
Faculteit Wetenschappen en Bio-ingenieurswetenschappen
Vakgroep Computerwetenschappen

Dynamic Content in Fluid Cross-Media
Documents
Proefschrift ingediend met het oog op het behalen van de graad van
Master of Science in de Ingenieurswetenschappen: Computerwetenschappen

Jochen François

Promotor: Prof. Dr. Beat Signer
Begeleider: Prof. Dr. Bruno Dumas

2013-2014

Faculty of Science and Bio-Engineering Sciences
Department of Computer Science

Dynamic Content in Fluid Cross-Media
Documents
Graduation thesis submitted in partial fulfillment of the requirements for
the degree of Master of Science in Applied Science and Engineering: Computer Science

Jochen François

Promoter: Prof. Dr. Beat Signer
Advisor: Prof. Dr. Bruno Dumas

2013-2014

Abstract
This dissertation presents a conceptual model of dynamic content. This model
serves as the foundation for the development of dynamic documents. The need
for dynamic documents is clarified in the overview of the multidisciplinary do-
main of ubiquitous computing. This background information presents the state of
the art of The Internet of Things, sensor systems, context-aware systems and am-
bient intelligence. Furthermore, it also discusses the need for dynamic documents
in ubiquitous environments.

The creation of the conceptual model is based on an inductive approach, where
the model was extracted from the implementation of three dynamic documents.
These dynamic documents were chosen from a set of scenarios that were devised
through an analysis of previous research with regard to dynamic documents and
an analysis of document formats. The analysis of previous research has revealed
that there is no consensus on what functionalities a dynamic document should
possess. Furthermore, the analysis of document formats has shown that, besides
some exceptions, most document formats do not support dynamic content and that
they have to rely on other technologies to enable it.

Along with a conceptual model, a formal definition is introduced for the term
“dynamic content”. Furthermore, based on this definition we were able to define
the term “dynamic documents”. This definition prevents further misconceptions
on the term and forms a common ground for further developments. In order to fa-
cilitate the comparison of different dynamic document solutions, a categorisation
is proposed with regard to content adaptation. Afterwards, this categorisation was
applied to a set of scenarios to proof its efficiency.

To demonstrate the usability of the proposal (i.e. the conceptual model) in prac-
tice, the conceptual model was applied to develop an online document editor for
creating dynamic documents. This document editor relies on a “pipe and filter”
design to facilitate the creation of dynamic documents. Hereby, the editor distin-
guishes itself from the traditional WYSIWYG (i.e. What You See Is What You Get)
editors. The comparison of our editor with several related systems, has shown
us that the developed editor stands out by hiding the technical details of the dy-
namic content from the end user. The editor is targeted towards regular end users
without a technical background. The primary goal of the developed editor, is to
find a balance between usability and expressiveness.

Samenvatting
Deze thesis introduceert een conceptueel model voor dynamische content. Dit
model dient als basis voor de ontwikkelen van dynamische documenten. De nood
aan dynamische documenten is verduidelijkt in het algemeen overzicht van het
multidisciplinaire domain van ubiquitous computing. Dit overzicht verduidelijkt
de begrippen en de huiden stand van zaken aangaande The Internet of Things,
sensor systemen, context-aware systemen en ambient intelligence. Verder wordt
ook verduidelijkt hoe digitale documenten van dienst kunnen zijn in ubiquitous
omgevingen.

Het conceptueel model werd ontwikkeld aan de hand van een inductieve on-
derzoeksmethode waarbij het model is opgebouwd op basis van de ontwikkeling
van enkele scenario’s van dynamische documenten. Deze scenario’s zijn tot stand
gekomen dankzij het analyseren van vorige onderzoeken naar dynamische docu-
menten en het analyseren van een reeks van “document formats”. Uit een eerste
analyse is gebleken dat er geen consensus bestaat over welke functionaliteiten een
dynamisch document moet bezitten. Daarnaast heeft de analyse van verscheidene
“document formats” ook aangetoond dat, behoudens enkele uitzonderingen, de
meeste “document formats” geen ondersteuning bieden naar dynamische content
toe. De meeste “document formats” vertrouwen op externe technologieën om de
documenten dynamisch te maken.

Naast een conceptueel model wordt ook een formele definitie voorgesteld voor de
term “dynamische content”. Deze definitie is ontwikkeld om vervolgens de term
“dynamische documenten” te definiëren. Deze definitie heeft als doel verdere
misverstanden te vermijden en om als basis te dienen voor verdere ontwikkelin-
gen. Daarnaast is er een categorisatie ontwikkeld die toelaat om verschillende dy-
namische documenten met elkaar te vergelijken aan de hand van bepaalde karak-
teristieken. De voorgestelde scenarios werden, overeenkomstig deze categorisatie,
geclassificeerd om de bruikbaarheid te verduidelijken.

Om de inzetbaarheid van de voorgestelde oplossing in de praktijk aan te tonen,
werd het conceptueel model gebruikt als basis voor het ontwikkelen van een on-
line document editor. Deze editor ondersteunt het creëren van dynamische content
door gebruik te maken van een “pipes and filter” design. De editor onderscheidt
zich hierdoor van de traditionele “WYSIWYG” editors. De vergelijking van deze
editor met enkele andere systemen, leert ons dat de ontwikkelde editor zich onder-
scheidt van de andere systemen doordat zij de technische details van de dynamis-
che content tracht te verbergen. De editor is ontworpen voor de gewone gebruiker
zonder technische achtergrond. De principiële doelstelling van de voorgestelde
editor is om een balans te vinden tussen gebruiksvriendelijkheid en expressiviteit.

Acknowledgements
I would like to express the deepest appreciation to my promoter Prof. Dr. Beat
Signer and to my supervisor Dr. Bruno Dumas, for their continuous support of
my Master study and research, for their patience, motivation and extraordinary
knowledge. I would also like to thank Ahmed A. O. Tayeh for his advice on my
research.

In addition, a special thanks to my family and friends. The support of my mother,
father, sister and grandparents were invaluable for this thesis. I also want to thank
them for all of the sacrifices they made for my behalf.

Contents

1 Introduction 1
1.1 Context . 1
1.2 Research Question . 3

1.2.1 Sub-Questions . 3
1.3 Research Approach . 4

1.3.1 Review Existing Solutions 4
1.3.2 Analyse Document Formats 4
1.3.3 Develop Prototypes . 4
1.3.4 Define the Term “Dynamic Content” 5
1.3.5 Develop a Conceptual Model for Dynamic Content 5
1.3.6 Develop a Document Editor as Proof of Concept 5

1.4 Thesis Structure . 5

2 Background 7
2.1 Ubiquitous Computing . 7

2.1.1 The Internet of Things 8
2.2 Sensors and Smart Environments 10

2.2.1 The Evolution of Sensors 10
2.2.2 Sensor Data Analysis . 12
2.2.3 Semantic Sensor Data 13

2.3 Context Awareness . 14
2.3.1 There is More to Context than Location 14

2.4 Middlewares for Pervasive Systems 15
2.4.1 Requirements for Middleware 16
2.4.2 Available Middlewares 17

2.5 The Evolution of The Internet of Things 18
2.5.1 Analysis of a Research Project: Smart Kindergarten . . . 18
2.5.2 Commercial Solutions 20
2.5.3 Open Research Problem in Ubiquitous Computing 24

2.6 Ambient Intelligence . 25
2.6.1 Ambient Documents . 26

2.7 Scope of the Thesis . 29

3 Review of Dynamic Content in Digital Documents 31
3.1 Analysis of the State of the Art 31

3.1.1 Active Tioga Documents - 1990 32
3.1.2 Multivalent Documents - 1996 35
3.1.3 Stick-e Documents - 1996 36
3.1.4 Live Documents - 2002 37
3.1.5 Active Documents - 2003 40
3.1.6 Minerva Documents - 2005 41
3.1.7 Multimodal Documents - 2006 44
3.1.8 WOAD Dynamic Documents - 2011 45
3.1.9 Conclusion . 47

3.2 Review of Document Formats 48
3.2.1 LATEX . 48
3.2.2 HyperText Markup Language 50
3.2.3 Portable Document Format (PDF) 51
3.2.4 Extensive Markup Language 53
3.2.5 OpenDocument . 54
3.2.6 DocBook . 55
3.2.7 Office Open XML . 56
3.2.8 Electronic Publication (EPUB) 56
3.2.9 iBook . 57
3.2.10 Conclusion . 58

4 Dynamic Document Scenarios 61
4.1 Scenarios . 61

4.1.1 Categorisation of Scenarios 64
4.2 Prototypes . 68

4.2.1 RSL Metamodel . 68
4.2.2 Objectives of the Prototypes 75
4.2.3 Infrastructure . 75
4.2.4 Prototype 1 - Interactive Vocabulary 75
4.2.5 Prototype 2 - Adaptive Travel Guide 79
4.2.6 Prototype 3 - Live Travel Guide 82

4.3 Conclusion . 84

5 Conceptual Model of Dynamic Content 85
5.1 A Formal Definition of Dynamic Content 85
5.2 Conceptual Model of Dynamic Content 86

5.2.1 Elements of the Conceptual Model 87

5.2.2 Tubes as First Class Objects 91
5.2.3 Conceptual Model . 93

5.3 Conclusion . 95

6 Proof of Concept: Document Editor 97
6.1 Objectives of the Proof of Concept 97
6.2 Related Systems . 97

6.2.1 Squidy . 98
6.2.2 Yahoo Pipes . 99
6.2.3 iBooks Author . 101

6.3 Document Editor . 103
6.3.1 Approach of the Document Editor 104
6.3.2 Architecture of the Document Editor 112
6.3.3 Comparison to Related Systems 115

6.4 Conclusion . 117

7 Conclusion and Future Work 119
7.1 Summary of the Research . 119

7.1.1 Research Questions and Main Contributions 121
7.1.2 Limitations . 123

7.2 Future Work . 124

A Scenarios 1
A.1 Active Storytelling . 1
A.2 Dynamic Restaurant Menu . 2
A.3 Adaptive Tour Guide . 2
A.4 Smart Content . 3
A.5 Finger Reader . 4
A.6 Fluid Reading . 4
A.7 Fluid Font . 5
A.8 Interactive Vocabulary . 5
A.9 Live catalogue . 6
A.10 Live Travel Guide . 6

List of Figures

2.1 An iPhone 4 with its integrated sensors. [39] 10
2.2 The Mediacup. [24] . 12
2.3 Smart Table . 19
2.4 iBadge . 19
2.5 Nest Thermostat’s discrete design 21
2.6 Nest Thermostat’s mobile application 21
2.7 Philips Hue lamp and mobile application 22
2.8 Lockitron’s lock and mobile application 23
2.9 Relationship between AmI and other areas [4]. 25

3.1 Generated document representation of the telephone directory doc-
ument [65] . 33

3.2 The logical structure of a document representing telephone num-
bers with dynamic query nodes [65] 33

3.3 Procedures constituting a node transformation activity [65] 33
3.4 LiveDocuments adaptation characteristic [74] 38
3.5 Document B is ”transcluded” in document A, P and Q 1 39
3.6 The network is the document [51] 42
3.7 The architecture of a context-aware document adaptation system

[15] . 44
3.8 The result of invoking getEvents@TimeOut.com [1] 54
3.9 Architecture: OpenOffice combined with Python-Uno and MySQL

to create real-time slides . 55
3.10 iBooks Author: Available Widgets 58

4.1 Categorisation of dynamic document scenarios 67
4.2 Core Link Metamodel [45] . 70
4.3 User management [45] . 71
4.4 Layers [45] . 72
4.5 Navigational and structural links [45] 73
4.6 Prototype 1: Learning table - Fully exposed to light 76
4.7 Prototype 1: Learning table - Fully covered from light 76

4.8 Prototype 1: Learning table - Partially covered from light 76
4.9 Prototype 1: Quiz - Fully exposed to light 77
4.10 Prototype 1: Quiz - Covered from light 77
4.11 Prototype 1: Shake it - Device Shuffled 78
4.12 Prototype 1: Rotate left . 78
4.13 Prototype 1: Rotate right . 78
4.14 Prototype 1: RSL - Content Presentation 79
4.15 Prototype 2: Informational page over Sydney 80
4.16 Prototype 2: Informational page over Brussels 80
4.17 Prototype 2: RSL - web service and observable resource 81
4.18 Prototype 3: Travel guide information of Brussels 82
4.19 Prototype 3: Travel guide information of Sint-Pieters-Leeuw . . . 82
4.20 Geofence with latitude 50.784, longitude: 4.250 and radius 15 meter 83
4.21 Prototype 1: RSL - Content Presentation 83

5.1 Dynamic content shell . 86
5.2 Conceptual model: Component 88
5.3 Conceptual model: Components with crosslets 88
5.4 Conceptual model: Components of content example 89
5.5 Conceptual model: Tubes . 90
5.6 Conceptual model: Example of digital content - tubes 91
5.7 Conceptual model: Text specific access rights 92
5.8 Approach 1: Access rights on the text 92
5.9 Approach 2: Access rights on the tubes 93
5.10 Conceptual model of dynamic content 94

6.1 Squidy Design Environment [36] 98
6.2 Squidy Design Environment: Zoomed in Kalman filter [36] 99
6.3 Yahoo Pipes: YouTube links for the top 10 song on iTunes 100
6.4 iBooks Author: Inspector window 102
6.5 Document editor: Start view . 104
6.6 Document editor: Start view . 105
6.7 Document editor: Details of a document 106
6.8 Document editor: Template view 107
6.9 Document editor: Editing phase 108
6.10 Document editor: Placeholder 4 composition 110
6.11 Document editor: Web service configuration 111
6.12 Document editor: Tube’s “Visible To” property 112
6.13 Architecture of the document editor 113
6.14 A general class diagram of the extended RSL metamodel imple-

mentation . 114

6.15 Filter Component . 116

List of Tables

3.1 Summary of analysed documents formats 59

4.1 Tools and Platform . 75

List of Listings

3.1 Example of a Stick-e note in SGML 37
4.1 Observable resource . 80

Chapter 1

Introduction

1.1 Context
The craft of making paper is a Chinese invention. From there it found its way into
the Muslim world and Europe. However, the invention of paper did not directly
lead to the invention of printing.

In 1454, Johannes Gutenberg invented the very first printing press for mass pro-
duction. The printing press was used to print the first major book called “The
Gutenberg Bible”2. The invention of Gutenberg made it possible to reproduce
books on paper without having to copy them by hand or by printing them into
engraved wooden blocks. This invention has led to the explosive expansion of
paper. As a result, paper has gained an unassailable position in distributing large
amounts of information to a wide audience.

Technological advances of the 19th century allow us to capture and process data
that updates over time. Unfortunately, since paper cannot rewrite itself, it is un-
able to present such information. This evolution has resulted in a first competitor
of paper documents, namely digital documents. Unlike paper documents, digital
documents can make use of the computational power of a computer to update their
content.

However, despite the ability of digital documents to make use of the available
computation power, we notice that apart from some exceptions most digital doc-
uments imitate their paper counterpart. In the light of this thesis we emphasise on
their incompetence for integrating dynamic content.

2http://www.gutenberg-bible.com/history.html last accessed on 09/05/2014

1

http://www.gutenberg-bible.com/history.html

An important concept that may benefit from enriching digital documents with dy-
namic content is ubiquitous computing [75]. The world of ubiquitous computing
can be seen as a world where computation is all surrounding wherefore they are
able to obtain an enormous amount of information. The intention of ubiquitous
computing is to obtain a world where we interact with computers without thinking
about them, in other words “computers vanish into the background of our lives”.

Since computers will be surrounding us in every possible way, they can provide
us with an enormous amount of data. This data can be used to create digital docu-
ments that act as intelligent agents for presenting the right information. However,
in order for the document to modify itself, it must support the integration of dy-
namic content.

A limited set of document formats also highlighted the need for the integration
of dynamic content. Nevertheless, besides the support offered by the document
format, we must facilitate the creation process of digital documents with dynamic
content. Up to now, a software or web developer is responsible for extending
a digital document with dynamic content. This approach introduces a level of
complexity that is unacceptable for regular users. Even more, the line between
document authors and programmers will become blurred.

In order to facilitate the integration and creation of dynamic content in digital
documents, we need to capture its essence. We may have a mental model of what
dynamic content means but in order to make use of this model, we need to refine
it and translate the mental model into a conceptual model.

This thesis makes an effort in solving one of the problems that we encounter with
digital documents. By analysing the concept of dynamic content, we facilitate
their integration in digital documents. Furthermore, this thesis makes an effort
to provide an interface, targeted towards regular end users, that should facilitate
the creation of digital documents with dynamic content. This interface seeks to
provide a fine balance between usability and expressiveness.

2

1.2 Research Question
Despite the computational power available to digital documents, we have yet to
see their support for dynamic content.

What is “dynamic content” and how can we assist its integration into digital
documents by regular end users?

Before we can answer these questions, we need to answer a set of sub-questions.

1.2.1 Sub-Questions
1. What does the term “dynamic content” mean? The term “dynamic con-

tent” lacks a precise definition. As a result, the term “dynamic documents”
is also unclear. Not only will a definition bring a sense of unity amongst re-
searchers, we also believe that a definition will provide a guidance through-
out this thesis and future work.

2. Were there any attempts made in supporting dynamic content and why
were they not successful? In order to find a proper solution, previous re-
search must be analysed: What was their approach?; What were the mis-
takes they made?; What were the limitations of their solution?.

3. To what extent do the current document formats enable the specifica-
tion of dynamic content? By reviewing a set of representative document
formats, we are able to deduce the current state of progress on how digital
documents provide support for dynamic content.

4. What are the struggles and challenges that come along when integrat-
ing dynamic content? Dynamic content extends the document with ele-
ments that will change over time. These unpredictable changes may entail
other obstacles in the editing phase and the viewing phase. By identifying
these obstacles, we are able to foresee what measures should be taken when
editing and presenting such content.

5. How can we attain a fine balance between expressiveness and usabil-
ity with regard to the creation of dynamic content? Document editors
are tools developed to assist the end users in the process of editing digital
documents. It is interesting to see which approach is the most desirable for
creating dynamic content?

3

1.3 Research Approach
In order to answer the research question of this thesis and its aforementioned sub-
questions, an inductive approach was used.

We start by examining the current state of the art of digital documents with support
for dynamic content. Next, we analyse a set of representative document formats
towards their support for integrating dynamic content. Afterwards, we discuss
several use cases of documents containing dynamic content. We also describe
how we have implemented a prototype for three of these use cases.

After gaining the necessary insights on the subject, we define the term “dynamic
content”. Next, we develop a conceptual model of dynamic content based on our
experience with the prototypes. Eventually, we put our conceptual model to the
test by implementing a proof of concept. This proof of concept is a document
editor that supports the creation of digital documents with dynamic content.

This approach can be divided into the following steps:

1.3.1 Review Existing Solutions
Previous attempts have been made to integrate dynamic content into digital docu-
ments. Unfortunately, most of these solutions do not seem to fully solve the prob-
lem. As a result, we review these solutions according to the following criteria:
support for dynamic content (i.e. expressiveness), used approach and editing pro-
cess (i.e. usability). This phase will contribute to the understanding of the term
“dynamic content”.

1.3.2 Analyse Document Formats
Over the years, a myriad of document formats have emerged. In order to get an
idea to which degree these document formats currently support dynamic content,
an analysis must be performed. These document formats may have their own
way of specifying dynamic content or they may have none. By analysing these
formats, we are able to create a conceptual model that is general enough to satisfy
most document formats.

1.3.3 Develop Prototypes
A set of scenarios with regard to dynamic content are devised to investigate where-
fore dynamic content can be used and what its expectations are. These scenarios

4

are then categorised according to their characteristics. Next, three of these proto-
types are created to provide an insight in their development process.

1.3.4 Define the Term “Dynamic Content”
After investigating the idea behind dynamic content, we are able to specify a
formal definition for it. This definition helps us to develop a general definition
for the term “dynamic document”. Not only does this definition become useful
for further research, it also opens new questions.

1.3.5 Develop a Conceptual Model for Dynamic Content
Once we have determined the definition and the scope of the dynamic content,
we are able to develop a conceptual model of it. This conceptual model makes
an effort in capturing its components by means of entities and relations between
those entities.

1.3.6 Develop a Document Editor as Proof of Concept
After creating a conceptual model for dynamic content, it is put to the test by
developing a document editor. This editor is used to verify the generality of our
conceptual model. The editor is developed with the intention to simplify the cre-
ation process of digital documents with dynamic content. In order to justify the
editor’s approach, three relevant systems are analysed.

The developed editor is built around the RSL metamodel, a conceptual model
for hypermedia systems.

1.4 Thesis Structure
The first chapter describes the context of this thesis. Afterwards, the different re-
search questions of this thesis are proposed. The chapter continues by discussing
the chosen research approach. Finally, this chapter presents the structure of the
thesis.

The second chapter serves as introduction to the age ubiquitous computing and
its relevant technologies. Afterwards, the link between digital document and this
new age is emphasised.

5

The third chapter contains a literature review of the related work on digital doc-
uments with dynamic content. Along with the literature review, an analysis is
presented of representative document formats and their support for integrating
dynamic content.

Several scenarios of digital documents containing dynamic content are discussed
in the fourth chapter along with a categorisation. Next, the development of three
scenarios are discussed in more detail.

A formal definition and a conceptual model of “dynamic content” is presented
in the fifth chapter. Subsequently, a definition of the term “dynamic document”
is proposed. Furthermore, this chapter explains how the Resource-Selector-Link
metamodel was extended to support the creation of dynamic content.

The proof of concept of this thesis is presented in the sixth chapter. The proof
of concept is an editor that facilitates the process of creating and managing dy-
namic content in digital documents. This chapter also explains the architecture of
our editor and some technical details. A review of related systems is presented to
justify the approach taken by the proposed document editor.

Finally in the seventh chapter, a conclusion is presented to discuss how the re-
search questions were answered and how this thesis contributes to its respective
field of research along with some insights for future work.

6

Chapter 2

Background

This chapter serves as an introduction to the landscape of ubiquitous computing.
We discuss the different technologies that enable this new age and present their
overall progress.

Afterwards, we discuss how digital documents must evolve in order to keep up
with this new age of computing. This discussion is preceded with an introduction
to ambient intelligence.

2.1 Ubiquitous Computing
Currently, we are evolving from the era of personal computing towards the era
of ubiquitous computing. In the first era, people are sitting in front of their com-
puters and use them in a conscious manner. Indeed, there exists a barrier between
the digital world and the physical world. This means that computers are unaware
of the world in which they are used.

The era of ubiquitous computing, also called the age of “calm technology” or
“pervasive computing”, was coined in 1988 by Mark Weiser [75]. Weiser was a
chief scientist at Xerox Parc and performed many of his researches on the subject.
Some of his best known papers on ubiquitous computing are the following: “The
Computer for the 21st Century”[77], “The ParcTab Ubiquitous Computing Ex-
periment” [73] and “Some Computer Science Issues in Ubiquitous Computing”
[76].

In “The computer for the 21st Century”[75] (one of Weiser’s first papers on ubi-
quitous computing), it is stated that the most profound technologies are the ones
that disappear in our daily lives. In order to achieve this, he states that we need

7

to reconsider the way we think about computers. In order for computers to com-
pletely disappear in the background, they must take the natural environment into
account. Then and only then are we able to obtain the real potential of information
technology.

Fifteen years later, after Mark Weiser’s vision, electronics and computers have
evolved and found a way into our homes and infiltrated into our lives. In the year
2006, Mark Wieser has noted3 that the average amount of microprocessors of an
American family house reached the milestone of forty units and this number shall
only increase over time. Since computation will take place in various devices,
places and forms, we are likely to notice a change in the way we work and inter-
act with computers.

Since computers are surrounding us, they will become aware of our presence,
habits, desires, etc. This extra layer of knowledge creates a myriad of opportun-
ities towards computing. Although, in order to make computing a truly invisible
part of our lives, we cannot rely on the technological advances alone.

According to Weiser, the disappearance of computing in our daily lives will largely
depend on human psychology. A well-known example of this phenomenon is the
act of writing and reading (some consider these actions as the first form of in-
formation technology3). Written information has become so entangled with our
world (billboards, books, tickets, etc.), that we absorb written information without
consciously performing the act of reading. From this, we may derive that written
information is freed from thinking, allowing us to focus on reaching other goals.
Therefore, it is preferable that we seek methods to reach the same degree of con-
sciousness when working with current and future information technology.

2.1.1 The Internet of Things
Another concept that relates to ubiquitous computing is the “Internet of Things”.
The term was introduced in 2009 by Ashton Kevin in [2]. The Internet of Things
represents a vision where the Internet is no longer limited to entities of the digital
world. According to Friedemann Mattern and Christian Floerkemeier [43], the
Internet of Things will be primary responsible for making computing truly ubi-
quitous.

Today, most of the information on the Internet is provided by humans. However,
3http://www.ubiq.com/hypertext/weiser/acmfuture2endnote.htm last

accessed on 05/06/2014

8

http://www.ubiq.com/hypertext/weiser/acmfuture2endnote.htm

humans have a limited amount of time available to create information, are likely
to make errors and have limited accuracy. According to Kevin Ashton, we should
empower computers to have their own senses. That way, computers on their own
could collect data for themselves without being restricted to the limitations of the
human-entered data.

This means that we have to create a link between the physical environment and
the digital world. By digitalising objects in the physical world, we obtain smart
objects and smart environments4. A manner of digitalising physical objects is by
tagging them. Once an object is tagged, it can be identified by computers. From
then, physical objects can be included in the digital world. Radio Frequency Iden-
tification (RFID) tags [70, 72], Barcode scanners, QR codes (2D barcodes) [52],
etc. are possible forms of tagging. Also sensors5 play an important role in digit-
alising information about the environment.

When we look at the state of the art of the Internet of Things, we notice that a
lot of research has been performed in converting the physical environment into a
smart environment. Diane J. Cook and Sajal K. Das performed an analysis in [17],
on how “smart” our environments are. According to their findings, it is likely that
our houses and other environments such as workplaces, stores, etc. will only in-
crease in intelligence.

Despite the fact that smart objects and smart environments have gained a lot of
attention, until five years ago, they never broke through commercially. According
to Patrick Holroyd, Phil Watten and Paul Newbury [31], the lack of commer-
cial breakthrough was due to both the complex installation and the lack of a user
friendly interface. Subsequently, from their research we can deduce that the suc-
cess of smart environments relies heavily on the development of new paradigms
concerning user-centric data extraction and data presentation.

Inexpensive sensors, embedded processors combined with sensor fusion, network-
ing and pervasive computing lie at the root for the advancement of smart environ-
ments and smart devices. As a result, we present an overview of the state of the
art of sensors and context aware systems.

4Smart environment: “a physical world that is richly and invisibly interwoven with sensors,
actuators, displays, and computational elements, embedded seamlessly in the everyday objects of
our lives, and connected through a continuous network” quoted from [77]

5Sensor: “a device that implements the physical sensing of environmental phenomena and
reporting of measurements. Typically, it consists of five components: sensing hardware, memory,
battery, embedded processor, and transceiver.” quoted from [67]

9

2.2 Sensors and Smart Environments
One of the first ubiquitous computing environments is The Active Badge Location
System created by Ro Want, Andy Hopper, Veronica Falcão and Jonathan Gibbons
[71]. The goal of their research was to efficiently locate and coordinate the staff of
a large organisation. Instead of using the traditional phone or beeper, they made
use of badges and a network of sensors that were deployed around the building.

By relying on the badges and the sensor network they gained a lot of bene-
fits. Some benefits for receptionists were: easily tell whether a person is in or
not, identify visitors of an organisation, etc. From then on, other researchers
[7, 69, 37] also made use of sensor networks to create ubiquitous environments.
Since sensors are often used to infer information about the environment, we dis-
cuss them in more detail. Afterwards we also describe the evolution and prospects
of sensors.

2.2.1 The Evolution of Sensors
Sensing technologies are important tools for measuring physical phenomena. These
technologies have progressed from clunky uncomfortable devices towards slim,
ergonomic and convenient units. Since these sensors have become so compact,
they are widely spread amongst us. When we look at our mobile phones, see
Figure 2.1, we see that they already accommodate a range of sensors. Examples
of sensors that are currently provided with (most) smartphones are the following:
accelerometer, digital compass, gyroscope, GPS, microphone, and camera.

Figure 2.1: An iPhone 4 with its integrated sensors. [39]

10

In our opinion, it is likely to see that future smartphones will be extended with
more advanced sensors. Nicholas D. Lane, Emiliano Miluzzo, et al. present
in [39] how sensor-equipped mobile phones will revolutionise many sectors in
healthcare, social networks, transportation, etc. The authors of the paper predict
that the primary obstacle with sensors will not be the lack of infrastructure (be-
cause most mobile phones are already equipped with sensors), it will rather be
the technical barriers that are related to privacy and the lack of resource sensitive
reasoning with noisy data that may hinder the actual usage of sensor systems.

Another important requirement that has to be taken into account when working
with a myriad of sensors is the need for a common interface for the sensors that
serves an as access point. A good example of such an interface are the phidgets
presented in [25]. The phidgets arose from a research project of Saul Greenberg
and Chester Fitchett. The phidgets interfacekit provides a common gateway to
access sensor data from a diversity of sensor types. Another initiative is Arduino6.
Arduino is an electronics open source platform that allows common people (i.e
artists, designers, hobbyists, etc.) to create interactive objects or environments by
providing access to a myriad of hardware (sensors, micro controllers, etc.).

Besides providing a software infrastructure to communicate with physical sensors,
there is also the need to effectively distribute sensors in the environment. Previ-
ous research has indicated that sensor deployment in the environment has gained
more and more attention. The authors of [54] present a method to identify the key
sensors (i.e. most important sensors to detect an interest) in a smart environment.

Other researchers such as Emmanuel Munguia Tapia, Stephen S. Intille and Kent
Larson take a different turn. During their research [63] they focus on how sensors
could be used without becoming perceived as invasive. By abandoning traditional
sensors such as cameras and microphones they were able to employ a sensor net-
work without having to modify or damage the environment and this while keeping
an accurate detection-rate.

In a more recent work by Stephen S. Intille, Jonathan Lester, et al. [32] is stated
that the current technology behind sensors is emerging. Their study shows that
we should not expect the development of fundamentally new types of sensors but
rather sensors and devices which have an overall better performance. Besides this
insight, they give an overview of the current trends in sensor technology such as:
raw data processing, multiple sensor data fusion, activity/context inference us-
ing statistical pattern recognition, etc. Afterwards, the authors of the paper also

6http://arduino.cc/ last accessed on 30/01/2014

11

http://arduino.cc/

provide the reader with some best practices and the future trends that could be ex-
pected for the following five years. Most of their predictions are concerned with
the deployment of sensors and their physical characteristics.

2.2.2 Sensor Data Analysis
Most sensor devices provide us with raw data. This data on its own does not
provide much knowledge. As shown in a survey of mobile phone sensing [39],
sensor data has to be interpreted. Several approaches to interpret sensor data
present themselves. Examples of sensor data interpretation are the following: in-
terpreting audio data [41], visual interpretation [50], etc. Naturally, we can ask
ourselves the following question: “How will these techniques progress when the
field of available sensors grows?”.

By interpreting sensor data we allow applications to perceive information about
their environment. An example of such an application is the one described by
Jorge Cardoso and Rui Jos in [14]. In their research, they adapt the display of a
public kiosk according to the current context. Another example is presented by
Hans W. Gellersen, Albercht Schmidt and Michael Beigl in [24]. By making use
of multiple diverse sensors, they create smart objects out of ordinary objects. The
Mediacup was one of these objects. The Mediacup, as presented in Figure 2.2, is
an ordinary coffee cup enriched with sensors, processing and communication.

Figure 2.2: The Mediacup. [24]

Unfortunately, understanding the physical context from sensors demands a new

12

proactive, automated model. Besides a model there is also a need for an infra-
structure to cope with diverse concerns of context recognition such as the preci-
sion of the sensed context, batterylife, computational resources, etc. An example
of a platform which leveraged these challenges is Mobicon. Mobicon is a mobile
context-monitoring platform, presented in [40].

When sensors are used to retrieve context, we enter the research field of context
awareness. Context awareness can be provided by different approaches. However
it is also possible to combine different approaches and fuse them together to fully
enable context awareness. This was done by the authors of [6]. By combining the
three key data streams (mobile, sensor and social), they made an effort at effect-
ively creating context aware applications.

In Section 2.3 we will provide a more detailed explanation on context awareness.
First, we give an overview on how sensor data can be shared and reasoned about.

2.2.3 Semantic Sensor Data
As with other types of datasources, the aspect of sharing and interoperability is
important. Some propose semantic annotated sensor data in order to provide in-
teroperability. As proposed in [56], they rely on the SSW-framework (Semantic
Sensor Web) for adding meaning to the sensed observations to enable situation
awareness. Besides the annotations themselves, this approach also provides a
means to reason about heterogeneous multimodal sensor data.

Another approach to reason about sensor data is the one proposed in [78]. Their
proposed framework is based on a semantic streams programming model. The
framework allows non-technical users to execute queries over semantic interpret-
ations of sensor data by using a declarative language.

We think that the progress of the semantic web7 will require more advanced frame-
works that support the association of semantic data with sensor data. We believe
that the ability of exchanging sensor data will have a positive effect on the pro-
gress of ubiquitous computing. Sensors should all be connected to the web with
associated metadata. Furthermore, it must be possible to read and control the
sensors remotely.

7Semantic Web [8]: An extension of the web where concepts such as reusability and sharing
stand central.

13

2.3 Context Awareness
As already discussed in the previous section, sensors can be used to obtain contex-
tual information about the environment. Therefore, it is important to know what
is meant by the term “context”.

Context awareness is a term that arose from ubiquitous computing. A well ac-
cepted definition for “context” is the one introduces by Anind K. Day in [19].
The presented definition of context will also be used throughout this thesis.

“Context is any information that can be used to characterize the
situation of an entity. An entity is a person, place, or object that is
considered relevant to the interaction between a user and an applic-
ation, including the user and the applications themselves.”[19]

This means that context provides us with extra information about the current situ-
ation. This information can for example be used by applications to provide a better
form of human computer interaction (hereinafter named HCI).

The following section will describe how researchers have embraced the concept
of “context” in their respective fields of research.

2.3.1 There is More to Context than Location
It is interesting to see how researchers have incorporated the notion of “context”
in their field of research. Fortunately this task was already performed in “There
is More to Context than Location” [55], by Hans W. Gellersen, Albercht Schmidt
and Michael Beigl. The authors of this paper provide us with facts about mobile
computing research concerning context aware applications.

During their research, they have observed that location is the dominant parameter
to deduce context in an application. Secondly they point out that the use of sensors
may improve context awareness up to a certain level. They noticed that sensors
provide either abstract context such as noise level, temperature, etc. or very spe-
cific context such as the user’s attention level.

Moreover, they state that most discussions on context awareness suffer from a
general model that should allow comparison of the different approaches. There-
fore, they introduce the following model concerning the structure of context:

• “A context describes a situation and the environment a device or user is in.

• A context is identified by a unique name.

14

• For each context a set of features is relevant.

• For each relevant feature a range of values is determined (implicit or expli-
cit) by the context.” [55]

In our opinion, this model of context closely aligns with the characteristics of a
sensor. A sensor in a network is also identified by a specific identification number.
Furthermore, a sensor is able to retrieve a set of features instead of only one. A
microphone can for example retrieve the pitch, noise, etc and this with a specific
range determined by the device’s characteristics.

From this model they also describe the feature space to which context can be
derived. The feature space is split into two parts namely, human factors8 and the
physical environment9.

Using this model and the described feature space, the authors of the paper also
developed two prototypes based on sensors to provide context. The first prototype
was a light sensitive display and the second prototype an orientation aware PDA
interface.

With respect to the process of deriving context, we share the same point of view.
Context is best derived from multiple sensors in order to maximise the success-
rate and to minimise the amount of “false positives”. Besides that, we also agree
on the fact that the type of sensor should be chosen carefully in order to obtain
contextual information. We also believe that applications can benefit largely from
when they are presented with contextual information.

The next section will discuss the need for appropriate middlewares for the em-
ployment of sensors and context aware systems.

2.4 Middlewares for Pervasive Systems
This section discusses a set of middlewares that have been developed by research-
ers to facilitate the use of sensors and to retrieve context from sensor enriched
environments. Before reviewing these different middlewares, we discuss the pa-

8According to [55], human factors are the collection of information on the user (knowledge,
habits, etc.), the user’s social environment (group cooperation, social link, etc) and the user’s task
(goals, spontaneous activities, etc)

9According to [55], the physical space can be subdivided into location, infrastructure and phys-
ical conditions

15

per of Billibon Yoshimi [9]. His work serves as an introduction to justify the need
for appropriate middleware for sensors for pervasive systems.

2.4.1 Requirements for Middleware
Billibon Yoshimi studied the use of sensors for context-retrieval in [9] by examin-
ing the concept of location and situation awareness. First of all, he noticed that
most system designers make the mistake of waiting until the end of their devel-
opment phase to choose the appropriate sensors. He states that it is important for
any system design process to examine the integration of sensors before starting
the implementation of a prototype.

As already mentioned, he studied the subject from a low level point of view.
Thereby, he divided the set of sensors into two major types. The first type of
sensors are the active sensors. This type of sensor interacts with the environment
and observes how its actions affect the environment. Examples of active sensor
systems are: RFID tags, an infrared transmitter, a laser fluorosensor , etc. The
second type of sensors are the passive sensors. Passive sensors are designed to
make use of an external energy source to observe an interested object. Examples
of passive sensors are GPS, ambient audio, etc. Both types of sensors have their
advantages and disadvantages. Active sensors, for example, help to reduce ambi-
guities from passive sensors, while passive sensors are useful in situations where
changing the environment is undesirable.

In most cases sensor data must be combined in order to get a unified view of the
world. This phase is called sensor fusion. This phase requires expertise in know-
ledge engineering. Some methods that are at our service to perform sensor fu-
sion rely on the following techniques: bayesian networks [38], genetic algorithms
[21], neural networks [3].

During Billibon’s research, a problem intrinsic to sensor system design was iden-
tified. The problem is as follows: when users interact with a computer they expect
that a computer performs certain actions. On the contrary, when the users do
not interact with the computer, but the computer performs an action, the users
become confused. Since ubiquitous computing enables computers to perform ac-
tions autonomously, we believe that this problem may be directly linked to the
success of ubiquitous computing.

This discovery implies that ubiquitous computing will require novel ways of HCI.
Billibon proposes a solution to this phenomena. By creating an evolving user
model we enable the system to make predictions of when a user has difficulties

16

when working with the interface. Based on this model, extra measures can be
made to inform the user.

From this work we may deduce that, when working with sensors, we are also in-
troduced to new sensing paradigms, architectural frameworks, etc. Sensor frame-
works and context retrieval systems will help us in tackling these issues and chal-
lenges. The following subsection presents some available middleware that were
developed to cope with these challenges.

2.4.2 Available Middlewares
In order to help us in the process of creating context aware applications and in
particular by means of sensors, we will have to rely on architectural frameworks
and middlewares. These will become the building blocks that will have to cope
with challenges such as: available resources, distribution, reasoning, etc.

Therefore, we describe some middleware that were recently developed:

• Middlewares for Sensor Networks:

– Shared Phidgets [42]: a software extension built upon the commer-
cial Phidgets platform10 for rapidly prototyping distributed interfaces.
The shared phidgets project allows developers to integrate distributed
components without having to be concerned about the distributed sys-
tems aspects. This allows developers to leverage some of their con-
cerns on the framework allowing them to focus on their main goals.

– SENSEI Real World Internet Architecture [68]: a solution that
provides an architecture that enables the foundation of the Internet
of Things. They propose a framework that is responsible for levering
distributed system aspects. Furthermore, they provide an architecture
for efficiently integrating a variety of heterogeneous sensors to build a
homogeneous framework to obtain real world information.

For more information on middleware concerning sensors networks, we refer
to the work of Karen Henricksen and Ricky Robinson [30]. Their paper
presents an analysis of the state of the art middlewares and highlights some
open research challenges.

• Context-aware Middlewares:
10www.phidgets.com last accessed on 09/05/2014

17

www.phidgets.com

– Context aware Middleware Architecture for Smart Home Envir-
onments [29]: a middleware that facilitates sharing contextual inform-
ation of diverse sensors that are available in a smart environment. The
middleware uses a publish/subscribe mechanism which allows soft-
ware developers to share their context elements. The intention of
this project is to allow developers to create more sophisticated con-
text types by using the context elements that are shared by other de-
velopers.

– Contextual Interfacing: a Sensor and Actuator Framework [28]:
the middleware makes the connection between sensors and actuators.
Besides that, it also provides abstract and contextual information. The
framework is a layered model that is built with the following concepts
in mind: synchronisation, aggregation, abstraction, and integration.
The components of this model are explained in depth in [28].

– Context-aware Middleware for Pervasive and Ad Hoc Environ-
ments [60]: a middleware architecture that supports both pervasive
and ad hoc computing. The approach is based on a number of com-
ponent frameworks that allow pervasive dissemination for both real
time systems and normal systems. Even more, the authors of the paper
present a sentient object model. This model presents the key require-
ments for enabling both contextual awareness behaviour as autonom-
ous intelligent behaviour.

Recent research with regard to context aware middleware has resulted in
several requirements wherefore middleware must comply to. These require-
ments were explored in [34].

2.5 The Evolution of The Internet of Things
The Internet of Things and smart environments have been researched for a reas-
onable period of time. Therefore many prototypes and applications have arisen
over time. We present an overview of this evolution by reviewing a research pro-
ject of 2001, where they developed a smart environment. Next, we present three
commercial Internet of Things devices that have been developed over the past two
years.

2.5.1 Analysis of a Research Project: Smart Kindergarten
In 2001, Mani Srivastava, Richard Muntz and Miodrag Potkonjak have developed
a smart kindergarten [62]. The kindergarten was empowered with sensors with the

18

intention to create a problem solving environment for early childhood education.
Figure 2.311 and Figure 2.412 present the sensor enhanced table and badges for the
children.

Figure 2.3: Smart Table

Figure 2.4: iBadge

The smart learning environment is developed to enhance the learning process of
children on an individual level by adapting the environment towards each child

11http://nesl.ee.ucla.edu/projects/smartkg/photos/SmartTable_
Complete.jpg last accessed on 09/05/2014

12http://nesl.ee.ucla.edu/projects/smartkg/photos/iBadge_
Complete.jpg last accessed on 09/05/2014

19

http://nesl.ee.ucla.edu/projects/smartkg/photos/SmartTable_Complete.jpg
http://nesl.ee.ucla.edu/projects/smartkg/photos/SmartTable_Complete.jpg
http://nesl.ee.ucla.edu/projects/smartkg/photos/iBadge_Complete.jpg
http://nesl.ee.ucla.edu/projects/smartkg/photos/iBadge_Complete.jpg

individual needs and by adapting to the current context. Furthermore, this smart
environment is not only useful for children. The teacher was also able to unob-
trusively evaluate the learning process of the child and this at a continuous rate.
Their solution is built upon smart objects that take the shape of sensor-enhanced
toys and classroom objects. These sensor-enabled devices are connected through
a specific middleware service that stores the retrieved information in a database.

Unfortunately, the authors did not mention in any way how the teacher is presen-
ted with the information. We can only assume that the teacher was limited to the
data presented by the database viewer. This approach makes it a hard process for
“non-experts” to access, manage and process this information.

From this project, we may conclude that the smart environment helps children
and their teacher in the learning process. By employing sensors over the environ-
ment and physical objects, computers are able to collect a large amount of data.
However, if this data is not filtered or is not presented efficiently to the teacher, it
will be difficult to make use of the benefits of their efforts. Therefore, we can con-
clude that they did not pay much attention to the presentation of the collected data.

We believe that their solution could benefit from an interactive display. This
display could present the filtered information in an intelligent way. Instead of
presenting a large amount of data to the teacher, a computer could decide autonom-
ously which information should be shown in which situation.

2.5.2 Commercial Solutions
• Nest Thermostat: Nest13 is a company bought by Google and is viewed as

the entering point for Google towards the Internet of Things and to a “con-
nected home”. Nest’s top product is their “smart” thermostat. According to
several sources14 this device is probably the most popular Internet of Things
device at the moment.

13https://nest.com/thermostat/life-with-nest-thermostat last ac-
cessed on 2/02/2014

14http://www.economist.com/blogs/schumpeter/2014/01/
google-and-Internet-things
http://www.slate.com/blogs/future_tense/2014/01/14/google_nest_
acquisition_Internet_of_things_is_next_frontier_for_data_machine.
html
http://www.theguardian.com/technology/2014/jan/20/
google-nest-aquisition-learning-thermostat last accessed on 03/02/2014

20

https://nest.com/thermostat/life-with-nest-thermostat
http://www.economist.com/blogs/schumpeter/2014/01/google-and-Internet-things
http://www.economist.com/blogs/schumpeter/2014/01/google-and-Internet-things
http://www.slate.com/blogs/future_tense/2014/01/14/google_nest_acquisition_Internet_of_things_is_next_frontier_for_data_machine.html
http://www.slate.com/blogs/future_tense/2014/01/14/google_nest_acquisition_Internet_of_things_is_next_frontier_for_data_machine.html
http://www.slate.com/blogs/future_tense/2014/01/14/google_nest_acquisition_Internet_of_things_is_next_frontier_for_data_machine.html
http://www.theguardian.com/technology/2014/jan/20/google-nest-aquisition-learning-thermostat
http://www.theguardian.com/technology/2014/jan/20/google-nest-aquisition-learning-thermostat

After installing and using the thermostat, it will learn the routines of the
homeowners. Afterwards, the device will be able to adjust the thermostat
independently. Another feature of the device is its ability to save energy.

One of the most useful things about Nest’s thermostat is its mobile applica-
tion (see Figure 2.6). This application provides a user friendly interface that
allows the homeowners to view the thermostat’s settings and adjust them
accordingly. An extra advantage of Nest’s thermostat is that it seamlessly
integrates into our homes with its discrete design (see Figure 2.5) without
becoming intrusive. The thermostat works autonomously without disturb-
ing the homeowners.

Figure 2.5: Nest Thermostat’s discrete design

Figure 2.6: Nest Thermostat’s mobile application

Still, another important aspect that we want to emphasise is the clear pres-
ence of an interface on top of the device. Therefore, the device does not
become fully “invisible” to the homeowners. There is still a way to con-
sciously interact with the thermostat. Since homeowners are still aware of

21

the presence of the electronic device, it does not disappear in the back-
ground as envisioned by Mark Weiser.

• Philips Hue: Hue15 is a personal lighting system that enables users to man-
age the lighting of their house by using their mobile device. Hue is less
intelligent as Nest’s thermostat, as it does not regulate the lighting autonom-
ously. Rather, it relies on the user to create an illumination schedule.

The most important feature of Hue is the possibility to change the illumin-
ation while you are not at home. Furthermore, Hue also has the option to
create relationships between an illumination schedule and one of your pho-
tos or events. Just like Nest’s thermostat, Hue also has a mobile application
which allows you to manage the smart device. In contrast to Nest’s ther-
mostat, the “digital” lamp (see Figure 2.7) does not have an interface of its
own, nor does it collect information about the environment.

The lamp merges well with the environment, as a regular lamp would do.
However, it still requires human interaction in order for it to work properly.

Figure 2.7: Philips Hue lamp and mobile application

• Lockitron: Lockitron 16 is a kickstarted project that allows keyless entry
to the user’s home by using a smartphone and a smart lock (see Figure
2.8). Besides opening and locking doors, it also sends notifications when
for example someone knocks on the door or when a child opens the door
using their own phone. Another advantage of Lockitron is the ability to
grant access to other people when you are not at home. Lockitron relies

15http://www.meethue.com last accessed on 02/02/2014
16https://lockitron.com last accessed on 02/02/2014

22

http://www.meethue.com
https://lockitron.com

hardly on the Bluetooth abilities of the mobile device that controls it. Their
latest product uses Bluetooth 4.017 that enables people to open their doors
without having to manually unlock it. Just like the two previous Internet of
Things devices, this smart device is managed by using a mobile device such
as a tablet or a smartphone.

Figure 2.8: Lockitron’s lock and mobile application

From the aforementioned smart devices, we can deduce three factors to which they
owe their success. First of all, we notice that all of these artifacts are employed
in the home environment without invasively modifying the house and without too
much physical effort. Secondly we notice that all of these devices rely on a mo-
bile application. The mobile application enables users to truly benefit from the
devices’s capabilities i.e either to manage the smart artifacts or to present inform-
ation that they have collected. Thirdly and maybe most surprising, is that all the
aforementioned devices have completely replaced their “predecessor”.

The traditional lamp, thermostat and locks were completely removed from the
environment and replaced by their successor. In other words, we can conclude

17Bluetooth 4.0: a new version of Bluetooth that focusses on low energy consumption

23

that these environments were made “smarter” by replacing them instead of up-
grading the existing devices. Naturally, we can imagine scenarios where sensor
deployment in environments will still be more advantageous, for example when
artifacts have an emotional value, are expensive, etc.

Based on these smart devices, we can make a distinction between two types of
Internet of Things devices. We have noticed that there exist artifacts that are con-
nected to the digital world, that do not act “intelligent”. We assign these artifacts
to a first category of Internet of Things devices.

The Hue lighting system is part of this first category. The Hue Lamp only per-
forms an action when they are controlled by the user. They do not perform any
action autonomously, therefore we can not consider them to be truly “intelligent”.

A second category of Internet of Things devices are the artifacts which perform
“intelligent” actions. Both Nest’s thermostat and Lockitron’s locks are examples
of this second class. In a way, we can consider them to be smarter than the Hue
lamps, as they are able to perform actions autonomously (raising the thermostat
as temperature drops, closing doors when leaving a room).

To our opinion, both categories have earned the title of Internet of Things devices.
However, the devices that belong to the second category i.e devices that act “in-
telligent”, are a degree higher in reaching the purposes of ubiquitous computing
or even more the purpose of ambient intelligence as described in Section 2.6.

2.5.3 Open Research Problem in Ubiquitous Computing
Both the development of ubiquitous computing and Internet of Things create huge
opportunities towards economics and individuals. As highlighted in Section 2.2,
the physical environments will change drastically. Physical objects will be tagged
creating a smart environment. Sensors, together with tagged objects, will become
the entering point for computers to our physical world.

However, since computing will happen everywhere and anywhere, we are presen-
ted with a large amount of data. As a result, we may expect that we will require
innovative ways to manage this data overload. From reviewing three recent In-
ternet of Things devices, we noticed that it is important for the user to have an
intelligent interface that forms a bridge between the user and the collected data.

In order for computers to determine what information is relevant for the user and
what is not, the computer must act intelligently. The following section will present

24

a new paradigm that makes an effort in solving this problem, namely, ambient in-
telligence.

2.6 Ambient Intelligence
In the previous sections, we have introduced the concepts behind ubiquitous com-
puting. We have emphasised on the technologies (sensors, context aware systems,
wireless networking technologies, etc.) that enable ubiquitous computing. Un-
fortunately, we cannot say that all problems concerning this concept are resolved.
Issues such as data access and usability were left unaddressed. The ambient intel-
ligence (hereinafter named AmI) [53, 16, 5] paradigm is an initiative that makes
an effort to take both accessibility and usability into account.

In a way, AmI can be seen as the successor of ubiquitous computing. Juan Carlos
Augusto defined AmI as the confluence of ubiquitous computing and artificial in-
telligence [4]. To their opinion, we may not confuse AmI with other areas such as
ubiquitous computing, sensors, wireless networks and artificial intelligence (here-
after named AI), but rather look at it as a fusion of these areas. Whereby, AI is
seen as encompassing areas such as agent-based software and robotic. Juan Carlos
Augusto illustrates his point of view on AmI as follows, see Figure 2.9:

Figure 2.9: Relationship between AmI and other areas [4].

When we look closer at the definition of ubiquitous systems and AmI we see
that there are some alignments and differences. Ubiquitous systems are built to
emphasise the physical presence and availability of resources while missing an
essential element, namely, the explicit requirement of “intelligence”. When we

25

look at the definition of AmI given by Raffler in [49], we notice that this idea
aligns with the concept behind ubiquitous computing:

“A digital environment that supports people in their daily lives in
a non-intrusive way.”

This definition was slightly modified by Juan Carlos Augusto. His definition em-
phasises on the the essential element of intelligence as a fundamental component
of AmI systems:

“A digital environment that proactively, but sensibly, supports
people in their daily lives.”

The terms “proactively” and “sensibly” represent the “intelligence” requirement
that could help ubiquitous computing in becoming truly useful. As discussed in
Section 2.5.3, current realisations of ubiquitous systems can easily become unus-
able because computing will appear everywhere and anywhere. This will result
in smart environments that will compete for the user’s attention, resulting in an
information overload that may overwhelm the user.

The overload of information may tempt the user in turning down the computing
system or just ignore it, losing its purpose. Therefore, the element of intelligence
will be responsible for mediating between the user and the services provided by
the ubiquitous environment.

The following section will explain how digital documents can become intelligent
agents that act as mediator between the user’s needs and the data obtained from
ubiquitous environments.

2.6.1 Ambient Documents
The advent of electronic media has opened opportunities that would never be pos-
sible with traditional paper documents. For a large extent, the World Wide Web
has been responsible for challenging the properties of traditional documents i.e.
static document consisting of text and/or images.

Over the years the document metaphor has been extended to include multimedia
items such as video, graphics, audio, etc. Since we were no longer restricted to
media that should be rendered on paper, digital documents have not only changed
the way we think about documents, but also how we create, view and interact
with them. As a result of this emergence, researchers and companies have thought
about ways to reinvent the traditional document metaphor with the intention to

26

create a “true digital document”.

The contribution of this thesis lies in expanding the AmI paradigm by enabling
the concept of “ambient documents”. Ambient documents are an extension of
the traditional digital document metaphor. Gregory M. P. O’Hare, Michael J.
O’Grady, et al. describe ambient documents as follows:

“Documents that offer a dynamic and radical view of document
access, production and dissemination.” [47]

The authors of [47] consider these documents as an intelligent subclass of tradi-
tional documents. They describe the documents as intelligent artifacts that make
use of a suite of intelligent techniques for content identification and filtering to
cater current and future needs of the user.

To their opinion, if digital documents want to become truly useful in ubiquitous
environment, we need to radically change the assumptions we have with tradi-
tional documents. Furthermore, the authors also present the following five as-
sumptions that must be challenged and overcome with ambient documents:

• “Document retrieval is based on user request (pull technology);

• Documents are generic;

• Document are static;

• Document are primarily comprised of text and images;

• Document content is always regulated.” [47]

Unfortunately, to our knowledge, the writers of the paper have never made an
effort to investigate this path nor did they create a prototype of their ambient doc-
uments. However, they did provide the following seven characteristics to which
an ambient document will be subjected. We made the effort to describe them in
more detail:

1. Document Retrieval
Traditional digital documents rely on a pull model i.e the user independently
searches and opens the document. However with ambient documents this
model will be extended towards a pull/subscribe model. This model allows
for documents to be pushed towards the users according to certain aspects
of the user’s context. Even more this pull/subscribe mechanism can also be
domain dependent.

27

2. Document Audience
Most of the time, documents are written for a general audience (i.e digital
documents present the same information regardless of who the reader is).
Although this may seem a good approach for some cases, it also contains
some significant disadvantages.

Imagine that you have created a document that contains some personal in-
formation and you want to exchange it with a colleague. Then you have two
options: Option 1) Exchange the document with the personal information
with the risk that it can me misused, or Option 2) Modify the existing doc-
ument which is error prone and takes time. With ambient documents this
problem will not occur. As documents are personalised for their audience,
it can filter the sensitive information.

3. Document Content
Ambient documents can be seen as dynamic objects that can change over
time. The content that is presented depends on the current context. A doc-
ument may change its content according to the needs of the user and may
depend of the situation (e.g environment, task, user, etc.).

4. Document Media
Images and text are the most common type of media for traditional docu-
ments. The WWW has changed this assumption by allowing various types
of multimedia elements such as audio, video, 3D objects, etc. However,
ambient documents will extend the assumption even more by allowing more
media types such as real time sensor information, web service data, etc. Fur-
thermore, the selection of media elements will highly depend on the user’s
context. For example if a user wants to read a document while driving a car,
it is likely that he is not capable of performing the act of reading. As a result,
the documents could intelligently decide to change the media representation
from text to audio.

5. Document Ethos
Traditional documents are static in the way they present the content and
how they are structured. Ambient documents are unregulated towards these
properties. Forums are a perfect examples of non traditional documents, as
their content is provided continuously and unpredictably while their struc-
ture adapts accordantly.

6. Document Repository
Ambient documents are not restricted to a central repository, such as a di-
gital library, for retrieval. Ambient documents can be deployed on devices

28

with limited computational capabilities such as sensors.

7. Document Presentation
Ambient documents are not restricted to standalone computers with a WIMP
interface. Neither are these documents restricted to particular interaction
devices such as a mouse and a keyboard. Ambient documents can be viewed
and accessed in a multimodal fashion.

2.7 Scope of the Thesis
In this chapter we have discussed two concepts, namely ubiquitous computing
and Internet of Things. Along with these concepts we have discussed the different
technologies that are necessary to enable them.

We gave a detailed overview of how sensors can be used and what we might
expect from them in the future. Next, we discussed how sensor data can be used
by computers to derive context, along with some relevant examples and available
middlewares. This has shown us that these technologies are more or less mature
enough to be used in applications.

However, we came to the conclusion that there are still some open challenges
with ubiquitous computing such as data access and usability. In order to solve
these challenges, an initiative was proposed by researches namely, ambient intel-
ligence, a confluence of ubiquitous computing and artificial intelligence.

Along with this concept we have discussed the idea behind “ambient documents”.
These documents are intelligent agents that provide the right information at the
right time by making use of collected data from the environment. However, des-
pite their interesting proposal they never investigated this trail.

We believe that this thesis contributes to the era of ubiquitous computing and
even more to the era of ambient intelligence, by investigating the development of
these visionary documents. We believe that by enriching documents with dynamic
content, we can obtain ambient documents. Since we have evaluated the current
state of the art on sensors and context awareness, we are able to create dynamic
content that makes use of these technologies and concepts.

The following chapter will review the state of the art on dynamic documents along
with an analysis of representative document formats with regard to their support
for dynamic content.

29

Chapter 3

Review of Dynamic Content in
Digital Documents

This chapter discusses the research training of this thesis and is divided into two
main sections. In the first section, we discuss the related literature of this thesis.
We consider several attempts in empowering digital documents with dynamic con-
tent. Besides summarising their approach, we provide a critical analysis for each
solution and the relations amongst them.

In the second section, we analyse a set of document formats. This analysis reviews
each document format with regard to their ability to specify dynamic content.

For both sections, we present a conclusion that discusses the current state of pro-
gress and we elaborate on the problems at hand.

3.1 Analysis of the State of the Art
Over the past two decades, attempts have been made by both researchers and
companies [10, 65, 13, 33], to develop so-called “dynamic documents”18 i.e di-
gital documents that contain dynamic content. Their research has resulted in a
myriad of diverse perspectives on which kind of functionalities these documents
must comply to.

These different schools of thought have become the ground for arguing on the
term “dynamic documents”. Since most researchers had their own perspective
on the subject, they were driven towards alternative concepts, resulting in sev-

18The term dynamic document was first introduced in [61] to describe documents that have a set
of associated behaviors (activities)

31

eral naming conventions, such as: active documents [65], live documents [74],
multivalent documents [48], etc. Since this thesis makes an effort in empower-
ing digital documents with dynamic content, it is recommended to explore some
of these approaches in more detail. Furthermore, by reviewing these different
schools of thought on dynamic documents, we can easily verify the generality of
our solution.

Since the concept of dynamic content has been studied for more than twenty years,
we present our review in a chronological order to clarify the evolution.

3.1.1 Active Tioga Documents - 1990
In 1990, Douglas B. Terry and Donald G. Baker focussed on the creation of di-
gital documents whose content was derived form external data sources. In their
opinion these external data sources can be very diverse, ranging from databases
to continually changing sources such as clocks, weather forecasts, etc. The justi-
fication behind their research was the fact that documents, containing information
from a source that changes over time, should also update accordingly and this
without any form of human intervention.

Their research resulted in two paradigms which they implemented using a doc-
ument editor, named Tioga. Their editor and their approach can be found in [65].
The first paradigm that they employed involves dynamically computing the con-
tent of a document as it is displayed. Their second paradigm is based on a no-
tification system that informs interested applications of the changes made to the
document.

Instead of going straight into the details of their approach, it is advised to know
how the Tioga editor manages documents. Tioga documents are logically struc-
tured as a tree of nodes that present some text of the document. An example of
such tree and its output is presented in Figure 3.2 and Figure 3.1, respectively.
This tree contains the nodes of a telephone directory document. Besides the text
that a node represents, they are also able to obtain properties in the form of key-
value pairs.

32

Figure 3.1: Generated document representation of the telephone directory docu-
ment [65]

Figure 3.2: The logical structure of a document representing telephone numbers
with dynamic query nodes [65]

Dynamic content is represented with a node and must contain a property named
“Activity”. The associated value of this property indicates the class of the activity.
So instead of keeping the activity’s code in the node itself, the property shall keep
a reference towards the associated activity class. This class will be responsible
for dynamically computing the content. The implementer of such an activity class
must define two procedures, namely, a transform procedure and a size procedure.
An example of such two procedures is presented in Figure 3.3.

Figure 3.3: Procedures constituting a node transformation activity [65]

33

The current textual content of the node is used as input by the transform proced-
ure to produce the new content for the node. The size procedure is responsible for
estimating the desired size of the transformed node. Note that the size procedure
makes an estimate of the size. This is an important design choice, since no actual
transformation must be performed for this task. As a result, their solution ob-
tains the ultimate form of lazy evaluation of the dynamic content. This means that
no computational power is required until the dynamic content is shown to the user.

The Tioga editor relies on the “TextNode” module for executing the associated
code. This module performs on the lowest level of the Tioga editor and manages
the tree of nodes for a document. The functionality of the TextNode module was
extended in such a way that it triggers the activities that are associated with the
nodes. It is important to note that these activities are only triggered when the
content of the node is requested. Therefore, we may conclude that documents that
contain dynamic content will be able to exploit the advantages of a lazy evaluation.

A second dynamic document mechanism that was implemented was motivated by
the idea that documents should be transparent towards their external sources. This
means that external sources should be notified when a user modifies content of the
document that is linked with an external source. An example could be changing
some database data in a document that was obtained from an external database.
In the authors opinion, edits to the document should be propagated towards these
external sources. This mechanism introduces a two-way interaction between the
document’s dynamic content and the external sources. Naturally, we can imagine
that this two-way interaction may also have some disadvantages such as: uninten-
tionally changing the external source, data corruption, etc. As a result they have
opted to keep a list of changes made to the content. These modifications are only
propagated when the user saves his edits. Another option that they provide is the
ability to reset the document. The reset functionality of the document restores the
original content and leaves the external sources untouched.

To implement the second dynamic document mechanism, they also relied on the
Tioga editor. This implementation is based on a edit notification dispatcher. The
dispatcher is responsible for keeping track of all the edits made while working on
the document. Afterwards, the dispatcher will be responsible for propagating the
modifications towards the interested applications.

Critical Analysis: During their research they have created several of what they
call “dynamic documents”. After examining their work, we may conclude that
they have two perspectives on what dynamic content is about. On one hand,

34

dynamic content is content that transforms according to a particular predefined
procedure. On the other hand, dynamic content is content that is interactive i.e the
document has become the interface for external sources.

In our opinion, these two paradigms seem acceptable but they lack expressive-
ness. Their solution only supports a limited set of the possibilities that could be
possible with dynamic content. Additionally, their solution is a pure ad-hoc imple-
mentation that will only work with the Tioga editor. Therefore, it will be difficult
to apply their approach to other document formats or editors. Apart from that,
we agree that a document could benefit from the notion of actions that change the
content/structure of the document.

We also agree that documents could become the interface for external resources.
However, by enabling digital documents to modify the data of external resources,
we can easily violate data integrity. As a result, it will be a complex process to
enable such a feature.

3.1.2 Multivalent Documents - 1996
Another approach towards dynamic content in documents is the one taken by
Thomas A. Phelps and Robert Wilensk in [48]. According to the authors, “true
digital documents” should provide an interface to potentially complex content.
Therefore, they introduce a novel solution, named “multivalent documents”. Ac-
cording to the authors, multivalent documents would become the new general
paradigm for the organisation of complex digital document content and function-
ality. In order to accomplish their vision, they propose a model with an object-
oriented perspective on digital documents.

According to the authors, these documents are particularly interesting for doc-
uments containing complex content with a variety of interaction styles. Authors
of such documents should divide their content into different layers. These layers
are bound to certain behaviours that define when a corresponding layer should
become activated. A simple example of a layer type are annotations in a PDF
document. An annotated document has two views: either we enable the annota-
tions which makes it possible to see them, or we have the possibility to deactivate
them, leaving us only with the original document. A more complex use of these
layers is for example an image with an additional layer that contains the OCR res-
ult19 of the image. This would allow the user to see both the original image and

19OCR (Optical Character Recognition): a technique that converts the characters on the page
into ASCII text.

35

give the user the possibility to select, copy and paste a certain geometric region
of the scanned image. This would be very useful when the original image is of a
particular value.

Critical Analysis: This solution defines behaviours that are the glue to bind the
different components and their associated layers together. The combination of the
different layers forms a single coherent document. If we compare this approach to
the one mentioned before and especially the first paradigm, we may conclude that
besides some differences they also share some similarities. Both types of dynamic
documents adapt their visual appearance of the document towards a particular in-
terest. The first type of dynamic documents proposed in the Tioga editor, merely
updates the current content. While on the other hand the multivalent documents
are about activating a particular layer, where layers provide the user with the most
appropriate information in combination with the associated interaction possibilit-
ies.

To our opinion, this approach is too limited. We believe that the opportunities
of dynamic content can go beyond the concept of changing layers. For instance,
their approach does not support the integration of data that is able to change over
time. The layers merely consist of static parts that are replaced when necessary.
Furthermore, their approach resulted in an ad-hoc solution that is not easily exten-
ded to support other features.

3.1.3 Stick-e Documents - 1996
Until now, none of the discussed solutions have taken the physical environment
into account. From our background research in Section 2.3 we can conclude that
over the last years, a lot of research has been performed on pervasive environments
and context-aware systems. This field of research also influenced the exploration
of digital documents. The stick-e document presented by Jason Brown Peter, in
[10] is such an example.

A stick-e document acts as a container for smaller components which are called
stick-e notes. A stick-e note consists of two main components, namely, its content
and the context. The author of the paper has chosen to represent stick-e docu-
ments in the SGML20 format to make them portable. The following code snippet
demonstrates how a stick-e note is encoded:

20SGML (Standard generalised Markup Language): a platform independent ISO-standard that
describes the syntax of markup languages for documents (http://www.w3.org/MarkUp/
SGML last accessed on 16/04/2014)

36

http://www.w3.org/MarkUp/SGML
http://www.w3.org/MarkUp/SGML

Listing 3.1: Example of a Stick-e note in SGML
<note>

<required>
<with> Jochen Francois <or> Gus Windey
<at> <long>38.5323</long> <lat>77.0027</lat>
<content>
This content adapts to the user

</note>

Wherein the <required> tag defines the context and the <content> tag
defines the content that must be presented for that particular context.

The key to create a context-aware document is by creating a relation between
a contextual element and a stick-e note. When a contextual element occurs, the
associated stick-e note is displayed. This approach is inspired by the idea of AIR
(Activity-based Information Retrieval). This specialisation of AIR differs from
other approaches as it focusses on the future instead of the past events for re-
trieval.

Critical Analysis: When we compare this approach to the ones of the previous
solutions, we notice that it is the only one that takes the context into account to
change the content of the document. This is an interesting approach since the
age of ubiquitous computing will collect an enormous amount of data about the
physical environment. This vast amount of data can then be used to the benefit
of document authors in creating digital documents that intelligently adapt them-
selves to the needs of the reader.

We believe that future documents can really benefit from the notion of context.
Therefore, we consider the context as an essential requirement for which dynamic
content should provide support for.

However, the downside of this solution is that they do not consider the support
for content that may change over time, such as: data from a web service, sensor
data, etc.

3.1.4 Live Documents - 2002
Software documentation is associated with computer software to explain how the
software operates or how it should be used. Writing software documentation is

37

a daunting task since it should always represent the current state of the software.
Therefore, one would rather have this task automated.

Anke Weber, Holger M. Kienle and Hausi A. Müller also noticed the need for
documents that rewrite themselves autonomously. As a result, they introduce the
concept of “live-document” [74]. They describe live documents as follows: data
driven, context-aware, interdynamic and adaptation centric.

Note that their adaptation characteristic is not associated with the context aware-
ness characteristic of the document. The adaptation characteristic deals with the
fact that a document should autonomously rewrite itself towards multiple output
versions and formats coming from a single source, see Figure 3.4.

Figure 3.4: LiveDocuments adaptation characteristic [74]

During their research, they have developed a prototype document that presents
software documentation in real time. This document is interlinked to the actual
software in order for it to rewrite itself by the so-called “live links”. The imple-
mented prototype was developed by making use of SVG (Scalable Vector Graph-
ics)21 and Microsoft Office Automation22.

Live links are necessary to detect changes in the source code. Afterwards, these
updates are reflected in the content of the document. Unfortunately, the authors of
the paper do not explain how these live links work.

21http://www.w3.org/Graphics/SVG last accessed on 16/04/2014
22http://msdn.microsoft.com/en-us/library/ms173024(v=vs.90)

.aspx last accessed on 16/04/2014

38

http://www.w3.org/Graphics/SVG
http://msdn.microsoft.com/en-us/library/ms173024(v=vs.90).aspx
http://msdn.microsoft.com/en-us/library/ms173024(v=vs.90).aspx

The authors of the paper also present eight requirements to which live documents
should conform. To our opinion these eight requirements are also useful beyond
their solution. Therefore, we will discuss them briefly: The first requirement is
that live documents should have a state, the document itself should keep track of
the modifications of its state. A second requirement is that live documents should
manage their own state autonomously. This means that when a documents rep-
resents something that has changed over time, it should adapt its state according
to these changes. The third requirement is oriented towards reusability. The ele-
ments from which a live documents exists, should be reusable on an individual
level.

They use the term “reusable”, not in the sense of a copy/paste operation, but
rather in the sense of transclusion, introduced by Ted Nelson in [44]. Ted Nelson
assumes that documents or parts of documents should be reused by means of a
reference, see Figure 3.5.

Figure 3.5: Document B is ”transcluded” in document A, P and Q 23

The fourth requirement is the ability to adapt intelligently to the presentation me-
dia. An example of such use could be adapting the document when it is printed
on paper and contains a video element. Then an image could be shown instead of
the video. The fifth requirement deals with the ability to adapt the content towards
the interest of the reader. The sixth requirement is about information visualisation.
The document should adapt the visualisation to facilitate content comprehension.
The seventh requirement involves the ability to search the document beyond the
content of the document itself. This is possible since the document has access
to external sources. The last requirement is that living documents should support
scripts. These scripts should be used for repetitive tasks such as going back to the
previous state of a document.

23http://elinux.org/Help:Transclusion last accessed on 3/02/2014

39

http://elinux.org/Help:Transclusion

Critical Analysis: The notion of Live Documents is very interesting since it
provides support for both context awareness and changing data. However, their
proposed solution and the development of their prototype lacks precise detail on
how they were achieved.

In our opinion, we would have preferred another prototype. In their implement-
ation they make use of links between the software code and the document. Nev-
ertheless, the authors do not mention how these links are specified. As a result,
we cannot know how much effort is needed to create such documents. We would
rather have seen a prototype of a document that is used by regular people. Then
they could present how a regular user can specify links between the document and
external sources.

Still, their vision of taking both context and changing data into account is an
interesting trail for further exploration.

3.1.5 Active Documents - 2003
When we focus less on a specific implementation, we can conclude that docu-
ments with dynamic content can and will change the way enterprises work. This
point of view was discussed by Joshua Duhl and Susan Feldman, in [33].

In their research, they did not develop a prototype or any other implementation
of such kind. However, since the authors are more commercially oriented, we
find it interesting to discuss their point of view on the subject. In their work, they
define the role of these active documents as follows, we quote:

“Active documents change the role of information and how it in-
teracts with both software applications and people.” [33]

Their vision is based on the thought that specific applications may gradually dis-
appear over the years. As a result these application-specific functions will be
integrated into what they call “active documents”. By doing so, they will affect
business processes and workflows. It will change the way in which companies cur-
rently share and exchange their information. As a result the separation between
dynamic documents and specific programs will disappear. This will lead to an
advent of a new category of applications which will be responsible for integrating
systems, analysing information and personalising content.

When giving form to their opinion, they try to define what an active document
should be. In their quest of searching the right definition, they stumble on the

40

same problem as we did, namely, not finding a complete definition of dynamic
documents:

“Active documents are so new that there is no standard for what
they look like or what they do.” [33]

However they make an effort to define the broad lines of what it should be. Their
vision on dynamic documents finds its origin in the fact that it should be active in
its own representation, interaction and presentation. According to the authors, this
could be achieved by adding code and actions to the document programmatically.

Critical Analysis: We agree with the idea that digital documents with dynamic
content can take over some functionalities provided by a software application.
However, we believe that their proposed approach for achieving this is unaccept-
able. By imposing the requirement for document creators to have some limited
programming knowledge, a lot of people are excluded to create dynamic docu-
ments.

In a way, their solution is comparable with the last requirement of the Live Doc-
uments approach. This solution also relies on scripts to make the document more
dynamic. We believe that the authoring process of a document should be as simple
as possible. By imposing the skill of programming, we do not obtain an authoring
process that is user friendly. Therefore, we can conclude that the editing process of
digital documents with dynamic content will bring along some challenges. These
challenges must be addressed in order for regular people to adopt these envisioned
digital documents.

3.1.6 Minerva Documents - 2005
Markus Reitz and Christian Stenzel consider dynamic documents as the next gen-
eration document technology. According to them, these documents come to the
aid of the problems endured when working with the current information distribu-
tion techniques. In their paper [51] they propose Minerva, a testbed for dynamic
documents and applications. One of the first remarks they make during their study
is the following:

“With documents there is always one core concept that remains
unchanged, namely, the fact that every component of the document
is static i.e. the content always represents a snapshot taken by the
author during the creation of the document.”[51]

41

According to Markus Reitz and Christian Stenzel, the static property of digital
documents forms the ground for two problems. Firstly, the documents are state-
less. Therefore, it becomes impossible to show up-to-date information to users.
Secondly, the interaction possibilities between the user and the document viewer
are limited.

The goal of their research is to overcome the aforementioned limitations in or-
der to escape a snapshot system wherein documents stand still in time.

During their research, the authors of the paper make the remark that the domain of
dynamic documents undergoes a flow of constant fluctuation. They note that only
a few frameworks exist which allow researchers to experiment on the concepts of
dynamic documents. In order to cope with these constant changes, the authors
propose their own testbed.

Their proposed testbed acts as a framework for rapid prototyping of new concepts
on dynamic documents. A key element of their testbed is extensibility. Extensibil-
ity is provided through the following characteristics of the framework: flexibility,
modularity and component-based.

While examining the notion of dynamic documents, they follow the paradigm of
“the network is the document” as presented in Figure 3.6. As a result, documents
are constructed on the basis of components found in the network of information.
Furthermore the components in the network can also interact with the environ-
ment. This can lead to changes in both the content and the navigational behaviour
of the document.

Figure 3.6: The network is the document [51]

42

During their research, they give an in-depth look at the shortcomings of classic
documents technology. Furthermore by analysing these shortcomings, they pro-
pose a list of required properties to which a dynamic document framework should
comply to. Since these requirements are of help during our research, we discusses
them here in more detail:

• Polymorphism: Documents have a stateful representation depending on
the current user and the history of use.

• Statefulness: This property helps conserving polymorphism towards dif-
ferent user sessions and user groups.

• Non-linearity: Using the document according to personal preference, in-
stead of following a predetermined path through the document, which was
defined during creation by the author.

• Web of components: The documents exist out of a web of interacting ob-
jects combined together to form a coherent document.

• Environment awareness: The building blocks of the document become
aware of their environment. Corresponding actions are triggered when cer-
tain phenomena in the environment occur.

The rest of their paper is centred around the implementation details of their frame-
work and how the testbed could be used in practice. In the end they also included
a brief evaluation accompanied by their conclusions.

Critical Analysis: Personally, we think that this point of view on dynamic doc-
uments aligns the most with ours. We agree that digital documents should not
stand still in time. They should be able to adapt themselves after the point of cre-
ation and with or without human intervention.

While we reviewed their proposed testbed, we noticed that they do not have a
clear document model. This makes it difficult to reuse their proposed solution
to other document formats. Additionally, their solution only considers context
obtained from the direct environment of the document. We believe that it is ne-
cessary to provide support for contextual information from users and the physical
environment that is not directly linked to the document. Hereby, documents are
aware of even more information on which they can perform appropriate adapta-
tions.

We join their vision of “a document can be characterized as a web of compon-
ents”. By using the RSL metamodel to describe our document model, we shall
attain the same notion of the “web of components”.

43

3.1.7 Multimodal Documents - 2006
Augusto Celentano and Ombretta Gaggi noticed the growth of information ser-
vice providers. According to them, this information could be used to adapt user
interfaces to the current context. The goal of their research [15] was to develop a
model and adaptation architecture for context-aware multimodal documents.

Their developed architecture is presented in Figure 6.13. The system enables
context awareness by relying on a rule-based system. The rule-based system uses
external contextual information in order to select the appropriate media elements.
The media elements are annotated with properties that are used by the rule-based
system. When all the media elements have been chosen, the system collects them
in the desired virtual document. A virtual document acts as a template to produce
the real digital document. Afterwards, the instantiated document is presented to
the user.

By using this technique, we can obtain different representations and interaction
possibilities for a particular document while still conveying the same information.

To describe their context-aware documents, they made use of SMIL24, a stand-
ard language for describing synchronised multimedia documents.

Figure 3.7: The architecture of a context-aware document adaptation system [15]

24http://www.w3.org/TR/smil last accessed on 03/02/2014

44

http://www.w3.org/TR/smil

It is interesting to note that their adaptation approach is based on two viewpoints.
On the one hand, the adaptation can happen on a high level, modifying the logical
structure of the multimedia documents, e.g. a video file can be replaced by a series
of images as long as they convey the same meaning. On the other hand, adaptation
can be performed on the selection of media that has the largest cognitive impact
on the user. It is interesting to think about the two approaches and how we can
find the right balance. Unfortunately, the authors of the paper do not describe how
the contextual information is derived from this external source.

The authors of the paper also make an interesting remark that their solution only
“enables” the user to create dynamic documents. In order to create “well de-
signed” adaptable documents, we will have to rely on suitable guidelines and
methodologies.

Critical Analysis: This solution operates on the basis of a virtual document. It
is fascinating to see the clear presence of a document that acts as a placeholder for
the final document. We like to remark that the other reviewed solutions did not
take this element into account, or at least not that explicitly.

We believe that a virtual document is a very useful tool to specify the structure
and the content of a document during the editing phase. Despite the fact that we
are unable to know which content will be displayed in the document, it is still
possible to specify where content should be displayed when it is actually chosen
to be presented.

As a final remark, we like to note that we agree with their statement: creating
a well designed dynamic documents will be an interesting challenge. We believe
that it will be a challenge for the people that create design guidelines, but also for
the development of future document editors that will assist us in creating these
documents.

3.1.8 WOAD Dynamic Documents - 2011
When reviewing the Minerva documents, see 3.1.6, we have seen that their solu-
tion relies on a network of components from which they form their documents.
Federico Cabitza and Lade Gesso also rely on this approach in [13]. Their com-
ponents are named “didgets”. Hereby, they define the term “dynamic document”
as follows:

“A dynamic document is an electronic document that users can
easily build by aggregating smaller data modules, called “didgets”,

45

to mimic their paper-based templates and provide them with proactive
behaviors in support of daily practice.” [13]

The goal of their research was to build modular and flexible Electronic Patient Re-
cords (hereafter EPR), by making use of the dynamic document metaphor. First,
they have compared the traditional Paper Patient Records to the electronic ones.
They have concluded that with EPRs they lose some advantages. The first flaw
they encounter is the lack of flexibility when customising and modifying the tem-
plates of official paper-based forms. Secondly, the flexible workflow, that they
once had with paper, has now been restricted to a predefined flow.

In order to solve these problems, they have developed a new system named Pro-
Doc. ProDoc provides a set of persistent documents and forms without imposing
a certain workflow. The key to developing ProDoc is the concept of the “Web of
Active Documents” (hereafter WOAD).

WOAD is an interconnected document system that consists of documents and
forms that practitioners consult on a regular basis. The building blocks for WOAD
are the dynamic documents. A document may in turn be composed out of pass-
ive parts and dynamic parts. The passive parts form a container for the content
which has a specific structure. The dynamic part empowers the passive part with
context-aware behavior by adding executable code.

In turn, the dynamic and passive parts are divided into the following elements:
datoms, didgets, templates and mechanisms. The smallest atom from which a dy-
namic document can exist is called a datom. A datom represents some content
of interest that can be used throughout different documents. The representation
of these datoms are handled by didgets. Didgets can be reused throughout differ-
ent document-templates. By using only these three components it would not be
possible to make the document dynamic. Indeed, mechanisms are required to sup-
port the dynamic parts of the document. Mechanisms are a collection of if-then
statements that apply to datoms, didgets and their corresponding content. These
mechanisms make it possible for the content of the document to become dynamic
and proactive. WOAD’s architecture is further described in [13].

Critical Analysis: As in the case of the Minerva documents, this solution also
prefers to consider documents as the composition of components in a collection.
It seems that this approach enhances the reuse of content and facilitates the devel-
opment of dynamic content.

We also prefer their simple classification of components and the notion of mech-

46

anisms to enable the dynamic parts of the document. By using simple if-then
statements it is possible to specify how the document should adapt. On the other
hand, we were missing the support for data that changes over time such as sensor
data, web service data, etc. We also believe that their approach can easily be ex-
tended beyond the use of EPR’s.

Despite their well thought out approach, we were asking ourselves whether it
is possible for regular user to design such a document. We would have liked to
see an evaluation of how easy users can use these if-then statements to specify the
dynamic parts of a document. Still, overall we must conclude that their approach
looks very promising.

3.1.9 Conclusion
In Section 3.1, we analysed a set of research projects that present the state of the
art in dynamic documents. Despite the proposed definitions for the term “dynamic
documents”, none of them were seen as “generally accepted”. This has resulted
in different schools of thought that are hard to compare. In general, we could
categorise digital documents as follows:

• Digital documents that are context-aware;

• Digital documents that present data that can change over time;

• Digital documents that mix the two aforementioned approaches to modify
the content and/or structure.

Since it is primarily dynamic content that make a document dynamic, we can ar-
gue that we can only find a correct definition for dynamic documents if and only
if we are able to define the term “dynamic content”.

Furthermore, we would like to remark that the idea of dividing a document in
a set of subcomponents was often used by the researchers. We believe that this
technique can be very helpful in facilitating the reuse of content and the support
for dynamic content. By composing a document as a set of subcomponents, it is
possible to manipulate the individual elements of the document. Therefore, we
state that this approach is the most preferable to provide support for dynamic con-
tent.

As a final remark in our analysis, we would like to emphasise that none of the
examined solutions takes the creation process of dynamic documents into consid-
eration. All of the discussed solutions seem very promising. However, if their

47

solution is not suited for regular end-users, they cannot be widely adopted. The
industry has also noticed the need for documents that are empowered with dy-
namic content. Microsoft for example has recently announced that their Office
solution will provide support for dynamic content by enabling the integration of
live-data25. Since Office is targeted towards regular end users, they will also be
forced to take the creation process of dynamic content into account.

From our analysis we can summarise the list of problems that prevent the pro-
gression of dynamic content in digital documents:

• There exists no general accepted definition for the term “dynamic content”;

• There exists no conceptual model of dynamic content;

• The creation process of dynamic content has received little or no attention
in previous research.

We believe that by solving these problems, we are able to stimulate the integration
of dynamic content and the creation of dynamic documents.

3.2 Review of Document Formats
In this section, we will review a set of existing document formats with regard to
their support for dynamic content. The review is based on the existing work of
Ahmed A. O. Tayeh [64]. Since he already analysed the formats, it is not our
intention to repeat his research. We perform an additional analysis with regard to
the support for dynamic content.

Note that we have excluded the following document formats from the original
review in [64]: Scribe, TNT, SGML, ODA and DIA Formats. The reason for this
choice is that they do not support any form of dynamic content.

3.2.1 LATEX
LATEX is a generalised set of macros built on top of TEX. TEX is both a program that
performs typesetting and a format that consists of a set of macros. The content and
the layout of LATEX documents are specified using the LATEX’s markup language.

25http://www.pcworld.com/article/2043856/how-microsoft-is-using-\
tolerance9999\emergencystretch3em\hfuzz.5\p@\vfuzz\
hfuzzlive-data-to-redefine-the-office-document.html last accessed
on 09/05/2014

48

Afterwards, it relies on TEX to format the output. This is handled by a TEX engine.

LATEX is built around the principle of separating content from the visual repres-
entation. This allows users to focus on both content and presentation in isolation.
Because the content of a LATEX-document can only contain plain text, it has to rely
on packages to provide additional functionalities. The following two packages are
examples that add a dynamic behaviour to the document’s output:

• Ocgtools26: This package seeks to create a dynamic behaviour by allowing
multiple layers of content. These layers enable users to mimic dynamic
behaviour by toggling the visibility of each layer. By doing so, it creates the
feeling that the document is able to change autonomously.

• Beamer27: This package also makes use of overlays to mimic a dynamic
behaviour. By using the Beamer’s overlay command, we are able to specify
how content much change over time. In reality, beamer only merges two
consecutive slides together in order to achieve the impression of changing
content.

Other examples can be found on the Internet28. These examples are created by us-
ing TEX, LATEX, ConTeXt29 and other programs like MetaPost30. However, we note
that the dynamic behaviour of the documents can only be viewed using Adobe
Reader.

Critical Analysis We have learned that LATEX documents rely on external pack-
ages to support extra functionalities such as dynamic content. A LATEX package is
a file or a collection of files that contain a number of LATEX commands and pro-
gramming in order to add styling features to the documents. As a result, we can
conclude that the creation of a package and subsequently creating dynamic con-
tent is not tailored towards the skills of most users.

From this review we can state that the document format provides support for dy-
namic content by means of external packages. However, the creation of such
packages is a complex task that is not suited for regular users.

26http://www.ctan.org/pkg/ocgtools last accessed on 04/02/2014
27https://bitbucket.org/rivanvx/beamer/wiki/Home last accessed on

04/02/2014
28http://www.tug.org/texshowcase/dynamics last accessed on 04/02/2014
29ConTeXt: software for typesetting high-quality documents, written using a macro language

http://wiki.contextgarden.net last accessed on 04/02/2014
30MetaPost: a picture drawing language that outputs PostScripts files. It is used to produce

figures for documents that can be embedded in LATEX https://www.tug.org/metapost.
html last accessed on 04/02/2014

49

http://www.ctan.org/pkg/ocgtools
https://bitbucket.org/rivanvx/beamer/wiki/Home
http://www.tug.org/texshowcase/dynamics
http://wiki.contextgarden.net
https://www.tug.org/metapost.html
https://www.tug.org/metapost.html

3.2.2 HyperText Markup Language
HyperText Markup Language (hereafter HTML) is a markup language for pub-
lishing hypertext on the World Wide Web. It is a format based on SGML31. HTML
documents rely on specific tags to structure text into heading, paragraphs, lists,
etc. A browser can process an HTML document to present its content. We present
a list of document formats that rely on the HTML format.

XHTML

The Extensible HyperText Markup Language (hereafter XHTML) is a document
type that reproduces, subsets and extends HTML. Rather than relying on SGML,
XHTML is based on XML (a strict subset of SGML). As a result the syntax of
XHTML documents are more restricted than regular HTML documents. Addi-
tionally, this makes them easier to use by XML-based user agents.

XHTML has two methods for specifying dynamic content. The first method con-
sists of adding specific tags. This was researched by Serge Abiteboul, Omar Ben-
jelloun and Tova Milo [1]. These tags will instruct the interpreter to include/re-
place sections from other XML documents in the current XHTML document. The
second method is to rely on JavaScript to add a dynamic behaviour. By using
JavaScript, we are able to modify the DOM-tree of the document in the browser.
Note that manipulations to the DOM-tree will only be visible in the browser. Af-
terwards, the document will remain unchanged.

HTML4

HTLM4 has extended HTML with functionalities such as: multimedia options,
scripting languages, style sheets, better printing facilities and better access for
disabled people.

Developers can make use of client-side scripting languages such as JavaScript
and server-side scripting languages such as: PHP, ASP.Net, Java, Coldfusion,
Perl, Ruby, Python, etc. to add dynamic behaviours to the presentation of their
document.

Additionally to scripting languages, users are also able to embed objects such as
Adobe Flash SWF files in their document. This is done by using the OBJECT tag.
These objects can be used to present dynamic content in the document. However,

31http://www.w3.org/MarkUp/SGML last accessed on 09/05/2014

50

http://www.w3.org/MarkUp/SGML

these objects can bring along some disadvantages. For example, Adobe Flash Ob-
jects rely on a plugin mechanism. As a result, the browser must rely on the Adobe
Flash plugin to present Adobe Flash Objects.

HTML5

The goal of HTML5 is to become an application platform for the web by making
use of HTML, CSS and JavaScript. In contrast with HTML4, HTML5 is designed
to avoid external plugins for integrating content.

HTML5 also comes along with a set of new tag elements such as <canvas>
(used to draw graphics using scripting languages such as JavaScript), <video>,
<audio>, etc. Before HTML5, users had to rely on either Flash or JavaScript
hacks to integrate complex forms of content.

HTML5 is already a big leap forward when compared to HTML4. However, it
is still not possible to specify a range of dynamic content by using the HTML5
specifications. Most of the time, developers still rely on JavaScript to add a dy-
namic behaviour.

Critical Analysis We have seen a set of markup languages for specifying con-
tent for the World Wide Web. The specifications of these languages allow us to
create documents with a range of content.

However, dynamic behaviour is mainly achieved by using scripting languages
such as JavaScript. We believe that the combination of HTML, JavaScript and
CSS can become helpful in isolating the different phases of document editing
such as determining the content and specifying the dynamic behaviour of the con-
tent and its structure. Nevertheless, by relying on scripting languages, the level of
difficulty to specify dynamic content is highly increased.

3.2.3 Portable Document Format (PDF)
Portable Document Format (hereafter PDF) is a file format created by Adobe Sys-
tems with the intention to be easily exchangeable. Since 2008, the format was
released as an open standard32. PDF documents encapsulate the description of a
fixed layout document. PDF documents can contain one or more of the following
content types: text, fonts, images and 2D vector graphics.

32http://www.adobe.com/devnet/pdf/pdf_reference.html last accessed on
25/04/2014

51

http://www.adobe.com/devnet/pdf/pdf_reference.html

Notwithstanding the open standard, Adobe has also added support for some other
technologies such as Adobe XML Forms Architecture33 and Adobe JavaScript34.
These tools enable PDF documents that contain JavaScript to add dynamic beha-
viour. However, by introducing JavaScript as a requirement for developing these
documents, they become no longer suited for regular users.

The tool suite35 for developing these documents consists of: a JavaScript editor, a
console and a debugger. The JavaScript extension of Adobe has support for mul-
timedia, web services, improved printing control, controlling layers, 3D support
and more36.

We would like to point out that the presentation of PDF documents highly de-
pends on the PDF-viewer in which they are viewed. Adobe Reader37 is one of the
PDF-viewers that has support for both 3D objects as well as the ability to execute
JavaScript. Preview38on the other hand, does not provide support for such content.

Adobe also created a software package named Adobe LiveCycle Enterprise39.
This application is an enterprise document and form platform with the following
key capabilities40:

• Fill in, sign, and save PDF Forms;

• Analyse form data with 2D barcodes that are updated dynamically as data
is entered;

• Allow digital signatures as an authentication tool for PDF documents and
forms;

33https://partners.adobe.com/public/developer/en/xml/xfa_spec_
3_3.pdf last accessed on 25/04/2014

34http://www.adobe.com/devnet/acrobat/javascript.html last accessed on
25/04/2014

35http://livedocs.adobe.com/acrobat_sdk/10/Acrobat10_HTMLHelp/
wwhelp/wwhimpl/common/html/wwhelp.htm?context=Acrobat10_SDK_
HTMLHelp&file=JS_Dev_Overview.71.1.html las accessed on 25/04/2014

36http://livedocs.adobe.com/acrobat_sdk/10/Acrobat10_HTMLHelp/
wwhelp/wwhimpl/common/html/wwhelp.htm?context=Acrobat10_SDK_
HTMLHelp&file=JS_Dev_Overview.71.1.html last accessed on 25/04/2014

37https://get.adobe.com/nl/reader last accessed on 25/04/2015
38http://www.apple.com/osx/whats-new/features.html last accessed on

25/04/2014
39http://www.adobe.com/be_en/products/livecycle.html last accessed on

25/04/2014
40http://www.adobe.com/go/lc_readerextensions last accessed on 25/04/2014

52

https://partners.adobe.com/public/developer/en/xml/xfa_spec_3_3.pdf
https://partners.adobe.com/public/developer/en/xml/xfa_spec_3_3.pdf
http://www.adobe.com/devnet/acrobat/javascript.html
http://livedocs.adobe.com/acrobat_sdk/10/Acrobat10_HTMLHelp/wwhelp/wwhimpl/common/html/wwhelp.htm?context=Acrobat10_SDK_HTMLHelp&file=JS_Dev_Overview.71.1.html
http://livedocs.adobe.com/acrobat_sdk/10/Acrobat10_HTMLHelp/wwhelp/wwhimpl/common/html/wwhelp.htm?context=Acrobat10_SDK_HTMLHelp&file=JS_Dev_Overview.71.1.html
http://livedocs.adobe.com/acrobat_sdk/10/Acrobat10_HTMLHelp/wwhelp/wwhimpl/common/html/wwhelp.htm?context=Acrobat10_SDK_HTMLHelp&file=JS_Dev_Overview.71.1.html
http://livedocs.adobe.com/acrobat_sdk/10/Acrobat10_HTMLHelp/wwhelp/wwhimpl/common/html/wwhelp.htm?context=Acrobat10_SDK_HTMLHelp&file=JS_Dev_Overview.71.1.html
http://livedocs.adobe.com/acrobat_sdk/10/Acrobat10_HTMLHelp/wwhelp/wwhimpl/common/html/wwhelp.htm?context=Acrobat10_SDK_HTMLHelp&file=JS_Dev_Overview.71.1.html
http://livedocs.adobe.com/acrobat_sdk/10/Acrobat10_HTMLHelp/wwhelp/wwhimpl/common/html/wwhelp.htm?context=Acrobat10_SDK_HTMLHelp&file=JS_Dev_Overview.71.1.html
https://get.adobe.com/nl/reader
http://www.apple.com/osx/whats-new/features.html
http://www.adobe.com/be_en/products/livecycle.html
http://www.adobe.com/go/lc_readerextensions

• Enable offline interaction and submission of forms on reconnection;

• Exchange data with back-end systems by making use of web services.

Despite the functionalities of the aforementioned software, the lightweight user
interface of Adobe LiveCycle does not enable regular users to create PDF docu-
ments with dynamic content in a user friendly manner.

Critical Analysis From the original specifications of the PDF format, we can
derive that there is no support for integrating dynamic content. However, Adobe
has empowered their PDF documents with the possibility to include XML Forms
and JavaScript.

We can compare this approach with the one of HTML. Both formats rely on an
external scripting language to adapt their content. However, by imposing the re-
quirement to write scripts in JavaScript, we introduce a new form of complexity.
Despite the efforts made by Adobe with the LiveCycle application, we found it
too complex for regular users to use.

3.2.4 Extensive Markup Language
Extensive Markup Language (hereafter XML) is a markup language. XML doc-
uments are created by a set of rules which are developed to be easily readable
for both human beings and machines. Since they are simple, general and easily
usable, they are used throughout many domains.

Unfortunately, XML on its own has no native mechanism to integrate dynamic
content. However, as discussed in Section 3.2.2, attempts have been made for cre-
ating Active XML documents. Active XML documents are XML documents that
contain embedded calls to web services. The result of these web service calls are
then used to replace content in the document. A web service call embedded in an
XML document is presented in Figure 3.8.

53

Figure 3.8: The result of invoking getEvents@TimeOut.com [1]

Critical Analysis We have seen that XML documents on their own do not
have default support for integrating dynamic content. However, researchers have
provided a solution where it is possible to integrate web service calls into the doc-
ument. This approach enables the document to change when it is processed by a
particular XML agent.

We believe that the integration of web service calls is a step in specifying other
types of dynamic content. Nevertheless, we would have liked to have seen some
additional features such as adaptation of content with regard to the context.

3.2.5 OpenDocument
OpenDocument Format (hereafter ODF) is an XML-based file format. The format
was created with the intention to be an open XML-based file format for specifying
office documents such as: spreadsheets, charts, presentations, word processing.

Since the OpenDocument format relies on XML, it does not have a native mech-
anism to support dynamic content. However, there exist document editors such
as OpenOffice that provide support for adding extra functionalities. An example
of such an approach is the one taken by Carles Pina Estany41. He has exten-
ded an ODF document by using the Python programming language to create real
time slides. His current implementation provides support for data coming from
MySQL and Python code. The data embedded in the presentation is automatic-
ally updated every X seconds. The following figure presents how these different
components work together.

41http://goo.gl/wYlzcw last accessed on 09/05/2014

54

http://goo.gl/wYlzcw

Figure 3.9: Architecture: OpenOffice combined with Python-Uno and MySQL to
create real-time slides

Critical Analysis As with the XML format, we can remark that ODF also does
not support the specification of dynamic content. We can also conclude that, if
someone wants to extend the format with extra functionalities, they must create
an extension for the editor. Even more, we have seen that the integration of extra
functionalities requires expertise in a programming language. As a result, this
approach excludes regular people that do not own such a skill.

3.2.6 DocBook
DocBook is a general purpose XML schema intended to create technical docu-
mentation. The specifications of DocBook allow us to independently create doc-
uments in a variety of forms in a presentation-neutral way. This means that one
DocBook document can be converted to multiple output formats such as HTML,
XHTML, EPUB, PDF, etc.

Since the DocBook schema is based on the XML language, it does not obtain
a native mechanism to specify dynamic content. However, there exists a possibil-
ity to change the content of a DocBook at the server-side. By making use of the
<xi:include> element, it is possible to include a piece of content at a certain
location in the document. Common practice is to do this at the server-side with a
specific script.

Critical Analysis Unlike the other formats, this document format is able to ad-
apt itself towards multiple output formats. We can see this feature as a dynamic
behaviour of the document format.

55

Despite the possibility of using the include tag, it is not possible to change
the content of the document on the fly. Since the document format uses a schema
based on XML, it is still not possible to specify dynamic content.

3.2.7 Office Open XML
Office Open XML (hereinafter OOXML) is an XML-based file format capable
of representing word-processing documents, presentations and spreadsheets. For
each type of document there is a specific markup language such as: Wordpro-
cessingML, PresentationML and SpreadsheetML42.

Since OOXML is based on XML, it also lacks the capability of supporting dy-
namic content. The only possibility to create dynamic content is to develop a C#
script. With a script we are able to fetch information from a remote resource and
update the document on the fly.

Critical Analysis Again, we notice that this format relies on XML. Therefore,
the document format has no default support for specifying dynamic content. How-
ever, we have seen that it is possible to make the document dynamic by making
use of a programming language. Again, we can conclude that this approach is not
applicable to regular users with no programming experience.

3.2.8 Electronic Publication (EPUB)
EPUB is the abbreviation for Electronic PUBlication. EPUB is an open e-book
format that was developed by the International Digital Publishing Forum. The
main goal of the EPUB format was to support reflowable content. Reflowable
content is content that adapts itself to the device on which it is read. However,
most of the reading devices do not use this advantage or at least not to its full
potential. The majority of e-readers only adapt the font size of the letters.

EPUB documents are composed of different files. They are a collection of: XML,
HTML, CSS and SVG files. As a result, EPUB documents have the same express-
ive power to specify dynamic content as the files from which they are composed
of.

The latest version of EPUB is EPUB3. One of the most advanced features of
42http://www.ecma-international.org/news/TC45_current_work/

OpenXML%20White%20Paper.pdf last accessed on 09/05/2014

56

EPUB3 is its ability to provide interactivity and scripting. These functionalit-
ies are achieved by using the capabilities of HTML5. Another primary design
consideration of the document format was to support a dynamic adaptive layout.
Currently the layout adaptation is achieved by using EPUB style sheets, which
are a combination of CSS2.1 and some features of CSS3. More information on
the EPUB3 specifications can be found on the website of the International Digital
Publishing Form43.

Despite the promising characteristics of the EPUB standard, the format is not
yet widely adopted. As a result, few systems support this document format. A
format that currently provides the best support towards this standard is the iBook
format developed by Apple, see Section 3.2.9.

Critical Analysis We have been introduced to a new standard for e-books. This
standard makes use of HTML5, XML, CSS and JavaScript to specify the content.
As a result, this standard is also limited to the restrictions of HTML5, XML, CSS
and JavaScript.

Again, we can conclude that the document format does not provide default sup-
port for dynamic content. We will still require JavaScript in combination with the
style sheets to add dynamic behaviour to the document.

3.2.9 iBook
The iBook format is a format that is exclusively used by Apple in their iBook ap-
plication. Actually, the iBook format is mostly EPUB because it uses the EPUB
file format. Therefore it shares the same characteristic concerning the support of
dynamic content. Additionally, the iBook format, and especially the new iBook
2.0 format, adds CSS extensions that do not conform to the EPUB3 standard.
Consequently, it is possible that these documents will not be supported by other
EPUB reading systems than iBooks. The iBooks Author application44 is currently
the only application that allows users to create iBook 2.0 documents. The applica-
tion makes use of widgets to enable authors to create dynamic content, see Figure
3.10. The available widgets of iBooks Author are the following: an image gallery,
a media element, an interactive review object, a Keynote presentation, an inter-
active image, a 3D object, a scrolling sidebar, a pop-over or an HTML Widget.
These interactive widgets are provided by the combined power of HTML5 and
JavaScript which allow us to add powerful functionalities to the document.

43http://idpf.org/epub last accessed on 05/02/2014
44http://www.apple.com/ibooks-author/ last accessed on 05/02/2014

57

http://idpf.org/epub
http://www.apple.com/ibooks-author/

Figure 3.10: iBooks Author: Available Widgets

Critical Analysis The iBook format is built on top of the EPUB standard. There-
fore, it is possible to use the functionalities provided by HTLM5, CSS, XML and
JavaScript. It is interesting to observe that iBooks Author, the editor for iBook
documents, has explicit support for creating dynamic content. By proposing a
set of available widgets, the user is able to create a range of dynamic content.
We believe that this feature is a major advantage compared to the other solutions.
Document editors such as Open Office have to rely on some kind of hack for in-
tegrating dynamic content in a document, making it a very difficult task for regular
users to create dynamic content.

We concur with the approach of iBooks Author. It may be that the document
format relies on other technologies such as JavaScript to enable dynamic content.
However, since these techniques are not suited for regular end users, the document
editor can offer assistance in the process of approaching these technologies.

3.2.10 Conclusion
In the previous section we have analysed a set of document formats, Table 3.1
summarises our findings. Note that the third column indicates the need for other
technologies to enable dynamic content. From our analysis we can conclude that
there exists no document format that provides full support (denoted by a 3) for

58

the integration of dynamic content. In fact, the majority of the document formats
do not have a way to specify dynamic content (denoted by a 7). Indeed, we have
noticed that most of these document formats rely on other technologies (mainly
a programming language), to add support for dynamic content. As a result, the
difference between a document author and a programmer has become blurred.

Document Format Default Support Other Technology
LaTeX 7 3
XHTML 7 3
HTML 4 7 3
HTML5 (3) 3
PDF 7 3
XML (3) 3
OpenDocument 7 3
DocBook 7 3
OOXML 7 3
EPUB (3) 3
iBook (3) 3

Table 3.1: Summary of analysed documents formats

We can conclude that the creation of documents with dynamic content implies a
certain form of complexity that is not suited towards regular users. Fortunately,
we are not alone in noticing this problem. iBooks Author, the editor for the iBooks
format, facilitates the process of creating dynamic content by means of widgets.
Widgets are off the shelf components that provide a certain dynamic behaviour.
We believe that their main goal is to facilitate the transition to complex technolo-
gies such as JavaScript, style sheets, etc. for regular end-users.

From this analysis we have learned the following things:

• The majority of document formats do not support dynamic content by de-
fault;

• Adding dynamic behaviour to documents is mainly accomplished by using
other technologies such as scripting languages;

• The line between document authors and programmers is becoming blurred;

• Document editors must evolve in order to leverage the complexity intro-
duced by the integration of dynamic content.

59

We believe that it will take some time before document formats will adopt the
integration of dynamic content. However, due to our analysis we came to the con-
clusion that document editors will play an important role for integrating dynamic
content in digital documents. We think that the majority of document editors will
have to reconsider their approach in order to comply to the needs for integrating
dynamic content. As a result, this thesis will focus on the creation of a document
editor that should be tailored to regular end-users for including dynamic content
in digital documents. The following two chapters will discuss the creation our
conceptual model of dynamic content and de development of our document ed-
itor.

60

Chapter 4

Dynamic Document Scenarios

We start this chapter by presenting several scenarios where digital documents are
empowered with dynamic content. Afterwards, we categorise these scenarios with
respect to their dynamic behaviour. This chapter will also discuss the develop-
ment of three scenarios along with an introduction to the Resource-Selector-Link
metamodel.

4.1 Scenarios
In order to compose a definition that captures the meaning, the use, the function
and the essence of the term “dynamic content”, we judge it necessary to think
about possible scenarios where digital documents can profit from the notion of
dynamic content. The following list presents ten scenarios, each with their own
insight on dynamic content:

Active Storytelling
Before writing, storytelling was performed orally as means of entertain-
ment, education, etc. These storytellings could change on the fly depending
on the speaker. Since books are primarily static, they lose some of these
advantages. Therefore, we believe books can benefit from dynamic content.
Consider a book where the storyline changes according to the current con-
text (temperature, user, environment, etc.). Different story lines could be
present in one book.

The details of this scenario are described in the Appendix, see Section A.1.

Dynamic Restaurant Menu
Most prices of ingredients change according to the season. Additionally,
when the weather is nice outside, more guests will want to eat outdoors.

61

We believe that restaurant owners can benefit from menus that dynamically
change. Consider a menu where the prices change according to the current
season. This way, restaurant owners will never lose money when ingredi-
ents get more expensive. On the other hand, guests will pay a fair price
for their product. Additionally, the price could also adapt according to the
current climate and whether the guests are eating outside or indoors.

The details of this scenario are described in the Appendix, see Section A.2.

Adaptive Tour Guide
Tour guides have the property to change frequently. Travel agencies of-
ten change their prices according to the current season, amount of book-
ings, weather, etc. However, these changes are not visible in traditional tour
guides. We believe that by empowering tour guides with dynamic content
these documents could become more useful. Tour guides could for example
be autonomously linked to an external source in order to update prices, re-
commendation of destinations, etc.

The details of this scenario are described in the Appendix, see Section A.3.

Smart Content
Researchers often distribute documents to many people. However, not all
parts of the document are relevant to all of the readers. We believe that doc-
uments could benefit from knowing who is reading them and where. We
think that dynamic content could be used to intelligently adapt parts of the
document in order to meet the requirements of the reader and the author.

The details of this scenario are described in the Appendix, see Section A.4.

Finger Reader
When a child starts reading they use their fingers to “follow” the sentences.
In most cases when a reading device with touch input is touched, an action
is performed. Consider that we have a joystick at hand. This joystick could
take over the task of the finger and show changes in the document as the
joystick “moves” over the content of the document.

The details of this scenario are described in the Appendix, see Section A.5.

Fluid Reading
Documents are read on different locations. In some cases it may be prefer-
able that the content of the document is audio instead of text. Consider the
case that you are in a car and you were reading a document. Dynamic parts

62

of the document could then adapt themselves to create a better cognitive im-
pact by providing an alternative presentation of the content such as audio.

The details of this scenario are described in the Appendix, see Section A.6.

Fluid Font
When we are working with documents there is always a certain distance
between us and the document. In some cases a document can be far away
making it harder to read it. On the other hand, we can look very close to a
document in order to see more detail. We believe that a reader could benefit
from a document that adapts itself to the distance between the user and the
document. Consider a document where the font of the document increases
as the reader steps back or a document that autonomously locks itself when
the reader leaves the room.

The details of this scenario are described in the Appendix, see Section A.7.

Interactive Vocabulary
Learning a new language can become interactive when using dynamic con-
tent. Instead of having a static document, text could change according to
user input. Consider a vocabulary where we have two lists, a list with words
in a foreign language and a list of words in our mother tongue. By playing
with the light intensity or the movements of the reading device, we could
change the content of the document.

The details of this scenario are described in the Appendix, see Section A.8.

Live Catalogue
Most of the catalogues present a list of items. However, changes to these
physical items are not reflected in the catalogues. As a result, catalogues
have to be manually changed and reprinted. This can be a tedious process.
We believe that catalogues can benefit from the notion of dynamic content.
Instead of replacing the full catalogue, the document could use dynamic
content in order to change itself to the latest updates.

The details of this scenario are described in the Appendix, see Section A.9.

Live Travel Guide
Paper travel guides contain a lot of information about a specific area. Most
of the time, people have to browse through these documents in order to find
the appropriate information. We believe that travel guides can benefit from
dynamic content by showing the appropriate information at the right time.

63

Consider a walk through the city, the content that is displayed could depend
on the current location. Another example could be the adaption of the point
of interests by using the current time, date, temperature, etc.

The details of this scenario are described in the Appendix, see Section A.10.

Since these scenarios are quite diverse, we have chosen to develop a categorisation
that classifies the scenarios according to their means of adaption.

4.1.1 Categorisation of Scenarios
Due to the diversity of our scenarios, we deem it helpful to have a classification
system that allows researchers to group and compare their developed scenarios or
prototypes according to a number of relevant factors.

In essence, dynamic content adapts the document in some kind of way. There-
fore, our classification system is orientated towards content adaptation. Since
there already exists a general classification system for content adaptation we were
able to reuse parts of that.

Mohd Farhan, Jemal Abawajy, et al. propose in [22] a classification for content
adaptation system. Their classification consists of the following six components:

• Locality: Where to perform the content adaptation (centralised or distrib-
uted).

• Strategy: Who should perform the content adaptation (underlying system,
application, system in combination with the application).

• Mechanism: What should be adapted.

• Purpose: Why should it be adapted (general purpose or content-type-specific).

• Context: To what should it be adapting.

• Method: How to adapt (transcoding, content layout-rearrangement, distilla-
tion, etc.).

As a basis for our categorisation, we reused the following elements: Locality,
Mechanism, Context and Method. The reasons for the aforementioned compon-
ents are explained in the next paragraphs.

For the first component, locality, the reason is quite obvious. For context-aware

64

documents, adaptation is mainly performed on the client side. The client is re-
sponsible for adapting the view of the document. Additionally for some context-
aware documents the adaptation may already be performed at the server-side. In
this case, the server that delivers the document will be responsible for the adapta-
tion. When we look at the second component, strategy, we see that it emphasises
on the role of performing the actual adaptation. Because all of the purposed pro-
totypes are specific applications that are system-independent, we did not take this
factor into account. To our understanding, the majority of applications that per-
form content adaptation will only rely on the underlying system as platform to
operate.

Another important factor besides locality is the mechanism of adaptation. Every
context-aware document must define which parts of the document should adapt
and how this is realised. This component becomes of a great interest during the
development phase of the document. It allows developers to anticipate on the dy-
namic structure of the document. Furthermore, it contains information on how
adaptive parts shall influence the internals of the document. When we review the
purpose-component of the aforementioned categorisation, we have two choices.
Either the adaptation is a general purpose adaptation or it is content-type-specific.
Because dynamic content can have many purposes, we could deduce that there
exists no general purpose to perform content adaptation. In fact, one could state
that it does not exist because there is no general standard for adapting documents.
The potential adaptation that could be performed on the content of a document is
in a sense so broad, that it is nearly impossible to grasp it with a categorisation
component.

The most important classification component is without saying the context itself.
Rather than including the context component as a whole, it is further subdivided
into four parts, namely: Target for adaptation, Input, Environment Conditions and
Monitoring Entity. The idea behind subdividing the context into these four parts
was inspired by two other papers. The first paper [20] proposes design guidelines
for adaptive multimodal mobile input solutions and was written by Bruno Dumas,
Marı́a Solórzano and Beat Signer. The second paper [66] written by Angela Sasse
and Chris Johnson, introduces the notion of plasticity as a new property for in-
teractive systems. From the first paper, we reused the part of their categorisation
on context sensitive automative input adaptation. The second paper served as an
insight on the design space of content adaptation. By making this division, we
were able to categorise our prototypes with a more specialised classification.

First of all, it is important to identify for whom or what the adaptation is de-
signed for. This is called the target for adaptation. The target could either be

65

the adaptation towards a user(s), the environment or the physical characteristics
of the system. Besides the target of adaptation, we can also classify a content
adaptation system by the way the adaptation is initiated on a lower level. The
input-component is responsible for describing these low level input channel(s).
Of course, besides the low level input we need to have a higher level of context-
description which represents the semantics gained through low level inputs. This
is where the environmental conditions come in.

Environmental conditions are a description of the resulting fusion of the differ-
ent low level input channels. In order to make the link between the environmental
conditions and the low level input channels, there is a need for a third compon-
ent, namely, the monitoring entity. The monitoring entity component acts as an
adapter to connect the low level input channels to the corresponding environment
conditions.

The last component that was re-used is the method component. This component
describes the manner in which the adaptation is achieved. Again this component
is subdivided into three other components. The three components in which the
method component is divided are the following: Means of Adaptation, Output In-
fluence and Adaptation Policy. The how-property of a content adaptation system
is quite essential, therefore it deserves an extensive examination.

The means of adaptation allow us to identify the software components which are
involved in the adaptation process. As described by the writers of [66], these
software components are typically: the system task model, the way of rendering
the view and the way the systems provides help during a certain task. In our
scenarios the most frequently used software-component tends to be the system
rendering. This software component visually changes the structure and/or content
of the document. However, in some cases where the focus lies more on making
the document satisfy the plasticity property [66], the software component may
also be the system-task model.

When we look at the adaptation policy, we see that there are two inference mech-
anisms, namely, a rule-based approach and a heuristic algorithm. With a rule-
based mechanism, we eliminate the need for user-feedback during the adaptation-
process. According to us, this approach eases the development process which
makes rapid prototyping possible. As a last subcomponent of the method com-
ponent, we have the output-influence component. The output-influence compon-
ent reflects the output of the performed adaptation.

66

Categorisation

Figure 4.1 presents the categorisation of our prototypes.

Figure 4.1: Categorisation of dynamic document scenarios

67

4.2 Prototypes

4.2.1 RSL Metamodel
Preface

The term “hypermedia” was coined in 1965 by Ted Nelson [44] along with the
term “hyperlink”. Still, the origins of hypermedia systems can be traced back
even further to the visionary Vannevar Bush. In 1945, Vannevar Bush wrote the
essay: “As We May Think”[12]. In this paper, Bush describes the problem of the
information explosion with regard to scientific research. In his paper, he presents
the concept of the “Memex”, an abbreviation for Memory Extender. The Memex
is a hypothetical microfilm based system for personal information storage and
retrieval. This machine allows users to store their data (books, records and com-
munication) and provides a mechanism to consult this data with exceeding speed
and flexibility. The interesting part of the Memex is the matter of selection. In-
stead of adopting the mechanisms used by libraries (indexing), the Memex allows
selection by association. The reason behind this approach is that the human mind
does not operate by indexing but rather by creating associations between data i.e.
creating a web of associative trails. Of course in our human brain, trails that are
not frequently followed are prone to fade away. This problem could be solved by
making use of the Memex as a supplement to the user’s memory.

Throughout the years, various types of hypermedia systems (adaptive hyperme-
dia systems [11], physical hypermedia systems [26], etc.) and models (adapt-
ive hypermedia application model [18], Dexter hypertext reference model [27],
etc.) have arisen. All these models and hypermedia systems were developed with
Bush’s underlying model of information spaces as a collection of resources that
are linked with each other. Even the WWW (World Wide Web), the world’s most
famous hypermedia system, finds its origins back to the Memex.

However, as pointed out by the authors of “As We May Link: A General Metamodel
for Hypermedia System” [58] there is a lack of a conceptual model that would en-
courage the development of a wide range of hypermedia systems. As quoted from
their work:

“a study of the hypermedia literature reveals a lack of clear, con-
ceptual models that are general and flexible enough to support the de-
velopment of a wide range of hypermedia systems and applications.”
[58]

Fortunately, the authors of this paper propose a solution to this problem. Their
goal was to produce a general platform, flexible enough for the development of

68

both future and current hypermedia systems. This platform was developed by
the principles of metamodel-driven engineering and extensibility. The core of the
proposed metamodel can be divided into three parts, namely: resources, selectors
and links resulting in the name “Resource-Selector-Link (RSL) metamodel”. Es-
sentially the RSL metamodel is based around the concept of linking resources as
envisioned by Vannevar Bush and his concept of the Memex.

The RSL metamodel has also proven itself, as it has been used as basis for a
myriad of projects. The iPaper framework [46] is such a project. The iPaper
framework allowed the creation of PaperPoint [59] (a paper-based presentation
and interactive paper prototyping tool). Furthermore, the RSL metamodel en-
abled the creation of a cross-media information platform, named, iServer [57].
The iServer platform is able to support different categories of hypermedia sys-
tems due to the generality and extensibility of the RSL metamodel.

Three of our scenarios were developed using the distributed iServer45. Since the
iServer is a cross-media information platform based on the RSL metamodel we
will discuss the components of the RSL metamodel in the following sections. In
order to describe each component, we relied on the work of Beat Signer and Moira
C. Norrie performed in [58].

Link Functionality

In this section, the linking functionality of the RSL metamodel is explained. It is
important to note that the metamodel is specified using the semantic of the object-
oriented data model OM. The details of OM can be found in [45]. Essentially,
OM provides constructs for both the representation of entities as their relation-
ships. Furthermore, OM provides some distinguishing features such as typing and
classification. On the one hand, typing deals with the representation of the entities
as objects (i.e attributes and methods) and supporting inheritance. On the other
hand, classification will present the semantic roles for the entities.

With OM we are also able to define collections for semantic grouping of entit-
ies. This allows us to define constraints among collections. This means that we
have the possibility to constrain the collection in terms of the membership type.
As the OM model defines a full operation model over objects, collection and rela-
tionships, it also provides constructs for their definition. These expressive features
allow us to capture the semantics of the application domain by using a simple set
of constructs. An important advantage of this model is the direct representation

45This iServer implementation is not the original implementation presented in [57]. However,
it has been developed with the same conceptual model underneath.

69

Figure 4.2: Core Link Metamodel [45]

and manipulation of associations which is ideal for link management in hyperme-
dia systems.

The schema of the core link functionality is presented in Figure 4.2. Note that
the shaded rectangular shapes represent the classifications i.e denote the collec-
tion of objects, whereas the unshaded part of the shape presents the type of the
associated shaded part. Thus, resources in the model are represented by objects
of the type resource which are grouped into the Resources collection. In
order to present the associations between entities of two collections we make use
of shaded oval shapes.

The most general concept of the RSL metamodel is the notion of an entity.
Each entity can have properties. Properties are assigned to entities in the form
of key-value pairs. All the elements used in the RSL metamodel inherit from
this type. Furthermore we can distinguish three main types of entities, namely:
resource, selector and link. The resource subtype is used to repres-
ent an entire information unit. Since the resources of an hypermedia system can
vary (video, text, audio, etc.), a plugin mechanism is used to provide a specific
extension of a resource. It may also occur that we want to create a link to a spe-
cific part of a resource. The RSL metamodel provides us with the selector
subtype to address a particular part of a resource. When we look at the cardinality
defined at the source point of the RefersTo association, we notice that a selector
is only associated with one resource. On the other hand, it is perfectly possible
that a resource can have multiple selectors. As with the entity type, support
for selectors for different resource is handled by a plugin mechanism. Of course
we want to create links between entities, this is done by the link type. When we
look at the model, we notice that a link can have multiple sources and multiple tar-
gets and should at least have one source and one target (placeholders can be used

70

when the source or target are not available at link creation time). This restriction
prevents the system of being in an inconsistent state due to dangling links. The
division between sources and targets is required to determine the direction of the
link. Nevertheless, sources and targets are both subtypes of the entity type.
This results in a flexibility to create links of which targets or sources can be of any
subtype of an entity, even other link instances.

Notice that an entity may have zero or more context resolvers. Context resolvers
are used to determine the visibility of the entity. If a context resolver is executed,
it will return a boolean value. When all the context resolvers of an entity return
positive, then the entity is visible. A benefit of introducing the concept of context-
dependent information at the core of our model is that we are able to specify
the visibility of resources, selectors and links separately from each other. Espe-
cially adaptive hypermedia systems will benefit from this feature. Furthermore,
all systems that implement this model will have to provide a context-resolver for
handling access rights. This part is presented in the next section.

User Model

The personalisation of links and resources requires the notion of data ownership.
Furthermore, when sharing entities with others, we need to define access rights.
The RSL metamodel supports both personalisation and access rights at the entity
level. This enables us to define permissions for both links, resources and selectors.
A prerequisite for this support is that the metamodel has an explicit notion of a
user. Figure 4.3 presents this user management component in the RSL metamodel.

Figure 4.3: User management [45]

71

A user can either be an individual or a group and a group can exist out of users
i.e individuals and groups. Each entity must have a creator specified which is
always one individual. Furthermore, flexible access rights can be accomplished
by two types of associations namely, AccessibleTo and InaccessibleTo.
Access to the specific entities are granted to the individuals and groups which
are in the subset of the individuals associated by AccessibleTo minus the
individuals associated by InaccessibleTo. It is important to note that there is
a constraint that prioritises individual access rights above the access rights defined
for a group. Therefore, it is not by default that when a group retains access rights
to an entity, every individual or other group within this group will retain access
to this entity. Instead the individual access rights overwrite the group’s access
rights. In other words, these associations enable complex access rights on entities
for both individuals and groups.

Layers

We have already seen that selectors allow us to address a particular part of a re-
source. But then we can ask ourselves the question “How do we deal with a
resource of which its selectors overlap with each other?”. The RSL metamodel
introduces the notion of “layers” to solve this problem. This concept is presented
in Figure 4.4.

Figure 4.4: Layers [45]

A selector is associated with exactly one layer and overlapping selectors cannot
have the same associated layer. When a selector returns multiple links by activat-
ing multiple overlapping selectors of the resource, then by definition, the upper-

72

most layer will be selected. In order to know which layer is the uppermost, the
collection of layers must be ordered (notice the ’|’ at the |HasLayers| asso-
ciation). Note that we also have the possibility to activate or deactivate certain
layers and that the resource determines to which possible layers his selectors can
be associated with. This flexibility combined with the context resolvers allows us
to create dynamic selectors and layers that are context-dependent.

Structure

We have already been introduced to the concept of links. In the RSL metamodel,
links are treated as first class objects. Additionally, links also allow us to describe
the navigational relationship and structural relationships between resources. This
implies that both navigation and the structural components are on the same level as
the resources. As presented in Figure 4.5, the collection of links is partitioned into
navigational links and structural links. Because the structural
link is a sub-collection of the regular links, we are able to define a structure on
every entity-subtype (e.g. resources, links and selectors).

Figure 4.5: Navigational and structural links [45]

Because parts of structures may want to be reused by other structures, the RSL
metamodel uses the Structures collection that is responsible for handling the
structures. A structure in this collection is associated with its structural links
through the HasElement association. As presented in Figure 4.5, structural
links have an ordered |HasChild| association. This association is necessary
when for example we want to model a book. A book may have different chapters
which in turn may have different sections. The chapters and the sections combined
together, determine the full structure of the book. Therefore, the |HasChild|

73

association together with the Structures collection provide the necessary in-
formation on what elements belong to a structure and what their structural rela-
tionship is.

By introducing these structural links we are able to specify the structural re-
lationships of different resources i.e structure over data. As we have seen in
our example about the book this is required to specify the relationships between
chapters, sections, paragraphs, etc. The systems that use the RSL metamodel will
be responsible for defining domain-specific structures. An example of such a sys-
tem is the one presented in the masters thesis of Ahmed A. O. Tayeh [64]. In his
thesis, he presents the Fluid cross-Media Document Format (FCMD) metamodel
that is also based on the RSL metamodel. FCMD is a metamodel that presents
how the RSL metamodel can be extended to form a general metamodel for all
document models. Furthermore, it describes how it deals with the logical struc-
ture (i.e organisation of logical objects) and the physical structure (i.e physical
representation) of documents.

We have also observed that Tayeh’s master thesis justifies the need for this thesis.
Tayeh states that in order for ubiquitous computing to succeed, the default logical
objects such as images, text blocks, video, etc. are not enough. Furthermore, the
author wrote the following statement:

“The document metaphor has to be extended to apply to dynamic
objects derived from the enclosing environment, for example, inform-
ation obtained from a database or information from sensors (e.g. tem-
perature or accelerometer data)” [64]

Again the contribution of this thesis is noticeable. Our extension over the docu-
ment model will enable such dynamic objects. We refer to [64] for more inform-
ation on the FCMD metamodel and its implementation.

Besides putting structures on resources, we can also have structures over struc-
tures. This allows us to superimpose any structure on top of existing structural
components. This is possible because each structural link in a structure defines a
substructure that contains the structural links of its source elements and its chil-
dren (this happens recursively). Eventually, we are also able to put structures over
links. These structures would for example enable us to create structural links on
navigational links. This feature allows us to modify the structure of navigational
links, and therefore changing the trail in which resources are visited.

74

4.2.2 Objectives of the Prototypes
A first and main objective is to understand how dynamic content can be seen con-
ceptually in order to provide a technical implementation. Additionally, we believe
that by developing some of our scenarios, we are able to make a better judgement
of what the definition of dynamic content should entail.

A second objective is to investigate the current state of the RSL metamodel. Since
the developed prototypes rely on the RSL metamodel, we can conclude that it
stands up to the requirements of dynamic content. Afterwards, we can study how
we must extend the RSL metamodel in order to provide support for a wide range
of dynamic content categories.

4.2.3 Infrastructure
The developed applications are targeted for the Android operating system. We
have chosen to develop a mobile application for each scenario since most mobile
devices are equipped with a range of sensors that can easily be managed by the
provided Android SDK. Table 4.1 presents an overview of the prototype’s appar-
atus.

Table 4.1: Tools and Platform
Integrated Development Environment Android studio v0.4.0
Programming Language Java
OS Developing Machine OS X version 10.9
Testing Device HTC V One
Minimum SDK Version 7
Targeted SDK Version 19

4.2.4 Prototype 1 - Interactive Vocabulary
This prototype consists of three educational parts. The first educational part cov-
ers the training phase of a new vocabulary. During this phase children have the
possibility to interactively learn new words by hiding and showing the translations
according to the child’s personal needs.

The vocabulary can be divided into two columns. The first column contains a
list of words in the mother tongue of the child. The second column is a list that
contains the corresponding translations. This is presented in Figure 4.6. Based
on the flux value sensed through the light sensor, more or less information will

75

be presented. This enables children to learn the new words independently and at
their own pace.

Figure 4.6: Prototype 1: Learning table - Fully exposed to light

The child can cover the light sensor to decide how much information should be-
come visible. The idea is based on a technique often used by children to learn a
new vocabulary, namely hiding and peeking the translation of a vocabulary. Fig-
ure 4.7 and Figure 4.8 shows how the document adapts to the content according
the incoming light flux value.

Figure 4.7: Proto-
type 1: Learning
table - Fully covered
from light

Figure 4.8: Pro-
totype 1: Learn-
ing table - Partially
covered from light

76

The second part is a quiz to test the knowledge of the child. As with the previous
part, the light sensor is used to trigger the content adaptation. Only this time, a
reverse process is used for showing and hiding the content. The prototype allows
a child to fill in the correct translation. When entering the answer, the hands of
the child are placed on the sides of the device. Therefore, it becomes impossible
to use the same hide and show mechanism as the one described above. In order
to solve this problem, the adaptation will be triggered in the reverse way. When
the light-sensor is fully exposed to light, the answer stays hidden. When the light
sensor is covered up, the answer becomes visible. This is presented in Figure 4.10.

Figure 4.9: Proto-
type 1: Quiz - Fully
exposed to light

Figure 4.10: Pro-
totype 1: Quiz -
Covered from light

The final part of the application relies on the movement of the reading device.
Nowadays, most smartphones and tablets contain an accelerometer. This com-
ponent is capable of detecting movements of the device. We thought of a way
where we could use the accelerometer to adapt the content of the document.

When launching this exercise, the child is presented with two words. The first
word is in the mother tongue of the child and the second word is the translation
of the word. However, the letters of the translation are not well ordered. Since
the accelerometer of the device is capable to detect motion, we can detect when
the device is being shaked. This exercise, see Figure Figure 4.11, will shuffle the
order of the letters according to the movements of the device.

77

Figure 4.11: Proto-
type 1: Shake it -
Device Shuffled

We also added support for tilting the device. When the device is tilted to the left,
the letters of the translation are sorted into alphabetical order, see Figure 4.12. On
the other hand, when the device is tilted to the right, it sorts the translation into a
reversed alphabetical order, see Figure 4.13.

Figure 4.12: Proto-
type 1: Rotate left

Figure 4.13: Proto-
type 1: Rotate right

78

iServer Extension

Our application acquires its content by querying an iServer instance. In order to
cope with the requirements of our prototypes, we had to extend the RSL metamodel.
This is presented in Figure 4.14. We have introduced the notion of a Complex Re-
source to present a resource that contains a list of other resources. In order to
specify the translation of a word, we made use of structural links. Structural links
are connected to the corresponding translation of a word.

Figure 4.14: Prototype 1: RSL - Content Presentation

4.2.5 Prototype 2 - Adaptive Travel Guide
This prototype is a simplified version of a travel guide catalogue. The catalogue
represents historical information about a city combined with up to date weather
conditions for the current location.

When starting the application, we present the first page of our catalogue. The
first page presents the latest weather conditions of Sydney. This is the dynamic
part of the catalogue. Furthermore, the page also presents some static content such
as historic information over Sydney. The second page presents similar informa-
tion but then for the city of Brussels. Figure 4.15 and Figure 4.16 represent the
aforementioned pages in respective order. The weather information is retrieved
by invoking a web service at a predefined interval.

79

Figure 4.15: Prototype
2: Informational page
over Sydney

Figure 4.16: Prototype
2: Informational page
over Brussels

iServer Extension

In order to support content that changes according to an external event, we have
introduced the ObservableResource-class. An ObservableResource
implements the Subject interface of the Observer Pattern [23]. The implement-
ation of the ObservableResource is presented in Listing 4.1.

Listing 4.1: Observable resource
// a resource capable of being observed and notify the

observers when changes are made to the resource
public class ObservableResource extends Resource

implements Subject{
private Vector<Observer> observers;
private Object result;
public Object getResult() {

return result;
}
public void setResult(Object result) {

this.result = result;
}
public ObservableResource() {

this.observers = new Vector<Observer>();
}
@Override

80

public void notifyObservers() {
for(Observer observer :observers)
{

observer.update(result);
}

}
@Override
public void registerObserver(Observer o) {

observers.add(o);
}
@Override
public void removeObserver(Observer o) {

observers.remove(o);
}

}

By creating such a class we have extended the RSL metamodel with the notion of
an ObservableResource. This subtype of resource is able to be observed by
others. Another requirement is that the resource is able to update itself. We have
implemented this mechanism by making use of a scheduler. A scheduler allows a
resource to asynchronously execute a task at a certain interval. In case of a web
service, this task can be a web service request.

The following diagram describes how we have extended the RSL metamodel to
support the integration of a Web Service. We have introduced the Observable
Resource entity. This entity is able to notify another entity when the content
must change. Changes can be triggered by a RealTimeInternetComp. These
components will change the resource according to updates coming from a web
service.

Figure 4.17: Prototype 2: RSL - web service and observable resource

81

4.2.6 Prototype 3 - Live Travel Guide
This prototype will present a live travel guide. Since the content of the travel guide
should change according to the current location of the user device, we need a way
of specifying this relation.

In order to accomplish a relation between the text and the location we have to
specify two links. One link that specifies which text should become visible when
entering the location and another link that specifies which text should show when
leaving the location. The results is presented in Figure 4.18 and Figure 4.19.
These applications show the same page but the content is changed according to
the current location. By following the the correct link, the application knows
which text should be presented when entering or exiting a particular location.

Figure 4.18: Prototype
3: Travel guide inform-
ation of Brussels

Figure 4.19: Proto-
type 3: Travel guide
information of Sint-
Pieters-Leeuw

The application detects the transition of entering and exiting a certain location by
monitoring a geofence. A geofence is characterised by a longitude, a latitude and
a radius. It is a virtual perimeter for a real-world geographic area. Figure 4.20
presents an example of a geofence with a certain location with a particular radius.

82

Figure 4.20: Geofence with latitude 50.784, longitude: 4.250 and radius 15 meter

The geofences in our prototype are implemented by using the “Geofencing API’s”46.
Note that small geofences only work properly with a radius of 15-20 meters or
higher.

iServer Extension

In order to create the links between the geographical area and the content we had
to extend the RSL metamodel. We started extending the model by introducing the
AbsoluteLocation entity. The AbsoluteLocation class contains two
properties, namely a latitude and a longitude. Afterwards we were able to use
structural links to specify how text should change according to absolute locations.
How the structural links are connected to the content is visualised in Figure 4.21.
Each absolute location is connected to two text components. One text component
is displayed when entering this location and another text components is displayed
when leaving this location.

Figure 4.21: Prototype 1: RSL - Content Presentation

46Geofencing API’s: Allows an Android application to specify geographical boundaries around
certain locations with the ability to retrieve notifications when entering and leaving this location.
http://developer.Android.com/google/play-services/location.html

83

http://developer.Android.com/google/play-services/location.html

4.3 Conclusion
In this chapter we have discussed several scenarios. These different scenarios
provide food for thought for the opportunities of digital documents with dynamic
content.

One of the objectives of developing these prototypes was to investigate whether
the RSL metamodel can easily be extended to support the integration of dynamic
content. Since all of our prototypes were developed with the RSL metamodel,
we can conclude that this model works sufficiently well enough when extended
with the appropriate components. Even more by working on top of this thoughtful
basis, we were able to easily provide a set of extra features such as an authorisa-
tion feature, the ability to specify relations amongst resources, etc.

A second and prime objective of developing these prototypes was to determine
the key requirements that enable dynamic content on a conceptual level. We no-
ticed that in order to support dynamic content, we had to perform several steps
(these steps were accomplished by extending the RSL metamodel). For example,
in the case where we change the text depending on the location: as a first step,
we specified a link between a location and a text element; as a second step, we
monitored the current location of the device; as a third and final step, we used
the observer pattern to notify if the text should change according to the current
location.

What we actually did was dividing the process of updating data into a set of sub-
tasks. We created a chain of resources and we imposed rules over them. When
a resource changes, it notifies the other resources (in some cases data is passed
between these resources). This concatenation of elements allows the prototypes
to change their data on the fly.

By dividing the support for dynamic behaviour in sets of subcomponents, we
embrace a branch of software engineering known as component-based develop-
ment. In this branch, a reuse-based approach is adopted by implementing loosely
coupled components that together provide a certain functionality.

Since the approach of dividing and connecting components seems to be success-
ful, we can abstract it and use it as an extension on the RSL metamodel for sup-
porting dynamic content. This will be further discussed in the next chapter.

84

Chapter 5

Conceptual Model of Dynamic
Content

In this chapter we present a definition for the term “dynamic content” and how
we came to this definition. Next, we introduce our conceptual model of dynamic
content along with some examples that explain the different components of our
model.

5.1 A Formal Definition of Dynamic Content
Analysing previous research (see Section 3.1) has revealed that researchers do
not have a common ground on what dynamic documents should be. Since dy-
namic content enables dynamic documents, we believe that this problem is due
to a missing definition of the term “dynamic content”. A precise definition for
the term will avoid further misconceptions and will be indispensable to ensure the
progress of further research.

Both Chapter 3 and Chapter 4 present a wide range of scenarios where dynamic
documents are used. These scenarios are very diverse. Still a good definition
must be independent and invariant. Figure 5.1 shows our current perspective on
the term “dynamic content”. This presentation shows content surrounded by a
shell. When we think of dynamic content, we imagine a extra layer that is re-
sponsible to react to the external influences on the content. The type of influence
can be very diverse (we have displayed the most relevant ones with regard to our
scenarios). The shell surrounding the content determines how the content should
react to the impact. Therefore, dynamic content is able to cope with the require-
ments needed to present data that changes according to these influences.

85

Static content, on the other hand, has the property to be immune to external influ-
ences. This will ensure that the content will remain unchanged no matter the time,
situation or any other external factor. Therefore, static content is useful to present
information that never changes such as facts, historical events, etc.

Figure 5.1: Dynamic content shell

Dynamic content and static content present data and information with a different
perspective on change. Hence, we can state that they are each other’s counterpart.
This gives rise to the following definition for the term “dynamic content”:

Definition 1. Content that belongs to a document and has the capacity to change
both itself and the structure of the document as a result of external factors that are
linked to the content such as: a contextual element, an external resource, etc.

The proposed definition is constructed on our findings in: the analysis of previ-
ous research, see Section 3.1; the analysis of document formats, see Section 3.2
and the development of several prototypes, see Section 4.2. We believe that this
definition reveals the meaning of the term “dynamic content”, therefore it will be
used throughout the thesis. Based on this proposed definition, we can define a
“dynamic document” as follows:

Definition 2. A digital document that contains dynamic content which allows the
document to present variable information and to change its content and/or struc-
ture without the need for a manual editing effort.

5.2 Conceptual Model of Dynamic Content
In addition to the lack of a formal definition, we also concluded that none of the
solutions discussed in Section 3.1 relied on a clear conceptual model. The lack

86

of a conceptual model encourages different interpretations that could easily cause
confusion amongst researchers and developers. Furthermore, a good conceptual
model forms a stable basis for subsequent development of applications.

A main objective of this thesis is to create a conceptual model of dynamic con-
tent. Our model is developed as an extension of the RSL metamodel. The RSL
metamodel is discussed in detail in Section 4.2.1. Since the RSL metamodel has
support for linking, user rights, content adaptation and distribution, our model will
inherit these features as well.

The next sections will discuss the different elements of our conceptualisation. Af-
terwards, we present the relations amongst these elements in the general overview
of the model.

5.2.1 Elements of the Conceptual Model
Component

In Chapter 4, we have concluded that adding dynamic behaviour to a document
can be a complex process. In order to cope with this complexity we have proposed
to use a component-based approach. With this approach we divide the functional-
ity over a set of subcomponents in order to achieve a specific behavior.

Consider a document that presents the point of interests (hereafter POI) of a city
that changes according to the current location. For example, show nearby POI’s.
In order to achieve this, we can divide this behaviour in the following components:

• POI: A list of point of interests;

• Location Filter: A filter that filters on location;

• Location: A certain location;

• Current Location: The current location;

• Link: A link to specify the relation.

The POI which is a static resource47 is linked to a specific Location. The Filter
compares the Current Location with the specified Location. When the Current
Location is within the span of the defined location, the appropriate POI will be
presented. We can conclude that these components are sufficient enough to spe-
cify the dynamic behaviour of the content.

47 Note that a static resource can also be a part of dynamic content

87

Since subcomponents are the building blocks to present dynamic content, they
are an indispensable entity of our conceptual model on dynamic content. We be-
lieve that the components are best seen as a part of the resources of the documents.
Therefore the Component entity will inherit from the Resource entity. This is
presented in Figure 5.2.

Figure 5.2: Conceptual model: Component

When developing the prototypes, we have observed that we can divide the concept
of a component into two parts, namely Components and Crosslets. Com-
ponents are more comparable with static content since they do not have the ability
to change over time. Still, they play an important role in the updating process of
the dynamic content object of which they are part. Crosslets on the other hand
are more advanced components. The responsibility of a crosslets can be very di-
verse. The main concern of a crosslet is to perform a certain action that is needed
for the content to become dynamic. Since a crosslet must perform a certain ac-
tion, it may also be that it has to rely on other components, even other crosslets,
to achieve its goal. How the Crosslet and Component entity relate to each
other is presented in Figure 5.3.

Figure 5.3: Conceptual model: Components with crosslets

88

Example: The following example will explain the idea and justify the need for
the Components entity and the Crosslet entity.

Consider the example discussed above, namely, a digital document that has to
present a particular text at a certain location. First of all, the text that must be
displayed should be specified. This can be handled by a Text component which
is a regular resource. Along with a Text component, we also need to specify a
Location component. This component specifies at which location the Text
component should become visible. Besides this location, we also need the current
location of the device on which the document is read. Finally, we must use a filter
that determines whether or not the current location is within a certain geograph-
ical area of the defined location. When the filter detects that the current location is
within a certain range of the predefined location (i.e the Location component),
then the filter will ensure that the defined text in the Text component will be
displayed in the document.

Figure 5.4: Conceptual model: Components of content example

A visualisation of the aforementioned components is presented in Figure 5.4. The
regular components are the ones with a blue border. These components do not
perform a certain operation, they are static resources that help constructing the
dynamic content object. The crosslets are specified with an orange border. These
components perform a particular task, namely, obtaining the current location and
performing the filtering process. Note that the output box represents the actual
result of the dynamic content.

Tube

Components play a crucial role in enabling dynamic content. However, without
the ability to specify how they work together, they lose their value. So in order to
achieve the dynamic behaviour, we must specify how these different subcompon-
ents work together.

89

In order to specify how these different subcomponents are interlinked, we intro-
duce a new entity in our conceptual model, namely, the Tube element. A Tube
is used to specify the relation and cohesion between two subcomponents. This
approach results in a structure where components are loosely coupled.

In Section 4.2.1, we introduced the Link entity as one of the main components
of the RSL metamodel. The Link entity allows us to define an explicit relation
between different entities. Even more, we have seen a subclass of the Link entity,
namely the StructuralLink. This specific type of link is used to specify the
structural relationship between resources.

Because a StructuralLink has the ability to specify the structure, they be-
come the perfect tool to specify the composition structure of the dynamic con-
tent. However a property of StructuralLink (i.e they can have any number
of input and output entities) can lead to an ambiguous composition of the dynamic
component objects. As a result, we propose a subclass of the StructuralLink,
namely the Tube. A Tube, as presented in Figure 5.5, is characterised by having
only one input and one output entity. Additionally, these input and output entities
must be instances of the Component class.

Figure 5.5: Conceptual model: Tubes

Example: In Section 5.2.1, we have presented an example of how a composi-
tion of components can be used to specify the dynamic behaviour of the content.
While the concept of components was explained, we assumed that there was a
certain structure that specified how these different components work together in
order to achieve the goal of the dynamic content.

However, at that time we were unable to explicitly specify how these compon-
ents were connected to each other. Fortunately, due to the introduction of the

90

Tube entity, we are now able to explicitly define the connections between the dif-
ferent components. A tube must be specified between each connected component.
This results in a chain of connected components that together present the dynamic
content object. A visualisation of the tubes of our previous example is presented
in Figure 5.6, by means of purple arrows.

Figure 5.6: Conceptual model: Example of digital content - tubes

5.2.2 Tubes as First Class Objects
By defining the relationships amongst components by means of tubes, we obtain
certain features that come along with the Link entity. Since a Link is a subclass
of the Entity entity, our tubes will inherit all of its features such as linking, user
rights, content adaptation and distribution. This makes our conceptual model even
more expressive.

This advantage allows us, for example, to specify certain properties on the tubes
themselves instead of integrating them in the components. This enables us to
create a better encapsulation of the components, while offering a more advanced
form of reusability. The following example explains how tubes can encourage the
reusability of components. Meanwhile, we elaborate on the role they entail when
creating dynamic content.

Assume that we want to present some informational text to the user. But instead of
showing the same text to every user, we want to display a specific text depending
on the current user’s access rights. This could become useful when some parts of
the document are meant to be private. Figure 5.7 presents such a scenario.

91

Figure 5.7: Conceptual model: Text specific access rights

Consider that we specify the access rules on the text components themselves.
This approach is visualised in Figure 5.8 by means of green rectangles. If we then
want to reuse these text components (using transclusion), then these access rules
will also be present, intentionally or not. This approach may lower the form of
component reusability.

Figure 5.8: Approach 1: Access rights on the text

92

Fortunately, with the introduction of our tubes, we are able to delegate the user
access rights to tubes instead. This second approach is visualised in Figure 5.9.
Notice that this time the access rules are defined on the tubes instead of the text
components.

Figure 5.9: Approach 2: Access rights on the tubes

Our example focusses on the user access rights of the components. Still, we want
to emphasise that this is only one of the many features that are possible for manip-
ulating the tubes. It may also be the case that the tubes behaviour may depend on
other contextual factors such as: temperature, light intensity, personal preference,
etc.

We like to note that by introducing this second approach, we provide an alternat-
ive way of constructing dynamic content. It does not exclude the first approach by
any means. The second approach only encourages the reusability of components.

5.2.3 Conceptual Model
We have observed that dynamic content is best described in smaller, more man-
ageable, elements. As a result, we have introduced the notion of Components in
our model. Components have their own responsibility to achieve the overall dy-
namic behaviour. Some of these components can be static and some components
can perform an action. These last components are part of the Crosslet class.

93

Additionally, in order to specify the connection between the different compon-
ents, we introduced the notion of Tubes. Tubes have the responsibility to specify
the structure of the different components. This structure determines how the dif-
ferent components should work as a whole to satisfy the needs of the dynamic
content object.

Besides the tube’s ability to specify the composition of elements, they also make
the model more powerful in form of expressiveness. Since tubes are a subclass of
the Link entity, they also inherit all of its features as described in Section 4.2.1.

By combining the components and the links, we are able to specify a range of
dynamic content. The overview of the full conceptual model is presented in Fig-
ure 5.10.

Figure 5.10: Conceptual model of dynamic content

This conceptual model has the ability to describe the essence of dynamic con-
tent. Furthermore, we believe that document formats, when tightly mapped to this
metamodel, are able to specify dynamic content. In order to proof the efficiency
of our model, we propose an online document editor that uses this model as basis
to create dynamic documents, this is further discussed in Chapter 6.

94

5.3 Conclusion
In this chapter, we have presented our own definitions for the terms “dynamic con-
tent” and “dynamic documents”. In order to come to these definitions we have:
analysed previous research, analysed a set of document formats and developed
several prototypes. We believe that by formalising the meaning of the terms, we
create a common ground for further research.

Additionally, we have developed a conceptual model for dynamic content. This
model is inspired by the development of our prototypes. After analysing our pro-
totypes, we concluded that by dividing the dynamic content in subcomponents,
we are able to specify a range of dynamic content in a manageable manner.

However, in order to proof the contribution of our conceptual model, we need
to test it. This will be further discussed in the next chapter.

95

Chapter 6

Proof of Concept: Document Editor

In this chapter, we discuss our document editor for dynamic documents. We start
by presenting the objectives of this editor. Next, we present some related systems
that inspired the development of our editor.

Afterwards, we discuss the technique used by our editor and we explain the ar-
chitectural design of the implementation. Finally, we present a conclusion of our
approach along with a comparison to the related systems.

6.1 Objectives of the Proof of Concept
The review performed in Section 3.2 has revealed that document editors must
evolve in order to support the creation of dynamic documents. Therefore, the first
and main objective is to develop a document editor that focusses on the creation
of dynamic content. With this editor we seek to obtain a fine balance between
expressiveness and usability.

In Chapter 5, we proposed a conceptual model for dynamic content. However,
in order to justify its correctness we judge it necessary to test it. Therefore, as
a second objective, we will use our conceptual model as basis to develop our
document editor. This enables us to conclude whether we made a proper concep-
tualisation or not.

6.2 Related Systems
To inspire the design of our editor, we relied on three related systems with regard
to their design approach. In this section, we will present the different approaches.
Note that this section only serves as an introduction to each design approach. Due

97

to the scope of this thesis, it is not our intention to give a full detailed explanation
for each system.

6.2.1 Squidy
Werner A. König, Roman Rädle and Harald Reiterer are the creators of Squidy
[36]. Squidy is a library that unifies frameworks and toolkits in order to ease the
design of natural user interfaces (hereafter NUI’s). The library was developed
since most interaction designers of NUI’s are confronted with the following chal-
lenges:

• Practical knowledge must be available at every level (drivers, protocol, sig-
nal processing, etc.).

• They are concerned with both monologic tools as programming languages
in a development environment.

• They experience slow prototyping due to the complexity. Additionally, it is
hard to compare different techniques and solutions.

Their proposed design is based on high-level visual data flow programming com-
bined with zoomable user interface concepts, see Figure 6.1.

Figure 6.1: Squidy Design Environment [36]

98

Figure 6.2: Squidy Design Environment: Zoomed in Kalman filter [36]

Since their interface is based on semantic zooming, we can zoom into a certain
component. The zoomed in view of the Kalman filter is presented in Figure 6.2.
This approach enables us to quickly navigate between different components of
the NGU’s. More importantly, users of this interface can quickly switch between
different levels of detail.

6.2.2 Yahoo Pipes
Yahoo Pipes48 is a composition tool based on pipes and filters that enables regular
users to manipulate and mash up content from around the web. It relies on simple
commands and components to create a specific output of data.

In order to create a mashup, Yahoo Pipes provide a rang of modules that are con-
nected with one another by means of pipes, see Figure 6.349. The list of available
modules is divided into the following categories:

Source: Used to retrieve one or multiple sources from the Internet such as RSS
feeds, Flickr, etc.

Output Input: Allows the user to specify the parameters that serve as input for
the pipes to another module.

48http://pipes.yahoo.com/pipes last accessed on 14/05/2014
49http://nick.typepad.com/blog/2007/02/youtunes_an_exa.html last ac-

cessed on 14/05/2014

99

Operators: Perform a filtering operation for the data that streams through the
pipes.

URL: Provides the ability to manipulate URLs.

String: Helps in the process of manipulating and combining text strings.

Date: Allows the user to define and format a date.

Location: Converts text strings into geographical locations.

Number: Helps in performing basic arithmetic operations.

Deprecated: A specific type of module that will continue to work however it is
encouraged to use the newly introduced module with improved functional-
ity.

More details on the different modules can be found in their documentation50.

Figure 6.3: Yahoo Pipes: YouTube links for the top 10 song on iTunes

The composition of components by means of pipes provides a user-friendly man-
ner to manage information coming from different sources. The result of the pipe
system can later on be used to create applications or to embed them into a web-
site. This last option is facilitated by introducing the concept of Pipe Badges. Pipe
Badges are currently available in the following three types: map, image and list.
Pipe Badges are integrated in the webpage by using HTML. As a result, they are

50http://pipes.yahoo.com/pipes/docs?doc=modules (last accessed on 13/04/2014)

100

harder to use by regular people. However, the overall intention of Yahoo Pipes
is to facilitate the creation of mashups by providing an interface that focusses on
simplicity.

6.2.3 iBooks Author
The iBooks Author application is targeted towards a wide audience, ranging from
publishing houses to individual writers. The editor allows for the creation and
publication of iBooks documents. A main feature of iBooks Author is its ability
to enable users to create dynamic multitouch elements, which they call Widgets.
Widgets are integrated into the document in a WYSIWYG approach. With this
approach, the document is presented with a close resemblance to its final present-
ation to the end user.

Widgets are the way of iBooks Author to allow users to present dynamic con-
tent. The current set of available widgets is described as follows:

Keynote presentations Users are able to embed a keynote presentation in their
iBook document. A keynote presentation may contain custom animations.

Interactive Images Besides static images, iBooks Author also allows the cre-
ation of interactive images. These interactive images have support for cal-
louts and pan-zoom features.

Interactive Galleries Instead of presenting one image, iBooks author also allows
the user to define a set of images. This set of images is presented to the users
as an interactive photo collection.

Scrolling Sidebars The ability to add relevant information to the current content.

Pop-Over Traditional static images can be enriched by the power of a pop-over
that allows the user to present additional information such as images, text
or other related data.

Media By introducing video and audio elements to the digital documents, the
content of the document becomes more alive and interactive than when only
static text and images are used.

Chapter Reviews iBooks documents allow users to test their knowledge by in-
corporating interactive questions. Questions can be of the following types:
multiple choice, choose the correct image, label the image or a mix of all
three.

101

3D image The iBooks Author application allows users to include 3D images. The
editor itself does not provide the functionality to create a 3D object, it only
allows the embedding of one.

HTML Modules Users are able to create their own widgets by making use of
standard web technologies such as HTML5, CSS, JavaScript, etc. This en-
ables more advanced users, with knowledge of these technologies, to create
complex dynamic content.

Each widget has its own level of complexity. Since the HTML widget requires
knowledge about current web technologies, it is likely the most complex one to
use by regular users that have no experience with web technologies.

As a result, the usability factor of the HTML widget is rather low when com-
pared to the other widgets. On the other hand, the HTML widget is the most
expressive widget of them all. It is able to subsume all other widgets and it has
the ability to provide additional functionalities. More information on the widgets
and how to use them can be found on the official website51 of iBooks Author.

Additionally, the reusability of a widget is rather low. The only form of reuse
is provided by a copy/paste operation of the widget or its internals (HTML files,
CSS files, etc.). The developed widgets do not support reusability by transclusion.

Another important remark is that the configuration for each widget must be done
in a separate window, named, the inspector window as presented in Figure 6.4.

Figure 6.4: iBooks Author: Inspector window

51http://www.apple.com/ibooks-author/gallery.html (last accessed on 16/04/2014)

102

Since the configuration of a widget is performed in the inspector window, it is
likely that it becomes easily overwhelming and too complex.

6.3 Document Editor
Content is one of the most important elements in the editing process of digital
documents. Therefore, managing (creating, editing and deleting) both static and
dynamic content should be greatly assisted by the editor. We believe that a WYSI-
WYG approach falls short when dynamic content becomes involved.

Section 6.2.3 revealed that the configuration of dynamic content with iBooks Au-
thor only receives a small amount of attention by means of a configuration screen,
see Figure 6.4. As a result, the details of the dynamic behaviour are difficult
to configure. Additionally, this approach does not provide an overview of how
the dynamic content influences other parts of the document. The aforementioned
limitations lead to a cumbersome process for managing dynamic behaviour in a
digital document.

From this conclusion, we judged it necessary to investigate other approaches. A
proper approach should facilitate the configuration of dynamic content and en-
courage the transparency of how it relates to other parts of the document.

In Section 6.2.1 and Section 6.2.2, we have discussed Squidy and Yahoo Pipes,
respectively. We found that these techniques could be used to facilitate the man-
agement of dynamic content. The reason for this statement is that the so-called
pipes and filters design pattern [23] aligns with our conceptual model of dynamic
content. We believe that this close alignment will increase the usability of our
editor.

By dividing the content in components and linking them to a whole, we believe
that we are able to cope with the complexity of dynamic content. Additionally,
we think that this approach encourages the individual configuration of each com-
ponent while retaining an overall overview of the document. By doing so, this
approach counters the limitations of the traditional WYSIWYG approach, where-
fore we hope to create a fine balance between usability and expressiveness. An
overview of our editor is described in the following section.

103

6.3.1 Approach of the Document Editor
User Authentication

In Section 4.1, we discussed a set of scenarios. From these scenarios we can derive
that a document benefits from knowing who is viewing the document. Therefore,
we have chosen to make the editor aware of the user by a simple authentication
system. In order to support this feature, we enabled the users to create an account
in the editor. After creating an account, users are able to authenticate themselves
in the document editor. The logged in view of a user is presented in Figure 6.6.
The current logged in user is “Jochen”.

Figure 6.5: Document editor: Start view

Overview

Existing documents are presented on the left side of the window. These documents
can be selected for further editing. In order to create a document, users have to
select a template. The available templates are presented in the rightmost list of
the page. The current implementation supports one template, namely the Tour
Guide template. We made this choice since the primary concern of the editor is
the editing phase. In principle, other templates should work accordingly.

104

Figure 6.6: Document editor: Start view

The tour guide template presents a basic document with placeholders for the final
content of the document. This idea is inspired by the virtual documents, see 3.1.7,
of the multimodal documents. These placeholders are dynamic in the sense that
they are able to update themselves according to the specification of the document
defined by the author of the document. This means that, instead of having multiple
pages in the document, this document will only have one page that adapts itself to
the current requirements.

Document Creation

When creating a new document from a template, we are presented with the fol-
lowing window, see Figure 6.7. After specifying the details of the document, we
submit the form. After the form is submitted, our node.js server, see Section 6.3.2,
performs the necessary operations to create a document template in the iServer.
Besides persisting the document template in the database, the node.js server also
instructs the iServer to add a specific amount of placeholders to the document tem-
plate. The amount of placeholders depends on the selected document template.

105

Figure 6.7: Document editor: Details of a document

A placeholder is a component of our document that has a predefined location in
the document template. A placeholder can be compared to a “Lorem Ipsum” in
web design, as it demonstrates where the content will be displayed when it is
set. The user is responsible for using the editor to specify what the actual content
should become. In the editing phase, the user will be able to view the placeholders
of the document and specify their value.

Overview of a Template

When the document form is successfully submitted, the user is presented with the
document template, as shown in Figure 6.8. We notice that this template contains
seven placeholders. These seven placeholders will also be visible in the editing
phase. From the moment that a placeholder is configured in the editing phase, it
will become dynamic in the template. This means that the document will already
show its dynamic behaviour. This is an important design choice since the author
of the document can easily switch between an editing modus and a view modus. In
order to proceed to the editing phase, the user has to click on the “Edit Document”
button at the bottom of the page.

106

Fi
gu

re
6.

8:
D

oc
um

en
te

di
to

r:
Te

m
pl

at
e

vi
ew

107

Fi
gu

re
6.

9:
D

oc
um

en
te

di
to

r:
Ed

iti
ng

ph
as

e

108

Editing a document

The editing phase is presented in Figure 6.9. The editor presents the user with the
available placeholders of the template. As already mentioned in our previous sec-
tion, Section 6.3, we rely on the pipes and filters design pattern to edit a document.

The document template (see Figure 6.8) reveals that “Placeholder 4” presents the
point of interests for a certain location. It could be useful to make the content of
this placeholder dynamic. The content could for example rely on the current loc-
ation of the device in combination with a web service, such as Yelp52, to provide
real-time information of the current interesting places adjusted to the reader’s loc-
ation.

In order to support dynamic content, our editor provides a range of components.
The current implementation of our editor provides the following components:

Audio An audio component allows the user to specify a text that, when evaluated
by the document editor, should be converted to speech.

Date A date component allows the user to specify a certain date with optional
time arguments.

Light A light component allows the user to specify a flux value, which is of the
type double.

Location A location component allows the user to specify an absolute geograph-
ical location. This is done by a specific pairing of latitude and longitude.

Filter A filter performs a certain filtering operation. It may have multiple inputs
but always returns one output. In order to specify the filter, the user must
zoom into the detail of it. This is inspired by the semantic zoom feature of
Squidy [36].

Range Filter A range filter performs a filtering operation by using two values.
If the value is higher then the minimal specified value and lower than the
maximal specified value, then they are passed through the filter.

Current Location The current location components uses the device’s ability to
obtain the current location from which the document is read.

Current Date The current date component is able to return the current date and
time of the system on which the document is read.

52http://www.yelp.com/developers/documentation (last accessed on
12/052014)

109

http://www.yelp.com/developers/documentation

Current Light The current light component uses the device’s ability to obtain
the current ambient light value.

Webservice The web service component allows us to specify the connection
between the client and a RESTful API. Besides the information needed to
connect to the webserver, such as credential information, it also allows the
user to add arguments that are used to specify the web service requests.

Text Component The text component allows the user to specify textual inform-
ation.

This current set of components is already sufficient enough to satisfy a range of
dynamic content. Furthermore, it would take little effort to specify new compon-
ents.

In order to customise Placeholder 4 to show up to date point of interests, we would
require two components, namely: a Current Location component that provides the
current location of the reading device and a Webservice component to retrieve the
latest points of interests from a web service. These components are then linked
to the appropriate placeholder. The linking of components results in a dataflow as
shown in Figure 6.10.

Figure 6.10: Document editor: Placeholder 4 composition

110

Figure 6.11: Document editor: Web service configuration

Figure 6.11 presents how the user can configure a web service according to its
needs. Note that the user is still responsible for looking up the details of the web
service connection. However, we have tried to minimise the configuration process
to a minimum.

Another interesting aspect of our document editor is that the tubes of our editor
are able to use all the functionalities of the tubes as provided by our extension of
the RSL metamodel. We have chosen to support a “Visible To” feature for the
tubes. This feature makes use of the access rights feature of the RSL metamodel
as described in Section 4.2.1. Since tubes are in essence also entities, we are able

111

to configure the “AccessibleTo” attribute of a tube. As a result, we can specify
which users have access to a tube and which ones do not. In our developed editor,
specifying the access rights can be done for each tube individually by specifying
the user name in the “Visible To”property of the tube. The configuration window
of an edge is visualised in Figure 6.12.

This feature can be handful when for example the text has to vary according to
the current user. Then the “Visible To” property of the tubes, as shown in 6.12,
could be used to specify this.

Figure 6.12: Document editor: Tube’s “Visible To” property

Figure 6.12 presents the properties of an edge. In this example, we have chosen
to make the edge only visible to Jochen and Bert. Note that the properties of the
edges can easily be extended with other properties of the RSL metamodel.

Since our document editor authenticates the current user via a login form, we
are able to identify each user. When the user views the document, the editor will
determine whether the user has access to a tube or not. If the user has access to a
tube, the tube will become active. This ensures that the data from the “text com-
ponent” is sent to the placeholder. If the user does not have access to the tube, the
tube will seem invisible and the data will not be passed to the placeholder.

6.3.2 Architecture of the Document Editor
Back End

The document editor has been implemented as a web application and has a four
tier architecture. The architecture is presented in Figure 6.13.

112

Figure 6.13: Architecture of the document editor

The client side of the document editor does not own a database store. Indeed, in
order to obtain data it relies on a RESTful API provided by a node.js server53.
Besides listening to clients requests, this server also provides a transformation
functionality between the data retrieved and sent between the client side and the
iServer.

Since we did not want to alter the existing parts of the iServer implementation,
the node.js server must perform a set of transformations. These transformation
functionalities range from converting JSON data to performing web service re-
quests to the iServer. Even more, by delegating the transformation functionality
to a separate server, we lowered the coupling between our document editor and
the iServer implementation.

By using the JSON format54 to exchange data between the client, the node.js
server and the iServer, we create a language neutral interface for the node.js server
and the iServer implementation.

While implementing a node.js server, we made use of Express55. Express is a web
application framework for node.js that provides a robust set of features to build
our multi-page web application. Another important library that was used during

53http://nodejs.org (last accessed on 13/04/2014)
54http://www.json.org (last accessed on 12/04/2014)
55http://expressjs.com (last accessed on 12/04/2014)

113

the development of our node.js server is the Socket.IO library56. This library as-
sisted in the creation of a realtime application that works with every browser and
on all mobile devices. It leverages the difficulties of setting up a socket connection
between the client and the server by hiding the used transport mechanisms.

Our iServer implementation is built on top of the original implementation that
is based on the RSL metamodel. We have extended this implementation with the
entities of our developed conceptual model. The iServer is implemented using the
Java programming language. The persistence layer is part of the iServer imple-
mentation and relies on the object oriented database named db4o57. The general
structure of the extended RSL metamodel is presented by a class diagram in Fig-
ure 6.14.

Figure 6.14: A general class diagram of the extended RSL metamodel implement-
ation

Front End

The front end of the editor is developed by using the latest web technologies such
as HTML5, JavaScript and CSS358. To create a good-looking user interface, we
relied on a front end framework named Twitter Bootstrap 59 and more specifically,
a Twitter Bootstrap Framework design and theme named Flat UI 60.

In order to facilitate the HTML webpage traversal, manipulation, event handling,
56http://socket.io (last accessed on 12/04/2014)
57http://www.db4o.com (last accessed on 16/04/2014)
58http://www.w3.org/TR/CSS (last accessed on 12/04/2014)
59http://getbootstrap.com (last accessed on 12/04/2014)
60http://designmodo.github.io/Flat-UI (last accessed on 12/04/2014)

114

animation, and AJAX, we relied on jQuery61. jQuery is a lightweight API that is
CSS3 compatible and is able to run in all popular browsers.

Essentially our document editor enables users to define the flow of data by means
of filters and components. In order to facilitate the creation of such an editor, we
made use of a framework called meemoo62. Meemoo is an open source framework
that is still under heavy development. However, it serves as a good basis to start
our editor with. We used meemoo to implement the editing phase of our document
editor.

We extended the framework in such a way that it is able to handle custom compon-
ents and custom edges. Some of our custom components are: a date, a location,
current location, current light intensity, a filter, a text component, etc. We also
extended the edges with the notion of accessibility. This allows users to specify
which users have access to which edge.

As discussed in Section 6.3.1, these custom components and edges are useful to
create a large range of dynamic components for digital documents. Furthermore,
we added the functionality of loading and saving documents to the iServer. This
functionality is delegated to the node.js server, as discussed in 6.3.2.

6.3.3 Comparison to Related Systems
This section will compare our approach to the related systems and we discuss how
each system has influenced our design. Additionally, for the last two systems we
explain how we solved some of their limitations.

Squidy

Squidy is used for facilitating the creation of NUI’s while our editor focusses on
the creation of dynamic content. This makes it difficult to compare the two sys-
tems. However, we can conclude that both Squidy and our editor rely on the pipes
and filter design to facilitate a specific task. This facilitation is due to the fact
that pipes allow us to divide the process in manageable entities to build a chain of
processes in an intuitive manner. Since we observed in Section 5.2 that dynamic
content is best divided in a set of subcomponents that are “interchanged”, this
design perfectlly fits for this task.

61http://jquery.com (last accessed on 12/04/2014)
62https://github.com/meemoo/dataflow (last accessed on 12/04/2014)

115

Additionally, Squidy uses semantic zooming to present a detailed view for the
components. We relied on the same technique to configure our filters. This allows
us to create a filter at a certain level of detail while still having the option to view
it as a black box. Instead of using a zooming action, we used an edit button on the
filter itself to facilitate the selection process (see Figure 6.15).

Figure 6.15: Filter Component

Yahoo Pipes

The purpose of Yahoo Pipes relates more to the purpose of our editor when we
compare it to Squidy. Nevertheless, we believe that Yahoo Pipes is missing some
crucial components to create rich forms of dynamic content. For example Ya-
hoo Pipes does not provide the functionality to adapt content towards the context.
This means that no matter the context, the result of a pipe will always be the same.

Since our previous research, see Section 3.1.3 has shown us that digital documents
can benefit from context adaptation, we consider it a must to provide support for
it. Our editor provides support for context adaptation by means of crosslets such
as: Current Location, Current Time and Current Light. These components are
capable of deriving the location, time and light intensity of the reading device to
perform context adaptation.

Additionally, we have chosen to extend our pipes with properties. We believe
that this is another shortcoming of Yahoo Pipes. We think that it is convenient
to also have the ability to specify properties on top of the pipes, instead of the
components alone. This way, the pipes themselves could become context-aware.
Of course, we could argue that this feature could also be handled by introducing
some additional components in combination with a filter. However, by specifying
these details on a component level, we may lower their reusability. Hereby, we
believe that in some cases it could be preferable to delegate some functionality to
the tubes instead of the components.

Finally, another limitation of Yahoo Pipes is the following: When a pipe become

116

a part of a HTML document, the link between the document and the content be-
comes blurred. This is due to the fact that the creation of a pipe and the creation of
an HTML document requires another editor. In our approach this is not the case.
We have a clear link between the dynamic content and the resulting document by
means of placeholder in template. As a result, the relation between the content
and the document is always visible.

iBooks Author

iBooks Author and our editor share two characteristic, namely: 1) User oriented,
suited to regular end users and 2) Provide support for dynamic content. iBooks
Author relies on Widgets to enable non-developers to add dynamic behaviour to
a document. In Section 3.2.9 we showed that each widget has its own level of
complexity. The most complex and powerful widget is the HTML widget. Since
this widget requires that users have some knowledge about web technologies, it is
not targeted towards regular end users.

In order to obtain a fine balance between expressiveness and usability, we aban-
doned the traditional WYSIWYG approach. We relied on a design that matches
with the essence of dynamic content and its complementary complexity, namely a
pipes and filter dataflow design.

6.4 Conclusion
This chapter started by presenting some related systems that influenced the design
of our editor. Afterwards, we presented our alternative editing approach based on
a pipes and filter design. In order to justify this approach, we compared it to the
previous discussed systems. Hereby, we emphasise their influences and limita-
tions.

Since we are able to create complex forms of dynamic content while having a bal-
ance between usability and expressiveness, we believe that our approach outpaces
the traditional WYSIWYG approach taken by iBooks Author. Additionally, Ya-
hoo Pipes is missing some essential components to support more advanced forms
of dynamic content. Nevertheless, a user evaluation should be performed to test
this hypothesis.

117

Chapter 7

Conclusion and Future Work

In this chapter, the scope of our research is recapitulated and the main findings of
our research with regard to the proposed research questions are summarised. Fur-
thermore, the limitations of this thesis are considered along with some suggestions
for future work.

7.1 Summary of the Research
This thesis has examined the progress of ubiquitous computing and its enabling
technologies such as sensors and context-aware systems. In Chapter 2 we ob-
served that the technical advances in ubiquitous environments will not become
the main concern. On the other hand, the enormous amount of data acquired in
these environments can become a greater problem. A concept that addresses this
problem is ambient intelligence.

Ambient intelligence is a confluence of ubiquitous computing and artificial in-
telligence. Instead of having systems that compete for the user’s attention, intel-
ligent actions are performed to present the most relevant information to the user.
The examination of ambient intelligence has led to the introduction of ambient
documents. These documents are empowered with dynamic content to present
information that changes depending on intelligent decisions. Unfortunately, these
revolutionary documents were never built.

The literature related to this thesis is focussed around the developments of doc-
uments with dynamic content, the so-called dynamic documents. In Chapter 3,
an analysis has revealed that the progress of documents with dynamic content
is held back by the following problems: no clear definition for the term “dy-
namic content”, an absence of a clear cosnceptual model for dynamic content

119

and the lack of attention regarding the document creation process. Afterwards,
a second analysis on document formats with regard to their support for dynamic
content was performed. This second analysis showed that adding dynamic beha-
viour to documents is mainly done by using other technologies such as scripting
languages. Therefore, the line between document authors and programmers has
become blurred.

Additionally, this analysis has indirectly shown that document editors play an im-
portant role in the creation of dynamic documents. Unfortunately, current editors
do not support the creation of dynamic content or their approach is not suited for
regular end users. These two analyses have resulted in a set of research questions
that must be addressed in order to ensure the progress of ambient documents and
subsequently the progress of ambient intelligence and ubiquitous computing.

In order to investigate the purpose and possibilities of dynamic documents, a set
of scenarios were devised. The development of three of these scenarios was dis-
cussed in Chapter 4. These developments assisted in defining the term “dynamic
content” and subsequently “dynamic documents”, proposed in Chapter 5. Addi-
tionally, since theses prototypes made use of a general conceptual model for hy-
permedia systems (i.e. Resource-Selector-Link metamodel), their insights helped
with the creation of a conceptual model for dynamic content proposed Chapter 5.

After creating a conceptual model for dynamic content, it was used as a basis
to develop a document editor for dynamic documents, see Chapter 6. Due to in-
fluences of other systems, the proposed editor relies on a pipe and filter design. In
order to justify this design, we compared it to three other systems. Two of these
systems also rely on this design approach, while the third system has a WYSI-
WYG design. The proposed editor tries to distinguish itself by focussing on the
creation of dynamic content while keeping the balance between usability and ex-
pressiveness as good as possible.

The definition of the term “dynamic documents”, the creation of a conceptual
model for “dynamic documents” and the creation of a document editor all con-
tribute to the progress of ambient documents. The following section will em-
phasise the link between the contributions of this thesis and its proposed research
questions.

120

7.1.1 Research Questions and Main Contributions
Research Question 1:

What does the term dynamic content mean? (See Chapter 5)

The analysis of Chapter 3 has shown that the term “dynamic documents” has
received many diverse definitions over the years. However, a definition that is
able to capture the meaning of dynamic content within these different schools of
thoughts has never been proposed. In order to define the term, we analysed the
state of the art and several relevant document formats. Afterwards, we used this
knowledge as inspiration to propose a set of scenarios. Along with our scenarios,
a categorisation was proposed for dynamic documents with their regard to adapt-
ation. From this research, we were able to come up with a unified definition that
is able to capture the meaning of dynamic content. This definition is presented
in Chapter 5. Furthermore, this definition served as a basis to form a general
definition for the term “dynamic documents”. This definition avoids further mis-
understandings and serves as a common ground for further research. Therefore, it
contributes to the field of research on dynamic documents.

Research Question 2:

Were there any attempts made in supporting dynamic content and why were they
not successful? (See Chapter 3)

Chapter 3 has revealed that several attempts have been made to create the so-
called dynamic documents. However, an analysis has shown that most of these
solutions have a different point of view of what these documents should be. Ad-
ditionally, none of these solutions were based on a clear conceptual model. As
a result, comparing and reusing these solutions becomes a hard task. In order to
rectify these problems, a conceptual model was proposed in Chapter 5. A concep-
tual model captures the essence of the concept as entities and relations. Therefore,
this model contributes to the clarification of the concept of dynamic content and
the creation of future dynamic documents.

Research Question 3:

To what extent do the current document formats enable the specification of dy-
namic content? (See Chapter 3)

Document formats have certain specifications on how the content must be spe-
cified. The second analysis of Chapter 3 has revealed that none of the analysed

121

formats have full support towards the specification of dynamic content. In fact,
most document formats rely on other technologies such as JavaScript to enable
dynamic content. Unfortunately, these technologies are too complex to be used
by regular end users. However, one document format (namely iBooks) stood out
because of its associated editor. This editor facilitated the creation of dynamic
content by means of Widgets. Unluckily, in order to create advanced dynamic
documents, the complexity of creating a custom widget does not meet the expec-
ted user friendliness for such a system. Therefore, an alternative document editor
is proposed in Chapter 6. It relies on a pipe and filter design in order to create
a balance between usability and expressiveness. As such, it contributes to the
creation process of dynamic documents.

Research Question 4:

What are the struggles and challenges that come along when integrating dynamic
content? (See Chapter 4)

A set of scenarios of dynamic documents were devised in Chapter 4, these scen-
arios led to the development of three prototypes. These prototypes helped to
identify the struggles that come along when creating dynamic content. The main
problem of creating dynamic content is the fact that a lot of different tasks must
be performed to obtain a certain dynamic behaviour. Additionally, these differ-
ent tasks closely rely on each other to work. Therefore, the prototypes were de-
veloped with a component based approach in order to cope with the complexity of
dynamic content. By dividing the functionality of dynamic content in a set of sub-
components, they became manageable units that are loosely coupled. As a result,
they encourage reusability and a high cohesion. Furthermore, this approach also
inspired the filter and pipe design of the editor proposed in Chapter 6. This contri-
bution facilitates the creation of dynamic documents by providing a components
based approach that relies on a clear conceptual model for hypermedia systems.

Research Question 5:

How can we attain a fine balance between expressiveness and usability with re-
gard to the creation of dynamic content? (See Chapter 6)

In Chapter 3, the analysis of the iBook format has revealed that document ed-
itors play an essential role in creating dynamic documents. However, with iBooks
Author, the complexity increased when more advanced functionalities were re-
quired. In order to cope with this complexity, an alternative design was proposed
in Chapter 6. This editor seeks to find a balance between usability and expressive-

122

ness by means of a pipe and filter design. Since this design closely aligns with the
conceptual model of dynamic content, we can expect that this approach is more
intuitive to use even for complex use cases. Because the editor proposes a altern-
ative editing process, it contributes to creation process of dynamic documents.

7.1.2 Limitations
Concerning the Template-base Approach of the Document Editor

The current implementation of the document editor relies on a template to create
dynamic documents. As a result, the design of the document is very restricted.
This problem could be solved by providing a large set of diverse templates or by
giving the users the possibility to create their own template. The first option will
require us to think about which templates are necessary to cope with the user’s
demands. The second option, on the other hand, may complicate the authoring
process. Since both solutions have their disadvantages, further research is needed
to provide a more appropriate solution to this problem.

Concerning the Evaluation of the Document Editor

The design of the proposed editor has a pipe and filters interface. Therefore,
users can create dynamic content as a chain of components that are linked to each
other. This way of working closely aligns with our conceptual model of dynamic
content, hence we can expect that this approach is more suitable to create dynamic
documents than for example iBooks Author. However, in order to verify this
hypothesis, a user evaluation must be performed. This evaluation could consist of
a set of dynamic documents that must be created with a range of editors including
our proposed editor. Depending on the resemblance to the provided document,
we could compare each approach with a quantitative evaluation (quality of the
document, creation time, overall expressiveness, etc.) and a qualitative evaluation
(usability, preference, etc.)

123

7.2 Future Work
This thesis has made an effort in simplifying the process of creating dynamic
documents by means of a pipes and filter design. The current implementation
provides a set of components to create a range of dynamic documents. Still, in
order to provide more advanced dynamic content, this set has to be extended. As
discussed in Chapter 2, middlewares for sensor networks already exist. Therefore,
our document editor could be extended to work with these frameworks by allow-
ing users to specify details for direct sensor integration.

Since our document editor enables users to specify a web service it may be useful
to investigate how we could improve this process. Working with a web service,
requires users to study its documentation and write special purpose code to handle
it. We could explore other options to simplify this process, for example use web
servers GUIs [35].

Currently, it is the task of the user to configure the component of a document.
This process is prone to errors and is time consuming. In order to facilitate this
process, we could enable third party developers to develop predefined compon-
ents. These components should then have to comply to the specifications of our
technical implementations. An ontology could be used to enhance the collabora-
tion between the different systems.

As discussed in the previous section, a limitation of the proposed editor is that
it uses a template-based approach. However, in order to create more freedom with
respect to document design, other approaches must be examined. Furthermore,
in order to resolve the second limitation of our editor, we could perform a user
evaluation in order to examine the effectiveness of our design approach.

Another aspect that would be interesting to investigate is how we could extend
our editor to provide support for static mediums such as paper. Since paper, on its
own, is not capable of displaying dynamic content, it would be interesting to in-
vestigate how we could solve this problem by providing alternative presentations.

124

Bibliography

[1] S. Abiteboul, O. Benjelloun, and T. Milo. The Active XML Project: an
Overview. The VLDB Journal, 17(5):1019–1040, 2008.

[2] K. Ashton. That Internet of Things Thing. RFiD Journal, 22:97–114, 2009.

[3] P. M. Atkinson and A. R. L. Tatnall. Neural Networks in Remote Sensing.
International Journal of Remote Sensing, 18(4):699–709, 1997.

[4] J. C. Augusto. Ambient Intelligence: The Confluence of Ubiquitous/Pervas-
ive Computing and Artificial Intelligence. In A. Schuster, editor, Intelligent
Computing Everywhere, pages 213–234. Springer London, 2007.

[5] J. C. Augusto. Ambient Intelligence: Basic Concepts and Applications. In
J. Filipe, B. Shishkov, and M. Helfert, editors, Software and Data Technolo-
gies, volume 10 of Communications in Computer and Information Science,
pages 16–26. Springer Berlin Heidelberg, 2008.

[6] A. Beach, M. Gartrell, X. Xing, R. Han, Q. Lv, S. Mishra, and K. Seada. Fus-
ing Mobile, Sensor, and Social Data to Fully Enable Context-Aware Com-
puting. In Proceedings of the Eleventh ACM Workshop on Mobile Com-
puting Systems and Applications (HotMobile), HotMobile ’10, pages 60–65,
Annapolis, Maryland, 2010.

[7] H. Beadle, G. Q. Maguire Jr., and M. T. Smith. Using Location and En-
vironment Awareness in Mobile Communications. In Proceedings of the
International Conference on Information, Communications and Signal Pro-
cessing, ICICS, Part 3, volume 3, pages 1781–1785, Singapore, September
1997. IEEE.

[8] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific
American, 284(5):34–43, May 2001.

[9] Y. Billibon. On Sensor Frameworks for Pervasive Systems. In Proceedings
of the International Conference on Software Engineering, Limerick, Ireland,
June 2000.

125

[10] P. J. Brown. The Stick-e Document: A Framework for Creating Context-
Aware Applications. In Proceedings of the Electronic Publishing, pages
259–272, Palo Alto, September 1996. IFIP.

[11] P. Brusilovsky. Methods and Techniques of Adaptive Hypermedia. User
Modeling and User-Adapted Interaction, 6(2-3):87–1290, 1996.

[12] V. Bush. As We May Think. Altlantic Monthly, 176(1):101–108, July 1945.

[13] F. Cabitza and I. Gesso. Web of Active Documents: An Architecture for
Flexible Electronic Patient Records. In A. Fred, J. Filipe, and H. Gam-
boa, editors, Biomedical Engineering Systems and Technologies, volume
127 of Communications in Computer and Information Science, pages 44–
56. Springer Berlin Heidelberg, 2011.

[14] J. C. Cardoso and R. José. A Framework for Context-Aware Adaptation in
Public Displays. In Proceedings of the Confederated International Work-
shops and Posters on On the Move to Meaningful Internet Systems, OTM
’09, pages 118–127. Springer-Verlag, 2009.

[15] A. Celentano and O. Gaggi. Context-aware Design of Adaptable Multimodal
Documents. Multimedia Tools and Applications, 29(1):7–28, 2006.

[16] D. J. Cook, J. C. Augusto, and V. R. Jakkula. Ambient Intelligence: Techno-
logies, Applications and Opportunities. Pervasive and Mobile Computing,
5(4):277–298, 2009.

[17] D. J. Cook and S. K. Das. How Smart Are Our Environments? An Updated
Look at the State of the Art. Pervasive Mobile Computing, 3(2):53–73, 2007.

[18] P. De Bra, G.-J. Houben, and H. Wu. AHAM: A Dexter-Based Reference
Model for Adaptive Hypermedia. In Proceedings of the ACM Conference on
Hypertext and Hypermedia, pages 147–156, Darmstadt, Germany, February
1999.

[19] A. K. Dey. Understanding and Using Context. Personal and Ubiquitous
Computing, 5(1):4–7, February 2001.

[20] B. Dumas, M. Solórzano, and B. Signer. Design Guidelines for Adaptive
Multimodal Mobile Input Solutions. In Proceedings of the 15th Interna-
tional Conference on Human-Computer Interaction with Mobile Devices and
Services, MobileHCI ’13, pages 285–294, Munich, Germany, August 2013.

126

[21] K. P. Ferentinos and T. A. Tsiligiridis. Adaptive Design Optimization of
Wireless Sensor Networks using Genetic Algorithms. Computer Networks,
51(4):1031–1051, 2007.

[22] M. F. Fudzee and J. Abawajy. A Classification for Content Adaptation Sys-
tem. In Proceedings of the 10th International Conference on Information
Integration and Web-based Applications & Services, pages 426–429, Linz,
Austria, 2008.

[23] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley Professional,
1995.

[24] H. W. Gellersen, A. Schmidt, and M. Beigl. Multi-Sensor Context-
Awareness in Mobile Devices and Smart Artifacts. Mobile Networks and
Applications (MONET), 7(5):341–351, 2002.

[25] S. Greenberg and C. Fitchett. Phidgets: Incorporating Physical Devices into
the Interface. In Proceedings of the 14th Annual ACM Symposium on User
Interface Software and Technology, pages 209–218, Santa Barbara, Califor-
nia, 2001.

[26] K. Grønbæk, J. F. Kristensen, P. Orbæk, and M. A. Eriksen. Physical Hy-
permedia: Organising Collections of Mixed Physical and Digital Material.
In Proceedings of the Fourteenth ACM Conference on Hypertext and Hyper-
media, pages 10–19, Nottingham, UK, 2003.

[27] F. Halasz, M. Schwartz, K. Grønbæk, and R. H. Trigg. The Dexter Hypertext
Reference Model. Communications of the ACM, 37(2):30–39, 1994.

[28] K. Hallenborg. Contextual Interfacing: A Sensor and Actuator Framework.
In L. T. Yang, M. Amamiya, Z. Liu, M. Guo, and F. J. Rammig, editors,
Embedded and Ubiquitous Computing , EUC 2005, volume 3824 of Lec-
ture Notes in Computer Science, pages 846–857. Springer Berlin Heidelberg,
2005.

[29] V.-N. Hamed, Z. Kamran, and N. Nematbakhsh. Context-Aware Middleware
Architecture for Smart Home Environment. International Journal of Smart
Home, 7:77–86, 2013.

[30] K. Henricksen and R. Robinson. A Survey of Middleware for Sensor Net-
works: State of the Art and Future Directions. In Proceedings of the Inter-
national Workshop on Middleware for Sensor Networks, MidSens ’06, pages
60–65, Melbourne, Australia, 2006.

127

[31] P. Holroyd, P. Watten, and P. Newbury. Why Is My Home Not Smart? In
Y. Lee, Z. Bien, M. Mokhtari, J. Kim, M. Park, J. Kim, H. Lee, and I. Khalil,
editors, Aging Friendly Technology for Health and Independence, volume
6159 of Lecture Notes in Computer Science, pages 53–59. Springer Berlin
Heidelberg, 2010.

[32] S. S. Intille, J. Lester, J. F. Sallis, and G. Duncan. New Horizons in Sensor
Development. Medicine and Science in Sports and Exercise, 44:24–31, Janu-
ary 2012.

[33] D. Joshua and F. Susan. Active Documents: Changing How the Enterprise
Works. IDC: Internal Document, 1:1–9, 2003.

[34] G. Junzhong and C. Gong-Chao. Design of Physical and Logical Context
Aware Middleware. IJSIP, 5:113–130, 2012.

[35] M. Kassoff, D. Kato, and W. Mohsin. Creating GUIs for Web Services.
IEEE Internet Computing, 7(4):66–73, 2003.

[36] W. A. König, R. Rädle, and H. Reiterer. Squidy: A Zoomable Design Envir-
onment for Natural User Interfaces. In Proceedings of the 27th International
Conference on Human Factors in Computing Systems CHI EA ’09, pages
4561–4566, Boston, MA, USA, 2009.

[37] B. Kreller, A. S.-B. Park, J. Meggers, G. Forsgren, E. Kovacs, and M. Rosi-
nus. UMTS: A Middleware Architecture and Mobile API Approach. IEEE
Personal Communications, 5(2):32–38, April 1998.

[38] B. Krishnamachari and S. Iyengar. Distributed Bayesian Algorithms for
Fault-Tolerant Event Region Detection in Wireless Sensor Networks. IEEE
Transactions on Computers, 53(3):241–250, March 2004.

[39] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Camp-
bell. A Survey of Mobile Phone Sensing. Communication Magazine,
48(9):140–150, September 2010.

[40] Y. Lee, S. S. Iyengar, C. Min, Y. Ju, S. Kang, T. Park, J. Lee, Y. Rhee, and
J. Song. MobiCon: A Mobile Context-Monitoring Platform. Communica-
tions of the ACM, 55(3):54–65, March 2012.

[41] H. Lu, D. Frauendorfer, M. Rabbi, M. S. Mast, G. T. Chittaranjan, A. T.
Campbell, D. Gatica-Perez, and T. Choudhury. StressSense: Detecting
Stress in Unconstrained Acoustic Environments using Smartphones. In Pro-
ceedings of the 2012 ACM Conference on Ubiquitous Computing, pages
351–360. ACM, 2012.

128

[42] N. Marquardt and S. Greenberg. Distributed Physical Interfaces with Shared
Phidgets. In Proceedings of the 1st International Conference on Tangible
and Embedded Interaction, pages 13–20, Baton Rouge, Louisiana, 2007.

[43] F. Mattern and C. Floerkemeier. From the Internet of Computers to the In-
ternet of Things. In Active Data Management to Event-Based Systems and
More, volume 6462 of LNCS, pages 242–259. Springer Berlin, Heidelberg,
Germany, 2010.

[44] T. Nelson. Literary Machines. Swarthmore, Pennsylvania, 3rd edition, 1981.

[45] M. C. Norrie. An Extended Entity-Relationship Approach to Data Manage-
ment in Object-Oriented Systems. In Proceedings of ER ’93, 12th Inter-
national Conference on the Entity-Relationship Approach, pages 390–401.
Springer Berlin Heidelberg, Arlington, USA, December 1993.

[46] M. C. Norrie, B. Signer, and N. Weibel. General Framework for the Rapid
Development of Interactive Paper Applications. In Proceedings of CoPADD
2006, 1st International Workshop on Collaborating over Paper and Digital
Documents, pages 9–12, Banff, Canada, November 2006.

[47] G. M. P. O’Hare, M. J. O’Grady, C. Muldoon, and C. A. Byrne. Ambient
Documents: Intelligent Prediction for Ubiquitous Content Access. In Pro-
ceedings of the 4th International Conference on Universal Access in Human-
computer Interaction: Ambient Interaction, pages 971–979, Beijing, China,
2007. Springer-Verlag.

[48] T. A. Phelps and R. Wilensky. Toward Active, Extensible, Networked Doc-
uments: Multivalent Architecture and Applications. In Proceedings of the
First ACM International Conference on Digital Libraries, pages 100–108,
Bethesda, Maryland, USA, 1996.

[49] H. Raffler. Other Perspectives on Ambient Intelligence. Password Magazine,
2006.

[50] M. Rahimi, R. Baer, O. I. Iroezi, J. C. Garcia, J. Warrior, D. Estrin, and
M. Srivastava. Cyclops: In Situ Image Sensing and Interpretation in Wire-
less Sensor Networks. In Proceedings of the 3rd International Conference
on Embedded Networked Sensor Systems, SenSys ’05, pages 192–204, San
Diego, California, USA, 2005.

[51] M. Reitz and C. Stenzel. Minerva: A Component-Based Framework for Act-
ive Documents. Electronic Notes in Theoretical Computer Science, 114:3–
23, 2004.

129

[52] J. Rouillard. Contextual QR Codes. In : ICCGI ’08. The Third Interna-
tional Multi Conference on Computing in the Global Information Techno-
logy, pages 50–55, Washington DC, USA, August 2008. IEEE Press.

[53] F. Sadri. Ambient Intelligence: A Survey. ACM Computing Surveys,
43(4):36:1–36:66, October 2011.

[54] A. M. J. Sarkar, K. Hasan, Y.-K. Lee, S. Lee, S. Zabir, and S. Muhammad.
Distributed Activity Recognition Using Key Sensors. In Proceedings of
the 11th International Conference on Advanced Communication Technology,
volume 3 of ICACT’09, pages 2245–2250, Gangwon-Do, South Korea, Feb-
ruary 2009. IEEE Press.

[55] A. Schmidt, M. Beigl, and H. W. Gellersen. There is More to Context than
Location. The Interactive Applications of Mobile Computing (IMC ’98),
23(6):893–901, November 1999.

[56] A. Sheth, C. Henson, and S. S. Sahoo. Semantic Sensor Web. IEEE Internet
Computing, 12(4):78–83, July 2008.

[57] B. Signer. Fundamental Concepts for Interactive Paper and Cross-Media
Information Spaces. PhD thesis, ETH Zürich, Switzerland, 2005.

[58] B. Signer and M. C. Norrie. As We May Link: A General Metamodel for
Hypermedia Systems. In Proceedings of ER 2007, 26th International Con-
ference on Conceptual Modeling, pages 359–374, Auckland, New Zealand,
November 2007. Springer-Verlag.

[59] B. Signer and M. C. Norrie. PaperPoint: A Paper-Based Presentation and
Interactive Paper Prototyping Tool. In Proceedings of TEI 2007, 1st Inter-
national Conference on Tangible and Embedded Interaction, pages 57–64,
Baton Rouge, USA, February 2007. ACM.

[60] C. F. Sørensen, M. Wu, T. Sivaharan, G. S. Blair, P. Okanda, A. Friday, and
H. Duran-Limon. A Context-aware Middleware for Applications in Mobile
Ad Hoc Environments. In Proceedings of the 2nd Workshop on Middleware
for Pervasive and Ad-hoc Computing, MPAC ’04, pages 107–110, Toronto,
Canada, October 2004. ACM.

[61] R. Spinrad. Dynamic Documents. Harvard University Information Techno-
logy Quarterly, 7:15–18, 1988.

130

[62] M. Srivastava, R. Muntz, and M. Potkonjak. Smart Kindergarten: Sensor-
based Wireless Networks for Smart Developmental Problem-Solving Envir-
onments. In Proceedings of the ACM SIGMOBILE 7th Annual International
Conference on Mobile Computing and Networking, pages 132–138, Rome,
Italy, July 2001. ACM.

[63] E. M. Tapia, S. S. Intille, and K. Larson. Activity Recognition in the Home
Using Simple and Ubiquitous Sensors. In Proceedings of Pervasive 2004,
volume 3001 of Lecture Notes in Computer Science, pages 158–175. Ber-
lin/Heidelberg, Germany, 2004.

[64] A. Tayeh. A Metamodel and Prototype for Fluid Cross-Media Document
Formats. Master’s thesis, Vrije Universiteit Brussel, 2011-2012.

[65] D. B. Terry and D. G. Baker. Active Tioga Documents: An Exploration
of Two Paradigms. Electronic Publishing–Origination, Dissemination and
Design, 3(2):105–122, May 1990.

[66] D. Thevenin and J. Coutaz. Plasticity of User Interfaces: Framework and
Research Agenda. In Proceedings of IFIP Conference on Human Computer
Interaction Interact ’99, volume 99, pages 110–117, Edinburgh, Scotland,
August 1999. IOS Press Publication.

[67] S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman. A Taxonomy of Wireless
Micro-Sensor Network Models. Mobile Computing and Communications
Review, 6(2):28–36, April 2002.

[68] V. Tsiatsis, A. Gluhak, T. Bauge, F. Montagut, J. Bernat, M. Bauer, C. Vil-
lalonga, P. Barnaghi, and S. Krco. The SENSEI Real World Internet Archi-
tecture, In Towards the Future Internet - Emerging Trends from European
Research, pages 247–256. IOS Press, 2010.

[69] G. M. Voelker and B. N. Bershad. Mobisaic: An Information System or a
Mobile Wireless Computing Environment. In Proceedings of the Workshop
on Mobile Computing Systems and Applications, pages 375–395. Springer,
Santa Cruz, USA, December 1996.

[70] R. Want, K. P. Fishkin, A. Gujar, and B. L. Harrison. Bridging Physical and
Virtual Worlds with Electronic Tags. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems, pages 370–377, Pittsburgh,
Pennsylvania, USA, 1999.

131

[71] R. Want, A. Hopper, V. Falcão, and J. Gibbons. The Active Badge Location
System. ACM Transactions on Information Systems, 10(1):91–102, January
1992.

[72] R. Want and D. M. Russell. Ubiquitous Electronic Tagging. IEEE Distrib-
uted Systems Online, 1(2), September 2000.

[73] R. Want, B. N. Schilit, N. I. Adams, R. Gold, K. Petersen, D. Goldberg, J. R.
Ellis, and M. Weiser. An Overview of the PARCTab Ubiquitous Computing
Experiment. IEEE Personal Communications, 2:28–43, December 1995.

[74] A. Weber, H. M. Kienle, and H. A. Müller. Live Documents with Contextual,
Data-Driven Information Components. In Proceedings of the 20th Annual
International Conference on Computer Documentation, SIGDOC ’02, pages
236–247, Toronto, Canada, October 2002.

[75] M. Weiser. The Computer for the 21st Century. Scientific American,
265(3):66–75, September 1991.

[76] M. Weiser. Some Computer Science Issues in Ubiquitous Computing. Com-
munications of the ACM, 36(7):75–84, July 1993.

[77] M. Weiser, R. Gold, and J. S. Brown. The Origins of Ubiquitous Computing
Research at PARC in the Late 1980s. IBM Systems Journal, 38(4):693–696,
1999.

[78] K. Whitehouse, F. Zhao, and J. Liu. Semantic Streams: A Framework for
Composable Semantic Interpretation of Sensor Data. In Proceedings of the
Third European conference on Wireless Sensor Networks, EWSN’06, pages
5–20, Zurich, Switzerland, February 2006.

132

Appendix A

Scenarios

In this chapter, we elaborate on the scenarios proposed in Chapter 4. For each
scenario, we discuss its purpose, its applicability and the external sources in-
volved.

A.1 Active Storytelling
Purpose: Involve children in a story by adapting the storyline to the current
environment. Make children aware of dangers and help them discover physical
phenomenas such as the change of temperature.

How: Sensors are employed within and around the house to detect changes in
the environment. Changes to the environment are reflected in the storyline. Ex-
amples of such changes could be the following:

• When it starts raining outside, the story being told could make the child
aware that it is useful to bring an umbrella along;

• When the temperature is high and the sun is at its highest point the storyline
could emphasis the dangers of a sunburn.

Involved sources: The sources for this scenario can be very varied and are free
to choose. Examples are:

• Temperature sensor;

• Light sensor;

• Humidity sensor;

• GPS.

1

A.2 Dynamic Restaurant Menu
Purpose: Prices of a diner menu autonomously change towards the current en-
vironment. These varied prices could for example allow the restaurant to cope
with extra costs.

How: Dynamically change the prices of the menu with respect to environmental
factors such as temperature, light-intensity, humidity and location. Examples of
such use could be the following:

• When you are eating outside on a terrace of a restaurant with a view on the
lake and the sun is shining, the price will be higher than when you would
dine inside;

• Food and beverages are recommended according to the current season.

Involved sources: The sources for this scenario can be very varied and are free
to choose. Examples are:

• Location sensor: GPS-location, RFID;

• Light sensor;

• Humidity sensor;

• Temperature sensor;

• Web service.

A.3 Adaptive Tour Guide
Purpose: Deliver the right information at the right time during a visit of the
area. This will allow people to discover the area at their own pace without the
intervention of a human tour guide.

How: Determine which places of interest are advised to visit with regard to the
current conditions. Recommendations may also depend on the current, past and
future characteristics of the environment in combination with the preference of
the user. Examples of such use could be the following:

• When the sun is shining and the temperature rises above 30, the adaptive
tour guide could recommend the user to visit a water park;

2

• Emphasise or inform the user when there are special events planned at that
moment.

Involved sources: The sensors for this scenario can be very varied and are free
to choose. Examples are:

• Location sensor: GPS-location, RFID;

• Light sensor;

• Humidity sensor;

• Temperature sensor;

• Web service.

A.4 Smart Content
Purpose: Determine the access to a file based on user authentication. Addition-
ally, we could filter the content towards the interests of a particular user.

How: Use an RFID-tag to identify the user. Filter the content of the document
based on the user’s social profile. Examples of such use could be the following:

• Close a file when the current user has no privilege;

• Show particular content of the document based on the user and add or re-
move specific content based on the user’s social Facebook interests.

Involved sources: The sources for this scenario can be very varied and are free
to choose. Examples are:

• GPS-location;

• RFID-reader in combination with RFID-tags.

Extra context: The following sources could assist the creation of the dynamic
document by providing external information.

• Twitter;

• Facebook.

3

A.5 Finger Reader
Purpose: Help children read their first sentences. When children start reading,
they use their fingers to follow a sentence. Since mobile phones and tablets are
employed with touch-screens, it is no longer possible to merrily touch the screen
without having a corresponding action performed. This means that, in most cases,
a touch on a touch screen will result in an action. By making use of a slider
or a joystick, we enable children to have a tactile interface to interact with the
document and to ”follow” the words in the sentences without triggering a certain
action on the reading device.

How: By moving the slider we change the focus of the currently read word.
Examples of such use could be the following:

• When the slider is moved to the left direction, it highlights the word on the
left of the current position.

Involved sources: For now we can assume that the following two sensors/actu-
ators are most suitable for the task.

• Slider;

• Joystick.

A.6 Fluid Reading
Purpose: In order to provide an interface that conveys information from any
position in the room, we may want to adapt the presentation of the document.

How: By using the proximity sensor we are able to detect whenever somebody
holds their phone up to his/her ear. This information can be used to determine
when to switch between different output modalities. The modality that may result
in the best user interface experience is chosen to present the information to the
user. Examples of such use could be the following:

• When reading a document in your car it is advised that you keep your eyes
on the road. Furthermore, as a corresponding action, the output modality
could change from a visual presentation to an auditory presentation.

4

Involved sources: The sensors for this scenario can be very varied and are free
to choose. Examples are:

• Proximity Sensor;

• GPS-location.

A.7 Fluid Font
Purpose: Maintain readability by automatically increasing/decreasing the font
size of the document based on the proximity of the user.

How: Use a proximity sensor to detect the presence of people. Based on the
proximity adjust the font size. Examples of such use could be the following:

• The further you are away from the screen, the bigger the font-size becomes;

• Close the document when no user is nearby.

Involved sources: The sensors for this scenario can be very varied and are free
to choose. Examples are:

• Proximity Sensor;

• GPS-location;

• Light sensor.

A.8 Interactive Vocabulary
Purpose: Enable children to educate themselves by dynamically adapting the
vocabulary to their needs.

How: Use a light-sensor to show the translation of a certain word. Depending
on the amount of light that was sensed, provide a hint of the translated word.
Examples of such use could be the following:

• Suppose a child wants to refine his knowledge of French. When the reading
device is covered with the hand, the light intensity will be low. When there
is a low light intensity, no hints are shown. Whenever the light intensity
crosses a certain threshold, it will start showing some hints. Hints can for
example be letters that appear according to the amount of incoming light;

5

• If the device is turned to the left or to the right, the letters of the translation
may be shuffled to give a hint to the child.

Involved sources: The sensors for this scenario can be very varied and are free
to choose. Examples are:

• Light sensor;

• Accelerometer.

A.9 Live catalogue
Purpose: Keep customers up to date by providing them with an accurate cata-
logue that always shows the current prices and the right amount of stock articles.
Since the data is always up to date, customers are able to make a correct judgment
of their purchases.

How: In order to keep an inventory of the store, storeowners could for example
use RFID tags to keep everything organised and link this information with the
database of the store. Afterwards, the catalogue could connect to the correspond-
ing database in order to obtain real time information. Examples of such use could
be the following:

• A magazine that will always present the right amount of stock articles.

Involved sources: The sensors for this scenario can be very varied and are free
to choose. We think that the following sensor could be useful to enable the cre-
ation of such dynamic document:

• RFID sensor

A.10 Live Travel Guide
Purpose: Keep a travel guide up-to-date by providing users with the most pop-
ular destinations and weather information.

How: Retrieve the latest top 10 destinations by accessing web-services from
travel and embed them in the travel guide. Furthermore the document could
present real life weather information for a certain destination by making use of
a web service and a sensor that provides the location.

6

Involved sources: The sensors for this scenario can be very varied and are free
to choose, examples are:

• GPS-location;

• Web service.

External Source: The document could make use of external data sources to
obtain useful information. Some of these external sources could be the following:

• Webservice;

• RSS feed.

7

	Introduction
	Context
	Research Question
	Sub-Questions

	Research Approach
	Review Existing Solutions
	Analyse Document Formats
	Develop Prototypes
	Define the Term ``Dynamic Content"
	Develop a Conceptual Model for Dynamic Content
	Develop a Document Editor as Proof of Concept

	Thesis Structure

	Background
	Ubiquitous Computing
	The Internet of Things

	Sensors and Smart Environments
	The Evolution of Sensors
	Sensor Data Analysis
	Semantic Sensor Data

	Context Awareness
	There is More to Context than Location

	Middlewares for Pervasive Systems
	Requirements for Middleware
	Available Middlewares

	The Evolution of The Internet of Things
	Analysis of a Research Project: Smart Kindergarten
	Commercial Solutions
	Open Research Problem in Ubiquitous Computing

	Ambient Intelligence
	Ambient Documents

	Scope of the Thesis

	Review of Dynamic Content in Digital Documents
	Analysis of the State of the Art
	Active Tioga Documents - 1990
	Multivalent Documents - 1996
	Stick-e Documents - 1996
	Live Documents - 2002
	Active Documents - 2003
	Minerva Documents - 2005
	Multimodal Documents - 2006
	WOAD Dynamic Documents - 2011
	Conclusion

	Review of Document Formats
	LaTeX
	HyperText Markup Language
	Portable Document Format (PDF)
	Extensive Markup Language
	OpenDocument
	DocBook
	Office Open XML
	Electronic Publication (EPUB)
	iBook
	Conclusion

	Dynamic Document Scenarios
	Scenarios
	Categorisation of Scenarios

	Prototypes
	RSL Metamodel
	Objectives of the Prototypes
	Infrastructure
	Prototype 1 - Interactive Vocabulary
	Prototype 2 - Adaptive Travel Guide
	Prototype 3 - Live Travel Guide

	Conclusion

	Conceptual Model of Dynamic Content
	A Formal Definition of Dynamic Content
	Conceptual Model of Dynamic Content
	Elements of the Conceptual Model
	Tubes as First Class Objects
	Conceptual Model

	Conclusion

	Proof of Concept: Document Editor
	Objectives of the Proof of Concept
	Related Systems
	Squidy
	Yahoo Pipes
	iBooks Author

	Document Editor
	Approach of the Document Editor
	Architecture of the Document Editor
	Comparison to Related Systems

	Conclusion

	Conclusion and Future Work
	Summary of the Research
	Research Questions and Main Contributions
	Limitations

	Future Work

	Scenarios
	Active Storytelling
	Dynamic Restaurant Menu
	Adaptive Tour Guide
	Smart Content
	Finger Reader
	Fluid Reading
	Fluid Font
	Interactive Vocabulary
	Live catalogue
	Live Travel Guide

