
FACULTEIT WETENSCHAPPEN EN BIO-INGENIEURSWETENSCHAPPEN
Departement Computerwetenschappen
Web & Information Systems Engineering Laboratory

Intelligent Source Code Visualisation for the
MindXpres Presentation Tool

Proefschrift ingediend met het oog op het behalen van de titel Master of Science in Applied Sciences
and Engineering: Computer Science, door:

Paul-Cãtãlin Meştereagã

Promotor: Prof. Dr. Beat Signer
Begeleider: Reinout Roels

JUNI 2014

©Vrije Universiteit Brussel, all rights reserved.

FACULTY OF SCIENCE AND BIO-ENGINEERING SCIENCES
Department of Computer Science
Web & Information Systems Engineering Laboratory

Intelligent Source Code Visualisation for the
MindXpres Presentation Tool

Graduation thesis submitted in partial fulfilment of the requirements for the degree of
Master of Science in Applied Sciences and Engineering: Computer Science, by:

Paul-Cãtãlin Meştereagã

Promoter: Prof. Dr. Beat Signer
Advisor: Reinout Roels

JUNE 2014

©Vrije Universiteit Brussel, all rights reserved.

Abstract

Presentations are an important medium to share and transfer knowledge.
They are used in our daily life in domains such as education, business or
even personal leisure activities. Since their introduction in the 1980s, digital
presentation tools have not evolved much. The core ideas remain the same.
Presentation tools are built around the slide concept, retaining the features
of their predecessor the overhead or slide projector. Spreading information
over multiple slides makes it difficult for the presenter to transfer knowledge
and for the audience to understand it. The visualisation of content became
more important than the content itself. Also there is a lack of tools to present
special content types such as source code.

MindXpres is a presentation tool that brings a shift of paradigms regard-
ing the creation, sharing and deliver of presentations. It is based on recent
research in domains such as hypermedia, spatial hypertext and zoomable
user interfaces. The focus is put on content. Information can be presented
in its original form, not being spread over several slides, using a zoomable
user interface and psychological concepts that enforce spatial reasoning. The
plug-in architecture is also an important feature that differentiates it from
current presentation tools.

In this thesis, we will focus on the problem of presenting special content such
as source code and moreover how to do it efficiently. Through a literature
study about difficulties in teaching and learning computer programming, we
concluded that some concepts are hard to comprehend just because of stu-
dents’ incapability to create a mental model of the program execution. An
efficient mental model is one that uses visuals and shows the user the changes
in the source code, such as variable changes, as the program runs. We study
the current implementations, approaches and efficiency of such applications.
Finally we created an intelligent plug-in for MindXpress to present source
code by applying what we learned through our research.

This plug-in is able to detect the specific programming language, highlight
syntax, go through the execution step by step, observe variable changes and
visualise recursion. All is being done using visualisation techniques and inter-
activity, giving the ability of the presenter to go to any step of the program’s

execution and observe the program’s state. This way the audience can build
an efficient mental model and have a better understanding of the matter
presented.

Acknowledgements

First of all, I would like to thank my promoter Prof. Dr. Beat Signer and my
advisor Reinout Roels for giving me the opportunity to realise this thesis.
They were always there to help, give guidance and push the project in the
right direction.

Next, I would like to thank my family for their support. To my parents,
for encouraging and supporting me to follow this amazing opportunity of
studying. Of course, my siblings are not to be missed out in my gratitude.

Finally I would like to thank my friends for making my life beautiful even
far away from home and for their support.

e

Contents

1 Introduction 2

2 Literature Study 6
2.1 Teaching and Learning Programming 6
2.2 Mental Models . 8
2.3 Related Work . 8

2.3.1 Bradman . 9
2.3.2 Jeliot 3 . 11
2.3.3 Notational Machine 13
2.3.4 RGraph . 15
2.3.5 VIP . 17
2.3.6 Current presentation tools 18
2.3.7 Overview . 18

2.4 Better Visualisations . 20
2.5 Requirements . 21
2.6 Conclusion . 22

3 MindXpres 24
3.1 MindXpres Architecture . 25

3.1.1 XML Container Format 26
3.1.2 Compiler . 26

3.2 Plug-in Mechanism . 27
3.2.1 Components . 27
3.2.2 Containers . 28
3.2.3 Structures . 28

3.3 How to Use . 28
3.4 Conclusion . 29

4 Source Code Plug-in 30
4.1 Specifications . 30
4.2 Conclusion . 34

5 Implementation 36
5.1 Architecture . 36

5.1.1 The Core . 36

I

CONTENTS II

5.1.2 Source Code . 39
5.1.3 Variables . 40
5.1.4 Recursion . 40
5.1.5 Control . 42

5.2 Graphical User Interface . 42
5.2.1 Source Code View . 42
5.2.2 Variables View . 43
5.2.3 Recursion View . 44
5.2.4 Control View . 45

5.3 MindXpres Integration . 45
5.4 Challenges . 47
5.5 Conclusion . 48

6 Use Case 50
6.1 C language . 50

6.1.1 Scenario . 50
6.1.2 The presentation . 50

6.2 Java language . 54
6.2.1 Scenario . 54
6.2.2 The presentation . 54

6.3 Conclusion . 56

7 Conclusions 58

1

1
Introduction

We use presentations in many areas of our life, from education to busi-
ness and personal activities. The web-based presentation sharing platform
SlideShare has 60 million monthly visitors [1] and it is estimated that each
day over 30 million presentations are created [33]. Tools such as Microsoft
PowerPoint1, Apple’s Keynote2 and OpenOffice Impress3 are familiar to most
of us. Evolving form the overhead projector, most presentation tools are built
around the slide concept, which limits the presentation to a sequential or-
der. The presenter must spread the information over multiple slides, making
it harder to transfer knowledge. The emphasis moves from the content to
visualisation and there is almost no support to include special content types
into the presentation.

MindXpres is a modern presentation tool that is based on research in do-
mains such as hypermedia, spatial hypertext and zoomable user interfaces. I
brings a new approach regarding the creation, sharing and delivering presen-
tations. MindXpres makes a separation between content and visualisation.
While creating presentations the focus is put on content. MindXpres tries to
resolve problems such as lack of overview, distinction between level of detail
or optimal use of spatial reasoning. The navigation between slides shifts
from a linear to a non-linear order. Using a zoomable user interface and
psychological concepts that enforce spatial reasoning, the information is not
spread over several slides and retains its original form. Moreover MindXpres
is an extensible framework. Its architecture makes it very different from

1http://office.microsoft.com/en-us/powerpoint/
2http://www.apple.com/iwork/keynote/
3http://www.openoffice.org/product/impress.html

2

http://office.microsoft.com/en-us/powerpoint/
http://www.apple.com/iwork/keynote/
http://www.openoffice.org/product/impress.html

3 CHAPTER 1. Introduction

other presentation tools. Based on a plug-in architecture it can be extended
very easily, giving the users the power to create specific plug-ins to present
special content types.

In this thesis we focus on the problem of presenting special content such as
source code and moreover how to do it efficiently. We conducted a literature
study through which we identified what are the difficulties in teaching and
learning programming. Based on this study we extend MindXpres with an
intelligent plug-in that gives the presenter the ability to present source code.

The first question that we put ourselves is “what are the main difficulties in
presenting source code? ”. To answer this question we conducted a literature
study about teaching and learning computer programming. Through this
study we found that there are real problems and difficulties especially for
novice students in understanding some concepts. These concepts are hard to
comprehend just because of student’s incapability to create a mental model
of the program execution. This led us to further study the matter in hand
and to determine what an efficient mental model is and how mental mod-
els contribute to a better understanding. An efficient mental model is one
that uses visuals and shows the user the changes in the source code, such
as variable changes, as the program runs. We also found out that there is
active research in this area. We studied the current research and tools used
to help students create such mental models, by looking at their approach and
implementation but also at their efficiency. Finally we decided over a set of
features that our plug-in will have. As this will be a MindXpres plug-in it
must retain all the characteristics of the tool. The user will focus on content,
so the plug-in has to be "intelligent" enough to automatically implement its
features. The user will insert the code and the plug-in should be able to
detect the specific language, highlight syntax, go to variables and method
definitions, go through the execution step by step, observe variable changes
and visualise recursion. To be able to simulate the execution flow and show
variable changes the plug-in will use some specific log files that will be loaded
by the presenter in the moment of presentation creation. The plug-in will
support multiple programming languages. Because of time limit, for this
thesis, we will implement this plug-in just for two programming languages
but it’s architecture will allow the extension for any other programming lan-
guage.

As a contribution of this thesis we created a tool to be used during presenta-
tions which help novices to gain an effective mental model of the programs
execution. Moreover this tool is not limited to one programming language
but can be extended to support any programming language. This makes it
different from any other tool, which were specifically built for one program-
ming language. We also succeeded to integrate the recursion visualisation

4

and successfully create a copies model of the recursion execution. Most of
the other tools which are dealing with recursion visualisation are specifically
built for this purpose and do not offer many other features. Another contri-
bution is also the literature study and the analysis of the current tool used
for teaching programming.

In Chapter 2 we present the findings of our literature study that we con-
ducted starting from our problem statement. We find out how presentation
are used in education and what are the difficulties in learning and teaching
programming languages. We present and analyse some related work and
based on the literature study we define the requirements for our plug-in.

In Chapter 3 we introduce the MindXpress presentation tool. We describe
the plug-in architecture, which is important to support us in developing our
own plug-in.

A description of our plug-in is given in Chapter 4. We describe the plug-in
specifications, requirements and its architecture.

In Chapter 5 we describe the implementation and the technologies used. We
describe how the plug-in is implemented and explain its integration with the
MindXpres presentation tool.

An example scenario for the plug-in is given in Chapter 6. We conclude this
Master’s thesis in Chapter 7 where we discuss our contributions and and how
this plug-in can be extended in the future.

5 CHAPTER 1. Introduction

2
Literature Study

In this chapter we present the literature study we conducted. The focus of
this thesis is to extend MindXpres with an intelligent plug-in that will give
the presenter the ability to present source code. The first question that we
ask ourselves is “what are the main difficulties in presenting source code? ”.
To answer this question we first must understand what are the main problems
in teaching and learning programming languages. The findings of our study
will be the support for the requirements of our plug-in.

2.1 Teaching and Learning Programming

Learning to program is a fundamental part of degree-level education in com-
puter science. Given its importance, teaching programming in an efficient
way is still a problem in today’s Higher Education [3, 18]. It is also known
that students have difficulties in learning how to program [16,19,26]. Tony
Jenkins argues that the main role of a teacher of programming should be
one of a motivator [17]. In many other subjects or areas of computing the
teacher is just a communicator of information. Just to present information
such as syntax and structure in a lecture is not enough.
A study has been made regarding different programming languages, such as
procedural or object-oriented languages [45], which showed that the choice of
programming language is influencing the comprehension of programs. An-
other study [35] showed that, for novice programmers, a strong domain
model is good for comprehending object-oriented style programs and that
a strong program model is good for a comprehending procedural style pro-
grams. One study goes further and investigates individual features of a

6

7 CHAPTER 2. Literature Study

language that are causing difficulties to novices [30]. They investigate con-
cepts and topics of object-oriented programming that novices found difficult.
The results of this study are very interesting and promising for our work.
The topics that proved to be most difficult are those which are relying on
a very good understanding of pointers and memory-related concepts. The
authors conclude that these topics are difficult just because the student does
not have the ability to comprehend what is happening to the program in
memory. The main reason is that they are incapable of creating a mental
model of the program execution. Most of this dynamic aspects of program
execution is presented by teachers using traditional methods such as pen
and paper, blackboard [34] or through laboratory sessions. Debugging tools
are used to observe the program execution and to watch variable changes in
different points of execution, but they are made to be used by experts and
make no real effort to reinforce a mental model [38]. Novice programmers
can be helped more in this aspect if the instructors would use a clearer ap-
proach to teach such topics.

A programming concept which is found difficult to understand by many
students is recursion [2, 9, 10, 13, 14]. Recursion is not just difficult to learn
but also difficult to teach [8,15]. A study [20] shows that there is a difference
in understanding recursion between novices and experts. Experts are able
to conceptualise the unique recursive invocations and the execution flow of
a recursive program, known as the copies model. Novices usually adopt the
notion of iteration [44], the loop model. The copies model defines a recursive
method as a method capable of creating new instances of itself passing the
control forward to new instances and back to the suspended ones. In the
loop model the recursive method is viewed as a single entity, not a series
of instances, which has a start point, an action part and a propagation
mechanism. An evaluation [11] has been made to examine if novices who
are helped to acquire the copies model of recursion, can effectively use this
model. Results showed that a large percentage of novices when using explicit
diagrammatic traces are demonstrating an understanding of the copies model
but are failing when not using diagrammatic traces. Trying to mentally
evaluate the recursive programs novices are showing an evidence for the
use of the incorrect loop model. These results are a good evidence that
novices have an inconsistent mental model and that the use of graphical
representations is necessary to help gaining a correct mental model. The
study concludes that teaching novices how to simulate a recursive execution
using diagrammatic traces can improve their ability to gain a correct mental
model of recursive process. Also there are other studies [7, 37] that are
showing the importance of using visualisation when teaching recursion.

Mental Models 8

2.2 Mental Models

When trying to solve a problem by writing a program, usually the user has
three main tasks to accomplish. Firstly he must have a goal to achieve,
which is usually given in the form of program specifications. Secondly the
user must know what the computer is capable of, having a mental model of
how computer works. Finally he must follow some steps to use the computer
for realising the proposed goal. This involves the steps taken from the ab-
straction of the problem to the writing of the program.

Computer programming is not an easy skill to learn. Research has been made
toward finding effective ways that facilitate the learning of programming [6].
It is generally accepted that having access to a mental model of the system,
learning and practicing programming is done much more effectively. How
to enhance a novice’s mental models became important, therefore research
has been made in this area [28,38]. A representation of the components and
the operating rules of the system is what we call a mental model and the
completeness of this representation may vary [29]. Thus, a mental model
can have more or less details of the components and the operating rules of
the system and be more or less closely to the real system. The more com-
plete the mental model, the more useful it is in supporting the apprehension
of programming. Having a deficient mental model results in an incomplete
understanding of how the computer works and will cause the novice pro-
grammer to have difficulties with writing correct programs.

In a procedural programming language the program becomes a sequential
process. This process is represented by various changes of states. The value
of the program variables are defining a program state at a certain location
of execution of the program. In a procedural language program states are
changing after an expression has been executed.

A possible solution for providing an effective mental model is to use visuals
and show to the user the changes in the source code, such as variable changes,
as the program runs. transparent to the user as the program executes [6].

2.3 Related Work

In this section we will review some relevant related work that has been
done in the field of software visualisation with the purpose of aiding novice
students to learn a programming language.

9 CHAPTER 2. Literature Study

2.3.1 Bradman

The Bradman [38] tool was specifically created for novice programmers who
are learning for the first time a programming language, implemented for the
C language. The main purpose of this tool is to emphasise the model of a
program and to help users to create a clear mental model of its execution.
Bradman works at the statement level. A statement is the smallest inde-
pendent component of a programming language which defines an operation
to be executed. A program is composed of one or more statements and a
statement it is composed of one or more expressions. There are plans to
extend the Brandman tool to work at the expression level. As each program
statement is executed Bradman explicitly displays how the program states
are changing. For each program statement it gives a textual explanation
about its function and context. Bradman is a window-based tool and in its
architecture are included the code window, variables window, explanations
window and the input/output window.

Figure 2-1: The code window.

The code window presented in Figure 2-1 displays the program code and
points to the current statement that is executed. The current statement is
indicated by the asterisk symbol on the left side of the statement. For longer
programs, scroll bars are used to see the entire code. The code window rein-
forces the model by showing explicitly how in the program state concerned
with control location changes after the execution of a statement. The aster-
isk symbol moves to the new location as the program executes. For novices
this can be useful when the new control location is one that they did not
expect.

The variables window presented in Figure 2-2 shows how each execution of
a statement changes the state of the program variables, thus improving the

Related Work 10

programs model. Variables and their values are presented in a list. When
a function is called during execution the local variables of that function are
displayed under those of the calling function while this is executed. Values
are displayed in two columns. The left column contains the variables value
before the current statement is executed. The right column shows the vari-
ables value after the current statement was executed. The current statement
is displayed in between these two columns. With this representation the
novice programmer can see the statement as agent who acts on the values of
variables in its pre-state and altering the values in its post-state.

Figure 2-2: The variables window

The explanation window contains textual information about the meaning of
each statement. It tells the user how the statement is causing the changes
reflected in the code window and in the variables window. The input/output
window is mainly straightforward, it gives the user the possibility to insert
the necessary input and observe the output of the program. This window
makes visible to the novice programmer the input buffer, which is normally
invisible, helping him to understand the input process better. An example
when this is useful is when the user enters more input than the program is
ready for.

We saw how the Bradman tool reinforced the model of how the program
is executed, more broadly how the computer produces an output given an
input. This is presented as a dynamic process which produces the results by
changing the program states. The efficiency of the Bradman tool was also
demonstrated in an experiment [39] and the result were favourable. The
experiment provided evidence that novice programmers can benefit from the
use of such a tool.

11 CHAPTER 2. Literature Study

As positive aspects of the Bradman tool we found the good visualisation of
the execution flow and the display of variable changes. These aspects are very
important in creating an effective mental model of the program execution.
As negative aspects we found the lack of support for other programming
languages or support for other kind of visualisations such as recursion.

2.3.2 Jeliot 3

Jeliot 3 [32] is a program visualisation tool that was built with the purpose
of helping novice students to learn procedural and object-oriented program-
ming languages. The development process of Jeliot has been research ori-
ented, and it offers a semi-automatic visualisation of the data and control
flow of the program. The purpose of this tool is to encourage students to
write their own programs and at the same time examine the visual repre-
sentation of the programs execution. The mental model of the computation
is acquired during this process and helps students to better understand how
the program works and gain new knowledge.

Jeliot 3 was built for Java, which is an object oriented programming lan-
guage that is often used as the first language to teach programming. The
tool offers the possibility to visualise object oriented concepts such as objects
and inheritance.

Figure 2-3: User interface of Jeliot 3

Related Work 12

The user interface of Jeliot 3 is illustrated in Figure 2-3 and it was built to
be simple and usable for novices. The menu bar is used during editing but
during visualisation it is taken away to create more space for the source code
viewer. The visualisation is controlled by a VCR-like menu and is displayed
in the right-hand side frame. The output of the program is printed in the
output console and the input requests are shown in the visualisation frame.
If an error occurs during execution the error viewer displays the reason and
the line of code that produced the error is highlighted.

The visualisation frame was built to be as explicit and consistent as possible
and reduce the cognitive load of the student. As presented in Figure 2-4 the
visualisation area is divided in four areas, each visualised component always
appear in its specific area. All expressions are evaluated and all the values
are displayed so that the student does not have to guess where the values are
coming from. The cause and effect are easily identified by the link between
visualisation and code highlighting. The elements in the visualisation form
are shown in an UML-like notation. The objects are displayed as boxes that
contain attributes and their values and the references are displayed as lines
connecting the object with the corresponding variable. An object can have
multiple references at any moment.

Figure 2-4: The structure of the animation frame in Jeliot 3

Jeliot 3 is a tool that provides clear semantics and engages students into the
learning process. It helps students to create a mental model of the programs
execution. After the evaluation of the tool, the results were favourable and
students get benefits form using Jeliot 3 [31]. However this evaluation con-
cludes that this tool is not flexible enough to support the different students
skills and the task they are performing (e.g. comprehending or debugging),
and that would imply the need to model the student by helping them with
extra learning material.

To conclude, we found Jeliot 3 as a good tool to visualise the execution of
object-oriented programs. It displays well the execution flow and the ob-

13 CHAPTER 2. Literature Study

ject instances. Also it was built with extensibility in mind, so it can be
extended to support other visualisations such as recursion. Besides these
positive aspects we found as negative aspects the lack of support for other
programming languages and the tight flexibility of the tool to support dif-
ferent student skills.

2.3.3 Notational Machine

In this section we will present a tool that uses the notional machine [4] [5]
and was built with the purpose of teaching introductory programming and
helping novice programmers to understand programming and its dynamics.
The implementation has been done as an extension of the BlueJ [24] environ-
ment and visualise the execution of Java programs in real time. The model
introduced does not work at the level of simple statements, but only at the
level of objects, classes, methods and the call chain between them. It also
shows objects state.

Figure 2-5 shows a diagram for a simple program. The peach coloured rect-
angles are classes and dark red rectangles are objects. The references are
represented by arrows. This is a simple representation but clicking on the
object the user will get an expanded view, which shows the state of its fields
and references. The expanded view is presented in Figure 2-6. Also a use
case is the visualisation of recursion. The arrow will point back to itself and
a number showing the count of recursive calls is displayed near. We find this
kind of visualisation for recursion ineffective because strengthens the loop
model of recursion, which is an inaccurate model.

Figure 2-5: Diagram of a simple program [4]

To invoke a method the user right clicks an object and selects the method
from the pop-up menu. During execution just the currently active methods
are shown in the diagram. The call sequence is animated, and the user can
control the animation speed. The currently active method is highlighted so
the user can visually follow the execution. Such a call chain is presented in
Figure 2-6.

Related Work 14

Figure 2-6: An object diagram with overlaid call sequence showing a chain
of method invocations [4]

The user interface of this tool is presented in Figure 2-7. Speed and stepping
granularity can be determined by the speed slider. Also the level of detail
can be specified by the detail slider. Depending on user’s intents a range
of details can be included or excluded. Another important component of
this tool is the heat map view, which was optimised for large programs with
hundreds of objects. Heat map view provides the least level of detail. As the
program executes the object color changes, going warmer as more methods
are invoked and cooling as methods finished executing. Using this view the
user can observe object creation and destruction and activity hotspots.

Figure 2-7: The heat map view while the program is executing [4].

15 CHAPTER 2. Literature Study

This tool is very recent and an evaluation regarding the efficiency and us-
ability of the tool has not been done. The authors are planning to do that.
We presented this work because it is very recent and it demonstrates that
this is an active field of research that still needs solutions and innovation.
A positive aspect of this tool is that it gives a good overview of the object
relations and their method invocation. Also another positive aspect is the
heat map display. There are also negative aspects such as the lack of source
code visualisation, the inability to work at the level of simple statements and
the lack of support for other programming languages. Also another nega-
tive aspect is the limited interaction with the execution flow, the program
can just be executed forward by an automatic animation or paused and it
does not allow the user to easily go to a certain step in the execution flow.
Another negative point is the recursion visualisation which strengthens the
loop model of recursion, which an inaccurate model.

2.3.4 RGraph

The RGraph tool [37] uses recursion graphs to visualise recursion for Java
programs. Recursion graph representation is based on the recursion trees.
The purpose of this tool is to help novice programmers to understand re-
cursion. RGraph can be used to generate the complete or partial recursion
graph of a program. A complete recursion graph displays the entire execu-
tion flow and a partial graph displays the recursion process at a certain time
in the execution flow. Partial graphs are used to test the students ability to
comprehend the recursion by making them to think what is missing in the
graph. Another feature of RGraph is the traceability, the call sequences are
traceable, which means that recursion graphs displayed are directed graphs.

The user interface of RGraph is presented in Figure 2-8. We can observe
that the user must specify the directory where the program is found and the
methods to be traced. The user also must specify the percentage of missing
labels, 0 percent meaning a complete graph. Clicking the ’Generate Graphs!’
button, the graph is displayed. In Figure 2-9 can be observed a generated
recursion graph. The oval nodes represent a recursion call and the square
nodes represent a pre-processing or a post-processing statement before or
after the recursion call.

Related Work 16

Figure 2-8: RGraph User Interface [37].

Figure 2-9: Recursion graph representation [37].

17 CHAPTER 2. Literature Study

An evaluation of the tool was made by surveying students before and after
using the RGraph tool. The students found the tool useful to understand
recursion and the results of the survey were in favour of RGraph.

A positive aspect of this tool is the good representation of the recursion
through recursion graphs which strengthens the copies model of recursion.
This tool is specifically built for recursion visualisation and does not support
any other features. We consider the lack of interactivity, the visualisation of
source code and variable changes as negative points of the tool.

2.3.5 VIP

The VIP [43] tool is a visual interpreter for C++ used to teach introduc-
tory programming. It is part of the Codewitz [25] project, an international
project with the purpose of creating free visualisation tools for teaching pro-
gramming. Even though is was developed for C++ it lacks the features of
object oriented programming and the programming language is restricted to
a subset of C++.

The user interface of VIP is divided in different sections and it can be ob-
served in Figure 2-10. The sections are the following: instructions, control,
source code, evaluation, variables and output\input.

Figure 2-10: VIP user interface.

The instructions section will display the instructions of the program. For
each line of the program another instruction can be displayed. The instruc-
tions section also can render and display HTML code.

Related Work 18

The control section includes some buttons that allow interaction with the
execution of the program. The program can be executed step by step or
continuously at a certain speed specified by the user. The user can step for-
ward but also backwards in the execution flow of the program. The program
source code is displayed in the source code section. The current line that
is executed is highlighted. The evaluation section displays details about the
operators evaluation in the current statement. Thus the operator precedence
can be observed. The user can see the evaluation of the statement not just its
result. The variables and stack can be observed in the variables section. The
variables are displayed dependent to their subroutine. To display pointers
and references are used arrows that point to the relevant variable. Variables
are displayed in a coloured box, the color indicating if the memory was read
or written at that point of execution. The user interface also includes a
section that displays the output of the program while it is executed. Also
includes a section where the user can give input to the program.

A positive aspect of this tool is the representation of memory pointers. They
succeed at giving a good representation of the pointers and references. An-
other positive aspect is that the tool provides visualisations of the statement
evaluation. Although it was built for an object-oriented programming lan-
guage it does not support all its features moreover just a subset of the C++
language. We consider this as a negative point. Another negative points can
be the lack of a graphical representation for recursion and support for other
languages.

2.3.6 Current presentation tools

The current presentation tools such as Microsoft PowerPoint or Apple’s
Keynote do not have an easy way to present source code. The content must
be divided over different slides and formatted text cannot be displayed using
a bounded box with scrollbars. The syntax highlighting of the code must
be done manually because there is no support for such action. Moreover if
we want to have interaction we must create an animation in which we have
to manually create each frame, all divided on different slides. To create a
visualisation that allows you to present source code, interact with the pro-
gram execution, view variables and display a graphical representation of a
recursive algorithm, is simply impossible in the current presentation tools.
The current presentation tools are very limited regarding the presentation
of specialised content.

2.3.7 Overview

In this section we have seen a review of some related tools used for teaching
programming to novices with the purpose of strengthening the mental model

19 CHAPTER 2. Literature Study

of the program execution. We saw the positive and negative aspects of each
tool and to recapitulate we present an overview by comparing the tools based
on the following criteria:

• Source Code: Does the tool displays the source code as it executes?

• Variable Changes: Does the tool displays the variable changes?

• Interactivity: Does the tool support interactivity with the execution
flow?

• Procedural: Does the tool support procedural programming?

• Object-oriented: Does the tool support object-oriented programming?

• Recursion: Does the tool support an effective recursion visualisation?

• Multiple Languages: Does the tool support multiple programming lan-
guages?

• Extensibility: Can the tool be extended to support different program-
ming languages?

We can observe in Table 2-1 that each of these tool focuses only on specific
aspects and each one has some limitations.

Source
Code

Variable
Changes

Interactivity Procedural

Bradman X X X X
Jeliot 3 X X X
Notational
Machine

X

RGraph
VIP X X X X

Object-oriented Recursion Multiple
Languages

Extensibility

Bradman
Jeliot 3 X
Notational
Machine

X

RGraph X X
VIP

Table 2-1: Comparison between different tools.

Better Visualisations 20

2.4 Better Visualisations

As this thesis focuses on presentations, we also conducted a literature study
regarding presentations and information visualisation to enhance the display
and the outcome of our plug-in. Nowadays teachers are using interactive pre-
sentation tools. Research has been made to measure the influence of these
interactive presentation tools on teachers pedagogy [23]. This is influenced
by many factors but one of them is the resources that are available to the
teacher. We want our plug-in to be an efficient resource. Using traditional
presentation software, such as Microsoft PowerPoint or Keynote, it is ex-
tremely difficult, if not impossible, to create such a representation that we
propose. Also the drawback of such slidewares are well known [40].

Our plug-in must help learners to enhance their mental model about how
the presented program works and we think that use of animation and inter-
activity is necessary. Dynamic visualisations are becoming more and more
frequent in education. Lowe shows that interrogation of a dynamic visualisa-
tion during learning [27] can be effective. Animation, as a dynamic visuali-
sation, has the capability to help learners to build consistent mental models
of complex processes.The use of animation can facilitate [41] in many situa-
tions such as showing change over time. A real change in a process should
be natural to transpose it in a metaphoric change during a presentation.
There are many forms of animation, which are determined by the informa-
tion to be transmitted. Moreover interactive animations offer the possibility
for learners to have a selective view of information that way avoiding excess
of information. So from animation we are moving to interactivity.

The difficulties of understanding and comprehending a process can be ex-
ceeded by using interactivity, which is known to facilitate learning. Being
able to start, stop and replay an animation can allow reviewing or focusing
on certain steps within animation. Using close-ups, zooming, alternative per-
spectives, and control of speed are even more likely to facilitate perception
and comprehension. Interactivity may be the key to overcome the drawbacks
of animation as well as enhance its advantages. [41]

We previously mentioned that the role of a teacher should be more than one
of a presenter. His role should be one of a motivator. Kelleher and Pausch
showed that storytelling can be used to motivate programming [21]. Also
Gershon and Nahum showed that storytelling can have an important role
in information visualisation [12]. Stories are used to transmit information,
cultural values or experiences. From the invention of writing to the printing
press until today, technology has always provided new means to tell stories.
Now computer having an important role in our lives, storytelling is adapt-
ing to our computerised world. They are stating that “a story is worth a

21 CHAPTER 2. Literature Study

thousand pictures” and you can present information in a story-like fashion.
To do that, they present some key steps such as building the big picture,
animating the events, resolving conflict and ambiguity. Also they introduce
the ’comic metaphor’ in which information is presented side by side, in a
time line, such as in a comic book.

2.5 Requirements

Having this literature study as basis, we define some requirements for our
plug-in. Requirements are conditions that are needed to be accomplished in
order to achieve an objective or to solve a problem [22]. From our literature
study we have concluded that for novice programmers the most important
thing, towards better comprehension, is having a good mental model of how
program works. We also concluded that an efficient mental model is one
that uses visuals and shows the user the changes in the source code, such as
variable changes, as the program runs. Moreover we have seen that recursion
can be a difficult concept to grasp, and that it is better comprehended when
visualisation is used. Based on that, we define the following requirements:

R1. Mandatory: The plug-in must support multiple programming lan-
guages [45]

R2. Mandatory: The display of the source code must be done in an effi-
cient way and not be affected by its length [40]

R4. Mandatory: The plug-in must be able to display the flow of the pro-
gram [6,28,32,38]

R5. Mandatory: The plug-in must be able to display changes of variables
values [6, 28,32,38]

R6. Mandatory: The plug-in must support interactivity, the user must be
able to go at any step in the execution flow. [23,41]

R7. Mandatory: The plug-in must respect the MindXpres guidelines and
be content oriented. The visualisation must be automatically gener-
ated. [36]

R8. Recommended: The plug-in must be able to graphically display re-
cursion [7, 11,37]

R9. Optional: The plug-in must allow navigation within the code [41]

R10. Optional: The plug-in must be able to show the program output
[6, 28,32,38]

Conclusion 22

We have defined some mandatory requirements that we think are absolute
necessary for our plug-in. They are essential in helping the audience to
understand how the presented program works and to create a mental model
of its execution. The recommended requirements will enhance the plug-in
and will increase its capabilities. The optional requirements are not vital for
our plug-in but certainly they will give a plus. In the scope of this thesis,
since we are time constrained, the optional requirements will be implemented
if the time will allow.

2.6 Conclusion

In the previous sections we presented the findings of our literature study.
This form the basis for the requirements that we defined for our plug-in. We
have seen that teaching and learning programming is not such an easy task.
For novice programmers the most important thing, towards better compre-
hension, is having a good mental model of how computer works. Specific to
our problem we have seen that an effective mental model is one that uses
dynamic hints that make transparent to the user all the changes in the vari-
able values, source code and output as the program executes. We presented
some related work and their efficiency, that gives us support for our work.
Also we showed that using visualisation techniques such as animation and
interactivity we can enhance the outcome of our plug-in.

In the next chapter we introduce the MindXpres presentation tool. We
describe the plug-in architecture, which is important for the development of
our own plug-in.

23 CHAPTER 2. Literature Study

3
MindXpres

In the previous chapter we presented our literature study, through which we
identified some of the problems that novice programmers are facing. Based
on this study, we extend the MindXpres presentation tool. In this chapter
we introduce the MindXpres [36] presentation tool, which will be used to
implement our plug-in.
MindXpres is a modern presentation tool that steps away from the classical
slide concept. It changes the way we interact with presentations bringing
new features that enhance the flexibility of the tool and are solving some
of the problems of the common tools such as Microsoft PowerPoint, Ap-
ple Keynote or OpenOffice Impress. MindXpres tries to resolve problems
such as the lack of overview, distinction between level of detail or optimal
use of spatial reasoning. The navigation between slides shifts from a linear
to a non-linear order. Using a zoomable user interface and psychological
concepts that enforce spatial reasoning, the information is not spread over
several slides and retains it’s original form. With MindXpres the presenta-
tion is becoming more audience-oriented, while the common sildeware are
presenter-oriented by facilitating the content creation and the whole aes-
thetic part of it, increasing the ease of use for the presenter. MindXpres is
an extensible framework. Its architecture makes it very different from other
presentation tools. Based on a plug-in architecture it can be extended very
easily, giving the users the power to create specific plug-ins to present spe-
cial content types, without any loss of ease of use offered by the common
slide-ware.
Within the architecture of MindXpres the separation between content and
visualisation is made very clear, similar to a LATEXdocument. The creation of
the domain-specific language that focuses on content is handled by a graph-

24

25 CHAPTER 3. MindXpres

ical editor and the visualisation is done by the compiler tool based on a
template. The output is an HTML5 document which makes portability and
distributability possible across different devices.
The plug-in mechanism of MindXpres offers users the possibility to present
special content types by adding new components which facilitate that. Ad-
vanced features such as non-linear traversal of the presentation, hyperlinks,
transclusion, semantic linking and navigation of information, multimodal
input, dynamic interaction with the content and the import of external pre-
sentations now are available with MindXpres.
In the following sections we will have a closer look to MindXpres architec-
ture and mention the features that are helping us in the development of the
plug-in.

3.1 MindXpres Architecture

In the following paragraphs we will briefly describe how MindXpres is built.
The architecture of MindXpres consists of three components as is presented
in Figure 3-1. First component is the XML Container Format which is used
to define the content to be used in the presentation. The second one is the
Compiler which transforms the XML document into an HTML document.
The last one is the output format with the visualisation layer.
To create a presentation a user has two options. He can write the content of
the presentation directly in XML or using a WYSIWYG Editor that could
generate the XML for him. The compiler is processing the XML file and
outputs the presentation in the selected format.

MindXpres Architecture 26

Figure 3-1: MindXpres architecture (Source: R. Roels, B. Signer [36])

3.1.1 XML Container Format

To shift the focus from visualisation to content, MindXpress uses the XML
language, which provides a semantic interface to define presentations. An
XML schema is used to validate the XML document. We can see in the
following an example of an XML document:� �

1 <presentation theme="vub">
2 <slide title="foobar">
3 <image src="foobar.jpg">
4 <bulletlist>
5 <item>item1</item>
6 <item>item2</item>
7 </bulletlist>
8 </slide
9 </presentation>� �

This XML file will generate a presentation which contains one slide. The
slide has a title and includes an image and a bullet list with two items.

3.1.2 Compiler

The role of the compiler is to validate the XML document based on the XML
schema, to parse it and transform it into valid HMTL5 document. The XML
document used in the previous example will be transformed by the compiler
in the following HTML code:

27 CHAPTER 3. MindXpres

� �
1 <div data-type="presentation" data-theme="vub">
2 <div id="element_1" data-type="slide" data-title="foobar">
3
4
5 item1
6 item2
7
8 </div>
9 <div>� �
3.2 Plug-in Mechanism

MindXpres was built to support extensibility. This is done through the plug-
in mechanism. Most of the presentation tool are very limited when it comes
to expandability. If you want some feature that the tool does not support it is
often difficult or even impossible to add that feature by yourself. MindXpres
changes that, because it does not have a core with hardcoded components
and aesthetics. The core presentation engine of MindXpres is seen as a plug-
in framework. Nothing is hidden internally and most of the components are
developed as plug-ins. If you want to add new features, it offers a mechanism
to do that by plugging in any feature in a user-friendly way. You have access
on a very low level, being able to modify or ad functionality. Plug-ins are
developed in JavaScript and are interacting with the presentation content
through a specific interface. To add a new plug-in is as simple as placing it
in a specific folder.
This plug-in based architecture of MindXpres is most important to us be-
cause it allows us to expand the presentation tool by creating a plug-in to
present source code. The plug-in will automatically recognize the program-
ming language, highlight the syntax and adding scroll bars for longer code.
Moreover its functionality will be much more complex by providing to the
presenter the possibility to interact with the code by showing an execution
flow and variables states. All this with the purpose to better illustrate its
execution so that the audience can have a better mental model of that.
MindXpres is based on three major types of plug-ins such as components,
containers and structures. They will be discussed in the following subsec-
tions.

3.2.1 Components

Plug-ins which provide visualisations and functionality for a specific content
type for different content containers are called components. Examples of such
components include images, video or source code in our case. In MindXpres
every content container is a plug-in. The role of the plug-in is to decide how

How to Use 28

to display its content and how the presenter can interact with it. We can
give a good example with a video plug-in. For instance, a plug-in component
that provides video uses flash player. However, one want to use the HTML5
component and so he can modify the current plug-in or create a new one.
Our plug-in will be a component plug-in which will decide how to display
the source code and how the presenter will interact with it, also providing
the means to do that.

3.2.2 Containers

Containers provide functionality to visually organize components. Shortly,
containers are elements that contain components. The best example for a
container is a slide. Each slide can contain different content but usually
they contain some reoccurring elements such as slide title, slide number or
author’s name. The Simplification of users work is done by abstracting these
common elements to a higher level. A container can help user to lay out the
content by defining presets or allowing definitions of layouts. Also a container
can also contain other containers, not just components.

3.2.3 Structures

Structures allow to lay out components on a larger scale. For instance,
in a Zoomable User Interface, to display the element in a grid. The dif-
ference between structure and container plug-ins is that structure plug-ins
have ties to the XML language that defines the presentation. For example
as LATEXprovides structure in documents such as chapters, sections and sub-
sections, the structure plug-ins can define structures that can be used from
the XML language. This is mostly necessary for complex visualisations.
Structures are more complex and on a higher level than containers.

3.3 How to Use

As we previously stated to add a new plug-in is as simple as placing it in
a specific folder. To keep things clean all the plug-ins are contained into
individual folders. The plug-ins folder includes all JavaScript and CSS files,
images and other relevant resources. In this way the management of the plug-
ins is done very easily, simply by adding or removing plug-in folders in the
plug-in directories. MindXpres also has some specific naming conventions,
that enables the core to know what to load and how to access the loaded
information. Every plug-in must contain a file called plugin_info.js
which contains some plug-in-specific information, such as the tags that it
provides for the XML authoring language but also the name of the main
plug-in object, which is initiated by calling its init() method. In Figure
3-2, the structure of a video plug-in folder is presented.

29 CHAPTER 3. MindXpres

Figure 3-2: The plug-in structure (Source: R. Roels, S. Beat [36])

3.4 Conclusion

This chapter was an introduction to MindXpres. We have seen howMindXpress
solves some problems of the traditional presentation tools and described its
architecture. The most important part for us is the plug-in mechanism that
gives the possibility to add, modify, and remove features in an easy way.
This mechanism will allow us to extend MindXpres by creating a component
plug-in.

4
Source Code Plug-in

In the previous chapter we have seen the plug-in architecture of the MindXpres
presentation tool. MindXpres in its basic version does not support com-
plex visualisations but plug-ins are used to extend the basic functionality of
MindXpres to support such complex visualisations. This thesis will consist
of extending the capabilities of MindXpres with a plug-in that supports the
visualisation of source code and program’s execution. Using this plug-in, a
user will be able to present source code and moreover a program’s execution
with little effort.

In this chapter we will describe our plug-in. Having our literature study and
the requirements we defined as the basis, we establish the specifications for
our plug-in. Requirements are telling what the plug-in should do and the
specifications are telling how the requirements will be accomplished in the
implementation.

4.1 Specifications

A specification describes how the implementation must be done in order to
achieve a requirement [22]. In the following paragraphs we will describe the
specifications for our plug-in.

The plug-in must support multiple programming languages (requirement
R1). This is an essential requirement of our plug-in because of multiple exist-
ing programming languages. In order to achieve this requirement the plug-in
must support extensibility for any programming language. One should be

30

31 CHAPTER 4. Source Code Plug-in

able to easily write an extension, that will extend the support for another
programming language. Thus in the implementation we must take this into
consideration and provide support for the future extension of the plug-in.

The current slideware tools are not supporting the presentation of source
code. Large amounts of text are not well displayed and must be scattered
between different slides. Our plug-in must allow the display of the source
code in an efficient way and not be affected by it’s length (requirement R2).
This requirement can be achieved by the following specifications. If the
length of the source code is larger than the current view, then scrollbars
must be used. Also to have an efficient and more natural display of the
source code, this must be displayed in a formatted way and with the syntax
highlighted. In Figure 4.1 we can see a possible implementation of these
specifications.

Figure 4-1: A possible view of the source code

To create an effective mental model we must use dynamic hints as the pro-
gram executes, thus we must be able to display the flow of the program
(requirement R3). To achieve this requirement we can use animation. Dur-
ing the animation the current line which is executed must be selected and
emphasized by using some visual clues. The number of the current line
should be also displayed. An example of this specifications can also be seen
in Figure 4-1. We observe the current line which is in execution is high-
lighted in yellow, on the left side we have the line numbers displayed and at
the bottom we can see the step number in the execution flow.

Specifications 32

As in an effective mental model, while the program is executed we must
make transparent to the user the changes in variables value (requirement
R5). Thus while the animation of the program flow is running, for each line
that is executed we must display the variables values. For each variable we
display the old value that it had before the current statement was executed
and the new value that the variable got after the current statement was exe-
cuted. In this way the effect of each statement on variables can be observed.
An example of such visualisation can be observed in Figure 4-2. In the first
column we have the variables with their names. In the second column we
have the old values of the variables, the values that the variables had before
the execution of the current line. In the third column we have the new values
of the variables, the values that the variables have after the execution of the
current line.

Figure 4-2: A possible view of the variables values

The plug-in must support interactivity, the user must be able to go to any
step in the execution flow (requirement R6). The animation of the execu-
tion should not be continuous but rather giving the possibility to the user to
interact with it. Thus the user will have control over the execution by being
able to go forward or backward step by step and observe the program states.
Moreover the navigation must be easy, and the user must have the possibility
to quickly go to a certain state in the execution flow. In Figure 4-1 can be
observed an interface that will give such possibilities. In the bottom part of
the figure we can see two buttons labelled ’Previous Step’ and ’Next Step’
that will allow the user to interact with the execution and go step by step
forward or backward. Also we can observe a slider, that will allow the user
to go faster at a specific step in the execution flow using just a drag action.
This is very useful when users want to skip certain parts of the code and
go directly to the interested part of the programs execution. Displaying the
step number will also help remembering where exactly the interested part is.

In MindXpres the separation between content and visualisation is made very
clear. The plug-in must also reflect that (requirement R7). The user should

33 CHAPTER 4. Source Code Plug-in

be focused on content and the visualisation should be automatically gener-
ated by the plug-in. Thus the plug-in must have a mechanism to retrieve the
necessary data to generate the visualisation. This mechanism will be clearly
explained in the next chapter.

Visualising recursion can improve the ability to comprehend recursive sub-
routines, that is why it is recommended that our plug-in should be able to
graphically display recursion (requirement R8). As we saw in our literature
study the visualisation must enhance the copies model. This model defines
a recursive method as a method capable of creating new instances of itself
passing the control forward to new instances and back to the suspended
ones. A representation of recursion can be done using recursion trees [42].
In Figure 4-3 we can see such an example. Each node in the tree represents
a copy of the recursive method. The root represents the first method that
creates new instances (its children) of itself and it passes the control forward
and so on until a leaf is reached that means the recursive call has ended
and the control is passed back to its parent and so on until the root is back
reached. Also for each node the method call is displayed together with its
input parameters.

Figure 4-3: A representation of a recursion tree

For more ease of navigation and comprehension of the program the plug-in
must allow navigation within the code (requirement R9). This requirement
can be achieved by creating links between variable or methods and their def-

Conclusion 34

inition. The user can easily go to a variable or method definition by clicking
on it.

It is also beneficial that the user can observe the output of the program
(requirement R10). Even if the user can follow for each statement how the
variables are changing and observe for an output operation the value, an
explicit display of the programs output will be beneficial.

4.2 Conclusion

In the previous sections we defined the requirements and the specifications
for our plug-in. All the requirements are based on the literature study con-
ducted in Chapter 2. By building a plug-in that is accomplishing the require-
ments we will have a MindXpres plug-in, which will help people to better
present source code and to visualise program execution, with a very good
applicability in education. In the next chapter we go in detail with the ac-
tual implementation of the plug-in. We give technical details, documenting
how the specifications suggested in this chapter are made into a functional
implementation.

35 CHAPTER 4. Source Code Plug-in

5
Implementation

In Chapter 4 we defined the requirements and the specifications for our plug-
in. Based on that we will implement our plug-in. In this chapter we will
present in detail the implementation of the plug-in. First we will describe
the architecture, with its components, and describe for each component how
it is implemented. Secondly we will describe the graphical user interface of
the plug-in. Lastly the integration with MindXpres will be presented.

5.1 Architecture

In this section we will describe the architecture of the plug-in. Since our
plug-in has multiple functionalities like displaying source code, view variables
values, displaying graphically the recursion process and allowing interactiv-
ity with the program flow we divide the architecture by components, each
component will represent a functionality. Thus we have the following com-
ponents: The Core, Source Code, Variables, Recursion and Control. We will
describe the implementation of each component separately in the following
sections.

5.1.1 The Core

The most important part of our plug-in is the core. Here we store all the
data that we need for our plug-in to work and all our components will use
this data.

Let us remember one important requirement for our plug-in, that the visual-
isation must be automatically generated. The user must be concerned about

36

37 CHAPTER 5. Implementation

the content and let the plug-in create the visualisation. That can mean the
user must insert the source code, and the plug-in will do the rest. To do
such thing we need an interpreter that could interpret the program. It is
not feasible to do that and it will be hard to extend the plug-in for any
programming language. Thus we came up with a mechanism to retrieve the
necessary data to generate the visualisation. We request to the user to input
a file which contains the data or the information from which the data can
be extracted. A simple example of such file is a debugger log file. The user
runs the program in a debugger and generate a log file. Such file can be
easily generated and can contain the data we need. Log files always have a
certain structure so they are easy to parse. By creating this mechanism we
can extend the plug-in for any programming language using any format for
the input file. Before going into detail of this mechanism of data retrieval,
let us see the structure of the core. In the following listing we can see the
definition of the CodeVis class.� �

1 function CodeVis() {
2 this.flow ;
3 this.vars;
4 this.line ;
5 this.data;
6 this.recursivity ;
7 this.recursive_function ;
8 this.recursive_calls ;
9 this.recObj;

10
11 this.init = function(data) {
12 this.data = data;
13 this.flow = new Array();
14 this.vars = new Array();
15 this.line = new Array();
16
17 this.recursivity = false;
18 this.recursive_function = null;
19 this.recursive_calls = null;
20
21 this.recObj = new Array();
22 }
23 }� �

This class stands at the core of the plug-in and it contains the data needed for
the visualisation. The flow property is an array which contains the program
flow, to be more specific for each element in the array the key represents the
step of the flow and the value represents the line number at which the exe-
cution is found. The vars property is also an array which contains the vari-
ables and their values. We will go later into detail explaining the structure of
this array. line property is also an array which contains the lines of code.

Architecture 38

For every value of the array, the key represents the flow step and the value
is a string which contains the line of code that is executed at that step. The
properties recursivity, recursive_function, recursive_calls
and recObj are needed to construct the recursion visualisation and will
be explained later. The data property will be initialised with the content
of the input file.

Now that we have an overview of the core structure let us describe the data
retrieval mechanism. As we said before we want our plug-in to be extensible
for any programming language and by using this mechanism we made it pos-
sible. The user must import a file that contains the data or the information
that we need to extract the data. We said that such a file can be a debugger
log file. For the plug-in to be able to read a certain file, the CodeVis class
must be extended with a method that parse the file and extracts the data.
To exemplify how this is done, for the purpose of this thesis, we extended
the core to be able to present source code written in C and Java. For the C
language we use as input a GDB: The GNU Project Debugger1 log file. We
chose GDB because it is widely used, has support for Windows and Unix sys-
tems, also on many Linux distributions is installed as a default package. For
the Java language we use as input Java Debugger (JDB)2 3 log files. Both
are command line debuggers, they can provide the information we need and
are easy to use. To extend our class we simply define the following methods:

� �
1 CodeVis.prototype.gdb = function(params) {
2 var recursive_function;
3 var recursive_calls;
4 recursive_function = params[0];
5 recursive_calls = params[1];
6
7 if (typeof recursive_function !== ’undefined’ && typeof

recursive_calls !== ’undefined’) {
8 this.recursivity = true;
9 this.recursive_function = recursive_function;

10 this.recursive_calls = recursive_calls;
11 }
12 /* here is be the code that parse this.data and initialise

this.flow, this.vars, this.line and this.recObj */
13 }
14
15 CodeVis.prototype.jdb = function(params) {
16 var recursive_function;
17 var recursive_calls;

1http://www.sourceware.org/gdb/
2http://docs.oracle.com/javase/7/docs/technotes/tools/windows/

jdb.html
3http://docs.oracle.com/javase/8/docs/technotes/tools/unix/jdb.

html

http://www.sourceware.org/gdb/
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/jdb.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/jdb.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/jdb.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/jdb.html

39 CHAPTER 5. Implementation

18 recursive_function = params[0];
19 recursive_calls = params[1];
20
21 if (typeof recursive_function !== ’undefined’ && typeof

recursive_calls !== ’undefined’) {
22 this.recursivity = true;
23 this.recursive_function = recursive_function;
24 this.recursive_calls = recursive_calls;
25 }
26 /* here is be the code that parse this.data and initialise

this.flow, this.vars, this.line and this.recObj */
27 }� �

By calling one of this method we will extract the data from our file and we will
have all we need for our visualisation. An example of a simple initialisation
of the plug-in is the following:� �

1 codevis = new CodeVis();
2 codevis.init(reader.result);
3 codevis.gdb();� �

In this way the plug-in will have access to codevis.flow, codevis.vars,
codevis.line, codevis.recObj and it will be able to display the visu-
alisation. Also to be noted that in the latest example we send no parameters
to the codevis.gdb() constructor, that means that the visualisation will
not include the display of a recursion tree.

One can easily extend the plug-in to support a new programming language
by extending the codeVis class.

5.1.2 Source Code

Our next step in the implementation is to display the source code. For a
good comprehension and a good presentation the source code must be easy to
read, thus the syntax must be formatted and highlighted. There are plenty1

of Javascript libraries that we can use to accomplish that. For our plug-in
we chose Prettify 2. This is a Javascript library and a CSS file that allows
automatic syntax highlighting of source code within an HTML page. As
stated on their website the library has the following features:

• Works with code that includes embedded links or line numbers.

• Has a simple API.
1http://www.1stwebdesigner.com/css/16-free-javascript-code-

syntax-highlighters-for-better-programming/
2https://code.google.com/p/google-code-prettify/

http://www.1stwebdesigner.com/css/16-free-javascript-code-syntax-highlighters-for-better-programming/
http://www.1stwebdesigner.com/css/16-free-javascript-code-syntax-highlighters-for-better-programming/
https://code.google.com/p/google-code-prettify/

Architecture 40

• Small size: the loading of the page is not affected.

• Supports CSS styling.

• Automatic language detection. Supports all C, Bash, and XML-like
languages.

• Can be extended for other languages.

• Supported by major browsers. Used by code.google.com and stack-
overflow.com

5.1.3 Variables

Another functionality of our plug-in is the display of variables values, so that
one can observe, as the program runs, how the values are changing. All the
data about variables is stored in the vars array. For each element of the
array the key represents the step of the execution flow and the value must be
an object which contains the name of the variable, the old value and the new
value of the variable at that specific step in the execution flow. The structure
of this object can be observed in the following example, which represents a
variable named i with an old value 0 and a new value 1.� �

1 Object {name: "i", old_value: "0", new_value: "1"}� �
5.1.4 Recursion

We chose for the graphical representation of recursion to use recursion trees.
To display such trees we opted for a JavaScript library instead of writing our
own graphical generator. We chose to use D3 (Data Driven Documents)1

library, which is a JavaScript library mostly used in the domain of infor-
mation visualisation to create and control interactive graphical displays of
data. Using D3 we will be able to create a graphical representation of the
recursion tree and interact with it.

To be able to build a recursion tree we must have the necessary data in
a specific format required by D3. Each node in the tree must have a name,
this name will be displayed near the node. In our case the name can be
a string representing the method call and its parameters. Also a node can
have children, so we need to specify it’s children. The children property of
the node is an array which contains other nodes. An example of such format
is the following:

1http://d3js.org/

http://d3js.org/

41 CHAPTER 5. Implementation

� �
1 var treeData = [{
2 "name": "quicksort(x={2, 4, 1, 0}, first=0, last=3)",
3 "children": [
4 {
5 "name": "quicksort (x={1, 0, 2, 4}, first=0, last=1)",
6 "children": [
7 {
8 "name": "quicksort (x={0, 1, 2, 4}, first=0, last=0)",
9 "children": [],

10 },
11 {
12 "name": "quicksort (x={0, 1, 2, 4}, first=2, last=1)",
13 "children": [],
14 }
15]
16 },
17 {
18 "name": "quicksort (x={0, 1, 2, 4}, first=3, last=3)",
19 "children": [],
20 }
21]
22 }];� �

A graphical representation of the structure presented above, using D3 to
generate it, can be observed in Figure 5-3. The recObj property is an array
which contains the recursion tree representation. For each element in the
array the key represents the step of the flow and the value represents the
tree object corresponding to that flow step. The tree object must have the
format previously described.

One important thing in our implementation of GDB and JDB extensions
is that the constructor must be initialised with a parameter. Parameter
params is an array which contains two elements. First element is a string
and represents the name of the recursive method, second element is an inte-
ger that represents the number of recursive calls within the method. We
need this value to know the maximum number of children that a node
can have, in order to automatically generate an n-ary tree. In this way
the properties recursive_function, recursive_calls are initialised
and we are able to display the recursion tree. When the parameter is sent,
recursivity receives the value true which means the recursion tree will
be displayed. A sample initialisation of the visualisation that will display a
recursion tree is the following:� �

1 //construct the parser
2 parser = new CodeVis();
3 parser.init(reader.result);
4 //call the specific the parser
5 window["parser"][extension](params);� �

Graphical User Interface 42

In the last statement of this example the extension variable is a string
which contains the name of the extension, for example ’gdb’ or ’jdb’. The
value of extension is read from the data-extension attribute of the
container. The value of params variable is read from data-parameters
attribute of the container. Also to be noted that this implementation is
specific to our GDB and JDB extensions. With the available input data, from
the log files, we needed that additional information in order to successfully
create the recursion tree. One can extend the plug-in in another way, by
requesting more or even less input parameters.

5.1.5 Control

The control of the visualisation is easy to be implemented since we have all
the data we need related to the execution flow. If we use our initialisation
example, a simple call like:� �

1 codevis.flow[i];� �
will return the line number which is executed at step i in the execution flow.
A call like:� �

1 codevis.vars[i];� �
will return the variable with its old and new value at the step i in the
execution flow. A call like:� �

1 codevis.recObj[i];� �
will return an object which contains the structure of the recursion tree at
the execution step i.
If we need to control our visualisation and make interaction possible a simple
manipulation of the execution flow steps is enough, in our example of the
parameter i.

5.2 Graphical User Interface

In the previous section we described the implementation of each functionality
of our plug-in. In the following section we will make a presentation of our user
interface, and how the visualisation is displayed to the users. We separated
the user interface into multiple views, depending on the functionalities that
are accomplished by each view.

5.2.1 Source Code View

The source code will be displayed in the Source Code View. This view is
presented in Figure 5-1. We can see the formatted and highlighted source
code. Scrollbars are used when long source code is displayed. Also the

43 CHAPTER 5. Implementation

current line that is executed is highlighted. In the figure we can observe line
32 highlighted in yellow. When the user interacts with the visualisation and
the current line is changed, the scrolling of this view is done automatically
so that the current line is always visible.

Figure 5-1: Source code view, with current line selected

5.2.2 Variables View

In Figure 5-2 we can observe the Variables View. This view is used, as
suggests its name, to display the variables value as the program executes.
It includes three columns. First column displays the variable name. Second
column displays the old value of the variable, the value that it had before
the execution of the current line. Third column displays the new value of
the variable, the value that it got after the execution of the current line.

Graphical User Interface 44

Figure 5-2: Variables view

5.2.3 Recursion View

As previously stated we will use D3 library to generate the recursion tree.
When program entered into a recursive method for which we want to display
the recursion tree, the root of the tree is displayed. When a recursive call is
met, a new node is added into the tree and so on. This view of the recursion
tree can be observed in Figure 5-3.

Figure 5-3: A graphical representation of a recursion tree using D3

45 CHAPTER 5. Implementation

5.2.4 Control View

Control view contains the input elements that allows the user to interact
with the visualisation. We can observe in Figure 5-4 that the user can go
forward or backward into the execution flow either by using the two buttons
"Next Step" and "Previous Step" or the slider. Using the buttons he can
go step by step and easily observe the execution. But if the interesting part
that he wants to present is at the end of the execution flow it will take a lot
of time to go trough every step to arrive at that part. Thus we implemented
the slider, which the user can easily drag and go very fast to a specified step
in the execution flow and then use the buttons to go step by step.

Figure 5-4: Control view

5.3 MindXpres Integration

In this section, we describe how the integration of our plug-in into MindX-
pres is done. We presented the plug-in mechanism of MindXpres in section
3.2. We will use this mechanism to integrate our plug-in into MindXpres.

First we create a new folder in the components folder called codevis.
Here we will create the plugin_info.js file, which is the most important
file in a plug-in. This file will the first that will be loaded. This file contains
the plug-in information, for example the tags that it provides for the XML
authoring language. The content of this file is the presented in the following
listing:� �

1 var codevis_plugin_info = {
2 types: ["codevis"],
3 path: ""
4 };� �

Next we will create the codevis.js file, which contains the plug-in object.
The plug-in will be initiated by calling the init method and the detected
DOM elements that the plug-in handles will be passed by to the plug-in via
its process method. A shorter version of this file is listed below:� �

1 DI.register_include("codevis_dependencies", codevis_plugin_info.
path +"dependencies.js");

2

MindXpres Integration 46

3 var codevis_plugin = new function(){
4 this.init = function(){ };
5 this.process = function(type, elList){
6 elList.each(function(index, container){
7 //plug-in code goes here
8 });
9 };

10 };� �
The third file that we want to create is dependencies.js which was
included in the codevis.js using the DI.register_include call of
the dependency injector. This file will include our JavaScript libraries and
CSS files. This is also done using the dependency injector. Its content is
listed below:� �

1 DI.register_include("d3", codevis_plugin_info.path +"js/d3.v3.min.
js");

2 DI.register_include("jquery-ui", codevis_plugin_info.path +"js/
jquery-ui.min.js");

3 DI.register_include("jquery-ui-css", codevis_plugin_info.path +"
css/jquery-ui.min.css");

4 DI.register_include("style", codevis_plugin_info.path +"css/style.
css");

5 DI.register_include("parser", codevis_plugin_info.path +"js/parser
.js");

6 DI.register_include("pretiffy_js", codevis_plugin_info.path +"js/
prettify.js");

7 DI.register_include("pretiffy_css", codevis_plugin_info.path +"css
/prettify.css");

8 DI.register_include("script", codevis_plugin_info.path +"js/script
.js");� �

We separated our files by creating two different folders within the plug-in
folder. We created a js folder where all our JavaScript libraries are stored
and a css folder where the CSS files are stored. We included the D3 library
needed to display the recursion tree, the jQueryUI1 library needed for the
slider control, and the Pretiffy library needed for the code syntax highlight-
ing. At this point we also include other files which contain the source code
of our plug-in.

The XML representation of the plug-in is very simple. We will use just
one tag, specifically <codevis> tag, that will contain the source code to be
presented. This tag has two attributes which are specifying the name of the
plug-in extension that is used to parse the input data and the parameters the
plug-in receives. The attribute extension is mandatory and parameters

1http://jqueryui.com/

47 CHAPTER 5. Implementation

is optional, if it is not used there will be no display of the recursion tree. If
we want to send multiple parameters we separate the values by "|". The
plug-in will split the string and send parameters as an array. An example of
the XML representation is listed below:� �

1 <codevis extension="gdb" parameters="quicksort|2" >
2 source code goes here
3 </codevis>� �
5.4 Challenges

One challenge was to make a comprehensive literature study. We started
from a general problem and we needed to identify specific problems and find
correct answers. We studied the related work and learned from their expe-
riences. We also defined and prioritized a set of requirement that form the
basis of our plug-in.

During the implementation we also faced some challenges. One major chal-
lenge was how to get the data needed for our visualisation. One solution
could be to have an interpreter that would interpret the written program
and give us the data. This was not feasible for multiple reasons. Firstly it
would get a lot amount of time to build one and exceeds the purpose of this
thesis. Secondly to extend the plug-in for multiple languages would imply
a new interpreter for each language. The solution we adopted was to use
external data files that contain all the information we need. An example
of such file is a debugger log file. The main reason we chose this method
is because most debuggers offer the possibility to save their output into a
file and using a debugger you can watch variables or get the execution flow.
Secondly these log files have a well defined structure what makes them easy
to read and parse. Another challenge related to previous one was to find
the best debuggers for our purpose. They had to be able to provide all the
data we need but also to be accessible and easy to use. We wanted to use
standard debuggers that are coming with the different development environ-
ments so the users do not need to install extra programs. The amount of
work to write such parser is highly lower than to write an interpreter, but
this method also comes with a shortcoming in usability. To use a debugger
and generate a log file one might have to follow certain steps or to write
some certain commands, but we foresee in our future work to improve the
usability by having some methods to automatically generate such log files.

Another challenge we faced was the creation of the recursion tree. One
method to create a tree is to create it form the pre-order traversal array. Be-

Conclusion 48

sides the pre-order traversal we must also know how many children a node
can have and the height of the tree. Having this data, a tree can be easily
built, but its branches must always be complete starting from the leftmost
one. A recursion tree is not always complete so this method could not be
used. We adopted another method which uses an array that contains the
method calls and method exits in the order that they happen. Having a
method entrance and a method exit as a node delimiter, we know that the
other calls between these two represents the node children. To create the
recursion tree we also used a recursive algorithm which receives as input the
specified array.

We had to develop everything with extensibility in mind so creating a format
of the data was also a challenge. We created a core class whose properties
retain all the data about the variables, source code and recursion tree, all
related to the execution flow.

5.5 Conclusion

In this chapter we described the implementation of our plug-in. We described
the architecture of the plug-in presenting the implementation of each com-
ponent. We saw how the core of the plug-in is implemented and how one
can extend the plug-in for any programming language. We also presented
how the source code, variables changes, recursion and the interaction control
are implemented and displayed. At the end of the chapter we described how
the integration of the plug-in is made into MindXpres. In the next chapter
we will present a scenario of how the plug-in can be used to interactively
present source code.

49 CHAPTER 5. Implementation

6
Use Case

In this chapter we present a use case of the plug-in by means of two scenarios.
We show how the plug-in works from a practical standpoint and we document
the scenario with code listings and images.

6.1 C language

6.1.1 Scenario

Now let us define the scenario that we use to present a use case of the plug-in.
We create a presentation to present the quicksort algorithm. The program is
written in C language and we use GDB to generate the input file from which
the plug-in extracts the data for the visualisation. Quicksort is a recursive
algorithm, thus we have also recursion visualisation.

6.1.2 The presentation

We create a simple presentation containing one slide on which the visuali-
sation of our plug-in is displayed. To define the presentation we must use
the XML authoring language. We define the root node presentation
which contains the slide element. Within the slide element we insert
the codevis tag which contains the source code. Next step is to set the
attributes of the codevis tag. We set the extension attribute with the
value ’gdb’, the attribute parameters with the value ’quicksort|2’. The
XML representation of the presentation is listed in Listing 6.1 and the out-
put is presented in Figure 6-1.

50

51 CHAPTER 6. Use Case

� �
1 <presentation>
2 <slide>
3 <codevis extension="gdb" parameters="quicksort|2" >
4 <![CDATA[
5 #include< stdio.h >
6 void quicksort(int [10],int,int);
7
8 int main(){
9 int size,i;

10 size=4;
11 int x[] = {2,4,1,0};
12
13 quicksort(x,0,size-1);
14
15 printf("Sorted elements: ");
16 for(i=0;i<size;i++)
17 printf(" %d",x[i]);
18
19 return 0;
20 }
21
22 void quicksort(int x[10],int first,int last){
23 int pivot,j,temp,i;
24 if(first<last){
25 pivot=first;
26 i=first;
27 j=last;
28 while(i<j){
29 while(x[i]<=x[pivot]&&i<last)
30 i++;
31 while(x[j]>x[pivot])
32 j--;
33 if(i<j){
34 temp=x[i];
35 x[i]=x[j];
36 x[j]=temp;
37 }
38 }
39 temp=x[pivot];
40 x[pivot]=x[j];
41 x[j]=temp;
42 quicksort(x,first,j-1);
43 quicksort(x,j+1,last);
44 }
45 }
46]]> </codevis>
47 </slide>
48 </presentation>� �

Listing 6.1: The presentation

C language 52

Figure 6-1: Slide view

The next step is to generate the input file using GDB. In order to be able
to use the C program with GDB, it must be compiled using the -g option.
Lets say the source of the program is found in sort.c file, the command to
compile the program is the following:� �

1 gcc -g -Wall sort.c -o sort.exe� �
After the program was compiled we can use it with GDB. We wrote a short
GDB script to make the generation of the file easier. The GDB script was
saved in a file called sort.gdb and the content is listed below:� �

1 # set up breakpoints for sort.exe:
2 set can-use-hw-watchpoints 0
3 b main
4 b quicksort
5
6 set logging on
7 set logging file gdb.txt
8 set logging redirect off
9 set logging overwrite on

10
11 # go to main breakpoint
12 run
13 watch x� �

The script creates a breakpoint on the mainmethod and quicksortmethod,
and saves the output in the gdb.txt. We also want in our visualisation to
view how variable x is changing, so we also set a watchpoint on x. We
execute the GDB script using the command bellow:� �

1 gdb -x sort.gdb -se sort.exe� �

53 CHAPTER 6. Use Case

This command starts the GDB tool and stops the execution of the program at
the first breakpoint. By entering the command next it will execute further.
At the next breakpoint stops again, this is when it enters the quicksort
method. Here we can also set to watch local variables, so we give the follow-
ing commands to watch i and j:� �

1 watch i
2 watch j
3 next� �

After the execution is finished the output was saved to the gdb.txt file
that we can import it to our presentation. Immediately after the import was
done, the visualisation is ready. We can see the result in Figure 6-2. The
slider is visible, the current line is highlighted and changes of variable x are
displayed.

Figure 6-2: Visualisation is ready

In Figure 6-3 we can also observe the creation of the recursion tree as we
step forward into the programs execution.

Java language 54

Figure 6-3: Visualisation is ready

6.2 Java language

6.2.1 Scenario

In this second scenario we create a presentation to present the quicksort algo-
rithm written in Java language. We use JDB to generate the input file from
which the plug-in extracts the data for the visualisation. Our visualisation
also includes the recursion tree of the algorithm.

6.2.2 The presentation

The process of creating the presentation is similar to the one presented in
the previous section. The XML representation of the presentation is listed in
Listing 6.2. We can observe that the extension attribute of the codevis
element now has the value ’jdb’. That is because we use the jdb extension
of the plugin.� �

1 <presentation>
2 <slide>
3 <codevis extension="jdb" parameters="quicksort|2">
4 <![CDATA[
5 class Quicksort {
6 private static int[] numbers;
7 private static int number;
8 private static int i,j;
9

10 public static void main(String []args) {
11 int c;
12 numbers = new int[]{1,56,3,45};
13 number = numbers.length;

55 CHAPTER 6. Use Case

14 quicksort(0, number - 1);
15
16 System.out.println("Sorted list of numbers");
17
18 for (c = 0; c < numbers.length; c++)
19 System.out.println(numbers[c]);
20 }
21
22 private static void quicksort(int low, int high) {
23 i = low;
24 j = high;
25 int pivot = numbers[low + (high-low)/2];
26
27 while (i <= j) {
28 while (numbers[i] < pivot) {
29 i++;
30 }
31 while (numbers[j] > pivot) {
32 j--;
33 }
34
35 if (i <= j) {
36 int temp = numbers[i];
37 numbers[i] = numbers[j];
38 numbers[j] = temp;
39 i++;
40 j--;
41 }
42 }
43
44 if (low < j)
45 quicksort(low, j);
46 if (i < high)
47 quicksort(i, high);
48 }
49
50
51 }
52]]> </codevis>
53 </slide>
54 </presentation>� �

Listing 6.2: The presentation

In the case of a Java program we use JDB to generate the log file needed
for the plug-in. To be able to use a program with JDB it must be compiled
using the -g option. An example is given in the following listing:� �

1 javac -g Quicksort.java� �
Next we write a simple JDB script that generates the data we need. We save
this file as quicksort.jdb and its content is presented in the following
listing:

Conclusion 56

� �
1 stop in Quicksort.main
2 stop in Quicksort.quicksort
3 watch Quicksort.numbers
4 watch Quicksort.i
5 watch Quicksort.j
6 run
7 trace methods
8 monitor step
9 step� �

The stop command creates breakpoints. We use watch command to get
the variables values. The trace command will output a specific message,
when execution enters a method, that is used to generate the recursion tree.
To execute the script we use the following commands:� �

1 jdb Quicksort
2 read quicksort.jdb� �

Before running the jdb we have to start writing the output of the terminal in
a file and we use the script command to do that. The following command
writes the output in the log.txt file:� �

1 script log.txt� �
To close the output stream and save the file we use the command:� �

1 script exit� �
Having this file generated we can use it to generate our visualisation.

6.3 Conclusion

In this chapter we presented the use of the plug-in by use of two scenarios.
We created two presentations of the quicksort algorithm. One presentation
for the algorithm written in C that uses a GDB log file as input to generate
the visualisation and a second one for the algorithm written in Java that
uses JDB log file as input. We showed how a presentation can be built and
also the ease of generating the log file.

57 CHAPTER 6. Use Case

7
Conclusions

In this chapter we want to recapitulate our work and contributions this the-
sis is bringing. Also we will discuss some possible future work for the plug-in.

While presentations are becoming more and more important nowadays, most
presentation tools did not evolved much since their apparition. To present
special content can become an impossible task. MindXpres is a presentation
tool that brings a shift of paradigms and changes the way people create,
share and deliver presentation. Having an extensible architecture, we ex-
tended MindXpres to present special content such as source code.

The purpose of this thesis was to extend MindXpres with an intelligent
plug-in that will give the presenter the ability to present source code. More-
over the presenter will be able to create a visualisation about the program
execution.

We started our work with a literature study to identify the most important
difficulties in presenting source code, more specifically during the process
of learning and teaching programming. Through this study we gained a
good insight about the matter in hand, and we found that there are real
difficulties for novice programmers to comprehend some specific concepts.
The comprehension of programs can be influenced by the choice of language,
for a procedural programming language a strong program model and for an
object-oriented programming language a strong domain model are facilitat-
ing the comprehension of the programs. We also presented studies that are
showing the concepts which are found difficult by novices. The conclusions
of this studies were that these topics are difficult just because the novices do

58

59 CHAPTER 7. Conclusions

not have the ability to understand what happens to program while is execut-
ing. This is because they were incapable of creating a mental model of the
programs execution. From this study we concluded that an efficient mental
model is one that uses visuals and shows the user the changes in the source
code, such as variable changes, as the program runs. as the program runs.
We also found that another concept found difficult by novices is recursion.
Novices are usually seeing recursion as an iterative process, which is wrong.
Recursion is better understood when visualisations are used.

There is active research going on in the domain and we have presented some
of the related work. These tools are used to help students create effective
mental models and we took a look at their approach and implementation
but also at their efficiency.

Having as basis our literature study we defined the requirements of our
plug-in and presented its implementation. We created a MindXpres plug-in
that is able to simulate the execution flow of a program, it shows variables
changes and can generate a visualisation of recursive methods. Besides that,
the visualisation of the plug-in allows interactivity, the author is able to go
backward and forward through the execution flow. The plug-in accomplishes
the conditions of an effective mental model.

We succeeded to bring a good contribution with this thesis. We made an
analysis of the existing tools used to teach programming and identified their
main features and characteristics. Based on the study we made we defined
some requirements that such a tool must have. The current slideware are
very limited but with the power of MindXpres we succeeded to create a tool
to be used during presentations. This tool help novices to gain an effective
mental model of the programs execution by using an interactive visualisa-
tion of the execution flow and variable changes. Moreover this tool is not
limited to one programming language but can be extended to support any
programming language. This makes it different from any other tool, which
are specifically built for one programming language. We also made it easy
to extend the tool by using input files which contain the data needed for
visualisation. Also we succeeded to integrate the recursion visualisation and
successfully create a copies model of the recursion execution. Most of the
other tools which are dealing with recursion visualisation are specifically
built for this purpose and do not offer many other features.

For the future work the real effectiveness of the plug-in can be tested and
improved through an evaluation. Such an evaluation can be done through
a questionnaire for both students and teachers. Through this evaluation we
can test if the students are better understanding some core concepts that

60

are hard to grasp and for teachers test the usability to know how that can
be improved. In the future work the plug-in can be improved by adding
new visualisations. Understanding pointers can be sometimes difficult and
adding a visualisation for pointers would improve our plug-in. Because with
our plug-in we can observe the variable values at any time we did not create
a visualisation for the program output but we propose this to be done in
the future work. In this way the program output would be better observed.
The recursion visualisation can be also improved by adding the visualisation
of the stack. Also in the future work we propose an increase of usability
in generating the log files. In our implementations we use GDB and JDB
which are command line debuggers and the user must write some specific
commands to create the log files. This process can be automated by creating
a user interface that calls specific debugger commands in the background.
In this way the usability will increase.

61 CHAPTER 7. Conclusions

Bibliography

[1] Slideshare. http://www.slideshare.net/about. Accessed:
2014-02-10.

[2] J. R. Anderson, P. Pirolli, and R. Farrell. Learning to Program Recur-
sive Functions. The nature of expertise, pages 153–184, 1988.

[3] J. Bennedsen and M. E. Caspersen. Failure Rates in Introductory Pro-
gramming. ACM SIGCSE Bulletin, 39(2):32–36, 2007.

[4] M. Berry and M. Kölling. The Design and Implementation of a Notional
Machine for Teaching Introductory Programming. 2013.

[5] B. D. Boulay. Some Difficulties of Learning to Program. Journal of
Educational Computing Research, 2(1):57–73, 1986.

[6] J. J. Cañas, M. T. Bajo, and P. Gonzalvo. Mental Models and Com-
puter Programming. International Journal of Human-Computer Stud-
ies, 40(5):795–811, 1994.

[7] W. Dann, S. Cooper, and R. Pausch. Using Visualization to Teach
Novices Recursion. In ACM SIGCSE Bulletin, volume 33, pages 109–
112. ACM, 2001.

[8] J. Edgington. Teaching and Viewing Recursion as Delegation. Journal
of Computing Sciences in Colleges, 23(1):241–246, 2007.

[9] B. S. Elenbogen and M. R. O’Kennon. Teaching Recursion Using Frac-
tals in Prolog. ACM SIGCSE Bulletin, 20(1):263–266, 1988.

[10] G. Ford. An Implementation-Independent Approach to Teaching Re-
cursion. In ACM SIGCSE Bulletin, volume 16, pages 213–216. ACM,
1984.

[11] C. E. George. Experiences with Novices: The Importance of Graphical
Representations in Supporting Mental Models. In 12th Annual Work-
shop of the Psychology of Programming Interest Group, pages 33–44,
2000.

[12] N. Gershon and W. Page. What Storytelling can do for Information
Visualization. Communications of the ACM, (8):31–37, August 2001.

62

http://www.slideshare.net/about

63 BIBLIOGRAPHY

[13] D. Ginat. Do Senior CS Students Capitalize on Recursion? ACM
SIGCSE Bulletin, 36(3):82–86, 2004.

[14] D. Ginat and E. Shifroni. Teaching Recursion in a Procedural Environ-
ment — How Much Should We Emphasize the Computing Model? In
ACM SIGCSE Bulletin, volume 31, pages 127–131. ACM, 1999.

[15] M. Goldwasser and D. Letscher. Teaching Strategies for Reinforcing
Structural Recursion With Lists. In Companion to the 22nd ACM SIG-
PLAN conference on Object-oriented programming systems and applica-
tions companion, pages 889–896. ACM, 2007.

[16] A. Gomes and A. J. Mendes. Learning to Program - Difficulties and So-
lutions. In International Conference on Engineering Education–ICEE,
volume 2007, 2007.

[17] T. Jenkins. Teaching Programming - A Journey From Teacher to Mo-
tivator. In The 2nd Annual Conference of the LSTN Center for Infor-
mation and Computer Science, 2001.

[18] T. Jenkins. The Motivation of Students of Programming. In ACM
SIGCSE Bulletin, volume 33, pages 53–56. ACM, 2001.

[19] T. Jenkins. On the Difficulty of Learning to Program. In Proceedings
of the 3rd Annual Conference of the LTSN Centre for Information and
Computer Sciences, volume 4, pages 53–58, 2002.

[20] H. Kahney. What do Novice Programmers Know About Recursion. In
Proceedings of the SIGCHI conference on Human Factors in Computing
Systems, pages 235–239. ACM, 1983.

[21] C. Kelleher and R. Pausch. Using Storytelling to Motivate Program-
ming. Communications of the ACM, 50(7):58–64, 2007.

[22] A. Kelly. Requirements and Specifications.

[23] S. Kennewell. Researching the Influence of Interactive Presentation
Tools on Teachers’ Pedagogy. February 2006.

[24] M. Kölling, B. Quig, A. Patterson, and J. Rosenberg. The BlueJ System
and its Pedagogy. Computer Science Education, 13(4):249–268, 2003.

[25] E. Kujansuu and T. Tapio. Codewitz–an international project for better
programming skills. In World Conference on Educational Multimedia,
Hypermedia and Telecommunications, volume 2004, pages 2237–2239,
2004.

BIBLIOGRAPHY 64

[26] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen. A Study of the Diffi-
culties of Novice Programmers. In ACM SIGCSE Bulletin, volume 37,
pages 14–18. ACM, 2005.

[27] R. Lowe. Interrogation of a Dynamic Visualization During Learning.
Learning and Instruction, 14(3):257–274, 2004.

[28] L. Ma, J. Ferguson, M. Roper, and M. Wood. Improving the Viability of
Mental Models Held by Novice Programmers. In Eleventh Workshop on
Pedagogies and Tools for the Teaching and Learning of Object Oriented
Concepts. ECOOP Workshops 2007, 2007.

[29] R. E. Mayer. The Psychology of How Novices Learn Computer Pro-
gramming. ACM Computing Surveys (CSUR), 13(1):121–141, 1981.

[30] I. Milne and G. Rowe. Difficulties in Learning and Teaching Program-
ming—Views of Students and Tutors. Education and Information Tech-
nologies, 7(1):55–66, March 2002.

[31] A. Moreno and M. S. Joy. Jeliot 3 in a Demanding Educational Setting.
Electronic Notes in Theoretical Computer Science, 178:51–59, 2007.

[32] A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari. Visualizing Pro-
grams With Jeliot 3. In Proceedings of the working conference on Ad-
vanced visual interfaces, pages 373–376. ACM, 2004.

[33] I. Parker. Absolute PowerPoint: Can a Software Package Edit Our
Thoughts? The New Yorker, pages 76–87, May 2001.

[34] T. Rajan. Principles for the Design of Dynamic Tracing Environments
for Novice Programmers. Instructional Science, 19(4-5):377–406, 1990.

[35] V. Ramalingam and S. Wiedenbeck. An Empirical Study of Novice
Program Comprehension in the Imperative and Object-Oriented Styles.
In Papers presented at the seventh workshop on Empirical studies of
programmers, pages 124–139. ACM, 1997.

[36] R. Roels and B. Signer. MindXpres - An Extensible Content-driven
Cross-Media Presentation Tool. In In Proceedings of the 27th BCS Con-
ference on Human Computer Interaction (HCI 2013), London,United
Kingdom, 2013.

[37] L. Sa and W.-J. Hsin. Traceable Recursion with Graphical Illustration
for Novice Programmers. InSight: A Journal of Scholarly Teaching, 5,
2010.

[38] P. A. Smith and G. I. Webb. Reinforcing a Generic Computer Model
for Novice Programmers. ASCILITE’95, 1995.

65 BIBLIOGRAPHY

[39] P. A. Smith and G. I. Webb. The Efficacy of a Low-level Program
Visualization Tool for Teaching Programming Concepts to Novice C
Programmers. Journal of Educational Computing Research, 22(2):187–
216, 2000.

[40] E. R. Tufte. The Cognitive Style of PowerPoint: Pitching Out Corrupts
Within, Second Edition. Graphics Press, 2006.

[41] B. Tversky, J. B. Morrison, and M. Betrancourt. Animation: Can it Fa-
cilitate? International Journal of Human-Computer Studies, 57(4):247–
262, October 2002.

[42] J. Á. Velázquez-Iturbide and A. Pérez-Carrasco. InfoVis Interaction
Techniques in Animation of Recursive Programs. Algorithms, 3(1):76–
91, 2010.

[43] A. T. Virtanen, E. Lahtinen, and H.-M. Järvinen. Vip, a visual inter-
preter for learning introductory programming with c++. In Proceedings
of The Fifth Koli Calling Conference on Computer Science Education,
pages 125–130, 2005.

[44] S. Wiedenbeck. Learning Iteration and Recursion From Examples. In-
ternational journal of man-machine studies, 30(1):1–22, 1989.

[45] S. Wiedenbeck, V. Ramalingam, S. Sarasamma, and C. Corritore. A
Comparison of the Comprehension of Object-Oriented and Procedu-
ral Programs by Novice Programmers. Interacting with Computers,
11(3):255–282, 1999.

	Introduction
	Literature Study
	Teaching and Learning Programming
	Mental Models
	Related Work
	Bradman
	Jeliot 3
	Notational Machine
	RGraph
	VIP
	Current presentation tools
	Overview

	Better Visualisations
	Requirements
	Conclusion

	MindXpres
	MindXpres Architecture
	XML Container Format
	Compiler

	Plug-in Mechanism
	Components
	Containers
	Structures

	How to Use
	Conclusion

	Source Code Plug-in
	Specifications
	Conclusion

	Implementation
	Architecture
	The Core
	Source Code
	Variables
	Recursion
	Control

	Graphical User Interface
	Source Code View
	Variables View
	Recursion View
	Control View

	MindXpres Integration
	Challenges
	Conclusion

	Use Case
	C language
	Scenario
	The presentation

	Java language
	Scenario
	The presentation

	Conclusion

	Conclusions

