubiquitous, in the sense that the application has
to provide an aggregated overview of all users documents, scattered across multi-
ple isolated information spaces. The re�ection which is provided by the services,
has to be made possible for visualisation. Moreover, the user interface has to be
familiar to most part of the users ti minimise the adaptation process. As it turns



66 CHAPTER 6. Future work

out, people build certain conceptual models about how an application should work
based on their familiarity with certain interface type. Previously unseen and unfa-
miliar interfaces prevent usage of the application. The application also has to be
ubiquitous in the sense that it has be support multiple user's devices, so it has to
be cross-platform with multi-client architecture.

6.2 Conclusion

The resulted application, which is called EverSync, targets all those requirements.
It is based on the underlying OC2 framework for creation of digital object (entities
which represent the documents) and relations between them through navigational
links. The application implements a client-server architecture whereby the client
is implemented in JavaScript and is cross-platform. A client is the application
installed on one of the devices which monitors �les of that device. It is the appli-
cation with user interface on which user can operate. The server is implemented
in Java and is by itself a uni�ed repository for the clients and plugins. A plugin
is a integration layer for some (cloud) service to the EverSync. A plugin for a
particular cloud service is responsible for monitoring of that service in order to
detect �le modi�cations and manipulations. Hence, plugins are installed on the
server in order to communicate with third party services. A plugin has its own
visualisations on the client, though. Therefore, the developer of a plugin has to
provide a set of icons which will be pushed to each EverSync client. In other words,
plugins installed on the server will be supported by the clients automatically by
pushing some of the installation �les. Clients and plugins notify the EverSync
server about any modi�cations, which creates links between �le duplicates across
all the included pieces of one's information space. Each of the clients can then be
used to explore the �le relations. By this approach, when opening the client appli-
cation the user sees a �le tree with all his local �les where this particular client is
operating on. As request by the requirement, a �le tree is the base representation
model in most of the operating systems and is certainly familiar to all computer
users. By selecting one of this local �les, the user get another �le tree rendered
in the user interface, with an aggregated information where this �le is used and
duplicated. By default in EverSync, the user will see at least in which service this
particular �le is used and a list of user's devices which contain this �le as well.
Moreover, in between clients, user is able to see which of those clients are online
and disregarding this connection status, user can manage the �le across devices.
A �le can be opened on the current device, opened remotely and can be copied
to some other client. Hereby, each plugin is free to choose it own representation
hierarchy, since the default user gets to see is in which plugin a �le is used. As
an illustration of the EverSync extensibility, three plugins were implemented, for
Evernote, Facebook and Flickr. Each of them realise di�erent internal hierarchies,
consider an example when user select a photo, then for other placed where this



67 CHAPTER 6. Future work

�le is stored, following hierarchies will be displayed per plugin: Evernote has note
� this �le and all other �les inside the note, Facebook has album � comments for

this photo and Flickr has only one level, namely comments for this photo. Again,
each plugin is free to implement is own structures, while the document duplicates
are linked automatically by the EverSync server. This makes the EverSync appli-
cation in general, and the user interface in particular ubiquitous and extensible.
The re�ection requirement is realised through that explained ubiquitous plugin in-
tegration. Whenever a user selects a document in the �le tree, all the information
available on the services about that document will become visible. Depending on
the plugin realisation and the service it is designed for, this can be a comment from
a social network, a calendar date, a reminder, a note, etc.

6.3 Future Work

Despite those great characteristics, the application still requires validation in real
world usage. It is expected that a validation test with users of several cloud ser-
vices will provide much more insight in aspects that have to be improved. The
current main drawback is its approach of linkage of �les. For linkage, the search
for �le duplicates on di�erent cloud services happens based on the �le name, and
on the devices based on the �le path. This of course drastically limits the free-
dom of �le management since the user won't be able to assign another name to
the same �le on di�erent device or services. Moreover, this limitation has lead
to the implementation to the so called link queue, explained in the ??. However,
despite the fact that this limitation is very drastic in the way how the application
behaves, this is relatively easily solvable but requires additional implementation
time which was not left for this thesis. The very best solution for this should be
the usage of hashes generated based on the �le content, instead of �le names. This
would provide the 'freedom' of �le naming and relocation on the devices. However,
this also would have implications of the performance of the application since each
modi�cation to the �le content would require a hash recomputation. Moreover,
while with the current approach, for the plugins it su�ce to know only the names
of all the �les used in a service, the hashes approach would imply that the plugins
should download the �le content in order to compute the hash for the �le. This
is applicable for several low size document, but for several GB of content this can
become challenging.
Another improvement for the EverSync would be is to extend it to one's physical
information space. This is not realised in the current implementation, however is
easily achievable thanks to the extensibility though plugins. An implementation
of a plugin which could somehow integrate physical �les would make EverSync a
truly ubiquitous PIM application. However, this is only possible when the previous
limitation is solved, since physical papers mostly do not have �le names as digital
�les do. Using a hash code based on the �le scan, could make that possible.



68 CHAPTER 6. Future work



Bibliography

[1] Joao Aires and Daniel Gonçalves. Personal information dashboard-me, at a
glance. In PIM 2012 Workshop, pages 1�8, 2012.

[2] Michael Armbrust, Armando Fox, Rean Gri�th, Anthony D. Joseph,
Randy H. Katz, Andy Konwinski, Gunho Lee, David A. Patterson, Ariel
Rabkin, Ion Stoica, and Matei Zaharia. A view of cloud computing. Commun.
ACM, 53(4):50�58, 2010.

[3] Barry J Babin, William R Darden, and Mitch Gri�n. Work and/or fun: mea-
suring hedonic and utilitarian shopping value. Journal of consumer research,
pages 644�656, 1994.

[4] Rajeev Batra and Olli T Ahtola. Measuring the hedonic and utilitarian sources
of consumer attitudes. Marketing letters, 2(2):159�170, 1991.

[5] Gordon Bell, Jim Gemmell, and Roger Lueder. Challenges in using lifetime
personal information stores. In Proceedings of the 27th annual international

ACM SIGIR conference on Research and development in information retrieval,
pages 1�1. ACM, 2004.

[6] Victoria Bellotti, Nicolas Ducheneaut, Mark Howard, Ian Smith, and Re-
becca E. Grinter. Quality versus quantity: e-mail-centric task management
and its relation with overload. Hum.-Comput. Interact., 20(1):89�138, June
2005.

[7] Victoria Bellotti and W. Keith Edwards. Intelligibility and accountability:
Human considerations in context-aware systems. Human-Computer Interac-

tion, 16(2-4):193�212, 2001.

[8] Ofer Bergman, Ruth Beyth-Marom, and Ra� Nachmias. The project frag-
mentation problem in personal information management. In Proceedings of

the 2006 Conference on Human Factors in Computing Systems, CHI 2006,

Montréal, Québec, Canada, April 22-27, 2006, pages 271�274, 2006.

[9] Ofer Bergman, Ruth Beyth-Marom, Ra� Nachmias, Noa Gradovitch, and
Steve Whittaker. Improved search engines and navigation preference in per-
sonal information management. ACM Trans. Inf. Syst., 26(4), 2008.



70 BIBLIOGRAPHY

[10] Tim Berners-Lee, James Hendler, Ora Lassila, et al. The semantic web. Sci-
enti�c american, 284(5):28�37, 2001.

[11] Matthias Böhmer, Brent Hecht, Johannes Schöning, Antonio Krüger, and Ger-
not Bauer. Falling asleep with angry birds, facebook and kindle: a large scale
study on mobile application usage. In Proceedings of the 13th Conference on

Human-Computer Interaction with Mobile Devices and Services, Mobile HCI

2011, Stockholm, Sweden, August 30 - September 2, 2011, pages 47�56, 2011.

[12] Hylke Bons. SparkleShare Github Repository, April 2010.

[13] Marilynn B Brewer and Wendi Gardner. Who is this" we"? levels of collective
identity and self representations. Journal of personality and social psychology,
71(1):83, 1996.

[14] Vannevar Bush. As we may think. The Atlantic Monthly, 176(1):101�108,
1945.

[15] Irene Cole. Human aspects of o�ce �ling: Implications for the electronic
o�ce. In Proceedings of the Human Factors and Ergonomics Society Annual

Meeting, volume 26, pages 59�63. SAGE Publications, 1982.

[16] Leandro S. G. de Carvalho, Raquel F. do Valle, Alexandre Passito, Edjair
de Souza Mota, R. Novellino, and A. G. Penaranda. Synchronizing web brows-
ing data with browserver. In Proceedings of the 15th IEEE Symposium on

Computers and Communications, ISCC 2010, Riccione, Italy, June 22-25,

2010, pages 738�743, 2010.

[17] David Dearman and Je�rey S. Pierce. It's on my other computer!: comput-
ing with multiple devices. In Proceedings of the 2008 Conference on Human

Factors in Computing Systems, CHI 2008, 2008, Florence, Italy, April 5-10,

2008, pages 767�776, 2008.

[18] Idilio Drago, Marco Mellia, Maurizio M. Munafò, Anna Sperotto, Ramin
Sadre, and Aiko Pras. Inside dropbox: understanding personal cloud stor-
age services. In John W. Byers, Jim Kurose, Ratul Mahajan, and Alex C.
Snoeren, editors, Proceedings of the 12th ACM SIGCOMM Internet Measure-

ment Conference, IMC '12, Boston, MA, USA, November 14-16, 2012, pages
481�494. ACM, 2012.

[19] Eric Freeman and David Gelernter. Lifestreams: A storage model for personal
data. SIGMOD Record, 25(1):80�86, 1996.

[20] Jim Gemmell, Gordon Bell, Roger Lueder, Steven M. Drucker, and Curtis
Wong. Mylifebits: ful�lling the memex vision. In Lawrence A. Rowe, Bernard
Mérialdo, Max Mühlhäuser, Keith W. Ross, and Nevenka Dimitrova, editors,
Proceedings of the 10th ACM International Conference on Multimedia 2002,

Juan les Pins, France, December 1-6, 2002., pages 235�238. ACM, 2002.



71 BIBLIOGRAPHY

[21] Erving Go�man. Encounters: two studies in the sociology of interaction.
Bobbs-Merrill, Indianapolis, 1961.

[22] Philipp C. Heckel. Syncany Github Repository, November 2012.

[23] Ken Hinckley. Synchronous gestures for multiple persons and computers. In
Proceedings of the 16th Annual ACM Symposium on User Interface Software

and Technology, Vancouver, Canada, November 2-5, 2003, pages 149�158,
2003.

[24] John Horrigan. Use of cloud computing applications and services. Pew Internet
&amp; American Life Project, 2008.

[25] Judith A Howard. Social psychology of identities. Annual review of sociology,
pages 367�393, 2000.

[26] Je� A. Johnson and Austin Henderson. Conceptual models: begin by designing
what to design. Interactions, 9(1):25�32, 2002.

[27] William Jones. Keeping Found Things Found: The Study and Practice of

Personal Information Management: The Study and Practice of Personal In-

formation Management. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2008.

[28] William P. Jones, Harry Bruce, and Susan T. Dumais. Keeping found things
found on the web. In CIKM, pages 119�126. ACM, 2001.

[29] Shaun K. Kane, Amy K. Karlson, Brian Meyers, Paul Johns, Andy Jacobs,
and Greg Smith. Exploring cross-device web use on pcs and mobile devices. In
Human-Computer Interaction - Interact 2009, 12th IFIP TC 13 International

Conference, Uppsala, Sweden, August 24-28, 2009, Proceedings, Part I, pages
722�735, 2009.

[30] David R. Karger, Karun Bakshi, David Huynh, Dennis Quan, and Vineet
Sinha. Haystack: A general-purpose information management tool for end
users based on semistructured data. In CIDR, pages 13�26, 2005.

[31] David R. Karger and Dennis Quan. Haystack: a user interface for creating,
browsing, and organizing arbitrary semistructured information. In Elizabeth
Dykstra-Erickson and Manfred Tscheligi, editors, Extended abstracts of the

2004 Conference on Human Factors in Computing Systems, CHI 2004, Vi-

enna, Austria, April 24 - 29, 2004, pages 777�778. ACM, 2004.

[32] Amy K. Karlson, Shamsi T. Iqbal, Brian Meyers, Gonzalo Ramos, Kathy
Lee, and John C. Tang. Mobile task�ow in context: a screenshot study of
smartphone usage. In Proceedings of the 28th International Conference on

Human Factors in Computing Systems, CHI 2010, Atlanta, Georgia, USA,

April 10-15, 2010, pages 2009�2018, 2010.



72 BIBLIOGRAPHY

[33] Ohbyung Kwon and Yixing Wen. An empirical study of the factors a�ecting
social network service use. Computers in Human Behavior, 26(2):254�263,
2010.

[34] Mark W Lansdale. The psychology of personal information management. Ap-
plied ergonomics, 19(1):55�66, 1988.

[35] Thomas W. Malone. How do people organize their desks? implications for
the design of o�ce information systems. ACM Trans. Inf. Syst., 1(1):99�112,
1983.

[36] Cathy Marshall and John C. Tang. That syncing feeling: early user experiences
with the cloud. In Conference on Designing Interactive Systems, pages 544�
553. ACM, 2012.

[37] Tara Matthews, Je�rey Pierce, and John Tang. No smart phone is an island:
The impact of places, situations, and other devices on smart phone use. IBM
RJ10452, 2009.

[38] I. C. McIlwaine. The universal decimal classi�cation: Some factors concerning
its origins, development, and in�uence. JASIS, 48(4):331�339, 1997.

[39] Jared Norris. iFolderInstall - Community Ubuntu Documentation, October
2011.

[40] William Odom, Abigail Sellen, Richard H. R. Harper, and Eno Thereska. Lost
in translation: understanding the possession of digital things in the cloud. In
Joseph A. Konstan, Ed H. Chi, and Kristina Höök, editors, CHI, pages 781�
790. ACM, 2012.

[41] Antti Oulasvirta and Lauri Sumari. Mobile kits and laptop trays: manag-
ing multiple devices in mobile information work. In Proceedings of the 2007

Conference on Human Factors in Computing Systems, CHI 2007, San Jose,

California, USA, April 28 - May 3, 2007, pages 1127�1136, 2007.

[42] Jérôme Picault, Myriam Ribière, and Christophe Senot. Beyond life streams:
activities and intentions for managing personal digital memories. In the In-

ternational Workshop on Adaptation, Personalization and Recommendation

in the Social-semantic web (APRESW 2010), CEUR-WS, volume 585, pages
25�32. Citeseer, 2010.

[43] Craig Ross, Emily S. Orr, Mia Sisic, Jaime M. Arseneault, Mary G. Simmering,
and R. Robert Orr. Personality and motivations associated with facebook use.
Computers in Human Behavior, 25(2):578�586, 2009.

[44] Leo Sauermann. The semantic desktop-a basis for personal knowledge man-
agement. In Proceedings of the I-KNOW, volume 5. Citeseer, 2005.



73 BIBLIOGRAPHY

[45] Albrecht Schmidt, Michael Beigl, and Hans-Werner Gellersen. There is more
to context than location. Computers & Graphics, 23(6):893�901, 1999.

[46] Abigail J Sellen and Richard H. R. Harper. The myth of the paperless o�ce.
MIT Press, Cambridge, Mass., 2002.

[47] Beat Signer and Moira C. Norrie. As we may link: A general metamodel
for hypermedia systems. In Christine Parent, Klaus-Dieter Schewe, Veda C.
Storey, and Bernhard Thalheim, editors, ER, volume 4801 of Lecture Notes in
Computer Science, pages 359�374. Springer, 2007.

[48] Donghee Sinn and Sue Yeon Syn. Personal documentation on a social network
site: Facebook, a collection of moments from your life? Archival Science,
14(2):95�124, 2014.

[49] Henry Song, Hao-Hua Chu, Nayeem Islam, Shoji Kurakake, and Masaji Kata-
giri. Browser state repository service. In Pervasive Computing, First Interna-

tional Conference, Pervasive 2002, Zürich, Switzerland, August 26-28, 2002,

Proceedings, pages 253�266, 2002.

[50] Victoria Schwanda Sosik, Xuan Zhao, and Dan Cosley. See friendship, sort of:
how conversation and digital traces might support re�ection on friendships. In
Steven E. Poltrock, Carla Simone, Jonathan Grudin, Gloria Mark, and John
Riedl, editors, CSCW '12 Computer Supported Cooperative Work, Seattle, WA,

USA, February 11-15, 2012, pages 1145�1154. ACM, 2012.

[51] Jaime Teevan, Christine Alvarado, Mark S. Ackerman, and David R. Karger.
The perfect search engine is not enough: a study of orienteering behavior in
directed search. In Elizabeth Dykstra-Erickson and Manfred Tscheligi, editors,
CHI, pages 415�422. ACM, 2004.

[52] Sandra Trullemans. Personal cross-media information management. Master's
thesis, Vrije Universiteit Brussel, 2012-2013.

[53] Sandra Trullemans and Beat Signer. Towards a conceptual framework and
metamodel for context-aware personal cross-media information management
systems. Proceedings of ER 2014, 33rd International Conference on Conceptual
Modelling, October 2014.

[54] Sherry Turkle. The second self: computers and the human spirit. MIT Press,
Cambridge, Mass., 20th anniversary ed., 1st mit press ed edition, 2005.

[55] Jacob van Kokswijk. Granting personality to a virtual identity. International
Journal of Humanities and Social Sciences, 3(8), 2008.

[56] Hannu Verkasalo. Contextual patterns in mobile service usage. Personal and
Ubiquitous Computing, 13(5):331�342, 2009.



74 BIBLIOGRAPHY

[57] Amy Voida, Judith S. Olson, and Gary M. Olson. Turbulence in the clouds:
challenges of cloud-based information work. In Wendy E. Mackay, Stephen A.
Brewster, and Susanne Bødker, editors, CHI, pages 2273�2282. ACM, 2013.

[58] Jiaqiu Wang and Zhongjie Wang. A survey on personal data cloud. Scien-

ti�cWorldJournal, 2014:969150, 2014.

[59] Michel Wedel and Wagner A Kamakura. Market segmentation: conceptual

and methodological foundations. Kluwer Academic, Boston, 2nd ed edition,
2000.

[60] Steve Whittaker. Supporting collaborative task management in e-mail. Hum.-
Comput. Interact., 20(1):49�88, June 2005.

[61] Steve Whittaker, Quentin Jones, Bonnie A. Nardi, Mike Creech, Loren G. Ter-
veen, Ellen Isaacs, and John Hainsworth. Contactmap: Organizing communi-
cation in a social desktop. ACM Trans. Comput.-Hum. Interact., 11(4):445�
471, 2004.


	Introduction
	Information on the Desktop
	Information in the Cloud
	Problem Statement
	Thesis Contributions
	Thesis Structure

	Literature Review
	Challenges of PIM: storage and re-finding
	Keeping
	Organising
	Re-finding

	Current PIM Systems
	Memex vision of the PIM concept

	Information Fragmentation in PIM
	Information Fragmentation in the Cloud
	Users' Behaviour in the Cloud
	Types of Cloud Services
	Solutions for Information Fragmentation

	Summary

	EverSync Application
	Requirements
	Architecture
	Object-Concept-Context Framework
	EverSync Plugins

	Implementation
	Iterative User Interface Design
	Client-server Communication Layer
	Server-side 
	Client-side
	EverSync Plugin Implementation

	Proof of Concept – EverSync at Work
	Use Case
	Implementation
	Evernote plugin
	Facebook plugin
	Flickr plugin

	EverSync in practise

	Future work

