
Faculty of Engineering

An Investigation of Adapting Document
Structures

Thesis submitted in partial fulfillment of the requirements for
the degree of Master of Science in Applied Science and Engineering: Applied Computer Science

Serafeim Kourlos

Promoter: Prof. Dr. Beat Signer
Advisor: Dr. Bruno Dumas

2013-2014

Abstract

Traditional computer applications normally expect a static execution environment.
However, over the last decade this has constantly changed with the widespread
availability of mobile systems. Thus, it is necessary for several applications to be
adapted on different contexts. A lot of researchers tried to investigate new models
and platforms to support mobile applications. However adaptation is a very broad
domain. Adaptation can be divided into several parts such as session continuity,
user management, application migration or dynamic adaptation.

In our work we focus on adaptation in terms of how we can construct documents.
We provide a conceptual model which someone can use to build different struc-
tures of the same document in order to adapt to different devices. We believe that
the structure of a document plays an important role in the adaptation procedure.
Even more, structures can be reused by other domains for several applications.

Another issue that is investigated are the benefits that an application can get
when we use a hypermedia approach such as the RSL (Resource-Selector-Link)
metamodel. We prove that using a hypermedia approach for adapting content to
different contexts is more flexible and can be used to solve complex problems. We
will extend our model using a component-based approach and showing how each
component can adapt itself independently.

In order to prove the benefits of our approach we provide a use case of a web
page that can be adapted to different devices. In this use case an XML document
changes structures over the different devices to achieve better results in terms of
adaptation, meaning that we send our document to our client device and the device
can display the results of our document with no extra processing. Furthermore in
this document each of our components are treated differently from our component
based approach for its presentation.

Acknowledgements

The road towards this final thesis was very productive. I have gained hands-on
experience in Java, XML and Android applications.

First of all, I would like to gratitude Dr. Bruno Dumas for being my advisor,
spending a lot of time in meetings and giving me feedback during this academic
year. I would like also to express my gratitude to Prof. Dr. Beat Signer for giving
me the chance to do my thesis in the WISE lab.

Finally, I would like to thank my family for giving me support during this year.
Their support was very important for me to achieve this difficult task.

Thank You

Serafeim Kourlos

Contents

1 Introduction 1
1.1 Research Context . 1
1.2 Goal of the Thesis . 2
1.3 Research Questions . 2
1.4 Methodology . 3
1.5 Structural Overview of the Thesis 4

2 Background 5
2.1 Hypermedia . 5
2.2 Context Awareness . 6
2.3 Cross-Media . 8

3 Related Work 9
3.1 Media Adaptation . 9
3.2 Structure UI for Web Applications 10

3.2.1 User Contribution . 10
3.2.2 User Profile . 12
3.2.3 Device-Centric Approach 13
3.2.4 Structure UI based on the Cultural Background 15
3.2.5 Device and User Preferences 16

3.3 Available Frameworks . 18
3.3.1 TERESA . 18
3.3.2 MARIA . 19
3.3.3 USIXML . 20
3.3.4 CHISEL . 20
3.3.5 MADAM . 21

3.4 Summary . 21
3.4.1 Comparison Table . 22

i

3.4.2 Analysis of the Table . 23
3.4.3 Conclusion . 24

4 Modelling with RSL 26
4.1 The Resourse-Selector-Link (RSL) Metamodel 26
4.2 Entities, Resources, Selectors and Links 27

4.2.1 Entities . 27
4.2.2 Resources . 28
4.2.3 Selectors . 28
4.2.4 Links . 29
4.2.5 Layers . 29
4.2.6 Structure . 30

4.3 Elements in RSL . 31
4.3.1 Granularity in RSL . 31
4.3.2 An Example with Different Granularity Levels 33

4.4 Document Component Link . 34
4.4.1 Document Component Link Approach 34
4.4.2 Reasons to Modify the Logical Structure of a Document . 35

4.5 An Example of Document Component Link 36
4.5.1 How We Store the Elements 38
4.5.2 How We Connect Elements with Document Links 38

4.6 The General HTML Table Model 40
4.6.1 Elements of an HTML Table 40
4.6.2 Ordering of the HTML Table Elements 43

4.7 The Importance of Crosslets . 44
4.7.1 Dynamic Crosslets . 44
4.7.2 Functionality . 45

4.8 Conclusion . 45

5 Conceptual Model 46
5.1 Elements in our Conceptual Model 46
5.2 Components . 46

5.2.1 HTML Table Component 47
5.2.2 Paragraph Component 50
5.2.3 Image Component . 53
5.2.4 Other Components . 53

5.3 Crosslets . 54
5.3.1 Static Crosslets . 54

5.4 Structures . 57
5.4.1 How to Create Structures 58
5.4.2 Elements in Structure . 60

ii

5.4.3 An Example of Our Approach 61
5.5 Conclusion . 63

6 Implementation 65
6.1 Use Case . 65

6.1.1 Motivation . 65
6.1.2 Infrastructure . 66
6.1.3 Scenario . 66
6.1.4 Tablet Device . 68
6.1.5 Smartphone . 69
6.1.6 Possible Structures . 71

6.2 Conclusion . 73

7 Conclusion and Future Work 74
7.1 Objectives of the Research . 74
7.2 Contributions . 75
7.3 Limitations . 76

7.3.1 Order of the Structures 76
7.3.2 Future Work . 76

iii

List of Figures

3.1 An example of pruning the logical structure of a document [Ghi-
ani et al., 2010] . 11

3.2 The adaptation algorithm [Paternò and Zichittella, 2010] 12
3.3 Support of user constraints by concatenation [Lemlouma and Layaı̈da,

2003] . 13
3.4 The PDA interface of the shopping application [Paternò et al., 2010] 14
3.5 The DTV application interface [Paternò et al., 2010] 14
3.6 A sample English UI and the localised RTL version (in Arabic

Language) [Khaddam and Vanderdonckt, 2010] 16
3.7 A dialysis patient record on a standard PC [Chaari et al., 2007] . . 17
3.8 The same dialysis patient record on a smartphone [Chaari et al.,

2007] . 17
3.9 Table of Comparison . 22

4.1 Core link metamodel [Signer and Norrie, 2007] 28
4.2 Layers [Signer and Norrie, 2007] 29
4.3 Structural and navigational links [Signer and Norrie, 2007] 31
4.4 Elements [Weibel et al., 2007] 32
4.5 An example which illustrates three different granularity levels . . 33
4.6 PDF version of the Wikipedia page of the VUB 37
4.7 Elements granularity stored in RSL 39
4.8 XML description of vub PDF file 40
4.9 Source and target entities in our document-component-links 41
4.10 A simple table example . 42

5.1 The HTML table from wikipedia page in 5.1a and the correspond-
ing HTML code in 5.1b . 48

5.2 The resulting table of the example 49

iv

5.3 A paragraph example from Wikipedia VUB website with its cor-
responding HTML description 50

5.4 A paragraph example from Wikipedia VUB website with a URL
link . 50

5.5 The association between a paragraph component and a URL selector 52
5.6 Elements that inherit from Paragraph component without any modi-

fication . 52
5.7 Elements that inherit from Component without any modification . 54
5.8 Component in our model inherits from the RSL Resources without

any modification . 54
5.9 Conceptual model: Component and Crosslets 55
5.10 An example of a paragraph crosslet 56
5.11 Our component resources along with their corresponding crosslets 56
5.12 The constructor of a paragraph crosslet accepts an instance of

paragraph component . 57
5.13 An example an HTML table (a) after we apply crosslets in our

elements (b) . 58
5.14 Different steps to modify the logical structure of a document . . . 59
5.15 Some of the Substructure specialisations 60
5.16 Conceptual model: Structure . 61
5.17 The XML logical structure of an HTML document 61
5.18 The resulting structure after apply a WithSelectors structure to the

logical structure . 62
5.19 The resulting structure after apply a ReferenceResource structure

to the previously modified structure 63
5.20 The resulting structure after apply a ReverseOrder structure to the

previously modified structure . 64

6.1 Tools and Platform . 66
6.2 Steps in adaptation process . 67
6.3 Device profile . 68
6.4 Main page until table of contents element 69
6.5 The remaining VUB page . 69
6.6 Section “Organisation” of the VUB web page 70
6.7 Main VUB page until table of contents element 71
6.8 The remaining VUB page with URLs 71
6.9 Campus and Facilities section 72
6.10 Basic principles section . 72
6.11 Sections from the VUB web page in reverse manner 73
6.12 The VUB web page with no links 73

v

Chapter 1
Introduction

1.1 Research Context

Nowadays a wide variety of devices are available to a user in order to run their
applications in a comfortable manner. This introduces the challenge for the de-
velopers to implement so called context-aware applications which best suit the
user needs. The need for adaptable user interfaces became necessary in order to
support different devices and different content. The term of plasticity [Thevenin
and Coutaz, 1999] in applications was introduced for that reason. A so called
‘plastic’ application can run in different environments such as a workstation or a
PDA device without requiring a complete system redesign and re-implementation.
Over the last decades the computer science community tried to tackle the prob-
lems regarding adaptivity issues. However adaptivity is a general concept which
is very broad, thus there is no unique solution for adaptable user interfaces. The
researchers tried to address problems in different areas such as session continu-
ity [Shacham et al., 2007], migratory user interfaces [Bandelloni and Paternò,
2004], context-aware platforms for mobile data management [Norrie et al., 2007],
web content adaptation for mobile devices [Zhang, 2007] or self-adaptive systems
[Salehie and Tahvildari, 2009].

1

1.2 Goal of the Thesis

In this thesis we will focus on adaptable user interfaces for mobile devices. More
specifically, we show how to represent different information (such as images, au-
dio, text e.t.c.) using a hypermedia approach and how we can change the structure
over these elements depending on the device capabilities. We will use the concept
of crosslets to show how different resources can be represented in a way that will
be comfortable for the mobile user. We are convinced that in order to achieve
better results in terms of presentation we need to program atomic crosslets for
each resource. The resource will have its own presentation on a variety of mobile
devices. Furthermore we will introduce a new subtype of link in order to change
structures over a document. While a lot of researchers take into consideration how
to adapt the different components of a document for mobile devices, they do not
give much attention to change the structure of the document. A good example is
the Amazon website which has different versions of the same webpage. In order to
maintain these different web pages they need different document structures. They
probably even need different persons to maintain the variety of their versions. The
logical structure of the document can describe the position where each element is
placed inside the document and the way that they are assembled each other. We
believe that by using the logical structure of the document we can modify it in
such ways in order to create different documents with different structures that can
be used for different devices. This could be for instance a good solution for the
Amazon website. It could be the case that they could have the logical structure
of one generic document and by using different structures to modify it and take
a new document for every device. Furthermore we believe that links can be very
flexible way of constructing documents. By using links one can easily add and
delete individual elements from the structure of the document. We argue that also
the structure of the document plays an important role in the adaptation procedure.

1.3 Research Questions

As the goal and the context of the thesis has been clarified we can summarise our
research questions as follows:

• Question 1: How can we define structure over a document?

• Question 2: How can we represent information in different contexts?

2

1.4 Methodology

In our work we use the Resource-Selector-Link (RSL) metamodel. The RSL uses
a hypermedia approach and it can be used for a variety of applications such as
personal information management (PIM) or content management systems (CMS).
Since the model we use (RSL) considers links as first class objects, our contribu-
tion will be to use links to describe structural components and relationships among
different resources. Thus we place structure on the same level as resources. Note
that we will not give priority to structure over data as sometimes proposed by
structural computing [Nürnberg and Schraefel, 2003] but rather consider them to
be on the same level. More details about the RSL metamodel are discussed in
Chapter 4.

We did an analysis over the different approaches that researchers address the struc-
ture of their documents. We found that there is not so much attention on how they
construct their documents. There is no clear conceptual model that someone could
use in order to create structure. By using the RSL approach we can address struc-
ture via structural links. A structural link can help us to create structure of a
document and we can easily modify it by adding or deleting individual elements
in the document. Adding and deleting individual elements is very easy for the
RSL model since it offers element granularity, meaning that each entity that is
stored in the model is unique and can be managed separately. We have imple-
mented a model that someone can use and easily modify the logical structure of
a document. In this way we will show how this could be beneficial to construct
several documents consisting by different types of information.

Furthermore from the analysis that we did we are convinced that most approaches
use general XML files in order to describe their elements, meaning that all their
resources are managed all together. We will show how to represent each resource
via the concept of crosslets. We will use crosslets for different types of media
(images, audio) to show how a resource can be represented in different ways. It
will be shown how the same information can be represented on different devices
and how this is beneficial for the user experience. We will use a Wikipedia page
as a use case to demonstrate our approach. We chose this web page because it has
a variety of different resources such as audio, images and a tremendous amount
of links.

3

1.5 Structural Overview of the Thesis

The first chapter discusses the research context. Afterwards, the goal of the thesis
and the research questions are proposed. Then the methodology that is used and
finally the structural overview of the thesis are presented.

The second chapter provides a background overview about general concepts that
related to this thesis. These concepts are divided in three categories. First the
hypermedia approach is discussed. Second the context-aware applications and
finally the cross-media approach.

The third chapter discusses the state of the art and the related work that is done
so far. Furthermore an analysis of the related work and a conclusion with our
statements are presented.

Chapter four contains information about the RSL model. More specifically this
chapter explains in detail our model and how we can create a link in order to
change structures in a document.

The architecture and the implementation of our proposed solution is described in
chapter five.

A discussion about possible issues that may arise are included in chapter six along
with future work.

Chapter seven provides a summary of the thesis and our contributions.

4

Chapter 2
Background

2.1 Hypermedia

In order to better understand hypermedia systems, it is worth to give a simple
definition of what hypermedia is.

“Hypermedia is a nonlinear medium of information which includes graphics,
audio, video, plain text and hyperlinks” 1.

Ted Nelson [Nelson, 1965] first used the term of hypermedia in his paper in 1965.
He was inspired by Vannevar Bush’s memex [Nyce and Kahn, 1991] and intro-
duced a file structure that can be used to escape from the limited concept of “What
You See Is What You Get”. He argues that this concept is based on printing a
document out which limits the use of the digital documents. Nelson started the
project Xanadu in 1960 [Nelson, 1990]. This was the first hypertext project. In
this project he discusses concepts like non-sequential writing, embedding parts of
a document in another document (transclusion), biderectional links, version and
rights management.

In August 1991 the first public release of the World Wide Web [Berners-Lee and
Fischetti, 2000] took place. This is the most well-known hypermedia applica-
tion nowadays. The following years there was an explosion of new concepts and

1http://en.wikipedia.org/wiki/Hypermedia

5

http://en.wikipedia.org/wiki/Hypermedia

technologies that were introduced for the World Wide Web. Afterwards, the mo-
bile web created the need for new requirements and functionalities such as loc-
ation based-services. Furthermore, HTML was not sufficient anymore and other
markup languages were introduced (e.g WML). The Web 2.0 gave the user the
opportunity to become an author and share their information by tagging or so-
cial networking. The Semantic Web with the use of ontologies added explicit
semantics to the web resources.

Since mobile devices have different capabilities, the need for context aware ap-
plications became necessary. Moreover, individuals that use these applications
are characterised by different needs. The problem with the static hypermedia sys-
tems was that they provide the same content to all users. In order to overcome
the static nature of the traditional hypermedia applications, adaptive hypermedia
[Brusilovsky, 2001] was introduced to serve the user needs and preferences.

Our approach is based on a hypermedia model (RSL) proposed by Signer and
Norrie [Signer and Norrie, 2007]. We use the RSL model to manage links and
to describe relationships among different resources. The iServer platform and the
RSL approach are discussed in detail in chapter 4.

2.2 Context Awareness

Context can provide developers the necessary information to describe a certain
situation of an application. According to the information that they get they build
context-aware applications. A simple definition is given by [Abowd et al., 1999]:

“Context is any information that can be used to characterize the situation of an
entity. An entity is a person, place, or object that is considered relevant to the

interaction between a user and an application, including the user and the
application themselves”.

In his paper he refers to context as any piece of information which is used to
describe a situation of an individual in an interaction. As an example he uses
location-based scenarios when users are located in different countries. This situ-
ation will affect for instance a sum of weights which will have to be computed in
pounds or kilograms. He divides context into four categories, which are location,
identity, activity and time.

6

It is worth to mention also other points of views to the notion of “context”. For
instance Schmidt in his work “There is more to Context than Location” [Schmidt
et al., 1999] mentions that context-aware research lacks a general conceptual
model. In his paper he introduces the importance of sensors in context aware ap-
plications. He mentions that an abstract context can be provided via sensors such
as temperature and a very specific context can be provided by a user’s attention
level.

Another categorisation can be found in [Schilit et al., 1994]. There are four cat-
egories such as proximate selection which is a user interface technique where the
objects located next to each other are grouped together or emphasised. The other
one is Automatic contextual reconfiguration which shows how components are
treated. Components can be added, deleted or even change connections between
each other due to context changes. Next is Contextual information and commands
which can give different outcomes according to context. Finally Context triggered
actions are based on if-then rules to specify the adaptation.

In general the computer science community refers to the context awareness concept
when computers can sense and react based on their environment. This means that
an application follows some rules and reacts accordingly under different circum-
stances. These rules refer mostly to device capabilities and modalities that may
be supported and to the user interaction with the application. Thus, an application
is a context aware application if it can make assumptions about the current user’s
situation and the environmental state and react accordingly. Context-aware applic-
ations are used in ubiquitous or hybrid environments in order to design innovative
user interfaces to facilitate the user experience.

Over the last decades context aware applications have been widely used by the
mobile developers community. Nowadays there is a tremendous number of mo-
bile devices available with diverse capabilities. Thus, context-aware-applications
address the problem of how we can use content in different contexts.

7

2.3 Cross-Media

A simple definition can be found in wikipedia in order to understand the term
cross-media.

“Cross media is a media property, service, story or experience distributed across
media platforms using a variety of media forms.”2.

Media includes the Internet, video and film, broadcast and cable TV, mobile
devices, DVD, print and radio. Cross-media addresses the problem of how to
represent information in different media and how we can use the power of the
digital media. In the WISE department there are a lot of research projects for
cross-media linking including the interactive paper solution. For the interested
reader more information about interactive paper can be found in [Signer, 2005].
Furthermore PaperPoint [Signer et al., 2007] is a general prototyping tool for in-
teractive paper applications. The approach consists of having a simple paper and
a digital pen in order to make slide-show presentations. This project reveals how
someone can use simple paper as an interactive medium which links to digital
information.

In fact the RSL model that is used for this project is also a model for structural
cross-media content composition and reuse as pointed out in [Signer, 2010]. Fur-
thermore in this project we use crosslets as a powerful concept. Crosslets have the
ability to bind a variety of multimodal interactions to different resources. Each
resource may have different interactions and different representations. Crosslets
decide which presentation matches the best depending on the device capabilities.
In that way we treat each resource independently from each other. We then use the
cross-media linking concept of the RSL model to construct our single document.

2http://en.wikipedia.org/wiki/Crossmedia

8

http://en.wikipedia.org/wiki/Crossmedia

Chapter 3
Related Work

In this chapter we introduce some related work. First we analyse different ap-
proaches of adaptation procedures. Then we compare all the papers in a table
and discuss an analysis it. Afterwards we analyse some of the frameworks that
are available and their possible usage. Finally we conclude the chapter with our
proposal.

3.1 Media Adaptation

Many researchers tried to address the problem of presentation continuity. Cesar
[Cesar et al., 2008] present the benefits of using structured multimedia documents
to adapt content in different contexts with session continuity. They propose an
approach in which a user can render a video on a high definition screen and at
some point can switch the video on a mobile device and continue with the same
session. The adaptation is performed almost automatically by the system since it
takes into account the characteristics of the various devices that surround the user.
In order to describe different structured multimedia formats they use the SMIL
[Bulterman and Rutledge, 2004] standard. Furthermore for each device they also
take into consideration the different modalities that the device supports as output.
Their attention focusses on the visual and acoustic modalities. This work attrac-
ted our attention since they use structured documents to describe different media
elements. However, all these elements tightly belong to an XML file description.
In our work we propose structural links which can treat each element separately

9

and independently of each other.

3.2 Structure UI for Web Applications

In this section we analyse some approaches that are used to structure HTML doc-
uments for web applications.

3.2.1 User Contribution

[Ghiani et al., 2010] try to give to the user the opportunity to interact more with the
application. In their approach the user can access a web application on a desktop
system in order to perform some interaction, and then, when they have to move,
they can migrate the application to a mobile device in which they can continue
the task from the point they left off. Before moving the application to the mobile
device the user has the opportunity to select only parts of the application to migrate
to the mobile device. Thus the outcome is only a light version of the application.
The migration server that they use are scripts which are dynamically inserted in the
original web application. The application can transfer the state of the Javascript
variables, cookies, interactive forms and other features, so the target device takes
all the necessary information to continue the session at any point. For instance all
the fields that a user has filled in a form will be migrated with the same values on
the mobile device. In this approach they use Amazon web page as an example to
construct their document. They analyse web page elements (such as div, tables,
forms etc.) in order to get the logical structure of the page. The resulting logical
structure follows a tree structure manner beginning with a root element. Then
root element has two children, the top part implemented via a layout table and
the content part defined by a main div. Figure 3.1 shows an example of how the
algorithm prunes the logical structure of the elements, 3.1a shows the structure
with two groups of elements selected by the user and 3.1b shows the resulting
logical structure. There are three steps to get the resulting structure of the final
tree. First they prune all the parts of the tree that are connected with parts of UI
that have not been selected (interactor pruning step). Then, the connections to
other pages defined by UI elements that no longer belong to this new partial CUI
are deleted (connection pruning step). Finally there is a tree reduction step in
order to discard any useless redundancy in the logical structure of the tree. This
last step is performed in order to avoid nodes having only one child.

10

(a) The logical structure of the page considered in the example
(at the beginning, before a partial migration)

(b) The resulting logical structure of the UI, after the tree prun-
ing and reduction due to a partial migration request

Figure 3.1: An example of pruning the logical structure of a document [Ghiani
et al., 2010]

In a recent implementation, [Paternò and Zichittella, 2010] proposed a tool for
desktop to mobile adaptation. The solution also supports end-user contribution
to customise multi-device ubiquitous user interfaces. They exploit logical user
interface descriptions able to capture interaction semantic information indicating
the purpose of the interface elements. In their approach the user can specify values
such as maximum font size or how to treat radio buttons of a web application that
he/she uses.

The system runs an algorithm which calculates the different costs for each ele-
ment and groups of elements. Figure 3.2 shows the adaptation algorithm. The
cost is calculated recursively and if the cost remains high then it splits the original
page into multiple mobile screens. The tool is based on an automatic re-authoring
solution and it uses a proxy to exploit the logical descriptions. The proxy server
contains a semantic redesign module that creates an interface suitable for a plat-
form different than the desktop.

11

Figure 3.2: The adaptation algorithm [Paternò and Zichittella, 2010]

3.2.2 User Profile

Another interesting approach is the framework that is proposed in [Lemlouma
and Layaı̈da, 2003]. The interesting feature that they propose is that they use
XSLT [Clark, 1999] for structural transformation of documents and resource-
aware transcoders for the media adaptation, thus they can tackle the frequent
changes of the different environments. The framework is based on the Univer-
sal Profiling Schema UPS [Lemlouma and Layada, 2002] for describing the en-
vironment characteristics and on a profile exchange protocol. One of the main
advantages of this framework is that the server receives only the necessary in-
formation when needed, for instance the server receives only the network profile
when it is needed, thus avoiding redundant information. This framework is used
in the OPERA project [Lemlouma and Layaı̈da, 2002]. Despite the fact that XSLT
can be applied to change a document structure, XSLT cannot ensure advanced ad-
aptations such as those depending for instance on the client screen size. Thus,
the structure of the document does not take into account the capabilities of the
target device. Another drawback is that in practice it is complicated to use XSLT
templates for every different client profile, thus in their approach they use only

12

a generic XSLT that handles the constraints and the original document in order
to take the final document structure. Figure 3.3 shows the generic transformation
that is applied.

Figure 3.3: Support of user constraints by concatenation [Lemlouma and Layaı̈da,
2003]

As mentioned above in order to tackle some limitations of XSLT they use resource
aware transcoders for media adaptation such as images and videos. We consider
this also a drawback since in our approach adaptations are performed on any kind
of resources via our crosslet approach. Since this paper was published eleven
years ago, we thought that it is worth to give it some attention for its innovative
approach.

3.2.3 Device-Centric Approach

Migratory user interfaces proposed by [Bandelloni and Paternò, 2004] offer a
good solution in terms of session continuity and adaptation for different devices
such as PDAs. In their solution they propose an implementation where the user
can interact with a mobile banking application on a desktop device and then the
user can switch to a PDA device and continue the navigation from the device.
At some point the user can switch back to the desktop by continuing with the
same session. They use a mapping algorithm in order to adapt the web page to
the requirements on the target platform. The resulting web page is structured in
a manner that is more comfortable for the user to interact with. In terms of ad-
aptation it is worth to mention that different tasks are treated differently for each
device. For instance if the user wants to reserve a ticket before he/she goes to the
bank from the desktop application, the “ShowRealTimestate” task is composed by
different objects than in the PDA application. However they do not use the gran-
ularity effect to treat the different objects while in our proposal we want to treat

13

each object separately through crosslets and then use hyper-links to construct our
document.

An application that supports task continuity, adaptation across multiple devices
and implementation languages is proposed by Paterno [Paternò et al., 2010]. Since
users nowadays are surrounded by several devices and appliances, there is a need
for session continuity across these devices. The problem is that not all the devices
support the same implementation languages and we need also several user inter-
faces across devices. In this paper they address the problem of session continu-

Figure 3.4: The PDA interface of the
shopping application [Paternò et al.,
2010]

Figure 3.5: The DTV application inter-
face [Paternò et al., 2010]

ity and how to generate dynamically the user interface for various target devices
without the need to start the application session from scratch. They use mobile
devices and digital TV’s in order to show that their approach supports different
implementation languages.The client devices subscribe to the migration service
by running a migration client agent that provides information regarding the device
characteristics. The devices access Web applications through the migration server,
which includes proxy functionalities. Migration can be triggered by the user or
some specific external event (e.g. very low battery). They analyse the device char-

14

acteristics through an intelligent agent and according to some rules they generate
the most suitable user interface. These rules consider the device descriptions that
are sent through an XML file. This file includes information about the state of the
device, if the device is personal or can be used by a group, the type of the device,
the id of the device, the operating system that is running on the device, etc. Then
they build logical descriptions for the user interface and from these logical de-
scriptions through semantic redesign techniques they build the corresponding UI
for the target devices. At this point it is worth to mention that the logical descrip-
tion operates at a concrete level and for instance if they have a textual label it is
not yet specified if it will be implemented in Java or XHTML. This information
is defined in the final level of the UI, which is its implementation. As a use case
they illustrate a scenario where a user can make online shopping via his/her mo-
bile device and when he/she comes home can continue his/her shopping through
a digital TV (DTV) or a desktop computer with the state updated to the point that
was left off in the previous device. The user interface in different devices changes
drastically for every circumstance along with the diversity of functionalities that
the user may have across platforms. For instance some tasks are not supported on
the mobile device while in the DTV they are supported. Figures 3.4 and 3.5 show
the different user interfaces. Another difference that can be seen on the represent-
ation level is that a combo box (displays only one choice at a time) for selection
is provided for a mobile device and a radio button (displays all the choices at the
same time) in DTV.

3.2.4 Structure UI based on the Cultural Background

In terms of structuring a user interface Khaddam [Khaddam and Vanderdonckt,
2010] proposes a solution where the user interface (a web page or an applica-
tion) can change structure depending on the cultural background of the user. The
paper addresses the RTL (Right To Left) and LTR (Left To Right) problem and
shows how the user interface can be structured in a manner that serves both cases
without losing functionality and maintaining the usability requirements. They use
the USIXML [Limbourg et al., 2005] framework in order to construct the concrete
user interface (CUI).

In their implementation they rely on some values that they define on an XML file
such as “normal” or “reverse” in order to define if the objects (radio-buttons, list
boxes etc.) will be presented in a RTL or LTR manner. The most attractive part of
this work is that each element is treated differently, so if for an element the RTL
presentation is not supported then a LTR presentation is applied. Figure 3.6 shows

15

Figure 3.6: A sample English UI and the localised RTL version (in Arabic Lan-
guage) [Khaddam and Vanderdonckt, 2010]

such a UI and as it can be seen the email address follows an LTR manner while
the whole other UI follows a RTL manner. However this sometimes may mislead
RTL users and lacks in concreteness of the web page or application since parts
of the application will have different orientations. For instance from Figure 3.6 it
can be seen that the word Paris follows a LTR orientation. Furthermore they do
not address mobile adaptation case so they do not show how they construct their
files according to different device capabilities.

3.2.5 Device and User Preferences

An innovative approach for context-aware systems is proposed in the SECAS pro-
ject [Chaari et al., 2007]. In this paper each element presentation depends on the

16

device capabilities and user preferences.

Figure 3.7: A dialysis patient record on
a standard PC [Chaari et al., 2007]

Figure 3.8: The same dialysis patient
record on a smartphone [Chaari et al.,
2007]

All this information is received in the server in a XML file. First they construct the
generic abstract components (SecasTextComponent,SecasImageComponent etc).
This defines a generic logical model of the window. This model is independent
from the target device. The second step consists in selecting the concrete visual
components and their layout on the screen to provide the final physical model of
the window. This selection is based on a specific user interface vocabulary which
describes the available user interface components on the target device, their beha-
viour (instantiation and methods) and their layout on the target screen. Figures 3.7
and 3.8 show the same dialysis patient record on a standard PC and a smartphone.
This approach is close to our vision of modelling since also in RSL approach first
we define the abstract components and the logical structure of the document and
then through the crosslets we define the presentation of each element. However
in our approach we treat each component as an independent entity which can be
linked to other entities or even other documents while in their approach all the
elements are parts of the same entity. As an example with RSL we would use the
temperatures component as a unique entity and then we would put a link to that
entity on a standard PC presentation or a link to the same entity to the smartphone
presentation.

17

3.3 Available Frameworks

In this section we illustrate some of the available frameworks that are used by
developers for context-aware applications.

3.3.1 TERESA

The increasing availability of the new hand-held devices forced the researchers
over the last decade to investigate new frameworks to support multi-platform ap-
plications. One valuable work that was done in 2004 was TERESA (Transform-
ation Environment for inteRactivE Systems representAtions) [Berti et al., 2004].
This framework is a model-based authoring environment that provides support
when developing and designing interfaces for a variety of devices. They use a
top-down approach to obtain interfaces for different types of devices via logical
descriptions. In the first step they use the ConcurTaskTrees notation [Paternò,
1999] for the high-level task modelling of a multi context application. The second
step consists of developing the task model considering the diversity of platforms.
Here the designer has to filter the task model according to the target device. The
third step is to define the abstract user interface which means the set of presenta-
tions which are identified by an analysis among the task relationships. Finally the
user interface generation takes place. This phase is completely platform depend-
ant and has to consider specific properties of the target device. Each abstraction
level can be described in TERESA using an XML-based language. TERESA
offers the flexibility of different entry points for the abstraction levels. For ex-
ample a designer may want to start with a logical interface description and not
with the task model. Furthermore TERESA offers an environment for generating
XHTML interfaces for desktop, mobile phones and VoiceXML user interfaces.
However TERESA framework also has its own limitations. One of them is that
it does not support complex dialogs and parallel inputs. Another one is that the
transformations in order to generate the corresponding implementations are hard
coded in the tool and are not specified externally which would allow for custom-
isation without changing the tool implementation. Events that may have different
behaviour depending on the type of object that these events are associated with is
not supported. These issues led the authors to investigate a new framework that
overcomes all these limitations.

18

3.3.2 MARIA

As mentioned above TERESA framework has some limitations on its function-
alities and this led the authors to create a new framework to overcome these
issues. MARIA (Modelbased lAnguage foR Interactive Applications) [Paternò
et al., 2009] was proposed by Paternò as a multiple abstraction language for ser-
vice oriented applications in ubiquitous environments. MARIA XML inherits the
modular approach of TERESA XML and introduces some new models. They
introduce a data model which is described in the XSD [Gao et al., 2009] type
definition language. An event model supporting property change events to change
the status of some UI properties and activation events to activate some application
functionality (e.g. access to a database) were introduced. Furthermore they added
support of Ajax scripts for continuous updates of fields. Another feature is the
introduction of a dynamic set of user interface elements which gives the flexib-
ility to change only a part of the UI. In their architecture they have an abstract
interface description which proved beneficial for the designers since they do not
have to learn all the details of the many possible implementation languages sup-
ported by the various devices. Thus, the design phase is not tied to a particular
platform, modality or implementation language. As a consequence we can have
one data model and one or more presentations. There is also a dialog model which
is responsible for the available events and interactions at a given time.

The concrete description provides a platform dependent description of the user
interface but not implementation language dependent. As an example of the con-
crete description they can define general events like changing the orientation of
the screen as well as some gesture events that are common along different devices
such as touchStart or touchEnd.

They also provide functionality for web services. MARIA supports user interface
annotations. The annotation’s goal is to provide hints for creating the user inter-
face to access a web service. In a web service-based application they also support
UI composition. The main goal of UI composition is that designers and developers
often have to compose all the existing functionalities and corresponding user inter-
face specifications. These can be identified via the annotations discussed before.

Finally there is an authoring tool available which supports the user interface spe-
cification. There is a general transformation that supports the analysis of the doc-
ument structure and definition of mappings. In addition there is also a document
instance transformation when the user needs to change a transformation rule for a
small part of a specific document.

19

3.3.3 USIXML

Multi-device user interfaces are discussed also in USIXML [Limbourg et al.,
2005]. USIXML stands for USer Interface eXtensible Markup Language and al-
lows designers to apply a multi path development of user interfaces. They define
four levels of abstraction, Task and Concepts, Abstract User Interface, Concrete
User Interface and Final User Interface. The development process can be initiated
from any level of abstraction and proceeds towards obtaining one or many final
user interfaces for various contexts of use at other levels of abstraction. USIXML
can be used by designers, analysts or even novice developers. It consists of a User
Interface Description Language (UIDL), that is a declarative language capturing
the essence of what a UI is or should be independently of physical characterist-
ics. USIXML supports device and platform independence, which means that it
remains autonomous with respect to the devices used in the interactions such as
mouse, keybboards and other devices. Furthermore with respect to the various
computing platforms such as mobile phones or tablets. USIXML is used in a
lot of research projects since it offers a flexible way to design a UI supporting
multiple devices.

3.3.4 CHISEL

A policy driven, context-aware, dynamic adaptation framework is Chisel [Vander-
donckt, 2005]. In this paper it is discussed how software should adapt itself to
changing requirements and changing content. Chisel is an open framework for
dynamic adaptation of services using reflection in a policy driven manner. The
system is based on decomposing the aspects of the service objects into possible
non-functional behaviors. These behaviors are meta types that can be statically or
dynamically associated/disassociated with the service object. The service object
will be adapted to use different behaviors, driven by a human-readable declarat-
ive adaptation policy script. They achieved that by implementing the meta types
with Iguana/J [Redmond and Cahill, 2000], which supports non-invasive dynamic
associations of meta types to service objects without any requirement to interrupt,
change or access the objects source code. Absolutely no changes were required
to the application code and all adaptations can occur without stopping the client
or server application. In order for an adaptation to occur, the context changes that
may trigger some adaptation must be monitored. The context manager should then
leverage all available context knowledge and intelligence to determine if some
adaptation is required. A separate adaptation mechanism, controlled by an ad-
aptation manager can then perform this triggered adaptation as a response to an

20

adaptation request. The goal of Chisel is to use unanticipated context. However
this does not seem possible since it is the policy that drives the meta-level adapta-
tion manager, thus it has to obey to some strict rules.

3.3.5 MADAM

Another available framework for context-awareness is MADAM [Geihs et al.,
2009]. The adaptation in MADAM happens without user intervention and fol-
lows a model driven approach. They implemented abstract adaptation models in
order to follow an unanticipated adaptation for a variety of devices and they have
a middleware that supports the dynamic adaptation of component-based applic-
ations. The adaptation policy should be expressed in utility functions that are
specified by the developer. In order to represent a component we may have differ-
ent variants for each type of context, user requirements or application properties.
These variants are defined by the utility functions. In MADAM there are atomic
and composite components. Composite components follow a tree structure ap-
proach which ends up into leafs and each leaf then is an atomic component. Since
MADAM is a generic framework it provides the developer with abstract concepts
like “ContextEntity” and then its up to the developer to define his own entities.
During application runtime the MADAM adaptation middleware monitors the
context and adapts the application in response to context changes that may occur
according to the structure and adaptation rules reflected by the platform-specific
adaptation model by finding alternative applications or service implementations.
However since the user is not involved at all in the adaptation procedure it may be
an issue of how often an adaptation occur without being an annoyance to the user.
This is an issue that is discussed also in the paper along with the question of how
we can validate a self-adaptive software system that is able to handle unanticipated
adaptation at runtime.

3.4 Summary

In this section we discuss of the related work that is done so far by the community
including a table 3.9 of comparison. We highlight some of the issues that we
address for each approach. Then an analysis of the table in order to motivate our
work is discussed. Finally a conclusion of our research is given.

21

3.4.1 Comparison Table

An explanation of every header that we chose and the rating values that correspond
to each column is provided as follows:

• Model defines if there is any specific framework which is used for the im-
plementation of application.

Figure 3.9: Table of Comparison

• Device stands for the capabilities of the device. We consider limited support
if the application takes into account only basic characteristics of the device
such as screen size. Partial support is if the application uses also some of
the modalities of the device but not all. Finally we consider full support if
all the device characteristics are taken into account. Note that we consider
modalities as output resources of the device.

• User Preferences is the column where we consider whether the user may
enter some pre-defined preferences before the adaptation occurs. Here the

22

application takes into account the user preferences in order to perform the
adaptation. The rating values are expressed in a boolean manner with yes
and no.

• Structure is the way that the application constructs a document. By struc-
ture we mean they way that each element of a document is assembled with
other elements. One common structure of a document is its logical struc-
ture. The logical structure of a document can give us the order of the ele-
ments that compose the entire document. We consider limited support if the
initial logical structure of the document does not change, which means that
since we have the logical structure of the document this structure is followed
across all the devices. Partial support if the logical structure changes across
different devices by adding or deleting nodes. Finally full support means a
changing structure for even atomic elements.

• User Influence @runtime considers the user influence in the adaptation
procedure during the execution of the application. For instance if the user
can dynamically choose the platform that he wants the application to be
adapted to, this is considered as a dynamic influence of the user during the
procedure. Another example is if the user can give specific values for the
representation of components (e.g. font-size). We need also here a boolean
yes or no to express our rating values.

• Adaptation Granularity defines how the user interface elements are treated.
Elements can be seen as a concrete group of elements or we can have atomic
elements that we manipulate in order to make a user interface. Thus, here
we examine if the application produces an output for every element or one
output for all the elements.

• Dynamic Modification @runtime indicates if there is the possibility for
the application to perform adaptation without the user influence, meaning
that the application takes the initiative for the adaptation. This modification
may occur on server or client side. Again a boolean value will be used.

3.4.2 Analysis of the Table

Table 3.9 shows different works which are used in order to tackle adaptation pro-
cedures. As it can be seen most of the approaches (five out of eight) are using
frameworks to build their applications. These frameworks are discussed in detail

23

in 3.3. In general these frameworks give the flexibility to build general models
which are independent from specific programming languages and are used in a
variety of projects. Another thing that was our intention to investigate is how dif-
ferent works handle mobile device capabilities. Almost all (except one) of our
approaches consider the device capabilities to build their applications. Even if
some of the papers are flagged as having limited support, we believe that this is
enough to achieve a good adaptation on the devices. User preferences and user
influence at runtime are also important in the adaptation procedure. Most of the
approaches (six out of eight) are taking into consideration the user preferences.
Half of the approaches are giving to the user the possibility to influence the ad-
aptation at runtime. However sometimes it is not clear enough how the user can
achieve a good adaptation like in [Bandelloni and Paternò, 2004] where the user
can give specific values in text fields, but it is no clear how the user knows prior
which size of text is suitable for his device. Moreover we have seen that half of
the papers are able to do adaptations at runtime which means after the initial ad-
aptation of the content, the application can adapt this content again dynamically.

The granularity effect of the elements is one of our core concepts in our research.
As it can be seen none of the research projects consider the element granularity ef-
fect. Each adaptation is considered as a single unit. We believe that this is a burden
that we try to overcome via the granularity effect that our RSL model offers. The
RSL metamodel uses a hypermedia approach to manage different elements. Each
element can be stored in the model as an atomic entity and then we can manipulate
each entity separately, change its representation, combine elements together e.t.c.
Structure also is an important factor in our research. Changing structures involves
a radical change in the way that elements of a document are assembled together.
Even if applications change structures during the adaptation procedure, there is
lack of a conceptual model which may lead in different interpretations. Structure
in these papers seems to be more a domain specific issue rather than an important
factor which can lead to more flexible solutions. We argue that structure is a cru-
cial factor in the adaptation procedure and we propose a conceptual model able to
build complex structures.

3.4.3 Conclusion

We provided some related work on the adaptation techniques and context-aware
applications. From the state-of-the-art analysis we concluded that there is not
so much attention to the structure of the documents and how this could affect
the adaptation procedure. Furthermore we see that the granularity effect is not

24

considered at all. We argue that granularity in such applications is important since
components can be treated separately and can be reused. In the next chapter we
aim to illustrate our vision of how we can construct a document by using the
granularity effect from RSL and how different structures can be beneficial to the
presentation of an application depending on different device capabilities.

25

Chapter 4
Modelling with RSL

Most of the existing applications do not give priority on content processing and
content management. For instance in a pdf file most applications simulate a print-
able version of a document, which means that the content of the document does
not have any semantic information. This approach has one main drawback, the
applications are limited to a simulation of the physical space rather than the di-
gital space. This means that we do not use the power of the digital information but
we make a digital simulator to represent a physical environment. In this chapter
we present the Resource-Selector-Link (RSL) metamodel which is used for this
thesis. We introduce the powerful concepts of such a model in detail.

4.1 The Resourse-Selector-Link (RSL) Metamodel

The core concepts of the RSL metamodel is divided in three parts, namely: re-
sources,selectors and links. These three concepts result in the name “Resource-
Selector-Link (RSL) metamodel”. The RSL metamodel uses a hypermedia ap-
proach. The essential concept of RSL is linking resources together as proposed
by Vannevar Bush in his Memex approach. A lot of hypermedia systems have
been developed during the last decade [Millard et al., 2000] [Halasz and Schwartz,
1994]. However as pointed out by the authors of [Signer and Norrie, 2007] the
existing approaches are not general and flexible enough to support a wide range of
applications. The RSL metamodel has been used for projects like iPaper [Norrie,
2006]. The iPaper framework allowed the creation of PaperPoint [Signer et al.,

26

2007] (a paper-based presentation and interactive paper prototyping tool). A sys-
tem to support the reading of publications called Print-n-Link [Norrie et al., 2006]
that also developed with the RSL notion. In addition a cross-media information
platform was created which has the RSL model as basis. This platform is called
iServer [Signer, 2005] and it is able to support different categories of hypermedia
systems due to its generality. Furthermore iServer via plug-in mechanisms has
been proven an extensible solution for a variety of applications. In this thesis we
use this extensibility through plug-ins in order to implement our application.

4.2 Entities, Resources, Selectors and Links

It is crucial to mention that RSL uses the semantic of the object-oriented data
model OM. The interested reader can find more details about OM in [Norrie,
1994]. OM is used in order to exploit powerful features such as multiple classi-
fications and order collections in the metamodelling process. OM provides in its
core functionality some distinguishing features such as typing and classification.
While typing deals with representation of entities as objects, classification deals
the with the semantic roles of the entities. With OM we can define collections
for semantic grouping of entities. Furthermore we can define constraints over
the collections. For instance one can constrain relationships among collections
depending on the membership type. OM defines a fully operational model over
objects, collections, associations and constructs for their definition. This express-
iveness allows us to capture the semantics of the application domain by using a
simple set of constructs. The main advantage of this model is the direct represent-
ation and manipulation of associations which is really useful for link management
systems with hypermedia functionality.

4.2.1 Entities

The RSL model introduces its most general concept as an entity. Entities can be
classified and grouped by collection entities. Entities can have properties that are
assigned in a form of key-value pairs. Resources, selectors and links are sub-types
of the entity concept. Figure 4.1 shows the core of the RSL model.

27

Figure 4.1: Core link metamodel [Signer and Norrie, 2007]

4.2.2 Resources

The first type of an entity is a resource which represents an entire information
unit. Of course the resource is still an abstract concept for the iServer implement-
ation and we need to implement specific resource types for a specific application
domain. Thus in our implementation we implement a variety of resource types
and we use them as a plug-in mechanism for the iServer. Since we are focussing
on a web page application we define resources such as paragraph, table, bulleted
list, image etc. Note that other resources that can describe the physical space of an
application can be covered by RSL (for instance interactive paper). As it can be
already seen iServer offers flexibility via this abstract concept to cover a variety
of application domains.

4.2.3 Selectors

The second main type in RSL is the selector concept. Often we want to define
links between not only the entire resources but also specific parts of resources. An
anchor link on a web page is an example. Through the href tag we can address
only a specific part of the HTML document. In our implementation we also ad-
dress specific parts of a web page via a url-selector that we implemented in order
to take the external links that we may have in our HTML document. With respect
to the RSL model cardinality constraints each resource may have more than one
referencing selector while a selector can always be associated to exactly one re-
source. Specific details of the implementation of such a selector will be given in
chapter 5.

28

4.2.4 Links

Finally a link within the RSL hypermedia metamodel is always directed and leads
from one or more sources to one or more targets. A source can be an entire
resource or parts of a resource addressed by a selector. Once again respecting the
cardinality constraints of our model each link must have at least one and possibly
many sources and targets. In the next section we describe a general document-link
which is implemented by Tayeh [Tayeh, 2012].

4.2.5 Layers

As already explained in the previous section, selectors are used to address parts of
a resource as a link source or target entity. However, sometimes we have to deal
with overlapping selectors which is a so-called nested links problem. For instance
we may have a selector that specifies a word in an XML document while another
selector specifies a character in that word. The problem arises when we need to
select the character selector we have to distinguish the different layers that exist
in order to not select the word selector by mistake. Even if some hypermedia ap-
proaches support the nested links they do not support any functionality to control
their behaviour. The notion of layers that is shown in Figure 4.2 was introduced

Figure 4.2: Layers [Signer and Norrie, 2007]

in RSL in order to give some flexibility with such issues and keep the semantics
of nested link source and target anchors.

Layers allow us to associate each selector with exactly one layer. Thus, we are
forcing our overlapping selectors to be defined in separate layers. The problem
of multiple occurrences of elements and ordering is solved by the association

29

|HasLayers| with the vertical bars. This indicates that we have explicit order-
ing of the layers in our model. Furthermore we may activate or deactivate layers
by adding or removing them from our ActiveLayers collection.

4.2.6 Structure

Structure is a topic that we give much attention in this thesis. Since structure plays
an important role in our model, it is worth to give a simple general definition from
Wikipedia1 that reflects the semantics of a structure.

The structure of a thing is how parts of it relate to each other, how it is
“assembled”.

The word “assembled” is translated by our model through links. Links are re-
sponsible of how to connect parts of information in order to build a “thing”.

In RSL as links are first class objects, we place structure on the same level as re-
sources and navigational links. We illustrate an extension of our model in Figure
4.3. As it can be seen, modelling structural links as a subcollection of regular links
gives us the flexibility to define structure over arbitrary entities such as resources,
selectors or even links. A single structure from the Structures collection is related
to its structural links by the HasElement association. Note that parts of structures
might be reused by other structures. If we want to model the structure of a docu-
ment we need to know the specific order of its contents. We achieve that by using
the sub-association |HasChild| of the association HasTarget.

The first type of structure is to define structural relationships between resources
(structure over data). It is up to the domain specific application how it defines
different structures over resources which can be chapters or sections in a docu-
ment. We may even use the concept of transclusion that was suggested by Nelson
[Nelson, 1992] and reuse the same resource for different structures.

Structural links may also define structure over structures. Each structural link
within a structure can define a substructure which contains the structural link’s
source elements and all of its children. In order to address a substructure we
do not define a structural link to structure elements but rather the corresponding

1http://en.wikipedia.org/wiki/Structure_(disambiguation)

30

http://en.wikipedia.org/wiki/Structure_(disambiguation)

structure link defines the substructure. An example could be a chapter that could
be referenced by other documents.

Lastly we may define structure over links. Thus, we can use navigational links in
relation to each other. For instance we may use a tree-like structure with nodes
of navigational links defined by a single structural link. Then it is up to specific
application domains how they treat such a structure.

Figure 4.3: Structural and navigational links [Signer and Norrie, 2007]

4.3 Elements in RSL

In this section we demonstrate how the different entities can be stored in our model
in terms of granularity level. First we present the architecture that is behind our
model and then we illustrate how granularity can be achieved via a simple ex-
ample.

4.3.1 Granularity in RSL

The highest level of abstraction in a logical structure of a document is the docu-
ment itself. Thus, the logical structure is a collection of atomic and higher level
elements combined together to define the highest level of abstraction as mentioned
in [Weibel et al., 2007]. Some of the existing logical models [Reid, 1981] [Dori
et al., 1995] tried to address the problem of defining different hierarchies of ob-
jects by using tree structures. One of the most interesting models is tnt [Furuta

31

et al., 1989] which uses a forest of ordered trees to represent the different docu-
ment parts. In this model the atomic values are defined in a heterogeneous way at
a higher level of granularity. Instead of storing single characters as leaves of a tree,
the atomic values might be represented as a whole text string. By encapsulating
non-tree structures into the leaves, the primary logical structure remains relatively
simple and easy to manipulate, while the storage of other structures might be ad-
dressed at another level in an easier way. This model resembles a lot our RSL
model

Figure 4.4: Elements [Weibel et al., 2007]

However RSL goes one step further by resulting in a recursive element hierarchy.
The composite pattern is used in order to represent this behaviour. Figure 4.4 il-
lustrates that elements may belong either to the AtomicElements collection or to
the CompositeElements collection. An element that belongs to AtomicElements
means that this element does not contain any lower level elements. A partition
constraint is defined in order to avoid the fact that an element belongs to both col-
lections. In order to build the hierarchical structure, the ComposedBy association
is defined.

The key step is the analysis of the source document based on the logical model.
Through the analysis of the source document we can easily identify the highest
level objects in our hierarchy. These objects can be chapters, paragraphs or even
sections of a document. In RSL we define elements at the highest possible level
of granularity and store them as atomic elements within the model. The main
advantage of this approach is that we drastically reduce the number of objects that
we initially have to store in our model. However RSL is intended to be used for
any level of granularity. Often low level objects are not in practice required. For
example in a paragraph we do not need a character level of granularity in most of
the cases. The idea of RSL is to store the elements at the highest possible level of

32

granularity and then define composite elements if needed.

4.3.2 An Example with Different Granularity Levels

Let us assume that we have a document that contains only one paragraph and
examine how many levels of granularity we can reach. Note that the red rectangles
of Figure 4.4 represent an atomic element instances that are stored in our model
while the green rectangles represent composite element instances.

As it can be seen from Figure 4.5a in our model initially we identify a paragraph as
an atomic element and we store it in our model. The first step of the process stores
only one atomic object in our model, then if needed we can reach lower levels of
granularity. The words that are contained in that paragraph can be further used

(a) An atomic paragraph element

(b) A composite paragraph element contains
atomic word elements

(c) The composite word elements contain
atomic character elements

Figure 4.5: An example which illustrates three different granularity levels

to create a composite element paragraph that contains atomic word elements. In
Figure 4.5b our paragraph object switched from atomic element to composite.
This composite element now contains atomic word elements. Then if we need

33

lower levels of granularity we can further switch the word elements from atomic
to composite and by using the characters of the word elements to create atomic
character elements, Figure 4.5c illustrates that scenario. Note that the word “a”
is already an atomic element that cannot be switched to composite because it
contains only one character element, thus the “a” word remains as it is.

We consider this a flexible way of storing our objects since we only create new
objects if needed. Thus, in RSL we do not need to analyse at first all the details of
the document in terms of granularity levels which would be really a challenge, but
we just need to identify the highest possible element abstractions and store them
in our model with their metadata. Note that this simple example cannot reveal all
the power and functionality of our RSL model since this particular paragraph used
in the example just contains text elements. There are much more complicated ele-
ments that we discuss in section 5 that give the general idea behind our powerful
RSL model.

4.4 Document Component Link

In this section we present the abstract concept of document-component-link the
model implemented by Tayeh [Tayeh, 2012] in his master thesis. After the ana-
lysis of the document-component-link approach we show its functionality with an
illustrated example.

4.4.1 Document Component Link Approach

Since we already illustrated how we instantiate and store our elements in our
model in section 4.3.2. Let us discuss how all these pieces of information are
structured together. In order to do that we use the concept of links of our model.
Since the link concept is already discussed in 4.2.4 we jump directly to explain-
ing the document-component-link approach that is implemented by Tayeh [Tayeh,
2012] in his master thesis. A simple explanation of a document-component-link is
that this link is responsible to connect our different entities inside a document and
it is able to give us from that connections the logical structure of the document.

In general this link provides functionality to interpret the entire logical structure
of a document. Everytime that we instantiate such a link we can define a source
and a target and of course the creator of the link. In the instantiation phase our

34

link may have no targets so the target attribute may be null. The document link is
responsible to maintain associations between resources, selectors or other links.
At runtime we may add one or more targets to our document-link. These targets
may be other resources, selectors or even other links.

This link provides methods to get the target entities that we added in the order
that we added them to its target collection. This gives us the flexibility when we
construct our document to “target” our entities in the manner that we prefer and
get them back in the same order. In practice when we add a target to the document-
link we define ’where’ this target ’stands’ in our structure. Note that “stands” does
not mean that our target entity is committed to one structure. For example let us
assume that we have a document-component-link that has as source the paragraph
from Figure 4.5b from the example in section 4.3.2. The atomic element “this”
can “stand” as a target for this paragraph, but also can “stand” as a target to any
other paragraph in a document. This reveals also the power of the RSL concept
since as it can be seen by putting links between different entities we may easily
construct documents without changing the entities themselves.

One basic concept of the document-component-link is that we can easily navigate
through our entities. By getting the order target of the paragraph in 4.5b we get as
a first entity the atomic entity “this”, as second the entity “is”, etc.

Furthermore the RSL metamodel offers the functionality to take any link from a
source or from a target, so we may for instance take a document-component-link
from a section (source) and then navigate through the rest of the target entities of
that section.

Since our abstract entity concept covers resources, selectors and links, we may
have targets that are other document-component-links. This reveals also the flex-
ibility of modelling links as subtypes of the entity concept. So for instance we
may have a document-component-link which has a source of a paragraph that has
a target of another document-component-link which has a source of an audio file,
etc.

4.4.2 Reasons to Modify the Logical Structure of a Document

In this section 4.4.1 we presented the document-component-link approach that was
defined by Tayeh [Tayeh, 2012] in his master thesis. His contribution was very
important and we realise that the logical structure of a document is a fundamental
concept. Indeed having the logical structure of a document makes everything more

35

flexible in terms of modelling and implementation. Our intention is to extend that
link in order to get also a variety of different structures of documents. We use
the word extend since we realise that we cannot escape from the advantages that
the document-component-link offers. Any attempt to create from scratch different
structures of documents will be risky and there is always a danger to lose the
semantics of a document.

One of the reasons that we need to escape from the logical structure of a document
is the variety of different applications and the variety of different devices that these
applications run. For instance in a PDF document it may be the case that a chapter
of the document is structurally referenced by other documents in one device and
in another device has to be structurally presented inside that document. Another
example could be to define a structure that reuses other resources via transclusion
(e.g. RSS feed news reuse articles from different web sites) in one device and
in another device it may be the case that we use navigational links to retrieve
that information. These structural differences in the document are difficult to be
addressed by using only the logical structure of the document.

Furthermore the diversity of devices forces us to adapt our documents to specific
requirements. Sometimes keeping the logical structure in a document makes the
adaptation procedure more complex since the developer has to find algorithms in
order to find how all the resources (e.g chapters, paragraphs) of a document will
be adapted to different capabilities of device (e.g in a small screen). We argue that
keeping the logical structure of a document in the adaptation procedure converts
the adaptation problem to a calculation problem. One common example is that
some web sites in order to fit their web site on small mobile screens reduce the
font size of the text. This is totally frustrating for the user and sometimes the
user cannot even read the text of the web site. However over the decades more
advanced techniques have been developed as discussed in chapter 3 to tackle such
issues. We think that all these issues become easier if we escape from the logical
structure of the original document and define new structures for it in order to gain
flexibility. Then since we have the structure of our document the only thing that
we need to adapt is each resource in our document for the different devices in
order to get a nice representation for each device.

4.5 An Example of Document Component Link

Before we explain the importance of our structural links and how we can make
new structures we would like in this chapter to illustrate in detail how document-

36

component-link works.

In the same manner that we previously explained the element granularity (Section
4.3.2) we will give an example of how we can create a document-component-link
in order to connect different elements in a document. This time we take a much
more complex example rather than the simple paragraph that is used in 4.3.2.

Figure 4.6: PDF version of the Wikipedia page of the VUB

Figure 4.6 illustrates a small part of the english VUB web page on Wikipedia 2.
The page is formatted in a PDF file. The reason that we illustrate the PDF version
of the page is that since we have not talked yet about selectors in detail we want
to avoid any distraction from the goal of the example which is to show how we

2http://en.wikipedia.org/wiki/Vrije_Universiteit_Brussel

37

http://en.wikipedia.org/wiki/Vrije_Universiteit_Brussel

can connect entities in RSL model. In addition we keep our granularity level of
the elements in sections, paragraphs, tables, bulleted lists and images. With RSL
we can go even to lower level of granularity elements like the cells of the table
but this is not the intention of the example since we have not talked yet of how we
model such complex elements.

4.5.1 How We Store the Elements

As it can be seen our document contains two sections “Academic Profiles” and
“Student life”. The academic profiles section contains one paragraph and one
table. The student life section contains two paragraphs, one image and one bul-
leted list. Figure 4.7 illustrates how our model stores the different elements in
terms of granularity. We illustrate two different levels of granularity by colouring
higher elements with red and lower elements with blue color. Each element is
instantiated as an atomic element. We use then document-component-link func-
tionality in order to compose our elements.

4.5.2 How We Connect Elements with Document Links

Since we currently have our elements stored in our model let us assume that the
XML file of Figure 4.8 describes the elements of our document. Note that this
XML file uses an hypothetical description for the purpose of the example. It is
obvious that our highest element in terms of granularity level is the pdf element
stored in our model. In order to connect this resource (pdf element) we need to
instantiate a document-component-link and define that resource as a source for
that link. Then we go to the inner elements of our XML file to reach lower level
granularity elements. There are two section elements within our root element.
After analysing the metadata of those elements we store them in our model. These
elements are unique instances in our model. We can achieve that by giving them
different names. The only thing that we need to do to take the logical structure
of our section objects inside our pdf element is to add them as targets in our
document-component-link in the same order as we parse them. Currently our
document-component-link contains a source (which is the pdf element) and two
targets (two section elements). We may take from that link the source to create
our root element and then the ordered targets of the link (first and second section
elements) to construct for instance the same XML file.

38

Figure 4.7: Elements granularity stored in RSL

If we need to reach lower levels of granularity, we need to create a document-
component-link for each section element. In each link we define as source the
corresponding section element. In the first section element we analyse and store a
p and a table element and we add them as targets to our section-component-link.
The same story stands also for the second section element with every element.

At this point we do not go further in terms of granularity levels, but the reader
should already have an overview of how the document-component-link works and
how flexible it is to connect our different resources. An illustration of what our
links contain in terms of source and targets is shown in Figure 4.9.

39

Figure 4.8: XML description of vub PDF file

4.6 The General HTML Table Model

In this section we introduce the general HTML table model. We do that because
the table is one of our resources in our implementation and it is the most com-
plicated. In Chapter 5 we discuss how we implemented the table element using
the RSL metamodel. One of the reasons that the tables are a complicated concept
is that the table structure depends on the content. Table headers may span across
multiple rows or columns, table rows may have nested table header or table data
elements, table data elements may have bulleted lists etc. We present in this sec-
tion the general model of an HTML table. We first describe the elements that
an HTML table may have. Secondly we give the order that these elements must
follow to be a valid HTML table.

4.6.1 Elements of an HTML Table

The root element of a table is the table element. A table may contain a caption,
a row group or a column group. It is obvious that the row group is composed by
rows while the column group consists of columns. Rows and columns define the

40

Figure 4.9: Source and target entities in our document-component-links

cells of a table. The table element generates an anonymous box that includes the
caption box and the table box.

The caption element is bound outside of the table box but it is inside the anonym-
ous box that is mentioned above. When the table is moved to another position, the
anonymous box is then moved and enables the caption to follow the table. The
position of the caption is specified by an attribute caption-side. This gives the de-
veloper the flexibility to put the caption at the top or at the bottom of the table. A
table may not have a caption element. Furthermore there can be only one caption
element inside a table.

After the table element we have three different section elements such as head
(thead element), foot (tfoot element) or body (tbody element). Foot and head
elements are used mostly for long tables when we need to scroll along the body
sections and maintain the contents of the foot and head elements on the screen.
Another reason is also when we need to print a long table and we need the foot and
head elements to be printed on all pages. Naturally someone would assume that
these three elements will follow the structure in the same order that the developer
defines them. For instance if we have a thead element followed by a tbody element
which is followed by a tfoot element, then the table would follow that structure.

41

Figure 4.10: A simple table example

However this is not the case for HTML, the correct order for the table sections is
thead followed by tfoot followed by one or more tbody elements.

To identify individual table columns and apply styles with them the col element
is used. This element is used mostly for style purposes. Unlike rows, columns do
not contain any cells directly, they implicitly group adjacent cells between rows.
Since there is no easy way for a table to define styles in different cells, the col
element is used to simplify that process. The main idea is to define all our column
elements with their corresponding style before we begin the process of writing our
rows.

The colgroup element is a container for col elements. With this element we can
apply attributes at a high level that can be applied to the lower level col child
elements. Otherwise we should apply style attributes in each col element. Note
that if we use one or more colgroup then all cols must be enclosed in one or more
colgroups.

Rows are used in order to create a new row of data. The HTML table model is
row-centric. Table rows are grouped inside the head, foot or body elements. Of
course we may specify columns in markup via col or colgroup elements but cells
are structurally nested within rows.

The most inner elements of a table are its cells. A cell can be a table header (th
element) which is used for header information. Despite the fact that we use the
term “head”, it does not mean that we use it for the table heading that appears at
the top of the table. It may be the case that we apply the th element in any other

42

cell on any table. However in most cases we use the table header as the topmost
cell in a table. Finally this element can span across multiple rows and columns.

A cell can also be a table data (td) element which can be used for any kind of
data. Note that since table data is used for any kind of information it may contain
other nested HTML elements such as images, bulleted lists, paragraphs etc. A td
element can also span across multiple rows and columns as a th element does.

Each td or th element must be contained on a parent of a tr element.

4.6.2 Ordering of the HTML Table Elements

We would like to conclude with the structure of an HTML table model. Along
with the order of the elements we give some cardinality constraints that are applied
on a table to show if an element can be present more than one time or even if an
element can be omitted by the structure.

We present the ordering of the elements structure beginning by the root element
and ending the leaves which are the cells of the table as follows:

• table element is the root element for every table.

• caption element if it exists, must go first. There can be only one per table.

• col or colgroup element if it exists. There can be any number of col or
colgroup elements, but not both. For a colgroup element we may define any
number of inner col elements.

• thead element if it exists. It must contain at least one tr element. There can
be only one per table.

• tfoot element if it exists. It must contain at least one tr element. There can
be only one per table.

• tr or tbody element. There must be at least one of these elements in the
table. If tbody is used there must be at least one tr element.

• td or th element must have a tr parent element. These are the cells of our
table. There can be any combination with such elements.

43

4.7 The Importance of Crosslets

In 4.4.2 we discussed the importance of changing the logical structure of a docu-
ment and we concluded that we have a variety of reasons to prefer to do it during
the adaptation procedure. However that is only one step in the adaptation pro-
cedure. We have noticed that despite the fact that by changing the structure of
a document we gain flexibility in the adaptation process, this is not enough by
itself to adapt content to different contexts. We need more powerful concepts to
represent each resource in different ways for different contexts. In this section we
discuss dynamic crosslet approach that is implemented by [François, 2014]. In
Chapter 5 we discuss how we implemented our static crosslets. We divide cross-
lets functionality into three categories: interactive, dynamic and static. Since we
do not have yet a concrete implementation in terms of interaction we do not dis-
cuss the interactive crosslets.

4.7.1 Dynamic Crosslets

In his master thesis [François, 2014] implemented crosslets which define extra
functionalities to specific resources. The crosslets in his approach are respons-
ible to make the resources more dynamic. In his implementation crosslets of a
resource may change dynamically. Thus, a resource may support an action in a
specific scenario and another kind of action in a different scenario. He takes into
consideration the user preferences to assign an action to a resource and the en-
vironment that the user is surrounded by. In general his goal was to take static
content and transform it into dynamic content. A definition of his vision of dy-
namic content is as follows:

Content that belongs to a document and has the capacity to change both itself
and the structure of the document as a result of external factors that are linked to

the content such as: a contextual element, an external resource, etc.

In his work each resource can be managed by several crosslets, meaning that
crosslets add functionalities to his components in order to achieve a fully dynamic
content. Furthermore he has introduce the concept of Tubes in order to specify
how his components work together. His Components are interlinked with each
other via his Tubes.

44

4.7.2 Functionality

A crosslet is a subtype of the resource concept in the RSL model. As a con-
sequence it may support any kind of different digital media types as much as
physical resources. The main reason that we use a crosslet is to add some func-
tionality to our resources, since our resources may support different interactions
or may have different representations in a variety of scenarios and we do not know
prior how for instance an image will be presented or which kind of functionality
it will have to support. Instead of treating all these scenarios for each of our re-
sources separately we may create crosslets which offer these extra functionalities
if needed to our resources.

4.8 Conclusion

In this chapter we have discussed the RSL metamodel. We have shown most of
the concepts of the RSL metamodel. More specifically we illustrated how entities
are treated in RSL through the granularity effect and how we can build general
models for complex elements such as tables. We gave also the general approach
of the modelling of an HTML table with RSL. In addition we discussed previous
approaches from other students about the document-component-link model and
the dynamic crosslets concept. In the next chapter we present our model in order
to build structure and how we can add functionality to our resources.

45

Chapter 5
Conceptual Model

In this chapter we introduce our model. We further explain the different com-
ponents of our conceptual model. Furthermore we discuss how our model can
be extended for domain specific uses. Finally we conclude our chapter with the
analysis of the model.

5.1 Elements in our Conceptual Model

We have already discussed some limitations of previous approaches in Chapter 3.
We noticed that there is a lack of conceptual models in terms of granularity. Thus,
the lack of a general model of treating elements individually encourages different
interpretations which may be confusing. We present our conceptual modelling by
describing the different elements and the use of them.

5.2 Components

We propose a component-based approach in order to get different representations
of resources. In fact our components inherit all the functionalities of a resource
from the RSL metamodel without any modification. We believe that Components
are best seen as specialisation of resources in our document structure. Note that
the implementation of a Component entity is there for clarity issues in our model.

46

It is the Crosslet approach that reveals our contribution in our model. Then, we im-
plemented several components which follow the HTML element concepts. Each
Component can be: Article, Section, Subsection, Paragraph, Image, Table, Block
Quote, Bulleted List, List Element, Audio or Div component. An explanation of
how we modelled each of our components follows in the next sections.

5.2.1 HTML Table Component

Modelling an HTML table in RSL way is challenging considering the possibility
for adaptation. The complexity of a table raises many issues that we have to take
into consideration. As already explained in section 4.6 a specific ordering of the
different elements must be followed. Different combinations can be applied via
nested elements. We may use also different elements to replace functionality of
other elements, for instance we may use a td element with bold font at the top
of our table to represent the headers of a table instead of a th elements. This
flexibility that a table offers us sometimes becomes a weakness in terms of mod-
elling. However we propose a solution that covers the majority of HTML tables
in a simple way with our RSL solution. In our implementation we have a use
case where we parse an HTML Wikipedia page. The reason that we chose such
a page is that it offers us a variety of elements such as tables, images or audio
files. During the parsing procedure we try to analyse all the elements of the page
and store them in the iServer in an RSL way, meaning that each element that we
analyse is stored as an individual entity in the RSL model. For the parsing pro-
cedure we have implemented different type of resources (e.g. paragraphs, images)
by extending the general “resource” concept of RSL. One of the most challenging
things during the implementation was to model HTML tables. In this section we
present a general model that can be used for describing complex HTML table.
There is also an illustrated example of our approach.

Table Model in RSL

Tables in RSL are treated like any other resource, but in a more sophisticated way.
Our approach relies on the fact that we can analyse each element from higher to
lower granularity levels and then since we already know how the different ele-
ments can be ordered in a table (discussed in section 4.6), we can easily put the
document-component-link to construct our table.

We consider our root element to be the table element as defined by the general

47

model (section 4.6). In our implementation we do not consider head and foot
sections since in our web page we have tables consisting only of body elements.
However this is something that can easily change since the structure of header,
footer and body section is identical. Moreover we consider that a table row is
followed either by a td or th elements. In addition we analyse if a table data
element consists of other elements like bulleted lists, paragraphs and images.

An Example of an HTML Table in RSL

We present an illustrated example in order to clarify our approach. Figure 5.1
shows one of the tables that we have parsed during our implementation. Unfortu-
nately after our work is done the wikipedia page changed drastically so currently
this table is represented in the page in a simpler way. In our HTML corresponding
code we kept only the first three rows of the table. The following identical rows
are omitted for clarity issues.

(a) VUB rankings

(b) HTML corresponding code

Figure 5.1: The HTML table from wikipedia page in 5.1a and the corresponding
HTML code in 5.1b

First we identify the root element in our table which is the table element. Then
we create an instance of a table object and store it in our model. Since we know
that there will be other lower level elements inside our table we create an instance
of a document-component-link named tableComponentLink and we add our table

0http://en.wikipedia.org/wiki/Vrije_Universiteit_Brussel

48

http://en.wikipedia.org/wiki/Vrije_Universiteit_Brussel

element as source of it. So now that we have our tableComponentLink we can
analyse lower resources in our hierarchy and add more targets to that link. Since
the general model of an HTML table defines that after a table element follows a
tbody element we analyse this as well. Note that we do not store in our model
the tbody element since this is somehow redundant information. We only need
to analyse the contents of the body elements in order to avoid a lot of redundant
objects in our model. As defined from the table model the tbody element contains
one and possibly more tr elements. Rows in our model is the next level of granu-
larity. Thus, again we create instances for every row resource and we instantiate
rowComponentLinks. Once again we add the corresponding rows as source in our
links.

Figure 5.2: The resulting table of the example

For every row there are three possibilities for our next low level resources. One is
to have as our next resource one or more th elements. Second to have one or more
td elements. Third to have a combination of the two resources. In our example 5.1
we have to analyse only the first two cases. After the analysis of these elements we
create instances of table data or table header resources. In this particular example
we do not consider lower level elements of granularity because we do not create
additional links for table data and table header. However in our use case he have
a table that contains a table data element with a div element and a bulleted list
element. Since div elements contain complex resources like paragraphs, images,
audio files etc. It is easy to understand that our model covers most cases of an
HTML table model. The th and td elements may contain any kind of information
depending on the application that are used. In our case these elements contain
bulleted lists, paragraphs, images and URL links.

49

5.2.2 Paragraph Component

The Paragraph component that we implemented is a component that contains
fields such as content and encoding. The content of a paragraph is a string which
contains all the text of the paragraph. The encoding field is also a string which has
the value of “UTF-8”. Note that we store in the model the Paragraph component
as an atomic entity. We could further analyse the paragraph in different levels of
granularity. For example we could store the words that compose a paragraph, but
that was not necessary for the purposes of this project.

Figure 5.3: A paragraph example from Wikipedia VUB website with its corres-
ponding HTML description

A paragraph may contain URL links inside its content. In Figure 5.3 we can
see a paragraph element from a Wikipedia web page. As mentioned above the
Paragraph’s content is a string value which contains only the text of the paragraph.
If we store in the server the href anchor tag as part of the string, we lose the
semantics of the paragraph. For instance if we want to describe a paragraph in a
PDF file we do not want it to appear with the href anchor tag.

Figure 5.4: A paragraph example from Wikipedia VUB website with a URL link

50

In the RSL metamodel we can address specific parts of resources with selectors as
discussed in 4.2.3. In order to keep the semantics of the paragraph, whenever we
find an href anchor element inside a paragraph, we just append the text node of
the href anchor element to the rest of its content and then we store its URL. Then
we associate this URL with the part of the paragraph that is referenced to. For that
purpose we have implemented a selector named UrlSelector. Our UrlSelector has
fields such as startIndex (which is an integer), endIndex (which is an integer) and
url (which is a URL address). The start index points to the position of the first
character of the word that we want to address inside the paragraph and the end
index the last character position of the word.

Figure 5.4 shows how we analyse a paragraph which contains a URL link inside.
As it can be seen from the Figure 5.4 the href attribute has a value of a simple
word and not a valid HTTP address. This is the case for the Wikipedia URL’s. In
order to overcome this issue and to store the actual URL in our server we do some
processing on the href attributes. Each href anchor tag in Wikipedia that contains
an id attribute equal to “w” means that this URL is a link in another Wikipedia
page. The corresponding Wikipedia link of the example after the processing has
the value of “http://en.wikipedia.org/wiki/Pluralism”. Note that this is a Wikipe-
dia link to the English version of the Wikipedia. We process cases for English,
French and Dutch Wikipedia links. For instance in our implementation it may be
the case that an href attribute has the value of “nl:link”, the “nl:” prefix means
that this is a Wikipedia link of the Dutch version of Wikipedia web page and the
corresponding URL would be “http://nl.wikipedia.org/wiki/link”.

When we finish with the processing of the UrlSelector we associate this selector
to our Paragraph component. As defined from the RSL metamodel (see 4.2.3)
each selector refers to only one resource while the resource can have zero or more
referencing selectors. The RSL metamodel offers functionality to add as many
selectors as we want in our resources. In Figure 5.5 we can see our Paragraph
component and our UrlSelector along with their contents. We can also see the
association between the paragraph and the URL selector.

Furthermore a paragraph element can also contain i, span, strong and b element
tags. We do not store these tags in the server and we just append their text nodes
to the rest of the paragraph.

51

Figure 5.5: The association between a paragraph component and a URL selector

Elements that Inherit Paragraph Component

Our paragraph approach can cover a variety of different element HTML tags in
our implementation. There are elements in our HTML page which follow exactly
the same principles as our paragraph does, meaning that we can describe them
with a content field (which is a string) and an encoding field.

Figure 5.6: Elements that inherit from Paragraph component without any modi-
fication

As a consequence we created different specialisations of our Paragraph compon-
ent. In Figure 5.6 we can see the specialised components that we implemented.
Please note that they inherit all the functionalities of our Paragraph component
without any modification. These elements are:

1. Orphan Paragraph

52

2. Div Element

3. List Element which is used in bulleted list.

4. Table Data Element which is used for tables

5. Table Header Element which is used for tables

5.2.3 Image Component

We have implemented an Image component in order to analyse our HTML im-
ages. Each Image object contains fields such as a remoteImageLocation (which
is a URL address), a remoteThumbnailLocation (which is a URL address), a loc-
alImageLocation (which is the actual file stored in the server), a localThumb-
nailLocation (which is the actual file stored in the server), an imageName and
a boolean value to check if the image has a thumbnail or not. These fields are
enough to describe our images and retrieve all the information when needed. In
our use case each image is contained in other elements such as div element, table
data element, paragraph element and list element. Furthermore all of our images
elements in the HTML page are inside href anchor tags. As a consequence we
analyse them in our UrlSelector implementation. As discussed previously from a
UrlSelector we keep only the text node of it and for example we append it in a
paragraph content. In the case of a UrlSelector which contains an image element
we append an empty string.

5.2.4 Other Components

Another component that we implemented is the Bulleted List component. This
component contains an arraylist of List Element components. We can easily add,
delete and retrieve List Element components from the arraylist. Since List Element
components are already discussed it is not necessary to provide further details for
this element.

Other components that we implemented are Article, Section, Subsection and Table.
All these components are just specialisation of our Component approach. As
a consequence are inherit all the functionality of the Resource type of the RSL
model without any modification. In Figure 5.7 we can see some of the special-
ised components that we implemented. For clarity reasons we skip some of the
components in our figure.

53

Figure 5.7: Elements that inherit from Component without any modification

Figure 5.8 shows our conceptual model of the Component that inherits the re-
source of our RSL metamodel.

Figure 5.8: Component in our model inherits from the RSL Resources without
any modification

5.3 Crosslets

5.3.1 Static Crosslets

In section 4.7 we discussed dynamic crosslets that are implemented by another
student. In this section we present our approach for static crosslets. We focus on
the static part of the content. In fact our crosslets will add some functionality to
our resources (e.g. getPresentation of a paragraph). Someone could argue that this
functionality makes our content fully dynamic. However, in our implementation

54

each resource can accept only one crosslet each time. For instance a paragraph
crosslet is associated with only one paragraph resource. We will consider our
approach static for that reason and from the fact that crosslets cannot be assigned
after the initial adaptation. This is the main difference between our work and
Jochen’s [François, 2014] work.

The advantages of our approach relies on the fact that each resource is uniquely
managed by a crosslet. Note that even same types of resources can be treated
differently by the crosslet. An example will be that two paragraphs may have
different fonts depending on their content (e.g number of words) or even different
coloured text. If we consider that paragraphs are exactly the same resource in
terms of type we can conclude that this is a flexible way to treat our resources.
Note that since we have our crosslet which encapsulates a paragraph resource we
can call its method to give us back a specific representation for a specific device.

Since we have already observed the need of crosslets, we divided our compon-
ent concept into two parts. The actual content of a resource is the Component,
the functionality that we add to the each resource in order to get different rep-
resentations of a resource is its Crosslet. Each instance of a crosslet defines a
representation of a component. This cardinality constraint is expressed in Figure
5.9 in the association managedByCrosslet. Note that the same instance of Crosslet
cannot be used for different components, meaning that each Crosslet can manage
only one instance of Component.

Figure 5.9: Conceptual model: Component and Crosslets

In Figure 5.10 we illustrate a paragraph component with its crosslet. From the
paragraph crosslet we can get different representations of our resource component.
Device specific capabilities are calculated inside the crosslet and then the crosslet
comes up with a concrete representation of the paragraph.

55

Figure 5.10: An example of a paragraph crosslet

Furthermore we have implemented a variety of crosslets to manage our compon-
ents. Figure 5.11 shows some of the component resources and their corresponding
crosslets. Note that we did not implement crosslets for Article, Div and Block-
Quote elements because there was not necessary for these elements to get different
representations.

Figure 5.11: Our component resources along with their corresponding crosslets

Our approach of crosslets follows the Decorator Design Pattern [Freeman et al.,
2004]. We implemented a variation of the Decorator Pattern. The Decorator Pat-
tern is used in order to add some functionality in objects. Each object can have
zero or many decorators. In our implementation our Components can have only
one decorator. This is the main different between the actual implementation of the

56

Decorator Pattern and our implementation of Crosslets. In Figure 5.12 we can see
that the constructor of a paragraph crosslet can accept an instance of a paragraph
component. Then inside the crosslet there is a method getRepresentation(Device
d) which returns the paragraph instance with a specific representation according
to the device capabilities.

Figure 5.12: The constructor of a paragraph crosslet accepts an instance of para-
graph component

An Example of Crosslet

At this point it is worth to explain our powerful concept of crosslets with an il-
lustrative example. We discuss our table implementation since tables are the most
complicated components in our approach. Figure 5.13 shows the corresponding
XML elements that we get when we apply our crosslets given that our device is
the Nexus 7 Tablet. As it can be seen crosslets add to our elements different styles
in order to achieve an nice presentation in the Android device. Note that our table
crosslet does not add any style to the root table element. In our XML description
we show only the effect for the first row of our HTML table for clarity reasons.

5.4 Structures

As already explained in 4.4.2 there are many reasons to escape from the logical
structure of a document. Our intention is not to escape from the logical structure
concept but rather to extend it. In this section we explain how to create different
structures of a document.

57

(a) An HTML table of our use case

(b) The corresponding XML description after the crosslet effect in each element

Figure 5.13: An example an HTML table (a) after we apply crosslets in our ele-
ments (b)

5.4.1 How to Create Structures

We propose a solution such that different structures can coexist in a more general
structure that has the logical structure as core. The reason that we choose for struc-
tures to coexist is that we cannot directly define unique structures of a document.
For instance we may need to change our chapter structure of a document and take
chapters in reverse order but at the same time to use a structure of transclusion
in that document because our screen size is small and we need to take parts of
content from different sources. Furthermore for the same example we may need
an additional structure which says for instance that we do not need also the links
that are included in our document since this time our device is an e-book 1 reader.

If we try to define all these different structures uniquely we will end up with an
explosion of different structures and probably we will not cover most of the cases.
Of course if we use a domain specific approach in our model we may define a
structure which can manage a specific case of structure. However our intention
is to cover as many cases as possible for a diversity of devices in a simple and
manageable way.

1http://en.wikipedia.org/wiki/E-book_reader

58

http://en.wikipedia.org/wiki/E-book_reader

Figure 5.14: Different steps to modify the logical structure of a document

Thus, in the example of the e-book reader we may apply a structure of reversing
the chapters and a structure which will exclude the existing links of our docu-
ment. These two different structures will be handled by a more general structure
which will process the structures. First the general structure will be taken from
the logical structure of the document. Then we apply the reverse structure to the
logical structure and we take the document chapters in reverse order. Afterwards,
we apply the next substructure which will exclude all the links of our document.
Having this kind of structure then, it is easier to further adapt each resource to
specific device capabilities (e.g. screen size).

The order of the structures that will be added to our general structure plays an
important role. Everytime that we applied structures we applied in the previously
modified structure, meaning that the first structure is always the logical structure
of the document. Then the second structure is applied to the logical structure and
we get a new structure, then the third structure is applied to the second structure
and we get a new structure and so on. An illustration of such an approach can
be seen in Figure 5.14. For instance if you apply on PDF document a reverse
structure of our chapters and then again a reverse structure of the chapters we will
end up with a document that has the chapters in the same order as it initially had.
However applying many substructures to our general structure helps us to solve a
variety of complex cases.

59

5.4.2 Elements in Structure

We have already discussed the importance of having different structures in our
document rather than having only the logical structure of it (section 4.4.2). In this
section we present a model that can define different structures in a document and
modify the logical structure of it. We define Substructure as an entity that we can
build different structures. Figure 5.15 shows the Substructure entity along with
some of the structures that we have implemented.

Figure 5.15: Some of the Substructure specialisations

In our implementation we have defined structures as follows:

• InOrderStructure which returns specific resources in document order. This
link has almost the same functionality as the document-component-link.
However the main difference is that we can choose only specific resources
that we can get in document order. For instance we can define to take all the
images in document order.

• NoSelectors to exclude the existing selectors (links) in our document (if
any).

• ReverseOrder to return specific resources in reverse order. In this link we
can define specific resources that we can take in reverse order.

• WithSelectors which includes selectors (links) in our document (if any).

• ReferenceResource which references resources in other documents. With
this link we can get resources that are referenced by other documents. Note
that we get back selector objects and not the actual resources, meaning that
if we specify to get for instance paragraph resources, we get back selectors
which are references to the paragraphs.

60

Figure 5.16: Conceptual model: Structure

Our conceptual model is illustrated in Figure 5.16 As it can be seen we have put
a partition constraint to distinguish instances of document-component-link and
Structural-link. A StructuralLink can manage zero or many substructures while a
Substructure may be managed by zero or one StructuralLink.

5.4.3 An Example of Our Approach

Let us explain our approach with an illustrative example. Figure 5.17 shows the
corresponding XML logical structure from an HTML document which contains
three paragraphs. Note that the paragraph structure contain only the text of the
paragraph and not the href anchor tags. This is the logical structure that we modify
when we apply structures. Our contribution reveals of how we modify this logical
structure.

Figure 5.17: The XML logical structure of an HTML document

We change structure in our paragraphs by adding their href anchor tags. We do
that by applying a WithSelectors structure as Figure 5.18 shows. The structure of
our paragraphs has change and at this point we get our paragraph elements modi-
fied from the initial logical structure. The WithSelectors structure will process all

61

the UrlSelector objects that we have implemented. If a paragraph object has no
selectors then the paragraph remains unmodified.

Figure 5.18: The resulting structure after apply a WithSelectors structure to the
logical structure

Then in a second step we can apply another structure to our modified XML doc-
ument. Let us assume that our paragraphs contain a lot of text and the device has
very small size. In this case we want only one paragraph at a time to appear on
the mobile device. In order to achieve that we can apply a ReferenceResource
structure that we implemented which modifies the structure of specific resources.
These resources are modified in such a way that we get back selectors instead
of the previously defined resources. The paragraphs of our example become se-
lectors and they point to the server’s REST interface that we implemented. The
REST interface can generate then our paragraph object when requested and in the
mobile device only one paragraph at a time is displayed. Figure 5.19 shows the
resulting structure after we apply our ReferenceResource structure. Note that in
the example with the paragraphs we may not need to reference the paragraphs
from different sources but someone can imagine that chapter or section resources
are best candidates for this structure since these resources are normally very long
to fit all of them in a small screen.

Furthermore we can apply any number of structures in order to modify our res-
ulting structure. For instance we can also apply a ReverseOrder structure for our

62

Figure 5.19: The resulting structure after apply a ReferenceResource structure to
the previously modified structure

paragraphs in order to get our paragraphs in reverse order. Figure 5.20 shows the
resulting document structure after we apply the ReverseOrder structure.

5.5 Conclusion

In this chapter we have proposed our conceptual model. After analysing previous
research topics we came up with the conclusion that there is a lack in terms of
modelling of how we can create and modify content. Furthermore we believe that
structure plays a crucial role in adaptation process.

Our contribution is based on two discrete factors. One of them is how to represent
different information. We achieve that when we tie our components with crosslets
that can affect the representation of them. Secondly, we believe that structure
should be on the document level.

In order to prove the efficiency of such a model, we further discuss a specific use
case that we implemented and we explain the implications that our approach has
in the next chapter.

63

Figure 5.20: The resulting structure after apply a ReverseOrder structure to the
previously modified structure

64

Chapter 6
Implementation

In this chapter we discuss a use case that we implemented to clarify our contribu-
tion. Our main goal is to show the efficiency of our approach and how someone
can easily extend our approach in other domains. We first begin by explaining our
use case and our motivation in detail. Then, technologies that are used for this
implementation are presented. Afterwards, we illustrate our approach through
examples on different devices. Furthermore, we give motivation for possible ex-
tensions via some extra substructures that we implemented. Finally we give our
conclusions.

6.1 Use Case

6.1.1 Motivation

Web applications are widely used not only by desktop users but also by mobile
users. In our use case we chose to adapt a web page in Android mobile devices.
Android devices are chosen because of their well-known programming language
(Java) and their wide availability. Since our metamodel supports java applications
it was easy to come up with such an idea. Furthermore we tried to find rich web
pages in terms of content and complexity and we decided that the VUB (Vrije
Universiteit Brussel) in Wikipedia is a good candidate. Wikipedia pages offer a
variety of resources such as images, sections, audio, tables and most important
many hyperlinks.

65

One of the limitations in Wikipedia pages is that they cannot be parsed by standard
DOM parsers. The reason is that these pages are written in a special WikiText 1

language which is a markup language for wikipedia 2. As a consequence we
needed to use a special wiki page parser to get the contents of the page.

6.1.2 Infrastructure

In Figure 6.1 we present our infrastructure. We use two Android devices (one
mobile phone and a tablet) with different screen sizes and capabilities to motivate
our work.

Figure 6.1: Tools and Platform

6.1.3 Scenario

Our scenario follows a client-server approach. After parsing the web page the
server stores all its contents in our model. We have implemented REST services
to distribute our adapted web page across different clients. We demonstrate the
steps of the adaptation process in Figure 6.2.

At first, the client sends an XML file to our server with the device capabilities
(1). This XML file is stored in the server (2). The XML file that we store for the
device profile is shown in 6.3.

We also store a unique id for the client. This request is a post request from the
client side to send a message to the server and says “who” is the client that asks
for the web page. Then, through an HTTP request the client asks for the adapted

1http://en.wikipedia.org/wiki/Wiki_markup
2Wikipedia page that we used in our use case is now implemented in standard html markup

language

66

http://en.wikipedia.org/wiki/Wiki_markup

Figure 6.2: Steps in adaptation process

VUB web page (3). This request includes also the unique id that is previously
stored into the server. Since the server has this unique id, it analyses the capabil-
ities of the device and decides which structure could best match the device. Then,
for each element that is added to the structure of our document calculations are
made through our crosslet concept in order to get the representation of our ele-
ments (4). Since the server knows both the structure that will be followed and the
presentation of the elements it begins to construct our final document (5). The
server sends the corresponding XML file to the mobile device (6). Then, through
some XSLT transformations the web page is displayed to the client.

At this point it is worth mentioning once again the power of our crosslet concept.
In our related work (Chapter 3) we mentioned that XSLT is not a good candidate
for adaptation. Our XSLT does nothing more than translating the XML elements
into HTML tags since the structure of our elements have already been defined.
Furthermore, we do not make extended use of CSS files, we just give style to
some general elements such as body and header, our elements already contain
information about their representation through our crosslet concept (font size, po-
sition, etc.).

67

Figure 6.3: Device profile

6.1.4 Tablet Device

We have used a Nexus 73 tablet device in order to illustrate the outcome of our
adapted web page. On the tablet device our algorithm decides that there is no need
to change the structure of the document. Thus, an InOrder structure that we im-
plemented follows exactly the same principles as our document-component-link,
meaning that our target entities are retrieved in the same order that we inserted
them during the parsing procedure. In addition a WithSelectors structure is defined
to take our structure with the external links of wikipedia.

In terms of presentation though, we notice some modifications. Since sections are
too long and contain a lot of content (paragraphs, images or tables), each section
crosslet decides to give to each section a list presentation instead of displaying all
the contents at once. Furthermore paragraphs contain a font size that is relative
to the width of the screen, images scaling depends on the screen resolution, bul-
leted list elements are having circle elements in front of them. In general all our
elements follow different representations for different devices. In Figure 6.4 we
illustrate the outcome of such adaptation on our Nexus 7 device.

3http://www.google.com/nexus/7/

68

http://www.google.com/nexus/7/

Figure 6.4: Main page until table of
contents element

Figure 6.5: The remaining VUB page

As can be seen from Figure 6.5 the user can see the contents of each section by
pressing the down arrow in the drop-down list element and then if he wants to
switch it back he can press the up arrow of the element. An illustration of the
contents of the section “Organisation” is shown in Figure 6.6. Our structure
approach combined with crosslets nicely represents our document based on the
device capabilities.

6.1.5 Smartphone

Another device that we used in order to illustrate the different presentations of our
web page is a Motorola G mobile device. The main reason that we used such a
device is the screen size of the mobile device which is almost two times smaller
than a tablet device. Here our adaptation follows a very different approach both
in terms of structure and element presentation. In Figures 6.7 and 6.8 as it can be
seen the contents of the web page are too long to be displayed in the screen. Even
if we assume that a list manner approach for each section would be followed, our
entire page will be too long to fit the screen size, thus the user would extensively
scroll down to find a section.

69

Figure 6.6: Section “Organisation” of the VUB web page

Our algorithm decides that full sections of the web page should not be presen-
ted on our document, but should be presented in separate documents (Reference-
Source structure). Thus, whenever we have sections, a selector should be presen-
ted. This selector contains a link to our server. When the user clicks such a
selector, an HTTP request to our server is made. Our server contains a REST in-
terface implementation for sections. Thus, the XML file that is sent to the client is
only a file that contains the content of a section. The user can switch back to the
main page and select another section to read. Note that we chose a section entity
to be displayed in separate pages, but we can do that implementation for any kind
of resources (images, paragraphs, tables e.t.c.) or entities as long as we implement
the corresponding REST interface. An example would be if we want our tables
in separate pages, the only thing that we need to do is to create the corresponding
URL selector every time that we have for instance a long table.

Figures 6.9 and 6.10 show two different sections of our document. Indeed retriev-
ing each section in separate pages is a good candidate for such a device since the
contents of a section is too long to be displayed on the device screen. As it can
be seen also our crosslet approach nicely scales the images in a manner that can
fit on the screen size. Furthermore all the Wikipedia links are presented in the
document. The user can click on any of them and navigate to the corresponding

70

Figure 6.7: Main VUB page until
table of contents element

Figure 6.8: The remaining VUB page
with URLs

Wikipedia page. Thus, a WithSelectors structure is also added to our substructures
list.

6.1.6 Possible Structures

In our use case our document follows first an InOrder structure along with a
WithSelectors structure on the tablet device and the same structure plus our Ref-
erence structure to create separate documents for different sections on the mobile
device. However, in order to illustrate more structures that can be applied on our
document we implemented some additional structures to show the effectiveness
of our approach.

We implemented two extra substructures named Reverse and NoSelectors. The
first structure can be used to take some specific entities (in this case we chose
sections) in a reverse order manner and the latter to exclude selectors of the ex-
ternal links that we have in our document. Figure 6.11 shows our adapted web

71

Figure 6.9: Campus and Facilities
section

Figure 6.10: Basic principles section

page with the sections taken in reverse order. This would make sense maybe in
an application that uses an alphabetical ordering of chapters or sections. How-
ever, we illustrate this example only to show how easy it is to apply some extra
substructure in our document structure.

Another example would be to have a e-book reader as a device. E-book readers
are widely used for reading digital books. In that case our document may have
an extra substructure of NoSelectors which excludes our selectors of our docu-
ment, meaning that all the URLs are not presented in the document. Our crosslet
approach will focus then only with the presentation of the different elements. In
Figure 6.12 it can be seen that the web page is nicely displayed with only the text
of our elements excluding all the external links. This way of reading an article
is more comfortable for the user without having many blue texts that may cause
distraction. Note that this kind of presentation we could achieve by changing the
presentation of the elements. However we believe that “hacking” href elements to
get a nice presentation is not a good idea. Our proposal is to change the document
on the structural level rather than on the presentation level.

72

Figure 6.11: Sections from the VUB
web page in reverse manner

Figure 6.12: The VUB web page with no
links

6.2 Conclusion

In this chapter we demonstrated our work with several use cases. Indeed changing
the structure of the document can be beneficial in the adaptation procedure. Since
the structure is not enough to the adaptation procedure we have shown how the
same elements (sections, paragraphs, images, etc.) can be represented in different
devices.

In addition we demonstrated the flexibility of our approach and we have shown
how easily substructures can be built to serve different kind of devices (such as
e-book readers). We believe that our model can be extended also to serve much
more complicated structures for specific applications domains.

73

Chapter 7
Conclusion and Future Work

In this chapter we conclude our work with a summary of our research questions
and how we answer them. Furthermore we discuss limitations of our model that
we faced during the implementation and we propose some possible improvements.
Finally we give some proposals for future work which will make our model more
powerful for further use.

7.1 Objectives of the Research

In this thesis we analysed in Chapter 3 different approaches of adaptation tech-
niques. We examined how they consider adaptation in terms of structure of a doc-
ument and how they adapt their elements in order to get different presentations for
different mobile devices.

We have analysed a variety of different domains such as migratory interfaces,
user/device centric approaches, multimedia adaptation etc. Most of the approaches
that we analysed were implemented for web applications. All of the papers have
at least one concrete implementation of a use case which illustrates their work.
One of the first things that we noticed was that almost all of the approaches tackle
well the mobile device capabilities which was our core concept in our research.

However, most of the approaches do not analyse in depth the structure of their doc-
uments. Thus they propose solutions such as to adapt the initial logical structure
of a document. We argue that the initial document structure cannot be power-

74

ful enough for complex adaptations. By changing the document structure we
gain flexibility and simplicity. Other approaches propose to use techniques such
as extended XSLT transformations to get different structures. We have already
mentioned during this thesis that extended use of XSLT leads in a very complex
implementation via XSLT templates due to the different device capabilities con-
siderations. Some of the approaches use interaction techniques where the user can
select the elements that can be presented on a document. We believe that giving
the user full control of the adaptation procedure should be clear enough both to
the user and to the application, otherwise it may lead in an unexpected result.

The second step of our analysis focussed on the element granularity, meaning
how the applications treat each element of a document. We have noticed that all
of the reviewed research papers do not take into account the element granularity
effect. Thus, they treat all the elements of the entire document as one unique unit.
Thus, there is no clear separation of the elements and the adaptation procedure is
hiding into the implementation. Since there is no clear conceptual model of how
we can adapt elements of a document as unique units, this may lead in different
interpretations of the approaches.

After our research we proposed a conceptual model to define structures of a doc-
ument and to represent differently its elements. Our conceptual model has as
a basis the Resource-Selector-Link (RSL) metamodel which has proven itself a
good candidate with its hypermedia approach.

7.2 Contributions

Research question 1:

How can we define structure over a document?

Our proposal of defining structures is to use the power of the RSL metamodel and
build a generic structural link-based modelling which serves as a core concept
of our structure and then build several substructures which can be easily applied
one by one to our document resulting in a document structure that is then easily
handled by the application. The first substructure will be applied to the initial
logical structure of our document. The rest of the substructures will be applied to
the previous modified substructure. This conceptual model captures the semantics
of a structure and serves as a guide for further use.

75

Research question 2:

How can we represent information in different contexts?

The representation of information is also another issue that was revealed in Chapter
3. We have realised that in previous approaches representations do not follow a
clear conceptual model in terms of presentation of information. We state that our
conceptual model of crosslets is a good candidate for representing information of
any kind of resources. Crosslets have been very powerful since the individual ele-
ments can be represented in different ways. Furthermore programming individual
elements at various level of granularity gives more control to the adaptation pro-
cedure.

7.3 Limitations

7.3.1 Order of the Structures

Since our substructures are analysed in order and one by one, it may be the case
that changing the order of the substructures results in a unexpected structure.
Thus, the developer should be aware of how many substructures applies to a doc-
ument and in which order they have to be displayed to get the expecting result.
One possible solution would be to define only one complex substructure if it is
possible, however this complex substructure it is possible that it cannot be reused
by other applications since probably contains application specific rules. With our
conceptual model we tried to keep things as simple as possible. Nevertheless we
believe that modelling complex structures is a challenging attempt that we tried to
tackle and we think that we have achieved to solve it to some extent.

7.3.2 Future Work

In our conceptual model we do not introduce at all the user model which the RSL
metamodel offers. Device capabilities are our core concept in our implementa-
tion. However it would be interesting if we could involve also the users in the
adaptation procedure. One example would be to create a user interface and give
the user control to change the structure of an application dynamically. Internally
this would happen by changing links between different entities. We believe that

76

our conceptual model can already support this functionality. For example if the
user might not need the external links to be presented in a document, he could
“add” one NoSelector substructure to the existing structures and get the corres-
ponding result. However for more complex structures more assumptions should
be taken into consideration. It would be also interesting to test the user model on
a collaborative screen when multiple interactions from the users are performed.

The introduction of a user model will also arise the need of a new conceptual
model of our crosslet concept. For example to give the user the possibility to
change representations among the entities of an application. Our crosslet concept
then will also support dynamic modifications of different granularity levels which
seems a powerful solution.

Last but not least, it would be interesting that our structures and crosslets would
consider also the environment that a target device is surrounded by. It would
be for example attractive to see how an audio crosslet would react in a noisy
environment.

To conclude, all the assumptions that are proposed above require more abstract
models that will cover a variety of cases both in terms of structure and by provid-
ing alternative presentations.

77

Bibliography

Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark Smith,
and Pete Steggles. Towards a Better Understanding of Context and Context-
Awareness. In Hans W. Gellersen, editor, Handheld and Ubiquitous Computing,
volume 1707 of Lecture Notes in Computer Science, pages 304–307. Springer
Berlin Heidelberg, 1999.

Renata Bandelloni and Fabio Paternò. Migratory User Interfaces Able to Adapt
to Various Interaction Platforms . International Journal of Human-Computer
Studies, 60(56):621 – 639, 2004. HCI Issues in Mobile Computing.

Tim Berners-Lee and Mark Fischetti. Weaving the Web: The Original Design and
Ultimate Destiny of the World Wide Web by Its Inventor. Harper Information,
2000.

Silvia Berti, Francesco Correani, Giulio Mori, Fabio Paternò, and Carmen San-
toro. TERESA: A Transformation-based Environment for Designing and De-
veloping Multi-Device Interfaces. In CHI 2004 Extended Abstracts on Human
Factors in Computing Systems, pages 793–794, Vienna, Austria, April 2004.
ACM.

Peter Brusilovsky. Adaptive Hypermedia. User Modeling and User-Adapted In-
teraction, 11(1-2):87–110, 2001.

D Bulterman and L Rutledge. SMIL 2.0-Interactive Multimedia for Web and Mo-
bile Devices. Springer, 2004.

Pablo Cesar, Ishan Vaishnavi, Ralf Kernchen, Stefan Meissner, Cristian Hessel-
man, Matthieu Boussard, Antonietta Spedalieri, Dick C.A. Bulterman, and
Bo Gao. Multimedia Adaptation in Ubiquitous Environments: Benefits of

78

Structured Multimedia Documents. In Proceedings of the eighth ACM sym-
posium on Document engineering, DocEng 2008, pages 275–284, Sao Paulo,
Brazil, 2008. ACM.

Tarak Chaari, Frédérique Laforest, and Augusto Celentano. Adaptation in
Context-Aware Pervasive Information Systems: The SECAS Project. Inter-
national Journal on Pervasive Computing and Communications (IJPCC), 3(4):
400–425, December 2007.

James Clark. XSL Transformations (XSLT), Version 1.0. W3C Recommendation.
World Wide Web Consortium, http://w3c. org/TR/xslt, 1999.

Dov Dori, David Doermann, Christian Shin, Robert Haralick, Ihsin Phillips,
Mitchell Buchman, and David Ross. The Representation of Document Struc-
ture: A Generic Object-process Analysis. Technical report, College Park, MD,
USA, 1995.

Jochen François. Dynamic Content in Fluid Cross-Media Documents. Master’s
thesis, Vrije Universiteit Brussel, Brussels, Belgium, 2014.

Elisabeth Freeman, Eric Freeman, Bert Bates, and Kathy Sierra. Head First
Design Patterns. O’ Reilly & Associates, 2004.

R. Furuta, V. Quint, and J. Andre. Interactively Editing Structured Documents.
Electron. Publ. Origin. Dissem. Des., 1(1):19–44, April 1989.

Shudi Gao, C Michael Sperberg-McQueen, Henry S Thompson, Noah Mendel-
sohn, David Beech, and Murray Maloney. W3C XML Schema Definition Lan-
guage (XSD). W3C Candidate Recommendation, 30, 2009.

K. Geihs, P. Barone, F. Eliassen, J. Floch, R. Fricke, E. Gjorven, S. Hallstein-
sen, G. Horn, M. U. Khan, A. Mamelli, G. A. Papadopoulos, N. Paspallis,
R. Reichle, and E. Stav. A Comprehensive Solution for Application-level Ad-
aptation. Software: Practice and Experience, 39(4):385–422, March 2009.

Giuseppe Ghiani, Fabio Paternò, and Carmen Santoro. On-demand Cross-device
Interface Components Migration. In Proceedings of the 12th International Con-
ference on Human Computer Interaction with Mobile Devices and Services,
Mobile HCI 2010, pages 299–308, Lisbon, Portugal, September 2010. ACM.

Frank Halasz and Mayer Schwartz. The Dexter Hypertext Reference Model. Com-
munications of the ACM, 37(2):30–39, February 1994.

79

Iyad Khaddam and Jean Vanderdonckt. Adapting UsiXML User Interfaces to
Cultural Background. In Proccedings of 1st International Workshop on User
Interface eXtensible Markup Language UsiXML, pages 163–170, Berlin, Ger-
many, 2010.

Tayeb Lemlouma and Nabil Layada. Universal profiling for content negotiation
and adaptation in heterogeneous environments. In W3C Workshop on Delivery
Context, W3C/INRIA, pages 4–5, Sophia-Antipolis,France, March 2002.

Tayeb Lemlouma and Nabil Layaı̈da. Content Adaptation and Generation Prin-
ciples for Heterogeneous Clients. In OPERA Project, INRIA Rhone Alpes, Po-
sition Paper for the W3C Workshop on Device Independent Authoring Tech-
niques, 2002.

Tayeb Lemlouma and Nabil Layaı̈da. Adapted Content Delivery for Different
Contexts. In Proceedings of the 2003 Symposium on Applications and the In-
ternet, SAINT 2003, pages 190–197, Washington, DC, USA, 2003. IEEE Com-
puter Society.

Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte, Laurent Bouillon,
and Vı́ctor López-Jaquero. USIXML: A Language Supporting Multi-path De-
velopment of User Interfaces. In Engineering Human Computer Interaction
and Interactive Systems, volume 3425 of Lecture Notes in Computer Science,
pages 200–220. Springer Berlin Heidelberg, 2005.

Dave E. Millard, Luc Moreau, Hugh C. Davis, and Siegfried Reich. FOHM: A
Fundamental Open Hypertext Model for Investigating Interoperability Between
Hypertext Domains. In Proceedings of the Eleventh ACM on Hypertext and
Hypermedia, pages 93–102, San Antonio, Texas, USA, 2000. ACM.

T. H. Nelson. Complex Information Processing: A File Structure for the Complex,
the Changing and the Indeterminate. In Proceedings of the 1965 20th National
Conference, ACM 1965, pages 84–100, Cleveland, Ohio, USA, 1965. ACM.

Ted Nelson. On the xanadu project. BYTE Magazine, 15(9):298–299, 1990.

Theodor Holm Nelson. Literary machines 93.1.: the report on, and of, project
Xanadu concerning word processing, electronic publishing, hypertext, thinker-
toys, tomorrow’s intellectual revolution, and certain other topics including
knowledge, education and freedom. Mindful Press, 1992.

Moira C. Norrie. An Extended Entity-Relationship Approach to Data Manage-
ment in Object-Oriented Systems. In Ramez A. Elmasri, Vram Kouramajian,
and Bernhard Thalheim, editors, Entity-Relationship Approach ER 1993,

80

volume 823 of Lecture Notes in Computer Science, pages 390–401. Springer
Berlin Heidelberg, 1994.

Moira C. Norrie. General Framework for the Rapid Development of Interactive
Paper Applications. In Proceedings of CoPADD 2006, 1st International Work-
shop on Collaborating over Paper and Digital Documents, volume 6, pages
9–12. Citeseer, 2006.

Moira C. Norrie, Beat Signer, and Nadir Weibel. Print-n-link: Weaving the Paper
Web. In Proceedings of the 2006 ACM Symposium on Document Engineering,
DocEng ’06, pages 34–43, Amsterdam, The Netherlands, 2006. ACM.

Moira C. Norrie, Beat Signer, Michael Grossniklaus, Rudi Belotti, Corsin De-
curtins, and Nadir Weibel. Context-aware Platform for Mobile Data Manage-
ment. Journal of Wireless Networks, 13(6):855–870, December 2007.

Peter J. Nürnberg and M. C. Schraefel. Relationships Among Structural Comput-
ing and Other Fields. Journal of Network and Computer Applications, 26(1):
11–26, January 2003.

James M. Nyce and Paul Kahn, editors. From Memex to Hypertext: Vannevar
Bush and the Mind’s Machine. Academic Press Professional, Inc., San Diego,
CA, USA, 1991.

Fabio Paternò. Model-Based Design and Evaluation of Interactive Applications.
Springer-Verlag, London, UK, 1st edition, 1999.

Fabio Paternò and Giuseppe Zichittella. Desktop-to-Mobile Web Adapta-
tion through Customizable Two-Dimensional Semantic Redesign. In Regina
Bernhaupt, Peter Forbrig, Jan Gulliksen, and Marta Lrusdttir, editors, Human-
Centred Software Engineering, volume 6409 of Lecture Notes in Computer Sci-
ence, pages 79–94. Springer Berlin Heidelberg, 2010.

Fabio Paternò, Carmen Santoro, and Lucio Davide Spano. MARIA: A Universal,
Declarative, Multiple Abstraction-level Language for Service-oriented Applic-
ations in Ubiquitous Environments. ACM Transactions on Computer-Human
Interaction, 16(4):19:1–19:30, November 2009.

Fabio Paternò, Carmen Santoro, and Antonio Scorcia. Ambient Intelligence for
Supporting Task Continuity across Multiple Devices and Implementation Lan-
guages. The Computer Journal, 53(8):1210–1228, 2010.

Barry Redmond and Vinny Cahill. Iguana/J: Towards a Dynamic and Efficient
Reflective Architecture for Java. In Proccedings of ECOOP 2000 Workshop on

81

Reflection and Metalevel Architectures, Sophia Antipolis and Cannes, France,
June 2000.

Brian Keith Reid. Scribe: A Document Specification Language and Its Compiler.
PhD thesis, Pittsburgh, PA, USA, 1981.

Mazeiar Salehie and Ladan Tahvildari. Self-adaptive Software: Landscape and
Research Challenges. ACM Transactions on Autonomous and Adaptive Systems
(TAAS), 4(2):14:1–14:42, May 2009.

B. Schilit, N. Adams, and R. Want. Context-aware Computing Applications. In
Proceedings 1994 Workshop on Mobile Computing Systems and Applications ,
pages 85–90, Santa Cruz, CA, USA, December 1994.

Albrecht Schmidt, Michael Beigl, and H. W. Gellersen. There is More to Context
than Location. Computers & Graphics, 23(6):893 – 901, November 1999.

Ron Shacham, Henning Schulzrinne, Srisakul Thakolsri, and Wolfgang Kellerer.
Ubiquitous Device Personalization and Use: The Next Generation of IP Multi-
media Communications. ACM Transactions on Multimedia Computing, Com-
munications, and Applications, 3(2), May 2007.

Beat Signer. Fundamental Concepts for Interactive Paper and Cross-Media In-
formation Spaces. PhD thesis, ETH Zürich, Switzerland, 2005.

Beat Signer. What Is Wrong with Digital Documents? A Conceptual Model for
Structural Cross-Media Content Composition and Reuse. In Jeffrey Parsons,
Motoshi Saeki, Peretz Shoval, Carson Woo, and Yair Wand, editors, Conceptual
Modeling ER 2010, volume 6412 of Lecture Notes in Computer Science, pages
391–404. Springer Berlin Heidelberg, 2010.

Beat Signer and Moira C. Norrie. As We May Link: A General Metamodel for Hy-
permedia Systems. In Christine Parent, Klaus-Dieter Schewe, Veda C. Storey,
and Bernhard Thalheim, editors, Conceptual Modeling - ER 2007, volume 4801
of Lecture Notes in Computer Science, pages 359–374. Springer Berlin Heidel-
berg, 2007.

Beat Signer et al. PaperPoint: A Paper-based Presentation and Interactive Pa-
per Prototyping Tool. In Proceedings of the 1st International Conference on
Tangible and Embedded Interaction, TEI 2007, pages 57–64, Baton Rouge,
Louisiana, 2007. ACM.

Ahmed A. O. Tayeh. A Metamodel and Prototype for Fluid Cross-Media Docu-
ment Formats. PhD thesis, Faculty of Science, Department of Computer Sci-
ence. Vrije Universiteit Brussel, 2012.

82

David Thevenin and Joëlle Coutaz. Plasticity of User Interfaces: Framework and
Research Agenda. In Proceedings of INTERACT 1999 - IFIP TC13 Seventh In-
ternational Conference on Human-Computer Interaction, pages 110–117, Ed-
inburgh, Scotland, September 1999.

Jean Vanderdonckt. A MDA-Compliant Environment for Developing User Inter-
faces of Information Systems. In Oscar Pastor and João Falcão e Cunha, editors,
Advanced Information Systems Engineering, volume 3520 of Lecture Notes in
Computer Science, pages 16–31. Springer Berlin Heidelberg, 2005.

Nadir Weibel, Moira C. Norrie, and Beat Signer. A Model for Mapping Between
Printed and Digital Document Instances. In Proceedings of the 2007 ACM
Symposium on Document Engineering, DocEng ’07, pages 19–28, Winnipeg,
Manitoba, Canada, 2007. ACM.

Dongsong Zhang. Web Content Adaptation for Mobile Handheld Devices. Com-
munications of the ACM, 50(2):75–79, February 2007.

83

	Introduction
	Research Context
	Goal of the Thesis
	Research Questions
	Methodology
	Structural Overview of the Thesis

	Background
	Hypermedia
	Context Awareness
	Cross-Media

	Related Work
	Media Adaptation
	Structure UI for Web Applications
	User Contribution
	User Profile
	Device-Centric Approach
	Structure UI based on the Cultural Background
	Device and User Preferences

	Available Frameworks
	TERESA
	MARIA
	USIXML
	CHISEL
	MADAM

	Summary
	Comparison Table
	Analysis of the Table
	Conclusion

	Modelling with RSL
	The Resourse-Selector-Link (RSL) Metamodel
	Entities, Resources, Selectors and Links
	Entities
	Resources
	Selectors
	Links
	Layers
	Structure

	Elements in RSL
	Granularity in RSL
	An Example with Different Granularity Levels

	Document Component Link
	Document Component Link Approach
	Reasons to Modify the Logical Structure of a Document

	An Example of Document Component Link
	How We Store the Elements
	How We Connect Elements with Document Links

	The General HTML Table Model
	Elements of an HTML Table
	Ordering of the HTML Table Elements

	The Importance of Crosslets
	Dynamic Crosslets
	Functionality

	Conclusion

	Conceptual Model
	Elements in our Conceptual Model
	Components
	HTML Table Component
	Paragraph Component
	Image Component
	Other Components

	Crosslets
	Static Crosslets

	Structures
	How to Create Structures
	Elements in Structure
	An Example of Our Approach

	Conclusion

	Implementation
	Use Case
	Motivation
	Infrastructure
	Scenario
	Tablet Device
	Smartphone
	Possible Structures

	Conclusion

	Conclusion and Future Work
	Objectives of the Research
	Contributions
	Limitations
	Order of the Structures
	Future Work

