: (Vrije Universiteit Brussel

FACULTY OF SCIENCE AND BIO-ENGINEERING SCIENCES

DEPARTMENT OF COMPUTER SCIENCE

End User Control of Dynamic
Distributed User Interfaces

Master thesis submitted in partial fulfilment of the requirements for the degree of
Master of Science in de Ingenieurswetenschappen: Computerwetenschappen

Jasmien De Ridder

Promoter: Prof. Dr. Beat Signer
Advisor: Sandra Trullemans

Academic year 2014-2015

: (Vrije Universiteit Brussel

FACULTEIT WETENSCHAPPEN EN BIO-INGENIEURSWETENSCHAPPEN

VAKGROEP COMPUTERWETENSCHAPPEN

End User Control of Dynamic
Distributed User Interfaces

Masterproef ingediend in gedeeltelijke vervulling van de eisen voor het behalen van de graad
Master of Science in de Ingenieurswetenschappen: Computerwetenschappen

Jasmien De Ridder

Promotor: Prof. Dr. Beat Signer
Begeleider: Sandra Trullemans

Academiejaar 2014-2015

Abstract

The office environment has changed a lot over the last decades with the intro-
duction of new technologies like smartphones, tablets, smartwatches and so
on. The office environment is becoming a dynamic place, where people work
cross-media and cross-devices. People tend to use different devices in their
daily life. For example, John is working and browses through his emails on
his laptop and saves an email about a meeting later that day. Later that day,
before the meeting, he opens the same email on his mobile phone and reads
it while walking towards the meeting. User interfaces or its components are
distributed across multiple devices. These user interfaces are predefined by
the developers or Ul designers or the applications. They do not allow end
users to customise the user interface or its components in any way.

The office of the future will definitely include distributed user interfaces.
However, these are not the only user interfaces that have found their way to
the office of the future. Augmented reality user interfaces are being exten-
sively researched in the field of Personal Information Management, where the
main focus lies on helping people to keep, re-find and organise their infor-
mation. For example, augmenting a bookshelf with LEDs to indicate where
certain books or folders are located. But also in the digital information space,
augmented user interfaces were introduced that help a user re-find their files
in the file hierarchy system. These augmented user interfaces have the same
problem as distributed user interfaces. They are not customisable by end
users, but are predefined by the developers of the application.

However, allowing end users to customise the augmented user interfaces
to their own taste, would improve their daily work activities in office set-
tings. In order to allow users to configure when and where the augmented
reality user interfaces can be used, we developed the DUI2 framework. We
will combine our framework with the Context Modelling Toolkit (CMT),
a context-aware framework, in order to facilitate the configuration process.
Our framework will allow users to define rules in order to state that a certain
augmented reality user interface can be used/shown depending on the con-
text. This approach allows for an easier, more natural way to interact with
the framework, making it possible for end-user with no programming skills to
use it. Besides the user customisation, we will allow to automatically adapt
the user interface based on the current context. For example, when a user is
in their office reading a paper. The paper is automatically augmented with
a corresponding user interface. To illustrate our novel approaches of the cus-
tomisation and automatic adaptation of augmented reality user interfaces,

we will present a use case of the framework.

iii

Declaration of Originality

I hereby declare that this thesis was entirely my own work and that any
additional sources of information have been duly cited. I certify that, to the
best of my knowledge, my thesis does not infringe upon anyone’s copyright
nor violate any proprietary rights and that any ideas, techniques, quotations,
or any other material from the work of other people included in my thesis,
published or otherwise, are fully acknowledged in accordance with the stan-
dard referencing practices. Furthermore, to the extent that I have included
copyrighted material, I certify that I have obtained a written permission from
the copyright owner(s) to include such material(s) in my thesis and have in-
cluded copies of such copyright clearances to my appendix.

I declare that this thesis has not been submitted for a higher degree to
any other University or Institution.

v

Acknowledgements

First of all I would like to thank my girlfriend Aurélie and my family for
their moral support during the thesis. Secondly I would like to thank my
supervisor Sandra Trullemans for her guidance during the year. I would also
like to thank my promoter, professor Beat Signer for his feedback during the
follow-up presentations.

Lastly I would like to thank my thesis colleagues: Audrey, Ayrton and
Tim.

Contents

1 Introduction
1.1 Distributed User Interfaces 1
1.2 Augmented Reality L. 2
1.3 Context-Awareness 4
1.4 Problem Statement 5
1.5 Thesis Contribution 6
1.6 Thesis Outline 7
2 Background
2.1 Distributed User Interfaces 9
2.1.1 Multi-Device Design Tools 15
2.2 Augmented Reality User Interfaces 17
2.3 Context-Aware User Interfaces 23
2.4 Where Is The Gap?, 24
2.0 Conclusion 24
3 System and User Control
3.1 Introduction to Automatic Adaptation 28
3.1.1 Rule-based Context-aware Frameworks 29
3.2 UI4A2: Ul Context Model for Automatic Adaptation 30
3.2.1 Physical vs. Digital Information Space 30
3.2.2 Type of Information Items 30
3.2.3 Location of the Augmentation 30
3.2.4 Techniques. oo 32
3.25 DModalities 33
3.2.6 Devices and Technologies 33
3.27 Overview 34
3.3 End User Control 36
3.3.1 End User Programming 36
3.4 Requirements o 39
3.4.1 Automatic Adaptation 39

3.4.2 User Customisable Adaptation 40

CONTENTS vi

4 DUI2 Framework

4.1 Architecture 41
4.2 MUI Framework 43
4.2.1 MUI Model, 43
4.2.2 Object-Concept-Context (OC2) Model 45
4.2.3 Mappings 47
4.3 Context Modelling Toolkit 51
4.3.1 CMT Architecture 51
4.3.2 Idea of Templates, ol
4.3.3 Client Sideo 593
4.3.4 Server Side o 53
4.4 DUI2 e 53
4.4.1 Functionality 54
4.4.2 Automatic Adaptation 54
4.4.3 User Adaptation 55
5 Configuration and End User Tool
51 UseCase. e a7
5.2 Configuration Tool 58
5.3 Modelling Tool 61
5.3.1 ModellingaRule 62
5.3.2 Android Implementation Details 63
5.3.3 DUI2 Implementation Details 64
6 Conclusions and Future Work
6.1 Contributions 68
6.2 Future Work 69

List of Figures

1.1
1.2

2.1
2.2

2.3
2.4

2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
5.4

Frame of the cartoon film: Who Framed Roger Rabbit 3
Example of Augmented reality, where a building is augmented 3
The natural interaction mechanism of Deep Shot 10
The multi-device environment for the cross-device interactions

of Conductor 12
The THAW system with near-surface interaction 12
The ReticUI user interface of ReticularSpaces; on the left the

activity view and on the right the action view 13
Different ZOIL user interfaces for a physical lens on a tabletop 14
WYSIWYG approach of Gummy 16
The pile browser to digitally browse through a physical pile . . 18
Interactive Bookshelf Surface 19
MapLens 20
TagTree 21
Icon Highlights, 22
WikiFolders 22
Setup of PeriTop 34
if-then rule-based approach of ITFTTT recipes 37
The Reality Editor that supports editing of behaviour and

interfaces of Smart Objects. 38
The architecture of the DUI2 framework 42
The MUI model for user interface management 44
OC2 extension of the RSL metamodel 46
The context extension of the OC2 framework A7
personlsInLocation template example 52

Sequence diagram for registering an augmented user interface . 60
User interface of configuration tool 61
User interface of the Android application 62
Sequence diagram for creatingarule 65

List of Tables

3.1

3.2

4.1
4.2
4.3

Applications operating on the physical or digital information
SPACE . . .« o . e e e e e e e e 31
Overview of the applications with the corresponding categories 35

Mapping of the MUI components onto the OC2 components . 47
List of end points supported by our DUI2 framework o4
Different categories from the UI4A2 context model 55

Introduction

In the last decades, the office environment has changed drastically. An of-
fice used to contain a desk with a desktop computer and sometimes a few
bookcases or a file cabinet. However, recent technologies introduced laptops,
smartphones, tablets, tabletops and so on to the office. The office environ-
ment is becoming more dynamically, working across media, across devices
and across user interfaces and interactions. Nowadays user interfaces can be
distributed across different devices, like laptops and tablets.

1.1 Distributed User Interfaces

Various devices appear in the office environment and in order to deal with
the interactions across them, the field of distributed user interfaces emerged.
This field focuses on the distribution of the state of an application and its
content across devices. Niklas Elmqvist [16] describes a distributed user
interface or DUT as:

A distributed user interface is a user interface whose components
are distributed across one or more of the dimensions:

o Input: Managing input on a single computational device,
or distributed across several different devices (so-called input
redirection)

Augmented Reality 2

o Output: Graphical output tied to a single device (display),
or distributed across several devices (so-called display or con-
tent redirection)

e Platform: The interface executes on a single computing
platform, or distributed across different platforms (i.e. ar-
chitectures, operating systems, networks, etc.)

e Space: The interface is restricted to the same physical (and
geographic) space, or can be distributed geographically (i.e.
co-located or remote interactive spaces)

o Time: Interface elements execute simultaneously (synchronously),
or distributed in time (asynchronously)

A well-known example of a distributed user interface, is the "YeloTV"
application from Telenet. This application allows users to watch TV shows
not only on their TV, but also on their smartphones and tablets. The user
interface for watching television is distributed across different devices and
platforms. Other examples allow to transfer content or application state to
other devices, QR codes are already very integrated into our daily lives. For
example, Bob is searching information about his next city trip to Paris, he is
browsing the web, when an Android application is suggested and a QR code
is given. Bob takes his smartphone and scans the QR code, the application
is automatically downloaded and opened. Bob can continue planning his trip
to Paris by using his smartphone.

1.2 Augmented Reality

How the office of the future will look like, has already been extensively re-
searched . Current research focused on augmenting the office environment
by using Augmented Reality techniques. Different augmented user interfaces
were developed to help users in their daily work activities. All of them have
the basic goal to enhance the user’s perception of the real world and help
them interacting with it. In 1997, Azuma [1]| described a definition that
today is still the most widely used. The definition goes as follows:

Augmented Reality systems are systems that have the following
three characteristics:

e Combines real and virtual

e Interactive in real-time

o Registered in 3-D

3 CHAPTER 1. Introduction

If we however think about cartoon films, where cartoon characters are added
to a film set. We can argue that this is also a kind of Augmented Reality,

Figure 1.1: Frame of the cartoon film: Who Framed Roger Rabbit

because a representation of the reality is being augmented. An example of
a cartoon film is shown in Figure 1.1. If we compare our cartoon films with
the definition of Azuma, we can see that it indeed combines virtual and real,
but it is not in 3D and not in real-time.

When referring to Augmented Reality in this thesis, we will extend the
definition of Azuma to include 2D objects and pre-processed augmenta-
tion (i.e. no real-time). Augmented Reality is often associated with games,
because it allows to enrich the experience of playing a game. For example,
board games such as Monopoly are being augmented by tracking the pawns
which are markers with Computer Vision techniques. By using a the cam-
era of a smartphone to hover over the board, the pawns get augmented and
figures come to life on the smartphone screen.

Figure 1.2: Example of Augmented reality, where a building is augmented

Context-Awareness 4

Besides gaming applications, more recent applications focus on overlaying
real-time information on a smart phone screen. In Figure 1.2, the reality
is being augmented by pointing the camera of a mobile phone towards it.
For example, if a building is recognized, the corresponding information (i.e.
restaurants close by, the street name and address, etc.) about the building
is shown on the screen of the smartphone. In office settings, ring binders
can be augmented with LEDs. When a user searches for a document, the
LED of ring binder containing the document will light up and this allows
users for quicker searches. The same principle of pointing a smartphone
can be applied to books in office environments. But instead of pointing to
buildings, the camera of the smart phone will be pointed to the books in
the bookcase. The camera is able to track the spine of the books, because
special markers are placed for recognition. Whenever a user needs a book,
he can hover over the book spines and get additional information about the
books. This technique allows the users to speed up the search process, since
the user does not need to take all the books out from the shelf in order to
see what they are about. Sometimes applications use a mix of augmented
reality and augmented virtuality. For example, an entertainment magazine
containing tags such that virtual elements are added to the magazine, only if
viewed through the camera of a mobile phone. These kind of applications are
called mixed reality or hybrid reality, where the physical and virtual world
are merged together to create new visualisations.

1.3 Context-Awareness

Context-awareness refers to the paradigm in which applications can sense
and explore the context of the users in order to provide appropriate and
useful services towards users. These provided services are dynamic and are
able to automatically adapt to the current needs of the users based on con-
text changes. Some intelligence is implied in context-awareness, that enables
applications to detect, reason, and predict the action to be taken in order
to adapt in a dynamic environment. Most context-aware applications work
without explicit user intervention. In smart homes and recommendation sys-
tems, context-aware frameworks are used to adapt the environment based on
context changes. For example, when the temperature rises above 26°C, the
blinds in front of the windows be automatically closed or the A/C will be
turn on. In smart homes, these input signals are gathered by sensors and the
context-aware system will compare the input with the available rules in order
to perform corresponding actions. In the research for user interface design,
context-awareness also has been explored. For example, the user interface

5 CHAPTER 1. Introduction

of an iPad or tablet is able to adapt depending on how it is held by the
users. By rotating and flipping the iPad, the orientation of the user interface
is changed from landscape to portrait or vice a versa. The user interface
itself changes/adapt according to the context of the orientation in order to
show an appropriate view to the users. Different contextual information can
be used as a base to adapt on, like time events, location, sensor input, etc.
The adaptations of context-aware application are mostly automatically or
dynamically performed by the system.

1.4 Problem Statement

The office of the future is a dynamic environment including cross-media,
cross-device and cross-user interface interactions. A user interface can be
distributed over various devices. Some user interfaces are adapted to one
device, and others user interface components are allocated to another set of
devices in order to provide more natural interactions. In such a distributed
user interface setting the distribution is often done by the user interface de-
signer. Even in large projects such as i-Land [62] which focus on the interac-
tions of distributed user interfaces over tabletops, multiple large displays and
collaborative workplaces, the developed user interfaces are not customisable
by the end user. Besides these distributed user interfaces, Augmented Real-
ity user interfaces have found their way to the Office of the Future setting.
By augmenting physical documents through overhead projectors or adding
LEDs in bookcases, researchers try to support users in their daily work ac-
tivities.

Nevertheless, these augmented reality applications are again predefined
by the developer. Although at first sight this may not be a great issue,
research on descriptive Personal Information Management activities has ob-
served that definitely in work-related activities users are very unique in their
behaviour. Nevertheless, current systems do not allow users to configure their
augmented workspace including distributed and Augmented Reality user in-
terfaces. Just think about notifications that are automatically sent, when a
user receives an e-mail. Some people hate it, when they are interrupted by
the notification. This can, however, depend on the task at hand. It would
be much more functional if a user is able to control the behaviour of the
notifications. Secondly, context-aware applications are well-known in various
domains such as smart-homes and recommendation systems. It is interesting
to investigate the idea of context-aware user interfaces. Nevertheless, the end
users should again be able to have control over these configurations. Con-

Thesis Contribution 6

sidering the example of the notifications, in context-aware user interfaces we
can include the context conditions to configure the user interface. For ex-
ample, Bob is in a business meeting with his bosses and does not want to
be interrupted. Here it would be preferable to configure that notifications
should not be shown when in a meeting.

1.5 Thesis Contribution

In this thesis, we will investigate the opportunity to allow users to customise
their user interface configurations in the Office of the Future setting, as well
as automatically adapting the user interfaces depending on the current con-
text. By doing so, we allow users to configure their own workspace that fits
them best. Current systems only allow Ul designers or developers to config-
ure the user interfaces. Mostly the user interfaces are predefined and they
do not provide any means for end user customisation. However, in order to
increase user satisfaction and acceptance of systems, users should be given
control over the behaviour of user interfaces. There needs to be a balance
between the control that the system has and the control that is in the hands
of the users.

In order to achieve this, we present the DUI2 framework that will allow
to balance user and system control by providing two different approaches.
The first approach will automatically adapt the user interface based on the
current context. The second approach focuses on allowing end users to config-
ure and customise their own user interface without needing any programming
experience. In order to adapt and model the configurations for the user inter-
faces, we need a system that is context-aware. For this thesis, we combined
our DUI2 framework with the Context Modelling Toolkit (CMT) framework.
Besides the CMT framework, the Object-Concept-Context (OC2) framework
will also be used as an underlying structure. The OC2 framework will al-
low to store and manage the user interfaces and the corresponding context
conditions. In this thesis, the focus is set on distributed and augmented
user interfaces. Nevertheless, the scope can be broadened to include various
types of user interfaces. The DUI2 framework will be a generic framework
for different types of user interfaces. Besides the DUI2 framework, we will
also provide two applications that use the functionalities provided by the
framework. The first tool is a configuration tool where developers will be
able to register new augmented user interfaces and add them to the DUI2
framework. The second tool is the modelling tool where end users are able
to construct rules for the user customisable adaptation.

7 CHAPTER 1. Introduction

1.6 Thesis Outline

In this thesis, we will first provide the necessary introduction to current re-
search in office settings. We will explain distributed user interfaces and the
tools that exist to author them. Then we will take a look at the augmented
user interfaces that have found their way to the office of the future. The vi-
sion of the future and current shortcoming in user interface adaptation will be
explained. In the next part, we will explained the two adaptation approaches
that our framework will support in order to give a little control to the user. In
Chapter 3, the automatic adaptation and user customisation will be explain
in detail. Afterwards we will introduce the DUI2 framework with all of its
modules and components that was implemented for the purpose of this thesis.

Finally, in Chapter 7 we will discuss the two applications that we devel-
oped for our DUI2 framework, namely the configuration tool and modelling
tool. In the last chapter, we will reflect on the contributions of this thesis
and we will discuss the further steps that can be taken to further improve
and explore the capabilities of the framework.

Thesis Outline

Background

Since the increase in mobile devices, users utilise different devices to perform
their daily activities. In the office setting, users can have mobile phones,
laptops, desktop computers, tablets and so on, in order to complete their
work-related tasks. All these different devices have different user interfaces
to interact with. Switching from, for example, a laptop to a mobile phone
requires some adaptation to the user interface in order to be usable. In
recent research, the distribution of user interfaces across different devices,
platforms and users was studied to cope with the dynamic office environment.
However, distributed user interfaces are not the only type of user interfaces
that are investigated in the Office of the Future setting, Augmented Reality
and context-aware user interfaces are also being studied.

2.1 Distributed User Interfaces

In their daily life, users interact with different types of systems via multiple
devices. The space where the interactions between a human and a computer
happens, is called a user interface. It allows user to control the machine in
an efficient way. Different types of user interfaces exist, all of them belong to
either digital user interfaces or physical user interface. When talking about
physical user interfaces, we refer to user interfaces where physical objects
such as tangibles are used to control the computer in a real world setting.

Distributed User Interfaces 10

Whereas digital user interface allow users to control a device by interacting
with a digital user interface on the device itself.

In the field of Distributed User Interface (DUI) various research has taken
place, where the focus lies on the distribution of the state of the application
and its content across devices. In 2013, Frosini et al. [19] developed a frame-
work that allows designers and developers to create applications, where the
user interface components are partially or completely distributed across de-
vices. Allowing for multiple instances of applications at the same time and
for different types of devices and users. The framework imposes an environ-
ment called Distribution manager that takes care of the development of the
applications and the management of the dynamic distribution by providing
run-time support. The sets of devices organise themselves in order to sup-
port the dynamic distribution. For supporting the run-time distribution, no
fixed server is required. A more decoupled framework was presented by Mel-
chior et al. [45], where graphical user interfaces are distributed across four
dimensions, namely multiple displays, multiple platforms, multiple operating
systems and multiple users. A peer-to-peer solution is proposed, where by
connecting multi-purpose proxies to one or more rendering engines, the whole
or parts of the graphical user interface are rendered for any operating system,
any computing platform and any display. The graphical user interface can
be distributed as a whole or a subset consisting of widgets can be distributed
across the same or various devices. For example, a watch face in a calendar
window is distributed from that window to another window containing dif-
ferent functionality. The distribution and migration of user interfaces or its
widgets can happen across devices, platforms, displays and users.

migrate to
mobile

Figure 2.1: The natural interaction mechanism of Deep Shot

11 CHAPTER 2. Background

Some systems focus more on the interaction with distributed user inter-
faces, they try to make the interaction as natural as possible. An example
of such a system is Deep Shot [8|, which is a framework for migrating tasks
across devices. When a user is performing a task, he often utilises multi-
ple devices. For example, first he works on the PC in his office and later
on he continues working on a laptop or mobile phone while taking public
transportation. Currently there is no support for fluent, natural interactions
between these multiple heterogeneous devices. However, Deep Shot addresses
the lack of support by allowing users to take a picture of the application with
their mobile phone to perform the transfer of the user’s work state for a task.
The Deep Shot provides two new interaction techniques, called deep shoot-
ing and deep posting. The first technique is deep shooting and is shown
in Figure 2.1. A user can take a picture of the computer screen where an
application is opened, in this case Google maps. Deep Shot recognizes the
relevant region of the application (i.e. the map) that the user is looking at
through the camera and will migrate that part of the application to the mo-
bile phone with a recovered application state. Deep posting however, uses
the same mechanism, the target screen and region needs to be identified,
but it is not required to identify the application a user is looking at. Deep
Shot provides two new interaction techniques, however interactions can take
many forms. With an abundance of inexpensive connected devices available
to a person at any time, there exist very few applications that allow users
to take advantage of this large number of screens, as illustrated in Figure
2.2. In 2014, Hamilton and Wigdor [22] introduced a generic framework for
cross-device interactions, named Conductor. It allows for various forms of in-
teraction techniques across devices in order to enable easy transition between
the different devices. The framework focuses on the shared interaction styles
such as the use of NFC tags or bumping between mobile devices to transfer
application states and content. Mechanisms for the chaining of devices (i.e.
bonding with duets) in a workflow as well as for managing cross-relationships
are provided.

Recent research pushes the vision of DUIs further by transferring specific
functionality to the most appropriate device, the appropriate device. By do-
ing so, these applications allow for a more natural way of interacting with
the user interface. In the THAW system [39], a smart phone is handled as
a tangible object for near-surface interactions with larger displays such as a
computer screen, as illustrated in Figure 2.3. By handling the smartphone
in combination with the larger displays, the system provides for a fluid inter-
action space. The THAW system only provides support in a certain range.
If the smartphone is positioned too far away from the screen, additional

Distributed User Interfaces 12

Figure 2.2: The multi-device environment for the cross-device interactions of
Conductor

hardware is needed. The focus is on hovering and on-screen interaction.
A server takes care of the communication with the incoming smartphones
and exchanges the needed calibration and tracking information. Another ap-
proach where natural interaction is explored, is called WatchConnect [27].
The system allows a smartwatch to be used as an input device and output
display. The WatchConnect toolkit allows developers to create cross-device
applications and interactions. The sensor input of the smartwatch provides
the trigger to, for example, change the position of images on a computer
screen. The user interface can also be migrated /beamed to the larger display
surface, for example, when a Skype call comes in.

Figure 2.3: The THAW system with near-surface interaction

In smart room environments, designers of DUIs need to take into account
more complexity, because multiple users, public displays and tangibles on
tabletops can be present. Some fully integrated examples of smart rooms are
iLand |62| and Interactive Workspaces/iRos [33]. These two smart room ap-
plications focus on communication between devices, on sharing application
state through UI components and keeping track of multiple users. ilLand
describes an environment where information and communication technolo-
gies are integrated in room elements, such as walls, doors, and furnitures in

13 CHAPTER 2. Background

order to support the collaboration of multiple users. By combining recent
developed techniques from Augmented Reality and ubiquitous computing,
the first attempt at a smart room was made, containing a electronic wall,
interactive table and mobile, networked chairs with integrated interactive
devices, such as displays. Interactive Workspaces/iRos developed different
prototypes. The second generation prototype is iRoom, where three touch
sensitive white boards and and a larger display that was designed to look like
a conference table. iRos is the system infrastructure on which the devices
with specific properties are tied together. Some specific room-based user in-
terfaces were developed for the Interactive Workspaces project. Note that
these large smart room projects provide a promising vision for the future
of workspaces and office environments, however their focus is mainly on the
collaborative aspect of workspaces using traditional desktop user interfaces.

Figure 2.4: The ReticUI user interface of ReticularSpaces; on the left the
activity view and on the right the action view

Bardram et al. [2] take another approach with their smart space frame-
work, called ReticularSpaces. The framework provides a unified design to
develop user interfaces for applications spanning the tasks of the user on dif-
ferent smart room devices and is implemented on a distributed Model-View-
Controller (AMVC) architecture. ReticularSpaces provides an activity-based
UI for smart spaces, called ReticUI. It is designed to unify the experience of
the user. The user interface of ReticUI consists of two views, namely the Ac-
tivity view and the Action View, as illustrated in Figure 2.4. Both views are
designed to use on any type of display, even for large screens. The Activity
view is the default view where the activity manager is shown. Users are able
to access a display and mount an activity manager. The Activity view will
then display the activities that belong to the mounted activity manager and
are applicable to the current context. The Action view consists of a large
palette where the operations that can be executed are displayed. The user

Distributed User Interfaces 14

interface for this smart room approach is develop beforehand and cannot be
modified in any way, however depending on the display and activity manager
only a custom set of activities is displayed.

Leonardo da Vinci
Claude Monet

Salvador Dali

Pablo Picasso

Figure 2.5: Different ZOIL user interfaces for a physical lens on a tabletop

Other systems such as glueTK [7] and ZOIL [32] provide functionality
for post-WIMP interfaces in smart rooms, in order to provide more natural
interactions. GlueTK is a framework that provides functionality to manage
multimodal input in a whole room containing multiple devices. Each input
modality has its own interactions and requirements. glueTK abstracts the
complexity of these input modalities and allows for multi-device user inter-
face design for different screen sizes. GlueTK takes a broad approach to
input modalities and does not only focus on point and touch modalities. By
doing so, the framework enables the design of custom applications specifically
for interactive rooms, moving away from traditional desktop environments.
The Office of the Future will most likely not only contain a desktop, but a
range of different devices. The ZOIL framework takes a different approach
to post-WIMP distributed user interfaces for interactive rooms/spaces. The
framework is the most closely related framework to the presented work in this
thesis. The Object-Oriented User Interface (OOUI) design paradigm is the
start point of the Zoomable Object-Oriented Information Landscape (ZOIL)
framework. This paradigm states that user interfaces are just “views” over
data objects such as documents or just fragments of documents, emails and
objects. In office settings, this approach allows more natural interaction be-
tween the user and the information space, because often users see email,
documents as objects and in order to interact with them, tools are used.

15 CHAPTER 2. Background

Nevertheless, the ZOIL framework only supports the design of its own user
interfaces, called ZOIL user interfaces, as shown in Figure 2.5. Six design
principles were introduced, but the main focus is on visualisation techniques.
The zoomable user interfaces are the most important technique to interact
with the central data repository. A client-server architecture is implemented
to provide transparent persistence and synchronisation. An object-oriented
database (db4o) is used in the ZOIL data backend.

2.1.1 Multi-Device Design Tools

We have seen that it is very common for users to perform their tasks on mul-
tiple devices ranging from traditional desktops to mobile devices with various
multimodal interactions. However, current user interfaces design tools target
either a single device or a fixed set of devices, and they provide little support
for user interfaces or their components that are distributed across multiple
devices. Many different approaches have been studied for the authoring of
multi-device user interfaces. For the development of multimodal Web in-
terfaces, most authoring environments only allow to create a user interface
out of predefined basic elements. Some direct manipulation techniques allow
to easily create interfaces, but they do not provide any support to identify
the most suitable user interface for supporting the targeted users and the
tasks at hand, while taking into account the interaction space. A method
and tool where developed to support the transformations of user interfaces
across various interactive views. TERESA [5] allows designers to transform
their description into a Ul description, where the design decisions are incor-
porated. The format for the Ul description is modality independent. The
UI descriptive language format is then used to derive a modality dependent
interface description from. This final description is used as a base for gen-
erating code to create the user interface. TERESA allows to define a user
interface at an abstract level by using XML.

Although, MARIA and TERESA can be described as authoring tools
for the underlying user interface descriptive languages, other examples that
take a more natural approach exist to design cross-device user interfaces.
Damask [40] and Gummy [46] are such examples which are closer to WYSI-
WYG (What You See Is What You Get). Damask is a prototyping tool that
allows users to create multi-device web interfaces for desktops and mobile
phones and has support for speech input and output. Designers can sketch
their user interface for a specific device by using design patterns. These pat-
terns are a fixed set of Ul elements that are already optimised for each device.
A layered approach is used to indicate which Ul elements are common for all

Distributed User Interfaces 16

devices and which are specific to a particular device or modality. The sketch-
based technique allows for easy generation of design for other devices, which
can later on be refined. A study has shown that the use of patterns allows
for easy creation. However some questions arise about scalability, because
the tool only offers a limited set of design patterns.

A

Properties
Toolbox Canvas Panel

Figure 2.6: WYSIWYG approach of Gummy

Gummy is a graphical user interface tool for creating multi-platform user
interfaces. A designer is able to generate an initial design for a new platform
by adapting and combining features of existing user interfaces created for
the same application. The tool uses the WYSIWYG approach by providing
visuals, as illustrated in Figure 2.6. Gummy takes care of the consistency
between multiple user interfaces of the same application and targeting new
platforms requires not much additional overhead. Recent authoring tools for
distributed user interfaces focus on collaborative design and crowdsourced
adaptation. Quill [49] is a web user interface developer tool that enables
collaboration between different stakeholders (programmer, project manager,
support manager, etc.) by adopting a model-based approach for the de-
sign of cross-platform user interfaces. The model-based approach allows for
incremental development for multiple technologies. Enabling common un-
derstanding of the UI specification through models to facilitate targeting
various platforms. CrowdAdapt [50] however is a context-aware web design
tool which uses crowdsourcing to improve the adaptations of a web suite un-
der various viewing conditions. Developers can create adaptive layouts for
different use contexts by direct manipulation of the final user interface. The

17 CHAPTER 2. Background

main idea behind CrowdAdapt is to allow end users to adapt the interface to
their specific context if not supported by the current design of the web page.
This idea of end user adaptation will be explored in this thesis.

2.2 Augmented Reality User Interfaces

Already in the early nineties, researchers investigated Augmented Reality
in combination with Personal Information Management in order to improve
the organisation and re-finding of information items in office settings. Early
research combined physical and digital media leading to hybrid surfaces, like
DigitalDesk [70] where overhead projection is used to provide digital func-
tionality to paper documents. More recent studies focus on tabletop user
interfaces that are designed for linking digital and physical content. By plac-
ing a physical document on the tabletop surface, DocuDesk [17]| provides a
way to recognise the document and show the relevant linked documents, its
digital counterpart and some other options. PeriTop [54] and ObjecTop [36]
tackle the problems of occlusion created by physical objects on interactive
tabletops and also allow support for the organisation of the hybrid physical-
digital workspace. Thinking about knowledge workers, they often switch
between different tasks. Before they can start a new task, they will first put
aside the current documents they are working on. PeriTop and ObjecTop
enable hybrid piling by manually putting digital objects on a stack. The
hybrid piling helps the user, when they revise a task that they started earlier
on. Another approach is MagicDesk [6] that tries to achieve a continuous
workspace by augmenting the desk with touch regions in order to manipu-
late documents on the desktop. A Digital Mouse Pad enhances the mouse
operations and a Multi-Functional Touch Pad allows for extra interaction
possibilities with the desktop. Hybrid surfaces are used to combine digital
and physical media in different kind of applications.

In the context of the PIM activities, research has been focused on pro-
viding physical augmentations in order to help users in organising and re-
finding their personal documents. By tracking physical documents, digital
and physical user interfaces are been developed to indicate where documents
are located and they provide additional metadata in order easy the re-finding
process. Seifried et al. [58] provide an augmented file cabinet linking the real
and digital world. The system connects the physical and digital documents
by enhancing filing cabinets and folders, while providing a mechanism for
the organisation and retrieval of both, physical and digital, versions of the
documents. Rather than linking the documents itself, this system focuses on

Augmented Reality User Interfaces 18

linking the organisational structure of the physical and digital documents.
A similar approach was proposed by Jervis [31]. He introduced a framework
to trace physical documents in file folders situated in file cabinets. By the
integration with OneNote, users can digitally re-find a physical document
where then the LEDs of the contained file folder will highlight.

Thumbnail View Desktop Visualization

Sont By Current Document

Tite Title: Data Structures and Algoritnm Analysis in C
» Mihor Author: Mark Allen Weiss
File: books/data_structures.jpg
s FistActass: 1704105 04092004
© Last Access LastAccess: 17:57:59 041082004
o hggess Freq Access Freq: 4
stﬂl
efie & Autor Search openfie | assian ol
T \ \
Sort Document Information \

Keyword Search Open Electronic Version

Figure 2.7: The pile browser to digitally browse through a physical pile

In order to provide such a re-finding support in piles on a desk, Kim et
al. [37] developed the digital pile browser where users can digitally navigate
through physical piles, as illustrated in Figure 2.7. Thereby they can use
the digital representations of physical documents in their workflow. Limpid
Desk [29] uses a projection-based technique to help users re-find the desired
document in a physical pile on a desk. Searching through all of the documents
in a pile is time consuming, that is why Limpid Desk proposes an approach
where users are able to scroll through the pile without doing the physical act
of scrolling. The physical and digital world is combined to change the ap-
pearance of the physical documents so that they appear to look transparent.
By making the documents transparent, documents stacked lower in the pile
can be located without physically searching through the whole pile.

Re-finding books on a shelf has also been studied extensively in Aug-
mented Reality. In libraries, large amounts of books are stored using a
classification system. In 1905, two Belgian bibliographers invented one of
the first classification systems, called Universal Decimal Classification sys-

19 CHAPTER 2. Background

tem (UDC) [44]. In this system, each category is represented by a decimal
number and the order of the decimal numbers is fixed. For huge amount
of books, this system allows for easier storage and retrieval. However when
thinking about bookshelves in office settings, they mostly offer less space to
store books. So other techniques need to be used to coop with the storing and
re-finding of books in offices. The Smart Bookshelf [12] is such an approach,
it allows users to query for the presence of a book through an interface and
if found, the book gets highlighted. The tracking and re-finding of the books
is done by a camera and a projector.

Figure 2.8: Projecting the cover of a stored book onto the bookspines allowing
to search the desired book by scrolling

Interactive Bookshelf Surface [43| allows searching for a desired book on
a shelf without having to take every book out to look at the cover. When the
user touches the edge of the bookshelf, the cover image of the stored book is
projected onto the bookspines, as illustrated Figure 2.8. By sliding his finger
across the shelf the user can scroll through the books on the shelf looking for
his desired book. The physical bookshelf gets augmented with digital con-
tent in the form of book cover images. Other augmented reality applications
augmenting bookshelves use a mobile phone. Chen et al. [9], Hahn et al. [21]
and Malhotra et al. [41] use the camera of the phone to overlay real-time
information about the books on the shelves in order to re-find the desired
book more efficiently. Rather then showing the digital data directly on the
physical books, the data is shown to a mobile phone. Libagent [59] uses
the same technique with the mobile phone, but also provides more specific
context-sensitive information, which allows for better results when searching
for the right book. Libagent provides context-sensitive information about
missing books or books on loan.

Physical documents are found everywhere in offices. These documents
themselves can be digitally augmented, like sticky-notes, land maps and pa-
per itself. Quickies [47] are enriched sticky-notes that can be tracked and

Augmented Reality User Interfaces 20

managed. A graphical user interface allows to search and browse all of the
user’s notes without knowing the exact location of the sticky-notes. Paper-
based city or land maps are often hanging in offices. Some recent studies try
to combine physical paper with digital media in order to tackle the problem
of searching on maps. For example, Map Torchlight [57| which uses a mo-
bile phone’s camera together with a pico projector to highlight places on the
map. As illustrated in Figure 2.9, MapLens [48] also uses a mobile phone,
but overlays the camera’s view with real-time information and highlights the
search area. Paper itself can be augmented, MobARDoc [26] provides dig-
ital features for printed content through augmentation of a phone’s camera
view. People can use this system to search in printed content for keywords.
Another hybrid approach to combine physical and digital media is the intro-
duction of paper interfaces in workflows. By using the Anoto dot pattern,
various applications are designed to integrate physical media in the digital
space and the way around providing digital augmentations to physical media.
An example is PaperPoint [61] where users are able to annotate and control
PowerPoint slides by using their printouts in combination with the digital
pen.

Figure 2.9: MapLens provides real-time information through the mobile
phone’s camera view

So far, different approaches combine physical and digital media, but in
almost every office, there is also a laptop or desktop computer on which users
can store digital documents. The classification problem that was described
by Malone [42], also occurs when organising digital information. In the dig-
ital information space, people mimic the way they organise their physical
space. For storing digital files on a computer, file hierarchies are used, be-
cause they represent the way a user stores his files inside of a physical file
cabinet. Searching a digital file in a file hierarchy can be quite difficult. A
user has to remember where he stored the information, namely the search

21 CHAPTER 2. Background

path. If the file is not located in that place, users are often dependent on the
desktop search engines to find the particular file. A problem with this strat-
egy is that remembering the file’s name can be even harder than remembering
the location path. There is a need for systems to help us organise our digital
space in order to re-find information items more easily, without remembering
the exact name or location path. Personal Information Management research
introduced various augmented reality applications that try to solve this prob-
lem.

i
[—People
7LBoh
- ? Storage > — :\\\
Proj e *\\\\
—Projects S Nadgaton) | \\
LMyPrcject = J , l‘
B /1
Lyt |1
Strict Hierarchy MyPro]ect// |
MyProject /

Bob —

Figure 2.10: The concept of TagTree when storing the file "Bob’s ideas about
MyProject.txt"

One of the proposed applications to improve re-finding information with-
out remembering the exact location is called TagTree [69]. Storing and re-
trieving files and folders is done by using tagging and automatically main-
tained navigational hierarchies. An example, we want to store a file, named
Bob’s ideas about MyProject.txt. The file is stored into a central
folder, but the user adds tags to the file, like Bob and MyProject. Hence,
the single target file can be found in any one of four possible paths: Bob,
MyProject, Bob/MyProject or MyProject/Bob. This approach is sim-
ilar to how the human brain works, because it allows users to find the right
item by using associations. The concept of TagTree when storing the file can
be viewed in Figure 2.10. iMecho [11], an associative memory-based desktop
search system, also exploits these associations that the brain creates, but it
adds contexts to enhance the traditional desktop search. Another example
for speeding up the process of finding the right file when using a file system is
Icon Highlights [18]. This approach uses algorithms to predict which items a
user is going to access. Depending on the likelihood of being accessed inside
the current folder, icons will be highlighted to draw the user’s attention, as
illustrated in Figure 2.11. Besides highlighting the icon, they also provide
Hover Menus, which show shortcuts to commonly accessed items inside fold-
ers in order to reduce the number of steps in the location path. A third
technique is Search Directed Navigation, which guides users through the file

Augmented Reality User Interfaces 22

hierarchy based on a filename query.

Figure 2.11: Highlighting the icon that are most likely to be accessed

In 2009, the view of a folder inside of a file hierarchy was augmented with
additional meta-data. WikiFolders [68] is a system for annotating the digital
folders by combining the strengths of hierarchical file systems and wikis.
WikiFolders modifies the way folders are represented within the existing Mac
OS X file browser. The purpose of the system is to enable users to organise
and document their digital items as if the folder itself were a wiki page, as
shown in Figure 2.12.

Rel =,
Heading Text——— .. ¢ Release ey

prar . eading 1eXt— G ey .
\ Freeform Text
it

Inline HTML (colored DIV) .
. s e e, 23 s
\ Bulleted List Shared Resources
File in Directory — |
\\\\\ ———— Horizontal Rule——————
1.

Inline Image File 600 software Projct
= == [(o](z]
Raw WikiMarkup //larkup Editing Icon o P —
/>

Feature Tracking.xls]
Markup Removal Applet\ ~)

5 tems, 725 G st

Rendering Timestamp

Figure 2.12: The view WikiFolders presents in the standard file browser with
the corresponding markup on the left hand side

In the Personal Project Planner or Planz, the file system is augmented
with document-like overlays. Planz allows users to not only organise files, but
also other forms of information including email messages, web references and
informal notes. The file hierarchy is used as backbone for this application.
Headings and subheadings correspond to folders and subfolders of the file
system.

23 CHAPTER 2. Background

2.3 Context-Aware User Interfaces

Some user interfaces adapt their content or layout depending on the con-
text around them. Well-known examples of user interfaces that are aware of
the context are user interfaces for mobile devices such as smartphones and
tablets. Most user interfaces allow to change their orientation (i.e. from
landscape to portrait or vice versa), when the device is rotated or flipped.
The user interface takes the input from the context into account, in this case
the orientation. However, a lot of smartphone applications also use the geo-
location of a user as context input, to suggest restaurants or bars nearby or
information on buildings as an interactive tourist guide. Google maps offers
a Traffic widget for Android smartphones that allows users to set up different
locations. Whenever you are on the predefined locations, traffic information
is updated in real-time and shown on the screen of your smartphone. Never-
theless, when you are at the location, you do not always want the notifications
about the traffic coming up. Currently there is no way to turn off the no-
tification or to state that they should only be shown under certain conditions.

In the research field of Context-Awareness, applications like CybreMinder [13]
were proposed to allow context-aware support for reminders. The prototype
tool provides a solution for the lack of using context in order to specify when
a reminder should be presented to the user. Current reminder tools only al-
low to send reminders at a specified time. No other contextual situations are
taken into account. However, contexts such as location could be very helpful
as described in the Google Traffic widget. The reminders can be time-based,
location-based and complex reminders. The time-based reminders are the
normal reminders that are widely used. When the time matches the current
time, the reminder is shown to the user. Location-based reminders are send
when a user is in a certain location. For example, Alice wants to be reminded
to take her umbrella to work. The umbrella is kept next to the door of her
house. The reminder will be triggered when Alice is in a certain proximity
of the door. Complex reminders allow for the use of richer context, such as
reminding Bob to fill the gas tank of his car when the gas tank contains less
than 5 gallons of fuel. This approach uses the Context Toolkit [55] developed
by Dey et al. to develop the context-aware application. The toolkit allows to
separate context sensing or acquisition from context use and interprets the
context.

Where Is The Gap? 24

2.4 Where Is The Gap?

In the first part of this chapter, we have seen that the office environment is
becoming very dynamic. User interfaces are distributed across different de-
vices and spaces in order to easily interact with them. When distributing a
user interface over multiple devices, different approaches of adaptation were
used. Some approaches adapt the user interface based on other devices, oth-
ers only adapt allocated components of the user interface to other devices.
All of these approaches aim to support more natural ways of interaction. One
thing, we also noted is that the distribution of the user interface is managed
by the developer of the application, he is responsible of how and with what
end users will interact. One of the authoring tools introduced the concept of
end user control. Nonetheless, most user interfaces are not customisable by
end users.

In the second part, we have seen that distributed user interfaces are not
the only user interfaces that have found their way into the office environ-
ment and into our daily activities. Augmented reality user interfaces have
been extensively studied in the field of personal information management
and context-aware user interfaces were introduced to automatically adapt
based on the context. However, these user interfaces are again predefined
by the developer or UI designer. End users have no means to customise
the augmented user interfaces themselves, depending on their preferences.
In context-awareness, they studied user and system control. Studies showed
that there needs to be a balance in the control. Giving all the control to
the system in order to automatically adapt based on the current environ-
ments is not desired, because users are not aware of what and how things
happen. Current research only focuses on automatically adapting, we will
try to bridge the gap by providing a balance between end user and system
control for user interface adaptation.

2.5 Conclusion

To summarise, we have seen that different types of user interfaces exist. Dis-
tributed user interfaces focus on the office environment and the interactions
with multiple devices. The design of distributed user interfaces is organised
by UT designers or developers of the applications. In Augmented Reality, the
user interfaces were developed to help users in their daily activities, for exam-
ple when they need to re-find a document on their computer. Different kinds
of augmented reality user interfaces were developed, having specific proper-

25 CHAPTER 2. Background

ties and needs (i.e. the required devices, modalities used, etc.). Context-
aware user interfaces take the context into account in order to automatically
adapt the user interface accordingly. However, the set of user interfaces for
a specific application is mostly fixed or limited. The user interfaces are also
predefined by the developer of the applications.

Conclusion

26

System and User Control

As observed in the field of context-awareness and recommender systems,
user acceptance and satisfaction increases, when end users have some control
over the behaviour of context-aware systems. The user control is described
as the level of intervention that is required by a user in order to operate
the system [23|. Recent research in context-awareness focuses on the con-
textual information and automatically adapting the system depending on
this information. The input from the user gets limited, because the control
is transferred to the system, rather than the user. However van der Heij-
den [67] argues in his paper that the transfer of control to the system creates
a personal discomfort when using the system. A correct balance between
user and system control needs to be achieved without requiring extra mental
effort. In our framework, we will try to bring this balance of control to the
research field for adaptation of user interfaces. We will focus on augmented
user interfaces and try to achieve a balance in control by supporting two ap-
proaches, namely automatic adaptation and end user control. After a brief
introduction of automatic adaptation, we will discuss our two approaches in
detail.

Introduction to Automatic Adaptation 28

3.1 Introduction to Automatic Adaptation

Adaptation is the process where interactive systems adapt/change their be-
haviour for individual users depending on the information about the user
itself and its environment. This information about the user and its environ-
ment, is called the context. Context is associated with the field of Context-
awareness, which refers to the idea that computers can sense the environment
and react accordingly. The term was introduced by Schilit [56] in the field
of ubiquitous computing, where the main idea is that devices are appearing
everywhere and anywhere in our daily life. Context-aware systems adapt
according to the contextual elements in their environment. In smart-homes,
for example, the lights are automatically turned on when a person walks past
a detector during the night. The term context refers to much more than just
the location of a user. Schilit described three important aspects of context,
namely where you are, who you are with and what resources are nearby.
We will give some examples of the three aspects below and put them into a
category.

e Computing context: nearby resources such as printers, displays and
workstations.

e User context: location, user profile, people nearby, and even social
situation

e Physical context: lighting, noise levels and temperature

In 2000, Chen and Kotz [10] argued that time should be a fourth aspect
of context. Because time is often used as context for many applications and
can not easily be fitted into the three categories described above. In the
‘time context’ category, they consider time of day, week, month and year,
but also season of the year. When talking about context in this thesis, we
will include the aspects of both Schilit and Chen.

In smart homes, the input produced by sensors is used to adapt the envi-
ronment. Physical context, such as the temperature are taken into account
to trigger corresponding actions. For example, if the temperature is above
26AFC, the system triggers the action to close the blinds of the windows.
Other systems, take user context, such as location into account in order to
suggest events nearby, for example. Computing context can also be taken
as input. When using a smartphone to browse the internet, the content of
web pages is adapted depending on the fact that we are using a smartphone
to view it. In W3Touch [51], the content is adapted to touch-based mobile
phones.

29 CHAPTER 3. System and User Control

3.1.1 Rule-based Context-aware Frameworks

For decades, context-aware frameworks are being developed to ease the devel-
opment of applications in various domains, like recommendation systems and
smart homes. Some context-aware frameworks offer support for context mod-
elling and reasoning in order to adapt based on rules. Different approaches
have been studied, like the SOCAM [20] framework. This framework is based
on ontologies, where developers define an ontology for possible situations and
their descriptions in the OWL language. The rule engine reasons over the
ontology at runtime in order to detect abstracted situations from context
data. Nevertheless, dynamic modelling of context is challenging, because
changing the ontology at runtime can introduce conflicts and inconsistencies.
The JCAF [3] framework written in Java takes an object-oriented approach
based on a service-oriented architecture. Service components notify other
services or client applications about detected contextual situations. Higher
abstractions can be defined by composing context services. Via a distributed
peer-to-peer setting the new high level abstract situations can be added or
removed at runtime. JCAF, however, forwards the reasoning of the context
rules to the application layer. When users want to dynamically change the
rules’ behaviour, client applications need to be redeployed. Context rules are
also fragmented across multiple applications, leading to inconsistencies. The
JCOOLS [53] framework overcomes these problems by integrating JCAF with
a Drools rule engine!. Client applications can create new facts and events
in the framework by following a XML schema and these can then be used in
Drools rules.

Another context-aware framework is the Context Toolkit by Dey et al. [55],
which is the most widely used and known in the Human-Computer Interac-
tion (HCI) field. A component-based software design consisting of widgets
is used. These widgets are responsible for the mediation between the envi-
ronment and the client application. Client applications are able to listen to
widgets and they can reason over the context rules in their knowledge base in
order to determine the action to be taken. The context reasoning is pushed
to the application, like in JCAF. In an additional middleware Situations,
Dey and Newberger [14] provide control over context rules where users can
change the parameters of a rule. In most context-aware frameworks reasoning
is performed over a context model, the system can automatically be adapted
corresponding with the rules of the context-aware frameworks.

"http://www.drools.org

UI4A2: Ul Context Model for Automatic Adaptation 30

3.2 UI4A2: Ul Context Model for Automatic
Adaptation

For the purpose of this thesis, we describe a context model for the Aug-
mented Reality user interfaces that were discussed in the previous chapter.
Since there is no specific context model defined for user interfaces. After an
extensive study of the literature of user interfaces in the office of the future
environment, we came up with the UI4A2 context model, described in detail
below. This context model focuses on office settings. However this can be
easily extended to include different types of settings and user interfaces. By
studying different kinds of augmented user interfaces, different parameters
were distinguished.

3.2.1 Physical vs. Digital Information Space

When taking a look around us, we can see information everywhere, like pa-
pers, books, pictures, post-its, folders and so on. But also digital information
items (e.g. digital documents and emails) are included in the personal in-
formation space of a person. There is a clear distinction merging between
the physical and digital information space. Translating this divide to the
augmentations that were introduced in the previous chapter, we can see that
a lot of the applications augment the physical information space, like books,
paper documents, post-its, folders, etc. A rather small amount of the appli-
cations augments the digital information space, namely digital documents,
emails, etc. In Table 3.1, an overview is given of the applications and to
which information space they belong.

3.2.2 Type of Information Items

The type of information that is being augmented is the second question
that we asked ourselves. Information items can take many forms, as we de-
scribed before. Information items can be books, papers, post-its, pictures,
etc. But information items can also include electronic documents, digital
folders, emails, web pages and so on. Note that it is possible for an augmen-
tation application to extend more then one type of information items.

3.2.3 Location of the Augmentation

Depending on the object or information item that is getting augmented, we
can make a distinction based on the location of the augmentation with respect

31

CHAPTER 3. System and User

Control

Physical

Digital

WikiFolders [68]

X

The Smart Bookshelf [12]

Planz [34]

PeriTop [54]

ObjecTop |36]

Limpid Desk [30]

Magic Desk [6]

Docudesk [17]

Interactive Bookshelf Surface [43]

Viewfinder |9

Library service [21]

Libagent [59]

Library management system [41]

Smart Filing System [58|

SRRl Rl R Rl Rl R R Rl e

TagTree [69]

iMecho [11]

Icon Highlights [18]

MR R R

Quickies [47]

Map Torchlight [57]

MapLens [48]

MobARDoc [26]

R R R e

Table 3.1:

Applications operating on the physical or digital information space

UI4A2: Ul Context Model for Automatic Adaptation 32

to the object. The location of the augmentation can be overlaid, around or
virtual. When using DocuDesk [17], a physical document is placed on a desk,
the document gets recognised by a camera and the augmentation consisting
of links is shown around the document. In applications like Limpid Desk [29],
the augmentation is projected on top of the stacked documents or books that
are placed on a desk, so the augmentation is overlaid. A last possible location
for the augmentations is virtual, by which we mean that the location of the
augmentation is not directly on the document or around it, but rather on
another screen or device, such as the screen of a smartphone. This is the case
with Viewfinder |9], where the books on a shelf are augmented with real-time
information that is shown on a smartphone.

3.2.4 Techniques

The domain of Augmented Reality provides different techniques for augment-
ing the real world environment. The techniques can be divided into six types:

e Compositing: where virtual information is overlaid in a scene, video
or image, often to create the illusion that all the elements are part of
the same scene or image

e Head-up display: the display of instrument readings projected on
to the windscreen or visor, without requiring users to look away from
their usual viewpoints?

e Direct projection: wearable augmented reality interfaces

e Magic lens metaphor: real-time augmentation of mobile device’s
camera view

e Magic mirror metaphor: the concept is similar to magic lens, except
for the different orientation of the camera (e.g. pointed to the user)

e Magic eyeglass metaphor: See-through head mounted display where
virtual images are mixed with the real world (e.g. Google glasses)

The magic lens and composition techniques are mostly used by the appli-
cations from the previous chapter. For example, Viewfinder uses the view
of the mobile phone’s camera to overlay the spines of books on a shelf with
relevant information about the books in the view.

’http://www.oxforddictionaries.com/definition/english/
head-up-display?g=head-up+display

33 CHAPTER 3. System and User Control

3.2.5 Modalities

Users can interact with a system in different ways. A system provides an
interface which relies on input and output channels that enable users to in-
teract with it. Each single independent channel is called a modality [35].
Systems only based on one modality are called unimodal, whereas systems
that are based on multiple modalities are called multimodal. The most com-
mon modalities that a computer uses to communicate and interact with users
are vision, audition and tactition (vibrations and other movement). Com-
puters can be equipped with different types of input devices and sensory
input to allow interactions from users. Such modalities can be a keyboard,
pointing device, touchscreen, computer vision, speech recognition, motion
and orientation.

3.2.6 Devices and Technologies

A last categorisation that we will introduce is the different devices that are
being used by the applications. Each application has its own setup to be able
to coop with the tracking, organising and re-finding of information items.
Note that applications in the physical information space use very different
technologies and devices, then applications for the digital information space.
In digital information space, most of the applications augment the file hier-
archy structure on a desktop. Depending on which operating systems being
chosen, either OS X finder or Windows Explorer were used to inspire the
applications. The applications were either extending the file browser or cre-
ating a stand-alone application using the file structure as a guideline.

An augmentation in physical space can use one or more devices. We will sum
up the most frequently used devices by the applications that were introduced
in the previous chapter. Some of the devices include multiple features that
are used, as illustrated below.

Frequently used devices:
e projector

e camera: smartphone, tablet, stand-alone camera

touchscreen: smartphone, tablet, tabletop

mobile devices: smartphone, tablet

desktop

UI4A2: Ul Context Model for Automatic Adaptation 34

Figure 3.1: The setup of the PeriTop system: camera, projector and tabletop

The viewfinder application introduced by Chen [9] uses a mobile phone
to browse through the bookshelves searching for a book. The real-time view
of the camera is overlaid with relevant information about the books in the
camera frame. A mobile phone is clearly a mobile device. Applications using
multi-touch tables, like MagicDesk [6] and ObjecTop [36] are placed under
the touchscreen category. Note that some of the applications can be placed in
more than one of the categories. Asillustrated in Figure 3.1, PeriTop [54] uses
a pico projector and depth camera to augment the tabletop system. By doing
so, PeriTop combines three categories, namely the projector, touchscreen and
camera categories. Computer-based augmentations include the applications
augmenting the file hierarchy structure on a desktop, like TagTree [69]. But
also Quickies [47] which are augmented sticky-notes that can be viewed and
searched in a desktop application with a graphical user interface.

3.2.7 Overview

In this section we will provide an overview of the different augmentation
applications in correspondence with the categories that were defined in the
sections above. The overview of the different categories and how the aug-
mented user interfaces correspond to the categories, is given in Table 3.2.

$o110899ed urpuodse1iod o) Yjm suorjesijdde o) Jo MOIAIOA() :g'¢ O[qRT,

ouoydjrews uorst A J1oindwo Suory oIge TRTIOAO SOUTOYSS [9g| o0 0
ydi ISTA 19 O 1 OLoRIN pTe pUE SpIoM A 9¢| POTU VIO
suoydireurs UOTST A Iojnduo)) SUO OIBRIN [eniIa dewr puef M [87| suerTdely
ouoydireurs
‘o190l01d-001d UOTST A Iojnduo)) suryisodwon) Pre[12A0 dewr puef N [26] wS8yyoIoT, dey
uod [esIp
A arag gunysodmo) [enIrA sy1-3s0d N [L7] setspmy
(XSO 2ep) Teyndwod preoqAay Suryisodwo)) pre[iaAo SI9P[OJ A [81] syySysty uooy
(smopurm) 1eynduiod 901A0p Surjurod Sunysoduio)) PTe[I9A0 SO[J pu® SIIPIO] M [T1] oyoaAT
preoqAay
(smopurpy) Teyndurod ootaop Sunyurod Sunysoduio)) pre[IaAo SI9P[OJ M [69] @0113e],
SI9p[0} [RIads “ [8g| weysAg
od [enSip “oynduwos uod e8P ‘(QIAY sursodwo)) [BNIIA SO[Y pue SIaP[OJ M M CT
suoydyrews [1¥] weysAs
‘Toynduron uotsi A Jonduwo)) gursodwo)) PIR[IDAO syoo0q M JuoweSeTE A1eIqrT
suoydirews uotst A Joynduro)) SUO OI3RIN [eNYITA sjooq M [6G] 1uedeqry
ouoydjrews uotst A Joinduwo)) SUoT OI8RIN [enIIA sjy00q A [1g| @o1a108 Arerqry
suoydjrews uorst A rondwon) SUQTT JISRIN [BNYITA syooq M [6] 1opuymarp
“ &) eoeping
rIOWRD ‘10%109(01d uotst A Joinduwo)) sursodwo)) PIR[I2A0 syoo0q M JOUSTOOF SATIORION]
Ar[dsp ‘ersuwred uotsi A Joinduwo)) sursodwo)) punoue Siuomnoop N [21] s1sepmoo(q
. I LA M@UM@%H\MQ
RIQUIRD preoqAay
z0y00f01d ‘Tornduion ootaop Sunyrod Surysoduio)) punore SIUDWNDOP 2 [9] sse(218N
rIOWRD ‘10399[01d UOTST A Iojnduo)) suryisoduwon) PrR[I2A0 so[y Jo seoqid N log] sse@ prdury
T2AIDSYONOY Kerdstp ponoy suryisoduon) punore SIIOUINDOP A lo¢] doTelq(
. sjooq
U99IISYONOY “RIJUIRD
vlowed ‘Ae[dsip yonoy | Junisodwio)) | punoe/pre[IsAo | pur SJUSWNIOP A |7g| dopeg
‘10190l01d-001d : s : :
: ' [eotsAyd
019 ‘Jpd ‘sprews
19nduod 9o1A0p Surjutod Sunysoduio)) pre[IaA0 o1y [N A lye| zuerg
1] Jreussoog
ouoydjrews uotst A Joinduwo)) sursodwo)) PIR[I2A0 sy00q A JRwg oYL
(smopurpy) Teynduroo 901A0p Surjurod suryisodwo)) Pre[IoA0 SIOp[O} M [89] stoprogTIIM
S901AD SeI)I[epO anbruyos, HOTEOl STIOH poeds poeds
med HHIEPOIN HHOAL uonyejuowWI3NY | UOIjeWLIOJU] rensiq [eo1sAydq

End User Control 36

3.3 End User Control

Recent research only focuses on the automatic adaptation based on the con-
text. However, users might want to have some control over these adaptations.
In our framework we will provide an alternative option, where we will allow
for a transfer of control towards the user. Just think back to the example
of notifications when new email message arrive. Some users would however
like to configure/program that when they are in a meeting no notifications
are shown, because they would interrupt the meeting. With the end user
approach, we explore the possibility to bring this concept to augmented user
interface and eventually user interfaces in general. By allowing users to define
their own rules for augmented user interfaces, the user interface adaptation is
user-specific. We will take a look at end user programming and specifically at
end user modelling tools that allow for easy modelling without extra mental
efforts.

3.3.1 End User Programming

Many toolkits and infrastructures were developed to support the development
of ubiquitous computing, however only few have focused on allowing end users
to build applications. In order to empower the end users who have little
or no knowledge about programming, different types of applications were
developed. We will discuss rule-based tools and augmented reality editors,
because of the similarities with concepts in this thesis.

Rule-based tools

A first rule-based approach that was investigated is Jigsaw Editor [28]. Tt
allows novice end users to reconfigure home devices in a domestic environ-
ment by using a jigsaw puzzle-based approach. By combining puzzle pieces
on a tablet, users are able to "snap" sensors or devices together to meet their
personal needs without writing any code. A second approach is CAMP [65],
where they provide a magnetic poetry interface to enable end users to create
and customise applications for their homes. The application uses a natural
language approach of arranging fridge magnets-like words, because it offers
flexibility to the users. By arranging the words, for example, a user places
the words: take picture every 5 seconds on the board, the context is cap-
tured. iCAP [15] introduces a rules-based approach for rapid prototyping
and testing of applications without writing programming code. It supports
simple trigger-action programming where an action is triggered if a condi-
tion is satisfied. This if-then rules are easy to grasp by end users and do not

37 CHAPTER 3. System and User Control

require any programming background, making it very suitable for end user
programming.

f © then ©¢

Every day - pm Turn on lights -
600 kitchen

if & f @ then

Receive email New status update
from - hi@hi.com

Figure 3.2: if-then rule-based approach of IFTTT recipe

End user programming often takes the form of rules, more specifically
"if trigger, then action" rules. Such an approach is also called trigger-action
programming. A study in 2014 by Ur et al. [66] provides evidence that users
with little knowledge about programming can easily engage in trigger-action
programming. During the study users had to control their products and apps
by using IFTTT?. As illustrated in Figure 3.2, an IFTTT recipe allows an
event (e.g. time event, receiving an email, etc.) to trigger an action (e.g.
turn lights on, open facebook, etc.). Simple visual elements are used to eas-
ily grasp the recipes.

Lee et al. [38] created a mobile and tangible programming tool to allow
users to create context-aware applications by defining rules in smart environ-
ments. Their application, called GALLAG Strip, enables visual programming
by physical demonstration of envisioned interactions with the sensors and ob-
jects that will be encountered in the finished application. Working with the
smartphone allows for a natural interaction and most people already use a
smart phone in their daily life.

Augmented Reality Editors

Editing behaviour of objects is also studied in the domain of augmented re-
ality. Until recently, augmented reality editors and browsers such as Layar?
and Wikitude® only allow designers with the ability to generate or view ex-
tra information on top of magazines, newspapers or city landscapes. Anyone

Shttps://ifttt.com/wtf
https://www.layar.com/
Shttps://www.wikitude.com/

End User Control 38

with a standard smart phone is able to use these applications that typi-
cally enrich the physical world with information. However, researchers have
started to explore AR in combination with Ubiquitous Computing. Smarter
Objects [25] is a recent work that follows this direction. It explores new
interactions with everyday objects by direct mapping of virtual interfaces.
For example, when a user points a mobile device with a camera at a physical
object, then the object gets recognised by the application and it provides a
graphical user interface to program the behaviour of and interactions with
the object.

Figure 3.3: The Reality Editor that supports editing of behaviour and inter-
faces of "Smart Objects"

Further research was conducted by Heun et al. [24], where a frame-
work was introduced that allows editing the behaviour and interfaces of the
“Smarter Objects”. The Reality Editor uses augmented reality techniques
to map graphical elements on top of tangible interfaces found on physical
objects, such as lamps, as illustrated in Figure 3.3. The reality editor allows
for a fluid, natural way to interact with objects by using everyday objects in
order to edit the behaviour and interfaces.

39 CHAPTER 3. System and User Control

3.4 Requirements

In the sections above, we described the two approaches that our system will
provide. On the one hand, we want the automatic adaptation corresponding
with the user preferences and on the other hand, we want a natural, easily
understandable way to allow end users to adapt the augmented user interface
that should be shown, depending on the context. Each approach has its
own requirements that need to be fulfilled and the main requirements are
described below.

3.4.1 Automatic Adaptation

There are three main focuses for our category-based automatic adaptation,
namely intelligibility, user preferences and easy adaptation configuration. We
will discuss them in more detail.

Intelligibility Users need to be able to gain insights in how systems work. In
the context-awareness research field, the term intelligibility was introduced
by Belotti and Edwards [4] to state that users must be able to understand
why a system invokes certain actions or why not. Our framework needs to
provide some form of "intelligibility", the user needs to be able to understand
why a certain augmented user interface is shown or get feedback why it could
not be shown. Although, it is important that users are aware of why certain
things happen, too much intelligibility is not recommended.

User preferences The automatic adaptation is based on the preferences
of the user. These preferences are based on the categories that were intro-
duced in this chapter. Users need to be able to state that they want or do
not want certain properties of an augmented user interfaces under certain
conditions. So based on the preferences of the user (e.g. no speech modal-
ity), an automatic adaptation needs to be applied, when the current context
matches the conditions of the adaptation.

Adaptation configuration The user interface decides on which categories
will be taken into consideration for the automatic adaptation. Depending on
the categories of the user interface, it can be adapted if the conditions match
with the current context.

Requirements 40

3.4.2 User Customisable Adaptation

Our second approach will allow users to model their own rules in a simple
way without further knowledge, but expressing enough detail. The details of
these requirements are discussed below.

IF-THEN rules Allowing end users to program or model applications, re-
quires for a natural, easy to understand approach. Trigger-action program-
ming lets users customise their devices by using simple if-then rules. These
rules are easily graspable by end users who have little to no knowledge about
programming. Our framework will use simple if-then rules to allow end users
to configure their augmented user interfaces.

Granularity of context components Our framework will allow users to
model which contextual components need to be invoked for a certain aug-
mented user interface to be shown. Different granularities or types of context
components need to be provided in order to allow users to express themselves.
For example, a user want to state that certain people need to be available
in the office for a certain action to be performed. Our framework needs to
be able to let the user express this by allowing for persons and locations as
context components. Other components can be provided, but in the section
about the Context Modelling Toolkit, we will discuss these components in
detail.

User guidance Applications are becoming more advanced and complex.
The importance of usability in the development has risen in order to min-
imise the memory load on the user. Our framework will provide guidance to
the user in order to lower the cognitive memory load. By hiding or disabling
parts that are not applicable at the moment. By doing so, we will guide the
user "by the hand". We will not only by limit his possible options, but we
will also provide feedback.

DUI2 Framework

For end users to be able to configure their user interfaces and to allow adap-
tation of user interfaces, the DUI2 framework is introduced in this chapter.
The framework tries to provides a balance between user and system control.
The two approaches, namely automatic adaptation and user customisable
adaptation, discussed in the previous chapter are supported. The architec-
ture and the different modules of the DUI2 framework are presented in detail
below.

4.1 Architecture

The DUI2 framework is a framework that is implemented in Java and it con-
sists of four modules, respectively the Core, Util Component, the DUI2MUI
and the CMT Client module, as shown in Figure 4.1. The parts in blue are
the components that were implemented for the purpose of this thesis. The
other components are existing components that the DUI2 framework utilises.
The Core module of the DUI2 framework takes care of the communication
with the other modules and combines the functionality of the different mod-
ules to implement the DUI2 functionalities. The Util Component provides
some helper functions that can be used in the Core module. The DUI2MUI
module is responsible for the communication with the MUI component. The
module offers functions to the core module, which internally calls the REST

Architecture 42

CMT Client

REST Interface

Drools Rule
Engine

Db4o

. o}
| £
B

0oc2

Figure 4.1: The architecture of the DUI2 framework

end points of the MUI component. The GET, POST and PUT request to the
MUI framework are implemented with the Unirest library!, written in Java.
The MUI component was provided in function of this framework and it takes
care of the management of the user interfaces by mapping its components
to components of the OC2 PIM framework [64]. The PIM framework was
used, because it provides the functionality to link digital as well as physical
objects. The CMT Client module allows us to communicate with the CMT
server in order to construct rules, get the current context, get event or fact
types and so on. The communication with the CMT server is done via a
RESTful interface and the data exchange format that is used is JSON. The
CMT server consists of a db4o object-oriented database and a Drools 6 rule
engine and supports context reasoning.

"http://unirest.io/

43 CHAPTER 4. DUI2 Framework

4.2 MUI Framework

The MUI component is the component that is responsible for the manage-
ment of the user interfaces. By mapping its components internally to the
OC2 mmodel, we are able to use the OC2 model as a metamodel in order to
store and manage user interfaces. Our MUI component reuses existing OC2
components by keeping mappings that were created for this thesis. We will
first discuss the model of MUI that we use for the management of user in-
terfaces, then we will introduce the OC2 model and its underlying structure.
And afterwards, we will talk about the mapping itself, and how our MUI
component keeps track of its components.

4.2.1 MUI Model

Our MUI component will take care of the management of user interfaces. In
order to do so, a model was created using the OM datamodel [52]. The OM
data model distinguishes between collections of objects and associations. A
collection is represented as a white rectangle, whereas the type of objects in-
cluded in the collection is represented by the shaded rectangle around it. A
collection may be subtyped by other collections with a partition constraint
or a disjoint constraint. The associations are shown as oval shapes and
they connect elements of collections. For each collection that participates
in an association cardinality constraints can be set. The model consists
of Objects, User Interfaces, AugmentUI, UserInterfacelLinks,
Conditions and UIProperties. These are linked via associations such
as HasUITarget, HasUIProperties and HasConditions.

For our MUI component, we want to keep track of User Interfaces,
these user interfaces can be added to the MUI framework and are stored
in a Ul collection. A collection of Augment UT keeps track of the User
Interfaces that are also augmented user interfaces. In our use case, all of
the User Interfaces will be added in the Augment UI collection. An instance
of a User Interface can have UIProperties, these UlProperties are the
configuration details of a User Interface, which can be an Augment Ul. The
UlIProperties can contain information, such as the name of the User Interface,
the type of augmentation, location of the augmentation, information items
that are being augmented by the Ul the devices that are required in order to
show /execute the User Interface and the modalities that are being used. The
UlIProperties correspond to the UI4A2 context model that was described in
Chapter 3.2.

MUI Framework 44

Userinterface i
Properties

userinterface
Augment
ul

link
Userlnterface
Links

Conditions I

(1.7

Objects

Figure 4.2: The MUI model for user interface management

Multiple UIProperties can be added to an instance of User Interface.
Now we can store User Interfaces, Augment Uls and UlProperties that be-
long to a certain User Interface. In order for our system to be useful, we
need to be able to connect an Object to a User Interface. For example, the
paper "DocuDesk: An interactive surface for creating and rehydrating many-
to-many linkages among paper and digital documents” is always augmented
with the "AugDocu" augmented user interface. UserInterfacelLinks are
used to link Objects to user interfaces, the target of the Object is an instance
of User Interface. That is why we need the HasUITarget association, this as-
sociation can only be used, if the Condition associated is set on true. Because
an Object can only have one target User Interface at a time. Various Con-
ditions can be set on when a User Interface is shown on an Object, then the
HasUlITarget is used if all the Conditions are set to true. The Conditions can
be, for example, the required devices that are needed in order to show the
User Interface on an Object. If a device is not available, this condition is set
to false and the association HasUITarget will not be active. Now we can link
Objects with a User Interface, if the Conditions of the User Interface are set

45 CHAPTER 4. DUI2 Framework

to true. Then the target User Interface can be shown on the corresponding
Object. Remember the "AugDocu" augmented user interface used for the
paper "DocuDesk”, in order for this association to be used, the Conditions
need to be true. We have just one Condition stating that a camera needs
to be available. If the current context matches this condition, so a camera
is available, then the "AugDocu" augmented user interface is shown on the
Object, which is a paper in this case. The model of our MUI module can be
seen in Figure 4.2.

4.2.2 Object-Concept-Context (OC2) Model

Our MUI component uses the OC2 model defined by Trullemans and Signer
[63] as a metamodel. The OC2 model is an extension of the Resource-
Selector-Link (RSL) metamodel. The RSL meta model was designed by
Signer and Norrie [60] for dealing with data, structure and navigation in
hypermedia systems. For example, in the context of research on interactive
paper, PaperPoint [61] was developed. PaperPoint allows people that are
giving a PowerPoint presentation to navigate, annotate and draw on the dig-
ital slides. By using a digital pen on a printed version of the PowerPoint
slides, the according actions are shown in real-time on the digital slides.

The OC2 model describes a conceptual framework that consists of three
levels which correspond with the human memory. The three levels include
the object, concept and contextual levels, where each level has its own specific
elements. At the object level are objects, which represent any information
item that can be observed in digital or physical space. The OC2 framework
makes a distinction between whether an information item is a physical object
(i.e. a book) or digital object (i.e. an email). This extra information allows
the user to re-find the needed information item faster. At the concept level,
resources can be concepts. A concept is a general idea formed inside the
brain, in an attempt to abstract the real world. Thus, concepts are words or
sentences representing the user’s mental model of an observation of objects.
In the digital space, the labels that are given to folders in the digital file
system can be seen as concepts. These labels represents a certain abstraction
of the elements that are contained in the folder. The labels of the folders can
be different for different users, depending on their mental model of the label.
At last, the contextual level consists of contexts elements, which describe a
composition of contextual factors. For example, a context ’Meeting’ consists
of contextual factors, such as the date, place, attendees, agenda topics and
SO on.

MUI Framework 46

:w.ur@n:m
T i

K [TrH]
1] Extent MNavigational Structural
Links Links Links

HasExt ‘
Target

HasAssoc
Source

Contexts

Objects i

partition

Physical i
Objects

Figure 4.3: The OC2 metamodel extension of the RSL. metamodel

The RSL model consists of different types of links, navigational, struc-
tural links, etc. In the OC2 model, on the concept layer, two new types
of links are introduced, namely associative links and extent links. Concepts
can have associative links to other concepts, but can also have extent links
to objects of the underlying object layer. The human brain creates seman-
tic associations, these associations are represented in the OC2 framework by
bidirectional associative links. An extent link represents a categorical rela-
tionship between a concept and objects, these objects might be participating
in one or more extent links.

The conceptual OC2 framework has been translated to the OC2 meta-
model, which can be seen in Figure 4.3. The core link component of the RSL
model was extended by the OC2 metamodel. The RSL. components of the
model are indicated with a grey color, whereas the extensions of the OC2
metamodel are highlighted in blue. By using the RSL metamodel as underly-
ing structure, information items can be linked together, however context was
not included. The OC2 metamodel added a context layer to the model. In
Figure 4.4, context was added, giving the possibility to link two information
items in a given context. For example, John writes a paper about Personal
Information Management. He has a paper entitled "DocuDesk: An Inter-
active Surface for Creating and Rehydrating Many-to-Many Linkages among
Paper and Digital Documents” with a weight of 0,9 (the weight is a number
between zero and one) in the context of writing the paper. With this weight,
the system lets the user know that this particular paper is relevant for writing
a paper on Personal Information Management.

47 CHAPTER 4. DUI2 Framework

HasContex .
Weight

02

Contexts

R ﬁ .
0.7 | Weights | | 07

Figure 4.4: The context extension of the OC2 framework

If the user has another paper that describes Augmented Reality, the
weight can be set to 0.3, which indicates that this paper is less relevant
in the context of Personal Information Management.

4.2.3 Mappings

All of the components that are shown in our MUI model need to be mapped to
OC2 components in order to use it as a metamodel. Below we will describe
the mapping we introduce to do the mapping between the MUI and OC2
components. Internally, the MUI components are implemented by making
calls to the corresponding OC2 components.In the Table 4.1, the different
MUI components and corresponding OC2 component are represented.

MUI Component OC2 Component
Object Object

User Interfaces Resources
Augment Ul Resources
Conditions Resources
UserInterfaceLinks UtilityLinks
HasUITarget UtilityLinks
HasCondition UtilityLinks
HasUIProperties UtilityLinks
UserInterface Properties | Properties

Table 4.1: Mapping of the MUI components onto the OC2 components

MUI Framework 48

Object The Object component of MUT is exactly mapped onto the Object
component of OC2. This means that Objects in MUI and OC2 are the same
objects. These objects include physical objects, digital objects or concepts,
as seen in the MUI model. An Object is in the OC2 framework equivalent
with a Resource. By doing the following call, an Object is retrieved from the
OC2 framework:

Object object = IServerOC2.get().getObject(Long.parseLong(anObj.getId()));

User Interfaces A user interface in our MUI component is created by
calling the getNewUI function. This function calls the OC2 framework where
a Resource is created. In our MUI component, we keep track of a collection
of Resources with a special "UI" tag in order to make it possible to retrieve
the collection of all user interfaces. In Listing 4.1, the code is shown to create
a new User Interface in our MUI framework.

Listing 4.1: The function that creates a new user interface

public Resource getNewUI(String name){
Resource ui =null;
try {
ui = IServerOC2.get().createResource(name, admin);

Collection uicol = IServerOC2.get().getCollection (Schema.UT);
uicol.add(ui);
I[ServerOC2.get () .updateCollection (uicol);
} catch (CardinalityConstraintException ex) {
Logger.getLogger (ReViTaCore. class .getName()).log(Level .SEVERE, null ,
ex);
}

return ui;

Augment UI The Augment UI collection allows us to stored all the
user interfaces that belong to the category of augmented user interfaces. In
essence, an Augment Ul is a specific type of User Interface. This means that
an Augment Ul also corresponds to a Resource in OC2. For creating a new
Augment UI, we first have to create a new user interface that is added to the
collection with the "UT" tag. When stating that the user interface is also an
augmented user interface, we will add the Resource to a new collection with
the "AUGMENTEDUI" tag. This will allow us afterwards to retrieve all the
augmented user interfaces, in the same way as the user interfaces except for
a different tag.

49 CHAPTER 4. DUI2 Framework

Conditions A Condition or collection of conditions can be added to an
augmented user interface and Object. A Condition is defined over an Object
that has a certain User Interface. Conditions are internally mapped in the
same way as the User Interfaces. In OC2, they are stored as Resources. A
collection of Resources is kept in the MUI framework with the tag "CONDI-
TIONS", where all the conditions known to the system are stored. With the
"intersects’ principle, they can be retrieved.

UserInterfaceLinks UserlnterFaceLinks are mapped to UtilityLinks in
OC2. When we want to retrieve the user interface that is linked to an Object,
the MUI component makes a call to OC2 and first gets the Object ID back
from OC2. Afterwards the links for which the Object ID is the source are
retrieved. By intersecting this collection of links with the links stored in our
"UILINKS" collection, we have the User Interface by getting the targets of
the Links. In Listing 4.2, the implementation code is given to retrieve the
user interfaces.

Listing 4.2: The function that will retrieve all the user interfaces that are
stored in the OC2 framework

public HashSet<Resource> getUis(Object theObject){

HashSet<Resource> result — new HashSet<Resource >();
Object object = IServerOC2.get ().getObject(Long.parseLong(theObject.
getld ()));
if (object !=null){
HashSet<Link> linksObject = object.getLinksISource();
HashSet intersects = IServerOC2.get ().getCollection (Schema.UILINKS).
intersect (linksObject);
for (java.lang.Object li : intersects){
if(li instanceof UtilityLink){
UtilityLink link = (UtilityLink) 1i;
List <Entity> targets = link.getTargets();
for (Entity ent : targets)({
if(ent instanceof Resource){
Resource res = (Resource) ent;
result .add(res);

}
}

return result;

HasUlTarget The HasUlITarget association links an Object, User In-
terface and Condition. Essentially, these are three Resources that can be
retrieved from the OC2 database. In order to create a link between these
three, the UserInterfaceliinks of the Object are retrieved and if the target
of these links matches the User Interface, a UtilityLink is created and also
added to the "CONDITIONLINKS" collection. A special property with a

MUI Framework 50

state, active or nonActive, is created and added to the UtilityLink.

HasCondition In our MUI component, we already stated that we keep
track of a "CONDITIONS" collection, however we also keep track of the
links between a Condition, Object and User Interface. We keep these links
in a collection called "CONDITIONLINKS". In OC2, these links are just
UtilityLinks.

HasUIProperties When an Augment UI is added to an Object, OC2
will get both Resources from the database. A UtilityLink between these two
Resources is created in OC2 and also added to a collection with the name
"AUGMENTEDUILINKS" in our MUI component.

UserlInterface Properties Our Userlnterface Properties are mapped to
the Properties collection of the OC2 model. Whenever a Property is added to
a User Interface, the Property is created with the key "configProp", to state
that these are the configuration properties of the User Interface. Afterwards
the Property is added to the Resource collection of OC2 and is also added
to the "UIPROPERTIES" collection of our MUI framework. The Listing
4.3 shows how the User Interface Properties corresponding to a certain User
Interface, which is essentially a Resource, are retrieved via the intersection of
all the properties of OC2 and the UIPROPERTIES collection from the MUI
framework.

Listing 4.3: The function for getting all the user interface properties corre-
sponding to a user interface

public HashSet<Parameter> getUIProperties(Resource ui){
Resource uiDb = IServerOC2.get ().getResource (Long.parseLong(ui.getld
0));
HashSet<Parameter> result = new HashSet<Parameter>();
if (uiDb!=null){
List <Parameter> params = uiDb.getProperties();
Collection uiProps = IServerOC2.get().getCollection (Schema.
UIPROPERTIES) ;
if (uiProps!=null){
List intersects = uiProps.intersect (params);
for (java.lang.Object obj : intersects){
if (obj instanceof Parameter){
result .add ((Parameter) obj);
}

}
}
}

return result ;

51 CHAPTER 4. DUI2 Framework

4.3 Context Modelling Toolkit

The Context Modelling Toolkit (CMT) provides a multi-layered context mod-
elling approach that distinguishes between different types of users, namely
end users, expert users and programmers. Depending on the expertise of the
user, the CMT application will allow the user to be in control of different
parts of the application. The CMT application is a context-aware system
that provides a user-specific balance between control and automation, it is
implemented as a rule-based client-server architecture. For the purpose of
this thesis, we will only use the server side, which is responsible for the con-
text evaluation and the CMT client which provides functionality to create
client applications for context modelling.

4.3.1 CMT Architecture

The architecture of CMT is a rule-based client-server architecture, where the
client side takes care of the context modelling and the actual reasoning over
the context is done at the server side. The framework is implemented in
Java and uses a db4o database and for the reasoning, Drools 6 is used as rule
engine. Both Java Remote-Method Invocation (RMI) and REST commu-
nication protocols are supported, but they require different data-exchange
formats. The CMT-server includes the REST and RMI components that
translate their input to the corresponding CMT data model entities and gen-
erate the required output format when data is sent to the client. We will
use the REST communication protocol to interact with the CMT-server, the
data-exchange is done via JSON. CMT provides a CMT Client to facilitate
the development of client applications. The CMT Client supports common
client functionalities and has four major components that will be explained
below. The server side does not provide any context modelling functionality,
but only serves as a platform for context reasoning.

4.3.2 Idea of Templates

In order to allow users to construct expressive rules for modelling the context,
CMT foresees the possibility to reuse situations, when defining new situa-
tions and context rules. New situations are created by constructing rules of
the form: "if situations then new situation”. However, regarding the rule
management, this approach introduces a conflict. The actions of the new
situation as well as these of the included situations will be triggered, due
to the combination of situation and context rules. Therefore, a mechanism
needs to be foreseen that manages the invocation of undesired actions from

Context Modelling Toolkit 52

the included situations.

LHS-IF Input Blocks RHS-THEN

New Situation
€©Person’s name
€Room number

€ Room
.
Figure 4.5: personlsInLocation template example

By introducing the concept of templates, CMT allows for easy declara-
tion of situation and context rules. A template can be seen as a skeleton
for defining rules. A rule consists of a left-hand side (LHS) and a right-
hand side (RHS), respectively the IF-part and the THEN-part. The LHS
can include multiple situations or logical functions which return a boolean.
Situations and functions can take parameters of a certain primitive or class
type. A template defines a skeleton including the signature of the required
situations or functions, but leaves the actual parameters open to fill in later
in time. Via input blocks, a template defines what class types are necessary
to pass to the template’s LHS. These input blocks are then linked to the
corresponding parameters. The RHS can include actions or the new situ-
ation’s name and its defined parameters. These parameters also originate
from parameters of input blocks. For example, the personInLocation
template, shown in Figure 4.5, has a LHS function which takes as param-
eters a Person and Room. These objects are entered in the input blocks.
The RHS defines a new situation and has as parameters the person’s name
and the room number. By adding the object instances Person:Bob and
Room:10G731 in the input blocks, a new situation can be created. For the
purpose of this thesis, we will use a simplified version of the template. A
new rule can be defined by filling the LHS with initialised input blocks and
the RHS will contain the corresponding action that needs to be executed. In
order for the action to be executed, all of the input blocks need to return
true.

53 CHAPTER 4. DUI2 Framework

4.3.3 Client Side

The client side of the Context Modelling Toolkit consists of a CMT Client
module that provides functionality towards the users in order to model con-
text. The CMT Client module contain four components. The Listeners
allow a client application to listen for notifications from the server, for ex-
ample, when a new rule is inserted. The Transformer provides function-
ality to convert plain Java object to CMT data model entities. The Rule
Compiler compiles a DRL rule from filled in template instances. The Com
Unit is responsible for the communication with the CMT server and can
be used with both Java RMI and a RESTfull interface. The functionality
that the CMT Client offers is registering class types of facts, events and ac-
tions, adding facts, situations, functions and templates, compiling a rule and
listening for notifications via a publish-subscribe pattern.

4.3.4 Server Side

The server side of the CMT framework is responsible for registering different
class types and making them available towards the clients. Once the class
types are registered, instances of them can be added to the server, where
they are sent to the db4o database and the Drools rule engine. Functions and
templates can also be added to the server. Besides adding context elements,
the server is responsible for adding rules to the Drools knowledge base via
Drools Unit. However, programmers might add rules via Drools itself or
via any other provided Drools user interface, such as GUVNOR. This allows
programmer to add rules without the use of templates. The CMT server
also foresees various listeners for client applications. Client can, for example,
listen to notifications about added rules. The Observer component provides
the necessary mechanism to notify the clients. For the communication via the
REST interface, a publish-subscribe mechanism is implemented where clients
are able to subscribe to various event types via a websocket connection.

4.4 DUI2

In our DUI2 component, we provide a RESTful interface to allow client
applications to use the implemented functionality. The component consist of
four subparts, namely the Core, a Util Comp, DUI2MUI and a CMT Client
module, as explained before. The DUI2 framework supports two approaches
of adaptation, namely automatic adaptation and user adaptation.

DUI2

54

4.4.1 Functionality

Our DUI2 component provides functionality towards client applications via
a RESTful interface. The interface includes different end points, which are

listed in the Table 4.2 below.

End points

Explanation

.../DUI2/aug/activities

the input blocks for creating
rules are given

.../DUI2/aug/activities/{name}

get input block with a certain
name

.../DUI2/aug/send Activities

the TF-part of a rule can be send
to DUI2, in order to filter the
actions

.../DUI2/aug/rule

add a rule (i.e. IF activities
THEN do action)

.../DUI2/aug/config

add an Augmented User
Interface to the application

Table 4.2: List of end points supported by our DUI2 framework

4.4.2 Automatic Adaptation

The first approach that the DUI2 framework supports is the automatic adap-
tation of a user interface depending on the current context. The defined
UI4A2 context model that was introduced in the previous chapter is used
to automatically adapt the user interface. The different categories are listed
in Table 4.3. Depending on the current context, for example, the room, de-
vices and people present, a certain augmented user interface is automatically
shown when the properties of the user interface match the properties of the
current environment. At the moment, the variables of user interface proper-
ties for an augmented user interface are stored as Strings, which can be
extended in future work. So strings are compared in order to match a user
interface in the automatic adaptations rules.

55 CHAPTER 4. DUI2 Framework

Categories
Physical or digital space

Information items
Augmentation location
Technique

Modalities

Devices

Table 4.3: Different categories from the UT4A2 context model

4.4.3 User Adaptation

Our DUI2 framework also allows for user controlled adaptation by creating
templates. The end point .../DUI2/aug/rule of DUI2 allows applica-
tions to send filled in template instances to our framework via the RESTful
interface, these are then sent to the CMT Client to be compiled to a DRL
rule. The Rule Compiler of the CMT Client is responsible for the transfor-
mation of a filled in template instance to a compiled DRL rule, the function
compileDrlRuleActivity which takes a template as input parameter is re-
sponsible for the compilation. After compiling the DRL rule, it is added
to the CMT server, where it is added to the knowledge base of the Drools
rule engine. Rules are created by using the idea of templates. A template
consists of a LHS (i.e. the IF-part) and a RHS (i.e. the THEN-part). The
LHS can contain one or more input blocks, which can be chosen from the
input blocks that are available through the .../DUI2/aug/activities
endpoint. This endpoint gives us back a HashSet with the avaible FactType
elements to be chosen from. The RHS can only contain one action. In our
case the action will always be show {UI}. Note that the user interface to be
shown needs to be selected. The template for the augmented user interface
will look the following: "if situations then show UI".

In our framework, we allow the LHS of the template to influence the RHS.
Just showing all available user interfaces is very tedious. In our framework,
we will guide the user towards the most compatible /preferred user interface.
In Listing 4.4, the implementation code of the recursive function is shown
that will filter the user interfaces depending on the input blocks inserted in

DUI2 56

the LHS of the template.

Listing 4.4: Recursive filter function for the compatible user interfaces

private HashSet<String> findUIMatches(HashSet<String> props, HashSet<String>
uis) {
String prop = props.iterator().next();
props .remove (prop);
HashSet<String> uisMatches = new HashSet ()
if (Yuis.isEmpty ()){
for (String ui : uis){
boolean res = Communication.getAUIHasProperty(ui, "configProp",
prop);
if(res){
uisMatches.add(ui);
}

}
Yelse{
uisMatches.addAll(Communication .getAUIsWithPropertyWithNameAndValue (

"configProp", prop));

if (!props.isEmpty ()){
findUIMatches (props, uisMatches);

}else{

return uiMatches;
}

return null;

The findUIMatches takes as input the properties from the selected LHS
input blocks and user interfaces, which will be initially null. The first time
the function gets called, the augmented user interfaces that match the first
property to be checked will be stored in the variable uiMatches. If the prop-
erties to be checked only contain one property, the list from uiMatches is
returned. If multiple properties need to be checked the function is recur-
sively called with the rest of the properties to be checked and the uiMatches
from the first property. In the set of uiMatches the augmented user interfaces
with both properties will be selected. The properties of an augmented user
interface can be found by searching for the "configProp" tag. When an aug-
mented user interface is registered, the configuration properties are inserted
as strings into the "configProp" tag. This happens until the properties are
empty. The findUIMatches function allows us to filter the user interface de-
pending on the input blocks of the LHS. In this way, we can provide the users
with guidance towards a compatible user interface, as our requirement "user
guidance" from the previous chapter implied.

Configuration and End User Tool

The DUI2 framework provides the functionality to support both automatic
and end user adaptation. In order for developers and end users to inter-
act with our framework, we developed two applications, a configuration and
modelling tool. The configuration tool takes care of the registration of the
augmented user interfaces which is done by the developers and the modelling
tool provides end users with an easy way to configure their augmented user
interfaces.

5.1 Use Case

In our use case for the DUI2 framework, we focus on some scenarios that can
happen in real life settings. In our first scenario, Sandra is working in her
office on her CHI paper and she has augmented her paper by putting some
post-its besides it to make some notes. The post-its are considered a physical
augmentation of the reality. Later that day, she attends the CISA meeting
in the living together with her colleagues. During the meeting, the layout
and content of her CHI paper is discussed. Sandra has the paper with her
in the CISA meeting, however she forgot to bring the notes on her post-its.
The meeting goes on and they discuss the layout and contents of the paper.
When Sandra remembers that she wrote something on her post-its that she
needs to discuss about. An augmented user interface showing the digital

Configuration Tool 58

version of these post-its would be useful to recall what she wrote.

In our second scenario, the automatic adaptation is illustrated. Re-
searcher Tom is reading papers in his office. When reading papers, he likes
to use an augmented user interface that shows him the relevant and linked
papers. However, during his reading of the paper, he takes a book. The
book gets detected and a corresponding augmented user interface for books
is being shown, taking into account the properties of the current location and
the book.

5.2 Configuration Tool

For our use case, we need four augmented user interfaces, which are listed
below with their properties:

e AugPost-its

— Type of augmentation: physical

— Location of augmentation: around

Information items: paper

Devices: digital pen

Modalities: visual

e Digi-Notes

— Type of augmentation: digital
— Location of augmentation: around
— Information items: paper

— Deuvices: camera, projector

Modalities: visual
e AugPaper

— Type of augmentation: digital

— Location of augmentation: overlaid

Information items: paper

Devices: camera, projector

Modalities: touch, visual

59 CHAPTER 5. Configuration and End User Tool

e AugBooks

— Type of augmentation: digital

— Location of augmentation: around

Information items: books
— Dewvices: camera, projector

— Modalities: visual

The first application that we provide is the configuration tool, which will
allow developers to register a new augmented user interface to the DUI2
framework. By sending, the configuration details to the DUI2 framework, an
augmented user interface is added to the CMT server as an action and the
user interface is also added to the MUI framework as a new user interface.
The calls to the different components are handled by our DUI2 framework.
The interaction between our configuration tool which is implemented as an
HTML form, happens by calling the REST interface via the spring RestTem-
plate library'. The configuration tool can send the configuration details for
registering the augmented user interfaces via the DUI2/aug/config end-
point that DUI2 provides. The DUI2 component forwards the request first
to CMT in order to add the user interface as a fact and secondly to MUI
in order to add the new user interface to the management component. The
sequence diagram for the registration of a new augmented user interface is
illustrated in Figure 5.1.

The configuration tool sends a request via the "config" endpoint to the
DUI2 framework. The DUI2 framework will use the sent data of the aug-
mented user interface in order to add the augmented user interface as a fact
to the CM'T server, this is done via the addFact. In the CMT server, the
fact is compiled at runtime and added to the database and to the knowledge
base of the Drools rule engine. Afterwards the augmented user interface is
sent to the MUI framework by using the addUI request. The MUI framework
will create a new user interface stating that it is an augmented user interface
by keeping it in the "AUI" collection and doing the necessary calls to the
OC2 framework. Now the user interface is added. However the properties
of the user interface are not yet added to the UL. A new property is created
with the "configProp" tag in order to state that these are the configuration
properties of the augmented user interface, because many other properties
can be linked to the user interface. By calling the addUIProperty endpoint

'http://docs.spring.io/spring/docs/current/javadoc-api/org/
springframework/web/client/RestTemplate.html

Configuration Tool 60

with the user interface id and the property id, the properties are added to
the augmented user interface.

:Configuration Tool :DUI2 :CMT :MUI
] DUI2/aug/config
g addFact
~added fact
addUlI
_ addedui 1
,,,,, created | |

Figure 5.1: Sequence diagram for registering an augmented user interface

The configuration tool is a website with an HTML form where develop-
ers can register new augmented user interfaces. Remembering our required
augmented user interfaces from the use case. we will describe the process to
register an augmented user interface by taking one of them as example. John
has developed a new augmented user interface that augments paper by pro-
jecting digital post-its around it with notes of the user. When entering the
application via the dedicated web page, John is presented with a form where
he first has to enter the name of the augmented user interface. Then he is
able to give the configuration details by selecting the appropriate values in
the drop-down menus and checkboxes. John selects that the augmentation
is digital, because the post-its are digital representations. The location of
the augmented user interface can be around, overlaid or virtual, in this case
John selects "around". In the devices, he must check the checkboxes of the
devices that are required in order to show the augmented user interface. The
same is repeated for the modalities.

After entering all the configuration details, John presses the "Submit” button
and the augmented user interface is sent to the DUI2 framework in order to
be stored. The user interface of the configuration tool is shown in Figure 5.2.

61 CHAPTER 5. Configuration and End User Tool

Augmentation Configuration Tool

Configure your new augmentation below

Name:

Type of augmentation: | Physical v
Location of augmentation: | Around ¥

Information items:

Papers
Books
Folders
Files

Devices:

Projector

Camera

Smartphone
Touchscreen
Pico-projector
Computer(Windows)
Computer(Mac OSX)
Display

Digital pen

Modalities:

Speech
Touch

Visual

Figure 5.2: User interface of the configuration tool

5.3 Modelling Tool

Besides the configuration tool, we also introduce a second application, namely
the modelling tool, which is an Android application. This tool will allow end
users to easily model rules for the adaptation of augmented user interfaces
depending on contextual elements. We implemented an Android application
where users can model context, making it possible to model and create new
rules for the adaptation. In our requirements, we stated that there needs
to be granularity of context components. As illustrated in Figure 5.3, we
provide the granularity by allowing a user to choose between different types
of context conditions, like persons, locations, objects, etc. Coming back to
our use case, Sandra is working on her paper. When she goes to the CISA
meeting, she only takes the paper with her without the post-its. However,
with our modelling tool Sandra is able to construct a new rule that states

Modelling Tool 62

that when Sandra is in a meeting and the paper is present, the digital post-its
user interface needs to be shown.

5.3.1 Modelling a Rule

Actions

Rule Template

Figure 5.3: User interface of the Android application

Sandra opens the Android application and she is presented with the screen
shown in Figure 5.3. The layout of the screen is kept simple, since end users
with little or no programming skills need to be able to model the rules using
this application. In the left-hand side of the user interface, a list of context
elements is shown that can be selected and dragged. Sandra is able to choose
between different types of context elements. In the middle part of the Ul the
"workspace" of the user is shown. Since, we are using the IF-THEN template
approach, we provided an appropriate user interface. Context elements can
be dragged to the grey area on the left of the skeleton for our rule. If the
wrong elements are selected, the user is able to clear the screen by pushing the
‘cancel’ button or can simply remove the wrong context elements by pressing
the "X’ button. Depending on the context elements that are shown, the list
of actions will be filled up with compatible actions. In the use case, Sandra
drags the elements (i.e. Sandra, Beat, Reinout, Achmed, living, meeting
and CHI paper) to the left grey dropzone. Whenever, she added one of
the elements, the list of actions got an update showing the compatible user

63 CHAPTER 5. Configuration and End User Tool

interfaces corresponding with the context elements. By doing so, we guide
the user to a compatible user interface, as stated in the requirements. After
all the context elements are inserted Sandra can select the user interface, she
wants to be shown. In order to save the rule, we give it a name by entering
it in the corresponding name field. Afterwards we can push the ’save’ button
in order to save the newly created rule.

5.3.2 Android Implementation Details

e Drag and drop: On the left and right side of the applications, two
listviews are shown. By dragging and dropping, a new rule is created.
One major difficulty encountered was the drag and drop functionality.
In android, when a user drags an element the drag-event is detected
by the listeners. In this case their are two listeners, since we are able
to drag items to the IF-part and to THEN-part. However, we only
want elements from the left side in the left dropzone and from the
right-side in the right dropzone. In order to distinguish between the
events, the information in the drag-event needed to be explored. The
only useful information inside of the drag-event is the classname of the
starting position in which the item was selected. Since both lists are
listviews, the only way to work around the issue was to change one of
the listviews to a gridview in order to distinguish. In the Listing below,
the corresponding code for the drag and drop for the left-hand side is
presented. Whenever the selected context element is dragged across
the dropzone, the color of the dropzone changes from grey to orange,
to indicate that the drag operation is valid.

e Save Whenever the ’save’ button is pushed to create a new rule, the
application uses the spring RestTemplate? library to send a POST re-
quest to the DUI2 framework, which takes care of it.

2http://docs.spring.io/spring/docs/current/javadoc—api/org/
springframework/web/client/RestTemplate.html

Modelling Tool 64

dropzone.setOnDragListener (new OnDragListener() {
public boolean onDrag(View v, DragEvent event) {
if (event.getLocalState().getClass().toString().equals("class_
android . widget . GridView")) {
switch (event.getAction()) {
case DragEvent .ACTION DRAG ENTERED:
v.setBackgroundColor (Color.rgb (237, 165, 0));
break;

case DragEvent.ACTION DRAG EXITED:
v.setBackgroundColor (Color.rgb (128, 128, 128));
break;

case DragEvent .ACTION DRAG STARTED:
return processDragStarted (event);

case DragEvent .ACTION DROP:
v.setBackgroundColor (Color.rgb (0, 151, 167));
return processDrop(event);

return false;

}

return false;

}
1)

e Asynchronous task Via the AsyncTask object, we performed a back-
ground operation to retrieve the context elements. The GET request
getActivities is executed in the background. When the back-
ground process is done, the listview will be updated with the results
from the GET request.

5.3.3 DUI2 Implementation Details

The modelling tool allows users to compose new rules and add them to the
DUI2 framework, which will add it to the CMT server. In order for a user
to compose a new rule, he has to select context elements from the left-hand
side. These context elements are inserted asynchronously in the gridview
by calling the getActivities endpoint, which returns all possible ele-
ments. The user is able to select and drag the context conditions to the
specified dropzone. Whenever a context condition is dropped, the list of
dropped conditions is send to the DUI2 framework with a POST request
to the sendActivities endpoint. In the Core component from the DUI2
framework, the function getCompatibleUlIs from the Util Component is called
with the dropped list as argument. This function will call the MUT compo-
nent via the DUI2MUI component of our DUI2 framework, in order to check
if the context conditions match the properties of the augmented user inter-
faces. Only compatible augmented user interface are returned and are sent

65 CHAPTER 5. Configuration and End User Tool

to the Android application. These compatible user interfaces are inserted
into the listview on the right side of the screen. A corresponding action can
be selected and send to the DUI2 framework via the selectAction end
point. After all the required information is entered for the creation of a rule,
it is sent to the DUI2 framework. The framework will convert the template
rule to a DRL rule in the CMT Client module. The created DRL-rule is
then added to the CMT server. In Figure 5.4, the sequence diagram for the
modelling of a new rule is shown. The sendActivities call can be called
multiple times, if multiple context elements are added.

:Modelling Tool :DUI2 :CMT :MUI

sendActivities R

getCompatibleUlIs

<+— getUIProperties

roperties >
L properties 1

L__7 actions
actions

select Action R
___selected ||

addRule
11 convertRule
E DRL rule
addRule
__Created _
___created [

Figure 5.4: Sequence diagram for creating a rule

Modelling Tool

66

Conclusions and Future Work

In this thesis, the goal was to develop a framework that will allow users to
adapt their augmented user interfaces. We provided the DUI2 framework
which supports two approaches for the adaptation, namely automatic adap-
tation and user adaptation. The automatic adaptation will take the current
context into account and depending on the rule knowledge base of our frame-
work and matched properties of our UI4A2 context model, the corresponding
augmented user interface will be shown. On the other hand, the user adap-
tation will allow end users to model their own rules for adapting augmented
user interfaces. The framework uses the idea of templates in order to facil-
itate the creation of new rules. Simple rules can be defined which contain
context elements and a corresponding action. In our case the corresponding
action is limited to only perform a ’show user interface’ operation. Users
are able to select the user interface that needs to be shown. We combined
our framework with the Context Modelling Toolkit, which takes care of the
context-awareness and the reasoning over context elements and context rules.
In order to perform the automatic adaptation, we extensively researched the
field of Augmented User Interface in office settings. We defined a context
model, named UI4A2, which provided us with a way to reason about the
current environment.

Contributions 68

Besides the CMT framework, we also used the OC2 framework as an
underlying structure to be able to manage our user interfaces. The OC2
framework provided us with the functionality to link entities. Nevertheless,
in order to store our user interface, we created the MUI framework that
provides a RESTFul interface to communicate with. The MUI framework
consist of a model (i.e. MUI model) that is mapped to the underlying OC2
model. In essence, the OC2 model is used as a metamodel for our MUI
framework. The whole DUI2 framework consists of our MUI framework,
CMT framework, the connections between the frameworks and the internal
core functionality that is provided towards the users. The DUI2 framework
allows third party applications to easily communicate with our framework
via the RESTful interface. By doing so, developers are able to build their
own end user applications.

For our use case, we implemented two client applications, namely the con-
figuration and modelling tool. The configuration tool provides the function-
ality to register new augmented user interface to the developers of the aug-
mented user interfaces. The second application is the modelling tool, which
provides the functionality to allow end users with little or no programming
knowledge to model their own context rules. For example, creating a rule
that when Bob and Alice are in the office discussing about the "Docudesk"
paper, the augmented user interface "AugDocu" should be shown. This is a
simple rule that allows the end users some control over the system without
having all the control, because we also provide the option to automatically
adapt the user interface depending on the current context. The DUI2 frame-
work’s main goal is to provide a framework where the balance of control is
just right between the user and system.

In order for the users to be able to easily compose new rules, we created
an Android application that will allow users with no or little programming
skills to construct new rules. By making use of templates, simple rules can
be defined which contain context elements and a corresponding action (i.e.
show user interface).

6.1 Contributions

The major contributions of this thesis are the DUI2 framework, the MUI
framework and the two client applications that communicate with the DUI2
framework. In the DUI2 framework, we have created support for two ap-
proaches, namely automatic and end user adaptation. In order for our
framework to support these approaches, we integrate the Context Modelling

69 CHAPTER 6. Conclusions and Future Work

Toolkit in our framework. The CMT framework allows us to reason over
context and context rules, but also support the creation of new facts, rules,
etc. After studying the different kind of Augmented Reality applications
in office settings, we introduced a context model for the implementation of
the automatic adaptation. The UI4A2 model allows the system to reason
over the current context and to automatically apply a rule when the cur-
rent context matches. The end user adaptation happens by allowing users to
model new rule for adaptation. Via a simple rule-template, users can easily
create new rules without any programming skills. A second contribution is
the MUI framework that was introduced to manage the user interfaces. The
MUI model takes care of the management of our user interfaces. In order to
store them, we used the OC2 framework as an underlying metamodel for our
MUI model. BY doing so, we are able to map all of the components of our
MUI model to the OC2 model. By using the OC2 framework, we are able to
link user interfaces and objects to each other. A last major contribution are
the two client applications that were developed to interact with the DUI2
framework. Note that third parties can develop their own applications by
using the RESTful interface that is provided. The first application that we
introduced is the configuration application that takes care of the registration
of new augmented user interfaces. The application is mostly directed at de-
velopers that have created new user interfaces. The second application is the
modelling tool that allows end users to model and create their own rules. No
programming skills are required, the Android application uses simple drag
and drop movements to model the rules.

6.2 Future Work

Our framework is still in the early stages and can be further improved. One
of the improvements is to broaden the scope of the framework by allowing
different kinds of user interfaces to be adapted. Our framework is easily ex-
tendable to allow this broader scope. The configuration and modelling tool
that were developed to show the interactions with the framework, can be ex-
tended or replaced by third party applications, since our RESTful interface
allows the development of external applications. The user interface of the
configuration tool can be made more colorful and intuitive, the configuration
details that are inserted can be further extended. For the automatic adap-
tation, only the properties of the current location are being checked against
the adaption rules in the knowledge base. In the modelling tool, we allow
users to select different types of context elements, these elements can be
further extended, depending on the context of use of the framework. After

Future Work 70

some improvements, an evaluation of the framework can be performed for
checking the advantages or disadvantages users experience when using the
framework. Further studies can focus more on the balance between user and
system control.

[1]

2]

3]

4]

[5]

(6]

7]

Bibliography

Ronald T. Azuma. A Survey of Augmented Reality. Presence, 6(4):355—
385, August 1997.

Jakob Bardram, Sofiane Gueddana, Steven Houben, and Soren Nielsen.
ReticularSpaces: Activity-Based Computing Support for Physically Dis-
tributed and Collaborative Smart Spaces. In Proceedings of CHI 2012,
Conference on Human Factors in Computing Systems, pages 2845-2854,
Austin, USA, 2012.

Jakob E. Bardram. The Java Context Awareness Framework (JCAF) —a
Service Infrastructure and Programming Framework for Context-Aware
Applications. In Proceedings of PERVASIVE 2005, 3th international

conference on Pervasive Computing, pages 98 — 115, Munich, Germany,
May 2005.

Victoria Belotti and Keith Edwards. Intelligibility and Accountability:
Human Considerations in Context-Aware Systems. Human-Computer
Interaction, 16(2 —4):193 — 212, February 2001.

Silvia Berti, Francesco Correani, Fabio Paterno, and Carmen Santoro.
The TERESA XML Language for the Description of Interactive Sys-
tems at Multiple Abstraction Levels. In Proceedings of AVI 200/, In-
ternational Conference on Advanced Visual Interfaces, pages 103 — 110,
Gallipoli, Italy, May 2004.

Xiaojun Bi, Tovi Grossman, Justin Matejka, and George Fitzmaurice.
Magic Desk: Bringing Multi-Touch Surfaces into Desktop Work. In
Proceedings of CHI 2011, Conference on Human Factors in Computing
Systems, pages 2511-2520, Vancouver, Canada, May 2011.

Florian van Camp and Rainer Stiefelhagen. glueTK: A Framework For
Multi-Modal, Multi-Display Human-Machine-Interaction. In Proceed-
ings of IUI 2013, International Conference on Intelligent User Inter-
faces, pages 329-338, Santa Monica, USA, 2013.

BIBLIOGRAPHY 72

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Tsung-Hsiang Chang and Yang Li. Deep Shot: a Framework for Migrat-
ing Tasks Across Devices Using Mobile Phone Cameras. In Proceedings
of CHI 2011, Conference on Human Factors in Computing Systems,
pages 2163-2172, Vancouver, Canada, 2011.

David Chen, Sam Tsai, Cheng-Hsin Hsu, Jatinder Pal Singh, and Bernd
Girod. Mobile Augmented Reality for Books on a Shelf. In Proceedings
of ICMFE 2011, IEEE International Conference on Multimedia and Expo,
pages 1-6, Barcelona, Spain, July 2011.

Guanling Chen and David Kotz. A Survey of Context-Aware Mobile

Computing Research. Technical report, Dartmouth College, Hannover,
USA, 2000.

Jidong Chen, Hang Guo, Wentao Wu, and Wei Wang. iMecho: an Asso-
ciative Memory Based Desktop Search System. In Proceedings of CIKM

2009 , 18th Conference on Information and Knowledge Management,
pages 731-740, Hong Kong, November 2009.

Danny Crasto, Amit Kale, and Christopher Jaynes. The Smart Book-
shelf: A Study of Camera Projector Scene Augmentation of an Ev-
eryday Environment. In Proceedings of WACV/MOTIONS 2005, 7th
IEEE Workshops on Application of Computer Vision/ IEEE Workshop
on Motion and Video Computing, volume 1, pages 218-225, Brecken-
ridge, USA, January 2005.

Anind K. Dey and Gregory D. Abowd. CybreMinder: A Context-Aware
System for Supporting Reminders. In Proceedings of HUC 2000, 2nd

International Symposium on Handheld and Ubiquitous Computing, pages
172 — 186, Bristol, UK, September 2000.

Anind K. Dey and Alan Newberger. Support for Context-Aware In-
telligibility and Control. In Proceedings of CHI 2009, Conference on
Human Factors in Computing Systems, pages 859 — 868, Boston, USA,
April 2009.

Anind K. Dey, Timothy Sohn, Sara Streng, and Justin Kodama. iCAP:
Interactive Prototyping of Context-Aware Applications. In Proceedings
of PERVASIVE 2006, 4th International Conference on Pervasive Com-
puting, pages 254 — 271, Dublin, Ireland, May 2006.

Niklas Elmqvist. Distributed User Interfaces: State of the Art. In
Proceedings of DUI 2011, 1st Workshop on Distributed User Interfaces,
pages 1-12, Vancouver, Canada, May 2011.

73

BIBLIOGRAPHY

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

Katherine M. Everitt, Meredith R. Morris, Bernheim A. J. Brush, and
Andrew D. Wilson. Docudesk: An Interactive Surface for Creating and
Rehydrating Many-to-Many Linkages Among Paper and Digital Docu-
ments. In Proceedings of ITS 2008, Third IEEE International Workshop
on Tabletops and Interactive Surfaces, pages 25-28, Amsterdam, The
Netherlands, October 2008.

Stephen Fitchett, Andy Cockburn, and Carl Gutwin. Improving
Navigation-Based File Retrieval. In Proceedings of CHI 2013, Confer-
ence on Human Factors in Computing Systems, pages 2329-2338, Paris,
France, April 2013.

Luca Frosini, Marco Manca, and Fabio Paterno. A Framework for the
Development of Distributed Interactive Applications. In Proceedings of
EICS 2013, Symposium on Engineering Interactive Computing Systems,
pages 249-254, London, UK, 2013.

Tao Gu, Xiao H. Wang, Hung K. Pung, and Da Q. Zhang. An Ontology-
based Context Model in Intelligent Environments. In Proceedings of
CNDS 2004, Communication Networks and Distributed Systems Mod-
elling and Simulation Conference, pages 270-275, San Diego, USA, Jan-
uary 2004.

Jim Hahn. Mobile Augmented Reality Applications for Library Services.
New Library World, 113(9/10):429-438, 2012.

Peter Hamilton and Daniel Wigdor. Conductor: Enabling and Under-
standing Cross-Device Interaction. In Proceedings of CHI 2014, Con-
ference on Human Factors in Computing Systems, pages 27732782,
Toronto, Canada, 2014.

Bob Hardian, Jadwiga Indulska, and Karen Henricksen. Balancing Au-
tonomy and User Control in Context-Aware Systems - a Survey. In
Proceedings of PERCOM 2006, 4th annual IEEFE international confer-
ence on Pervasive Computing and Communications, pages 51 — 56, Pisa,
Italy, March 2006.

Valentin Heun, James Hobin, and Pattie Maes. Reality Editor: Pro-
gramming Smarter Objects. In Proceedings of UbiComp 2013, Interna-
tional Conference on Ubiquitous Computing, pages 307 — 310, Zurich,
Switzerland, September 2013.

BIBLIOGRAPHY 74

[25]

[26]

27]

28]

[29]

[30]

31]

32|

33]

Valentin Heun, Shunichi Kasahara, and Pattie Maes. Smarter Objects:
Using AR Technology to Program Physical Objects and Their Interac-
tions. In Proceedings of CHI 2013, Conference on Human Factors in
Computing Systems, pages 961-966, Paris, France, May 2013.

Tom Holland and Aaron Quigley. MobARDoc: Mobile Augmented
Printed Documents. In Proceedings of UbiComp 2011, 15th Interna-
tional Conference on Ubiquitous Computing, volume 10, pages 2629,
Bejing, China, September 2010.

Steven Houben and Nicolai Marquardt. WatchConnect: A Toolkit for
Prototyping Smartwatch-Centric Cross-Device Applications. In Proceed-

ings of CHI 2015, Conference on Human Factors in Computing Systems,
pages 1247-1256, Seoul, Republic of Korea, 2015.

Jan Humble, Andy Crabtree, Terry Hemmings, Karl-Petter Akesson,
Boriana Koleva, Tom Rodden, and Par Hansson. "Playing with the
Bits" User-configuration of Ubiquitous Domestic Environments. In Pro-
ceedings of UbiComp 2003, 5th International Conference on Ubiquitous
Computing, pages 256 — 263, Seattle, USA, October 2003.

Daisuke Iwai and Kosuke Sato. Limpid Desk: See-through Access to
Disorderly Desktop in Projection-based Mixed Reality. In Proceedings
of VRST 2006, Symposium on Virtual Reality Software and Technology,
pages 112-115, Cyprus, November 2006.

Daisuke Iwai and Kosuke Sato. Document Search Support by Making
Physical Documents Transparent in Projection-Based Mixed Reality.
Virtual reality, 15(2-3):147-160, June 2011.

Matthew G. Jervis and Masood Masoodian. SOPHYA: a System for
Digital Management of Ordered Physical Document Collections. In Pro-
ceedings of TEI 2010, International Conference on Tangible, Embedded,
and Embodied Interaction, pages 33—40, Cambridge, USA, 2010.

Hans-Christian Jetter, Michael Zollner, Jens Gerken, and Harald Re-
iterer. Design and Implementation of Post-WIMP Distributed User
Interfaces with ZOIL. International Journal of Human-Computer In-
teraction, 28(11):737-747, 2012.

Brad Johanson, Armando Fox, and Terry Winograd. The Interactive

Workspaces Project: Experiences with Ubiquitous Computing Rooms.
IEEFE Pervasive Computing, 1:67-74, 2002.

75

BIBLIOGRAPHY

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

William Jones, Dawei Hou, Bhuricha Deen Sethanandha, Sheng Bi, and
Jim Gemmell. Planz to Put Our Digital Information in Its Place. In

Proceedings of CHI 2010, Conference on Human Factors in Computing
Systems, pages 28032812, Atlanta, USA, April 2010.

Fakhreddine Karray, Milad Alemzadeh, Jamil A. Saleh, and Mo N. Arab.
Human-Computer Interaction: Overview on State of the Art. Interna-
tional Journal on Smart Sensing and Intelligent Systems, 1(1), March
2008.

Mohammadreza Khalilbeigi, Jiirgen Steimle, Jan Riemann, Niloofar
Dezfuli, Max Miihlhduser, and James D Hollan. ObjecTop: Occlusion
Awareness of Physical Objects on Interactive Tabletops. In Proceedings
of ITS 2013, ACM International Conference on Interactive Tabletops
and Surfaces, pages 255-264, St Andrews, UK, October 2013.

Jiwon Kim, Steven M. Seitz, and Maneesh Agrawala. Video-Based Doc-
ument Tracking: Unifying Your Physical and Electronic Desktops. In
Proceedings of UIST 2004, 17th Symposium on User Interface Software
and Technology, pages 99-107, 2004.

Jisoo Lee, Luis Garduno, Erin Walker, and Winslow Burleson. A Tangi-
ble Programming Tool for Creation of Context-Aware Applications. In
Proceedings of UbiComp 2013, International Conference on Ubiquitous
Computing, pages 391 — 400, Zurich, Switzerland, September 2013.

Sang-won Leigh, Philipp Schoessler, Felix Heibeck, Pattie Maes, and
Hiroshi Ishii. THAW: Tangible Interaction with See-Through Augmen-
tation for Smartphones on Computer Screens. In Proceedings of TEI
2015, International Conference on Tangible, Embedded, and Embodied
Interaction, pages 89-96, Stanford, USA, 2015.

James Lin and James A. Landay. Employing Patterns and Layers for
Early-Stage Design and Prototyping of Cross-Device User Interfaces. In
Proceedings of CHI 2008, Conference on Human Factors in Computing
Systems, pages 11313 — 1322, Florence, Itlay, April 2008.

Nishant Malhotra, Aayushi Singh, J. DivyaKrishna, Kanika Saini, and
Neeraj Gupta. Context-aware Library Management System Using Aug-
mented Reality. International Journal of Electronic and Electrical En-
gineering, 7(9):923 — 929, 2014.

BIBLIOGRAPHY 76

42]

[43]

[44]

[45]

|46]

47]

48]

[49]

[50]

Thomas W. Malone. How Do People Organize Their Desks?: Implica-
tions for the Design of Office Information Systems. ACM Transactions
on Office Information Systems (TOIS), 1(1):99-112, 1983.

Kazuhiro Matsushita, Daisuke Iwai, and Kosuke Sato. Interactive Book-
shelf Surface for in Situ Book Searching and Storing Support. In Pro-
ceedings of AH 2011, 2nd Augmented Human International Conference,
number 2, pages 1 — 8, Tokio, Japan, March 2011.

Ian C. Mcllwaine. The Universal Decimal Classification: Some Factors
Concerning Tts Origins, Development, and Influence. Journal of the
American Society for Information Science, 48(4):331-339, 1997.

Jeremie Melchior, Donatien Grolaux, Jean Vanderdonckt, and Peter
Van Roy. A Toolkit for Peer-to-Peer Distributed User Interfaces: Con-
cepts, Implementation, and Applications. In Proceedings of EICS 2009,
Symposium on Engineering Interactive Computing Systems, pages 69—

78, Pittsburgh, USA, 2009.

Jan Meskens, Jo Vermeulen, Kris Luyten, and Karin Coninx. Gummy
for Multi-Platform User Interface Designs: Shape me, Multiply me, Fix
me, Use me. In Proceedings of AVI 2008, International Conference on
Advanced Visual Interfaces, pages 233 — 240, Naples, Italy, May 2008.

Pranav Mistry and Pattie Maes. Augmenting Sticky Notes as an 1/0
Interface. In Proceedings of CHI 2009, Conference on Human Factors
in Computing Systems, pages 547-556, Boston, USA, April 2009.

Ann Morrison, Alessandro Mulloni, Saija Lemmeld, Antti Oulasvirta,
Giulio Jacucci, Peter Peltonen, Dieter Schmalstieg, and Holger Regen-
brecht. Collaborative use of mobile augmented reality with paper maps.
Computers & Graphics, 35(4):789-799, 2011.

Vivian G. Motti, Dave Raggett, Sascha Van Cauwelaert, and Jean Van-
derdonckt. Simplifying The Development of Cross-Platform Web User
Interfaces by Collaborative Model-Based Design. In Proceedings of SIG-
DOC 2013, 31st International Conference on Design of Communication,
pages 55 — 64, Greenville, USA, September 2013.

Michael Nebeling, Maximilian Speicher, and Moira C. Norrie. Crow-
dAdapt: Enabling Crowdsourced Web Page Adaptation for Individual
Viewing Conditions and Preferences. In Proceedings of EICS 2013, 5th
ACM SIGCHI Symposium on Engineering Interactive Computing Sys-
tems, pages 23 — 32, London, UK, June 2013.

77

BIBLIOGRAPHY

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Michael Nebeling, Maximilian Speicher, and Moira C. Norrie. W3Touch:
Metrics-Based Web Page Adaptation for Touch. In Proceedings of CHI

2013, Conference on Human Factors in Computing Systems, pages 2311
— 2320, Paris, France, April 2013.

Moira C. Norrie. An Extended Entity-Relationship Approach to Data
Management in Object-Oriented Systems. In Proceedings of ER 1993,

International Conference on the Entity-Relationship Approach, pages
390-401, Arlington, USA, December 1994.

Jongmoon Park, Hong-C. Lee, and Myung-J. Lee. JCOOLS: A Toolkit
for Generating Context-Aware Applications with JCAF and DROOLS.
Journal of Systems Architecture, 59(9):759 — 766, 2013.

Jan Riemann, Mohammadreza Khalilbeigi, and Max Miihlh&duser. Per-
iTop: Extending Back-projected Tabletops with Top-projected Periph-
eral Displays. In Proceedings of ITS 2013, 31th International Conference
on Interactive Tabletops and Surfaces, pages 349 — 352, St Andrews,
Scotland, October 2013.

Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The Context
Toolkit: Aiding the Development of Context-Enabled Applications. In

Proceedings of CHI 1999, Conference on Human Factors in Computing
Systems, pages 434 — 441, Pittsburgh, USA, May 1999.

Bill Schilit, Norman Adams, and Roy Want. Context-Aware Comput-
ing Applications. In Proceedings of WMCSA 199/, First Workshop on
Mobile Computing Systems and Applications, pages 85-90. IEEE, 1994.

Johannes Schéning, Michael Rohs, Sven Kratz, Markus Lochtefeld, and
Antonio Kriiger. Map Torchlight: a Mobile Augmented Reality Camera
Projector Unit. In Proceedings of CHI 2009, Conference on Human
Factors in Computing Systems, pages 3841-3846, Boston, USA, April
2009.

Thomas Seifried, Matthew Jervis, Michael Haller, Masood Masoodian,
and Nicolas Villar. Integration of Virtual and Real Document Orga-
nization. In Proceedings of TEI 2008, 2nd International Conference
on Tangible and Embedded Interaction, pages 81 — 88, Cambridge, UK,
February 2008.

Adrian Shatte, Jason Holdsworth, and Ickjai Lee. Mobile Augmented
Reality Based Context-Aware Library Management System. Expert Sys-
tems with Applications, 41(5):2174-2185, April 2014.

BIBLIOGRAPHY 78

[60]

[61]

62]

[63]

|64]

[65]

[66]

67]

Beat Signer and Moira C. Norrie. As We May Link: A General Meta-
model for Hypermedia Systems. In Proceedings of ER 2007, 26th Inter-
national Conference on Conceptual Modeling, pages 359-374, Auckland,
New Zealand, November 2007.

Beat Signer and Moira C. Norrie. PaperPoint: A Paper-Based Presen-
tation and Interactive Paper Prototyping Tool. In Proceedings of TEI
2007, First International Conference on Tangible and Embedded Inter-
action, pages 57-64, Baton Rouge, USA, February 2007.

Norbert A. Streitz, Jorg Geissler, Torsten Holmer, Shin’ichi Konomi,
Christian Miiller-Tomfelde, Wolfgang Reischl, Petra Rexroth, Peter
Seitz, and Ralf Steinmetz. i-LAND: An interactive Landscape for Cre-
ativity and Innovation. In Proceedings of CHI 1999, Conference on Hu-
man Factors in Computing Systems, pages 120-127, Pittsburgh, USA,
1999.

Sandra Trullemans and Beat Signer. From User Needs to Opportunities
in Personal Information Management: A Case Study on Organisational
Strategies in Cross-Media Information Spaces. In Proceedings of JCDL
2014, 14th ACM/IEEE-CS Joint Conference on Digital Libraries, pages
87-96. IEEE, 2014.

Sandra Trullemans and Beat Signer. Towards a Conceptual Framework
and Metamodel for Context-Aware Personal Cross-Media Information
Management Systems. In Proceedings of ER 2014, 33rd International
Conference on the Entity-Relationship Approach, pages 313-320, Al-
tanta, USA, October 2014.

Khai N. Truong, Elaine M. Huang, and Gregory D. Abowd. CAMP: A
Magnetic Poetry Interface for End-User Programming of Capture Appli-
cations for the Home. In Proceedings of UbiComp 2004, 6th International
Conference on Ubiquitous Computing, pages 143 — 160, Nottingham,

UK, September 2004.

Blase Ur, Elyse McManus, Melwyn P. Y. Ho, and Michael L. Littman.
Practical Trigger-Action Programming in the Smart Home. In Proceed-
ings of CHI 2014, Conference on Human Factors in Computing System,
pages 803 — 812, Toronto, Canada, May 2014.

van der Heijden, Hans. Ubiquitous Computing, User Control, and User
Performance: Conceptual Model and Preliminary Experimental Design.
In Proceedings of RSEEM 2003, 10th Research Symposium on Emerging

79

BIBLIOGRAPHY

|68]

[69]

[70]

Electronic Markets, pages 107 — 112, Bremen, Deutschland, September
2003.

Stephen Voida and Saul Greenberg. WikiFolders: Augmenting the Dis-
play of Folders to Better Convey the Meaning of Files. In Proceedings of

CHI 2009, Conference on Human Factors in Computing Systems, pages
1679-1682, Boston, USA, April 2009.

Karl Voit, Keith Andrews, and Wolfgang Slany. Tagging Might not be
Slower Than Filing in Folders. In Proceedings of CHI 2012, Conference
on Human Factors in Computing Systems, pages 2063 — 2068, Austin,
Texas, May 2011.

Pierre Wellner. Interacting with Paper on the DigitalDesk. Communi-
cations of the ACM, 36(7):87-96, 1993.

