
Faculteit Wetenschappen
Departement Informatica
en Toegepaste Informatica

A WYSIWYG Template Authoring
Solution for the MindXpres
Presentation Tool

Jeroen Heymans

Promotor: Prof. Dr. Beat Signer
Begeleider: Reinout Roels

Augustus 2013

Abstract

Wereldwijd worden er elke dag meer dan 30 miljoen PowerPoint presentaties
gemaakt. Met verschillende alternatieven ter beschikking, worden presentatie
programma’s op vele vlakken in ons leven gebruikt. Ze worden vaak gebruikt
in het bedrijfsleven maar ook bij het lesgeven worden ze onmisbaar. Het
presenteren van visuele informatie door een presentatie te projecteren die ooit
ontworpen was op een computer, is een de facto standaard geworden. De
populariteit van deze manier van presenteren groeit nog altijd.

De manier waarop mensen informatie presenteren is grotendeels beı̈nvloed
door de programma’s die ze gebruiken. Hoewel de meest populaire presen-
tatie programma’s de gebruiker dwingen om informatie in sequentiele slides
te presenteren, bestaan er andere methodes om een collectie van informatie
te presenteren. Dit wordt aangetoond in het onderzoeksproject MindXpres
waarbij de auteurs wegstappen van de traditionele manier van presenteren en
gebruik maken van nieuw onderzoek in informatiebeheer en informatie visu-
alisatie. Door kritische evaluatie van het presentatie proces kwamen ze met
een lijst van eisen en aanbevelingen voor het ideale presentatie programma.

In MindXpres onderscheidt men drie fases in de tijdspanne van het maken en
gebruiken van een presentatie: voor, tijdens en na. Deze thesis focust op de
eerste fase: voor de presentatie. Het doel was om de best mogelijke interface
te maken voor het MindXpres programma om zo presentaties en themas te
maken en te beheren. Om dit doel te bereiken zijn we gestart met een onder-
zoek en vergelijking van de huidige populaire presentatie programma’s. We
stelden een lijst van problemen op die aanwezig zijn in deze programma’s en
baseerden ons ontwerp voor ons eigen presentatie programma hierop.

Om de juiste keuzes te maken bij het ontwerpen van het programma, hebben
we ons gebaseerd op vorig onderzoek. Het geı̈mplementeerde presentatie pro-
gramma bestaat eigenlijk uit twee grote delen: een presentatie bewerker en

een thema bewerker. Deze twee onderdelen zijn aan mekaar gelinkt dankzij
vier nieuwe concepten die we introduceren in deze thesis. Huidige presentatie
programma’s limiteren de gebruikers in het apart beheren van presentaties en
themas. In onze oplossing hebben de gebruikers de nodige flexibiliteit in
een intuitieve interface. De geı̈ntroduceerde nieuwe concepten kunnen ge-
bruikt worden door huidige presentatie programma’s omdat ze een hogere
gebruiksvriendelijkheid garanderen.

Naast het ontwerpen van een presentatie programma voor MindXpres hebben
we ook een eerste prototype geı̈mplementeerd. Deze versie is volledig gebouwd
in de meest recente Internet technologie and biedt de gebruiker veel function-
aliteit aan. Als basis voor het project moesten we een goede JavaScript library
kiezen. Om de juiste keuze te maken hebben we een uitgebreide vergelijking
tussen verschillende libraries uitgevoerd. We hebben zo kunnen identificeren
welke library gebruikt kan worden voor een grote Rich Internet Application.
Naast het kiezen van de juiste library hebben we ook een architectuur ont-
worpen waarvan we overtuigd zijn dat het een goede basis is voor een nieuwe
Rich Internet Application waarbij zaken zoals modulariteit centraal staan.

Door weg te stappen van de traditionele manier om presentaties en themas te
bewerken, zijn er uitbreidingen mogelijk op verschillende niveau’s. We intro-
duceren nieuwe concepten die een meer flexibel beheer toestaan op het ge-
bruikers niveau. De vooropgestelde architectuur staat dan weer betere onder-
houdbaarheid toe op het programmeer niveau. Het resultaat is een programma
dat zowel een hogere gebruiksvriendelijkheid garandeert voor de gebruikers
om MindXpres presentaties te beheren als ook een hogere gebruiksvriendeli-
jkheid voor programmeurs om de functionaliteit van het programma uit te
breiden.

Faculty of Science
Department of Computer Science
and Applied Computer Science

A WYSIWYG Template Authoring
Solution for the MindXpres
Presentation Tool

Jeroen Heymans

Promoter: Prof. Dr. Beat Signer
Advisor: Reinout Roels

August 2013

Abstract

With over 30 million PowerPoint presentations created every day and differ-
ent alternatives available, presentation tools are used in many aspects of our
lives. They are very important in a business context but also in an educational
context. Presenting visual information by projecting a presentation that has
been authored on a computer has almost become a de facto standard and its
popularity continues to grow.

The way people present information is largely influenced by the tools they use.
Although the most popular tools force the user to make use of a sequential
slide paradigm, other methods of presenting a collection of information are
possible. This is shown in the research project called MindXpres where the
authors stepped away from the traditional slide paradigm and use state-of-the-
art research in information management and visualisation. They rethought the
entire presentation process and as a result came up with a set of requirements
for the ideal presentation tool.

In MindXpres, three phases are identified in the timespan of creating and us-
ing a presentation: before the presentation, during the presentation and after a
presentation. This thesis focusses on the before the presentation’ phase. The
goal was to design the best possible user interface for the MindXpres tool
in order to create and author presentations and themes. To achieve this, we
started with an investigation and comparison of the current popular presen-
tation tools. We identified a list of problems with these tools and based the
design of our own presentation tool on the gained knowledge and findings.

In order to make good design choices, we based ourselves on previous stud-
ies. The developed presentation tool is in fact split into two main parts: a
presentation editor and a theme editor. The editors are nicely linked together
via four novel concepts that we introduce in this thesis. Current presentation
tools limit the user in authoring presentations and themes separately while

in our solution, they have all the flexibility they want via an intuitive user
interface. The novel concepts that we introduced can be reused by current
presentation tools as they guarantee a higher usability.

Apart from designing a presentation tool for MindXpres, we also implemented
a first prototype version. This version is fully based on new web technologies
and offers a lot of functionality. In order to choose the correct JavaScript li-
brary to be used as a basis for the project, we performed a JavaScript library
comparison. In this comparison, we identified which library can be used for
a Rich Internet Application. Alongside choosing the correct library, we de-
signed an architecture which we believe would be ideal for building a Rich
Internet Application from scratch that focuses on modularity and low cou-
pling.

By stepping away from the traditional way of authoring presentations and
themes, we allow enhancements on multiple levels. We introduce novel con-
cepts that allow more flexible authoring on a user level while the proposed
architecture allows for a higher maintainability on a developer level. The re-
sult is a tool that guarantees a higher usability which will benefit users to
author MindXpres presentations and developers to extend the functionality of
the tool.

Acknowledgments

I like to thank my promoter Professor Beat Signer and my advisor Reinout
Roels. They were always ready to help with problems, to give advice and to
push the project in the right direction.

I also like to thank my friends for helping me to light up my life with good
advice, interesting discussions and beautiful memories this year. The gift of
such huge amounts of friendship is more than I could ever ask.

Finally I like to thank my family. Although we have been through some rough
patches, the future will be very bright. Beauty is in the eye of the beholder.

Contents

1 Introduction 1
1.1 Current presentation tools . 2

1.1.1 Microsoft PowerPoint . 2
1.1.2 Apache OpenOffice Impress 3
1.1.3 Apple Keynote . 4
1.1.4 Prezi . 4
1.1.5 Other tools . 6

1.2 MindXpres . 7

2 Problem statement 9
2.1 Identifying the shortcomings of current tools 10

2.1.1 Presentation editing . 11
2.1.2 Theme editing . 27
2.1.3 Conclusion . 33

2.2 Current available technologies . 35
2.3 Use of interface languages . 37

2.3.1 Interesting user interface languages 37
2.3.2 Pros and cons of the user interface languages 38
2.3.3 Choosing a user interface language 40

3 Designing a better presentation tool 41
3.1 Type of interface . 42
3.2 Solving the problems with Zoomable User Interfaces 42

3.2.1 Lack of context . 42
3.2.2 The effects of zooming on the perception 44
3.2.3 Excessive animation . 44

3.3 How presentations and themes are linked 44
3.4 Presentation and theme editors: separated or not? 45

3.4.1 Editing the current theme . 46

ii

3.4.2 Using a theme in a new presentation 47
3.4.3 Exporting stylings to a new theme 47
3.4.4 Applying theme to presentations 47

3.5 The presentation editor . 48
3.5.1 The interface . 48
3.5.2 Creating a presentation . 51
3.5.3 Adding elements . 51
3.5.4 Changing the settings of elements 52
3.5.5 Moving elements . 53
3.5.6 Resizing elements . 54
3.5.7 Editing the structure . 54
3.5.8 Choosing a theme . 56
3.5.9 Zooming in a presentation . 57
3.5.10 Exporting elements to a theme 58

3.6 The theme editor . 60
3.6.1 The interface . 60
3.6.2 Creating a theme . 61
3.6.3 Adding elements . 61
3.6.4 Changing settings . 62
3.6.5 Previewing a theme element 63
3.6.6 Previewing a theme . 63
3.6.7 Applying a theme . 64
3.6.8 Use a theme . 65

3.7 Conclusion . 65

4 Solution 67
4.1 Choosing the technologies . 68

4.1.1 Introduction . 68
4.1.2 Feature comparisons . 69
4.1.3 Usability testing . 77
4.1.4 Conclusion . 85

4.2 JavaScript architecture . 86
4.2.1 Organizing the code . 86
4.2.2 Plugins . 88
4.2.3 Entry point into the application 91
4.2.4 Core . 92

4.3 Details about the implementation . 95
4.3.1 Used technologies and libraries 95
4.3.2 Implementations made . 95
4.3.3 Some important implementations highlighted 96

4.4 Evaluation . 100

5 Use case 103
5.1 Starting the application . 104
5.2 Creating a theme . 105

iii

5.3 Adding a theme element . 105
5.4 Editing a theme element . 106
5.5 Using a theme in a new presentation 107
5.6 Adding a presentation element . 108
5.7 Creating a new presentation . 109
5.8 Editing the current theme . 109
5.9 Exporting theme elements . 110
5.10 Applying a theme to a presentation . 111

6 Conclusion 113
6.1 Evaluation . 114

6.1.1 Comparing current presentation tools 114
6.1.2 Comparing JavaScript libraries 115
6.1.3 Designing a presentation tool 116
6.1.4 Implementing a presentation tool 116

6.2 Future work . 117
6.2.1 Completing the presentation tool 117
6.2.2 Evaluating the tool . 117
6.2.3 Extending the use of technologies internally 117
6.2.4 Collaborative editing of presentations and themes 117
6.2.5 Investigating new input and output methods 118

6.3 Contributions . 118
6.4 Final words . 119

iv

Listings

2.1 A basic UIML file . 38
4.1 A hello world application in plain JavaScript 78
4.2 A hello world application in Dojo JavaScript library 78
4.3 A hello-world-application in jQuery JavaScript library 78
4.4 A hello world application in MooTools JavaScript library 79
4.5 A hello-world-application in Prototype JavaScript library 79
4.6 A hello world application in YUI JavaScript library 80
4.7 Resizeable and moveable elements in the Dojo JavaScript library 81
4.8 Resizeable and moveable elements in the jQuery JavaScript library . . . 82
4.9 Resizeable and moveable elements in the MooTools JavaScript library . 82
4.10 Resizeable and moveable elements in the Prototype JavaScript library . 83
4.11 Resizeable and moveable elements in the YUI JavaScript library 83
4.12 Example template . 88
4.13 The JSON file listing all the plugins to load 88
4.14 The plugin settings for a piece of text 90
4.15 Stripped down version of the main file 91
4.16 An example of an init method of a module 93
4.17 Basic example of how the publish in our publish-subscribe architecture

works . 93
4.18 By adding two basic lines it was possible to have new tabs added at the

same time as when presentations were opened and created 98
4.19 Example usage of the callback . 100

vi

List of Figures

1.1 PowerPoint - Mac OS X version . 3
1.2 Impress - Mac OS X version . 4
1.3 Keynote - Mac OS X version . 5
1.4 Prezi - Desktop version . 6
1.5 Google Docs - Presentation . 7
1.6 MindXpres - Architecture overview 8

2.1 PowerPoint - Adding elements via menu 12
2.2 PowerPoint - Adding elements via ribbon 12
2.3 PowerPoint - Adding elements in slots 13
2.4 Impress - Adding elements via menu 14
2.5 Impress - Adding elements via toolbar 14
2.6 Impress - Adding elements in slots . 15
2.7 Keynote - Adding elements via buttons 15
2.8 Keynote - Adding elements via menu 16
2.9 Prezi - Adding elements via menu . 16
2.10 Prezi - Element in edit-mode . 17
2.11 Prezi - Adding text in presentation . 17
2.12 PowerPoint - Resizeable element . 18
2.13 PowerPoint - Importing slides . 20
2.14 Impress - Importing slides . 21
2.15 Prezi - Importing slides from PowerPoint 21
2.16 PowerPoint, Impress, Keynote - Overview slides 22
2.17 Prezi - Overview presentation . 23
2.18 PowerPoint - Theme chooser . 24
2.19 Keynote - Theme chooser . 24
2.20 Prezi - Theme chooser . 25
2.21 PowerPoint - Zooming interface . 26

viii List of Figures

2.22 Impress - Zooming interface . 26
2.23 PowerPoint - Edit theme via the ribbon 27
2.24 Keynote - Overview master slides . 28
2.25 Prezi - Theme edit wizard . 28
2.26 PowerPoint - Changing theme . 29
2.27 Prezi - The styling of text can happen in the theme wizard 30
2.28 Keynote - Changing background of a slide 31

3.1 Ideal tool - The relationship between a presentation and a theme 45
3.2 Ideal tool - How the presentation and theme editor are connect 46
3.3 Ideal tool - Diagram to explain exporting a theme 48
3.4 Mockup - Overview of a presentation 49
3.5 Mockup - Start screen . 50
3.6 Mockup - Creating a presentation . 51
3.7 Mockup - Adding an element to a presentation 52
3.8 Mockup - Setting up a presentation element 52
3.9 Mockup - Right click on a presentation element 53
3.10 Mockup - Right click in the presentation 53
3.11 Ideal Tool - The directions to resize 54
3.12 Mockup - Showing the path in a presentation 55
3.13 Mockup - Editing the path in a presentation 55
3.14 Mockup - Rightclicking on a path element in a presentation 56
3.15 Mockup - Choosing a base theme for the presentation 56
3.16 Mockup - Exporting to a theme - Basic info 58
3.17 Mockup - Exporting to a theme - Selecting theme elements 59
3.18 Mockup - Exporting to a theme - Reviewing the selected theme elements 59
3.19 Mockup - Overview of a theme . 60
3.20 Mockup - Creating a theme . 61
3.21 Mockup - Adding a new element in a theme 62
3.22 Mockup - Editing the settings of a theme element 62
3.23 Mockup - Preview of a theme element 63
3.24 Mockup - Preview of a theme . 64
3.25 Mockup - Applying a theme . 64
3.26 Mockup - Using a theme . 65

4.1 User interface example - Accordion 75
4.2 User interface example - Multiple selectable elements 76
4.3 JavaScript usability test case . 81
4.4 JavaScript usability test case - Dojo result 81
4.5 JavaScript usability test case - YUI result 84
4.6 UML diagram showing basic plugin structure 89
4.7 UML diagram showing the plugin core module 90
4.8 UML diagram showing the core and mediator 92
4.9 Exporting stylings into a new theme 97
4.10 Tabs to edit multiple presentations . 98

List of Figures ix

4.11 Dialog allowing the user to apply a theme on a presentation 99

5.1 Use case - Starting screen . 104
5.2 Use case - Creating a theme . 105
5.3 Use case - Adding a theme element . 106
5.4 Use case - Editing a theme element . 107
5.5 Use case - Using a theme . 108
5.6 Use case - Adding a presentation element 109
5.7 Use case - Presentation with multiple elements before exporting 110
5.8 Use case - Choosing between different elements while exporting 111
5.9 Use case - Applying a theme to a presentation 112

x List of Figures

List of Tables

2.1 Presentation Tools - Possible elements in a presentation 11

4.1 Comparison of JavaScript libraries: Listing the versions and what li-
censes can be applied . 69

4.2 Comparison of JavaScript libraries: DOM functions and language ex-
tension comparison . 70

4.3 Comparison of JavaScript libraries: Visual effects comparison 72
4.4 Comparison of JavaScript libraries: Support for AJAX and JSON com-

parison . 74
4.5 Comparison of JavaScript libraries: Widgets comparison 75

xii List of Tables

1
Introduction

2 Current presentation tools

1.1 Current presentation tools

Currently, Microsoft’s PowerPoint1 is still the most popular presentation tool out there.
It is estimated that PowerPoint has a market share of about 95%2. This is very visible
in the number of new PowerPoint presentations created every day which has been es-
timated to be 30 million [57]. There are several alternatives on the market like Apple
Keynote3, Apache OpenOffice Impress4, Prezi5 and so on. All of them are built by big
companies like Microsoft and Apple, or have an open source background like Apache
OpenOffice Impress.

1.1.1 Microsoft PowerPoint

PowerPoint is the oldest of the presentation tools mentioned above, the original product
proposal [28] dates back to 1984 and was done by Robert Gaskin, an employee of the
small start-up Forethought Inc. Back then, it was called Presenter but with its first
release that occurred in 1987 [29], the name PowerPoint was born. The original product
was designed to create graphics for overhead transparencies. PowerPoint was ahead of
its time with support for different fonts, charts and diagrams. Instead of having to rely
on a typewriter operator to create presentations as was standard use in those days, the
presenter could now create their own presentations. Originally PowerPoint was created
for the Apple Macintosh and as the Macintosh got more advanced, the software grew
along by adding the support for colours and other novel functionality.

Microsoft acquired Forethought Inc. in 1987 and the first Windows version of PowerPoint
was built. As development was continued, PowerPoint started getting features like real-
time projection from a computer, slide transitions and animations. PowerPoint thus
started to move away from the initial idea of only creating overhead transparencies. Pre-
sentations started to get more advanced features that were only available on a computer
screen. Computer technology in general started to get more advanced in the early 90s
and Microsoft continued to update PowerPoint with extra features like audio and video
support. One of the first major changes happened in 1997 when Microsoft added Visual
Basic for Applications (VBA): a macro language that allowed the users of PowerPoint
to program new features for the presentation tool and their presentations. With new
support of VBA, we saw the rise of dynamic features like a countdown timer.

Now that the tool has reached the age of 26, we can see that it has grown to a very
solid presentation editor tool. It is very intuitive to use as people are used to the concept
of slides in presentations. PowerPoint currently supports a wide range of multimedia
elements and as its market share is about 95%, the least we can say is that PowerPoint

1http://office.microsoft.com/en-us/powerpoint/
2http://www.businessweek.com/articles/2012-08-30/

death-to-powerpoint
3http://www.apple.com/iwork/keynote/
4http://www.openoffice.org/product/impress.html
5http://prezi.com/

http://office.microsoft.com/en-us/powerpoint/
http://www.businessweek.com/articles/2012-08-30/death-to-powerpoint
http://www.businessweek.com/articles/2012-08-30/death-to-powerpoint
http://www.apple.com/iwork/keynote/
http://www.openoffice.org/product/impress.html
http://prezi.com/

Current presentation tools 3

Figure 1.1: The latest version of PowerPoint for Mac OS X

is popular. However, over the years it received a lot of critique that ranges from general
critique about the concept of slides [24, 76, 71] to the way PowerPoint has negatively
influenced the way people teach and learn [42, 3, 65].

1.1.2 Apache OpenOffice Impress

Another presentation tool that is growing in popularity is OpenOffice Impress. It is part
of the Apache OpenOffice office suite that was developed by Sun Microsystems. In the
past, many have made a comparison between PowerPoint and Impress for being very
similar. Impress is a free open source presentation editor program that is compatible
with PowerPoint as it can edit PowerPoint file formats like .ppt and .pptx. Most
people know Impress because it is often provided as part of a default office suite on
Linux systems. On the first of January 2013, the OpenOffice suite passed the line of 31
million downloads in total and has now at the end of May passed 50 million downloads1.
We can conclude that the popularity of this PowerPoint alternative is certainly booming.

1http://www.openoffice.org/stats/downloads.html

http://www.openoffice.org/stats/downloads.html

4 Current presentation tools

Figure 1.2: The latest version of Impress for Mac OS X

1.1.3 Apple Keynote

Keynote was unveiled on January 7, 20031. At its launch, it had features like import and
export to PowerPoint, export to PDF, professionally designed themes, animated charts
and tables and much more. This made it a very good presentation editing tool for slick
presentations. Since 2005, it is part of the iWork office suite developed by Apple2.
Apple focused on the more visual aspect of presentations, it wanted the user to be able
to create very polished looking presentations. They have done this by focusing more on
the typography, good looking themes, smooth animations and so on. In recent years,
Apple created a Keynote version of iOS to provide synchronization of presentations
between iOS and OS X devices and allows the user to present Keynote presentations
with their iOS device.

1.1.4 Prezi

A new kid in town is Prezi. The word prezi is the Hungarian short form of the word
presentation. The original version only launched in April 2009, making it one of the

1http://www.apple.com/pr/library/2003/01/07Apple-Unveils-Keynote.
html

2https://www.apple.com/iwork/

http://www.apple.com/pr/library/2003/01/07Apple-Unveils-Keynote.html
http://www.apple.com/pr/library/2003/01/07Apple-Unveils-Keynote.html
https://www.apple.com/iwork/

Current presentation tools 5

Figure 1.3: The latest version of Keynote for Mac OS X

newest presentation tools available. It is a product of the company called Prezi and
offers cloud-based (SaaS) presentation software where presentations are created on a
virtual canvas. Prezi steps away from the slide paradigm and provides the user an in-
finitely large canvas to work on. The idea behind Prezi is that users insert all their
presentation elements, like text and video’s, and link everything together by defining a
path. Important concepts can be represented by using large objects in contrast to details
and less important content which may be represented by small objects.

Prezi is one of the few presentation tools that offers a zoomable user interface which
allows the users to zoom in and out on their presentations and media elements. This
is done in a simulated 3D environment: a 2.5D environment where 2D graphical pro-
jections are used to create a simulated appearance of being 3D. In recent versions, a
desktop version has been released. In the early days, Prezi was a website-based tool
built in Adobe Flash. Thus, users had to use the tool via their browser which needed the
Flash plugin. Now with the desktop version, users are able to create and save their pre-
sentations offline. As the desktop version uses Adobe AIR, the application is an exact
replica of the online version.

6 Current presentation tools

Figure 1.4: The latest version of Prezi Desktop for Mac OS X

1.1.5 Other tools

Prezi is not the first tool to step away from the slide paradigm. Academic work like
Fly [45] have a planar interface for authoring presentations that allows authors to lay out
information in a map-like fashion on a plane. There also have been attempts at improv-
ing PowerPoint in research. Concepts such as those presented in Counterpoint [35, 34]
have been introduced to allow PowerPoint to be used with a zoomable user interface.

Another tool with interesting features is Google Docs 1. It did not move away from
the slide paradigm but it offers other notable features such as collaboration. Via col-
laboration functionality, it allows multiple users to edit documents at the same time.
Another interesting thing about Google Docs, is that it works entirely online via the use
of HTML5, CSS3 and JavaScript. Unlike with Prezi, which is also a web-based tool,
users are not obligated to have plugins like Flash installed.

1https://drive.google.com/

https://drive.google.com/

MindXpres 7

Figure 1.5: The interface of Google Docs when editing a presentation

1.2 MindXpres

MindXpres is an extensible cross-media presentation tool [62] currently under develop-
ment. It addresses many of the issues of current slideware. MindXpres steps away from
the traditional slide paradigm and is based on state-of-the-art research in information
management, hypermedia and zoomable user interfaces.

The term hypermedia is used as a logical extension of the term hypertext which was
first coined by Ted Nelson [54]. Elements like graphics, video, text, audio and hyper-
links are interweaved in a non-linear way. As this is closer to how humans think and
learn, MindXpres uses hypermedia instead of unidirectional hyperlinks as seen on the
web, to connect elements together. The Resource-Selector-Link model (RSL) [64] has
been chosen as the basis for the modelling of hypermedia in MindXpres to allow se-
mantic links, navigational links, structural links, transclusion, annotation and context
awareness.

Zoomable user interfaces (ZUI) [8] are graphical user interfaces where the user can
change the scale of the view so they see more details of the presented information by
zooming in or less details by zooming out. One of the earliest attempts at creating
a ZUI as a computer interface was Pad [59] which, after further research, resulted in
Pad++ [10, 6]. Zoomable user interfaces are becoming more used every day as popular
applications like Google Maps1, Google Earth2 and Prezi are getting more mainstream.
As MindXpres focuses on providing a canvas for the user to lay out their information, a
zoomable user interface is used to provide the best possible control over presentations.
The user can either follow a pre-defined path through their presentation or they can
navigate via a zoomable user interface in their presentation to jump from element to
element.

1http://maps.google.com
2http://www.google.com/earth/index.html

http://maps.google.com
http://www.google.com/earth/index.html

8 MindXpres

Figure 1.6: The architecture of MindXpres

The architecture of MindXpres is visualised in Figure 1.6. The user is able to create
their own presentations in XML which can be compiled to different output sources like
a PDF, an HTML document and so on. Not everyone who creates a presentation wants
to manually write an XML file so it should also be possible to use a graphical user
interface which generates the XML file for the user. This is the focus for this thesis: the
creation of a good graphical user interface for MindXpres. To do this, we looked at how
current presentation tools (as introduced in Section 1.1) tackled the implementation of
certain features.

2
Problem statement

In Chapter 1 we introduced the currently popular presentation tools. Most of them
force the user into the sequential slide paradigm. We strongly believe that this enforced
paradigm is a limitation to the flexibility of the user. Thus, we performed a comparison
on the current presentation tools in Section 2.1 to identify the limitations of the sequen-
tial slide paradigm. An important feature of presentation tools is the possibility to have
themes in a presentation. But how are the concepts of themes and presentations linked
together? Is it flexible enough or are certain limitations present? If so, how can we solve
these limitations?

The web continues to evolve and the concept of Rich Internet Applications is getting
more attention. Hence we found it interesting enough to look whether current web
technologies are mature enough to use for a large application like a presentation and
theme authoring tool. We introduce the current technologies in Section 2.2 in which
we try to find answer to the question ‘What are currently the best technologies to use
for a RIA?’. User interface languages are used to describe a user interface and possibly
are a major part of our implementation. They allow the developers to model, design
and implement a user interface. Therefore, we investigate in Section 2.3 the latest user
interface languages and their potential for this project.

10 Identifying the shortcomings of current tools

2.1 Identifying the shortcomings of current tools

The problem with current presentation tools is that we never question them. Many
people only know Microsoft PowerPoint as it is the primary tool used when educating
people. For many people, the word PowerPoint is synonymous for presentation, just like
Internet Explorer was once the synonym for Internet or Windows for operating system.

In order to design a good presentation tool, we took a look at what the shortcomings
of current popular tools are. What are mistakes that we can avoid? Which features
of current tools can we reuse and improve? We had to avoid that we simply made a
presentation and theme editor for MindXpres only based on how we use current tools.
For instance, certain areas like the editing of themes could perhaps be improved.

We tested several presentation tools, to be more specific:

• Microsoft PowerPoint Mac 2011: version 14.0 build 100825
• Apache OpenOffice Impress: version 3.4.1 build 9593
• Apple Keynote: version 5.3 build 1170
• Prezi: online version1

We compared these tools on several points which we classified into two categories:
presentation editing and theme editing. The reason behind this is that the goal of
MindXpres is to separate the content and presentation. It should be possible to edit,
for example, a theme of a presentation separately. We looked at the presentation tools
to see if they have such division and how they implemented the presentation and theme
editing. Questions we asked ourselves for when the user is editing a presentation are:

• How can one add presentation elements?
• How can one move presentation elements?
• How can one resize presentation elements?
• How can one reuse slides of presentations?
• How can one edit the structure of a presentation?
• How can one choose a different theme for a presentation?
• How can one zoom in a presentation?

The questions that we asked ourselves when the user is editing a theme are:

• How can one edit the current theme of a presentation?
• What are the effects of presentations that use a theme that was edited?
• How can one edit the styling of text elements?
• How can one change the backgrounds of slides?
• How can one get a preview of the theme you are editing?

1http://prezi.com

http://prezi.com

Identifying the shortcomings of current tools 11

2.1.1 Presentation editing

2.1.1.1 Adding new elements

When creating a presentation, one is constantly adding elements: text, images, videos,
links and so on. A presentation can be seen as a collection of different media elements
that are put in a certain structure. We compare PowerPoint, Impress, Keynote and Prezi
to see how they allow users to add new elements to a presentation. When identifying the
different input methods, we also evaluate them to see if there are certain shortcomings.

Before we take a look at how elements can be added in the different presentation tools,
we also look at what elements can be added. We have done a basic comparison that is
viewable in Table 2.1. It only takes one glance at the table to see that PowerPoint is
the clear winner here as it supports the most possible elements. However, we have to
make a remark on the results. Some elements belong to slides (like the date/time, slide
number and so on) which is obviously lacking in a tool like Prezi as this is not meant to
have slides in a presentation.

PowerPoint Impress Keynote Prezi
New slide + + + - 1

Duplicate slide + + + - 1

Import slide + + - - 1

Section + - - -
Comment + + + -
Text box + - + +
Header + - - -
Footer + - - -
Date/time + + - -
Slide number + - - - 1

Picture + + + +
Audio + + + +/- 3

Movie + + + +/- 2

Symbol + + + +
Shape + + + +
Hyperlink +/- 4 + -
Table + + + -
Chart + + + +
1 Prezi has no notion of slides
2 Only YouTube video’s are supported
3 Only background music is possible
4 A hyperlink can only be added to an existing ele-

ment

Table 2.1: Comparison of the elements users can add in the presentation tools

PowerPoint Adding elements in PowerPoint can be done in three ways: via a menu
at the top of the application, via the ribbon or by slots in a presentation itself.

12 Identifying the shortcomings of current tools

The menu at the top is a very basic method and can be seen in Figure 2.1. It is straight-
forward and Microsoft tried to make it as easy as possible, that’s why they divided the
menu in different sections to group elements together. Some of the menu elements are
grouped in a very logical way, for example the three possibilities to add slides (new,
duplicate and import) are grouped together. Others are not that logically grouped like
for example Text Box and Slide Number. A total of 21 elements in a menu is certainly
a lot and some elements in the menu are very abstract. For example, what makes the
difference between a symbol and a shape? Certain shapes like arrows also appear in the
symbols list. As the organisation is not that clear, this may cause troubles for the users.
More advanced users might prefer the elements to be alphabetically ordered while more
novice users might prefer a hierarchical structure [50].

Figure 2.1: The PowerPoint menu that guides the user in adding elements to a presentation

The second way in PowerPoint to add elements is via the ribbon as shown in Figure
2.2. This looks more limited as they only provide four links: Text, Picture, Shape
and Media. Note that these four links group different elements together. For example
via the Media link, it is possible to add a video or audio clip. However, this is not
that logical as pictures have to be added via the Picture link although pictures are
also a type of media. The other problem with the grouping in the ribbon is the fact that
not all options are available to the user. This is contrary to the menu at the top of the
application where all options are available. For example slides and comments cannot
be added via the ribbon. In situations where we want to build a presentation based on
slides of other presentations, the ribbon is useless.

Figure 2.2: Via the ribbon, PowerPoint offers a shortcut to add common elements

The third and final way to add elements in a PowerPoint presentation is via the slides

Identifying the shortcomings of current tools 13

themselves as shown in Figure 2.3. When a user has added a slide, this slide has slot-
like elements. In each slot, there are six links which allow a user to add: tables, graphs,
SmartArt graphics, pictures, clip art and videos. Again we see a lack of all the possible
elements. For example, it is not possible to add audio elements.

Figure 2.3: PowerPoint shows symbols where you can click on the add content to slides

We can conclude that for adding elements in a PowerPoint presentation, the user is best
to rely on the menu at the top of the application as their choice is limited when using
any of the two other methods. Combining interface types like the WIMP and the Ribbon
can possibly lead to confusion as both types do not support the functionality to add the
same elements to a presentation, a conclusion that is also described in [20].

Impress OpenOffice.org Impress offers three ways to add elements to a presentation:
via a menu, via a dialogue that can also be turned into a toolbar and via links in the slots
on slides.

The first way of adding elements via a menu in the top of the application is just like
it is done in PowerPoint and is shown in Figure 2.4. The difference with PowerPoint
is that there is less grouping in the menu elements. There is also a difference in what
elements one can add (see Table 2.1). For example, it is not possible to import slides
from other presentations. We can conclude that the amount of available functionality is
different. There is also a grouping in the menu but it is difficult to find out on which
basis the grouping took place. A wild guess is that they tried to divide it into media and
non-media elements.

An alternative is to use a small dialog which also can be attached as a toolbar to the top
of the application, see Figure 2.5. Here we see the same problem as with the Ribbon
interface used in PowerPoint that certain elements can not be added to the presentation
via this interface type.

A third and final way to add elements to presentations is just like it is possible in
PowerPoint: directly on the slides as can be seen in Figure 2.6. We see here the same
problem as in PowerPoint: the choices are limited and there are less possibilities than
via the other interfaces.

14 Identifying the shortcomings of current tools

Figure 2.4: A menu at the top of the Impress application allows the adding of elements

Figure 2.5: Via a small dialog that can also be added as a toolbar, Impress offers an alternative
to the menu to insert elements

We can conclude that Impress has copied a lot of functionality from PowerPoint. This
similarity was even more apparent in the past when the Ribbon interface was not yet
introduced in PowerPoint. In those days, Impress could be thought of as a “PowerPoint
light”.

Keynote As shown in Figure 2.7, there are multiple buttons available at the top of the
application to add elements. They are however very limited and for example, adding
media elements is not possible via these buttons. So how can the user add images,
videos, audio and so on? To add these types of media, the user has to go via the menu
Insert and strangely enough has to select the option Choose... as we can see
in Figure 2.8. This is quite cumbersome and not user-friendly. However, there is a
button at the top of the application which allows the user to add media. A problem with
this button is that Keynote expects the user to have added their pictures in iPhoto, their
music in iTunes and so on. Another possibility to add media to a Keynote presentation
is by dragging the original media files from the Finder and drop them into Keynote.
Although this allows extra flexibility, the user never gets any hints that this functionality
is available. We therefore conclude that although there are multiple options to add media
to a Keynote presentation, the possibilities are either limited or rather hidden.

Prezi Prezi is the only one out of the four presentation tools that offers one interface
to add elements to a presentation. This is done via a menu at the top as we can see
in Figure 2.9. When the user clicks on an element in the menu, a possible dialogue
appears for defining the settings. For example, when adding an image, the image itself

Identifying the shortcomings of current tools 15

Figure 2.6: There are buttons on the slides available to add elements

Figure 2.7: At the top of the application, multiple buttons to add elements are available

is requested either via a Google Image search1 or via an upload. After this, the element
is simply added on top of the presentation, somewhere on the screen where the user is
editing. A Processing... message is shown after which the element is actually shown in
edit mode like in Figure 2.10. This is confusing as it introduces a problem: the interface
elements in edit mode to actually edit the element are shown over the actual element. In
case of adding an image, the user cannot see the actual image itself unless they first exit
the edit-mode by clicking outside of the area covered by the element. There is also a
notable difference between the different types of elements that a Prezi presentation can
handle, as illustrated in Table 2.1.

The menu does not offer that much options and a strange thing is that there is no option
to add text. In order to add text, the user has to double click in an empty part of the
presentation after which the option appears to directly add text as shown in Figure 2.11.

Conclusion Both PowerPoint and Impress offer three different ways to add elements
to a presentation, Keynote offers two and Prezi offers only one. The three options in
PowerPoint and Impress are not alternatives for each other as not all input interfaces
offer the same options. This makes it possibly more confusing to the users of these
presentation tools to know how they can add elements. Even if they know that there are
multiple possible methods to add elements it is not clear which method will allow them
to add the type of element that they want to add. In Keynote it is also confusing as the
user has to go through menus that at first do not suggest that they will allow them to add
an image. Adding media can happen via two interfaces: either via a button that forces
to have the media already imported in iPhoto or via drag-and-drop functionality that is
not really visible to the user. As Prezi only provides one menu, it represents the clear
winner as they should not fail in providing a consistent interface. However, adding text
is not possible via the same menu.

1http://images.google.com/

http://images.google.com/

16 Identifying the shortcomings of current tools

Figure 2.8: There is a menu available in Keynote to add all possible elements

Figure 2.9: Adding elements in Prezi is done via one menu

2.1.1.2 Moving elements in a presentation

When a user has different elements in a presentation, they might want to change the
order or the placement of these elements. The reason behind this is simple: presentations
evolve and it can not be expected that users will add all elements in their presentation
in the right order. We compare the three presentation tools to see how they handle the
movement of presentation elements. One interesting aspect to compare in the case of
PowerPoint, Impress and Keynote is whether or not they allow the user to move elements
from slide to slide.

PowerPoint When hovering with the cursor over an element in PowerPoint, the cursor
changes in four small arrows pointing each in a different direction (N, E, S, W). This
is the default cursor to show the user that they can move the element they are currently
hovering with his cursor. If the user then clicks and holds the mouse button, they can
drag the element to a new place. We notice here that this is not always the case. For
instance, when the user hovers over a text box, the cursor only changes into a move-
cursor when the user hovers over the border of the element. When hovering over the
actual content of the text box, the cursor changes into a vertical bar to denote that the
content can be edited directly. This might be confusing as it is not always immediately
clear to the user what the border of a text box is. Some text boxes may not have a border
or have a transparent border. Another problem that we have identified, is that it is not

Identifying the shortcomings of current tools 17

Figure 2.10: The edit mode in which an element can be. Via hovering interface elements, actions
can be performed on the element

Figure 2.11: Adding text in Prezi can be done by a double click in an empty part of the presen-
tation

possible to move elements from slide to slide. Elements are added per slide and have to
remain on that slide. The only way we could find to move an element to another slide
without re-adding it, was to cut and paste it. This is not user friendly as it gives certain
limitations to the user.

Impress There are two big differences between Impress and PowerPoint. The first
one is the fact that the user is not informed that an element is moveable when hovering
over it. The cursor never changes and thus the user should assume that he is hovering
over an element that is moveable. The second difference can be found when actually
moving the element. While in PowerPoint one has to have the cursor changed into the
four pointing arrows, the user in Impress can simply click on any element and drag
it around. However when using a text box, things are even more different. Like in
PowerPoint, the text box can be moved when clicking on the border. The text box is
however also moveable when clicking on the actual content. If the user clicks between
the text and the border, the element is not moved along with the cursor of the user. Thus
we note that there is a sort of “dead space” in text boxes.

Keynote Keynote has a better usability than Impress and PowerPoint when it comes
to moving elements. It does not matter where you click on an element, it will always
be moved. There is no dead space like in Impress and the moving of text boxes is not
limited to the borders like in PowerPoint. Just like in Impress, the user is not informed
when they are hovering over an element that can be moved. Moving elements from one
slide to another slide is also not possible, just like in PowerPoint and Impress.

Prezi As Prezi does not have the concept of slides, there are only two possible com-
parison points. How does the application allow the user to select elements to move them

18 Identifying the shortcomings of current tools

and how does the user get informed that they are hovering over a moveable element?
The user gets informed by a minimum bounding box that appears when hovering over
elements. Via this, the user immediately knows that they can move the element and also
where they can click to move the element. When they click in this minimum bounding
box and starts dragging the cursor around, the element itself is moved.

Conclusion The clear winner here is Prezi as it solved all the issues that appeared in
PowerPoint, Impress and Keynote. Elements get a minimum bounding box around them
when the user hovers over them, thus notifying the user where they can click to move
the element. Clicking on the element is also not limited like it is the case in Impress
where there is a dead zone or like in PowerPoint where one is limited to the border of a
text box.

2.1.1.3 Resizing elements in a presentation

One of the first things most users do when they have added a new element to a pre-
sentation, is changing the size of that element. The reason is simple: elements have
a default size and may not fit in correctly at first. We compare the four presentation
tools to see how they tackle the resizing of presentation elements and what the possible
shortcomings are.

PowerPoint Resizing elements in PowerPoint can be done after selecting them. This
shows extra interface elements which can be seen in Figure 2.12. Everything acts like
one would expect: when clicking on one of the dots in a corner, the element is resized
in width and height at the same time. Like in many applications, when holding the shift
key, the aspect ratio will be preserved. This is mostly a feature that users want when
resizing an image. The strange thing is that in PowerPoint, the aspect ratio is preserved
by default when resizing an image based on one of the dots at the corners of the image.
The user is thus limited when resizing images. It is for instance not possible to make an
image two times as wide and half as high in one movement.

Figure 2.12: Resizing elements in PowerPoint is possible via the small dots after selecting the
element.

Impress To resize elements in Impress, they first have to be selected. After that, eight
small squares appear on the sides to allow the resizing in all directions. Just like one can
expect, selecting one of the squares at the corner of an element allows the user to resize

Identifying the shortcomings of current tools 19

in both the height and the width dimension of the element. When holding the shift key,
the aspect ratio is saved during the resizing. This is especially helpful when resizing
images to prevent possible distortion of the actual picture.

Keynote Keynote allows the user to resize elements in the exact same way as Impress.
Image resizing however is limited as is the case in PowerPoint: the aspect ratio is always
preserved and so it is, for example, not possible to double the width of an image while
holding an equal height.

Prezi The resizing of elements in Prezi is quite odd: the aspect ratio is always pre-
served. Users do not have control over the fact if the aspect ratio should be respected
or not. Because of this limitation, only four possible points are available which the user
can select to resize an element: one in each corner.

Conclusion There are several notable differences in how the presentation tools have
tackled the problem of allowing the user to resize presentation elements. PowerPoint
and Keynote preserve the aspect ratio by default when resizing images while Prezi does
this with all types of presentation elements. Keynote and Impress have implemented
the same features for presentation elements that are not images. These are more flexi-
ble: resizing via eight dots to allow resizing in all possible directions and the optional
preserving of the aspect ratio by holding the shift key.

2.1.1.4 Reusing slides of a different presentation

When a user has to create a lot of presentations that are very similar, they would like
to be able to reuse certain slides. As we can see in Table 2.1, not all presentation tools
support the importing of slides. A comparison is still interesting to do as the importing
itself may be very different for each presentation tool.

PowerPoint In PowerPoint, the Insert menu provides the functionality to import
slides as can shown in Figure 2.1. When clicking through, a dialogue appears (after
the user has selected another PowerPoint presentation) in which they can now select the
slides that they want to import. This dialogue is shown in Figure 2.13. Although the
user gets an overview of all the slides they can select, the view can not be changed. It
is for example not possible to see in more detail what is on the slides. If a user knows
their slides very well, this is not really an issue. But if they import the slides of a
presentation that they do not know that well, they might get stuck. A welcome feature
of the dialogue, is that it does not disappear right after the user has selected slides
and clicked on Insert. The dialogue remains visible, allowing the user to select, for
example, slide 5, insert it and then select slide 3. The user has full control over the
sequence of inserting slides.

20 Identifying the shortcomings of current tools

Figure 2.13: Importing slides in PowerPoint works via a selection-menu

Impress Impress allows the importing of slides but this is not that obvious at first.
Their menu does not have something like a Import slides option. It is however possible
via the File option in the Insert menu. This will result in a dialogue that allows the
user to select a file after which they get a dialogue as can be seen in Figure 2.14. We
can clearly identify that this is not user friendly at all as only the slide names are shown.
There is no preview and in the case the creator of the presentation has not defined a clear
slide title, the default Slide x is shown. So although the feature is available in Impress,
two major problems can be spotted: it is not easily accessible and it is not user friendly.

Keynote Keynote allows the user to import slides in a presentation if the originating
presentation is also opened in Keynote. The user is able to simply drag and drop slides
between multiple presentations. There is no wizard available to the user and this func-
tionality relies on the knowledge of the user as there is no visual hint that this is possible.

Prezi As Prezi does not support the concept of slides, it appears to be logical to say
that the feature is not available. But as slides are parts of presentations, we checked
whether it is possible to insert parts of another Prezi presentation or maybe import a
presentation that was created in another tool. As we can see in the Insert menu in Prezi

Identifying the shortcomings of current tools 21

Figure 2.14: Inserting a presentation in Impress results in the possibility to import the slides

(see Figure 2.9), it is not possible to import another Prezi presentation but it is possible
to import a PowerPoint presentation. Doing this is not a perfect import however as a
lot of colours and styling of the original slides is lost. When the user has dragged the
slides from the sidebar into the Prezi presentation, they have to confirm that they want
to add the slides on the spot where they dropped them. Instead of giving an annoying
confirm dialogue, a small box is presented around the added slide with matching icons
for confirming or cancelling the addition of the slides to the presentation.

Figure 2.15: Importing a PowerPoint presentation in Prezi gives the user the possibility to import
slide by slide

Conclusion There are a lot of differences in how the presentation tools handle the im-
porting of slides. At first, there is Keynote which does not support it, then we have Im-
press which hides the feature from the user and is not user friendly at all. The tools that
actually support importing slides via a menu option are PowerPoint and Prezi. Sadly,
they are limited in terms of which slides they can import and the interfaces are not
always user friendly.

2.1.1.5 Editing the structure of a presentation

The structure of a presentation is very important as it gives the presenter a basic order
in which the content will be shown. In most tools this is a linear structure and Prezi is

22 Identifying the shortcomings of current tools

the exception in the tools that we compare. We compare the tools to see how easy it is
to change the structure of the presentation. In most tools this will be a comparison to
see how the user is able to change the order of the slides in the presentation.

Figure 2.16: PowerPoint, Impress and Keynote offer the user an overview of his slides on the left
side of the application. From L to R: PowerPoint, Impress and Keynote

PowerPoint In PowerPoint, an overview of the slides is available to the user. The
user can choose between an overview of the slides themselves or the outline of the
presentation. In both views, elements are moveable so the user can easily change the
order of the slides. Depending on the width of the panel in which the overview is shown,
the content is resized. A wide panel will result in wide previews of the slides.

Impress Impress offers a similar overview of the slides as in PowerPoint. It is however
not possible to get an outline in the same panel. There is a possibility to get an outline
but this is simply a different view to the presentation, which does not allow to change
the order of the slides via this view. Impress is thus more limited than PowerPoint when
it comes to changing the order of the slides in the presentation.

Keynote While in PowerPoint and Impress the previews of the slides resize according
to the available width in the overview panel, this is not possible in Keynote as the panel
is not resizeable. Keynote provides a very small selection menu at the bottom of the ap-
plication to choose between small, medium and large previews. These are not sufficient
enough to give the user a good overview of the presentation as even in the large setting,
the text is barely readable. The outline of the presentation is just like in Impress not
usable to change the order of presentations, the user is limited to the overview.

Prezi Prezi is quite different to the other presentation tools as it steps away from a
linear structure and does not have the limitations of slides. A presentation is simply a
collection of elements which can be connected via a path. But since this path is linear,

Identifying the shortcomings of current tools 23

Prezi gives a very similar overview of a presentation as can be seen in Figure 2.17. Via
the Edit path button, the user can go into path editing mode where they can add new
elements to the path and change it. If they do not click this button, the only thing they
can edit from the path is the order in which elements are shown. This is similar as in the
other tools where the user can move elements in the overview panel. This overview is
necessary to give a better overview of how the path in the presentation goes. The reason
behind this, is that in the presentation itself the path is only noted via numbers on the
elements; the actual transitions are not visible.

Figure 2.17: Overview of the presentation just like in the other tools

Conclusion As expected, PowerPoint, Impress and Keynote are very similar in how
they give the user the possibility to change the order of slides: all have an overview
panel in which the user can move the slides. The curious thing was that Prezi also
provided this feature although it does not support slides. It simply shows the sequence
of elements that are defined by the user in a path. The ordering of elements in the path
is directly editable, if the user wants to edit the path in more detail, they have to go in
edit path mode. A more consistent interface may be preferable. Also, the path itself is
not that easy to see in a Prezi presentation when not in edit path mode.

2.1.1.6 Choosing a different theme for a presentation

When companies change name or their in-house style, the presentations all have to
change too. This is only one example of where it is profitable if the user only has
to change the theme of their presentations without having to edit them in detail. We
compare the presentation tools to see how they implemented themes and how this affects
the possible functionality to change the theme of a presentation.

PowerPoint As can be seen in Figure 2.18, choosing another theme in PowerPoint
is easily done via the Themes tab in the ribbon which gives an overview of all the
available themes. Sadly, there is no live preview available which forces the user to
always select a theme to see what the result is.

24 Identifying the shortcomings of current tools

Figure 2.18: Choosing another theme in PowerPoint can be done via the ribbon

Impress Impress does not really implement themes as in PowerPoint which is very
noticeable. Themes exist but in a very limited form. In order to apply a new theme,
the user has two possibilities. The first one is that the user opens the Task pane after
which they can select a new master for the slides. The other possibility is to select all
the slides, right click and select Slide design in the menu to change the styling of
all the slides. We note that this is very cumbersome and not user friendly as no live
preview is available in both methods and the user cannot simply change all styling of all
slides without selecting them all first or by making sure a very specific pane is visible
to them.

Figure 2.19: Choosing another theme in Keynote is relatively similar to PowerPoint

Keynote Changing the theme of a presentation in Keynote is very similar to changing
the theme in PowerPoint as we see in Figure 2.19. Via an easy accessible button in the
top of the application, a theme chooser appears in which theme thumbnails are shown.
The user is obligated to click on them to see any changes in the presentation as there is
no live preview available.

Prezi In the top part of the Prezi application there is a large button called Template
and when clicking on it, the user sees a hovering menu that allows them to select an-
other theme. This is very similar to how the choosing of a theme is done in Keynote.
Unfortunately, no live preview is available but there is a Revert to original button which
allows the user to revert back to the original theme that was set on the presentation.

Conclusion All the theme choosers are the same: they provide a thumbnail of the
themes without live previewing. This is a missed opportunity as this forces the user to

Identifying the shortcomings of current tools 25

Figure 2.20: Choosing another theme in Prezi is very similar to Keynote

applying a theme and possibly redoing the process if they do not like it. Prezi is the
only tool with an extra feature: the possibility to go back to the original theme of the
presentation.

2.1.1.7 Zooming in a presentation

When editing a presentation, the user might want to zoom in to edit for example a shape
more in detail. Or maybe they would like to have a better overview of the presentation
to see the whole context of all the elements that are present in the presentation. We
compare the possible zooming capabilities of the presentation tools as this is one of the
major features of Prezi. We want to know how other tools have tackled the zooming
feature.

PowerPoint Zooming in PowerPoint is possible via a small slider at the bottom of
the application. This allows the user to easily zoom in and out. In order for the user
to specifically say Zoom to 150%, the user has to go via the View menu at the top of
the application where they will get the dialogue as shown in Figure 2.21 after some
clicks. Although this gives us fine control over the zooming, it does not have a live
preview function. The user can also zoom via scrolling if they hold the Ctrl key on their
keyboard. Zooming is limited to the current slide that the user is viewing. If they want
to zoom in the presentation, they can switch to the slide sorter. The slide sorter gives
an overview of all the slides in the presentation. The user is able to zoom in this slide
sorter which can help to grasp the overall structure of the presentation.

Impress Unlike in PowerPoint, there is no slider available to the user in Impress to
zoom. The user either has to double click on the printed zoom percentage at the bottom
of the application or they have to hold the Cmd key on their keyboard after which he
can scroll to zoom. Just like in PowerPoint, there is no live preview available when
the user zooms via the dialogue as shown in Figure 2.22. There is like in PowerPoint

26 Identifying the shortcomings of current tools

Figure 2.21: One of the possible interfaces to zoom in PowerPoint

a slide sorter available but in here the user cannot zoom. The slide sorter is thus only
interesting to help the user with sorting slides.

Figure 2.22: One of the possible interfaces to zoom in Impress

Keynote Zooming in Keynote is even more limited than in Impress. There is only
a small dropdown menu available at the bottom of the application with a few default
percentages like 50% and 150%. The zooming is thus very limited for the user. Another
problem in Keynote is that the zooming is limited per slide. There is no equivalent for
the handy slide sorter like the one in PowerPoint which helps the user to better grasp
the overall image of a presentation.

Prezi Zooming in Prezi works like a charm, just like we hoped. Simply by scrolling,
the user’s screen zooms. It zooms on the part of the presentation where the cursor is
hovering, thus allowing zooming without having to pan to the correct position. It can be
done in one fluid motion. There are also two small buttons available to zoom in and out
if the user prefers clicking.

Conclusion We had high expectations for the zooming aspect in Prezi and had a feel-
ing that zooming in the other tools would not be that great. As it turns out, we were
correct. Out of the regular tools, PowerPoint has the best zooming capabilities. With
the addition of live preview, this would be very powerful. Prezi excels in every aspect
of the zooming and they have implemented the zoomable interface very well.

Identifying the shortcomings of current tools 27

2.1.2 Theme editing

2.1.2.1 Editing the current theme of a presentation

If the user is editing a presentation and uses a theme, they might come to the conclusion
that some things in the theme are not what they want. Maybe they want to have a bigger
font size for the text or a different background colour. So we checked on how easy it is
to start editing the current theme of a presentation.

PowerPoint When the user clicks on the tab Themes in the ribbon, they see the theme
options like in Figure 2.23. Via this, it is very easy to change the theme colours, the
theme fonts and the theme backgrounds of the currently active theme. If they want to
edit more in detail, he has to start editing the master slides which allow a more fine-
grained edit.

Figure 2.23: Editing a theme in PowerPoint is easily accessible via the Themes ribbon tab

Impress To start editing the current theme of a presentation in Impress, the user has
to open the master view which is accessible via the View menu. It may be confusing to
use the term master pages as there is no mention of an actual theme editor in Impress.

Keynote The user can directly edit the master pages of a presentation. To do this,
they have to open the master pages pane which is not that trivial. It is done by reducing
the size of the slides overview pane or via an option in the View menu. The result can
be seen in Figure 2.24. Via this, the whole look of a presentation can be edited. The
problem is that the word theme is never mentioned until the user tries to save it. This
can make it very confusing for a user to know that they have to edit the master pages to
change the actual theme of a presentation.

Prezi In Prezi there is a wizard available that helps the user to changing the definitions
of their theme. In order to open this wizard, the user simply has to click on the button
Templates after which the option Customize Current Theme allows them to edit the
current theme that they are using in their presentation.

Conclusion Editing the current theme of a presentation is not always that easy. Prezi
has the most obvious way to edit the current theme although it is still somewhat hidden.
PowerPoint is the only one out of the remaining three presentation tools that allows the

28 Identifying the shortcomings of current tools

Figure 2.24: The master slides in Keynote are available in the pane above the slides

Figure 2.25: A wizard can guide the user into changing his theme

user to edit the theme on a higher level without requiring that the user edits the master
pages for basic customisation like different colours.

2.1.2.2 How editing a theme affects presentations

We wanted to compare what the effects were on presentations that use themes. For
instance, let us assume that we have a theme 1 and two presentations A and B. If both
presentation A and B use theme 1 and theme 1 is changed while editing presentation A,
is presentation B also changed? If yes, this means that presentations have a reference
to their themes but if the answer is no, this means that theme settings are copied into
presentations.

PowerPoint We noticed that in PowerPoint, themes are saved in separate files. When
we replaced a theme file but kept the same name, nothing changed for the presentations
that had that theme activated. The only thing that changed was in the overview of

Identifying the shortcomings of current tools 29

themes: there the thumbnail changed, suggesting that the presentation editor knew that
the theme was changed. When looking further, we found out why the presentation editor
knew that the theme was changed but why it did not alter the presentations. The reason
is that presentations keep an internal copy of the theme that is currently applied. This
can be seen in Figure 2.26 when changing theme: the first theme changes along when
selecting another theme as it represents the current theme that is saved internally in the
presentation.

Figure 2.26: Every presentation seems to have their own theme

Impress As we saw in Section 2.1.1.6, Impress has its own complicated methods to
choose the theme for a presentation. Changing a theme does not affect all presentations
that use this theme. It is just like in PowerPoint: themes are copied into presentations
so further changes to the original files are not visible.

Keynote The same story goes for Keynote as for PowerPoint and Impress: theme
settings are saved in the presentations themselves.

Prezi Presentations are not affected in Prezi as it was impossible to overwrite a theme.
Every time a theme was saved, it was added as a new theme. Thus when two presenta-
tions had the same theme applied, it had no effect when the theme in one presentation
was changed as it was always saved as a brand new theme.

Conclusion In all cases, the changing of theme definitions never affected previous
created presentations. This is on the one hand a good thing as this prevents the user
from loosing possible custom styling definitions. On the other hand, if the user wants
to change a theme that was applied to a bulk of presentations, they are forced to go
over all their presentations and to select the new theme. By saving theme definitions
in the presentations themselves, as done in PowerPoint, Impress and Keynote, a lot of
duplicate information is created which could easily be avoided.

2.1.2.3 Changing the style of text elements

The styling of text is one of the many things that users may want to change in their
themes. A bigger font size, a different font family and a different colour for the text are
just a few examples.

30 Identifying the shortcomings of current tools

PowerPoint As shown in Figure 2.23, changing things like the font families for a
complete theme is very easy. When the user wants to have more control over what they
change (for example when they want to combine multiple font families), they have to
go into the master slides to change the individual appearance of elements. Although this
gives them lots of freedom as the same editing features are offered as in the presentation
editor, the user needs to know that they can edit themes on two levels. Either more
abstract via the theme options where they can select from predefined possibilities or via
the master slides editor which allows more fine-grained control.

Impress To change the styling of text elements in a theme, the user has to go into the
master view in Impress. Via this, they have the regular controls to alter the settings for
text, just like how they can change them in a presentation.

Keynote Changing the styling of text elements in a theme in Keynote is the same as
when the user wants to edit the styling of text elements in a presentation. The only
difference is that they have to switch to the master slides to make the changes in the
theme itself.

Prezi In order to change the styling of text elements in Prezi, this has to happen via
the wizard. In step 2, the user can define the styling for three elements: title, subtitle and
body. The only thing that they can define is the font and the colour, both of which are
fairly limited in choices as can be seen in Figure 2.27. While in the presentation editor
the styling could be done in the presentation itself, the styling in a theme has a different
interface in the form of a theme wizard.

Figure 2.27: The styling of text in Prezi is done via the theme wizard

Conclusion Some presentation tools provide the same interface for styling text ele-
ments in the presentation editor as in the theme editor. However, in most cases the user
has to go edit the master slides. This may be confusing as the concept of theme and
master slides is not always that clear. Some tools like Impress even offer templates
which makes it even more confusing. Still, as most presentation editors offer the same
interface, it is not that hard to change the styling of text elements.

Identifying the shortcomings of current tools 31

2.1.2.4 Changing the background of slides

PowerPoint As illustrated in Figure 2.23, the background of slides can be changed
directly from the ribbon. The user can choose between default backgrounds, set some
special gradient themselves or choose an image as a background. When doing this via
the ribbon, the changes are applied to all types of slides in PowerPoint. For a more fine-
grained control, the user has to go to the master slides editor where they can change the
background for each type of slide.

Impress To change the background that is used in a theme, the user has to go to the
master view and there they can change the background image just like during the editing
of a presentation.

Keynote Changing the background used in a theme has to happen via the master
slides. It is not as easy as one would hope. Firstly, the user has to have the inspec-
tor open after which he can go to the correct tab to select how the background should
be filled as can be seen in Figure 2.28. The option is thus sort of hidden away and is not
user friendly.

Figure 2.28: Changing the background has to go via the inspector

Prezi The changing of a background is similar to that of changing the styling of text
elements in Prezi and can only be done via the theme wizard. It is also very limited at
the moment. The user can only choose between different colours like can be seen for
text elements in Figure 2.27. Images are not possible but they are currently working on
the addition of 3D backgrounds.

32 Identifying the shortcomings of current tools

Conclusion In all presentation tools, the changing of the background is similar as
to how to change the styling of text elements. Some tools are sadly very limited or
confusing. Prezi for example only allows a background colour while Keynote forces the
user to go into a confusing interface called inspector.

Identifying the shortcomings of current tools 33

2.1.3 Conclusion

We performed a comparison with four major and most popular tools: Microsoft
PowerPoint, Apache OpenOffice.org Impress, Apple Keynote and Prezi. For each of
these tools we always used the most recent version on Mac OS X. The reason for this, is
that in this way we would be certain that the operating system was not a possible limiting
factor in the features that the tools supported or in the interfaces that are available.

We asked ourselves several questions on how certain features are implemented in the
current presentation tools. We could divide these questions in two categories: questions
related to editing presentations and questions related to editing themes. In total we had
seven questions for the presentation editing and four for the theme editing. We will now
formulate our overall conclusions about the features that we investigated in these tools.

Presentation editing The support for different types of media depends greatly on the
used presentation tool. While PowerPoint supports a whole lot of media types, Prezi
is more limited. For example, Prezi only directly supports videos that are on YouTube.
We could not find a way to directly add our own video file. This is not good as this
forces a user to possibly choose a different presentation tool or to change their way of
presenting certain information. The tool should never be a limit for the user. The user
interfaces in the current presentation tools are either confusing or incomplete. We can
conclude that no presentation tool is able to give the user a consistent interface to add
new elements to the presentation that they are editing.

Moving elements in a presentation should be easy and straightforward as it is one of the
basic operations that a user performs when editing a presentation. It turns out that there
is quite a difference in how the four presentation tools tackled this problem. It is not
possible to simple click anywhere on an element and drag it around in every tool. The
sad conclusion is also that in all slide-based tools, dragging from slide A to slide B is
not possible.

Resizing elements in a presentation only differs on how they handle the saving of the
aspect ratio. All tools work intuitively enough to allow the user easy resizing of ele-
ments. Sadly, some limit the user in how he resizes images as they force to keep the
aspect ratio.

Importing of slides is possible in all tools except for Keynote. We notice that all import-
ing is a by copy operation, not by reference. We conclude that there is a duplication of
information every time a user imports slides.

The editing of the structure of a presentation is generally not really a problem as most
tools offer a slide overview or a path editor in the case of Prezi. The editing of the
structure in slide-based presentations is only limited to changing the order of the slides.
The path editor in Prezi allows a more flexible way to define and change the structure.
The reason behind this, is that it works with a path that can connect different elements
instead of only slides.

34 Identifying the shortcomings of current tools

The biggest problem with choosing the theme for a presentation, is the lack of a live
preview. Users always have to apply the theme after which they can evaluate if the
change is what they want.

All presentation tools support a form of zooming when editing a presentation. Zooming
comes in handy when the user wants to edit things in more detail like for example the
resizing of a picture or aligning elements. Sadly, the zooming in some presentation tools
is very bad or extremely limited.

Theme editing Editing the current theme when working in a presentation is not al-
ways possible. When it is possible, most presentation tools allow you to edit the theme
that was copied into the presentation itself. This may be confusing for the user as the
original theme files are not edited unless they overwrite them explicitly. In some cases
like in Prezi, it even is not possible to overwrite old themes.

This has its effect on how presentations react when a theme is changed. Because of the
internal copy of the theme, no presentation has a changed appearance. This may not be
interesting for the user. For example in a company, it is possible to have a general theme
for all the presentations. But if the company changes name or look, the presentations
will not be updated unless the user walks over them individually to update the theme
that is used in the presentation.

Changing the style of text elements and the background of slides could in general be
achieved by using the same interface as when editing the presentation. This is good as
it gives a certain consistency but sadly, most of the actual editing could only be started
after going through some menu’s and dialogues. A good example of this is the inspector
dialogue in Keynote and the use of master slides or master pages in other presentation
tools.

Overall conclusion Some features were fairly good and intuitively implemented in
certain presentation tools. There are however a lot of features that are very poorly
implemented. Either these features are hidden very deeply away in the interface, they
have inconsistent naming or they are very limited in the options that they provide. A
more extensible and consistent interface would be very beneficial for most of the tools.

Current available technologies 35

2.2 Current available technologies

Most of the presentation tools mentioned in section 1.1 are built in languages like C++,
C# and so on. The only exception is Prezi which is more webbased. However, it ex-
tensively uses Flash which requires a browser plugin. The easy choice for developing
a cross platform application would be to look at a language like Java which is intended
to let application developers work according to the WORA principle: write once, run
anywhere. However, this means that the user still has to have Java installed on his ma-
chine. What if we want our application to run on mobile phones and tablets, which do
not always support Java?

An alternative is to choose web technologies as a basis for our application. More than
ten years ago, it was already predicted that web browsers would become a widely used
user interface [61]. If we will be building the presentation tool for use in a web browser,
this means that it would have to be programmed in HTML, CSS and JavaScript. As
the web is constantly evolving, the choice to go for the latest technologies is trivial:
HTML5 and CSS3.

HTML5 1 is the successor of HTML 4.01. Currently, HTML5 is a work in progress by
the W3C and is expected to go into Recommendation status in 2014 2. HTML5 contains
new versions of XHTML 1 and the DOM2 HTML API 3. Previously, these were defined
in separate specifications but now they are merged in one standard.

With the arrival of HTML5, new elements and attributes were introduced and some ele-
ments and attributes were removed [72]. Along with these changes, other elements got
new semantics. Although people were critical about the adaptation rate of browsers,
support for HTML5 and CSS3 is constantly growing and the popularity keeps ris-
ing. According to a survey by VisionMobile, more than 50% of mobile developers
already use HTML5 [73]. As developers start to use HTML5 and CSS3 more and more,
browsers have to follow.

While HTML5 provides new features like a video tag and the ability to have client-side
databases; CSS3 provides features like animations and transitions [68]. However, one
has to rely on JavaScript for dynamic scripting. JavaScript has been pushed forward
as the best language to create rich web applications [56, 51]. Some even see a future
where web browsers become a dominant client application platform [74]. With this in
mind, the choice to use JavaScript was evident.

However, as a presentation tool is not a small job and generally offers a lot of function-
ality, we can expect to have a very huge amount of code. The use of libraries thus will
be necessary to avoid having to reimplement basic stuff that we want. Some libraries
have very specific purposes as they provide for example functions to manage XML files.

Some libraries like jQuery, Dojo and so on are targeted to use as a basis for a web

1http://www.w3.org/TR/html51/
2http://dev.w3.org/html5/decision-policy/html5-2014-plan.html
3http://www.w3.org/DOM/

http://www.w3.org/TR/html51/
http://dev.w3.org/html5/decision-policy/html5-2014-plan.html
http://www.w3.org/DOM/

36 Current available technologies

application. Thus, we decided to start a JavaScript library comparison to see which
library we would use as a basis. This comparison can be found in section 4.1. In this,
we did a feature comparison to see what they promise to have available. We also did a
comparison by implementing some basic features with the help of multiple JavaScript
libraries.

Use of interface languages 37

2.3 Use of interface languages

A User Interface Description Language (UIDL) is a high-level language that is used to
describe a user interface. There are a lot of languages out there and we wanted to see if
we could use one of them. Because MindXpres is plugin-based, it could be interesting
to see whether the plugins could use a certain interface language.

The reason behind this, is that it gives a certain abstraction. It allows developers of
plugins to define aspects of the interface without having to know how the application
works under the hood. For example some user interface languages allow the definition
of what elements should be present. The WYSIWYG editor that will be developed in
this thesis could render these definitions to get a uniform look. Another possibility is
that the user interface language gives developers complete freedom to define what and
how elements should be displayed to the user.

Another useful use of an interface language is based on the fact that different users of
the system have different needs. By abstracting the actual rendering of the interface and
using an user interface language, it is possible to take certain preferences into account
during the actual rendering process. For instance if user X prefers bigger text than
user Y, he could put this in a preference. When the translation happens from the user
interface language used in the plugin to for example HTML5 and CSS3, the resulting
HTML5 and CSS3 could be dynamically changed to fit the preferences of user X.

We compared several user interface languages to identify what is out there, what were
possible candidates and what would be the advantages or disadvantages of using them.

2.3.1 Interesting user interface languages

UIML UIML stands for User Interface Markup Language and is an XML-based lan-
guage that provides a declarative syntax for developers to build user interfaces [1]. In-
stead of defining how a user interface has to look, UIML allows to define what the ele-
ments in the interface are. Via a renderer, the user interface is generated with a uniform
look.

UsiXML Another language we looked at was UsiXML [46]. It is in fact a specifica-
tion language that allows the designer to describe a user interface on different levels of
abstraction. A designer can describe at a high level of abstraction the constituting ele-
ments of an user interface (e.g. widgets, containers, modalities or controls). It supports
device, platform and modality independence.

XAML XAML stands for Extensible Application Markup Language and is a declar-
ative markup language developed by Microsoft [48]. It allows developers to define UI

38 Use of interface languages

elements, bind data, handle events and so on. XAML is mainly used in the .NET frame-
work for desktop applications.

XForms XForms is an XML language that is used to specify how data must be pro-
cessed [14] such as is the case in web forms. Originally, XForms was designed to be
the next generation of (X)HTML forms. Now however, it is more generic and it can be
used with other markup languages than XHTML.

XUL XUL is a user interface language developed by the Mozilla Project [25]. XUL
stands for XML User Interface Language and is an XML dialect. It allows developers
to write graphical user interfaces in a similar fashion as HTML is used for web pages.
The XUL is interpreted by a layout engine, allowing for cross-platform applications.

2.3.2 Pros and cons of the user interface languages

We will now evaluate the different user interface languages that we presented in the
previous section. What are the positive and negative aspects of the languages?

UIML UIML uses the declarative syntax as illustrated in Listing 2.1. In the descrip-
tion tag, elements can be defined. Via the structure tag, we can define how the previously
defined elements are ordered and organised in a structure. The other tags are quite triv-
ial: the data tag allows the injection of data, the style tag allows the developer to
define possible styling and the events tag lets the developer define on what events
elements should react.� �

1 <?xml version="1.0" standalone="no"?>
2 <uiml version="2.0">
3 <interface name="aName" class="aClassName">
4 <description>...</description>
5 <structure>...</structure>
6 <data>...</data>
7 <style>...</style>
8 <events>...</events>
9 </interface>

10 <logic>...</logic>
11 </uiml>� �

Listing 2.1: A basic UIML file

A huge pro for using UIML is the complete separation of concerns. A drawback for
using UIML in a rich Internet application is the lack of a renderer in JavaScript. At the
time of writing this thesis, we could only find an implementation of a renderer in Java:

Use of interface languages 39

jUIML1 and one in C#2. To get UIML working in a rich Internet application, one would
have to write a complete renderer themselves.

UsiXML The biggest pro for UsiXML is the fact that there are multiple levels of
abstraction possible to define elements for the user interface. To support the editing of
these multiple levels, the UsiXML consortium provides different tools3:

• Task model editor
• Domain model editor
• Context model editor
• Abstract User Interface editor
• Concrete User Interface model editor

The problem is that these tools are not freely available. To fully support UsiXML, one
has to make the cost of buying tools.

XAML Although XAML is mainly used in the .NET framework, Microsoft allows
developers to use it in a browser. This can be achieved via XAML Browser Applications
which are complied applications that run in the browser. To get this working, WPF needs
to be installed. Another method is by using the Silverlight plugin. We can clearly spot
the problem: XAML will only work via external tools. These external tools might work
on desktop computers like the Silverlight plugin but this makes the application rely on
external applications.

XForms XForms is the final user interface language we looked at. Like the other user
interface languages, there is the need for a processor to generate HTML that can be
used by the browser to display the page. In contrast to other user interface languages,
XForms has an implementation that can run entirely in JavaScript and does not need
any plugins. It is called XSLTForms4 since it uses a combination of JavaScript and
XSLT. The biggest drawback for XForms is the lack of alternatives. XSLTForms is
only maintained at the moment by one person and is still in a release candidate phase5.
At the moment, no big browser supports the rendering of XForms natively. Firefox even
dropped support in version 196.

1http://sourceforge.net/projects/juiml/
2http://research.edm.uhasselt.be/kris/projects/uiml.net/
3http://www.usixml.eu/usixml_tools
4http://www.agencexml.com/xsltforms
5http://sourceforge.net/projects/xsltforms/files/xsltforms/
6https://developer.mozilla.org/en/docs/XForms

http://sourceforge.net/projects/juiml/
http://research.edm.uhasselt.be/kris/projects/uiml.net/
http://www.usixml.eu/usixml_tools
http://www.agencexml.com/xsltforms
http://sourceforge.net/projects/xsltforms/files/xsltforms/
https://developer.mozilla.org/en/docs/XForms

40 Use of interface languages

2.3.3 Choosing a user interface language

When looking at the analysis of all the user interface languages that looked promising,
we can spot a clear trend: there is almost no support to render the languages to HTML.
To solve this problem, one would have to write a render themselves or make use of
technologies like XSLT. This is however very problematic as it involves an enormous
amount of work. The best example can be found in XSLTForms which is a one man
project that is going on for almost 5 years and still has not reached its first version.

We conclude that no user interface language is usable on a short-term basis. On the long
term, all of them have their benefits and practical uses. Since one would have to write a
renderer themselves, it would be a matter of personal preference which language to use.

3
Designing a better presentation tool

Designing the best possible presentation and theme authoring tool for MindXpres [62]
is not an easy task. Presentation tools are traditionally very big and complex because of
the enormous amount of functionality. The most common presentation tools have been
in development for many years by big companies. In the previous chapter we identified
a list of problems that are currently present in presentation tools. In this chapter, we
will introduce our design for a good presentation tool by improving certain concepts
that we identified as problematic. We also introduce some novel ones that are currently
unavailable in presentation tools. We designed several mockups to visually support our
ideas.

42 Solving the problems with Zoomable User Interfaces

3.1 Type of interface

A first question we asked ourselves was: how to let the user edit their presentations?
MindXpres presentations are targeted to be used with a zoomable user interface while
presenting. But does this mean that the editor should also have a zoomable user inter-
face?

ZUIs have been presented as an alternative medium for slide show presentations [35].
They enable distinguished levels of detail, spatial navigation, paths and an alternative for
slide transitions as the user traverses the presentation through a multi-scale 2D space. In
the existing tools the user often makes the mental separation between their presentations
at authoring time and the final result. This is partly aided by the fact that the two versions
are sometimes presented very differently. In our tool, we want the presentation to be as
close to the final result as possible while authoring. ZUIs are proven to be helpful
in presenting hierarchical diagrams [30]. As shown by the iMapping tool [36], ZUIs
allow an efficient visualization of hypertext. Because a MindXpres presentation can be
thought of as a hierarchical diagram and it is based on hypermedia, the choice for a
zoomable user interface is well-reasoned. In the following section, we discuss some of
the benefits of ZUIs.

3.2 Solving the problems with Zoomable User Interfaces

Zoomable user interfaces have several known problems when using them in applica-
tions: the lack of context, the negative effects of zooming on the perception of the user
and excessive animation. Firstly, we try to tackle these problems and then we will give
guidelines for how possible solutions can be used in a presentation tool context.

3.2.1 Lack of context

One of the biggest problems with ZUIs is the lack of context. In research, context aids
have been developed like hierarchy trees [60], flip zooming [11], history layers [60],
focus-and-context [16, 17], collapse-to-zoom [4] and detail+overview [17].

Hierarchy trees Hierarchy trees are a proposed technique to give the user a view
of a flattened vertical slice through the information space that they are navigating. A
presentation in MindXpres can be seen as a graph with possible multiple levels of detail.
The user generally starts at the top with the least amount of detail visible and as they
zoom in, more details are shown. The objects in a presentation can have other objects in
them that provide more detail and thus are only visible after zooming in. A hierarchy is
thus indirectly created. A hierarchy tree is a technique where the user gets a flat view of
the hierarchy they are currently browsing, thus giving them an idea of what the context

Solving the problems with Zoomable User Interfaces 43

is. Although this information of the context is what we want to achieve, the problem
is that MindXpres presentations are not always representable in a deep hierarchy. For
instance, it is possible for the user to create a flat presentation with all elements on the
same level. In such a presentation, there is no hierarchy which would make hierarchy
trees useless.

Flip zooming In short, flip zooming is a technique that presents discrete and sequen-
tial information in a number of tiles. At any given time, one tile is focused on and gives
the user more details. The other tiles are sorted around the focused tile to give the user
an idea of what the context is of the details that he is looking at. The problem with this
technique is that it only works on discrete and sequential information. Although the
objects in a MindXpres presentation are discrete, they are not ordered in a sequential
fashion. We conclude that flip zooming is not usable for the ideal presentation tool as it
limits the flexibility.

History layers The lack of context in a zoomable user interface leads to questions
from the user like: Where am I? and How did I get here?. By default, ZUIs do not have
a history so the user cannot go back in time. By going back in time, we mean that the
interface jumps back to positions where the user viewed a part of the presentation in the
recent past. By adding a history layer [60], the user can view where he was for example
five minutes ago. This way, he can go through a presentation and then see where he was
to better grasp the whole context.

Focus-and-context The idea behind focus-and-context is that users get to see an ob-
ject in full detail while the surroundings are viewed in much less detail. An example
of a focus-and-context technique are Fisheye Views [26]. With Fisheye Views, the user
utilises a lens that magnifies the center of the field of view. The magnification goes
down towards the edges, thus effectively generating a fisheye view. As MindXpres uses
ZUIs without Fisheye Views, it is not that interesting as it changes the whole perspective
for the user: he will get another view of a presentation and so the WYSIWYG-editor
would not be really WYSIWYG.

Detail+overview Detail+overview interfaces are very promising as they offer the user
an overview of where they are currently navigating in the interface while displaying a
more detailed view alongside it. Studies have shown that it is mainly a subjective pref-
erence of the users that may lead to higher usability [37] but that it is also effective for
the user to determine where different objects are located with respect to each other [12].

Conclusion Because of the problems, limitations and shortcomings of the other tech-
niques, we propose to use detail+overview. A small overview window is shown where

44 How presentations and themes are linked

a box displays what portion is rendered in the detailed part of the screen. This can be
combined with history layers that allow the user to go back in time in their navigation.

3.2.2 The effects of zooming on the perception

Another problem with ZUIs is how the actual zooming affects a user’s perception and
usability. To achieve better usability, novel things have been introduced, including
speed-dependent automatic zooming [40] in which the system zooms out when the
scrolling speed increases and will zoom back in when the scrolling speed decreases.
When evaluating this speed-dependent automatic zooming technique, a performance
gain of 43% could be achieved [18].

3.2.3 Excessive animation

Although animation can help users build and reconstruct a good mental map of spatial
information [9], caution is necessary to make sure not too much animation is used. This
could influence the usability negatively. Animation abstractions have been described
in literature [39] to give a guideline what kind of animation techniques are interesting:
motion-blur, squash-and-stretch, use of arcing trajectories and so on. We propose to use
these techniques for when the user clicks in the overview window, to let the detailed
view change dynamically without letting the user loose his feel for the context. The
user performance for decision making is higly contingent on things like how smooth
animations are [33]. Use of animation is recommended but careful consideration is
necessary on how it is implemented, user tests are advised.

3.3 How presentations and themes are linked

In Section 2.1.2.2 we noted that in current presentation tools, presentations hold an
internal copy of their theme. This is very bad practice as it gives rise to two problems:
duplication of data and that changes in themes do not propagate to the presentations that
use the changed theme.

According to Vannevar Bush [13], this duplication of data occurs because computers
often use hierarchies for storing information, from the filesystem level down to the
document format level. Such a hierarchical structure does not allow loops to be formed
but these are needed for inclusion by reference. In hypertext systems however, we finally
step away from the hierarchical representation of data and links between documents are
multidirectional.

Ted Nelson has described the concept of transclusion or inclusion by reference in his
articles about hypermedia [55]. What this means is that (possible external) content is
included at viewtime. An easy example to show how this works is in the context of an

Presentation and theme editors: separated or not? 45

HTML document. This document can have image tags which may link to an image on
the server, on the computer of the user or even somewhere else on the World Wide Web.
It is only at viewtime that the image is resolved and shown to the user as if it were part
of the HTML document. In a hypertext system, this is not limited to images only but
can be used for any kind of media.

We propose to use themes and presentations in a hypertext context. Themes should
be transcluded into presentations and themes could even transclude other themes. This
would result in a hierarchy of theme definitions which solves the problem mentioned
in Section 2.1.2.2: a presentation’s look was not updated when the original theme was
changed. By using transclusion, themes would be resolved at viewtime. This effectively
allows the user to have themes and presentations completely separated. It gives the user
the default ability to centralise all theme definitions in themes without having to worry
about possible duplicates in the presentations.

Figure 3.1 shows how themes and presentations are linked together. Presentations them-
selves can have custom styling on their elements. This gives more freedom to the user
as they can apply a theme to a presentation while customising certain elements to their
own taste. Styling definitions thus occur on two levels: on the level of the theme and on
the level of the presentation. As themes can have a base theme, a hierarchy of styling
definitions can be made. The priorities of the styling definitions can be ranked from
lowest to highest:

1. Base theme of the theme

2. Theme of the presentation

3. Custom styling definitions in the presentation

Figure 3.1: A presentation has a theme which on its own can also have a base theme. Presenta-
tions have their own custom settings which override the theme settings.

3.4 Presentation and theme editors: separated or not?

The next question we asked ourselves was, How do we allow the user to edit his presen-
tations and his themes in the same program?’ As we have seen in Sections 2.1.2.3 and
2.1.2.4, lots of current presentation tools offer a very similar interface to edit the pre-
sentations and the themes. In fact, most of the interfaces are reused as most tools work

46 Presentation and theme editors: separated or not?

with the concept of master slides. Therefore, it looks to the user that they are editing a
presentation while they are actually editing a theme.

It would be much better if the user could clearly see that they are editing a theme. This
is why we propose to have the presentation editing and the theme editing separated into
two different editors. This gives rise to a new problem: how do we link these editors
together? For example, how do we allow the user to edit the current theme of their
presentation. Potential solutions that are used in current tools are presented in Section
2.1.2.1.

Another question is of course, how do we let the user go in the other direction? What
if they create a theme and decides to directly start building presentations based on that
theme? Or what if they want to apply a theme to a presentation without having to bother
with opening the presentation? In current tools, we could not find the support for such
scenarios.

Figure 3.2: Four connections are made between the presentation and theme editor for maximum
flexibility

We propose to have two separate editors: one for presentation editing and one for theme
editing. But to have a bigger amount of usability, the two editors are tied together in
different ways as illustrated in Figure 3.2. We will go over the different links, explaining
what their purpose are.

3.4.1 Editing the current theme

This is a feature that we compared with the current tools is section 2.1.2.1. It turns
out that most of the current presentation tools support the editing of the current theme
but this is not always that clear to the user. We propose a solution where there is an
interface element like a button available to the user to edit the current theme of the
presentation. Via this interface element, they switch to the theme editor to directly edit
the theme. When they save, the theme is updated in the presentation itself without a
problem thanks to the transclusion that we proposed in Section 3.3.

Presentation and theme editors: separated or not? 47

3.4.2 Using a theme in a new presentation

A feature that we missed in current presentation tools, is the ability to create a theme
without having to create a presentation and to create a new presentation afterwards with
that theme. This may sound like making life too difficult as a user can create the new
presentation already and edit the theme afterwards. The problem with this method in
current presentation tools is that a theme is edited in a presentation. Each presentation
holds in fact a copy of the original theme definitions. This is why we identified in
Section 2.1.2.2 that other presentations were not affected when editing a theme. The
user is obligated to save the theme afterwards in its own theme file, effectively having
duplicate theme definitions as the presentation itself also holds a copy.

By decoupling the theme definitions from the presentation, we allow the user to create a
theme separately without having to bother in which presentation it might be applied. The
Use theme in a new presentation functionality then simply acts as a shortcut for closing
the theme editor and creating a new presentation where the user has to go select the
recently created theme. Via the shortcut that we propose, the theme is already selected
to be applied in the new presentation that will be created.

3.4.3 Exporting stylings to a new theme

In current presentation tools, a theme is in fact imported into a presentation as all the
theme definitions are duplicated. But what if we want to go the other way, if we want to
export a theme out of a presentation? As a presentation is created, certain minor tweaks
to the settings may be done to the presentation itself: different font family, different
colours and so on. These tweaks may reoccur in other presentations.

To reduce the amount of duplicate data, it would be better to save all these new settings
in a theme. By providing the Export stylings to a new theme functionality, the user is
able to generate a theme based on the custom settings he has made in a presentation.
What in fact happens, is that a reference to the original theme of the presentation is
saved and that the custom settings are then added to the new theme as illustrated in
Figure 3.3.

3.4.4 Applying theme to presentations

The final connector between the theme and presentation editors is the Apply theme to
presentations functionality. One of the biggest issues in current tools is that editing
a theme does not affect the presentations that utilise this theme as we have seen in
Section 2.1.2.2. A user is thus forced to open all their presentations and change the
theme. If we completely decouple the themes from the presentations and if there is no
internal version of the theme like in current tools, this problem will not occur.

48 The presentation editor

Figure 3.3: Exporting a theme is in fact the combination of custom settings and the original
theme

Still, it is preferable to give the user the freedom to select another theme for a pre-
sentation. But what if the user creates a new theme and wants to apply it to multiple
presentations? In current tools, they have to go over all the presentations to change the
theme that is applied. We propose a functionality where the user is able to simply apply
a theme to multiple presentations without having the need to open them. This is for
example ideal if they have multiple themes where only the colours are different. This
does not affect the presentations in a critical way so they do not need to go over each of
them to verify if the change of the theme does not break the presentations in any way.

3.5 The presentation editor

3.5.1 The interface

As can be seen in Figure 3.4, we propose a minimalistic interface. One of the biggest
issues in current presentation tools, is that there are multiple ways of doing certain
actions. Although different methods can be good, they do not always support the same
set of features as we could clearly identify in Section 2.1.1.1. We propose to have
one big menu that allows the user to fully control the presentation editing, tabs under
the menu and a sidebar that is built out of two parts: a navigation panel and a basic
overview panel.

The presentation editor 49

Figure 3.4: An example view of when a user has a presentation opened

The menu itself should be horizontal with different groups that are logically chosen. The
first one is a more global group for the editing of presentations in general. This group
allows opening and creating a presentation but also allows the user to do certain global
actions on the presentation they are currently editing: undoing an action, redoing an
action, showing a preview of the presentation and showing the path in the presentation.
Another group is the one that allows the authoring of the presentation elements: adding,
editing and deleting elements. The final group concerns the link with themes. It gives
the user the possibility to choose a base theme for his presentation but also allows the
user to jump to the theme editor. This jump to the theme editor can be achieved by
wanting to edit the current theme of the presentation or by exporting a new theme based
on the currently opened presentation which we discuss in Section 3.5.10.

The tabs under the menu are available to the user so they can easily switch between edit-
ing multiple presentations. Thus it is possible for the user to have multiple presentations
opened at the same time. When all presentations are closed, they should automatically
return to the starting screen as shown in Figure 3.5.

50 The presentation editor

Figure 3.5: The screen that the user sees when opening MindXpres

The navigation panel allows the user to navigate in the presentation. There we show an
overview of the presentation. Although it is proven that interfaces with overview+detail
do not affect the performance for navigating with a zoomable user interface, they are
found to be more enjoyable and physically less demanding [53]. It is also shown that
users prefer overview+detail in electronic documents [38]. Therefore we decided to
propose the use of an overview+detail interface with the detailed view in the sidebar.
This will possibly increase the contentment of the user. We allow the user to navigate
in the presentation by manipulating the detailed view by which a performance gain can
be achieved [5].

The basic overview panel is the final panel in the interface. It allows the user to see
all the elements that are in a presentation, combined with a search functionality. The
idea is that it actually works as a kind of filter. By default, all the elements in the
presentation are listed and while the user types in the text field, the elements get filtered.
As they are filtered and the list shrinks in size, the matching elements are also shown
in the presentation itself. The reason why we also show them in the presentation is that
context helps users to find specific elements more easily [22].

To highlight the matching elements in the presentation itself, we base ourselves on three
principles. The first one is that colours that are contrasting to their surroundings draw
more attention as they do not blend in [63]. The second one is that large objects draw
more attention to them [70]. The third and final one is that appearing objects draw
attention [75]. Based on these three principles, we propose to highlight the matching
elements in a contrasting colour with a bigger font and with a small animation to make
them appear.

An extra feature of the overview panel is that elements are clickable. When the user
clicks on an element, the presentation editor jumps to the part of the presentation that
contains that specific element. It is thus an alternative way of navigating in the presen-
tation.

The presentation editor 51

3.5.2 Creating a presentation

Creating a presentation is possible via the start screen or in the menu at the top of the
application while the user is in the presentation editor. To create a presentation, only
basic information is required as can be seen in Figure 3.6. The user is able to select the
theme that he wants to use and can provide information like his name.

Figure 3.6: To create a presentation, only basic info is needed

3.5.3 Adding elements

As shown in Section 2.1.1.1, adding elements in current presentation tools can be quite
counter-intuitive. Thus we propose one single menu to add elements as shown in Figure
3.7. The problem with having only one menu to add elements, is that the menu can
become very crowded. To address this, we propose to have a filter mechanism on the
top of the menu. When the user starts typing, the elements of the Add element menu are
filtered. The result is that when the user types in the keyword text, for example only the
elements title and paragraph will appear.

52 The presentation editor

Figure 3.7: The menu to add new elements to the presentation

Another possibility to address the problem of a very big menu is to use fisheye menus [7]
which are a very promising technique for when a menu gets to 100 elements and when
creating a hierarchy in the menu is not really an option.

3.5.4 Changing the settings of elements

After the user has added elements, they should be able to easily edit the settings of the
elements. Via a dynamic dialogue, the user should be able to preview their changes that
they perform. An example of such a preview can be seen in Figure 3.8.

Figure 3.8: Editing the settings of a presentation element

The changing of settings can be accessed by right clicking on an element. Right clicking

The presentation editor 53

triggers a context menu as illustrated in Figure 3.9.

Figure 3.9: A context menu that allows easy access to operations that the user can perform

Right clicking outside of a presentation element should also trigger a context menu
which gives access to different actions as shown in Figure 3.10.

Figure 3.10: Offers shortcuts to user in the presentation editor

3.5.5 Moving elements

Moving elements should be very intuitive. As we saw in Section 2.1.1.2, certain pre-
sentation tools have the problem of having a dead space on elements. For example text
elements could only be moved when clicking on the actual text or the border of the text
element. We want to avoid this unreasonable behaviour by simply allowing the user to

54 The presentation editor

move an element by clicking anywhere they want. A hint should also be shown so the
user knows on which element they are hovering. This can be in the form of a changing
cursor but also a bounding box around the hovered element.

3.5.6 Resizing elements

As we have seen in Section 2.1.1.3, the current presentation tools offer two types of
resizing, with or without default saving of the aspect ratio. As the default saving of the
aspect ratio is a limitation to how the user can use the tool, we propose to have the most
flexible type of resizing. Each element should be resizable in eight directions as can
be seen in Figure 3.11 where we have drawn the possible points to allow resizing on
an element. By default, the resizing does affect the aspect ratio. If the user wants to
preserve the aspect ratio, they can do this by holding the Shift key on their keyboard.

Figure 3.11: The eight possible directions in which the user can resize an element

3.5.7 Editing the structure

In Section 2.1.1.5 we identified that most presentation tools have a linear structure which
can be edited by simply changing the order of the slides. Prezi was an exception to this
as it offers the user to draw a path. The actual path could also be edited in a similar
fashion with the presentation tools that offer a linear structure. The reason is that Prezi
presentations have a linear path. For instance, it is not possible to have two edges
starting in the same element that would eventually allow the presenter to choose which
path he will follow during his presentation.

A first proposal for editing the structure, is that the currently defined path can easily
be shown in the presentation as shown in Figure 3.12. When using Prezi while in the
edit path mode, the path is shown in a separate panel but not in the presentation itself.
There are hovering numbers to show the user the sequence of the elements in the path
but it would be much more user-friendly if the user sees the actual edges. This comes
in handy when the user is, for example, zoomed in a lot so he can clearly see where
the edges are going to and coming from. It increases their spatial awareness as not all
numbers may be visible when zoomed in.

The presentation editor 55

Figure 3.12: Clicking on Show Path triggers this view where the user can clearly see the path

We propose to have a path editor like in Prezi but without the limitations that we men-
tioned. It should be possible for the user to draw edges between any two elements and it
should not matter how many edges already depart from the same element. The path ed-
itor should be totally flexible. Edges should be moveable: their target and origin should
easily be changed, preferably by simply dragging them to another element as shown in
Figure 3.13.

Figure 3.13: The path in a presentation can be edited

It should also be possible for the user to rightclick on a path element to perform certain
actions. For example, deleting that specific path element is possible via the appearing
context menu as illustrated in Figure 3.14.

56 The presentation editor

Figure 3.14: Contextmenu that helps the user to edit the path in a presentation

3.5.8 Choosing a theme

Although all presentation tools showed a preview of the themes via thumbnails as we
identified in Section 2.1.1.6, there was no live preview available. We propose a system
where the live preview of themes is available to the user. For the best user-experience,
we propose that the theme selector is displayed over other interface elements as in Figure
3.15 to avoid that the original presentation is covered. This will allow the user to have
a more complete overview over their presentation’s possible new look. When the user
hovers over elements in the theme chooser, the themes are temporarily applied to the
presentation. If the user actually clicks on a theme, the theme is definitely applied.

Figure 3.15: Choosing the theme of a presentation

The presentation editor 57

3.5.9 Zooming in a presentation

As we have seen in Section 2.1.1.7, zooming is a tedious task. Only Prezi was able
to provide a good zooming mechanism. All the other tools had some kind of sorting
mechanism but it was very limited in the different zoom levels and/or it did not provide
live previews while changing the zoom level. For us, providing a live preview when
zooming is a first requirement to have a good presentation tool. However, zooming can
still be massively improved.

3.5.9.1 Semantic zooming

Semantic zooming is a technique where displayed objects reveal more or less details
when zooming in or out. When going past a certain threshold, the content displayed
may change. In the case of an image with a caption, the caption might be hidden when
zoomed out but shown when zooming in.

Experimental evaluations have been performed to see how semantic zooming helped to
visualise the source code of computer programs and their internal structure [69]. The
results were that the speed of users to perform certain tasks increased. They introduced
the concept of continuous semantic zooming which improves semantic zooming by us-
ing distortion techniques while zooming. Continuous semantic zooming decreased the
amount of time that users needed to perform certain tasks and improved the accuracy.

3.5.9.2 Space-scale diagrams

Space-scale diagrams were introduced as a technique to better understand multiscale in-
terfaces [27]. These types of diagrams have helped in designing good zooming/panning
trajectories in Pad++ [10]. Space-scale diagrams help to visualise semantic zooming by
showing an object in all its scale-dependent versions at the same time. Thanks to this,
designers are able to design better semantically zoomable objects.

3.5.9.3 Conclusion

It is a rather self-evident choice to use a continuous semantic zooming technique to
allow the user to zoom in and out in the presentation editor. The zooming capabilities
should be available via natural methods like scrolling with the mouse, preferably with a
visual feedback like the actual percentage of zooming. By using space-scale diagrams,
good semantically zoomable objects can be designed which will increase the visual
perception by the user.

58 The presentation editor

3.5.10 Exporting elements to a theme

In Section 3.4.3, we proposed an additional link between the theme and presentation
editors that would allow the creation of new themes based on presentation style defini-
tions. In Section 3.3, we introduced the concept of transclusion which makes exporting
elements a bit easier. A new theme can be created by simply referring to the base theme
of the presentation while adding the custom style definitions of the presentation.

The problem is that simply adding the custom style definitions will not suffice. An easy
example of where this might give unwanted behaviour is when multiple elements of the
same type have different custom style definitions. For instance, multiple text elements
may have stylings where there are different font sizes applied. When simply adding all
these style definitions to the new theme, we actually have conflicting style definitions in
our theme and it is not clear which one should be applied to the presentations.

Figure 3.16: When exporting the stylings of a presentation to a theme, basic info must be given

To solve this problem, we can limit the possibilities to the user when they are exporting
the style definitions. We propose to have a wizard in the presentation tool which guides
the user through different choices that they have to make. The first screen in the wizard
is shown in Figure 3.16. It is simply a form that allows the user to give details about
the theme they want to create, like the name of the new theme. The second screen (see
Figure 3.17) gives the user an overview of all the different style definitions per type.
For example all the style definitions for a text element are grouped and the user has
the possibility to select one of them or simply notify that they do not want to add text
element style definitions to the new theme. These choices are available for any type of
presentation element that is in the current presentation from which they are exporting.

The presentation editor 59

Figure 3.17: To export stylings of a presentation, the styled elements must be selected

A third and final screen as illustrated in Figure 3.18 allows them to review the choices
they have made. In here, a preview of the theme may be shown, as explained later in
Section 3.6.6, or an overview of all the selected options. Via this screen, the user can go
back to the list of choices in the previous screen or they can create the actual theme.

Figure 3.18: Before the theme is created when exporting, the user can review his selections

60 The theme editor

3.6 The theme editor

3.6.1 The interface

The interface of the theme editor is in some parts similar to that of the presentation
editor. A global menu is also visible and allows full control over the theme editing as
shown in Figure 3.19. In contrast to the theme editor, there is no sidebar available.

Figure 3.19: The overview of a theme in the theme editor

Under the menu, there are tabs available for the user to switch between the themes that
they are currently editing. The user has the possibility to have multiple themes opened
at the same time. Whenever all themes are closed, the user is returned to the starting
screen as illustrated in Figure 3.5.

Just like in the presentation editor, the menu is horizontal with different groups in it that
group certain functionality. The first group is a more global group that allows the user
to maintain themes in terms of opening, creating, closing, saving and so on. The second
group is more related to the editing of the currently active theme. It allows adding,
editing and deleting theme elements. The third and final group consists of the links with
the presentation editor. It makes it possible to use a theme in a new presentation and to
apply a theme to a set of presentations as we described in Section 3.4.2 and 3.4.4.

The actual content of the theme is shown in boxes that are ordered in a grid-like fashion.
Each box represents one element. We propose this approach because a theme is in
fact a collection of styling definitions for different types of elements. As each type is
represented by a box, the user can get a direct overview of all the elements that are
defined in the theme. Via a simple filter option, the field of boxes is filtered based on
the keywords that the user provides. This filter is updated live as the user is typing.

Each box should show the type of the theme element, the description that goes along

The theme editor 61

with that type and a predefined thumbnail. This allows the user to better grasp what
elements are already defined in the theme.

3.6.2 Creating a theme

Creating a theme is possible via the start screen or in the menu at the top of the applica-
tion while the user is in the theme editor. To create a theme, only basic information is
required as illustrated in Figure 3.20.

Figure 3.20: Before creating a theme, some basic info must be given

3.6.3 Adding elements

Adding an element to a theme happens via a menu that is very similar to adding elements
to a presentation, as highlighted in Figure 3.21. The menu is actually exactly the same
as the one in the presentation editor with one big difference. The possible list of options
shortens when a theme has more theme definitions. Every time a theme element is
added, it is removed from the list of options in the menu. Still, the menu can get pretty
big and thus we provide the exact same interface where the user can filter the elements
based on keywords that he types. The possible use of fisheye menus [7] should also be
taken into consideration.

62 The theme editor

Figure 3.21: Adding new theme elements to define new settings

3.6.4 Changing settings

Every box in the theme editor has buttons that allow the user to start editing the theme
definitions. Clicking on Edit will trigger a dialogue as can be seen in Figure 3.22. This
dialogue is split into a preview part and a settings part.

Figure 3.22: Editing the stylings of a theme element

The purpose of the preview part is to give the user a preview of how the definitions
affect the resulting output of the theme element. It is updated live whenever a change
occurs and allows the user to see the element without possible distracting surroundings.

The settings part is a listing of all the possible definitions for that particular theme
element. For example, for a text element the settings can be things like the font family,

The theme editor 63

the font size, the font colour and so on. This list of settings is generated based on the
theme element that is currently being edited. Any change in the settings is directly
propagated into the preview so the user has direct feedback.

3.6.5 Previewing a theme element

While the user is editing a theme, they can preview the different elements as can be seen
in figure 3.23.

Figure 3.23: The user can get a preview of a theme element with extra info

3.6.6 Previewing a theme

When editing a theme, the user might want to get an overall view of how everything
looks together. We therefore propose to have the functionality of previewing a theme. A
preview is generated based on the theme definitions that are made. Every theme element
is in fact rendered with dummy data that is defined in the original theme element defi-
nitions. All these rendered theme elements are then put together in a linear presentation
structure as shown in Figure 3.24. This allows the user to get an idea of how the theme
elements look like when surrounded by other theme elements. We have chosen for a
linear structure as we wanted to give the user a very simplistic interface. By providing
a linear structure, we allow the user to see the whole preview by simply scrolling down
whenever the theme preview might not fit their screen.

64 The theme editor

Figure 3.24: A preview of a theme is generated based on the theme definitions

3.6.7 Applying a theme

One of the links between the presentation editor and theme editor is the ability to apply a
theme to a presentation without opening that presentation. This comes in handy when a
user has for example multiple themes with only the colours differently. As this does not
influence the position of the themes and when the colours are carefully chosen, the user
does not even have to verify if applying a certain theme does not negatively influence
the appearance. We propose a basic interface where the user can have an overview of
all the presentations so they can choose on which presentations the theme should be
applied as can be seen in Figure 3.25.

Figure 3.25: The user can select the presentation where he wants to apply the theme on

Conclusion 65

3.6.8 Use a theme

Another link between the presentation and theme editor is the ability to use a theme
directly in a new presentation when editing the theme. In current tools, the user is
forced to create a presentation in which they can create a new theme in the master
slides. But what if they want to work the other way around? What if they would like
to create a theme at first and then directly start creating a presentation with that new
theme? Because the whole authoring system of themes and presentations is split and
we work with transclusion, this becomes possible. We propose to have a basic button
or interface element via which the user can start creating a new presentation with the
currently opened theme already set as the base theme. The result would be that they get
to see almost the same screen as when they creates a new presentation, as illustrated in
Figure 3.26.

Figure 3.26: The user can directly create a new presentation with the currently opened theme
set as the base theme

3.7 Conclusion

We have presented the different interface elements and interface types that the most
ideal presentation tool for authoring MindXpres themes and presentations should have.
The presentation tool is divided into two separate editors which are coupled together via
four possible interfaces:

• Editing the current theme

• Use a theme in a new presentation

• Exporting stylings to a new theme

• Apply a theme to presentations

66 Conclusion

Because we separate the tool in a presentation and theme editor, the user has the freedom
to edit presentations and themes separately which is not possible in current presentation
tools. However, because of the four links that we propose, the user maintains the flexi-
bility to change from editing presentations to themes and back without having the extra
hassle of opening a separate program.

Only one of the four links is currently available in presentation tools, the others are
either novel concepts or shortcuts. The exporting of theme definitions to a new theme is
an interesting approach as it allows the user to save custom stylings from a presentation
into a nice and clean theme.

By allowing the user to apply a theme to presentations and by using transclusion of
themes into presentations, we also remove one of the biggest problems in current pre-
sentation tools: the duplication of data and the fact that presentations are not updated
when a theme is changed. With these functionalities, the user can edit or create a theme
in the theme editor without having to open the presentation editor. In case of wanting
to change the theme of 100 presentations, the user will be able to do this in a couple of
seconds where in current presentation tools they would have to edit all 100 presentations
by hand.

We explored the possibility of using a zoomable user interface for the authoring of
the presentations. By proposing interesting concepts like semantic zooming, the user
can get a minimalistic interface that allows them to fully benefit from the zooming
capabilities of MindXpres presentations while editing.

The path editor that is currently available in Prezi was already interesting but we ex-
tended the capabilities by proposing a very flexible path editor. We propose to have a
path editor where the origin and target of each edge is changeable and where there are
no limitations on how many edges can depart from a certain presentation element.

The theme editor also introduced novel concepts. We show the theme to the user as a
collection of theme definitions for possible theme elements. Via filtering functionality,
the user can easily get an overview of what elements are defined while being able to
quickly find a specific element that they might want to edit.

We propose a theme preview functionality which is not available in current presentation
tools. The preview functionality generates a dummy presentation that gives the user
an idea of how it would look like in a basic presentation. The user is thus capable of
defining a theme without ever having to test it out on a presentation.

By proposing multiple novel features for a good presentation tool, we believe that our
proposed presentation authoring tool introduces enhancements on multiple levels. It is
mainly targeted to MindXpres presentations as it relies on a zoomable user interface,
the concept of a flexible path in the presentation and so on. Still, some concepts like
the exporting of theme element stylings are more general and could enhance the current
presentation tools too.

4
Solution

In Chapter 3 we introduced the design for a better presentation tool. In this chapter,
we explain the actual implementation that we made. We first start out with a compar-
ison between JavaScript libraries in Section 4.1. The purpose was to determine which
JavaScript library would act as a basis for our implementation. In Section 4.2 we de-
signed the general JavaScript architecture that we were going to use. We end the chapter
with a some more details of our implementation in Section 4.3 and an evaluation of our
tool in Section 4.4.

68 Choosing the technologies

4.1 Choosing the technologies

4.1.1 Introduction

As the web got bigger and bigger, popularity of JavaScript grew over recent years. We
saw the arrival of an enormous amount of JavaScript libraries and frameworks, each
with their own purpose or audience. Among these JavaScript libraries and frameworks,
several became very popular and jQuery is always considered as the most popular one 1.

We had to make a choice which JavaScript libraries we would take into account for
this thesis. Based on previous research [32, 31, 49] and considering possible new con-
tenders, we came up with the following list of JavaScript libraries that we would com-
pare:

• Dojo 2

• jQuery 3

• Mootools 4

• Prototype & Script.aculo.us 56

• YUI 7

Comparison can happen on several points, ranging from the size of the libraries to the
different features that they provide. We have chosen to compare them on the most inter-
esting points that are possibly relevant for building user interfaces in web browsers. This
way, this research could be reused in future applications as it can work as a guideline to
which JavaScript library is interesting to use.

1https://blog.whitehatsec.com/analysis-of-javascript-library-popularity/
2http://dojotoolkit.org/
3http://jquery.com/
4http://mootools.net/
5http://prototypejs.org/
6http://script.aculo.us/
7http://yuilibrary.com/

https://blog.whitehatsec.com/analysis-of-javascript-library-popularity/
http://dojotoolkit.org/
http://jquery.com/
http://mootools.net/
http://prototypejs.org/
http://script.aculo.us/
http://yuilibrary.com/

Choosing the technologies 69

4.1.2 Feature comparisons

4.1.2.1 License

Dojo jQueryi MooTools Prototypeii YUI
Version 1.8.1 1.9.1 1.4.5 1.7 3.7.3
License BSD or

AFL
MIT MIT MIT BSD

i We use the extra jQuery UI module ii We use the extra script.aculo.us module

Table 4.1: Comparison of JavaScript libraries: Listing the versions and what licenses can be
applied

The first comparison point is the license. All libraries provide a quite liberal licensing
option, none of them are commercially bound to any company. This is a good thing for
every library listed as it gives more freedom to using them.

Conclusion We can conclude that it does not really matter which of the five libraries
one chooses when it comes to licencing. All of them have a good license coupled to
them.

70 Choosing the technologies

4.1.2.2 DOM functions and language extension comparison

Dojo jQueryi MooTools Prototypeii YUI
DOM
Selection

by id, by
class, by

attributes,
CSS

selectors,
parent, child,

siblings,
content,
visibility

by id, by
class, by

attributes,
CSS

selectors,
parent, child,

siblings,
content,
visibility

by id, by
class, by

attributes,
CSS

selectors,
parent, child,

siblings,
content

by id, by
class, by

attributes,
CSS

selectors,
parent, child,

siblings,
content

by class, CSS
selectors

DOM Ma-
nipulation

create,
append,
insert,

replace,
remove,

clone, wrap

create,
append,
insert,

replace,
remove,

clone, wrap

create,
append,
insert,

replace,
remove,

clone, wrap

create,
append,
insert,

replace,
remove,

clone, wrap

create,
append,
insert,

replace,
remove,

clone, wrap
CSS Func. get, set get, set get, set get, set get, set
Events bind, unbind bind, unbind,

fire, toggle
bind, unbind,
fire, toggle,

clone

bind, unbind,
fire, toggle

bind, unbind,
fire, custom
event types

Array
Functions

iterate, filter,
map, some,

every

iterate, filter,
map, merge

iterate, filter,
map, some,
every, clone

iterate,
compact,

clone

iterate, filter,
map, some,

every
String
Functions

pad, repeat,
substitute,

trim

trim trim,
camelCase,
hyphenate,

rgbToHex, ...

camelize,
capitalize,
dasherize,

evalScripts, ...

N/A

Math Func-
tions

N/A N/A random, limit,
times

times, succ N/A

i We use the extra jQuery UI module ii We use the extra script.aculo.us module

Table 4.2: Comparison of JavaScript libraries: DOM functions and language extension com-
parison

DOM Selection By default, JavaScript has methods like getElementById() and
getElementByClassName() which allow the programmer to select elements in
the DOM tree. However, these methods are quite limited and require a lot of effort
from the programmer if they want to select for example the fifth p tag in the div tag
that has a certain attribute. Libraries provide specialised DOM selectors that allow
the programmer to write down complex selectors without having to program difficult
structures.

Choosing the technologies 71

DOM Manipulation Whenever a programmer selects an HTML element, the pro-
grammer might want to manipulate it. Inserting a new element, appending a string, set-
ting a value, etcetera are all possible manipulations the programmer wants to perform.
The more DOM manipulators the library offers, the more possibilities the programmer
has to program in a convenient way.

CSS Functions These are functions that are used to get and set the CSS properties of
DOM tree elements. This allows developers to manage for example the proportions of
elements, the positioning of elements and so on.

Events When programming a rich web application, one is most of the time program-
ming in an event-driven fashion as one is primarily building the user interface in HTML
& CSS. Thus, a developer must be allowed to handle events like mouse clicks on but-
tons and keyboard events. Some libraries handle events differently so it is appropriate
to compare the event handling.

Array Functions In JavaScript, the programmer is able to have collections of data in
arrays and objects [19]. As arrays are the primary data structure for having large col-
lections in JavaScript, most JavaScript libraries offer functions to manage arrays better.
They allow developers perform operations on arrays like filter, extract, fold and so on.

String Functions As JavaScript is the only language widely supported for program-
ming on the client side [-] and JavaScript is targeted to program dynamic features in the
DOM tree, the developer may use strings extensively. If a JavaScript library offers extra
string functions, this is a good thing as it allows the developers to write down more ab-
stract code. Here we see that libraries like Prototype and MooTools have extra functions
to format for example an URL more (with dasherize for example), to do special type
of capitalization and so on. We note that YUI has no support for extra string functions
and that jQuery only supports a trim method.

Math Functions JavaScript only knows one numeric data type: number. With this
data type, the use of floating point numbers is possible but basic mathematical func-
tions are very limited. Some libraries provide extra functions that allow easier coding.
For example MooTools supports mathematical functions like a random(min, max)
which gives back a random number between min and max. Another function is for
example limit(min, max) which returns a number converted to fit between these
bounds. Because these are fairly trivial examples that can easily be reprogrammed, the
support of extra mathematical functions besides the standard functions does not weigh
much in our comparison.

72 Choosing the technologies

Conclusion Out of the five JavaScript libraries, MooTools supports the most DOM
functions and language extensions. YUI is the only library that is quite limited in its
DOM selectors which is a shame as we see that the other libraries offer a very rich
selection of DOM selectors: either directly or via handling DOM elements like calling
parent() on the elements. All libraries support the basics for DOM manipulation, CSS
functions and event handling, which is what we would expect from a major JavaScript
library. When we compare the language extensions like extra array, string and math
functions, we see a bigger variety. YUI is the clear loser because it only adds array
functions that almost all the other libraries support too. The clear winner is MooTools
which is the one that supports the most array functions, the most math functions and
also offers a wide selection of string functions.

4.1.2.3 Visual effects comparison

Dojo jQueryi MooTools Prototypeii YUI
Show/hide 3 3 3 3 3

Slide/blind 3 3 3 3 3

Resize 3 3 3 3 3

Opacity
change

3 3 3 3 3

Animation 3 3 3 3 3

Drag & drop 3 3 3 3 3

Effect
queue

3 3 7 3 7

i We use the extra jQuery UI module ii We use the extra script.aculo.us module

Table 4.3: Comparison of JavaScript libraries: Visual effects comparison

Show/hide Showing and hiding elements in a webpage can make life easier. It allows
the developer to preload elements and hide them so the user has a better user experience
as there is no delay for loading in new elements. Although a developer can hide elements
himself by editing the visibility or display attribute in CSS, it comes in handy if the
library supports show and hide functionality. Most of the times, this is linked with
possible animation which can affect the user experience in a positive way.

Slide/blind The slide and/or blind functionality is a method to show or hide an ele-
ment. A slide might be the entering of an element in the screen while a blind is the
effect when an element is rolled up like a window shade.

Resize Resizing elements may sound trivial but this is by default not possible for the
user in HTML and CSS. Via JavaScript, a developer can set new dimensions to any

Choosing the technologies 73

element which will result in a resizing of the element but the user of the webpage has no
control over it. Many JavaScript libraries offer the functionality to enable the resizing
of elements by the user of the webpage.

Opacity change By being able to change the opacity, one can animate the showing
and hiding of elements for example. Most of the time this is used in the background by
animation effects but it also allows the developer to create semi-transparent elements.

Animation Allowing the user to visually track changes that occur in an interface,
allow the user to understand more what has happened between the old state and the
new state of the screen. These changes can be shown by the use of animations [15].
Animations can be multiple things: moving elements and transitions between elements
are a few examples of animations. Studies have shown that decision making is highly
dependent on the animation used in user interfaces such as smoothness of transitions,
interactivity styles and so on [33].

Drag & Drop Drag-and-drop is an alternative to a point-and-click interaction in user
interfaces. Instead of pointing with the mouse and clicking on the target, the user is
able to drag elements and drop them on the target. Although research with children has
shown that they prefer a point-and-click interaction style instead of a drag-and-drop in-
teraction style [41], the use of a drag-and-drop interaction style may not be a bad choice.
As it turns out, there is a difference to the performance index when using different in-
put devices [47]. When using devices like a tablet, the point-and-click interaction style
outperforms the drag-and-drop interaction style but when using a mouse, the drag-and-
drop interaction style outperforms the point-and-click interaction style. It is therefore
reasonable to compare the possibility to enable drag-and-drop functionality on DOM
tree elements via JavaScript libraries.

Effect Queue The effect queue is simply the possibility to queue effects after one
another. This allows developers to create chained effects that are each activated sequen-
tially. For example, it allows the developer to do a slide, followed by an opacity change,
followed by resizing an element. We see that only MooTools and YUI do not support
an effect queue while this is possible in the other libraries.

Conclusion We clearly see here that all libraries support everything. The only differ-
ence exists in the effect queue which is not available in MooTools and YUI. This could
be a possible negative point when choosing a JavaScript library, for example when you
want to have multiple effects after each other without having them interfere each other.

74 Choosing the technologies

4.1.2.4 AJAX and JSON support comparison

Dojo jQueryi MooTools Prototypeii YUI
AJAX 3 3 3 3 3

JSON 3 3 3 3 3

i We use the extra jQuery UI module ii We use the extra script.aculo.us module

Table 4.4: Comparison of JavaScript libraries: Support for AJAX and JSON comparison

AJAX Support A couple of years ago, Asynchronous JavaScript And XML has been
put forward as a new concept that could help build Rich Internet Applications [58]. It
is already been proven that it is beneficial to integrate AJAX functionality into a web
application. It is beneficial on the amount of time an user needs to complete a task
or on the general satisfaction they feel [43]. Although not all rich web applications
need AJAX, if a library supports AJAX it could help to raise the level of usability and
satisfiability in a web application. It allows a developer to move certain functionality to
a server and let the web application interact with the server without having the need to
refresh the web page.

JSON Support The JavaScript Object Notation 1 is a lightweight data interchange
format that claims to be easier to read for humans and computers. It is a subset of the
JavaScript standard 2 that works well as a data interchange language. Many languages
support it so it comes in handy if a JavaScript library supports it too. This allows de-
velopers to transmit data back and forth between the client and server without having to
know what languages are used on the server.

Conclusion All libraries support AJAX and JSON which is a good thing. This allows
a developer to put certain functionality on a server. The client can communicate with
the server via AJAX which is non-blocking and all data can be put in a JSON format for
better interoperability so it does not matter which languages one uses on the server, as
long as they can parse JSON.

1http://www.json.org/
2JavaScript Programming Language, Standard ECMA-262 3rd Edition - December 1999 http://

www.ecma-international.org/publications/files/ecma-st/ECMA-262.pdf

http://www.json.org/
http://www.ecma-international.org/publications/files/ecma-st/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ecma-st/ECMA-262.pdf

Choosing the technologies 75

4.1.2.5 Widgets comparison

Dojo jQueryi MooTools Prototypeii YUI
Accordion 3 3 3 7 7

Autocomplete 3 3 7 3 3

Colour
picker

3 7 7 7 3

Date picker 3 3 7 7 3

Dialogues 3 3 7 7 3

List sorting 7 3 3 3 3

Menus 3 3 7 7 3

Progress bar 3 3 7 7 3

Selection list 7 3 7 7 7

Table sorting 3 7 3 3 3

Tabs 3 3 3 3 3

Tooltips 3 3 3 7 3

User editing 3 7 7 7 7

WYSIWYG
editor

3 7 7 7 3

i We use the extra jQuery UI module ii We use the extra script.aculo.us module

Table 4.5: Comparison of JavaScript libraries: Widgets comparison

Accordion An accordion is an user interface element which has visual similarities to
the music instrument. The idea is that one can have a list where the elements collapse
and expand when the user clicks on them or hovers over them with the cursor.

Figure 4.1: Example of an accordion user interface element where sections are collapsed and
expanded when the user clicks on them

Autocomplete Autocomplete is a user interface concept where suggestions are shown
as the user is typing in a text box. This is an extra help for the user as they see sugges-

76 Choosing the technologies

tions of what he is actually trying to type or search [52].

Colour picker A colour picker is in most cases a hovering user interface element that
allows the user to select a colour in a colour palette. This is more convenient than asking
the user to type in for example the RGB values manually. Studies have shown that high
visual feedback increases the accuracy of picking the desired colour [21].

Date picker A date picker is in most cases a hovering user interface element that
allows the user to select a date in a calendar.

Dialogues A dialogue is an extra screen that is used to enable reciprocal communi-
cation between a computer and its user. In other words, it allows the user to have a
dialogue with the computer by confirming for example the deletion of an element.

List sorting List sorting is a functionality that allows the user to sort the elements in
a list without the developer having to program the entire sorting algorithm.

Menus Menus are an essential user interface element as they allow the grouping of
different functionalities in a convenient structure.

Progress bar A progress bar is a bar in the interface that gets filled as the user is
progressing. This gives back feedback to the user of how far he is in the process of
completing a task.

Selectable elements HTML5 supports the select tag which allows one to select ele-
ments in a list. In an user interface, it might happen that a developer does not want a list
to be selectable but for example a grid. The HTML5 select tag is thus too limited and
several libraries support the possibility to allow other elements to be selectable.

Figure 4.2: Multiple DOM tree elements can be made selectable in jQuery

Choosing the technologies 77

Table sorting Table sorting is a functionality that allows the user to sort the rows in a
table without the developer having to program the entire sorting algorithm.

Tabs Tabs are used for example when showing the user that they have multiple docu-
ments opened.

Tooltips Tooltips are small hovering elements that appear when the user for example
hovers over an image to get more information about what is shown on the image.

User editing User editing is the enabling of editable elements in the web page. By
default, HTML elements are not editable except for input and textarea elements.
By having the functionality to make other elements editable, it is for example possible
to make a paragraph of text editable.

WYSIWYG editor A What You See Is What You Get editor is helpful for the user
for example when editing posts in a blog. It gives direct feedback of what will be shown
on the final page.

Conclusion It is hard to draw conclusions from the widgets comparison because this is
very application dependent. For example if an application does not need native support
for dialogues, MooTools is a good choice but if one will use dialogues extensively it
may not be the best choice. There are also a lot of plugins available for most libraries
which can allow one to add certain widgets, we only have compared the ones that are
natively supported in the libraries. Purely based on the amount of supported widgets,
Dojo is the best library.

4.1.3 Usability testing

In the previous section, we have compared five JavaScript libraries and have seen that
they are fairly competitive to each other. But how good is their usability? How can we
test the usability? We set up a small test in which we gradually try to find problems as
we implement more features. After each implementation, we evaluate how well it went
and what possible problems were.

4.1.3.1 Hello world!

We started with the easiest part: setting up a webpage for each library in which we
load the library and let it print ‘Hello world!’, a classic hello world application. In

78 Choosing the technologies

plain JavaScript a hello world application which puts ‘Hello world!’ in the body of the
webpage would look like this:� �

1 document.write(’Hello world!’);� �
Listing 4.1: A hello world application in plain JavaScript

This code is simple and clean, it can be put in the HTML itself but it can also be put
in a separate JavaScript file without a problem. It simply works. We will now see what
happens when we try to achieve this when using each library to print ‘Hello world!’.
Note that we will not use document.write but the functions the library provides to print
text in the body of a webpage.

Dojo Dojo is the first library that we try out. Firstly, we load in the dojo.js file that is
delivered in the toolkit and after that, we put this code in a JavaScript file:� �

1 dojo.ready(function(){
2 dojo.query("body").addContent("Hello world!");
3 });� �

Listing 4.2: A hello world application in Dojo JavaScript library

Here we see the complexity of a JavaScript library already. First, we had to call dojo.ready()
which takes a function as a parameter. This function waits for the DOM to be com-
pletely loaded after which it is executed. In our function, we call dojo.query()
which searches for the element in the DOM tree we want to manipulate. In our hello
world application this is the body element on which we call addContent() to add
the correct text.

The code is simple and clean, the overhead is minimal. The library was easy to load and
worked without a problem.

jQuery The next library that we try out is jQuery, at the moment of writing the most
popular library out there 1.� �

1 $(document).ready(function(){
2 $("body").html("Hello world!");
3 });� �

Listing 4.3: A hello-world-application in jQuery JavaScript library

Just like Dojo, jQuery uses its own variable jQuery. However, most people know
jQuery for the $ symbol. jQuery reveals a bit more of what happens under the hood.
By using $(document) we see that we work with the document variable that is
available in plain JavaScript as a gateway to the DOM tree. By calling ready() we

1https://blog.whitehatsec.com/analysis-of-javascript-library-popularity/

https://blog.whitehatsec.com/analysis-of-javascript-library-popularity/

Choosing the technologies 79

bind a function to the event ‘DOM is loaded and ready’. In our small function we query
for the body-element and set the correct HTML to print ‘Hello world!’. The $ can be
directly called with a query where in Dojo you had to call explicitly dojo.query().
This makes jQuery code a bit shorter but not necessarily easier to read.

MooTools The third library we try out is MooTools. In the past, it also used the $
variable like jQuery but now it is equipped with a ‘dollar safe mode’ as they call it.
Whenever the $ variable is already in use, it does not change the contents of $. For
convenience, we will always use the original function document.id() instead of $.� �

1 window.addEvent(’domready’, function(){
2 document.id(document).getElement("body").set(’text’, ’Hello world!’

);
3 });� �

Listing 4.4: A hello world application in MooTools JavaScript library

As we can clearly see, the MooTools code is longer and more explicit. It has no ab-
stractions to add our function to the ‘domready’ event and setting the HTML to ‘Hello
world!’ is also longer. Via document.id, we get the DOM tree itself on which we
can query for the body-tag via getElement(). This will return an Element object on
which we can call set() to actually put ‘Hello world!’ into the webpage. It is not as
short as other libraries but it gives the developer more insight in what actually happens.

Prototype The fourth library we try out is Prototype. Just like MooTools and jQuery,
it likes to populate the $ variable. This is shorthand for the
document.getElementById() method provided by JavaScript and when using
multiple libraries, it is good practice to not rely on the $ variable.� �

1 Event.observe(window, ’load’, function() {
2 $(document.body).insert("Hello world!");
3 });� �

Listing 4.5: A hello-world-application in Prototype JavaScript library

The code is similar to all previous libraries, it waits for the DOM to be loaded com-
pletely to execute the given function. Because the $ is shorthand for
document.getElementById(), it is counter-intuitive to use
$(document.body).

YUI The final library that we try out is the Yahoo! User Interface library. It uses a
different loading principle than all the other libraries. Where you had to explicitly say
in the other libraries what should be executed as the DOM is loaded, YUI automatically
handles this itself. It loads in all the modules that you want which are the first parameters
of the use() function and after that it executes the function. In this function, the

80 Choosing the technologies

developer can use the Y variable to access the methods from the node module, making
the code very robust and able to work with other JavaScript libraries as it only knows
one global function: YUI(). There are no global variables like $.� �

1 YUI().use(’node’, function (Y) {
2 Y.one(’body’).setHTML(’Hello world!’);
3 });� �

Listing 4.6: A hello world application in YUI JavaScript library

Conclusion In all libraries it was fairly easy to create a hello-world-application. All
but YUI use the same principle where developers have to explicitly define what should
be executed as soon as the DOM is loaded. YUI handles this completely for the devel-
opers. All have their own way of defining your own scripts and all of the hello-world-
applications could be written down in short amounts of code.

4.1.3.2 Combining functionalities

When using a JavaScript library in a Rich Internet Application, developers do not only
use one functionality but combine a lot of them to achieve what they want. For exam-
ple they want to allow the user to move elements on the screen but also want to add
animation, make elements resizeable and so on.

It therefore makes sense to see how well functionalities can be combined when using a
JavaScript library. We have seen in Table 4.3 that a lot of visual effects are supported
by all the JavaScript libraries. Only the effect queue was not supported by MooTools
and YUI. If all these libraries support resizeable elements, draggable elements and so
on, does this mean that they can be combined?

We created a basic test case: a webpage with three elements which can be seen in Figure
4.3. The first element should be draggable, the second element should be resizeable and
the third element should be draggable and resizeable. With this we test how easy it is to
get an HTML element resizeable or draggable and if these two basic functionalities can
be combined.

Dojo The first library that we used was Dojo. To get elements to be resizeable and
draggable, was very troublesome and we could not end up with a working example. In
Dojo, to have a draggable and resizeable element, the developer has to turn his DOM
element into a widget. This happens via the FloatingPane functionality. With this,
the developer can define which element should be turned into a widget but it has its
limitations. For starters, one is obligated to define an ID for the DOM element. The
second problem is the fact that Dojo turns the element into a widget. A widget in
Dojo always has a title and starts hovering on the page unless you can position it via

Choosing the technologies 81

Figure 4.3: The test case that we want to implement to test the combination of functionality

the position: absolute attribute back into the HTML. In a dynamic page this is very
cumbersome. Overall, our code looked like this:� �

1 var pFloatingPane;
2 dojo.require("dojox.layout.FloatingPane");
3 dojo.ready(function(){
4 pFloatingPane = new dojox.layout.FloatingPane({
5 title: "A floating pane",
6 resizable: true, dockable: true,
7 style: "position:absolute;top:0;left:0;width:100px;height:100

px;",
8 id: "pFloatingPane"
9 }, dojo.byId("resize"));

10 pFloatingPane.startup();
11 pFloatingPane.show();
12 });� �

Listing 4.7: Resizeable and moveable elements in the Dojo JavaScript library

The result is that we could only get one element working. We could not find the pos-
sibility to make an element only resizeable without having it turned into a widget or a
draggable element. The result of this experiment is shown in Figure 4.4.

Figure 4.4: The resulting web page when Dojo has added its functionalities

We can clearly see that the layout got messed up: elements started hovering over each
other and the styling disappeared thanks to the initialization of the widget which com-
pletely overrides all previous styling. To overcome this styling problem, one should be
able to completely retrieve all current styling and reapply it. This is clearly not good for

82 Choosing the technologies

maintaining the code and adds a lot of complexity. The result is that Dojo is not usable
to make elements resizeable and/or draggable.

jQuery The second library that we used was jQuery. Thanks to the support of func-
tions like draggable() and resizable(), elements can easily be made draggable and re-
sizeable. When testing the result, we see that the functionalities do not conflict at all.
Elements are draggable by clicking on them and moving the cursor around while still
pressing the mouse down. When clicking on the edges of the elements, the element is
resized without any problem.� �

1 $(document).ready(function() {
2 $(".draggable").draggable();
3 $(".resize").resizable();
4 });� �

Listing 4.8: Resizeable and moveable elements in the jQuery JavaScript library

MooTools The third library that we used was MooTools. In contrast to Dojo, it was
much easier to find the correct methods of how we could make elements resizeable and
draggable. The resulting code is very short like it was in jQuery.� �

1 window.addEvent(’domready’, function(){
2 new Drag.Move(document.id(document).getElement(".draggable"));
3 document.id(document).getElement(".resize").makeResizable();
4 });� �

Listing 4.9: Resizeable and moveable elements in the MooTools JavaScript library

However, several problems arise when we look at the result that browsers rendered. The
first problem is that the draggable elements jump out of their context. Just like in Dojo,
they started to hover the other DOM elements. A second problem arose with the resize-
able elements. By default, MooTools does not show a handle on the resizeable elements
which indicates that they are resizeable. Simply clicking in the element and moving
the cursor around will resize the element. A developer has the possibility to define his
own handle but it has to be added before the elements are made resizeable. There is
no dynamic insertion of a handle as it would be done in jQuery. Some developers may
prefer this, some may not. The final problem is that resize and drag functionalities are
not combinable. When adding both functionalities to an element together, the function-
alities were not visible and did not work at all. The result is that MooTools is not usable
when one needs resizeable and draggable elements, it is only usable for a developer
when he only needs one of the two functionalities on DOM elements.

Prototype The fourth library we tried was Prototype with Scriptaculous. In Table
4.3 it says that elements can be made draggable and resizeable. This was based on
the documentation that we found. However, for some unknown reason the resizeable

Choosing the technologies 83

functionality disappeared from the Scriptaculous library although we found links and
webpages that point to the official Scriptaculous website with the documentation for the
resizeable functionality 1. According to this documentation, the code would look like
this:� �

1 Event.observe(window, ’load’, function() {
2 $$(’div.draggable’).each(function(el) { new Draggable(el, {}); })

;
3 $$(’div.resize’).each(function(el) { new Resizable(el, {}); });
4 });� �

Listing 4.10: Resizeable and moveable elements in the Prototype JavaScript library

But since we can not get the Resizeable functionality working (browsers complain about
the lack of the Resizable function), the test case fails and we can conclude that Prototype
and Scriptaculous are no good candidates. If developers want elements to be draggable
and resizeable, they will have to write the resizeable functionality themselves.

YUI The last library that we try out is the Yahoo! User Interface library. The default
resize and drag functionality in YUI did not deliver the result we expected. The han-
dlebars for resizing the elements were shown at the corners of the browser’s screen. By
tweaking the settings, we could achieve the wanted result.� �

1 YUI().use(’node’, ’dd-drag’, ’resize’, ’resize-plugin’, function (Y)
{

2 Y.all(’.resize’).each(function(selectedNode) {
3 new Y.Resize({ node: selectedNode,
4 preserveRatio: true, wrap: true,
5 maxHeight: 200, maxWidth: 400,
6 handles: ’t, tr, r, br, b, bl, l, tl’
7 });
8 });
9 Y.all(’.draggable’).each(function(selectedNode) {

10 new Y.DD.Drag({ node: selectedNode });
11 });
12 });� �

Listing 4.11: Resizeable and moveable elements in the YUI JavaScript library

The problem however, is there is some very strange behaviour when using this code.
The first render of the page looks correct, all handlebars are in place and resizing the
elements is no problem. However, the problem arises when we try moving an element
that is resizeable (in our set-up the third element). The element itself is moved but its
resize handlebars don’t move along, they keep hanging on their original position. The
result can be seen in Figure 4.5. We can conclude that these functionalities will not
work together.

1http://script.aculo.us/docs/Resizable.html

http://script.aculo.us/docs/Resizable.html

84 Choosing the technologies

Figure 4.5: The result of moving a resizeable element when using YUI

Conclusion The conclusion of the usability testing is that although all libraries promised
a lot of interesting features, almost all of them fail to combine the promised features.
When setting up a basic test scenario where we wanted three elements on a page with
combined functionalities, we discovered several problems.

The first element on the page had to be draggable. This was no problem for all the
JavaScript libraries except with Dojo we ran into problems. The reason behind this, is
that Dojo wanted to turn the element into a widget. Although this does not mean that
there is automatically a problem when using Dojo, it sadly became a problem in our test
scenario. Turning the DOM element into a widget was a very destructive operation. The
result was that all the styling of the DOM element was lost thus giving a lot of problems
to set everything back to the old styling. The other libraries had no very big problems
but jQuery and Prototype handled it the best.

The second element on the page had to resizeable. The biggest notable problem was
found in Prototype. Although Scriptaculous promised to have resizeable elements func-
tionality and we found some documentation about it, the result was that there was no
resize functionality to be found in their code. Another notable problem could be found
in YUI. Here the handlebars to resize elements acted not as expected. When moving an
element, one expects the handlebars to move with it which was not the case at all. The
only library where making elements resizeable without having the need to add extra
HTML yourself, was jQuery. MooTools also did a good job but here you had to add
your own HTML for the handlebars.

The third and final element on the page had to be draggable and resizeable. The only
library that was able to do this without messing up, was jQuery. YUI almost got it right
and in other libraries it was either impossible or everything got screwed up.

We can therefore conclude that jQuery is the best library out of the five we compared
when it comes to combining functionality on the same element. Although this may not
be a requirement in every programming project, it can give a problem in the future as it
shows that not all JavaScript libraries are very robust. Either certain functionality is very
cumbersome to add or the functionalities conflict with each other. In the ideal situation,
one wants to have all functionalities working together without conflicting.

Choosing the technologies 85

4.1.4 Conclusion

We did a comparison of five JavaScript libraries on three levels. Firstly, we did a feature
comparison after we selected the five JavaScript libraries that we were going to compare.
Based on this, we can conclude that all of them are very similar and competitive. Either
they all supported the same features or they had certain very competitive features.

The second level on which we did a comparison, was when we constructed a hello world
application. This allowed us to analyse some basic behaviour:

• How should the library be loaded?
• How does the library offer its functionalities: does a developer have to load in

certain modules or is everything possible from the start?
• How can a developer select the body of a webpage?
• How can a developer set the content of the webpage?

This was very basic behaviour and showed use that all libraries are used in roughly the
same way and that it was possible to write a hello world application fairly easily.

The third level on which we did a comparison was in a situation where we wanted to
use two main functionalities that are important when creating a user interface which is
basically a WYSIWYG: resizeable elements and draggable elements. In this situation,
we had troubles either setting up certain functionality or combining the functionalities.
Only jQuery could provide us with what we wanted in very short and easy code. All
other libraries had problems. Based on this, we can formulate certain conclusions:

• Dojo likes to turn everything into a widget which is a nice conceptual abstraction
but can give serious problems. The first problem is that functionalities from sep-
arate widgets cannot be combined on the same element. The second problem is
that turning a DOM element into a widget is a destructive operation on the CSS
styling.

• YUI is very bad at combining certain functionality. Although the functionality on
its own works, it can give strange results.

• MooTools does not enable certain functionality when it is combined with other
functionality.

• Protoype relies on Scriptaculous to give many visual features which are not al-
ways implemented although the documentation about it exists.

• jQuery allows very short code and was the only one that did what we expected.

When we combine these conclusions with the results of previous research [32, 31, 49]
where there was testing on the code quality of the libraries, the amount of documentation
and so on, we can conclude that jQuery is the best tool for a web browser based user
interface.

86 JavaScript architecture

4.2 JavaScript architecture

In Section 4.1, we decided to use jQuery as the basic library for our implementation.
As jQuery is a JavaScript library, we have the complete freedom in how we are going
to use it. If it were a framework, a certain software architecture might have been forced
like Model-View-Controller (MVC) [44].

Most websites use a JavaScript library like jQuery as an extra layer in the user interface
that results in higher usability. For example, direct validation of email addresses, the use
of a date selector for date input fields, basic form validation and so on. In such cases,
there is no real need for a big software architecture. In most cases, some extra included
JavaScript files in the HTML that contain a bunch of methods are sufficient. These
methods simply subscribe to certain events like key presses in a certain input field. This
method of using JavaScript is okay when the developers are adding extra usability.

In the case of MindXpres, this is not the way to go as we wanted to create a real Rich
Internet Application (RIA) [66]. The idea was that it is for the user just like he would
open any application on their computer, with the only exception that it runs in their
browser.

Although the actual implementation would be some sort of website, we took it a step
further by deciding that the application would run completely client-side. In most RIAs,
AJAX is used for achieving data consistency and backups while browsing [58]. We
decided however to have a single-page web application that is not dependent on a server-
side component. A huge advantage of this is that data cannot get corrupt as the browser’s
back button is useless.

The starting point of the web application would simply be an HTML file which renders
the default screen and loads in the whole application that is written in JavaScript. After
that, the application is completely responsible for removing and adding HTML just like
is the case in some AJAX-based web applications.

4.2.1 Organizing the code

In essence, building a web application is writing bits of functionality that have to react
to events triggered by the user e.g. clicking on a button, moving the mouse and so on.
Some functionality may be complementary while other may work independently. It
is even possible that some functionality is not required for a correct working of the
application. For example, we could add an auto save feature which saves the state of
the application every five minutes. This feature works completely independent of other
features and the user is able to work without that specific feature.

JavaScript architecture 87

4.2.1.1 Modules

After intensively looking around on the Web, we stumbled upon RequireJS1. This is a
library that helps developers to dynamically load JavaScript code. The code is organised
in modules. We decided to use this concept of modules for multiple reasons.

The first one is of course the dynamic loading of code. It would allow us to save a lot
of memory if certain functionality would be loaded only when it is necessary. Although
computers are always getting more powerful, JavaScript has the limitation that there is
no memory management possible. By loading in certain pieces of code only when it is
used, we can at least avoid unnecessary use of memory by avoiding unused functionality
when starting the application.

The second one is the separation of functionality. When using modules, we can group
certain functionality that belongs together. For example functionality related to the
editing of a presentation element could be put into one module. This gives a better
overview of the code as there is an organisation at the module level.

The third and final one is the reuse of functionality. It is possible to reuse modules like
a form validation module that validates for example the formatting of email addresses.

4.2.1.2 File structure

Putting code into a module can be done in multiple ways. One can simply create one
huge file with several modules in it but there can also be a certain structure when using
one module per file. In the application that we developed, we used the convention that
each module has their own unique file. Each module belongs to a certain category to
group everything in a logical way. Some examples of these categories are: presentation,
presentationelement and theme. We have a modules folder where each module is
organised as follows: category/modulename.js.

Alongside the modules folder, there are also other folders: lib, plugins and templates.
The lib folder is short for libraries. In this folder, all external libraries like jQuery,
jQueryUI, RequireJS and so on are put. The reason behind this is that we wanted to
have a separation between used libraries and code that is specific for our application.

The plugins folder contains all the plugins that are used in the application. The
explanation why we use plugins and how they work, can be found in Section 4.2.2. The
last folder is templates. In this folder, all the templates are put that are used for
the presentation. These are XML files that will be parsed: HTML forms, formatting
for dialogues and so on. The reason behind this is very simple: it allows for a clean
separation of the presentation and the actual functionality. As a bonus, certain HTML
can be reused. A basic string replacer is used as a template parser to insert certain values
into the HTML. An example template is given in Listing 4.12. Variables are surrounded
with double curly brackets.

1http://requirejs.org/

http://requirejs.org/

88 JavaScript architecture

� �
1 <li class="presentationtab" data-presentationid="{{id}}">
2 {{name}}
3 <button class="close edit-presentation-tab-close" />
4 � �

Listing 4.12: Example template

4.2.2 Plugins

Plugins are an essential part of the MindXpres application and one of the key features.
Each element in a presentation is in fact an instance of a plugin. Because all the elements
are plugin-based, new types of elements can easily be added.

4.2.2.1 Loading in plugins

The theoretical part of a plugin-system is very trivial but the implementation gave some
challenges. For example, JavaScript is not capable of scanning a directory. Because of
this, we are not able to let the application scan a directory with all the plugins to load
them in automatically when the application is loaded.

We solved this problem easily by adding a JSON-file called activePlugins.json in the
directory of plugins in which a developer must register his plugin. The JSON-file with
the three plugins we implemented can be seen in Listing 4.13. This file is parsed and
we give the assignment to RequireJS to load in all the plugins.� �

1 {
2 "text": "textPlugin",
3 "title": "titlePlugin",
4 "youtube": "youtubePlugin"
5 }� �

Listing 4.13: The JSON file listing all the plugins to load

4.2.2.2 Structure of a plugin

In Figure 4.6, we give the general structure of a plugin in our application. Every plugin
has four basic properties: name, type, description and settings. The type is a unique
identifier that allows instances like a presentation element to be typed. The name and
description are merely there to help the user of the application as they are used in the
interface when the user wants to add elements to a presentation or theme.

The settings property contains all the elements of a plugin instance that may influence
it appearance: text colour, font size, font family, a YouTube URL, width, height and

JavaScript architecture 89

so on. Such a setting is called a plugin setting. For more information on how a plugin
setting is actually implemented, we refer to Section 4.2.2.4.

Each plugin has multiple methods: init, create, render, preview and toString.
The init method is called when the application is loaded. This can be used to make
sure the plugin is ready to be used. For example an external library can be loaded. The
create method is called when a new instance is requested in the theme or presentation
editor. Render and preview are used to parse a plugin instance to something that
can be shown to the user of the application. The toString method is an extra render
method that returns a string representation of the plugin instance.

Figure 4.6: UML diagram showing the basic plugin structure

Creating a plugin is easy. One simply has to create a new directory for the plugin with
the name of the directory the same as the plugin. In this directory, one has to create a
.js file, also with the same name as the plugin. In this .js file, the developer simply
adds a module just like in the rest of the application. Another file that can be created in
the directory is a style.css for the custom styling that belongs to that plugin.

The newly created plugin can then be added to the plugins directory and by adding an
extra line in the activePlugins.json file. From then on, whenever the application
is started, the plugin will also be loaded.

4.2.2.3 Plugin core

Because all plugins have certain things in common, we created a plugincore which is
a sort of base module that all plugins should use. The current structure of the plugin
core is shown in Figure 4.7. It offers certain basic methods like create that all plugins
support. The idea behind the create method in the plugin core, is that plugins call this
method to construct an instance. This is to ensure that all plugins get the exact same
interface for the developers and that there is an extra check on the validity of plugins.
If a plugin does not offer basic methods like render, they can not be used correctly in
the application and might result in big error messages. The use of the plugin core to
validate and create plugin instances, is a safe way to guarantee correctness.

90 JavaScript architecture

Figure 4.7: UML diagram showing the plugin core module

4.2.2.4 Plugin settings

A plugin can define in its settings variable what the different type of settings are
that influence the rendered result of a plugin instance. For example for the YouTube
plugin, we want to allow the user to add: a YouTube URL, a width and a height.

The first idea to allow such settings was by allowing the use of a markup language in a
plugin. The plugin itself would then be programmed to parse the input and the render
the correct result to be added in a presentation. There are several problems with this
approach.

One of the problems is that it gives a lot more work to plugin developers as they not
only have to make sure a plugin instance is correctly rendered but that the settings are
correctly parsed.

A second problem is consistency in the formatting of the settings. This is more a usabil-
ity problem as each plugin may implement text input differently.

The third problem was identified in Section 2.3. Almost no user interface language that
allows an abstraction and separation of concerns, is supported by the browsers or there
is no renderer available.

To circumvent these problems, we introduced the concept of plugin settings. These are
in essence the building blocks of a plugin. It is an abstraction of certain settings that
may occur in multiple plugins. A plugin setting can be a line of text, a URL, a colour, a
number within a range and so on. Each plugin setting is rendered in its own way. How
they are rendered, is defined in the plugin setting itself to create a consistency and an
easy-to-use interface. The only thing that plugin developers can do is define what plugin
settings are used and read out the values of each element. These values can then be used
to process and render a correct version of the plugin instance.

We implemented several plugin settings which plugin developers can use. As can be
seen in Listing 4.14, developers only have to list up all the possible settings and what
their type is. The one we show is for the text plugin which allows a user to enter text,
give it a certain colour and a certain font size which is limited. The application will then
parse all these settings and based on the types, it will render the correct input fields. For
example for a line of text, an HTML input field will be generated.� �

1 var settings = {
2 textContent: {
3 type: ’text’,

JavaScript architecture 91

4 id: ’textContent’,
5 name: ’Text to display’,
6 value: ’No text defined’
7 },
8 textColor: {
9 type: ’color’,

10 id: ’textColor’,
11 name: ’Font color’,
12 value: ’#CCCCCC’
13 },
14 textFontsize: {
15 type: ’int’,
16 id: ’textFontsize’,
17 name: ’Font size’,
18 min: 8,
19 max: 20,
20 value: 12
21 }
22 }� �

Listing 4.14: The plugin settings for a piece of text

4.2.3 Entry point into the application
� �

1 requirejs.config({
2 enforceDefine: false,
3 baseUrl: ’src/modules/’,
4 paths: {
5 jquery: ’../../lib/jquery-1.9.0’,
6 jqueryext: ’../../lib/jquery-ext’,
7 jqueryui: ’../../lib/jquery-ui-1.10.0.custom.min’,
8 // ... extra libraries here ...
9 }

10 });
11 define(
12 [’core’, ’jquery’],
13 function(core, $) {
14 require([’plugincore’, ’jqueryext’, ’jqueryui’, ’

jquerycontextmenu’,’jqueryplumb’, ’xslt’, ’colorpicker’],
function() {

15 $(document).ready(function() { core.init(); });
16 });
17 }
18);� �

Listing 4.15: Stripped down version of the main file

First step in the development of the application was creating an entry point. This is done
by a main file that executes certain code when the HTML file is loaded, i.e. when the
DOM is loaded. This can be seen in Listing 4.15. In here, we make sure that all the used

92 JavaScript architecture

JavaScript libraries like jQuery, jQueryUI and so on are loaded via RequireJS1 before
we start the actual execution of the application. RequireJS helps us to ensure that all
JavaScript gets loaded before we try to execute anything. When everything is loaded,
we call core.init().

4.2.4 Core

The core module is the beating heart of the application handling everything. From mak-
ing sure everything gets loaded in the application to the actual communication between
the modules. The structure of the core module can be seen in Figure 4.8. Every module
in the application is expected to use the core module. It allows modules to dynamically
load in new modules, extract data from the user, communicate with other modules and
so on. We will explain more details about the core in the next sections.

Figure 4.8: UML diagram showing the core and mediator, the beating heart of the application

4.2.4.1 The mediator: communication between modules

We placed the code into modules which gave rise to a question: how do we let modules
communicate with each other? As we mentioned before, a web application is in fact
a whole bunch of functionality that reacts to events like the user clicking on a button.
We took this event-based approach into our module system. Each module is able to
raise events and to react to events. What is actually implemented, is a sort of publish-
subscribe architecture [23] but with a twist. It is based on publish-subscribe architecture
ideas like future type message [77, 2] and wait-by-necessity [67].

Future type message and wait-by-necessity are less restrictive variants of the concept
fire-and-forget. In fire-and-forget, invocations are made without expecting a result. If

1http://requirejs.org/

http://requirejs.org/

JavaScript architecture 93

we would use that concept in our application, a module might make an invocation or
raise an event without ever reacting to a possible result.

In future type message and wait-by-necessity, there is support for return values. These
return values are actually handles which the developer can use to access the actual result
of a method invocation some time in the future. If we would use this concept, a module
would be able to react in the future. We twisted the architecture a little bit by allowing
the developer to add a callback to their event raise.

Subscribing to events Upon starting the application, certain modules are loaded. By
convention, every module can have a init method that gets called automatically as the
module gets loaded. In this init method, modules can let the core know that they want
to subscribe to an event. An example of such an init method is shown in Listing 4.16.
By calling the subscribe method of the core, modules notify that they want the given
callback to get called whenever the event occurs. Via this, we cover the subscribe-part
of the publish-subscribe architecture.� �

1 var init = function() {
2 core.subscribe(’editPresentation’, showScreen);
3 core.subscribe(’presentationCreated’, addTab);
4 core.subscribe(’presentationOpened’, addTab);
5 core.subscribe(’allPresentationsClosed’, destroy);
6 core.subscribe(’initPresentationTabs’, initTabs);
7 core.subscribe(’allPresentations’, gotAllPresentations);
8 }� �

Listing 4.16: An example of an init method of a module

Publishing events We will explain the publishing of events more in detail via an ex-
ample in Listing 4.17. In this example, we publish that we want to receive some data
about a presentation element. This is a common situation where we want to know what
the result is as we need it to continue our computations. The first parameter is the mes-
sage by which other modules can know if they can react to it. The second parameter is
a collection of extra parameters that the possible receiving module can use. The third
parameter is the callback which will be executed on the result of every possible module
that returns a result upon invocation. It is thus not known upfront how many modules
might react to the given message. This is part of the flexibility. A final parameter is
available which is called the fallback. This is a closure that gets called whenever no
module was able to react to the given event.� �

1 core.publish(’getPresentationElementData’, element, function(element)
{

2 // do something
3 });� �

Listing 4.17: Basic example of how the publish in our publish-subscribe architecture works

94 JavaScript architecture

4.2.4.2 The core: glue between HTML and JavaScript

Apart from handling all possible subscriptions on events and publishes, the core is also
responsible for providing an easy-to-use interface for the developers to get and set data.

Binding to DOM events In an HTML webpage, multiple events can occur. A user
might click on a button, move their mouse, enter text and so on. All these events are
captured by the user’s browser and are called DOM events 1. The DOM Events Specifi-
cation allows developers to register to event handlers, access the event flow and provide
contextual information for each event. For example the developer is capable of knowing
where exactly a user might have clicked and what events are triggered because of this.

To allow modules to bind handlers to these DOM events via a generic and flexible
interface, we provided the core with four methods: bind, unbind, bindAll and
unbindAll. The bind method allows a developers to register a handle to a DOM
event and he can unregister the handle via the method unbind. With bindAll and
unbindAll, he can register and unregister a collection of events. All DOM event
types are supported by the core.

Getting and setting data The user is constantly interacting with the webpage that
they see. One of the possible interactions is filling in a form. To extract the infor-
mation filled into a form, we provided the getValue method. Via this method, the
developer has an easy to use interface to extract data. Thanks to the counterpart method
setValue, they can also set certain data in the HTML.

4.2.4.3 Preparing the application to start

One of the major functionalities that the core provides, is helping with the start of the
application. As can be seen in Listing 4.15, the main file calls the instance of the core
with the init method. In this method, the following operations are performed sequen-
tially: loading all modules, calling all initmethods of the modules, loading all plugins
and showing the starting screen to the user. Because all these actions are bundled into
one method, we are sure that everything is loaded in correctly before the user ever gets
to see the starting screen. This way we can ensure that everything can work correctly
before the user starts performing any action.

1http://www.w3.org/TR/DOM-Level-3-Events/

http://www.w3.org/TR/DOM-Level-3-Events/

Details about the implementation 95

4.3 Details about the implementation

In Chapter 3, we introduced the best possible tool for authoring MindXpres presenta-
tions and themes alongside possible improvements for current presentation tools. We
now present what we actually implemented of the best tool in a first version, after we
had implemented the JavaScript architecture that we presented in Section 4.2.

4.3.1 Used technologies and libraries

The application is entirely built in HTML5, CSS3 and JavaScript. As a result, the ap-
plication can completely run in a web browser without any problem. It is not dependent
on plugins. To get certain complex functionality, we used several libraries. The largest
library we used is jQuery as we concluded in Section 4.1 that it is currently the best
JavaScript library out there to build a user interface.

Of course, jQuery does not offer all the features that we needed. For the more user
interface-centered features, jQuery relies on jQuery UI. jQuery UI is a curated set of user
interface interactions, effects, widgets and themes built for the jQuery library. Function-
ality like resize and draggable becomes available to developers with jQuery UI.

One of the main features in MindXpres is the ability to draw paths between elements in
a presentation. To achieve this, the functionality of connecting elements was necessary.
Thanks to jsPlumb1, this was easily achievable. We only had to customise the look-and-
feel a bit to fit in the MindXpres application.

In order to get context menus in the application, we make use of the jQuery contextmenu
library2. Note that our application is not completely dependent on it as most of the
functionality is also reachable via other menus.

4.3.2 Implementations made

An overview of what we actually implemented is:

• Starting screen
• Support for help screen
• Creating presentation
• Opening presentation
• Creating theme
• Opening theme
• Adding presentation elements
• Filter possible presentation elements to add
• Moving presentation elements

1http://jsplumbtoolkit.com/jquery/demo.html
2https://github.com/medialize/jQuery-contextMenu

http://jsplumbtoolkit.com/jquery/demo.html
https://github.com/medialize/jQuery-contextMenu

96 Details about the implementation

• Resizing presentation elements
• Deleting presentation elements
• Contextmenu on presentation elements
• Tabs to edit multiple presentations at the same time
• Basic minimap when editing presentations
• Zooming in presentations
• Add path element
• Move path element
• Delete path element
• Contextmenu on path elements
• Show and hide presentation path
• Edit theme of the presentation currently editing
• Exporting presentation elements into a theme
• Add theme element
• Filter possible theme elements to add
• Edit theme element
• Delete theme element
• Filter theme elements
• Tabs to edit multiple themes at the same time
• Applying a theme to presentations
• Use theme in a new presentation

4.3.3 Some important implementations highlighted

We will now discuss certain important parts of the application that we developed. These
are either interesting concepts that we implemented or they offer a better understanding
of how the application generally works.

4.3.3.1 Exporting presentation elements into a theme

This feature is one of the four connecting parts between the presentation editor and the
theme editor. The idea behind it is fairly simple: when users are editing a presentation,
they are editing the stylings of elements. For example they might add a title element
and change the font size. The user might want to save these changes into a theme. To
avoid that they have to redesign a theme from scratch and reproduce such new stylings,
we offer the necessary interfaces to export the existing stylings into a theme.

Firstly we added an easy-to-use button to the interface by which the user makes clear
that they want to export the stylings into a theme. After they click on it, a dialogue
appears in which the user can fill in the new theme name and other information. When
they click next, a new dialogue appears in which they can select what elements they
wants to export as can be seen in Figure 4.9. After that, they get an overview of the

Details about the implementation 97

selected elements and they are able to either create the theme or return back to make
changes.

Figure 4.9: The user gets an overview of all the elements in the presentation. In the current
presentation, we only added two title elements with different font sizes which is shown to the
user.

This is an example of the flexibility of the plugins in the MindXpres application. Each
presentation consists of a bunch of plugin instances. Whenever the user changes the
styling of a certain instance, this is saved in the instance itself obviously. In order to
export the stylings, we only have to take all the presentation elements and sort them on
their type. When they are sorted, we only have to show the correct selection boxes in a
dialog and we can show the actual plugin instances simply be asking them to render.

The actual export is basically a copy of the plugin instances from the presentation into
a new theme. Hence a theme will consist of a collection of plugin instances, just like
a presentation. The difference is that instances in a theme are unique based on their
type. A theme will have a maximum amount of one title instance, one text instance, one
YouTube instance and so on.

4.3.3.2 Tabs to edit multiple presentations at the same time

To allow the user to edit multiple presentations at a time, we introduced tabs via which
the user can change the current presentation that he is editing. By default, jQuery sup-
ports the addition of tabs in a webpage, yet we implemented them ourselves to have full
control.

The functionality of tabs for presentation editing is embedded in a single module. This
module reacts to all possible events that might change the tabs. For example when a

98 Details about the implementation

new presentation is created, a tab must be added. To react to the situations when a new
tab must be added, we only had to subscribe to the appropriate events as can be seen in
Listing 4.18.� �

1 core.subscribe(’presentationCreated’, addTab);
2 core.subscribe(’presentationOpened’, addTab);� �

Listing 4.18: By adding two basic lines it was possible to have new tabs added at the same time
as when presentations were opened and created

This is an example of how flexible the module system is. The code that creates or opens
a presentation does not have to be altered to allow the correct appearance of tabs. It
is perfectly possible to disable the module that manages the tabs and simply limit the
user to having only one presentation at the same time opened. The tabs functionality
is in fact injected into the already working presentation tool. A result of opening and
creating multiple presentations can be seen in Figure 4.10.

Figure 4.10: As the user opens or creates multiple presentations, tabs are added to allow him to
change the presentation that he is currently editing

4.3.3.3 Applying a theme to presentations

One of the four links between the presentation and theme editors was the ability to apply
a theme to presentations without having to open all these presentations. Because we use
transclusion, this process is actually fairly easy. Theme specific stylings are never saved
in a presentation. The presentation only keeps a reference to the theme they use. Each
theme can also point to another theme which results in a whole chain of stylings.

As a presentation only keeps a reference, we only have to overwrite the reference in
the presentation. It is only at viewtime that a presentation gets rendered and that theme
definitions get loaded. To implement the update of the reference, it was only a matter of
setting the member theme of a presentation object to its correct value.

Details about the implementation 99

Figure 4.11: Via a dialog, the user can select on which presentations he wants to apply a certain
theme.

100 Evaluation

4.4 Evaluation

The final result consists of over 8000 lines of code. We tried to implement as much of the
desired functionality as possible to show the actual power of the proposed presentation
tool. The result was a real stress test for the proposed JavaScript architecture and the
used libraries.

In our JavaScript library comparison that we performed in Section 4.1, we came to the
conclusion that jQuery would be the best library out there to help us build this appli-
cation. jQuery offered out of the box lots of functionality and thanks to side projects
like jQuery UI, we had no trouble at implementing a lot of features. For example the
ability to resize elements was simply a matter of activating the resize functionality on
the correct HTML elements. After implementing such a large project, we can conclude
that it really was the best choice.

The proposed JavaScript architecture that we used, evolved over time. As we first
started, we did not have the ability to provide callbacks when a module published some-
thing. This meant that if a module could respond to a certain publish (i.e. he subscribed
to the corresponding message) that it as impossible to directly react. The return values
were ignored as we wanted to have the modules as loose coupled as possible.

At first this worked well and in certain cases it was no problem that there were no return
values. For example the addition of tabs like we explained in Section 4.3.3.2 was easy
to achieve as the tabs module only changed HTML and did not have to respond to other
modules. It only had to perform certain actions whenever a presentation was opened or
created.

However, certain modules needed the possibility to return values. A good example for
this are the so called manager modules. These are modules that manage objects for a
certain type like for example all the presentation objects. We introduced these modules
to combine all the functionality that is necessary to manage these objects. However
sometimes other modules would ask the manager modules to give back a certain object
like for example a specific presentation object. As there were no return values in our first
design, the manager modules simply published the object and the original requesting
module had to subscribe to that specific publish to retrieve the object.� �

1 var newPresentationElement = function(element) {
2 core.publish(’getPresentationElementData’, element, function(

elementWithData) {
3 // do something with elementWithData
4 });
5 }� �

Listing 4.19: Example usage of the callback

Although this works fine, the problem is that it lacks maintainability. To solve this, we
added the callback that can be added when one publishes something. This callback will
get called for any possible response with a correct return value as the first parameter. An

Evaluation 101

example to explain this can be found in Listing 4.19. Here we see a method that reacts
whenever a new presentation element is added to a presentation. It performs a publish
that will be captured by the presentationelement manager module. Via the callback, we
get back a presentation element with all possible missing data filled in. This code is
used in the overviews module which gives a small overview in the sidebar of all the
different presentation elements in a presentation.

Because of improvements like this, we were able to create a solid JavaScript architec-
ture. In this architecture, modules are extensively used and they can communicate with
each other while still being loose coupled. It is therefore not necessary for a module to
be active to have a working application. When a module responds can even be variable.
The architecture can be extended to use asynchronous calls to a backend for example.

We conclude that the proposed JavaScript architecture works well. We were able to
create flexible modules that are loose coupled and in future even can be improved to
use asynchronous calls. The choice of jQuery was the right choice and thanks to some
good JavaScript libraries we were able to produce a huge amount of code in a very short
timespan.

102 Evaluation

5
Use case

After designing a better presentation tool in Chapter 3, we made an implementation that
we discussed in Chapter 4. In this chapter we will go through a possible use case of the
presentation tool. We designed a scenario that will highlight the major benefits of our
tool by going through the different novel concepts that we introduced.

104 Starting the application

5.1 Starting the application

As the application is a Rich Internet Application, it must be opened in the user’s browser.
Upon launching the application, the user is presented with a basic starting screen which
allows them to create and open presentations and themes as can be seen in Figure 5.1.

Figure 5.1: The starting screen that is presented to the user upon launching the application

Creating a theme 105

5.2 Creating a theme

The tool focuses on the authoring of themes and presentations. We will start with creat-
ing a theme that will act as the basis for the styling of future presentations. The user can
click on the Create button on the starting screen after which a dialogue is presented
as shown in Figure 5.2.

Figure 5.2: The dialogue that allows the user to create a theme

5.3 Adding a theme element

A theme is a collection of theme elements. Each theme element holds the styling def-
initions for a specific type of element. In our current version, the user can have three
different theme elements, one for each type of element that they can put in a presen-
tation: text, title and YouTube. We added a theme element for the text type
by clicking at the top of the application on the menu button Add in the group Theme
element. The user is presented with a menu to choose which theme element he wants
to add. In this scenario we added a text element. The result is a box in the interface that
represents this theme element and it is illustrated in Figure 5.3.

106 Editing a theme element

Figure 5.3: The result of adding a theme element to a theme

5.4 Editing a theme element

By clicking on the Edit button in a theme element box, the user is presented with a
screen in which he can edit certain settings for that specific element, as can be seen in
Figure 5.4. These settings are generated based on what is defined in the original plugin
that renders the theme element. As the user is changing the settings, the small preview
in the dialogue is updated instantly. We change the font size to the maximum size. By
clicking on the Save button, the changes are saved in the theme.

Using a theme in a new presentation 107

Figure 5.4: The dialogue that allows the editing of a theme element

5.5 Using a theme in a new presentation

One of the novel concepts that we introduced in our presentation and theme authoring
tool is the possibility to directly create a new presentation from within the theme editor.
This can be achieved by clicking on the Use button in the group Presentation
which is situated in the top of the application. The user is presented with a dialogue,
as illustrated in Figure 5.5. Note that this is almost an exact replica of the dialogue that
was shown in Figure 5.2 with the exception of the lack of being able to select the theme.
This selection of the theme is already done for the user. As soon as they click on the
Create button, they are presented with the presentation editor with their newly created
presentation opened.

108 Adding a presentation element

Figure 5.5: The user is able to create a presentation from within the theme editor

5.6 Adding a presentation element

We will now add a presentation element to the presentation. This can be achieved in a
very similar fashion like it was the case when adding a theme element. There is an Add
button in the top of the application which gives a selection menu from which the user
can choose the elements that he wants to add. After selecting an element, it is inserted in
the presentation and rendered by the original plugin. We added a text element which
is rendered by the text plugin. As we had a theme element for the text element, the
theme stylings are applied to this new presentation element. The effect is that the text is
in a larger font size than defined in the original plugin.

Creating a new presentation 109

Figure 5.6: The result of adding a presentation element to a presentation. The element is ren-
dered by the corresponding plugin.

5.7 Creating a new presentation

We close the presentation which results in an automatic save of the presentation itself.
We are redirected back to the starting screen in which we click on the Create button
to create a new presentation. We fill in the details and select our previously made theme
T1 as the theme for our presentation.

5.8 Editing the current theme

After we entered the presentation editor by creating the presentation, we click on the
Edit button in the Themes group in the top of the application. This is the second of
the four novel concepts that we introduced. It will directly close the presentation editor
and open the theme editor with theme T1 opened. The user is then able to edit theme
T1 which will have an effect on all the presentations that use T1 as their theme. In this
scenario we close theme T1.

110 Exporting theme elements

5.9 Exporting theme elements

We will now create a new presentation P2 with several elements of the type title.
When we double click on each of these elements, we change the settings so that each of
them have a different font size. The result is illustrated in Figure 5.7.

Figure 5.7: The presentation from which we will export stylings into a new theme

Now in the case that we want to save the stylings from one of these presentation el-
ements, we are able to use the newly introduced export functionality. This is one of
our four novel concepts which allows the extraction of presentation element stylings to
be saved into a new theme. We simply click on the Export button at the top of the
application after which we get a basic dialogue. In this dialogue, we can define the new
theme name and other information like the author. When we click on next, we get the
possibility to select a presentation element for each type of plugin as can be seen in
Figure 5.8. After we selected the element that we want to export, we click on the next
button after which we can review our selection and confirm to the application that the
theme may be created.

Applying a theme to a presentation 111

Figure 5.8: The user gets an overview of all the elements he can export

5.10 Applying a theme to a presentation

We now have a new theme T2. If we would want to change the theme of presentation P1
in the current popular presentation tools, we would have to open the presentation and go
select the theme. In MindXpres, we introduced a novel method that allows the user to
apply a theme to a presentation. We have theme T2 opened in the theme editor. When
we click on the Apply button, we get the dialogue that is shown in Figure 5.9. In this
dialogue the user has the possibility to select to which presentations the theme must be
applied to. We select presentation P1 and after clicking on Save, the base theme for P1
is changed from theme T1 to T2.

112 Applying a theme to a presentation

Figure 5.9: Via a dialogue with an overview of all the presentations, the user can select to which
presentations a theme must be applied to

6
Conclusion

In this final chapter, we summarise our findings from Chapter 2 about the current pre-
sentation tools and how they could be improved. We also recapitulate from Chapter 3
what is the best possible tool that could be designed for MindXpres. Finally, we take
a look back at what we implemented in Chapter 4 and what conclusions we can draw
from our experiences.

114 Evaluation

6.1 Evaluation

The main target of this thesis was to come up with a WYSIWYG authoring solution
for the MindXpres presentation tool. During the course of this year, we have gone
through different phases of the project. We started with a comparison of the current
presentation tools. After that, we decided to go for a web-based solution which lead us
to a comparison of current JavaScript libraries. With the results of these comparisons
in mind, we started to design the best possible presentation and theme editor for the
MindXpres presentation tool. To achieve this, we have gone through a good amount
of literature by which we would be certain that particular design choices were the right
ones. By creating mockups, we designed a presentation tool and came up with new and
interesting concepts that are also applicable in current presentation tools. These new
concepts could benefit the users of current presentation tools. We ended with building a
first functional version of the presentation and theme editor.

6.1.1 Comparing current presentation tools

Although PowerPoint is the most used presentation tool with an estimated market share
of about 95%1, several alternatives exist. Apple Keynote and OpenOffice Impress are
the most known alternatives for Mac- and Linux-users. Therefore, we took these two
into our comparison with PowerPoint. We also looked at Prezi, a very promising and
novel presentation tool that stepped away from the sequential slide paradigm.

While comparing these presentation tools, we divided the feature comparison into two
categories: presentation editing and theme editing. Although most tools support the
functionality to edit presentations and themes, we noted that this separation is not always
that clear. For instance, we could not find a way to create a theme without having to
create a presentation first. Most tools also have the exact same interface for editing
themes as for editing presentations. Although this can be a positive thing as it gives a
consistent interface, it can be confusing. Another problem is that multiple names are
used to define what is in fact a theme: template and master slides are the most common
ones.

Another problem that we identified within almost all presentation tools are the inconsis-
tent interfaces for the functionalities. For example, PowerPoint offers multiple interface
concepts to the user to activate certain functionality: via the ribbon, via a general menu
bar at the top of the screen and so on. Although this gives the user the freedom to use
whatever interface he likes, the functionalities available are not the same in all these in-
terface concepts. We conclude that they lack consistency. A tool like Prezi does it much
better as they provide only one interface to add for example a presentation element.

With the identified problems, we not only tried to solve these existing problems but also

1http://www.businessweek.com/articles/2012-08-30/
death-to-powerpoint

http://www.businessweek.com/articles/2012-08-30/death-to-powerpoint
http://www.businessweek.com/articles/2012-08-30/death-to-powerpoint

Evaluation 115

tried to come up with novel solutions that are completely new in presentation tools. In
total we introduced four new solutions:

• Using a theme directly for creating a presentation

• Editing the theme of a presentation

• Applying a theme to multiple presentations

• Extracting styling information from presentations into a theme

These four novel concepts are in fact links between a separate theme and presentation
editor. The problem with separating a presentation tool into two different editors is that
the user experiences a lack in freedom to switch between the editors. The four novel
concepts provide two links in each direction which gives the user the complete freedom
to switch back and forth.

6.1.2 Comparing JavaScript libraries

As the main goal of this thesis was to implement a theme and presentation editor for
the MindXpres presentation tool, we had to look at what technologies we were going
to use. As the web continues to evolve with new standards like HTML5 and CSS3, it
was certainly an option to implement the presentation tool as a rich internet application.
Other motivations to implement a rich internet application entirely in HTML5, CSS3
and JavaScript were the platform independence and not having to install additional soft-
ware like browser plugins.

However, to create such a vast application like a presentation tool, we wanted to use
a JavaScript library that would support lots of functionality by default that we would
use often. Things like draggable elements, resizable elements and helper functions for
strings and objects were one of the many features that we wanted to have available by
default. Implementing such features ourselves would be possible but it would lengthen
the implementation time drastically.

Thus it was interesting enough to check out the current state-of-art of JavaScript li-
braries. In total we found five commonly used JavaScript libraries with lots of features
available. Deciding which of these libraries would be the best for our presentation tool
implementation was tricky. We started out with a feature comparison which showed us
that all five of them are very competitive.

After the feature comparison, we started to use the libraries themselves. How easy was
it to get the libraries running and create a basic Hello world! application? We concluded
that all of them were almost equally competitive.

The real differences started to show at our third level of comparison: a basic imple-
mentation of a webpage with certain features. Initially we wanted to start with a basic
webpage that we would continue to extend with functionalities to stress test the libraries.
Starting with a webpage were we had an element that was draggable and an element that

116 Evaluation

was resizable, all libraries were still competitive. However, when we decided to com-
bine these basic functionalities, only one library was able to achieve the desired result:
jQuery.

What we learned from this comparison is that although libraries have very promising
features, these features work very well when they are the only features used on a web-
page. As soon as you start combining functionalities, the libraries start to fail. This is
either because the functionalities override certain things or because they are very de-
structive on the original HTML.

jQuery was the best out of the five libraries that we compared. Not only did it present us
with the expected result, it also did it with very clean and small code. Hence, choosing
jQuery as the main library for our application was a trivial choice.

6.1.3 Designing a presentation tool

One of the key goals of this thesis was designing a theme and presentation editor for the
MindXpres presentation tool. We created mockups that we used as a guideline for the
actual implementation. They are also used to better explain certain concepts.

While designing the presentation tool, we based ourselves on lots of literature and previ-
ous studies to try and make the best design choices possible. The results from previous
studies helped us to make certain choices. An example can be found in the interface to
add elements. There were two different solutions to how a user can add an element. The
first one is via clicking on the type of element that he wants and then clicking on the
spot where he wants to place the element. The other one is via selecting a new element
out of a list of types and dragging it onto the spot where he wants to place it. Thanks to
previous studies, we could conclude that it depends on the type of input device whether
a user prefers a point-and-click interaction or a drag-and-drop [47]. Hence we could
make certain design choices or we could suggest possible solutions that could be taken
into account at implementation time.

6.1.4 Implementing a presentation tool

The actual implementation of the MindXpres presentation and theme editors proved to
be very challenging. Firstly we started with designing a good JavaScript architecture in
which we would organise our code and functionalities. Secondly, we tried to abstract as
much of the functionalities into a core and plugin core. After that, we started with the
actual implementation of all the screens and the links between them.

Because we worked with modules that are able to communicate with each other, we were
soon writing out lots of code that was nicely organised and worked cleanly together.
The result was that after a couple of months of implementation, we ended up with an
application that has more than 8000 lines of codes and offers a huge set of functionality.

Future work 117

6.2 Future work

6.2.1 Completing the presentation tool

As a master thesis, it was not expected that we could finish the whole implementation
phase of the presentation tool. This simply was not realistic as it requires a lot of work.
So, a first goal for future work is to continue the implementation phase in order to
complete the actual implementation of the presentation tool.

6.2.2 Evaluating the tool

Due to time constraints, we were never able to perform real user tests where we see if
our given solutions to certain design problems were effective. Because we based our
design decisions mostly on previous studies, we are fairly confident that everything will
turn out okay. Still, most of these previous studies were never used within the context
of a presentation tool like MindXpres. It would be certainly wise to perform extensive
user testing to find out whether certain design solutions were the best choice.

6.2.3 Extending the use of technologies internally

At the moment, the proposed and implemented MindXpres presentation tool uses few
technologies: HTML5, CSS3 and JavaScript. Users have to open an HTML page to
start the application. A possible step in future work could be to take a look at what tech-
nologies are available for a version that relies on things like server-sided technologies.
For example, could the application be migrated into a typical website with a backend on
the server that saves every step the user goes through?

6.2.4 Collaborative editing of presentations and themes

Some presentations are built in group and some themes are used by multiple people. In
such case, it would come in handy to see how collaborative editing could be achieved.
Can the application be turned into a presentation editing tool like the one available
on Google Docs1? How can the editing be improved instead of just sending out the
changes in real time? What are the considerations for when the network temporally
fails? These are all questions that make it a very challenging assignment to move to-
wards a MindXpres editor with collaborative editing.

1https://drive.google.com/

https://drive.google.com/

118 Contributions

6.2.5 Investigating new input and output methods

Currently the presentation tool was designed to be mainly used with a mouse and key-
board while the user sits behind a computer. Because it fully runs on standardized web
technologies, it should be possible to use it on a tablet for example. In such case, it
would be interesting to see how the user actually uses the tool in comparison to when
he sits behind a desktop or laptop. Also, other output methods like a projector could be
considered. Different input methods like pen-and-paper, touchscreens and so on offer
a possible better experience for the user. With possibly small adaptations to the tool, it
can be beneficial for the user if he has the complete freedom to what device he is using
with the tool.

6.3 Contributions

In Chapter 2 we performed a comparison on the currently popular presentation tools.
We wanted to identify how they implemented the authoring of sequential slides in a
presentation and what the problems are with this approach. We can conclude that the
sequential slide paradigm limits the users in their creativity and flexibility. We listed
these problems in Section 2.1. Some of these problems are already partially solved in a
tool like Prezi, yet we were able to identify several other problems with this tool which
we also presented in Section 2.1.

We also looked at how the concept of presentations and themes is linked in current
presentation tools. One of the research questions that we had was how the concepts of
themes and presentations are linked in current presentation tools and whether there are
certain limitations to the current approaches. All of them use a non flexible approach
as in most cases the theme definitions are copied into presentations. We propose a new
approach via the concept of transclusion. In this concept, presentations and themes
are completely separated and they are linked together in such a way that they can exist
separately. At viewtime, the presentations and themes are merged together. This is
inspired on how the Web currently works with HTML pages and media that is only
fetched at viewtime.

Not only did we separate the concepts of presentations and themes in an efficient and
flexible manner by using transclusion, we also presented several solutions on how to
link the authoring of these concepts in a tool. We introduced four novel concepts that
allow developers to have presentations and themes separated. Meanwhile the user still
has maximum flexibility in authoring his presentations and themes.

We designed an authoring tool that was partially inspired by the current tools while we
improved multiple existing concepts. We proposed a tool that works with a zoomable
user interface, has a consistent menu structure and has a clear separation between the
editing of presentations and themes. The editing of presentations and themes is nicely
linked together by our four novel concepts.

Final words 119

As the Web continues to evolve, we looked at how we could use the Web as a new
application platform. In order to have a dynamic webpage, developers are dependent
on JavaScript technology. We performed a thorough comparison of the five major
JavaScript libraries currently used on the World Wide Web. We identified several prob-
lems in these JavaScript libraries and came to the conclusion that jQuery is currently
the best library to use. With this gained knowledge, we designed a flexible and solid
architecture for our application that is inspired by the publish-subscribe design pattern
and the AJAX concept.

We also did a basic comparison in Section 2.3 on the current user interface languages
that looked promising. Sadly we came to the conclusion that none of them are directly
usable in a Rich Internet Application.

As a final phase in this thesis, we implemented a first version of the authoring tool that
we designed. We built it in JavaScript based on our JavaScript library comparison and
the architecture that we designed.

6.4 Final words

In MindXpres, three major phases were identified: before, during and after giving a
presentation. This thesis focused on the first of those three, the phase before giving a
presentation. Based on the conclusions that we could draw on the current technologies,
there is clearly room for improvement on both the design and implementation part. Yet
it looks very promising for the future of MindXpres as we now have a solid basis to
work with.

120 Final words

Bibliography

[1] Marc Abrams, C Phanouriou, Alan L. Batongbacal, Stephen M. Williams, and
Jonathan E. Shuster. UIML: An Appliance-Independent XML User Interface Lan-
guage. Computer Networks, 31(11):1695–1708, May 1999.

[2] Akkihebbal L. Ananda, B. H. Tay, and E. K. Koh. A Survey of Asynchronous
Remote Procedure Calls. SIGOPS Operating Systems Review, 26(2):92–109, April
1992.

[3] Robert A. Bartsch and Kristi M. Cobern. Effectiveness of PowerPoint Presenta-
tions in Lectures. Compututer Educaction, 41(1):77–86, June 2003.

[4] Patrick Baudisch, Xing Xie, Chong Wang, and Wei-Ying Ma. Collapse-To-Zoom:
Viewing Web Pages On Small Screen Devices By Interactively Removing Irrele-
vant Content. In Proceedings of UIST ’04, 17th annual ACM symposium on User
Interface Software and Technology, pages 91–94, Santa Fe, NM, USA, October
2004.

[5] David V. Beard and John Q. Walker II. Navigational Techniques To Improve The
Display of Large Two-Dimensional Spaces. Behaviour & Information Technology,
9(6):451–466, 1990.

[6] Ben Bederson and Jon Meyer. Implementing A Zooming User Interface: Ex-
perience Building Pad++. Software Practice & Experience, 28(10):1101–1135,
August 1998.

[7] Benjamin B. Bederson. Fisheye Menus. In Proceedings of UIST ’00, 13th annual
ACM Symposium on User Interface Software and Technology, pages 217–225, San
Diego, California, USA, November 2000.

[8] Benjamin B. Bederson. The Promise of Zoomable User Interfaces. Behaviour &
Information Technology, 30(6):853–866, June 2011.

122 Bibliography

[9] Benjamin B. Bederson and Angela Boltman. Does Animation Help Users Build
Mental Maps of Spatial Information? In Proceedings of INFOVIS ’99, IEEE
Symposium on Information Visualization, pages 28–35, San Francisco, California,
USA, October 1999.

[10] Benjamin B. Bederson, James D. Hollan, Ken Perlin, Jonathan Meyer, David Ba-
con, and George Furnas. Pad++: A Zoomable Graphical Sketchpad For Exploring
Alternate Interface Physics. Journal of Visual Languages & Computing, 7(1):3–
32, March 1996.

[11] Staffan Björk and Johan Redström. Redefining the Focus and Context of Fo-
cus+Context Visualizations. In Proceedings of INFOVIS ’00, IEEE Symposium
on Information Vizualization 2000, pages 85–89, Salt Lake City, Utah, USA, Oc-
tober 2000.

[12] Stefano Burigat, Luca Chittaro, and Edoardo Parlato. Map, Diagram, and Web
Page Navigation on Mobile Devices: The Effectiveness of Zoomable User In-
terfaces With Overviews. In Proceedings of MobileHCI ’08, 10th International
Conference on Human Computer Interaction with Mobile Devices and Services,
pages 147–156, Amsterdam, The Netherlands, September 2008.

[13] Vannevar Bush. As We May Think. Atlantic Monthly, pages 101–108, July 1945.

[14] Richard Cardone, Danny Soroker, and Alpana Tiwari. Using XForms To Simplify
Web Programming. In Proceedings of WWW ’05, 14th International Conference
on World Wide Web, pages 215–224, Chiba, Japan, May 2005.

[15] Bay-Wei Chang and David Ungar. Animation: From Cartoons To The User Inter-
face. In Proceedings of UIST ’93, 6th annual ACM symposium on User Interface
Software and Technology, pages 45–55, Atlanta, Georgia, USA, October 1993.

[16] Lorenzo Clementi. Focus and Context. Technical report, 2007.

[17] Andy Cockburn, Amy Karlson, and Benjamin B. Bederson. A Review of
Overview+detail, Zooming and Focus+context Interfaces. ACM Computing Sur-
veys, 41(1):2:1–2:31, January 2009.

[18] Andy Cockburn and Joshua Savage. Comparing Speed-Dependent Automatic
Zooming with Traditional Scroll, Pan, and Zoom Methods. In Proceedings of HCI
’03, Conference on People and Computers XVII: British Computer Society Con-
ference on Human Computer Interaction, pages 87–102, Bath, United Kingdom,
September 2003.

[19] Douglas Crockford. JavaScript: The Good Parts. O’Reilly Media, Inc., 2008.

[20] Martin Dostál. User Acceptance Of The Microsoft Ribbon User Interface. In
Proceedings of DNCOCO ’07, 9th WSEAS International Conference on Data Net-
works, Communications, Computers, pages 143–149, Faro, Portugal, November
2010.

Bibliography 123

[21] Sarah A. Douglas and Arthur E. Kirkpatrick. Model And Representation: The
Effect Of Visual Feedback On Human Performance In A Color Picker Interface.
ACM Transactions on Graphics, 18(2):96–127, April 1999.

[22] Susan Dumais, Edward Cutrell, and Hao Chen. Optimizing Search By Showing
Results In Context. In Proceedings of CHI ’01, SIGCHI Conference on Human
Factors in Computing Systems, pages 277–284, Seattle, Washington, USA, March
2001.

[23] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Ker-
marrec. The Many Faces of Publish/Subscribe. ACM Computation Surveys,
35(2):114–131, June 2003.

[24] David K. Farkas. Toward a Better Understanding of PowerPoint Deck Design.
Information Design Journal, 14(2):162–171, August 2006.

[25] Kenneth Feldt. Programming Firefox: Building Rich Internet Applications with
Xul. O’Reilly Media, Inc., 2007.

[26] George W. Furnas. Generalized Fisheye Views. In Proceedings of CHI ’86,
SIGCHI Conference on Human Factors in Computing Systems, pages 16–23,
Boston, Massachusetts, USA, April 1986.

[27] George W. Furnas and Benjamin B. Bederson. Space-Scale Diagrams: Under-
standing Multiscale Interfaces. In Proceedings of the CHI ’95, SIGCHI Confer-
ence on Human Factors in Computing Systems, pages 234–241, Denver, Colorado,
USA, May 1995.

[28] Robert Gaskins. Sample Product Proposal: Presentation Graphics for Overhead
Projection, 1984.

[29] Robert Gaskins. PowerPoint At 20: Back To Basics. Communications of the ACM,
50(12):15–17, December 2007.

[30] Christian Geiger, Holger Reckter, Roman Dumitrescu, Sascha Kahl, and Jan
Berssenbrügge. A Zoomable User Interface for Presenting Hierarchical Diagrams
on Large Screens. In Proceedings of HCI ’09, 13th International Conference on
Human-Computer Interaction. Part II: Novel Interaction Methods and Techniques,
pages 791–800, San Diego, CA, July 2009.

[31] J. Gibb. JavaScript Smackdown: A Comparative Analysis of Web 2.0 Libraries.
Technical report, 2006.

[32] Andreas Gizas, Sotiris Christodoulou, and Theodore Papatheodorou. Comparative
Evaluation of Javascript Frameworks. In Proceedings of WWW ’12 Companion,
21st International Conference Companion on World Wide Web, pages 513–514,
Lyon, France, April 2012.

124 Bibliography

[33] Cleotilde Gonzalez. Does Animation in User Interfaces Improve Decision Mak-
ing? In Proceedings of CHI ’96, SIGCHI Conference on Human Factors in Com-
puting Systems, pages 27–34, Vancouver, British Columbia, Canada, April 1996.

[34] Lance Good and Benjamin B. Bederson. CounterPoint: Creating Jazzy Interactive
Presentations. Human-Computer Interaction Laboratory, Institute for Advanced
Computer Studies, 3, 2001.

[35] Lance Good and Benjamin B. Bederson. Zoomable User Interfaces As A Medium
for Slide Show Presentations. Information Visualization, 1(1):35–49, March 2002.

[36] Heiko Haller and Andreas Abecker. iMapping: A Zooming User Interface Ap-
proach for Personal and Semantic Knowledge Management. In Proceedings of HT
’10, 21st ACM conference on Hypertext and Hypermedia, pages 119–128, Toronto,
Ontario, Canada, June 2010.

[37] Kasper Hornbaek, Benjamin B. Bederson, and Catherine Plaisant. Navigation Pat-
terns and Usability of Zoomable User Interfaces With and Without An Overview.
ACM Transactions on Computer-Human Interaction, 9(4):362–389, December
2002.

[38] Kasper Hornbaek and Erik Frokjaer. Reading of Electronic Documents: The Us-
ability of Linear, Fisheye, and Overview+detail Interfaces. In Proceedings of CHI
’01, SIGCHI Conference on Human Factors in Computing Systems, pages 293–
300, Seattle, Washington, USA, March 2001.

[39] Scott E. Hudson and John T. Stasko. Animation Support In A User Interface
Toolkit: Flexible, Robust, and Reusable Abstractions. In Proceedings of UIST ’93,
6th annual ACM symposium on User Interface Software and Technology, pages
57–67, Atlanta, Georgia, USA, October 1993.

[40] Takeo Igarashi and Ken Hinckley. Speed-Dependent Automatic Zooming for
Browsing Large Documents. In Proceedings of UIST ’00, 13th Annual ACM Sym-
posium on User Interface Software and Technology, pages 139–148, San Diego,
California, USA, November 2000.

[41] Kori M. Inkpen. Drag-and-Drop Versus Point-and-Click Mouse Interaction Styles
For Children. ACM Transactions on Computer-Human Interaction, 8(1):1–33,
March 2001.

[42] Jens E. Kjeldsen. The Rhetoric of PowerPoint. International Journal of Media,
Technology and Lifelong Learning, 2(1):1–17, January 2006.

[43] Jonas Kluge, Frank Kargl, and Michael Weber. The Effects of the AJAX Technol-
ogy on Web Application Usability. 3rd International Conference on Web Informa-
tion Systems and Technologies WebIST 2007, pages 289–294, March 2007.

[44] Avraham Leff and James T. Rayfield. Web-Application Development Using the
Model/View/Controller Design Pattern. In Proceedings of EDOC ’01, 5th IEEE In-

Bibliography 125

ternational Conference on Enterprise Distributed Object Computing, pages 118–
127, Seattle, Washington, USA, September 2001.

[45] Leonhard Lichtschlag, Thorsten Karrer, and Jan Borchers. Fly: A Tool To Au-
thor Planar Presentations. In Proceedings of CHI ’09, SIGCHI Conference on
Human Factors in Computing Systems, pages 547–556, Boston, Massachusetts,
USA, April 2009.

[46] Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte, Laurent Bouillon, and
Vı́ctor López-Jaquero. USIXML: A Language Supporting Multi-Path Develop-
ment of User Interfaces. In Proceedings of EHCI-DSVIS’04, International Confer-
ence on Engineering Human Computer Interaction and Interactive Systems, pages
200–220, Hamburg, Germany, July 2004.

[47] I. Scott MacKenzie, Abigail Sellen, and William A. S. Buxton. A Comparison of
Input Devices in Element Pointing and Dragging Tasks. In Proceedings of SIGCHI
’91, Conference on Human Factors in Computing Systems, pages 161–166, New
Orleans, Louisiana, USA, April 1991.

[48] Lori A. Macvittie. XAML In A Nutshell: A Desktop Quick Reference. O’Reilly
Media, 2006.

[49] Jan Kasper Martinsen, Håkan Grahn, and Anders Isberg. A Comparative Evalu-
ation of JavaScript Execution Behavior. In Proceedings of ICWE ’11, 11th Inter-
national Conference on Web Engineering, pages 399–402, Paphos, Cyprus, June
2011.

[50] Brad Mehlenbacher, Thomas M. Duffy, and James Palmer. Finding Information
on a Menu: Linking Menu Organization to the User’s Goals. Human-Computer
Interaction, 4(3):231–251, September 1989.

[51] Tommi Mikkonen and Antero Taivalsaari. Using JavaScript As A Real Program-
ming Language. Technical report, 2007.

[52] Arnab Nandi and H. V. Jagadish. Assisted Querying Using Instant-Response Inter-
faces. In Proceedings of SIGMOD ’07, ACM SIGMOD International Conference
on Management of Data, pages 1156–1158, Beijing, China, June 2007.

[53] Dmitry Nekrasovski, Adam Bodnar, Joanna McGrenere, François Guimbretière,
and Tamara Munzner. An Evaluation of Pan & Zoom and Rubber Sheet Nav-
igation With and Without An Overview. In Proceedings of SIGCHI ’06, Con-
ference on Human Factors in Computing Systems, pages 11–20, Montréal,
Québec, Canada, April 2006.

[54] Theodor H. Nelson. Complex Information Processing: A File Structure For The
Complex, The Changing And The Indeterminate. In Proceedings of ACM ’65,
20th National Conference, pages 84–100, Cleveland, Ohio, USA, August 1965.

[55] Theodor H. Nelson. The Heart of Connection: Hypermedia Unified by Transclu-
sion. Communications of the ACM, 38(8):31–33, August 1995.

126 Bibliography

[56] Den Odell. Pro Javascript RIA Techniques: Best Practices, Performance and
Presentation. Apress, 2009.

[57] Ian Parker. Absolute PowerPoint. The New Yorker, 28:76–87, May 2001.

[58] Linda Dailey Paulson. Building Rich Web Applications With Ajax. Computer,
38(10):14–17, October 2005.

[59] Ken Perlin and David Fox. Pad: An Alternative Approach To The Computer In-
terface. In Proceedings of SIGGRAPH ’93, 20th Annual Conference on Computer
Graphics and Interactive Techniques, pages 57–64, Anaheim, California, USA,
August 1993.

[60] Stuart Pook, Eric Lecolinet, Guy Vaysseix, and Emmanuel Barillot. Context And
Interaction In Zoomable User Interfaces. In Proceedings of AVI ’00, Working
Conference on Advanced Visual Interfaces, pages 227–231, Palermo, Italy, May
2000.

[61] Michael J. Rees. Evolving The Browser Towards A Standard User Interface Ar-
chitecture. In Proceedings of AUIC ’02, Third Australasian Conference on User
Interfaces - Volume 7, pages 1–7, Melbourne, Victoria, Australia, January 2002.

[62] Reinout Roels. MindXpres: An Extensible Content-driven Cross-Media Presenta-
tion Tool. Master’s thesis, 2012.

[63] Ruth Rosenholtz. A Simple Saliency Model Predicts A Number of Motion Popout
Phenomena. Vision research, 39(19):3157–3163, September 1999.

[64] Beat Signer and Moira C. Norrie. As We May Link: A General Metamodel For
Hypermedia Systems. In Proceedings of ER ’07, 26th International Conference on
Conceptual Modeling, pages 359–374, Auckland, New Zealand, November 2007.

[65] Tad Simons. Does PowerPoint Make You Stupid. Presentations, 18 (3), 24:6–11,
March 2003.

[66] Bram Smeets, Uri Boness, and Roald Bankras. Beginning Google Web Toolkit:
From Novice to Professional. Apress, 2008.

[67] Nice Sophia and Denis Caromel. Towards a Method of Object-Oriented Concur-
rent Programming. Communications of the ACM, 36(9):90–102, September 1993.

[68] Dudley Storey. CSS3 Transforms and Transitions. Springer, 2012.

[69] Kenneth L. Summers, Timothy E. Goldsmith, Steve Kuhica, and Thomas P.
Caudell. An Experimental Evaluation of Continuous Semantic Zooming in Pro-
gram Visualization. In Proceedings of INFOVIS ’03, Ninth annual IEEE con-
ference on Information visualization, pages 155–162, Seattle, Washington, July
2003.

[70] Anne M. Treisman and Garry Gelade. A Feature-Integration Theory of Attention.
Cognitive Psychology, 12(1):97–136, January 1980.

Bibliography 127

[71] Edward R. Tufte. The Cognitive Style of Powerpoint. Graphics Press, 2003.

[72] Steven J. Vaughan-Nichols. Will HTML 5 Restandardize The Web? Computer,
43(4):13–15, April 2010.

[73] VisionMobile. Developer Economics 2013: Developer Tools: The Foundations of
the App Economy, 2013.

[74] Helen J. Wang, Alexander Moshchuk, and Alan Bush. Convergence of Desktop
and Web Applications on a Multi-Service OS. In Proceedings of HotSec ’09, 4th
USENIX Conference on Hot Topics in Security, pages 11–11, Montreal, Canada,
August 2009.

[75] Steven Yantis and John Jonides. Abrupt Visual Onsets and Selective Attention:
Evidence From Visual Search. Journal of experimental psychology: Human per-
ception and performance, 10(5):601–621, October 1984.

[76] JoAnne Yates and Wanda Orlikowski. The cultural turn: Communicative prac-
tices in workplaces and the professions, chapter The PowerPoint Presentation and
Its Corollaries: How Genres Shape Communicative Action in Organizations. Bay-
wood Pub Co, 2007.

[77] Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. Object-Oriented
Concurrent Programming ABCL/1. ACM SIGPLAN Notices, 21(11):258–268,
November 1986.

	Introduction
	Current presentation tools
	Microsoft PowerPoint
	Apache OpenOffice Impress
	Apple Keynote
	Prezi
	Other tools

	MindXpres

	Problem statement
	Identifying the shortcomings of current tools
	Presentation editing
	Theme editing
	Conclusion

	Current available technologies
	Use of interface languages
	Interesting user interface languages
	Pros and cons of the user interface languages
	Choosing a user interface language

	Designing a better presentation tool
	Type of interface
	Solving the problems with Zoomable User Interfaces
	Lack of context
	The effects of zooming on the perception
	Excessive animation

	How presentations and themes are linked
	Presentation and theme editors: separated or not?
	Editing the current theme
	Using a theme in a new presentation
	Exporting stylings to a new theme
	Applying theme to presentations

	The presentation editor
	The interface
	Creating a presentation
	Adding elements
	Changing the settings of elements
	Moving elements
	Resizing elements
	Editing the structure
	Choosing a theme
	Zooming in a presentation
	Exporting elements to a theme

	The theme editor
	The interface
	Creating a theme
	Adding elements
	Changing settings
	Previewing a theme element
	Previewing a theme
	Applying a theme
	Use a theme

	Conclusion

	Solution
	Choosing the technologies
	Introduction
	Feature comparisons
	Usability testing
	Conclusion

	JavaScript architecture
	Organizing the code
	Plugins
	Entry point into the application
	Core

	Details about the implementation
	Used technologies and libraries
	Implementations made
	Some important implementations highlighted

	Evaluation

	Use case
	Starting the application
	Creating a theme
	Adding a theme element
	Editing a theme element
	Using a theme in a new presentation
	Adding a presentation element
	Creating a new presentation
	Editing the current theme
	Exporting theme elements
	Applying a theme to a presentation

	Conclusion
	Evaluation
	Comparing current presentation tools
	Comparing JavaScript libraries
	Designing a presentation tool
	Implementing a presentation tool

	Future work
	Completing the presentation tool
	Evaluating the tool
	Extending the use of technologies internally
	Collaborative editing of presentations and themes
	Investigating new input and output methods

	Contributions
	Final words

