¥

Vrije Universiteit Brussel

Faculty of Science,
Department of Computer science

Efficient querying of distributed
sources in a mobile environment
through source indexing and
caching.

Graduation thesis submitted in partial fulfillment of the requirements for the degree of
Master in Applied Informatics.

Elien Paret

Promoter: Prof. Dr. Olga De Troyer

Advisors: Dr. Sven Casteleyn & William Van Woensel

Academic year 2009-2010







Acknowledgements

In this small chapter | would like to thank evergadhat helped me achieve this thesis. First of all
I would like to thank my promoter, Prof. Olga Deoyer, for providing me the opportunity to
realize this thesis and for her personal assistdngag this entire academic year.

Secondly, | would like to express my deepest grdéitto my two excellent advisors, Dr. Sven
Casteleyn and PhD William Van Woensel. | am vegnitful for their personal guidance, moral
support and all the knowledge they shared with me.

| also want to thank my dear boyfriend Pieter Gedlert for his moral support, kindness,
patience, encouragement and for being there foatra# circumstances and times.

Finally | would like to thank my family for theiolye and support during my entire life and for
supporting me getting my masters degree and aclgekis thesis.

Thank you all.



Abstract

Mobile devices have become a part of the everyifaythey are used anywhere and at anytime,
for communication, looking up information, consngfian agenda, making notes, playing games
etc. At the same time, the hardware of these dsvtas evolved significantly: e.g., faster
processors, larger memory and improved connectivitfhe hardware evolution along with the
recent advancements of identification techniquas,lbad to new opportunities for developers of
mobile applications: mobile applications can be rana their environment and the objects in it.
Combining these new opportunities with the Welnvadl mobile applications to use services and
information of nearby objects (e.g., a mobile aggtibn that informs you of the restaurants that
are nearby your current position without the needriter your current position).

The SCOUT framework, currently being developedhatWISE lab, supports the development of
context- and environment-aware mobile applicatidnsproviding a conceptual and integrated
view on the environment called the Environment Moddis Model comprises metadata on

physical entities found nearby the user, and tle’si®wn profile information, and thus allows

applications to become aware of (and responsivéhoyser’s physical environment and context.
SCOUT is a decentralized and distributed solutidmere no single centralized server is required
for storing context-sensitive data or integratingtad from various sources. Instead, this
integration is achieved via the locally maintainEdvironment Model, while each content

provider is responsible for making available anchagang their own data. In order to facilitate

information integration across different heterogerse sources, Semantic Web technology is
employed.

Until now, the Environment Model has been store@ &slly materialized view; in other words,
all of the data (i.e., encountered data sourcegp locally. This thesis investigates how the
Environment Model can be constructed and managee rfiiciently. Each of the strategies
mentioned below have been tested extensively iierdifit scenarios, in order to determine the
most suitable ones and to indicate where thereasrfor improvement.

Firstly, we have investigated several ways of agpsummary information on encountered data
sources to determine which sources contain relemémtmation for a given query. The goal of
these strategies is to avoid having to includemtlountered sources when answering a query.

Secondly, we have developed several caching siesteghere some data from encountered
sources is kept locally, to avoid having to dowdl@arelevant sources (as identified by one of
the strategies mentioned above) every time it iedad to solve a query issued to the
Environment Model.



Samenvatting (in Dutch)

Mobiele toestellen zijn de afgelopen jaren eenragigk onderdeel geworden van het dagelijkse
leven; ze worden overal en te allen tijde gebroiktte communiceren, te chatten, informatie op
te zoeken, een agenda te raadplegen, notitieskennspelletjes te spelen, enz. Terzelfder tijd is
de hardware van deze mobiele toestellen sterk ge#smi: snellere processors, groter geheugen
en verbeterde verbindingsmogelijkheden ... De contl@naan deze hardware evolutie, samen
met de recente vooruitgangen in identificatie tetbgieén (bijv., RFID, NFC) hebben het
mogelijk gemaakt mobiele applicaties te ontwikketk@ bewust zijn van hun omgeving en de
zaken die zich in hun omgeving bevinden. Door deeewe vooruitgangen te combineren met
het Web, kunnen mobiele applicaties online servicesformatie uitbuiten van zaken, objecten,
enz in hun omgeving (bijv., mobile applicaties dimkels weergeven die producten verkopen
gerelateerd aan de gebruiker's profiel en/of besieardigheden dat de gebruiker die dag
bezocht heetft).

Momenteel wordt op het WISE lab het SCOUT framewatwikkeld. Dit framework
ondersteunt de ontwikkeling van mobiele applicateszich bewust zijn van de context en de
omgeving van de gebruiker. Dit gebeurt door middel een conceptueel data model, genaamd
het Environment Model, dat de gebruiker’'s eigerfiptonformatie omvat samen met meta-data
van fysische objecten uit de gebruiker's omgeviDigmodel laat toe dat applicaties zich bewust
worden van en kunnen reageren op de fysieke omgevrircontext van de gebruiker. SCOUT is
een gedecentraliseerde en gedistribueerde oplossaagin geen enkele centrale server vereist is
om de contextgevoelig data op te slaan of om da dah verschillende bronnen samen te
voegen. In plaats daarvan zorgt het lokaal bijgdbauEnvironment Model voor de integratie
van de verschillende bronnen, terwijl elke conterdvider verantwoordelijk is om zijn eigen
informatie ter beschikking te stellen en te ondadem. Om de integratie van deze verschillende
heterogene bronnen mogelijk te maken wordt gebrgédmaakt van Semantische Web
technologie.

Tot nu toe werd alle gevonden informatie (d.i., Betzironment Model) lokaal bewaard. Deze
thesis onderzoekt hoe dit Environment Model effic®® kan worden aangemaakt en
bijgehouden. Elk van de onderstaande strategiefin wtgebreid getest in verschillende

scenario’s, om te bepalen welke de meest gesdkikte alsook te bepalen waar er ruimte is voor
verbetering.

Eerst hebben we onderzocht welke samenvattendemafe moet bijgehouden worden voor
elke ontdekte bron om te kunnen bepalen welke kel@vante informatie bevat om een gegeven
query op te lossen. Door middel van deze samemgténformatie (d.i., het Source Index



Model) wordt vermeden dat we steeds alle ontdetdarien moeten includeren om een query op
te lossen.

Ten tweede hebben we verschillende caching stesiegontworpen die de data uit ontdekte
bronnen lokaal bewaren. Dit zorgt ervoor dat redévaronnen (geidentificeerd door €én van
bovenvermelde source index strategieén) niet steguiseuw moeten gedownload worden
wanneer een query gesteld wordt aan het EnvironMedel.

-iv-



Table of content

Chapter 1 INtrOQUCTION .......cooeeeeeeee e s 1
0 O o 1= PSPPSR 1
1.2 Problem deSCHIPIION .. ...uuuieeitiieiet ettt ettt ettt et eeeeaeeteeateteseesees b beeeeeeaeeeeeeeeeeeeeeeeeeeeeeeeees 2
IR 202X o] o] o = Lo o T 2
1.4 TNESIS SITUCTUIE ...ttt s etttk s 555555 s st s st s bnseennnnnnen 3

(O gF=T o] (=] g2l = 7= T (o | o 10| o o 4
2.1 SCOUT frAMEWOIK......uuiiiiiieiiiiiiiiceeeae ettt e e e e e e s e e e e e e e essbeee e e e e aeeeeesannnnees 4

P20 0 [0 To [ T 4T I PP PP PPPPPPPPPPP 4
2.1.2 AN OVEIVIEW ...ttt ememee sttt e e e e e e ettt e e e e e e s smmne et e e e e e e a b bbnneeeeeeee s 4
2.2 SEMANTIC WD ...ttt st 4ttt ettt ettt et ettt e s e et s et s e e e e e eeeeeeaeeeeeeeaeaeaeaeeeeeeeeees 7
2.2.1 The idea and purpose of the Semantic Web.............ccccceee 7
2.2.2 The Semantic Web Stack .........coo o 8
2.3 Resource DescCription FrameEWOTK .........ccccceevuerriuieiueiiiiieiiruinineneeenrnenensreeneneereeeeeeeeeeeee. 9
P28 T00 R - | RO RUSSPRRR 9
2.3.2 REPIESENIALION . ....ci i it eeeeeee et e e bb e benbnenrbnnrnnnns 9
2.4 RDF SCREMA... .o ettt e e e e e e e e e e e e e e e e e e e e e e e eea e 15
2.5 Web ONtology LaNQUAGE ... ..ooiiieiii e et a e 16
2.6 SPARQL ...ttt et e e b e e e e e e e e e nneees 18
2.6.1 WRAL N0 USAQGE ....euieiiiiiiiiiiiimmmmmmme e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e s e e e e e e e e e e aaaaaaaaeas 18
2.6.2 SYNEAX 1eettttiiei e ettt ettt ettt et e et a e 18
2.7 Semantic Web FrameEWOrKS ............ui ettt e e e e e e e 21
P N RN [T o T I T [ IV I L= o - R PR P PP PPPPPPUPPUPPPPP 21



2.8 CACNING e ————————————————————— 22

B2 S T80 VLY - | SR UPEUTRSSRRRS 22
2.8. 2 FOIr WNAE dALA... ..o 22
2.8.3 HOW ..ttt ettt e e e e bt e e b e e e e e eee e 22
Chapter 3 Related WOTK ...........uuiiiiiees ettt ettt eeee ettt e et s eee b s e e e e eeeaaeaaaaaeaeaeaeaeaeeeeeeees 24
3.1 The SCOUT fraMEWOIK ......cueiiiiieiiiieeeee ettt e sttt e e e e s s amnnee e e e e e ennne s 24
3.1.1 Linking physical objects to ONliNe reSOUICES...........coiiiiiiiiiiieie e 24
3.1.2 Storage of location- (and context-) spearfformation ... ieeeees 25
3.1.3 Integrated view over distributed data SOULCES...........uiiiiiiiiiiiiiieie e 27
3.1.4 Other decentralized apPrOaAChES ...t 27
T2 O Yol 1Tl 4 LT o F=T 0T EST 0 0 28
3.2.1 CaChiNgG QUETY FESUILS ......uuuiiiitit ceeeeeeeeieeiieieetteieebte bbbttt e e mnee e e e e eeeeeeeeeeeseeees 29
3.2.2 Caching data ClIeNnt SIAE ..........ovi e 29
3.2.3 WED CACNING....c o e e bbb n e e 30
IR [ 06 [ (ST PP P PP UPPPPPPPPPPPPT 31
Chapter 4 ArchiteCtUral OVEIVIEW ............coummm i nnnnaes 34
4.1 Accessing the Environment MOEL........ oo i 34
4.2 ENCOUNEEIING NEW SOUICTES .....evveeeeesiemmemmesesssssesesssssssssssssssssssssssssssssnsnnnsssssesssessesmeseenes 35
Chapter 5 Source INdeX MOUEL........coo i 37
5.1 What infOrmation t0 STOTE? ........eeiiiieiiiiiiiiie et eeeeas 37
5.2 RDF Schema for the Source INndeX MOAEl. e eeeeeeeeeee s 38
5.3 Adding source index information of @ NEW SOWICE............coovvviiiiiiiiiiiiiiiiiiiiieeeeee e, 41
5.3.1 Source INdex Srategyl ......ccooo oo 41
5.3.2.S0Urce INdeX Srategy 2 ....ccooee e 42



5.4 Accessing the Source INdexX MOEI ........iiiiiiiiiiiiiiiiiiiiiieiiiii e 43

5.4.1 Source INdex Srategy L .....ccooeeiiiieeeeeee e 43
5.4.2 S0Urce INdex Srategy 2 .....cooo e e 45
5.5 QUETY @NAIYSIS ...oiiiiiiiiiiiiiie et s et enn b s n e 46
5.5.1 SPARQL ENQGINE fOr JAVA ......ccoiiiiii e 46
5.5.2 Query analysis to determine the relevantCBBul.............ooeeeeieiei e eeeeeeies a7
5.5.3 Source INdexX QUETY TIEE ...ttt e e e e e e e e e e eeeeeeeeees 48
5.5.4 LIMITALIONS ...ttt ettt e e e e e e e e e e e e e e e e e e e e e aaaaaaaaeans 51
Chapter B8 CACNE .......coi i 53
6.1 WRNAL 10 CACNEY ... eemme e s e bbb 53
6.1.1 CACNE ENLIIE SOUITES ......eeveiiieesmmmmmmmnsiteteeeeeeeeeaa sttt e e e e e e e s s snnneee e e s e e s annbbbneeeeeas 54
6.1.2 Cache triples using a SPeCifiC PrediCate . coooeeee e 55
L Y Tox 0] 11 = =0 )Y 63
6.2.1 Adding an element to the CaChe ...... .o eiiiiiiiii e 64
6.2.2 Updating an element from the CaChe....cceeeeiiiiiiiiiiiiiieeeeee e 65
6.2.3 Retrieving an element from the Cache. oo 66
Chapter 7 IMPIeMENTALION ........oooe e 68
7.1 IMplementation OVEIVIEW ..........cooi it 68
7.1.1 Accessing the Environment Model ... e 68
7.1.2 ENCOUNEENING NEW SOUICES ..o o1 e e e e e eaaaaaaaaaaaaaaaaaaaaaaaaaesaansasssssassanssnennens 71
7.2 ENVIFONMENT IMANAGET .....eeiiiiiiiiiiietimmmmemssesseeietetiseeses s s mmssssssessessbssesnnnne 72
7.3 ENVIFONMENT ACCESS ...ttt ettt e et e e ettt e e e e e e s e s e e e e s s s s nbn e e e e e eeeeenaas 73
7.4 SOUICE INAEX MOAEL..... .ttt e e e e e e e et e e e e e e e e e eeeeeeeeees 74
7.4.1.Source INdeX Srategy L ...ccooeei e 74



7.4.2. S0Urce INAeX Srategy 2 ...ccooeee oo 75

7.4.3 QUETY ANGIYSIS....eieiiiiiiiiiiiiietitceeeeeeeeeeeeeeeeeteetesaeseeeaessbebessbs bbb memeeeeeeeeeeeeeeeseeaeeseeees 75
7.5 CACRNE .ttt e oo e oo oo e oo oo e e e e e e e e e e e e e e e e e e e e e e e e e e e a e e e e e e aaaaaas 78
7.5.1 Least ReCently USEed ......cccooiiiiiiiiieiiee et 81
7.6 CACNE SHAtEOY . .oeeeei e e bbb b be b e 82
7.6.1 CaChiNg ENLIIE SOUICES ....uuuuuiiiiimmmmmme et e e e e et e et e e e e a e e e e e e e e e e e e e aaeaaeas 84
7.6.2 Caching triples using a specific predicate............ccccoeeviiiiieriiiiiiiie e, 84
7.7 USed DESIQN PAtEINS .....ooiiiiiiiiiii ettt ettt e e e e e e e e e e eeeeeaeaaaeeeeeeeeees 87
Chapter 8 EVAIUALION .........uuiiiiiiiiiiiiieeeeeee et eee ettt e eee ettt e aeeaeesseeeeeeeaaeeeaeaeetaeeeaeeeeeeeeeeeeees 90
8.1 TESHING ENVIFONIMENT ......uuutiitiiiiiiemmmmmeeeeeeeeeeeeeeeeeeeaeeeeeeeesessssssssssmmemeeeaeeeeeeeaeaeeeeeeeeeeens 90
8.2 SOUICE INUEX STrAIEQY ... e s ereereeeie et eeee ettt eeeeeeeeeeeeeseeseebee s reereeeaeeeeeeeeeeeaeeeeeeeeees 91
8.2.1 TRE LESE CASES ... i ettt e 91
8.2.2 Criterion 1: CONSLIUCLION TiME ........ o serieteeiieeeeeesaiiiie e e e e e s rnnneee e e e e 96
8.2.3 CHtEIION 21 SIZE ...t e e e bs e s baenennntnes 97
8.2.4 Criterion 3: Time needed to find the releV&Iurces ............oovvvviiiiieii e 99
8.2.5 Criterion 4: Number of relevant SOUICES...........couviiiiiiiiiiiiiiiiiiiiiieiie e 101
8.2.6 Criterion 5: Execution time of the origin@lagy ............ccccoooiiiiiiiiiieni e 104
8.2.7 CONCIUSION ...teiiiiie ettt ettt ettt e e e e s e s be e e e e e s s bbb b e e reeeeeeeaeans 105
8.3 CACNE SHIAtEOY ... oeeeeeeeeee e e 106
8.3.1 TESE SCENAIIO ....uviveieiiieeee e e ettt e e e e ettt e e e e e s e e be e e e e e st nbn b e e reeeeeeesaans 107
8.3.2 Criterion 1: Time necessary to collect tHevant data..............ccccceeceiiiiiiiiineenn. 112
8.3.3 Criterion 2: Time necessary to download theaghed data..................ccceveveenen. 115.
8.3.4 Criterion 4: Time necessary to update th&ac...............oooooeriiii e 118
8.3.5 Criterion 4: Time necessary when of a newais discovered ................eeeeenn. 191

-Viii-



8.3.6 Criterion 5: Time necessary to execute thergrUEry .............eueuevereverereeenennsmmmes 120

8.3.7 CONCIUSION ..ttt e ettt e e e e e e e e e r e e e e e e e e 121
Chapter 9 FULUIE WOTK ... ..o bbb eennes 125
9.1 SOUICE INUEX STrATEQY .. e ees s eeeeeereeeeeee ettt et e eeeeeeaeeeeeeeeeeeseesserreneeeeeeeeeeeeeeeeeeeeeeees 125
0.2 CACNE SHALEOY ... oo e eee e e bbb 126
9.3 Querying on the Mobile deVICE ... 127
Chapter 10 CONCIUSION ... s e e s bbe b nnnnes 128
10.1 SOUICE INAEX SLIALEQY .. .uuuuuunniniiaeaaaee e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e aa e e e aa s e e e e e e e e e e aa e e e eas 128
O OF: Tod g LIS L 7= 1 (T |V PR 128
BIDlIOGrapny ... et 130
(O gF=T o] (=] i 0 Y o 01T T [ G 133
11.1 http://wilma.vub.ac.be/~eparet/elien_foaf N(RDF file)...........cccccciiiinn. 133

-iX-



List of charts

Chart 1: Construction time Source INdeX MOl ccaue.vcviiiiiiiiiiiiiiiie e 97
Chart 2: Size Source INAeX MOUEI ...........coemmeeiieiiiiiiiiii e eeeeeeeeaneenene 98
Chart 3: Time needed to find relevant SOUICES. ... 99
Chart 4: Time needed to find relevant SOUrCeSTMER)............ueuverrerriiiriieeneieeees e 100
Chart 5: Number of relevant SOUICES (1) .....coovveieiiiiiiiee 102
Chart 6: Relevant SOUICES (2) ...cooeee e 102
Chart 7: Execution time of the OrigiNal QUEIMY..c.cvvviiiiiiiiiiiiiiiieieiieeeeeeeeeeee e 104
Chart 8: Total @XECULION TIME ........eiiiiiicereee et e e e e e e e e e e e e eannes 106
Chart 9: Time necessary to collect the relevardi.dat.................eevveeeeiiiiieieeees e eeeeeeeee. 113
Chart 10: Time necessary to collect the relevatd (l@acheStrategyPredicate)................. 114
Chart 11: Time necessary to collect the relevata CacheStrategySource).............c..... 115
Chart 12: Time necessary to download the uncachd.d................ueueiiiiiiiiiiiininensmmmmnn e 116
Chart 13: Time necessary to download the uncach&d(@SSource)..........ccccvvveiiiiiiiiricn 118
Chart 14: Time necessary to update the cache...........ccccooiiiiiiiiiiiiiiii s 119
Chart 15: Time necessary when a New SOUICe iSMBBEA ............ccoevveeerrnnieeeeeeeeesss mmmmmneees 120
Chart 16: Time necessary to execute the giVEN QUELY...........uuuuureeueuimimrneeiieiinieennneeeeeeeeess 121
Chart 17: Collect time and QUETY tIME ...ttt 123
Chart 18: Collect time and query time CacheStréB®gyce ............ooovvviiiiiiiiiiiiiiiiiiiieeees 124



List of figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:

SCOUT, a layered frameWOrkK [L] .... oo 5
The concept of the WWW and the SemanBOVI2] ...........ccooooiiiiiiiiiniiniiiiis 8
The Semantic Webh StacK [4] ... i ceeeeee et 9
EXample RDF Graph ... s e sssaeesnesesnnenes 12
Example content semantic data CaChe ... 30
Accessing the Environment MOAel .. oo 35
ENCOUNLEIING 8 NEW SOUICE ...ttt 36
composition where tree (SourcelNdeXSYBALE .........cooeeerrieiiiiieiie e 50
composition where tree (SourcelNdeX SRR .......cccceeeereeriiieiiieie e 51
Accessing the ENvironmMent MOAe! . o 69
Class diagram, accessing Environmentdllad...............coevvvviiiiiiiiiiiiiiieineneneenn. 70
Sequence diagram accessing EnvironmedeM...........cccoooiviiiiiiiiiin e 70
Sequence diagram, encountering a NEeMEESQAU.............ceveveeeieeereereeeeeees e eeeees 72
Class diagram SoUrCelNUeXSIrategy. . uuuu e uurrerrrerrereerirreeririrereerreiierereeeeeeeeeeeeren 74
Sequence diagram, constructing SouregRQUeryTree.........ccccvveeeeeeeeeeeeeevvnnnnnn 76
Sequence diagram, constructing SOUreERUErY ...........cviiiiiiiiiiiiiiiiee e mmmmmn s 77
Cache Class dIagram............ .o eeeererureuuerreneerrereerrerr ... 80
Class diagram CacheStrategy ......cceeeeueerrermrmmrmmrmiirnrnrennrnnnnnenrnnnrerne e 83
Class diagram Predicate SEtCOMPOSET......ciiieeie e 86
Sequence diagram Construct prediCate.SeL...........uuuuvuueeeeieiiieiiiiiiiieereeeeeeeeeeeens 87
Class diagram Observer Pattern, Reldfimmager and Environment Manager .........
Class diagram Composite and ViSitOrfeP@L.............uuuvevvreurrrrmirieinennnsmmmnnsesnnnnns 89

-Xi-



List of RDF Data

RDF data 1: Example of & RDF triple ... ..ttt e e 10
RDF data 2: RDF information in RDF/XML fOrMAL w.vvvvieeeiiieiiiiiis e reeee e 13
RDF data 3: RDF information in TURTLE format............c.ouiiiiiiiiiiiiiiice e 14
RDF data 4: RDF Schema EXamPIE............aummmmm e 16
RDF data 5: OWL EXAMPIE ...cociiiiiiiiiiiiieiie ettt ettt e e e e e e e e e eeeeeeeeeeeeeeeeeees 17
RDF data 6: RDF Schema used to store the soureg mAdels................eeveveimiminieiiiniennnn. 39
RDF data 7: SOUrCe A @nd B ........ooooiiiicemmmce e e e e e e e e e e e e aaannaas 40
RDF data 8: Source index model information sour@A source B .............ccccvvvevviiieeiiiiees 40
RDF data 9: partial source index information ftipl/wilma.vub.ac.be/~eparet/elien_foaf N.rdf
(SOUICEINAEXSIIAEOYL) ..o e i sttt ettt et e teetee s besse s be s st e e e et e e e e e e eeeeeeeeeeeeeeeeeeneees 42
RDF data 10: partial source index information for
http://wilma.vub.ac.be/~eparet/elien_foaf N.rdf (BmIndexStrategy2).........cccceeeeeiiiiiiiaees 43
RDF data 11: Reifeid statement of predicate-dornambination...................cccoooe et 44
RDF data 12: SOUICE A .....oiiiiiiiieeee e sttt e e e e e e sttt bttt e e e e e e e e s bbb e e e e e s s abbb e eeeeeeeeeeasannnnees 58
RDF data 13: SOUICE B ....coiviiiiiiii et cmmm oottt e e e e e ettt e e e e e e e e e e e eneeesasn e e e e e aeeeaeannn s 58
RDF data 14: A ReifiedStatement, the source ofogetr...........cooevvviiiiiiieeeeee 60

-Xii-



List of SPARQL Queries

SPARQL query 1: SIMPle SELECT QUETY ........uceeuemrerruerrrrrrnnrenenennnsnmnsnenennnensnnmnnneeeereeesee 19
SPARQL query 2: SImple CONSTRUCT QUETY ... 20
SPARQL query 3: SIMPIe ASK QUETY ... .. aeeaennnene 20
SPARQL query 4: SImple DESCRIBE QUEIY ..o 21
SPARQL query 5: constructing source index model(S8eindexStrategyl) .......ccccevvvveeneeee. 42..
SPARQL query 6: constructing source index model(S8eindexStrategy?2) ...........cuevveeeeee. 42..
SPARQL query 7: Example query posed to the EnviremnVodel ................ovvvviiviniiiiininii. 44
SPARQL query 8: Source Index Query (SourcelNdeXSIBAL) .........ccoeevviereiiiiiieireneeeeeesamcmes 45
SPARQL query 9: Source Index Query (SourcelNdeXSIBER) .........coovereeeririeiiiiineeeeeneessmmmaes 46
SPARQL QUETY 10: FiltEr QUEIY .. .uuuuuueeeetmmmmmm s asssssassssssssassessses s e s s sssssssnsnsnsssnnnsnnsnnsnns 52
SPARQL query 11: Alternative filter QUEIY.... ... ... e 52
SPARQL query 12: Low complexity for tests 1, 2,8l &............ccooeieiiiiiiiieiee e v 92
SPARQL query 13: Medium complexity query for tebtd and 6 .............eeeeevmeininniiniinninnnnn. 93
SPARQL query 14: Medium complexity query for teSt.2...........uuuvviiieiveiiiiiiiiiiiiiiiiieeeeeeeeen 93
SPARQL query 15: High complexity query for test215 and 6..........ccoovvvvviiiiiiiiiiiiiineennnns 94
SPARQL query 16: Low complexity query for teSt.3. . ... 94
SPARQL query 17: Medium complexity query for teSt.3.........oiviiiiiiiiiiiiiiiieiiiiiiiei e 94
SPARQL query 18: High complexity query for teSt.3..... ..o 95
SPARQL query 19: Low complexity query for testSmla ... 95
SPARQL query 20: Medium complexity query for te$@nd 7 ............oovviiiiiiiiiiiiiiiiiiiiiceenn. 96
SPARQL query 21: High complexity query for testaml 7............coooviiiiiiiiiiiiiiiiiiiiiiceeeeeeee, 96
SPARQL qUEry 22: QUETY L ...ttt e et e e e e e e eeeeennes b e e e aaeeeenne 110
SPARQL qQUETY 23: QUETY 2 ...ttt eeeeee ettt e e e e ettt e s e e e e e eeeenneesbaan e e e e e e eeeanes 110
SPARQL qQUETY 24: QUETY 3 ...ttt reeeee e e e ettt e e e e e ettt e e e e e e e eeeeeneessaa e e eeaeeeennes 110
SPARQL qUETY 25: QUETY 4 ...ttt e ettt e e e e e et e e e ane e st e e e e e e eeeanes 110
SPARQL qUEry 26: QUETY S ...ttt eeeeee ettt e ettt e e e e e e eeeeemeessaa e e e aaeeeenne 111
SPARQL qQUETY 27: QUETY B ...ttt eeeeee ettt e e e ettt s e e e e e eeeeenees s e e e e e e eeennes 111
SPARQL QUETY 28: QUETY 7 ..t seeeee e ettt e e e e et et e e e e e s e eeeenneesbaaan e e e e e e eeeanes 112

-Xiii-



List of tables

Table 1: Size Source Index Models

Table 2: Relevant amount of data ..

-Xiv-



Glossary of terms

Theactual domain of a predicate specifies the type of resourcedbttally occurs as subject of
that predicate

Cache Strategy is the part of the SCOUT environment layer which responsible for
determining what information of the encounteredreesiis kept locally.

The domain of a predicate specifies the type of resource ti@et occur as subject of that
predicate.

The Environment Layer of the SCOUT framework is responsible for storargl integration
information or data about the entity and its cutrrenvironment (e.g., data of encountered
entities).

The Environment Manager is a component of the Environment Layer whicheisponsible for
maintaining and providing access to the Environnidodel.

The Environment Model is the part of the SCOUT framework that comprigesmobile user’s
own profile information, the past and current posial relationships with other entities and the
data that the other entities offer.

Eviction strategy, also called a replacement strategy, is a stratdggh is used by a cache to
determine what cache elements are evicted fromablee when it is full.

A given query is a query posed to the Environment Model.

The Sour ce Index Model is a part of the SCOUT environment layer. The Seundex Model is
a model which contains information, called summafgrmation, about what information (e.g.,
predicates and domains ...) occurs in the encounterextes.

Source Index Strategy is the strategy responsible for maintaining therSe Index Model.

A Source Index Query is a query posed to the Source Index Model withgbal of finding
sources that are relevant, in solving another if@ay query.

The object is the part of an RDF triple that represents thkier of the relationship with the
subject.

The predicate, often called a property, is the part of an RDiplér which indicates the
relationship between the subject and object otripée in which it is used.

_XV_



RDF (Resource Description Framework) is used to desaildata model in such a way that it
facilitates sharing and interchange of data. Deffer RDF representations are available:
RDF/XML, N-Triple, Turtle ...

RDF Schema is a technology used to define taxonomies of elasnd properties and simple
domain and range specifications for properties.

An RDF triple, often called a statement, consists of a subpgetjicate and object. It describes
the relationship, indicated by the predicate, betwine subject and object of the triple.

RDF/XML is an XML serialization of a set of RDF triples.

Reification makes it possible to uniquely identify a statenteriie able to refer to it and its parts
(e.g., the predicate). This is useful when extfarmation about the statement itself must be
stored (e.g., when the statement was created).

The SCOUT framework is a framework that supports the development otecxd-aware mobile
applications. Depending on the mobile user’s emvitent and needs at a given time and place,
these mobile applications offer relevant informatamd services.

SPARQL is the W3C recommendation query language and qobtased to access RDF
information.

Thesubject is the part of an RDF triple which indicates tesaurce for on which a relationship,
property, is expressed.

-XVi-



This page is intentional left blank.



Chapter 1 Introduction

This first chapter describes the context of thissib, a description of the problem it solves, the
approach that is followed to solve the problem #@r@dstructure of this thesis.

1.1 Context

Mobile devices have become a part of the everyifaythey are used anywhere and at anytime,
for communication, looking up information, consngfian agenda, making notes, playing games,
etc. At the same time, the hardware of these dswvies evolved significantly, including faster
processors, larger memory and improved connectivifhough this evolution has allowed
mobile devices to lessen the gap with desktop céenpuboth in functionality and user-
friendliness, mobile devices still have some linmias. For one, the input and display
capabilities of these devices are still lackingkimg it cumbersome to enter information and get
a comprehensive information overview. Secondly,abee the device is deployed in a mobile
environment, the user cannot spend the same anebumhe looking for information as when
sitting behind a desk: he is walking around, migdiaffic, sitting at a bar, etc.

However, it can be observed that in a mobile emwitent, the user is often interested in
information related to his current situation: fastance, reviews of nearby restaurants, products
(souvenirs) from nearby shops related to previousdited monuments, etc. Consequently, by
automatically taking into account the user’s cutrand past environment and context when
looking up this information, the user can be radigwf much of the work involved. Identification
technology (e.g., RFID, NFC) can be employed to enadobile applications aware of the user’s
physical environment and the entities in it; congloirwith the improved connectivity of mobile
devices, this allows mobile applications to accessvices and information from the Web
associated with nearby objects.

The SCOUT framework, currently being developedhatWISE lab, supports the development of
context- and environment-aware mobile applicatidnsproviding a conceptual and integrated
view on the environment called the Environment Modibis model includes the data associated
with currently (and previously) nearby physical iges$, together with the user’'s own profile
information, and thus allows applications to becosmeare of (and responsive to) the user’s
physical environment and context.

SCOUT is a decentralized and distributed solutidmere no single centralized server is required
for storing data on the user’s environment or iraégg data from the various data sources,
(associated with the environment entities). Instedds integration is achieved via the

Environment Model, which is locally maintained, ¥eheach content provider is responsible for

1-



providing and managing their own data. In orderfaacilitate information integration of the
different heterogeneous sources, Semantic Web démiwis used.

1.2 Problem description

The Environment Model provides the data associat#d currently (and previously) nearby
physical entities, together with the user’'s ownfiganformation. By providing such a model,
mobile applications can become aware of (and respero) the user’s physical environment and
context. Until now, this model has been stored adlya materialized view; in other words, all of
the data (i.e., encountered data sources) is stocatly.

A first drawback of this approach is that it is ealistic to store all the data (related to
encountered entities) locally, since mobile devitage only a limited amount of space available.
Secondly, when accessing this Environment Model, (via a query), all of the discovered data is
used to solve a given query, despite the factdahatge part of the data will be irrelevant forttha
query. In order to determine what sources are aslefor a certain query, we must firstly know
what information is contained in our heterogenesaarces; secondly, we must know what
information the query needs.

This thesis investigates how the Environment Mocket be constructed and managed more
efficiently in order to avoid these two drawbacks.

1.3 Approach

Until now the Environment Model has been stored dslly materialized view, meaning all of
the data (belonging to encountered entities) isedtdocally. In our approach, we construct and
manage the Environment Model more efficiently. Bois purpose, we have developed two
mechanisms: a mechanism which constructs and nrant Source Index Model, which
summarizes the information found in the encountelad sources, and a caching strategy, which
decides which data is stored locally. Both mechasiare described in the following paragraphs.

Firstly, we construct and maintain a Source Indead®l, which summarizes the information
found in the encountered data sources. The go#lli®imodel is to identify which sources are
relevant for a given query, and thus allows uswuoidahaving to include all encountered data
sources when a query needs to be answered. Thiel isodteated and extended at runtime: each
time a new source is encountered, summary infoomain that source is extracted and added to
the index model. Therefore, the model must be Wlexienough to summarize a variety of
heterogeneous data sources.

Secondly, we employ a caching strategy, in ordeawoid downloading the relevant sources
every time a query needs to be answered. Agais ctthe strategy should be flexible enough to

-2-



deal with data sources that contain a wide var@tyinformation and vary in size. While
developing this caching strategy, the small mengrg and limited performance of mobile
devices should be taken into consideration.

We have developed several alternative strategresdch of these optimizations, varying both in
amount (Source Index Model) and granularity (cadbfe)he data kept. These strategies have
been validated and compared through extensive expets.

1.4 Thesis structure
Thisfirst chapter explained the context, the problem and followegrapch of this thesis.

The second chapter, which provides background information relatedhis thesis. It explains in
detail topics like the SCOUT framework, Semantich/Meaching ...

Thethird chapter describes the related work in scope of this thggs the SCOUT framework,
Source Indexes and caching strategies), what wasklbeen done previously and how does it
differ from the followed approach.

Thefourth chapter provides an architectural overview.

Thefifth chapter explains the concept of the Source Index Modehoael providing what kind
of information is used in the encountered dataceair

The sixth chapter explains the Cache that is used to store someeoéticountered data source
locally.

Theseventh chapter provides the implementation details of all the deped components.

Chapter eight describes the experiments and their outcomesatbeg conducted regarding the
Source Index Model and the cache strategy.

Chapter nine elaborates on future work.

Chapter ten describes the conclusions of this thesis.



Chapter 2 Background

The sections of this background chapter discusthaltechnologies necessary to understand the
following chapters. Technologies like Semantic WeBJF, and RDF Schema ... are discussed.
The first topic is the SCOUT framework, the framekvfor which | made this thesis.

2.1 SCOUT framework

This section describes the SCOUT framework for Wwhikis thesis is made. Firstly a small
description of the framework is given, what therelsteristics are. Secondly, an overview of the
layered structure of the framework is given; eamyet and its most important components are
described in detalil.

2.1.1 Introduction

SCOUT, short for Semantic COntext-aware UbiquiteasuT, is a framework that supports the
development of context-aware mobile applicationsp&nding on the mobile user's environment
and needs at a given time and place, these mopikcations offer relevant information and
services. [1]

The SCOUT framework is scalable, decentralized distributed in which each identifiable
entity is responsible for providing and managirggatvn data and services in the form of a Web
presence. This can be a simple website, Web ssreican online sources providing structured
information (e.g. RDF files). Due to its open, decalized and distributed nature (together with
its ubiquitous availability), the Web is the ideplatform for deploying these presences.
Furthermore, it allows re-use of the wealth of digswe information already available online
(e.g., existing Web pages, RDF information suck@#F profiles) as Web presences. By using
Semantic Web standards and vocabularies to desaidiiepresences in a uniform and expressive
way, the SCOUT framework allows seamless integnatind querying of data from (several)
different entities, thereby providing mobile applions with a richer and more complete view on
the global environment.[1]

2.1.2 An Overview

From the introduction we know that the SCOUT framsgkwis framework which supports the
development of context-aware mobile applicationse BCOUT framework is a four layered
model, which separates the different design corscanal offers independence between layers and
the underlying technology. Figure 1 shows the cphad model of the SCOUT framework and
its four layers: the detection layer, the locatmanagement layer, the environment layer, the
application layer.[1]



| Personalized Access
o Web Presences
Appﬂualmns

Re lation
Hlsto

enwrmmen{
Environment Layer ~ informalien
| acce&:s Noftification /
Service "

3 LY
| / Querying i
,' Service W
| Relation Mode! 7 % \ Enl\t‘; Modei
. i

] / Ennronment “
Relation Enmy
| Management - Management ‘\

positional

_‘ ocation Management Layer relaions

| Proximity Management

| Nearness Remoteness
Strategies Strategies

detected entities &

_¢ Detection Layer Web presences

| | Detection

| Technigues

Enabling Technologies

Web hosting Network Technologies Mobile devices &

B identification lechniques
AN
& -
- 2

Figure1: SCOUT, alayered framework [1]

2.1.2.1 Detection layer

The bottom layer, the detection layer is respoesfbl detecting identifiable physical entities
(e.g., a Smartphone) and obtaining the referencéthéocorresponding Web presence. Each
physical entity has a Web presence which contaifemation about the entity (e.g., a FOAF
file). It encapsulates the different detection teghes (e.g., RFID, NFC, Bluetooth, etc) that can
be used and extracts references to other Web meseso that they can be used by other layers.

2.1.2.2 Location management layer

The location management layer is on top of thedfiete layer and is responsible for creating and
maintaining positional relations between differemttities. It uses the information from the
detection layer to determine which entities arerlmgahe user and which are no longer nearby
the user. To determine whether or not an entitynesrby or no longer nearby so-called
“nearness” and ‘remoteness”strategies are used, which are collectively calpedximity
strategies. Apositional relation is used to express thegarbynessof an entity.



2.1.2.3 Environment layer

The Environment layer stores and integrates inftioneor data about the entity and its current
environment. It also provides services to obtafarmation from nearby Web presences in both a
push- and pull-based manner. Semantic Web tooks lJignd are used to store the data,
integration of the data happens via RDBR Semantic Web technology, and the reasoning
capabilities of the Semantic Web are used to inésv information. [1]

A Relation model is used to express tpesitional relation between the entity and the entities it
has met. An Entity model is used for representirgrhetadata or information of an entity. Both
models (Relation model and Entity model) have aagament component which maintains the
model, allows querying, programmatic access andiges views of the model.

The Query Service is the core component of the lBnument layer; it allows client applications
to query the Entity model, the Relation model ahed models of Web presences of (nearby)
entities. These queries can vary from simple qaemrieving metadata to queries containing
complex semantic conditions (e.g. references tausiee’'s Entity Model).[1]

The Notification Service allows applications to @bt references of nearby entities in a push-
based manner, thus allowing them to become resportsi changes in the mobile user’s
environment. An application has the possibilityrémister itself with this service in order to

automatically receive a notification (in the fornf an event) when nearby entities are
encountered or are no longer nearby. Per defddtapplication receives a notification of all
nearby entities. Additionally, the framework alloiftering by enabling the application to

specify a condition which must be satisfied by thearby entity before the application is
notified.[1]

The Environment Management component is respon&ibleombining metadata from multiple
Web presences, obtained from the past and curesitignal relations (Relation Model), and
integrating it with metadata of the mobile user t{gnModel). The combination of all this
information is called the Environment Model. Notiteat posing a query to the Environment
Model, actually causes different sources to beigdei his is a major benefit for the developer,
since he does not need to take into consideraliahhe is actually querying several different
Web presences, the Entity Model and Relation Model.

The top layer is the application layer, which caméaapplications that have access to the services
and models provided by the framework and thus elte the user’'s environment (current and
previous) into consideration.[1]

! http://jena.sourceforge.net/
2 http://www.w3.0rg/RDF/



2.2 Semantic Web

As explained in the previous section, the SCOUMm&work is a framework that supports the
development of context-aware mobile applicationsp&nding on the mobile user's environment
and needs at a given time and place, these mojikcations offer relevant information and

services. [1] In order to accomplish his goals, 8TQises Semantic Web technologies like RDF
and Semantic Web tools like Jena. It is thus necgde explains what the Semantic Web is, the

idea behind it, the purpose of it, as well as &ilag conceptual model of the Semantic Web to
show the composition of it.

2.2.1 The idea and purpose of the Semantic Web

The Semantic Web is the further development of Wald Wide Web; it can be seen as an
extension of the WWW. The purpose is to add sermsuoti meaning to documents, services, data
... on the Web so that all the information becomeshime readable and understandable. This
makes it possible for the machine to derive newsfadetect contradictions, and infer new
relationships ... The search engines benefit fromS@mantic Web, since they will be able to
return more relevant results. Since the resulted@n the actual web content and / or semantics
instead of depending on for example keywords thatdevelopers set or on the internal link
structure.

The figure below shows the concept of the World #Mleb and how the Semantic Web extends
it. Machines in the WWW were simply designed t@yelto display information, not to be aware
of the meaning, concepts and relationships cordaineit. This makes it very difficult for
applications to utilize the WWW as an informaticrusce in an automated way. While with the
Semantic Web, the machines are aware of the camaeaptrelationships that are present. [2]

The figure below shows that the Semantic Web dadschange anything to the distributed
manner of the World Wide Web today. But by usingotogies, adding concepts and adding
relationships to the information on the Web, thpregsiveness of the information is increased.

% An ontology is a formal representation of a setarficepts within a domain and the relationshipsveen those
concepts. [27]



—_—
~

’/,f_‘“a_\\
" World Wide ™) ¢ extends ~” Semantic \)

f
\\‘\\ile—b// \\j‘e—b//
contains containg
T ™~
/ ., g ™
[\Documents \)< ------------- = N { Ontologies )
/ _,_—-_Hq_\-‘ e P
T = e
T (e ) J X
N 7 use

mnr;:;cted “Q?—’_,y\_,( deimr—.. language
v identified
,L it by \,_Z

- . ™~
< % s i ™
<> (oomsa (" on )
\\R /// \\‘a_ U_/.U/ S //’

Figure 2: The concept of the WWW and the Semantic Web [2]

As mentioned previously, the Semantic Web adds eqaiscand relations to the information on
the Web. Relationships, in fact, take on a primate in the Semantic Web. Object-oriented
solutions make relationships secondary to the tdbjdtemselves. Relationships do not exist
outside of an object. Relationships are dependeriheir associated object class and cannot be
repurposed for other classes. Relationships irBdmaantic Web exist distinct from the concepts
that they join, they are first-class. Relationshaps free to join any collection of statements.sThi
allows relationships to have inheritance and retsbn rules of their own. For example, a social
network relationship within the Semantic Web coafter an ‘associatedWithrelationship that
contains a sub relationshipWnsBy”and another sub relationshifsiéndOf'.[2]

2.2.2 The Semantic Web Stack

The Semantic Web is represented by a conceptuaiddymodel, called the Semantic Web Stack.
Figure 3 is a common figure to represent the Seim#veb stack, it shows the fourteen layers:

* The URI/IRI layer is used to uniquely identifyrBantic Web Sources.

» The Unicode layer can represent and manipulaterirdgtion in different languages.

* The XML layer is used to interchange structure@dater the web.

» Namespaces integrate markup from multiple sources.

* XML Query queries collections of XML data.

* XML Scheme defines the structure of specific XMhdaages.

« The RDF Model & Syntax layer represents resourtmrmmation as a graph and describes
taxonomies based on RDFS.

» The Ontology layer is for defining vocabularies amébling reasoning based on description
logic.

* Rules / Query describe addition rules via RIF anérgs RDF data based on the SPARQL
guery language.

-8-



» The logic layer is for logical reasoning, to infemnéacts and check consisten:

» Proof explains the logical reasoning steps ta

» Trusts is authentication and trustworthiness oiveerfacts based on Proof, Signature
Encryption.

» Signaturevalidates the source of facts by digitally signRDF date

» Encryption protects RDF Data via encrypt

Proof
Logic

Rules f Query

Signature
Encryption

Ontology

RDF Model & Syntax

XML Query XML Schema

XML Namespaces

Figure 3: The Semantic Web Stack [4]

2.3 Resource Description Framework

The detection layer of the SCOUT framework can atetarious entities (e.g., a mobile phont
building ...); these various entities re information with the main entity which is in tiRDF
format. This section explains what RDF (Resourceddption Framework) is and how it can
represented.

2.3.1 What

The Semantic Web Stack has an RDF Model & SyntgerlaThis layer is responsible f
representing resource information as a graph and goribee taxonomies and vocabularies be
on RDFS. RDF is responsible for doing the formemealy describing the data model in suc
way that it facilitates sharing and interchangeatt

2.3.2 Representation

RDF information is represented by-called triples. A triple is of the forn“<subject>
<property> <object>". A subject and property are a resource, while bjeod is either :

-O-



Resource or a Literal. A Resource is a conceptbggcd which can be uniquely identified by an
IRI* (e.g. an URL). A Literal represents concrete dafaes like numbers, strings ...

The subject of a triple is the Resource of whichwamnt to say something; the property is the
relation between the subject and the object andobject is the value of the property for the
subject. In the example below ntp:/iwise.vub.ac.be/Elientme " is the subject,
“hitp://xmins.com/foaf/0. 1/nick " and “nhttp:/ixmins.com/foaf/0.1/age " are the properties and
‘elien” and %3 are the objects, both are Literals.

<http://wise.vub.ac.be/Elien#me> <http://xmins.com/ foaf/0.1/nick> "Elien" .
<http://wise.vub.ac.be/Elien#me> <http://xmins.com/ foaf/0.1/age> 23 .

RDF data 1: Example of a RDF triple

RDF information is commonly presented, visualizedadabeled, directed graph. Figure 4 is an
example of RDF information visualized as a labetbected graph. This graph is thus a
collection of triples, a collection of IRIs and érals that all are unique. That uniqueness
combined with the fact that a RDF graph has noactot facilitates the merging of two or more

RDF graphs. Merging a RDF graph means just puttiegh next to each other, there is no need
for name translation.

Although graphs are a very powerful tool for représg information, they are unsuitable for
exchanging them between several applications. Bdyeaxchange RDF information between
applications, there exist several RDF serializati@ng., RDF/XML, Turtle and N-Triple). [2]

RDF/XML is an XML application for representing RDfiples in a serialized way, it is the only
normative (standard) exchange syntax for RDF seai@n. RDF data 2 shows the RDF/ XML
representation of the same RDF information as gufé 4.

The Terse RDF Triple language, or Turtle, is notXAdL language but a more human-friendly
and a more readable syntax since it does not useedo represent the RDF information. RDF
data 3 shows the same RDF information as in RDR daand Figure 4 but in the TURTLE
format.

N-Triples is a simplified version of Turtle. N-Ttgs uses the same syntax for comments, URIs
and Literal values but has some simplifying retitits. For example in Turtle the following
statements are valid:subject predicatel valuel; predicate2 value2 .”, one can use the “”
shorthand to use the subject of the previous sttenn N-Triple this is not allowed, a statement
in N-Triple is represented by a single line contagnthe subject, predicate and object. This

* Internationalized Resource Identifier

-10-



simplified form makes it an attractive choice ferializing RDF, particularly in applications with
streaming data. [2]

-11-



frrlns .corfoaf)0. Llmo ws

wrolns oo rnfoaf)0. Llkno ws

sanlngs .comfoaffl. Liname

http

arilns.comfoatf/0. 1jgve nname

e wub ac.be/Blien#me http:fzamins.comfoaf/0. Lifamily_name

http:jrmins.comfoafj0.1jnick

mlns.comfoaf/0. Limbox_shalsum

smlns.comfoaf/0. Lhomepage

+ffzrrlns.comfoafj0.1/phone

Figure 4: Example RDF Graph

mlns.comfoaf0. 1imbox_shalsum

w3.org2000,01 frdf-sche ma#seeAlso

frralns .comfoaf/0. Lname

gemud:A50919

T2b9db6 1{552b422e 8d9bacl06e06 H Bocfead 15

e wubac.be/membe rsjjo hny

v3.org/1999 /0222 vdf-syntax-ns#F type

w3.0rg/1999 02 22 rdf-syntax-ns# type

vav3org 1999 /0222 rdf-syntax-rs # type

——,

= Iolny Paret

http:jjzrlns .comfoafi0. 1/Ferson

genid:A50020 hittpz)jsmlns.comfoaf0. Jname p| Feter Callewaert
mlns.comfoaf0. 1imbox_shalsum
Elien Paret w3 org 200001 frdf-sche ma#seeAlso 620f0f0 e B095afdbef 1a9 1e9fTf12cheted6 ba
Blien  hittp:jjwise wubac.be/me mbers/pleter

Faret

Elen

B4dbSefbfadecebedalThe 3 5Tdf 13017 Ledbbe2

subac.be/members/Elien/

tel:026293754

-12-




<?xml version="1.0'?>

<rdf:RDF
xml:base="http://wise.vub.ac.be/Elien"
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-s
xmins:rdfs="http://www.w3.0rg/2000/01/rdf-sch
xmins:foaf="http://xmins.com/foaf/0.1/">

<foaf:Person rdf:ID="me">
<foaf:name>Elien Paret</foaf:name>
<foaf:givenname>Elien</foaf:givenname>
<foaf:family_name>Paret</foaf:family_name>
<foaf:nick>Elien</foaf:nick>
<foaf:mbox_shalsum>84db5efb9a3ecebeda27be3957df13c
<foaf:homepage rdf:resource="http://wise.vub.ac.be
<foaf:phone rdf:resource="tel:026293754"/>
<foaf:knows>

<foaf:Person>
<foaf:name>Johny Paret</foaf.name>

<foaf:mbox_shalsum>72b9db61f552b422e8d9bac106e06

<rdfs:seeAlso rdf:resource="http://wise.vub.ac.b
</foaf:Person>
</foaf:knows>
<foaf:knows>
<foaf:Person>
<foaf:name>Pieter Callewaert</foaf:name>
<foaf:mbox_shalsum>620f0f01e8095af4bcfla91e9f7fl
<rdfs:seeAlso rdf:resource="http://wise.vub.ac.b
</foaf:Person>
</foaf:knows>
</foaf:Person>
</rdf:RDF>

yntax-ns#"
ema#"

171c4b9e2</foaf:mbox_shalsum>
/members/Elien/"/>

3f8ccfead15>/foaf:mbox_shalsum>
e/members/johny"/>

2chc6cd6b2a</foaf:mbox_shalsum>
e/members/pieter" />

RDF data 2: RDF information in RDF/XML format

_:A3aa10439X3aX1271e1f9360X3aXX2dX7fff <http://www.
_:A3aa10439X3aX1271e1f9360X3aXX2dX7fff <http://xmIn
_:A3aa10439X3aX1271e1f9360X3aXX2dX7fff <http://xmIn
_:A3aa10439X3aX1271e1f9360X3aXX2dX7fff <http://www.
<http://wise.vub.ac.be/Elien#me> <http://xmins.com/
<http://wise.vub.ac.be/Elien#me> <http://xmins.com/
<http://wise.vub.ac.be/Elien#me> <http://xmins.com/
<http://wise.vub.ac.be/Elien#me> <http://xmins.com/

w3.0rg/2000/01/rdf-schemat#seeAlso> <http://wise.vub
s.com/foaf/0.1/mbox_shalsum> "620f0f01e8095af4bcfla
s.com/foaf/0.1/name> "Pieter Callewaert" .
w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://xmins
foaf/0.1/nick> "Elien" .

foaf/0.1/mbox_shalsum> "84db5efb9a3ecebeda27be3957d
foaf/0.1/knows> _:A3aal0439X3aX1271e1f9360X3axXX2dX8
foaf/0.1/knows> _:A3aal0439X3axX1271e1f9360X3aXX2dX7

.ac.be/members/pieter> .
91e9f7f12cbc6cdbb2a” .

.com/foaf/0.1/Person> .
f13c171c4b9e2" .

000.
fff .

-13-




<http://wise.vub.ac.be/Elien#me> <http://xmins.com/
<http://wise.vub.ac.be/Elien#me> <http://xmins.com/
<http://wise.vub.ac.be/Elien#me> <http://xmins.com/
<http://wise.vub.ac.be/Elien#me> <http://xmins.com/
<http://wise.vub.ac.be/Elien#me> <http://www.w3.0rg
<http://wise.vub.ac.be/Elien#me> <http://xmins.com/

_:A3aal10439X3aX1271e1f9360X3aXX2dX8000 <http://www.

_:A3aa10439X3aX1271e1f9360X3aXX2dX8000 <http://xmin
_:A3aal10439X3aX1271e1f9360X3aXX2dX8000 <http://xmIn

_:A3aa10439X3aX1271e1f9360X3aXX2dX8000 <http://www.

foaf/0.1/homepage> <http://wise.vub.ac.be/members/E
foaf/0.1/name> "Elien Paret" .

foaf/0.1/phone> <tel:026293754> .

foaf/0.1/givenname> "Elien" .
11999/02/22-rdf-syntax-ns#type> <http://xmins.com/f
foaf/0.1/family_name> "Paret" .
w3.0rg/2000/01/rdf-schema#seeAlso> <http://wise.vub
s.com/foaf/0.1/mbox_shalsum> "72b9db61f552b422e8d9b
s.com/foaf/0.1/name> "Johny Paret" .
w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://xmins

lien/> .

oaf/0.1/Person> .

.ac.be/members/johny> .
acl06e063f8ccfead15” .

.com/foaf/0.1/Person> .

RDF data 3: RDF information in TURTLE format

14




The strength of RDF lies in the fact that it is gibke to make a statement about anything, even
other statements. When making a statement B abetdatement A, a resource must be used to
represent statement A, since a RDF statement mustys have a resource as a subject.
Declaring a statement as a resource and usingefioaince is called reification, the type of this
resource isrdtstatement . This resource has three propertieBsubject, rdf:predicate and
rdfobject  defining the statement. [2]

2.4 RDF Schema

RDF Schema (RDFS) is the technology which is usddis thesis to specify an own vocabulary.
RDFS is used to define taxonomies of classes andepiies and simple domain and range
specifications for properties. When RDF is used@Jat lacks support for expressing meaning,
or semantics, behind the descriptions. Using RD#&ses and properties can be arranged in
generalization / specialization hierarchies, defiloenain and range expectations for properties,
assert class membership, define collections, spead interpret data types...[2]

The example below shows the definition of four séss(Vehice 7, “car”, “Bicycle ” and “color ”)
and one property fascolor ”). By using the RDF Schema below, evergnice ” (Whether it is a
“car” Or “Bicycle ") Will be able to have a propertygdslor ”.

<?xml version="1.0"?>

<rdf:RDF
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-s yntax-ns#"
xmins:rdfs="http://www.w3.0rg/2000/01/rdf-sch ema#">

<rdfs:Class rdf:ID="Vehicle">
<rdfs:comment>Vehicle Class</rdfs:comment>
<rdfs:subClassOf rdf:resource="rdf;Resource" />
</rdfs:Class>

<rdfs:Class rdf:ID="Car">
<rdfs:comment>Car Class</rdfs:comment>
<rdfs:subClassOf rdf:resource="#Vehicle" />
</rdfs:Class>

<rdfs:Class rdf:ID="Bicycle">
<rdfs:comment>Bicycle Class</rdfs:comment>
<rdfs:subClassOf rdf:resource="#Bicycle" />
</rdfs:Class>

<rdfs:Class rdf:ID="Color">
<rdfs:comment>Color Class </rdfs:comment>
<rdfs:subClassOf rdf:resource="rdf;Resource" />
</rdfs:Class>
<rdf:Property rdf:ID="hasColor">
<rdfs:comment>The Color of a Vehicle</rdfs:comment >
<rdfs:domain rdf:resource="#Vehicle" />
<rdfs:range rdf:resource="#Color" />
</rdf:Property>
</rdf:RDF>

-15



RDF data 4: RDF Schema Example

2.5 Web Ontology Language

OWL is the abbreviation of Web Ontology LanguagéNIlOis a language which describes
ontologies for the Semantic Web. The differencehviRDF Schema is that RDF Schema only
supports the basic elements for defining an onto(egy., domain, range, isDefinedBy ...) while
OWL can be used to define a full ontology (e.grdowlity, enumerated classes, disjointness)
with maximum expressiveness. There exist thredarerd the OWL language: OWL Full, OWL
DL and OWL Lite. [2]

OWL Litesupports the need for a classification hierarang simple constraints. For example,
while it supports cardinality constraints, it oqgrmits cardinality values of O or 1. It is simpler
to provide tool support for OWL Lite than for itsone expressive relatives. OWL Lite provides a
quick migration path for thesauri and other taxore@nlit also has a lower formal complexity
than OWL DL.

OWL DL supports those users who want the maximum expesssss while retaining
computational completeness (all conclusions areagueed to be computable) and decidability
(all computations will finish in finite time). OWDL includes all OWL language constructs, but
they can be used only under certain restrictioos ékample, while a class may be a subclass of
many classes, a class cannot be an instance dfearabass). The name OWL DL comes from its
correspondence with description logics, a fieldedfearch that has studied the logics that form
the formal foundation of OWL. [2]

OWL Full'is meant for users who want maximum expressiveandsthe syntactic freedom of
RDF with no computational guarantees. For exampleDWL Full a class can be treated
simultaneously as a collection of individuals arsdaa individual in its own right. OWL Full
allows an ontology to augment the meaning of tleedafined (RDF or OWL) vocabulary. It is
unlikely that any reasoning software will be aldestipport complete reasoning for every feature
of OWL Full. [5]

Every OWL document consists of an optional ontolbgader, annotations, class and property
definitions, and facts about individuals and dgteetdefinitions.

An example of an OWL document can be found belolis Example is again about Vehicles.
While with the RDFS example of the previous sectlom Vehicles could have as many colors as
they want, in the OWL example they can have at rfmstcolors.

<?xml version="1.0'?>
<IDOCTYPE rdf:RDF [
<IENTITY owl "http://www.w3.0rg/2002/07/owl#">

-16-



<IENTITY rdf "http://www.w3.0rg/1999/02/22-rdf-sy

<IENTITY rdfs "http://www.w3.0rg/2000/01/rdf-sche

<IENTITY xsd "http://www.w3.0rg/2001/XMLSchema#">
>

<rdf:RDF
xmins:rdf="&rdf;"
xmins:rdfs="&rdfs;"
xmins:owl="&owl;"
xmins:xsd="  &xsd;”

<owl:Class rdf:ID="Vehicle">
<rdfs:comment>Vehicle Class</rdfs:comment>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasColor"/>
<owl:minCardinality
rdf.datatype="&xsd;NonNegativelnteger">4</owl:mi
</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="Car">
<rdfs:comment>Vehicle Class</rdfs:comment>
<rdfs:subClassOf rdf:resource="rdf;Resource" />
</owl:Class>

<owl:Class rdf:ID="Car">
<rdfs:comment>Car Class</rdfs:comment>
<rdfs:subClassOf rdf:resource="#Vehicle" />
</owl:Class>

<owl:Class rdf:ID="Bicycle">
<rdfs:comment>Bicycle Class</rdfs:comment>
<rdfs:subClassOf rdf:resource="#Bicycle" />
</owl:Class>

<owl:Class rdf:ID="Color">
<rdfs:comment>Color Class </rdfs:comment>
<rdfs:subClassOf rdf:resource="rdf;Resource" />
</owl:Class>

<owl:ObjectProperty rdf:about="#hasColor">
<rdf:type rdf:resource="&owl;FunctionalProperty" /
<rdfs:comment>The Color of a Vehicle</rdfs:comment
<rdfs:domain rdf:resource="#Vehicle" />
<rdfs:range rdf:resource="#Color" />
</owl:ObjectProperty>

</rdf:RDF>

ntax-ns#">

ma#">

nCardinality>

RDF data 5: OWL Example

-17-




There exist ontology registries, repositories (elgnes Ontology Repositoly and search
engines (e.g. Swoogle engiilewhich have as purpose to encourage the reuseeaintologies,
this is one of the most important pillars of ther@atic Web. Some commonly used ontologies
are Friend-Of-A-Frien Dublin Core Metadata Initiatifeand GeoRS5... [2]

2.6 SPARQL

SPARQL, which is used extensively in this thessa iquery language for RDF. This section will
explain what it is, where it is used for and wied syntax is.

2.6.1 What and usage

SPARQLY, a recursive acronym for SPARQL Protocol and RDOFeQ Language, is a query
language for RDF. There exist other query langudigesRDQL"' (RDF Data Query Language)
and SeRQL? (Sesame RDF Query Language), only the SPARQL daeguage is described in
detail since the SCOUT framework only (currentlges SPARQL, it is W3C standardization and
has a wide community support as well.

Note that SPARQL is both a query language angrotocol. Most people focus on the query
language since it defines the syntax of the quef&® protocol is used to describe how a
SPARQL client talks to a SPARQL endpoint/procegeay., Virtuosd®) both in an abstract sense
and using a concrete implementation based on WSO [2]

2.6.2 Syntax

There exist four different SPARQL Query formstect, consTRUGTASK andpescrieg each of them
are explained in detail in the following paragrapAsdrawback of SPARQL is that it has no
support for query forms that change data (erg4Tg pELETE bROPANAINSERT iN SQL), sub queries
and aggregate functions (e.guy, couny).

The seLecT keyword instructs endpoints to bind RDF terms r{klaodes, IRIs, or Literals) to
variables based on the given graph pattern (epetoHereclause). Bindings are simply returned

® http://owl.cs.manchester.ac.uk/repository/

® http://swoogle.umbc.edu/

" http://www.foaf-project.org/

8 http://dublincore.org/

® http://www.georss.org/Main_Page

10 http://www.w3.org/ TR/rdf-spargl-query/

" http://www.w3.0rg/Submission/RDQL/

12 http://www.openrdf.org/doc/sesame/users/ch06.html
13 http://dbpedia.org/sparqg|

14 Web Service Description language

-18



and are not part of an RDF graph. These bindings bea easily displayed in tabular form.
SPARQL query 1 shows a select query which retudrasiame of allfsar.person " Objects.

SPARQL Query:
PREFIX foaf: <http://xmIns.com/foaf/0.1/>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-synta X-ns#>
SELECT ?name
WHERE
{
?person rdf:type foaf:Person .
?person foaf:name ?name .

}
ORDER BY (?name)

Result:

| "Elien Paret" [
| "Johny Paret" |
| "Pieter Callewaert" |

SPARQL query 1: Smple SELECT query

consTrucallows reformulating bound variables into any kisfdRDF graph, this as long as each
triple is valid (e.g. no Literals used in the swulbjer predicate position, all triples are of thenfo
“<subject> <predicate> <object>"). This query form allows an easy and powerful way
transform data from one RDF graph or OWL ontologyoianother. Graphs returned from
consTrucTqueries can be added to RDF repositories or cordbwgh other RDF graphs.
SPARQL query 2 shows a construct query which rstam RDF Graph containing information
about the foaf.name " Of the “foaf:Person 7 Objects.

SPARQL Query:
PREFIX foaf: <http://xmIns.com/foaf/0.1/>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-synta X-ns#>
CONSTRUCT
{
?person foaf:name ?name .
}
WHERE
{
?person rdf:type foaf:Person .
?person foaf:name ?name .

@prefix rdfs:  <http://www.w3.0rg/2000/01/rdf-sch ema#> .
@prefix foaf:  <http://xmins.com/foaf/0.1/> .

-19-



@prefix rdf:  <http://www.w3.0rg/1999/02/22-rdf- syntax-ns#> .
[ foaf:name "Pieter Callewaert" .
[ foaf:name "Johny Paret" .

<http://wise.vub.ac.be/Elien#me>
foaf:name "Elien Paret" .

SPARQL query 2: Simple CONSTRUCT query

Ask is used to know whether a particular graph, a @agr binding exists, it responds with a
Boolean result. This allows clients to ask endoifor information without having to submit a
potentially-expensiveeLecTor constructuery.[2] SPARQL query 3 shows an ask query which
returns whether there existstefPerson " With as name ‘Elien Paret’.

SPARQL Query:

PREFIX foaf: <http://xmIns.com/foaf/0.1/>
ASK

WHERE

{

?person foaf:name 'Elien Paret' .

}

Result:

SPARQL query 3: Simple ASK query

pescriBereturns an RDF graph determined solely by the msmrewith limited query input from a
client. pescrigeis an interesting case since the client does ned t@ be intimately familiar with
how the data is structured. The endpoint ultimatidgides what RDF data is returned to the
client. pescrieecan be useful for building foundational informatiwhen data source awareness is
not present. It is not used as heavily as the dtitwere forms.[2] SPARQL query 4 shows a
describe query that describes everything that tB& Rformation tells about theosf.person

with name Johny Paret ".[2]

SPARQL Query:
PREFIX foaf: <http://xmIns.com/foaf/0.1/>
PREFIX rdf: <http://lwww.w3.0rg/1999/02/22-rdf-synta X-Ns#>
DESCRIBE ?person
WHERE
{
?person rdf:type foaf:Person .
?person foaf:name 'Johny Paret' .




@prefix rdfs:  <http://www.w3.0rg/2000/01/rdf-sch ema#t> .
@prefix foaf:  <http://xmins.com/foaf/0.1/> .
@prefix rdf:  <http://www.w3.0rg/1999/02/22-rdf- syntax-ns#> .

[l rdfitype foaf:Person ;
rdfs:seeAlso <http://wise.vub.ac.be/members/j ohny> ;
foaf:mbox_shalsum "72b9db61f552b422e8d9bac106 e063f8ccfead15" ;
foaf:name "Johny Paret" .

SPARQL query 4: Smple DESCRIBE query

There are a couple of modifiers that can be usexlqnery:REDUCED, DISTINCT, ORDER BY, OFFSET,
LIMIT, FILTER, OPTIONAL, andunion. These will not be explained further. For more infation
see reference [2] or [6].

2.7 Semantic Web Frameworks

Semantic Web frameworks are used for many diffepemposes, including database translation
and integration, domain knowledge modeling, valagtanalysis, and even simply the storage
and retrieval of information. There exist many eliéint Semantic Web Frameworks: Sesame
CubicWeb®, Jend’ ... Regardless of their purpose, most frameworksigeothe ability to create
and manipulate a knowledgebase. The frameworks@rgosed of a set of tools, including a
RDF store (often referred to as a triple storerapl store), an access API or query processor,
and a reasoning engine (or reasoner). Each of twaponents play a critical role in providing
the storage and retrieval of RDF data, as wellhasinterpretation of the semantics of OWL
ontologies and instance data.[2]

The following section explains Jena and pJenajwioeSemantic Web frameworks that SCOUT
uses to store and access the encountered RDF etform

2.7.1 Jena and pJena

Jena is an open source Java framework for buil&egantic Web applications. It provides a
programmatic environment for RDF, RDFS, OWL and 8PA.. It also includes a rule-based
inference engine. The framework has the followieatdires:

 aRDFAPI,
* reading and writing RDF in RDF/XML, N3, Turtle ahdTriple,
 an OWL AP,

* in-memory and persistent storage,
» SPARQL query engine.[7]

15 http://www.openrdf.org/
16 http://www.cubicweb.org/
" http://jena.sourceforge.net/

-21-



pJena (Micro Jena) is a lightweight, reduced poxtesion of the Jena intended for mobile
devices. pJena makes Semantic-Web Framework urader Micro Edition (J2ME). pJena
enables the development of semantic-web applicefimnmobile devices.

2.8 Caching The concept of a cache is used in this thesisdbecRDF information. This section
will explain the basic concepts of caching. At tfies definition of what a cache is, is given,
followed by what type of data can be store in ehead he third section explains how a caching
mechanism works. The last two topics, evictiontetyg and write strategy, describe the most
important issues of a cache.

2.8.1 What

A cache is a component that transparently storés slach that future requests can be served
faster [8]. Serving request faster can mean impttreeresponse-time, reduce the number of
times accessing the original data over the netwexkjce disk accesses ...

2.8.2 For what data

There exist several types of caches CPU cache, aiske, web cache, database cache ...
Depending on the type of cache and the specifiapgse, the content of the cache can be
slightly different. A cache can contain objects,oav of a database table, a part of a database
table, query results, a web page, and a recordlsfia. ..

2.8.3 How

To explain how a cache works, the example of a vadhe is used. The other types of caches
(e.g., disk cache) work all in a similar way, onhe type of data stored in the cache will be
different.

A web cache caches web pages to increase the sespore by reducing the number of accesses
to the server. Whenever the client requests a \agle,ghe system looks in the web cache before
actually downloading the webpage. When the sysiensfthe web page in the cache, this is
called a cache hit; the system will get the reqeaeftom the cache, and not from the server, and
shows it to the client. In this case, it is thus necessary to access the server. When the page is
not found in the cache, called a cache miss, teeegyask the requested page to the server and
show it to the client.

The explanation above is a very simplistic explamabf how a cache works, with every cache
certain issues must be taken into consideratiorstlfFione must decide when the data in the
cache will be update with data from the originaladen order to avoid stale data in the cache.
Therefore answering the following question is neaeg is stale data allowed, in what time span
should the cached data be update and do we hdeedsta ... Secondly, a strategy, a so-called

-22-



eviction strategy, which decides what happens whencache is full must be applied (see the
following section for more information). Thirdly,ne should consider what write strategy is
adopted, in other words, what should happen wherclient, accessing the cache data, changes
the cache, is the client allowed to change the daféhe last section describes the concept of a
write strategy.

2.8.3.1 Eviction strategy

An eviction strategy (also called a replacemendtsgy) is a strategy that will decide what
element(s) of the cache will be evicted when i fThese strategies mostly use frequency and /
or recentness to decide what element(s) to evigt. Moment at which the replacement strategy
decides to evict a page usually happens when aipagguested but not found in the cache.

The eviction strategy Least Recently Used (LEU$ a popular strategy that uses receny to
decide what elements to evict. Suppose we havebacaehe that uses LRU as eviction strategy.
The web cache will always contain the page weral ube most recently. When a page is
requested and found in the cache, LRU will mark ffege as recently used and the web page
will be shown to the client. If however the pagen@ found in the cache, LRU will perform the
following steps. First evict the page that was tleasently used, then download the new page,
add it to the cache and mark it as recently usedllif show the page to the client.

Some of other well know replacement strategiesFanst In First Out (FIFO), Last In First Out
(LIFO), Least Frequently Used (LFU) and Most Rebebsed (MRU).

2.8.3.2 Write strategy

A write strategy is a strategy that will decide whaeds to happen when the client changes data
from the cache. The two most extreme case areta twough cache and a write back cache. The

first, a write through cache, updates the origoatia immediately when the client changes the

cached data. The original data is thus always tbst mecent version, is always updated. While a

write back cache only updates the original datanwihe data gets evicted from the cache. The

original data is not always last version; it migpet out of data, it might be stale. The benefit of a

write through cache is that the original data igemestale, contrary to a write back cache where

the data might be stale. The drawback of a writeugh cache is that the original data can get

updated quite often, while with a write back thégimal data is less often accessed, several

update actions of the cached data can be combmnenkl update action of the original data.

Off course these are only the two extreme casess #xist several intermediate solutions. Which
solution is the most appropriate one, depends @tyfhe of cache and the purpose of it.

18 http://en.wikipedia.org/wiki/Cache_algorithms#Led®ecently Used

23



Chapter 3 Related Work

This chapter describes the work related to topissudsed in this thesis. The related work is
structured into three parts. The first part desgithe work related to the SCOUT framework.
The second part describes existing work on cachieghanisms, either related or unrelated to
Semantic Web technology. The final part discussgsraaches that construct and employ
summary information on RDF datasets in order t@edp# data-access and / or query resolving.

3.1 The SCOUT framework

The SCOUT framework abstracts the user’s envirorirreén a set of distinct physical entities,
where each entity can have a so-called “Web presefbis Web presence provides information
or services associated to the physical entityhenform of a Website, Web service, online RDF
metadata, etc. Whenever the user is nearby a @hysitty, the SCOUT framework, running on
the user’s device, tries to find a reference toWweb presence of that entity. This reference can
be obtained by reading an RFID tag nearby theyerdtiiis RFID tag contains a URL pointing to
the entity’'s Web presence, or by accessing an ertimectory, which provides the SCOUT
framework with Web presence references of nearlijies) based on the user’s current GPS
position. Based on the metadata of physical estitiearby the user, combined with the user’s
own profile information, the SCOUT framework progglapplications with an integrated view of
the user’s environment called the Environment Model

3.1.1 Linking physical objects to online resources

Several approaches (both commercial and academigt)vehich focus on the linking of physical
objects to digital information. The notion of limg physical entities to associated online
information was first introduced by the HP Cooltopnoject [9][10][11], in order to integrate the
physical object with the virtual object. They weakso the first to introduce the term “Web
presence”, which denotes online information assediavith an entity.

Touchatad’ from Alcatal-Lucent Ventures is a commercial iitve where RFID technology is
used to connect physical objects to online apptinat In other words, online application actions
can be triggered when a touchatag is read. Thesensaacan range from opening a browser
window with the Web address given by the tag, tatidling an online music player, where a set
of tags are assigned a certain playback action, (plgy, stop, open music file). In an online
community Website, users can create and sharedpplications with other users, and configure
tags to be linked to online application actions.

19 http://www.touchatag.com



In [12], an open lookup framework is presented wharjects tagged with RFID tags are linked
to resources, allowing applications to retrieveinfation or services related to tagged objects. A
resource represents information (e.g., Websita) sgrvice (e.g., Web service) related to a tagged
object, while a resource description keeps infolomabn such a resource (e.g., id, URL, title,
description, ...) and points to the correspondingouese via the URL attribute. Resource
descriptions are contained in so-called resourqesgitories, which can be setup by the
manufacturer himself, e.g., representing officiabduct information, or third parties, e.g.,
representing customer reviews. Several methodsa\agable for applications to locate useful
resource repositories: the object's RFID tag-id bantransformed by a resolver service into a
resource repository address; a search-service eamskd, which crawls known resource
repositories and indexes the available resourecesresource repositories can be registered to so-
called resource directories. This approach is demiéred, as it allows separate resource
repositories to be setup by anyone for any typabgdct.

The functionality provided by these two latter apgmhes corresponds to the functionality
provided by SCOUT’s Detection Layer: i.e., they cem the retrieval of online resources
associated with physical entities in the user'amityg. However, instead of simply providing
applications with these resources, the SCOUT fraonkewadditionally constructs and maintains a
conceptual and integrated view over the informagioyvided by these online resources.

3.1.2 Storage of location- (and context-) specific information

Many approaches which focus on the location-speaiétrieval of information employ a
centralized Information System (1S), which storad anaintains all location-specific information
(e.g., [13] [14][15][16]).

For instance, in [14] and[16] so-called “spatiaffjti” or “digital post-its” allow users to provil
loosely structured information on a certain entgjgce or region. Based on the user’s current
location, the system is able to provide relevargtyits to the user. More advanced context-
matching methods are provided as well to avoid loaeling the user with information: e.g., by
matching associated keywords to the user’s prafitedgy employing the user’s own history and
the history of similar users (e.g., same age, ayuot origin) to determine the popularity of
certain graffiti [16]. Such graffiti can be diredtat certain persons [14] and[16] and can also
have a limited lifespan.

Although the ease of input can lead to a huge amaifudigital post-its being available, this data
is too unstructured for our purposes, as SCOUTdeswn integrating the information extracted
from the user’s physical environment. However, [al§o proposes (as future work) to extract
ontologies based on the keywords associated watipdist-its, so related post-its can be explicitly
linked together.

-25



In [13], a location-aware Web system is proposecr@husers can easily enter and update
information on a certain place (e.g., time of esentganizational structure, description ...). The
paper states that solutions like spatial graffii @o loosely structured, and focuses on keeping a
careful balance between ease of input and strucfuof information, to guarantee that the
information is sufficiently usable and navigableilerstill making it easy for users to contribute
information. Content providers can define a plagaedtawing a rectangular box on a predefined
map; subsequently, data can be associated withinpeinted place.

Physical hypermedia applications (e.g., [15]) aypemmedia systems where the nodes represent
real-life objects, and links between them can bleeeidigital (i.e., hyperlinks) or physical (i.e.,
representing a route between the objects). In thgstems, physical objects are augmented with
digital information: when a user stands nearby sachobject, he can access related digital
information. Digital links to other nodes can béldaed in the normal (Web-like) way, while
physical links involve having the user cross thgtatice to the linked physical object. For the
latter, instructions (e.g., on a map) are providedhow to get there. In [15], an OOHDM
extension is proposed, which provides support foysical hypermedia in the OOH design
method. This extension supports different locatimodels (symbolic / geometric / ...) in order to
link physical objects to the corresponding digitdbrmation.

In all these approaches, a single system is reggenfor storing and providing access to
location-specific information on a certain regiorhis system thus presents a bottleneck and
possible point-of-failure, as all requests for kmwa-specific information have to pass through
this system. Furthermore, these systems mostlyireeque-defined models of the area, which is
not very flexible, and unsuitable for dealing witbn-stationary entities. Finally, uploading the
necessary (structured) information to a singlesetbsystem means that the uploaded content is
not available to third-party services.

In contrast, the SCOUT framework re-uses existimigne resources, and integrates them into the
conceptual view provided to the applications onddBCOUT. Therefore, content providers are
free to upload their data to any WWW server, thasping control over their own data and
allowing it to be re-used by other applicationsservices. Furthermore, as SCOUT runs locally
on a user’s device, there is no single point-aiifai that can block information retrieval for an
entire region. Finally, the Detection Layer of SCDBUpports a variety of detection techniques
(e.g., RFID, GPS), allowing for the detection ofndynic entities (e.g., moving persons) and
minimizing the need for predefined location models.



3.1.3 Integrated view over distributed data sources

In contrast to the approaches in the previous stibse which store all location- (and context-)
specific information in one place, approaches sash17] and[18] provide a central service
which acts as an integrated view over a set ofidiged data sources.

For example, in [17] a middleware is proposed whigktches (local) schemas of heterogeneous
(context) data sources to a set of global schemawder to provide applications with a unified
abstract view of the context sources. It is argined because the schema matching occurs in a
mobile environment, existing schema matching apgres cannot be reused directly. A name-
based matcher (using several criteria such as iggustemming synonyms, etc) is employed for
matching individual attributes of the local schen@aghe attributes of the global schemas. The
middle ware they present is a complete solutiont povides a SQL-based query interface over
the global schemas. In this approach, given queriedistributed across the registered context
sources, which are responsible for transformingmth fit the local data schema and
subsequently returning the query results. Findhgse results are combined by the middleware
and returned to the application.

A Context Information Service (CIS) is presented18], which represents a virtual database
over registered context sources. The schema ofdhiabase corresponds to the data types
available from the different sources, and a Congxtthesizer is responsible for distributing the
guery across the registered sources and integrdtgngesults. In addition to specifying a query, a
client can also provide meta-attributes which dertbe required attributes of the results (e.g.,
accuracy, reliability); that way, the most suitabtntext source can be chosen in case some of
them overlap.

These approaches provide an external service whéettles queries over data sources, thus
offloading a lot of work from the mobile devicesethselves [18]. However, they suffer the same
drawback as the systems discussed in the previgosestion: i.e., they are less scalable and
flexible, as every query needs to pass through ghrsice and each data source needs to be
registered with it. Furthermore, they impose sevesgrictions on data sources, requiring them to
have a specific interface and be able to executgq@f) queries; this rules out sources which
simply represent files containing metadata. Finaith more advanced mobile devices being
released every year, the need for so-called “tbii@hts (i.e., lightweight client-side applications

is constantly being reduced.

3.1.4 Other decentralized approaches

An approach that also focuses on the decentralcmtext-specific retrieval of data is Context-
ADDICT [18]. In this approach, a Domain Ontologydsnstructed modeling the main concepts
in the application domain; also, a Context Dimensioee is constructed which models the user’s

27-



context. Subsequently, relations between the twdeatsoare constructed in order to capture the
part of the Domain Ontology that is relevant to tlser. For each encountered data source, a
Semantic Extractor module is employed to extraetdhtology used in the data source, which is
matched and integrated into the Domain Ontologgdileg to a Merged Schema. By using the
original relations between the Domain Ontology dahd CDT, it can be deduced from this
Merged Schema what parts of the encountered soareaglevant to the user. This part is called
the Local Schema. Each given query will be spliintp two parts: a retrieval part, which will be
distributed across the relevant sources (as iretichy the Local Schema), where the sources are
responsible for transforming the query part todbeect format and executing it, and a reasoning
part, which will be executed on the results of th&rieval part of the query. This paper thus
focuses on schema-based filtering, and does notidqeoan event-based way of obtaining
environment information. Moreover, as was the dasthe previous subsection, this approach
requires data sources to support a specific irderéand to be able to execute (parts of) queries,
ruling out data sources simply representing a nattefile.

As mentioned before, the notion of linking physieatities to associated online information was
first introduced by the HP Cooltown project [9] [1Q1], in order to integrate the physical with
the virtual world. In addition, it also introducéite concept of positional relations, which denote
that users are nearby certain physical entitied9)nthe generation of a Web presence (i.e.,
Website) is made dependent on the context of tieatclincluding the current set of positional
relations he is currently involved in. [10] focusas making Web presences for places, where
either a place’s Web presence can be accessed/itgateato the Web presences of the entities
contained in that place, or a place manager commpaseised to resolve given entity identifiers
to Web presence URLs. Furthermore, [10] and [1Hsent a Web transfer model, which
comprises the direct / indirect transfer and reaief content from “Web present” objects (i.e.,
objects having a Web presence; for instance, teamsf pictures from a PDA to a projector).

SCOUT is also based on the linking of physical otgjeo digital information, and re-uses the
concepts of Web presences and positional relatiblusvever, in contrast to the Cooltown
project, SCOUT specifically focuses on context-games information retrieval: this is best
illustrated by the Environment Model, which prowsde conceptual and integrated view on all of
the information available from the user’s physiealvironment, and the Filtering Service, which
allows push-based information retrieval based anpiex semantic conditions.

3.2 Caching mechanisms

This thesis investigates how the Environment Mddel, encountered data sources) within the
SCOUT framework can be constructed and managed efficeently than before, when it was a
fully materialized view; in other words, all of thdata (i.e., encountered data sources) is kept

-28



locally. A part of this investigation is to develapcaching mechanism for the encountered data
sources which contain RDF information.

3.2.1 Caching query results
[19] and [20] both caches query or sub-query result

The proposed cache mechanism of [19] is intended fpeer-to-peer environment where each
peer has its own cache. The entries in the cacheaual (sub) query result or references to
peers that offer the query result. In their appho#itey also propose several strategies to
determine what queries must be cached (e.g., 8tereesult if it has been more requested than a
particular threshold, only store the query redutiaiculating it is more expensive than storing it,
...). They do not compare the different strategiey thropose, their approach uses the strategy
where a query result is stored when it has beenestgd more than a particular threshold.
However they mention that comparing the differenppsed strategies is future work.

In [20] they also adopt the approach to cache (gub)y result. However a cached query result
may not only solve the original query but alsoraikir query. In their approach they transform,
adapt, the cached query result into the new quesylts. Before actually transforming a cached
qguery, they compare the cost of modifying the cedcheery result to the cost of actually
calculating the new query result.

In this thesis the approach of caching query regalinot followed. However we do follow the
approach of [19] where each peer, in our caseemtctunning the SCOUT framework, has its
own cache. The approach to invent different stiage¢o determine what will be cached is
adopted as well. We do however go further than ijmgenting them; we actually evaluate the
different approaches, discuss them in detail bingithe benefits and drawbacks.

3.2.2 Caching data client side

In contrast to the approach followed in the presisaction, where query results are cached, this
section discusses the approach proposed by [2dhioh Semantic Data is cached in a on the
client-side of a client-server database system.

Their approach proposes to have a client-side cHwtes composed out of so-called semantic
regions, which contains multiple tuples. The sitesuch a semantic region is not fixed, it can
vary along with the number of tuples that is camdiin it. Each region has a constraint formula
describing its content, the number of tuples tlaéist/ the constraint, a pointer to the linked list
containing the tuples and some additional infororathat is used by the eviction strategy. What
is so special about this semantic cache is thatetiens can intersect as Figure 5 shows, Q1, Q2
and Q3 are all so-called regions.



[ 1

o=

-

Figure5: Example content semantic data cache

Our second caching mechanism, which caches triplsuse a specific predicate as one cache
entry, resembles to the approach discussed in Y2&]also keep the granularity on the level of
tuples (i.e., RDF triples), our constraint formusaa formula stating that a specific predicate
should be used, the size of our cache entriespmegs dynamic (i.e., it varies along with the
number of triples contained in it). However our lea@ntries, regions do not share tuples since
one triple can only use one specific predicate.

3.2.3 Web caching

In [22] and [23] a caching algorithm is proposed €aching web pages, web objects. [22]
proposes the Resource Based Caching algorithmlgaritam which is placed on a Web Server,
while [23] propose a client side caching mechanistich stores RDF resources within
Haystack, a Semantic Web Browser.

[22] proposes the resource based caching algor{BBC), which is situated in the domain of
web servers. In [22] it is stated that there idI(p8) a need to not only cache text and images but
also hyper-media objects and that caching algostehould be adopted in order to allow caching
of these multiple data types and their heterogememguirements. The RBC algorithm
characterizes each (hyper-media) object by its ingclgain and resource requirement (e.g.,
necessary size and bandwidth), dynamically seteetgranularity of the object to be cached that
minimally uses the limited cache research (i.endadth or space), and if required, replaces the
cached objects based on their cache resource ugadesche gain. This cache gain depends on
the metric used to measure the cache performange t@al bandwidth saved, bytes transferred
per second, ...).

The developed caching mechanism within the SCOWméwork will not cache hyper-media
objects, it will only cache RDF information, RDHRples. Currently the SCOUT framework
decides which items to replace based on their ceedmirces usage, however in future work the
idea of replacing items based on their cache resausage and cache gain will be adopted.

In [23] a Semantic Web browser, called Haystachresented. This Semantic Web browser has
as benefit that it can use the RDF metadata tovatlee user to gain direct access to the

-30-



underlying information and control how it is pretah This is in contrast to the current browsers
that display html pages of which the user cannotcam only partially determine how the
information should be displayed. Haystack autormadliidocates metadata and creates point-and-
click interfaces from a combination of relevantoimhation, ontological specifications and
presentation knowledge, all described in RDF atiereed dynamically from the Semantic Web.

The RDF resources that are visited by the user Haistack are cached for network efficiency
reasons. They use an ordinary local RDF store ¢bece®DF data from other sources. They just
add the consulted RDF information to the cache. Wieguesting information, the request is first
resolved using the data in the cache, unresolvellsUhentioned in the request are fetched and
the metadata is added to the store. Our approaegmigdes to this approach as we will also (in
one of our caching mechanism) cache entire RDFuress locally.

3.3 Indexes

This thesis investigates how the Environment Mddel, encountered data sources) within the
SCOUT framework can be constructed and managed efficeently than before, when it was a
fully materialized view; in other words, all of ttdata (i.e., encountered data sources) is kept
locally. A part of this investigation was to knowhiwwh sources contain which information,
therefore a source index model was created. [249)], 4nd [25] all present indexes to determine
relevant source for a specific query. [24] stord@srmation about the predicate and objects but
also statistical information like number of triples determine which source is relevant. While
[19] uses subject, predicate and object to detegrttie relevant source. [25] uses so-called join-
indexes spread over different repositories.

In [24] DARQ, a query engine for federated SPARQUees, is presented. It provides
transparent query access to multiple, distributedpeints as if querying a single RDF graph.
Such an endpoint is thus capable of handling a SPlARuery independently, and returns the
results. To indicate the capabilities of an endpoa service description, comparable to our
summary information of an encountered source, éslus

This service description is a declarative desaiptf the data that the endpoint offers based on
predicates and described in RDF (see Example Bedan these service descriptions, the query
planner finds the relevant sources and it decongpts® query into sub-queries, which can be
executed by one relevant source. The results ahale sub-queries can be combined and form
the result of the original query. The endpointsasked to execute an optimized version of these
sub-queries.

[1 a sd:Service;
sd:capability [ sd:predicate foaf:name;
sd:objectFilter "REGEX(?0bject , "[A-R];

-31-



sd:triples 51 ];
sd:capability [ sd:predicate foaf:mbox;
sd:triples 51 ];
sd:capability [ sd:predicate foaf:weblog;
sd:triples 10 ];
sd:totalTriples "112";
sd:url "EndpointURL";
sd:requiredBindings [ sd:objectBinding foaf:name 1;
sd:requiredBindings [ sd:objectBinding foaf:mbox ]

Example 1: DARQ, service description

Our approach will summarize less information, otflg used predicates (and used domains) are
stored, while in [24] other information (e.g., ttege of a predicate, the number of triples using
the predicate, the total amount of triples ...) isretl as well. From our test and evaluation
section we came to the conclusion that maintainiege information (i.e., predicate and domain)
is less efficient than just storing predicate infation. Investigating other, more complex,
summary information is considered to be future work

In [24] it is required that every physical entitashsuch an endpoint, capable of handling
SPARQL queries independently and returning the liesiHowever we do not take this
assumption, our entities will not always have adp&int capable of handling SPARQL queries,
our entities have minimal an online RDF source.

In paper [19] the caching of intermediate resuit®istributed Hash Tables (DHT), a mechanism
used to store RDF triples, is discussed. Projeiciguthese DHT’s often not only distribute the

storage but the query load as well in order to robahe scalability. These systems index the
information by subject, predicate and object toedetne which peer is responsible for the

subject, predicate or object.

Our approach does not follow the idea to distriibtequery load to the peer that is offering the
information. Currently, the information is storeda distributed manner, but the query is always
resolved by the main entity. It is considered fatwork to provide a mechanism that will solve
gueries either locally or remotely, by means oltiarg service.

In a DHT RDF information is indexed by subject,gioate and object while our mechanism only
indexes the information by predicate (and by donstbject).

In [25] the extension of Sesaffiean open source framework for storage, inferenang
qguerying of RDF data, is propose to allow queryohgistributed RDF repositories. Currently the
Sesame framework and other similar frameworks Ji&rd" do not allow querying distributed

20 http://www.openrdf.org/
2 http://jena.sourceforge.net/

-32-



RDF repositories. The approach proposed in [25] fnitly analyze the query to determine
which repositories contain relevant information avitat part of the query will be answered by
which repository. Secondly the appropriate queses send to the relevant repositories, their
information is merged and returned. By delegatimg query (or parts of the query) the query
execution process is optimized. This approach agssnmes that the repositories have querying
capabilities is contrast to our assumption, wheareeacountered entity does not always has
guerying capabilities.

In order to determine which repositories contairiclwhinformation, a specific index structure, a
so-called join index which contains the result ofoa over a specific query, is used. The
proposed index structure contains information abausingle property and about paths or
combinations of properties (e.g., A foaf:knows Bffmmbox C). These paths can then be used to
determine which repository contains the answe(dgrart of) a path.



Chapter 4 Architectural overview

Previously the Environment Model has been stored fadly materialized view; in other words,
all of the data (i.e., encountered data sources)keat locally. This thesis investigated how the
Environment Model can be constructed and managed efbiciently.

The first step of the proposed approach is, stosmgce index information on encountered data
sources as a Source Index Model, to determine wducinces contain relevant information for a
given query. The purpose is to avoid having toudelall encountered sources when answering a
guery and thus accelerate the process of resoavingery.

Secondly, we have developed several caching siesteghere some data from encountered
sources is kept locally, to avoid having to dowdl@arelevant source (identified as relevant by
the Source Index Model from above) every time ineeded to solve a query issued to the
Environment Model.

The following section explains how these two medtras work together in the SCOUT
framework by explaining how they are used whenEhegironment Model is accessed and what
happens when a new source is encountered. Theotleaving chapters explain each mechanism
in detail, the Source Index Model in Chapter 5 tredcache strategy in Chapter 6.

4.1 Accessing the Environment Model

The SCOUT framework, currently being developedchatWISE lab, supports the development of
context- and environment-aware mobile applicatidnsproviding a conceptual and integrated
view on the environment called the Environment Moddis Model comprises metadata on
physical entities found nearby the user and the’'sisgvn profile information, and thus allows

applications to become aware of (and responsiviheliser's physical environment and context.

This Environment Model consists of three parts (Begure 6): the comprised metadata, the
Entity Model, which contains the user’s own profitléormation and the Relation Model, a model
that contains which entities where previously arently nearby our user.

When a mobile application is accessing the EnvireminrModel, he is actually accessing the
Entity Model, the encountered data sources andRédation Model. Accessing the encountered
sources means retrieving the relevant informatiomfthe cache. To determine what information
is relevant for the mobile application, the cachesuthe Source Index Model, which is capable of
determining the relevant sources for a specifiayjugfter determining the relevant information,
the cache retrieves all the relevant informatidhezi by accessing its local copy of the relevant
information or by downloading the information.

-34-



Mobile
application

Accesses /
Queri

Environment
Model

Entity Model 3 C Relation Model

1l

Encountered
sources

Know what is in Store the sources
the sources
Determine

relevant sources
Source Index Jf—M
Cache

Model

Figure 6: Accessing the Environment M odel

4.2 Encountering new sources

In a mobile environment, the context and environmehanges frequently. The SCOUT
framework supports this by updating the models wapg the context and environment
immediately when new sources are encountered. Hiatih Model and Environment Model
are notified when a new data source is encountsmece they maintain the context- and
environment of the user.

When updating the Environment Model, the Sourceein#lodel is updated as well since
otherwise when consulting the Source Index Modekétevant data of a given query the newly
encountered source will not have been considerexd $he model does not know it exists.

When updating the Environment Model, the cache si@ecbe update as well because it must
have the opportunity to decide whether or not hi adtually store the newly encountered
source. The figure below illustrates the interadithat occur when a new source is encountered.



Provides RDF

Model

Figure 7: Encountering a new sour ce

Newly information
encountered Main entity
Source
Notifies new
source
encountered
Environment
Model
Notifies ne:
source
encountered
Source Index Cache

Relation Model




Chapter 5 Source Index Model

The purpose of this thesis is to investigate hogvEnvironment Model can be constructed and
managed more efficiently. A first step in the smntis to maintain a Source Index Model that
contains source index information telling us whatdkof information is used in a specific source.
This model is then used to determine which of theoantered data sources are relevant for
resolving a query. This allows us to no longer aersall the encountered sources when a query
is posed to the Environment Model, but only conssttie relevant sources.

This chapter explains the Source Index Model bstlfirexplaining what information can be
stored in it, from this exposition two possible igats are chosen called Source Index Strategyl
and Source Index Strategy 2. Both strategies shaie Source Index Model as an RDF Graph,
section 2 explains the RDF Schema that is develdpegkpresent the Source Index Model.
Section 3 and 4 explain what happens to the Solrdex Model when a new source is
encountered and when it is accessed to determineelvant sources, and this for both variants.
The fifth and last section provides the detailstied query analyzing process, this processes
extracts from a given query the relevant informato pose to the Source Index Model.

Before elaborating on the concept of the SourceexnModel, we must point out that our
approach is not yet complete. Currently we havdratied from the fact that the encountered
sources can change, in the current approach, wenasthat once the sources are encountered,
they never change and thus their source indexnrdton does not need to be updated. It is
considered future work to further develop the madma in such a way that it supports change in
the encountered data sources (see Chapter 9).

5.1 What information to store?

This first section investigates what informationnche summarized from encountered data
sources in the Source Index Model. The difficultigth these encountered sources are that they
can be encountered at any time and they do not fireaek data schema. Especially the lack of a
fixed data schema is a complicating factor. One@dgan contain information about movies,
another information about persons, yet anotherrinébion about restaurants, etc. This part of
this thesis focuses on extracting and storing rersammarizing data from a source (e.g.,
predicates it contains, types of domains used,eaaighe predicates, namespaces, number of
predicates), and store it in the so called SounceX Model. The purpose of doing so is to be
able to determine which sources are relevant fgoadicular query, without the need to
exhaustively query all the sources. There are séypessible variants for a Source Index Model,
depending on which information is stored. In thiesis we investigate two possibilities which are
described in the following paragraphs.

-37-



As RDF is a predicate-oriented formalism, a natalalice is to store these predicates, possibly
along with some additional information (such as domand range). Compare with an Object-
Oriented system, where it is natural to maintaimsiary information about the objects, and
possible their methods, variables, etc. Two vasiasit such predicate-oriented Source Index
Model are explored here: one that stores informatialy about the used predicates, and a second
that stores information about used predicates lagid torresponding domains. The benefit of the
first option is that it results in a smaller souncdex model. Secondly, it causes fewer overhead
to create and maintain, since it is not necesgadetermine, for each predicate, the domain. The
benefit of the second option is that is increasdsctivity. To validate these conjectures, we will
compare these two Source Index Model strategiegyusseries of experiments; details are given
in Chapter 8.

5.2 RDF Schema for the Source Index Model

Both our source index strategies store the modehaRDF Graph; this allows us to access the
model in the same way as the encountered dataesoare accessed. To be able to store the
Source Index Model properties and classes of egsiDF Schemas (i.e., fdfand rdfé>) are
used. This was however not enough, we had to deedla new RDF Schema, shown in RDF
data 6, to fit our needs. This schema defines dagsc meta:source ”, Which represents an
encountered data source containing RDF informatsord four properties. The first property
“metahasDomain " States that a particular property (i.e., predi¢as used with a particular domain
(i.e., the type of the subject). The other thrempprties, denoted bynéta:presentin ", are used to
state that something (i.e., statement, domain@pgaty) is used within a specific source.

<?xml version="1.0"?>
<IDOCTYPE rdf:RDF [

<IENTITY meta "http://wilma.vub.ac.be/~eparet/met afile008_2.rdfs#">
<IENTITY rdf "http://www.w3.0rg/1999/02/22-rdf-sy ntax-ns#">
<IENTITY rdfs "http://www.w3.0rg/2000/01/rdf-sche ma#'">

>

<rdf:RDF

xml:base="&meta;"
xmins:rdf="&rdf;"
xmins:rdfs="&rdfs;"
xmins:meta="&meta;"
>

<l-- Defining classes -->
<rdfs:Class rdf:about="&meta;Source">

<rdfs:comment>The class of file / Web presences co ntaining RDF information</rdfs:comment>
</rdfs:Class>

22 http://www.w3.0rg/1999/02/22-rdf-syntax-ns
2 http://www.w3.0rg/2000/01/rdf-schema



<l-- Defining properties -->
<rdf:Property rdf:about="&meta;hasDomain">

<rdfs:domain rdf:resource="&rdf;Property" />

<rdfs:range rdf:resource="&rdfs;Class" />

<rdfs:comment>Relation saying that the Property ha s the Class as Domain.</rdfs:comment>
</rdf:Property>

<rdf:Property rdf:about="&meta;presentin">

<rdfs:domain rdf:resource="&rdfs;Statement" />

<rdfs:range rdf:resource="&meta;Source" />

<rdfs:comment>Relation saying that the Statement ( Property hasDomain Class) is present in the
Source</rdfs:comment>
</rdf:Property>

<rdf:Property rdf:about="&meta;presentin">

<rdfs:domain rdf:resource="&rdfs;Class" />

<rdfs:range rdf:resource="&meta;Source" />

<rdfs:comment>Relation saying that the Class is pr esent in the Source.</rdfs:comment>
</rdf:Property>

<rdf:Property rdf:about="&meta;presentin">

<rdfs:domain rdf:resource="&rdf;Property" />

<rdfs:range rdf:resource="&meta;Source" />

<rdfs:comment>Relation saying that the Property is present in the Source.</rdfs:comment>
</rdf:Property>

</rdf:RDF>

RDF data 6: RDF Schema used to storethe source index models

Since our first source index strategy maintainscWisource uses what predicate with which
domain, we need to be able to express that thegatedand corresponding domain are used
within a particular source. It is not sufficienteapress that a particular domain is used within a
source, and the predicate is used within the spuweeim to express the combination of domain
- predicate used in a particular source. In otherd®, we want to express that the statement
“ <predicate> meta:hasDomain <domainOfSubject> " occurs in a particular source. To do so, we hee t
RDF reification process.

The following example is used to motivate thasinot sufficient to state that a predicate and a
domain are used in a source, without explicititistathe combination of both. Consider two
sources called source A and source B as shown ik &dda 7. RDF data 8 shows the source
index information of source A and source B. By ekany the source index information, we
could conclude that bothictite " and “foat:Person 7 are used in sourceA and thak:fle

has ‘foatperson " as domain. We could thus (mistakenly) concludat tthe combination
“detile " and ‘foatPerson " IS present in source A. However, this is not tese, as the
statement expressing that:fite ” has as domainsatrerson " actually originates from source
B. The problem is thus that domain information alewertain predicate present in one source,
might not apply to the same predicate in anotharcso If we do not explicitly store the domain

-39



— predicate information in our Source Index Moded are no longer able to determine which
domain is used in which source.

Source A:

<personl> a foaf:Person.
<personl> foaf:name ‘Elien Paret’ .
<trackl>a mo:Track .

<trackl> dc:title: ‘Envoi’ .

Source B:

<person2> a foaf:Person .
<person2> dc:title ‘Mr’ .

RDF data 7: Source A and B

Summary information of Source A and B:

foaf:Person meta:presentin sourceA .
foaf:name meta:presentin sourceA.
foaf:name meta:hasDomain foaf:Person .

mo:Track meta:presentin sourceA .
dc:title meta:presentin sourceA .
dc:title meta:hasDomain mo:Track .

foaf:Person meta:presentin sourceB .
dc:title meta:presentin sourceB .
dc:title meta:hasDomain foaf:Person .

RDF data 8: Sour ceindex model infor mation source A and source B

The RDF Reification process is used to expressahmedicate-domain combination occurs in a
particular source. In this process th@redicate> meta:hasbomain <domain> " triple is translated
into a RDF resource that can be addressed. Tradilyo this RDF resource is a blank node with
a random uniquely identifier. However this randomquely identifier is not sufficient enough
for our purpose. Since adding twice the same pagelidomain combination results in two triples
that are reified into two separate blank nodes ti#ir own random identifier. We want to avoid
duplicating the predicate-domain triple and thubeaable to reuse the node, therefore we create
our own unique identifier to give to the reifiecite&tments, these all get an URI that starts with
“meta/ " followed by an unique number. RDF data 9 showsgample of a reification of the

triple “<predicate> meta:hasDomain <domain>

The rdfs schema as described in RDF data 6 iscguifi to store both variant described in this
thesis. More extended versions of the Source Indeael could require extensions of this RDF
Schema; this is considered future work.



5.3 Adding source index information of a new source

The Source Index Model contains summarizing meta-@é all encountered data sources in
order to determine the relevant sources for aqdaii query. To keep this model up-to-date, each
time a new source is encountered, the Source INtb&lel needs to be updated with source index
information of the newly encountered source.

Extracting the relevant source index informatioanir a source is done by using a specific
SPARQL query to the source. This query dependserparticular information that needs to be
stored in the Source Index Model. For each vardrbhe Source Index Model, the query that is
used slightly differs. Once the relevant meta infation is extracted, it is added to the RDF
Graph representing the Source Index Model.

The following subsections show the SPARQL queryduseextract the relevant meta information

(which we will call source index information fronow on) from a particular source, both for

Source Index Strategy 1 and Source Index Strate@ye2also discuss the Source Index Model in
more detail for both strategies.

5.3.1 Source Index Strategyl

This first subsection describes how the SPARQL ypeised to an encountered source and the
Source Index Model look like for the first variaoglled Source Index Strategyl, where for each
source the used predicates and corresponding demagrmaintained.

SPARQL query 5 shows the query posed to encounsaneates. In this queryc” represents the
domain and %" represents the predicate; a filter is used tdwaethe predicatedtype ”, as it

is used in all sources to indicate domain infororatand thus does not bring any differentiating
information. The domain of a subject is not alwadicated in a query, in other words the triple
“<subject> rdf:type <domain> " is not always used in a query. We do not wanblitige that the
guery must explicitly give a domain for all the dsmuibjects. Secondly, an RDF source does not
always mention the domain of a subject himself.réfoge we have chosen to use the domain
information in the query if it is given, otherwisaly the predicate information is used. This is
the reason why we choose to retrieve the domaimian ‘optonal " clause. Using theolstincT”
operator assures that the domain-predicate parseturned without duplicates.

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-synta X-ns#>
SELECT DISTINCT ?c¢ ?p
WHERE
{

X

OPTIONAL

{

?X rdf:type ?c .
}

-41-



FILTER (?p != rdf:type )
}

SPARQL query 5: constructing sour ce index model (Sourcel ndexStrategyl)

RDF data 9 is a piece of the source index inforomatof the encountered data source
“ http:/iwilma.vub.ac.be/~eparet/elien_foaf N.rdf " (see 11.1 for the actual content of the RDF file)
As stated before, the source index informatioregesented in RDF itself. This piece of source
index information tells us that the source usgddsi with as propertyfoaf.givenname " and as
domain foaf:person

<http://wilma.vub.ac.be/~eparet/elien_foaf N.rdf> < rdf:type> <meta:Source> .
<foaf:Person> <rdf:type> <rdfs:Class> .

<foaf.givenname> <rdf:type> <rdf:Property> .
<foaf:givenname> <meta:presentin> <http://wilma.vub .ac.be/~eparet/elien_foaf_N.rdf> .

<meta://211593053> <rdf:type> <rdf:Statement> .

<meta://211593053> <rdf:object> <foaf:Person> .

<meta://211593053> <rdf:predicate> <meta:hasDomain>

<meta://211593053> <rdf:subject> <foaf:givenname> .

<meta://211593053> <meta:presentln> <http://wilma.v ub.ac.be/~eparet/elien_foaf N.rdf> .

RDF data 9: partial sourceindex information for
http://wilma.vub.ac.be/~eparet/dien_foaf N.rdf (Sourcel ndexStrategyl)

5.3.2 Source Index Strategy 2

This section describes how the SPARQL query pogetid encountered source and the Source
Index Model look like for the second variant of tBeurce Index Model, which only stores
predicates. This variant is called Source Indeat8gy 2.

The query posed to the encountered source is Isligifterent from the one used for Source
Index Strategy 1, as the actual domain no longed#i¢o be captured. The query to extract the
relevant source index information, shown in RDFRadH), is thus simpler.

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-synta X-ns#>
SELECT DISTINCT ?p
WHERE
{
2X?p?y.
FILTER (?p != rdf:itype )
}

SPARQL query 6: constructing sour ce index model (Sour cel ndexStrategy?2)

The RDF information in RDF data 10 is a piece o tource index information for the
encountered data Ssourcetp/wima.vub.ac.be/~eparet/elien_foaf N.rdf ". This source index

-42-



information tells us that the source contains:givenname " as a property (predicate). Note that
the source index model for this source index ggsaie much smaller than for Source Index
Strategy 1.

<http://wilma.vub.ac.be/~eparet/elien_foaf_N.rdf> < rdf:type> <meta:Source> .

<foaf:givenname> <rdf:type> <rdf:Property> .
<foaf:givenname> <meta:presentin> <http://wilma.vub .ac.be/~eparet/elien_foaf _N.rdf> .

RDF data 10: partial sourceindex infor mation for
http://wilma.vub.ac.be/~eparet/dien_foaf N.rdf (Sourcel ndexStrategy?2)

5.4 Accessing the Source Index Model

The purpose of maintaining a Source Index Modéb ise able to determine the relevant source
for a query when it is posed to the Environment Blod o do this, Source Index Strategy
constructs a specific SPARQL query, called the a@index query, which he poses to the Source
Index Model.

To construct this Source Index Query, the SourcexinStrategy analyses the given query to
determine which predicates (and domain) it usess Pplocess of analyzing the given query is
explained in section 5.5.

The result of this Source Index Query containgladl relevant sources need to resolve (part of)
the query. Each of these sources contains at tesstpredicate (and domain) of the query to
resolve. Although such a (single) source might bmtsufficient by itself to solve the complete
guery, combined with other the other sources, ghihbe able to address the complete query.
Therefore we need to combinenion’, all the sources containing relevant informatfona part,
minimum one WwHerk clause condition, of the original query.

5.4.1 Source Index Strategy 1

To explain the working of Source Index Strategyelwill consider an example. SPARQL query
7 is a query that selects all the names of perkaongvn by ‘Elien Paret’. The corresponding
Source Index Query to determine the relevant ssumeSPARQL query 7 is shown in SPARQL
query 8.

In the original query, two where patterns are usedxpress a subject type (numbers 2 and 5).
The first where pattern (number 1) uses tagname " predicate, we know from number 2 that
the corresponding domain of this subject (?pl)wis:Person ", we can thus conclude that the

“foatname " — “foat:Person ” predicate domain combination occurs. The thirdtgga uses the
“foatknows " predicate, with the same subject as the firstegpat we can thus deduce the
“foafknows " — “foat:Person " predicate-domain combination. The fourth weretgrat uses the

-43



“foatname ” predicate this time with subject ?p2 in the fiftkere pattern the domain of this

subject is given namelyfoatperson ", we thus again find the foaftname ” — “foaf:Person
predicate-domain combination. To solve our origigaéry (SPARQL query 7) we need all the
sources that use the combinati@arhame " — “foat:Person " and / or foaf:knows " — “foaf:Person

In our Source Index Model, the predicate-domaionmfation is stored as a statement created by
the reification process (see RDF data 9 for an @kawf the Source Index Model). In our Source
Index Query we will not specify the name of thefiegel statement indicating the predicate-
domain information since this is not necessarysingly address it by using a variable (e.g. ?_1)
is sufficient and is simpler than calculating tleene of the reified statement. We used the reified
statement to expresspredicate> metazhasDomain <domain>] meta:present| n <source> ", in terms of

the reified statement this is translated into f@bere patterns shown in RDF data 11.

?statement <rdf:subject> <predicate> .
?statement <rdf:predicate> <meta:hasDomain> .
?statement <rdf:object> <domain> .

?statement <meta:presentin> <source>

RDF data 11: Reifeid statement of predicate-domain combination

Our Source Index Query contains twelve where patesix for each predicate-domain
occurrence. Four of the six where patterns are tsedpress the predicate-domain combination
and two to express that the predicate isif@roperty 7 and the domain is adfs:class  ”. The six
patterns of the first predicate-domain occurrerreecambined via aution ” to the six patterns of
the first predicate-domain occurrence, this ex@®s$ise and / or relationship, in other words, we
want to have all the sources that use the firsdipate-domain combination and / or that use the
second predicate-domain combination.

PREFIX foaf: <http://xmIns.com/foaf/0.1/>
SELECT ?name
WHERE
{
?p1l foaf:name 'Elien Paret' . (1)
?pl a foaf:Person . (2)
?p1l foaf:knows ?p2 . (3)
?p2 foaf:name ?name . (4)
?p2 a foaf:Person . (5)

}

SPARQL query 7: Example query posed to the Environment M odel

SELECT DISTINCT ?source
WHERE
{
{
?_0 <rdf:subject> <foaf:name> .
?_0 <rdf:object> <foaf:Person> .
<foaf:Person> <rdf:type> <rdfs:Class> .




?_0 <rdf:predicate> <meta:hasDomain> .
<foaf:name> <rdf:type> <rdf:Property> .
?_0 <meta:presentin> ?source .

}

UNION

{
?_1 <meta:presentin> ?source .
?_1 <rdf:predicate> <meta:hasDomain> .
?_1 <rdf:subject> <foaf:knows> .
foaf:Person> <rdf:type> <rdfs:Class> .
?_1 <rdf:object> <foaf:Person> .
<foaf:knows> <rdf:type> <rdf:Property> .

}

}

SPARQL query 8: Source Index Query (Sour cel ndexStrategy1)

However, Source Index Strategy 1 can also wrongiclude sources that can still yield query
results when they are combined (so-called falsexinggs). These false-negatives occur when one
source indicates the type of a certain resourcégvamother source uses the same resource as
subject of a predicate used in the query, bothcasuare falsely considered irrelevant. In that
case, Source Index Strategy 1 will not detect ditterdl source as relevant, as it expects the type of
a subject resource (i.e., “actual” domains of pratlis) to be specified in the same source as they
occur as subject of a predicate. However, we exiettthe amount of false-negatives is rather
small, since the typing of a subject resource dmair tuse with predicates usually occur in the
same source. Future work will be investigating hadten these false-negatives occur in practice
and how they can be avoided.

5.4.2 Source Index Strategy 2

The previous section showed, at hand of an exam@eurce Index Query for
SourcelndexStrategyl. This section shows the Sdadex Query for the second variant of the
Source Index Model, SourcelndexStrategy2, whichy ardntains information about the used
predicate.

The Source Index Query for SourcelndexStrategy2hfersame original query (SPARQL query
7) is shown as SPARQL query 9. As we are now onlycerned about relevant predicates (i.e.,
“foatname ” and / or foatknows " in the example), the Source Index Query is simple the
Source Index Model, the use of a predicate in acgols summarized in two triples, a first triple
defining that the predicate is a property, the sddbat it is present in a particular source. In ou
Source Index Query we have thus two where patteensused predicate from the query, one
defining that the predicate is a property and sdlyoone expressing that the predicate is used in
a particular source. Again the where patterns & predicate are combined via th@ioh ”
operator which expresses the and / or relationsinme we are interested in the sources that
either use the first and / or the second predicate.

.45



Since this strategy uses fewer constraints tharrc8tmdexStrategyl, it is expected that the
number of relevant sources it returns is largernthine number returned by the
SourcelndexStrategyl. Several experiments wereug@do test which strategy is the most
suitable; Chapter 8 describes these experimentthairdoutcome.

SELECT DISTINCT ?source
WHERE
{
{
foaf:knows rdf:type rdf:Property .
foaf:knows meta:presentin ?source.
}
UNION
{
foaf:name meta:presentin ?source .
foaf:name rdf:type rdf:Property.
}
}

SPARQL query 9: Source Index Query (Sour cel ndexStrategy?2)

5.5 Query analysis

This section discusses the mechanism used to an\@RARQL queries, used to determine which
sources are relevant for a particular query. Dugntdations of existing RDF frameworks for
mobile devices, local (SPARQL) query analysis i$ possible therefore the query analysis is
offered as a remote service. To analyze SPARQLiepiére SPARQL Engine for J&Vas used,
which is described in the first subsection. A secsection explains how this API is used to help
determine that relevant sources for a particulargu

5.5.1 SPARQL Engine for Java

The SPARQL Engine for Java is an API intended fDiFRserver implementations to be able to
add SPARQL querying capabilities. It frees serveplementations from details concerning
guery specifications and implementing these meshanthemselves; it also accommodates users
who are interested in further extending the SPAR@Qéry language.

Within the context of this thesis, this API is usedconstruct a list of predicates used in a
SPARQL query, and to compose a Source Index Quetydan be used to query our Source
Index Model to allow us to determine the relevanirses for a particular query.

To allow SPARQL query analysis, we utilize the APBPARQLPARSER class to construct an
Abstract Syntax Tree of a SPARQL query. To perfaperations on the Abstract Syntax Tree,

% http://sparql.sourceforge.net/



the developer uses the Visitors Patferithe SPARQLParserVisitor is the Visitor interfaaed
the constructed Abstract Syntax Tree is the olg&atture that can be visited within the Visitors
pattern. By creating a concrete implementatiorhefSPARQLParserVisitor it becomes possible
to perform operations on the constructed Abstrgoté Tree.

A drawback of this API is that it is not intendeat fava ME and that it does not work within
SCOUT framework itself. Since the actual parsing &PARQL queries falls out of the scope of
this thesis, we used the sparQL Engine on a res@ster and provide query analysis as a remote
service. Later on the SPARQL parser functionalitijl we developed within the SCOUT
framework itself.

5.5.2 Query analysis to determine the relevant sour  ces

A first aim of this thesis was to optimize the quprocess of the Environment Model. A Source
Index Model is used, to determine what sourcesr@myant for a particular query, only these
relevant sources are queried instead of all the@wrered sources as was previously the case.
This Source Index Model contains what kind of infiation (e.g., predicates) is used in the
sources, in order to use this model to determimeréhevant sources, a special query, called a
Source Index Query, is used. This Source Index Wiseconstructed from the given query; the
result of this query is all the relevant sourcetfer given query. This section explains how this
happens and how the SPARQL Engine for Java API jmrd of this process. Section 7.4.3
provides the implementation details of this process

Workflow 1 shows the process of constructing thar8e Index Query from the given query (i.e.,

a SPARQL Query). The process of constructing ther& Index Query is a complex process,
and consists of three main steps: 1/ constructiegAbstract Syntax Tree (AST) of the query
using SPARQLParser; 2/ constructing from the ASJoarcelndexQueryTree (see section 5.5.3)
and 3/ constructing from the SourcelndexQueryTmreacual query in the appropriate format,

which depends on the format of the Source Indexé¢elg. SPARQL, SQL ...).

The reason why we transform the AST into Sourcel@ieryTree (and not directly into an
appropriate query string) is a matter of abstracti@emember that the sparQL Engine is not
intended for Java ME and thus cannot be used i68@@UT framework itself. This means that at
a later point in time, when a SPARQL parser eXmstslava ME and has its own AST of a query,
we only need to change the first two componentsranall three of them.

% http://lwww.dofactory.com/Patterns/PatternVisitepa

-47-



ﬂSPAFEQL Qery

Parse Query

J Lﬁ.bstract Syniax Tree

Extract Source Index
related information &
compose fhe infarmation
in a quary trea

Source Index Cuery Tree

Translate query tree intoc a
specific format

SPARCL Source Index
Cuery

Workflow 1: Constructing Sour ce Index Query

5.5.3 Source Index Query Tree

The previous section explained the process of fognai Source Index Query for a given query.
One of the steps is to construct a Source IndexyQLiee, this section explains the composition
of WHERE clause this Source Index Query Tree. lyitte design details are explained, next
one example SPARQL queries illustrate the compwsitf the WHERE clause of a Source Index
Query for Source Index Strategy 1 and Source 18teategy 2.

The WHERE clause is represented as a where tregtimh the Composite pattéthis used,
with UnionNode and CompositeWhereNode as compoaitedsWhereTripleNode as a leaf. The
difference between CompositeWhereNode and UnionN@ehat CompositeWhereNode
represents a number of where constraints, whiletMode represents a union of two or more
groups of where constraints. We explain the proadsextracting relevant WHERE clause
information at hand of one example.

Consider SPARQL query 7, which selects the namallgberson known by ‘Elien Paret’ and
SourcelndexStrategyl, which contains informationoudbthe used predicates and their

26 http://www.dofactory.com/Patterns/PatternCompos#ex

-48-



corresponding actual domains. In this query twodjpades are used:fodtname " and

“foaftknows ", these predicate are each time used with the dof@frerson . In our Source
Index Query we will thus want to select all the m&s that use eithefoatname ” with the
domain foatperson " and / or ‘foatknows ” with the domain foafperson ”. For each of the

combination predicate-domain, we will use six wHeigeNodes, four to express that the
predicate-domain combination must be present irsthece and two to express that the domain
and predicate are respectively of the type:¢iass ” and ‘rdf.property

Figure 8 visualizes the composition of the elemehte six whereTripleNodes are composed in
a CompositeWhereNode. Since it is sufficient thaoarce uses one of the combinations, the
CompositeWhereNodes are maintained in a UnionN8depose that a source should contain
both combinations, then all (twelve) WhereTripleMsd would be contained in one
CompositeWhereNode.

PREFIX foaf: <http://xmIns.com/foaf/0.1/>
SELECT ?name
WHERE
{
?p1 foaf:name 'Elien Paret' .
?pl a foaf:Person .
?p1 foaf:knows ?p2 .
?p2 foaf:name ?name .
?p2 a foaf:Person .




/ \

predicate = rdf.subjed
ohjed = foafname

ConmmpositeWherellode
subject =7_0 subject=7_0

predicate = rdf predicate
ohjed = metahasDomain

predicate = rdfiype
objed = rdfProperty

predicate = rdfsubjedc
objed = foatknows

ConpositeWherellode
subject = foafname subject =7 _1 subject =7 _1

predicate = rdf.predicate
objed = meta:hasDomain

i WhereTriplellode

i WhereTriplelode

i WhereTriplellode

i WhereTripleNode

subject =7_0
predicate = rdfobject
objed = foafP erson

subject =7_0
predicate = meta:P resentln
objed = ?source

subject = foafPerson
predicate = rdfiype
obhject = rdfsClass

Figure 8: composition wher e tree (Sour cel ndexStrategyl)

-50-

subject = foaf.name
predicate = rdfiype
objed = rdf Property

i WhereTriplel ode

i WhereTriplelode

i WhereTriplellode

subject = 7 _1
predicate = rdf.object
objed = foafP erson

subject = 7 _1
predicate = meta:presentin
objed = ?source

subject = foafPerson
predicate = rdfiype
ohjed = rdfeClass




Figure 9 shows the composition of the elementshef whereTree for SourcelndexStrategy?2.
Notice that this three is far less complex thandhe of SourcelndexStrategyl, since the domain
is no longer included. This time two WhereTripleMedare used to select the sources using the
predicate foatname " and two for the predicateocatname ”, One for saying that the predicate is a
“ratPropety 7 and one for saying that the predicate must bed usea source. Again the
WhereTriplesNodes for one predicate are containedai CompositeWhereNode and the
CompositeWhereNodes are contained in a UnionNode.

oot Unjonhl ode
ConpositeWherehl ode ConpositeWherehl ode
subject = foafname subject = foafknows subject = foatname subject = foafname
predicate = rdftype predicate = meta:presentin predicate = rdftype predicate = meta:presentin
chjed = rdfProperty ohject = 7source ohjed = radf Property ohject = 7source

Figure 9: composition wher e tree (Sour cel ndexStr ategy?2)

5.5.4 Limitations

Currently the approach of composing a Source InQeerry out of a SPARQL Query is not
complete. It only takes the regulavHErE constraints into consideration; it does not cdasithe
fact that fwter” clauses may also specify relevant predicates.illlistrate this, consider
SPARQL query 10. This query uses a filter to speaifcertain predicate (i.e.foaffirstName "
and ‘*oaf.givenName ). Currently, our query analysis process doesdabéct that foaf:firstName

and ‘oafgivenNname ” are used predicates. We do point out however tthiatis not a functional
flaw: SPARQL query 10 can be rewritten as an edeintaSPARQL query shown in SPARQL
query 11, which our approach is able to handleectiyr. For a further elaboration on the use of
“rILTER” clauses, please see Chapter 9.

PREFIX foaf: <http://xmIns.com/foaf/0.1/>
SELECT ?name

WHERE

{

?person ?namePred ?name .

FILTER

(
sameTerm(?namePred, <http://xmiIns.com/foaf/0.1/fi rstName>)
|lsameTerm(?namePred, <http://xmIns.com/foaf/0.1/ givenName>)

-51-



)
}

SPARQL query 10: Filter query

PREFIX foaf: <http://xmIns.com/foaf/0.1/>
SELECT ?name
WHERE
{
{
?person foaf:firstName ?name .
}
UNION
{
?person foaf:givenname ?name .
}
}

SPARQL query 11: Alternativefilter query

-52-




Chapter 6 Cache

The aim of this thesis is to investigate how theviEmment Model can be constructed and
managed more efficiently. The first step was tontaan a Source Index Model that contains
source index information telling us what kind ofdmmation is used in a specific source. A
second step is too no longer store all of the emigwad data sources locally, as was currently the
case. Since it is totally unrealistic to assumeé that mobile devices will have enough space to
store all the sources.

This section explains the concept of the cachinghmeism. The first section describes what is
stored in the cache, from this exposition two uaries of the caching mechanism are chosen.
The first one caches entire sources, while the mkame caches RDF triples using specific
predicates. The second section explains the chesation strategy (i.e., a strategy which

determines what elements are evicted from the cablea it is full) in detail.

Before going to the details, we assumed that tloewartered data does not change over time.
This means that our caching system does not hgadicy to assure the freshness of the cached
data. It is considered Future Work to further depethe caching mechanism to include a
freshness policy and to take into account thetfaattthe encountered data can change (see 9.2).

6.1 What to cache?

As discussed in the background part, different sypieinformation can be stored in a cache, e.g.,
rows of a database table, query results, hyperr@gects, etc. Considering that the information
encountered within the SCOUT framework is RDF infation, stored in a distributed manner,

the cache should contain RDF or fragments of RDfa:d&DF (sub) graphs, triples, part of

triples, etc.

Our approach is to cache RDF triples. The granylar the cached triples can vary: a cache
entry may contain a single triple, all the triptdsa particular source, all the triples using gaier
predicate, all triples with a particular object subject... As in the setting of SCOUT we
continuously encounter sets of RDF triples in themf of online sources, the most
straightforward strategy is to cache an entire ent®ed source. This means a one-to-one
mapping of the relevant source and a cache entrig fossibility is designed (section 6.1.1),
implemented (section 7.6.1) and evaluated (se&i8h

Since RDF information is by design predicate-omehnti.e. it consists of triples of the form
<subject> <predicate> <object>, a second strategio icache the RDF triples based on the
predicate they use. Deciding to cache all tripleisgia specific predicate in one cache entrance
in an RDF system seems as natural as cachingealhfbrmation about a specific object in one

-53



cache entrance in an Object-Oriented system. Tjptisrois also fully designed (section 6.1.2),
implemented (section 7.6.2) and evaluated (se&idhn

6.1.1 Cache entire sources

The most straightforward strategy is to cache dmezancountered source. This provides a one-
to-one mapping of the relevant source and a cactrg. &he following workflow explains how
this approach retrieves all the relevant informafr a query posed to the Environment Model.

The first step is finding out the relevant sourimeshe particular query, this happens by using the
source index strategy explained in section 4.1. dawmh relevant source, the algorithm checks
whether the relevant source is cached. If so,iihimediately retrieved from the cache and added
to the RDF Graph, which will contain all the RDFarmation of the relevant sources. This RDF
Graph is used to resolve the query. If a soure®icached, it will be downloaded in a later step
of the algorithm.

When all cached relevant sources are retrieved tt@cache, the rest of the relevant sources
(the uncached ones) are one by one downloadedd addlee cache and added to the RDF Graph.
Benefit from downloading the not cached sources dater point it time, is that it is more
efficient in terms of memory usage. Suppose we doachthe relevant source at the point in the
algorithm where we check whether or not the soig@ached, then we would have to store them
in memory until all of the cached relevant sourees retrieved from the cache. If we would
immediately download and add them to the cachecautd evict a cached relevant source that
has not yet been retrieved from the cache. So nk@ading and adding the not cached sources
at a later point, we avoid that we evict sourced #re not retrieved from the cache yet and that
we need to store them in memory until all the cdchedevant sources are retrieved from the
cache.



Find out relevant
SOUFGas

[
| releval
B

sources laft fo
conskder?,

o

K]

Diata ne | siourc:

YES SOUrce in - yes left to
1 cache? l l load?
Geal source data Indicate source as Deavwnload mext Retum RdfGragh
fram cache to downboad source's data with data

- - !

Add scurce dala to Add source data to
RdfGraph cache

h

Add source data to
RdfGraph

R

Workflow 2: Caching entire sour ces, retrieving therelevant infor mation for a given query

In our setting new sources can and will be encardtat any time. This particular strategy does
not add newly encountered sources to the cache sircdo not expect them to be immediately
accessed, queried.

6.1.2 Cache triples using a specific predicate

The previous section explained the straightforw@adhe strategy in which entire RDF sources
are cached. A second cache strategy caches RDéstrping a specific predicate. Deciding to
cache all triples using a specific predicate in oaehe entrance in an RDF system seems as
natural as caching all the information about a gjgeabject in one cache entrance in an Object-
Oriented system. This strategy has a smaller gaaityithan the first straightforward strategy. As
a consequence, this cache requires less storaggethescache storage space more efficiently and
more relevant information is stored in the cach&dsecond benefit is that a given query is
executed on an RDF Graph which only contains in&diom about the predicates used in the
guery and about nothing else; contrary to the RD&p6& of the previous cache strategy, where
the RDF Graph contained also other RDF informatiGansequently, the resulting combined
RDF Graph over which the particular query needsat@xecuted is smaller, yielding faster query

-55



time and less memory is required. A drawback of #pproach is the amount of overhead that is
introduced to extract triples of a particular poadé from an encountered source. Section 8.3
evaluates the impact of this drawback.

This section firstly describes the general prireipf what should happen when a query is posed
to the Environment Model. Secondly the complicafiaagfors are discussed followed by the final
variant. The last paragraph describes what happbaa a new source is encountered.

Workflow 3 shows the actions that occur when a gueposed to the Environment Model this
workflow shows the general idea and not the firaalant.

The first step of the general process is collecthrgy predicates that are used in the query (i.e.,
constructing a PredList in the workflow). Once #@sedicates are known, they are divided into
two groups: a first group of cached predicates, (GachelList in the workflow) and a second
group of not cached predicates (i.e., Downloadlristhe workflow), the RDF information for
this second group will need to be downloaded amgtrocted.

The second step is to collect the RDF informatian, RDF triples, for all the predicates that are
not present in the cache. In order to do so, deitermined (by using a Source Index Strategy)
which sources contain triples using one of thosedipates. Secondly, each of the relevant
encountered sources is downloaded and the triglesy wone of those predicates are extracted
from the source and put into the RDF Graph of hreesponding predicate. After all the relevant
sources are downloaded and the relevant triple®x@racted from them, the result is one RDF
Graph for every predicate (relevant for the quéng) contains all the triples that use the specific
predicate.



The next step is to construct the overall RDF Gréygyhcombining the cached predicates with the
newly downloaded predicates. Before returning tB#=Rsraph with all the relevant data, and in
order to allow usage of the most recent versiothefcache for other following queries, the cache

is updated first. Updating the cache means simplging the RDF Graph of non-cached
predicates to the cache.

Construct PredList

!

ore m
PredList? ne
¥
Get ralevant
yes sources for
l T DownloadList
K
Add pred to Add pred to
CacheList DownloadList yEs—s e relevan o
sourea? _l
| ]
Combine
RdiGraphs of prad
Downlosd next in Cachelist and
relevant source DownloadList
v |
Add RdiGraphs
E:-:tralv,:lt II-ZE:W nt DownloadList to
P the cache
R v
trinles? o Return combined
ires more triples? — RudfGraph
Add triple to g
RdfGraph of 7p

Workflow 3: Caching triples, getting theinformation for a particular query (general idea)

As previously mentioned, there are some (RDF spgci$sues that complicate the general
principle. The problem lies in the peculiaritiesbténk nodes in RDF. This section discusses this
complicating factor in detail and uses some exasngexplain the problem.

A blank node in the context of RDF is a node treet ho global identifier. In practice, RDF APIs
mostly generate a random identifier to make it fmsdo address the blank node. However, this

-57-



identifier is only unique within the RDF Graph ifs@and not across several RDF Graphs or even
several instantiations of the same RDF graph; ermtvords, executing the same query twice on
the same RDF file will result in different blankd®identifiers for the same nodes. RDF data 12
is an RDF example in N-Triple format that contaihiee statements about a blank node. Blank
nodes in the N-Triple format always start with™followed by their identifier.

Our algorithm extracts nodes (subjects and objdog) their original source file by executing
an extraction query, and puts them into a new RD&p (i.e., the predicate RDF Graph).
However, the blank node identifiers of these nadest still correspond to the identifiers of the
same nodes already present in other predicate RBphg. As mentioned above this cannot be
guaranteed, as the latter nodes were extractecnosher execution of an extraction query.
Moreover, as blank node identifiers are mostly gateel randomly, it is (at least theoretically)
possible that two different nodes, from the samdifferent sources, are assigned the same blank
node identifier. Two examples are given below whiltlstrate these issues.

For instance, consider the case where two prediBid& graphs are constructed, one for
“foatname ” and one for foatgivenname ”. When forming an RDF Graph for the predicate
“foatname ", the blank node associated with that predicatsource B will get a unique identifier
from the query resolver (e.g., bn_1). Afterwardfe tRDF Graph for the predicate
“foaf:.givenname " IS constructed, and the necessary triples areetetd via a different extraction
guery execution; consequently, a new identifierthar blank node in source B is generated (e.g.,
bn_2). When these two RDF Graphs are merged deadtage in order to solve a given query,
the same resource will appear as two differentlbtandes: one with identifier bn_1 and one with
identifier bn_2.

_:n1 <http://www.w3.0rg/2000/01/rdf-schema#seeAlso>

<http://wise.vub.ac.be/members/peterp/foaf.rdf> .

_:nl <http://xmIns.com/foaf/0.1/name> "Peter Plesse rs".

_:nl <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#ty pe> <http://xmins.com/foaf/0.1/Person> .

RDF data 12: source A

_:n1l <http://xmIns.com/foaf/0.1/name> "Pieter Calle waert" .

_:n1 <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#ty pe> <http://xmins.com/foaf/0.1/Person> .
_:n1 <http://xmIns.com/foaf/0.1/givenname> "Pieter"

_:n1 <http://xmIns.com/foaf/0.1/nick> "Pierre" .

RDF data 13: source B

As a second example, suppose that in the procedsgstting data for a particular query, the
information of the predicataoatname ” (present in source A and source B) needs to dredtin

-58



the cache. The process will construct an RDF Grapltthe predicate f6atname ”, wWhere the
triples “n1 <http://xmIns.com/foaf/0.1/name> "Peter Plesse rs” " “m
<http://xmins.com/foaf/0.1/name> "Pieter Callewaert = are extractedfrom source A and B,
respectively (see RDF data 12 and RDF data 13).edew the two different subjects were
incidentally assigned the same identifier by ouABBL query resolver (i.e.;n1 ); therefore, as

far as the RDF Graph is concerned, the two tripkesabout the same node since the two nodes
have the same identifier.

Comparing the results of different query executiongdhe same source, has no use since it is not
guaranteed that blank node identifiers are the sarness different instantiations of the source
(and thus they are very different across diffexgcutions of the same query). Consequently
you cannot know whether one blank node matcheshandpreviously extracted) blank node
from a predicate RDF Graph, since there are fatsttipes (i.e., two different nodes with the
same identifier) and false negatives (i.e., twoakquodes with a different identifier). An idea
would be to determine the equality of two nodesubiyng the predicate and value, however this
will not work since two different blank nodes caavk the use the same predicate and object.
However in one query, the same blank node is alwdsgtified by the same identifier. The only
option is to include the cached predicates thathlaek nodes from the same source, in the
Source Index Query to have the same blank nodeifides. To avoid that different nodes get the
same identifier by coincidence, the unique idesrtifiare given by the Source Index Strategy.

Consequently, in order to find out which (alreadgloed) predicates need to be re-included in the
extraction query, it must be known for each cactigde from which source it originated and
whether it contains a blank node. To achieve thendo, extra information thus needs to be
stored. One immediate solution is to work with ieglf statements (i.e., statements that can be
referred to); that way, triples can be added topfeelicate RdfGraph that keep the origin source
for each original (reified) triple statement. RD&ta 14 shows what data must be kept to state

that the following triple <hitp:/iwise.vub.ac.be/members/sven/foaf.rdf#me>
<http://xmIns.com/foaf/0.1/firsthame> "Sven" " OCcurs in the source
“ http://wilma.vub.ac.be/~eparet/elien_foaf N.rdf ", One reified statement thus results in four new

statements, with one additional triple keeping ohigin source for the reified statement. This
means that the storage space for keeping this xiree @ece of information is multiplied by five,
which is clearly unacceptable.

_:AX2dX622daeb5X3aX126f4fa52ffX3axXX2dX7ffc
<http://lwww.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://iwww.w3.0rg/1999/02/22-rdf-syntax-ns#State ment> .
_:AX2dX622daeb5X3aX126f4fa52ffX3axXX2dX7ffc
<http://lwww.w3.0rg/1999/02/22-rdf-syntax-ns#subjec t>
<http://wise.vub.ac.be/members/sven/foaf.rdf#me>
_:AX2dX622daeb5X3aX126f4fa52ffX3axXX2dX7ffc

-59-



<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#predic ate>
<http://xmIns.com/foaf/0.1/firsthame> .
_:AX2dX622daeb5X3ax126f4fa52ffX3aXX2dX7ffc
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#object >
“Sven”.
_:AX2dX622daeb5X3ax126f4fa52ffX3aXX2dX7ffc
<meta:presentin>
<http://wilma.vub.ac.be/~eparet/elien_foaf N.rdf>

RDF data 14: A ReifiedStatement, the source of atriple

Another possibility is to no longer store the imf@tion (the extracted triples using a particular
predicate and the source from which they were etdh as an RDF Graph, but as a special
predicate list. For each triple the subject, objsgies of subject and object (i.e., URI node, blan
node or literal), and the origin source for a sfiedriple is stored. So five characteristics are
stored for each triple, these five characteristita triple are called TripleElements. The object
and subject types are needed to know the typeklade, literal or URI) of a subject or object,
which is necessary in the recomposition of the Rid&ph as each node type needs to be created
in a specific way and to know which triples usdank node. Note that the predicate of the triple
is not stored in the TripleElement, since all thplés in a predicate list obviously use the same
predicate.

An obvious drawback of this solution compared ® ithified-statement solution (as is illustrated
in RDF data 14) is that the RDF Graph needs todsemposed into the list structure whenever it
is stored in the cache, and again recomposed WigeRDF information is necessary to execute a
given query. However, regarding space requiremgigssolution is much more acceptable than
the reified-statement solution.

The conclusion from this section is that blank reosignificantly complicate the general principle
of CacheStrategyPredicate, and as a result, mlist be stored instead of an RDF Graph for each
predicate. Furthermore, every time triples areaetéd from a source for which the cache already
contains triples, the blank node identifiers frome tsource and the cache (if any) need to be
synchronized to avoid node identification issues.

Keeping the conclusions in mind, Workflow 4 visaab the final variant; the beginning of the
workflow is the same as for the general idea: consthe PredList and split it up in a CachelList,
containing the predicates which are cached, andwn®adList, containing the predicates that
are not stored in the cache and thus need to baldaded.

The next step is retrieving the relevant sourcestlie predicates in DownloadList. Before
actually downloading the relevant sources and etitrg the relevant RDF triples, the actual
variant first needs to find out which cached pratis need to be re-included in the extraction
query, with the goal of synchronizing the blank eadentifiers from the cache with the extracted

-60-



blank nodes. For this purpose, it retrieves théneaements (i.e., list of TripleElements) for all
the cached predicates, and checks which ones odrtaik nodes and originate from a source on
which the extraction query will be executed. Sulbeedy, the corresponding extraction queries
are altered based on the extra predicates thattodeel included. In a later step, the blank node
identifiers for these TripleElements will be updhtesing the extraction query results (see later).
Furthermore, the TripleElements (actually, the FreRDF triples corresponding to these
elements) that do not contain blank nodes and ardrom relevant sources, are added to the
final RDF graph: i.e., the graph on which the querly be executed. Note that these elements
must be obtainethefore updating the identifiers of blank nodes in thehegcsince the update
method of the cache can remove aged and leasttiecsed elements and thus could result in
evicting these elements from the cache.

After adding the cached information to the finalRg@raph, the relevant sources are downloaded.
In the general idea, the triples that use a préglitam DownloadList can be extracted from the
(source) RDF Graph and directly stored per predicatn RDF Graph. However, in our case the
result triples from the extraction query also imgutriples for which the blank node identifier
needs to be updated in the cache.

The following step is combining the triples obtalnfom the cache and the results of the
extraction queries. In the actual variant this sgemore complex, since the set of RDF triples
(belonging to a predicate) stored in the cach@ibnger stored as an RDF Graph, but as a list of
TripleElements. This means that an RDF Graph mtsdtlde constructed for each list. Later on,
these RDF Graphs are combined into a single RDplGrahich will be returned. After this step,
all the relevant information of the particular qués contained in the return RDF Graph. During
the construction of the final RDF graph, the retevéripleElements are updated with their new
blank node identifiers, as obtained from the exibacquery results, and triples of new predicates
are added to the cache. Finally the RDF Graphtisred.

-61-



Construct PradList

v

Construct
Cachelist and
DownloadList from
PredList

¥

Get relevant
sources for
DownloadList

ore pred in
Cachelist

T
Get triples of next
pred from cache
re relevan
SOUrCEs? o
WS
¥ i
Extract blank
triples from oo |
relevant sourcas ¥es Mare ?p lists Y
Dovwmnload next
l relevant source
et ’ b et 1o et
éc;gsultt] Construct triples RdfGraph
Bp for next relevant Retum Result
SOUIMCE RadfGraph
» 7p in cache
no
. Was
YES Mare friples? + ¢
¥ na
" Add Fp triples o
, Update 7p triples
Add friple o ?p .y the: cache [new
triples of ?p in cache ones)
7 | [

Workflow 4: Caching triples, getting theinformation for a particular query (actual variant)

In order to construct a list of predicates thatused in a SPARQL query, the query is analyzed
by using the SPARQL Engine for J&{4see section 5.5.1). Firstly we use the SPARQId?ars
class to build an Abstract Syntax Tree (AST) frdra SPARQL query. Secondly we go over the

2T http://sparqgl.sourceforge.net/

-62-



AST and extract the used predicates and colleat thea list. Since this API is not available for a
mobile setting, currently this is offered as a résrgervice.

After looking at the complex details of what happehen the cache strategy must construct the
relevant data for a query posed to the Environrivadel, this paragraph describes what happens
when a new source is encountered. Contrary torénaqus strategy in which entire RDF sources
are cached and nothing happens when a new sowgoeasintered, this strategy performs actions
to assure the correctness of the cache, to asaatelist of triples per predicate in the cache is
complete; i.e., it contains all the triples usihgttpredicate from all encountered sources and thus
also for the newly encountered one. This meansvihan a new source is encountered, all the
triples of the newly encountered source that useaehed predicate are added to the
corresponding cache elements, i.e., to the lish®fcorresponding predicate. If we don’t do this,
the next time the predicate information is retrebé®®m the cache, it will not contain the relevant
triples for that predicate from our newly encouatesource. In this process the unique identifiers
of the blank nodes are taken into consideratiorgtiver words, it is ensured that a blank node
from the source gets an identifier that is uniga®ss all the cached information.

6.2 Eviction strategy

The previous section discussed what type of inftionas stored in the cache; this section covers
the eviction strategy that is chosen to decide kisache element(s) can stay in the cache, and
which ones are removed in case the cache is futlodple of common removal strategies were
previously discussed in the background chapter f@n&): Least Recently Used (LRU), First In
First Out (FIFO), and Least Frequently Used (LFURepending on the expected access pattern
of the information, one algorithm is more approfitnan the other.

In the SCOUT framework, it is expected that actedke different information sources provided
by the different encountered entities will not bexential: sources will rather be accessed
depending the type of information they hold (epgprsons, locations) or the timeframe wherein
they were encountered. As a consequence, we caoutithe First In First Out eviction strategy.

Least Frequently Used (LFU) could be a suitable@ggh for our caching mechanism. However
one needs to consider that the number of accessdisthe sources (also those that are not in the
cache) must be tracked, which causes some overAeadre important reason for not choosing
LFU as an eviction strategy is that we expect that client will access the same kind of
information in a short timeframe and this algorithas the characteristic to keep sources in cache
that were very frequently over time, not necesganmithe present.

Least Recently Used (LRU) is the chosen evictigo@dhm. It is a fast algorithm with minimal
overhead (important in our real-time system) thegsuthe concept of recentness to decide what

-63



information must stay in the cache. To illustrateywecentness is important in our setting,
consider the following typical scenario for mohilgers, which illustrates our expectation that the
client will access the same sort of data in a $ettmeframe before looking for other type of
data. This expectation makes LRU the eviction sgyabf choice for the SCOUT framework.

Consider a client called Pieter who is in Brussgld wants to go to a restaurant. Pieter decides to
use his mobile phone to help him find a restautiaat is nearby his current position. His mobile
application “Restaurant Finder” shows a list oftaesants that are nearby. Pieter decides to
narrow his search by saying that the restaurant seive pasta; a shorter list of restaurants
appears on his screen. He sees the restauranageasind decides to view the details of the
restaurant. Looking at the details Pieter is netvatced that “Pastage” is what he wants. Pieter
navigates back to the overview. Now he sees thauest “La Dolce Vita”, after looking at the
details, he decides that “La Dolce Vita” is thegaldo be. He asks his route planner to take him
to “La Dolce Vita” and he enjoys a very good padieh. This scenario illustrates that recently
used information (i.e., nearby restaurant) is qeerepeatedly, while other information at that
point is irrelevant.

When using the LRU algorithm one must consider vawion will determine the recentness of
the elements. In our setting asking for an elenberdache and adding an element to the cache
will determine the recentness of the element. Be,l¢ast recently used element is the element
that was least recently asked or added to the cache

The LRU was not applied in its original form, it svaptimized to remove the information that
has been in the cache but not used for a verytiomg By eliminating these elements while the
cache is not actively in use, we reduce the amafinbccupied space in favor of relevant
information when the cache is active again. Thigpeas by maintaining for each cache element
a time stamp indicating when the element was lecstssed.

The following subsections explain what happens wheache element is requested, when it is
added to the cache and when it is updated. Asqushlyi explained, our cache contains either the
entire encountered source or all the triples usirspecific predicate. In the first case, the cache
uses the source URI as a key; in the second tlikcpte (i.e., a RDF resource defined by an IRI)
is used as a key.

6.2.1 Adding an element to the cache

The workflow below explains the process of addingetement to the cache. Before adding an
element to the cache three constraints are cheékestd.of all does the cache contain the key
already? This is to avoid adding the same elemaritipte times. Secondly is the size of the
element smaller than or equal to the allowed elérsige? This second constraint has as purpose

-64-



to avoid that large elements take up all of theheasize. Thirdly is there enough space in the
cache? If the cache is full our eviction strategicts the Least Recently Used element. At the
end of the workflow, the cache element gets a tiameg to know when it was last used.

Before checking the constraints, the optimizati@moving cached elements that are too long
unused, of the LRU algorithm is performed. Thessments are evicted from the cache in order
to free up the cache space.

Femove aged
elements

et
<= Maximum
el siges no

¥ L
4]

l

Add element to Remove last
cachs element
L 4

Add timestamp

;

Workflow 5: Adding an element to the cache (L RU)

6.2.2 Updating an element from the cache

The following workflow shows the process of updgtancache element. This process checks the
same three constraints as in the process of addimement to the cache. Does the cache contain
the element already? Is the element size smakber oh equal to the maximum element size? Will
the maximum cache size be exceeded by updatinggitiee element? The optimization, evicting
the aged elements of the cache, of LRU again haplpeiore checking the three constraints.

It is possible that during the eviction of the agdedment or least recently used elements, the
element to update is removed from the cache. Ihdase, the element will not be (re)added to

-65



the cache, since in our setting the get and addhtpe are the operations which determine which
element is least recently used and thus which elest®uld be evicted from the cache.

yES

elam
alemeant o
update

Update element in
cache

Remove last
alemeant

L A

Remove from
cacha

S —

Femove
timestamp

:

Workflow 6: Updating an element from the cache (LRU)

6.2.3 Retrieving an element from the cache

Workflow 7 shows the process for retrieving a sp@ealement from the cache. During this
process the aged elements are not removed froncatiee, since the cache content does not
change and it is thus not necessary to free upesppathe cache. The timestamp of the cache
element however gets updated since this is negesdetermine what elements are aged.



yes

Return nothing
Ask cache for

value

; £

Update timestamp

Return
cacheElement

Jg

Workflow 7: Getting an element from the cache (L RU)

-67-



Chapter 7 Implementation

Previously the Environment Model has been stored fadly materialized view; in other words,
all of the data (i.e., encountered data sources)keat locally. This thesis investigated how the
Environment Model can be constructed and managed gféiciently, therefore two mechanisms
are developed: 1) a mechanism responsible for aiaing the source index information, called
Source Index Strategy, and 2) a caching mecharmsoptimize the query solving and to reduce
the amount of information that needs to be dowrddadvhen queries are posed to the
Environment Model.

This chapter explains the concrete implementatiahase mechanisms in detail, while, Chapter
5 and Chapter 6 discussed the design. First dfi@lbverall implementation is described (section
7.1). It explains which components are necessagchioeve our purpose, their specific function
and the interaction between them. The latter sestadl discuss a particular component in detalil.
Section 7.2 and 7.3 discuss management of the dmagnt Model, using caches and source
index strategies. Section 7.4 discusses the diffes@urce index strategies that were used to keep
track of online sources, and which information timres about them. Section 7.5 discusses caches
and their working, applied to our specific settiSgction 7.6 discusses the caching strategies we
applied in this dissertation. The final section/f7gives an overview of the design patterns that
were used during the implementation.

7.1 Implementation Overview

The Chapter 4 explained how the two developed mmesims, Source Index Strategy and Cache
Strategy, fit into the SCOUT framework. This fistction provides a similar overview but this
time by showing the implementation details.

7.1.1 Accessing the Environment Model

Figure 10 shows a similar overview as Figure 7 thig time the implemented components are
mentioned instead of the conceptual componentsur&ifjl shows the concrete class diagram of
the components, while Figure 12 shows the sequdiageam illustrating what happens when the
Environment Model is accessed.

Figure 7 showed that the mobile application aceeste context and environment via the
Environment Model, which is managed by the EnvirentManager. The Environment Manager
delegates the task of actually maintaining the ent@yed sources (i.e., the Source Index Model
and Cache) to the Environment Access, while theirBninent Manager forms and queries the
actual Environment Model by accessing the Relatitamager, responsible for maintain the
Relation Model, the Entity Manager, responsible fioaintaining the Entity Model and the
Environment Access.

-68-



The Environment Access uses a cache strategy tievetall the relevant information for a
specific query, either stored locally or not. Thecle strategy uses the cache component to
actually store the information. This component datees which of the information, called cache
elements, it stores according to a specific evicsiategy (in our case Least Recenlty Used). The
cache strategy uses also the source index strateggonsible for maintain the Source Index
Model, to determine the relevant sources, so tkakriows what information he must retrieve
from the cache.

Mobile
application

Accesses /
Queri

-/
. 1 Environment | | Relation
A7 EGEGET | Manager 1 Manager

1

Environment
Access

Know what is in Store the sources
the sources

Determine

relevant sources
Source Index

Strategy

Cache Strategy

Used to store the ‘ ‘
sources

Cache

Figure 10: Accessing the Environment M odel



<<Interface>> <<Interface>> <<Intesfac e>>
SourcelndexStrategy CacheStrategy Cache
+getSource s(query : Query) : List +getD, ry : Query) : RafGraph +containsikey : Sting) : boolean
+addTo ScurcelndextMode{URI : String, model : : void (URI: String, rdf : RefGraph) : void cache  |*uetikey : Siring) . CacheElement
- ) : Set

1" |+addiey . String, data : CacheElement) : boolean
vupdate(hey : String, data: CacheEkment): void

1
-cacheSirategy

ourcelndexStraegy

[
leaysess

1 contains
EnvironmentAccess !
EnvironmentManager X
- € ot - " 1) . << IMestac e>>
: ‘ d 1ager = Settir g ategy : CachzStrategy CacheElement
etz B 1o et Stance FEminnmentAccess0 | (scoutzenv:cache:elenents) |
— +newSource(URI : String) : void +getSize(): bng
Fgetinstancel) : Environm ent snager +getData(guery : Query) : RdfGraph +getValue(): Obkct
r ] envArcess
~query(query : Query) : JueryResult ]
-update/obsarvable | Observable, objed : Objed) : vok
Figure 11: Class diagram, accessing Environment M odel
Client EnvironmentManager. env EnvironmentAccess envicc SourcelndexStrategy: CacheStrategy: cacheStrat RdfGraph: graph
sourceStrat
| 1: guery(Query gry) | | | | |
! . ..4'- 2 getData(Query gry) I I I I
T 3 getD%ta(Query gry) I I
T ’ 3 |
I a getRelevantSources{Query gry] I
|
& return relSources |
______________ |
|
B2 newy) I
7 add relevant info
8: return graph |
9 return graph ":—. ____________________________

10: add fpelation Model

f————

f t f P
| 11: addlEntity Model |
| | | >
I T I
12 executeQuery(Query gry)
Lo
13 return QueryR esutts
14: return QueryR esultg 155 s L
—————————— |
T T | | | I

Figure 12: Sequence diagram accessing Environment M odel

The last paragraph of this section gives some iaddit motivation for dividing cerin

functionality across several components. Firstly, diving the Environment Access t
responsibility to maintain the encountered sourdhere is a looser coupling between

Environment Manager and the cache and source irsietegy that is beingsed. The
Environment Access initializes the appropriate eaahd source index strategy and keeps 1
up to date. It allows the Environment Manager tty aleal with the merging and querying of
different information (i.e., Relati-, Entity Model andencountered data sources). Secondly
source index strategy is captured in a separatep@oemt to provide the flexibility to easi
change the used strategy and to be able to reasmathe logic to determine the relevant sou
across several cacheategies. Thirdly the determination of what typeetdments are stored

70



the cache and the eviction strategy are separatedhie CacheStrategy and cache components.
This to provide a looser coupling between the temponents, it allows us to easily change the
eviction strategy without the need to adjust theheastrategy which determines what kind of
information is stored in the cache and to reuspegific eviction strategy in while not having to
deal with the details of the different type of etaits that are stored in the cache.

7.1.2 Encountering new sources

From section 4.2 we know that the context and enwrent of our user changes frequently, at all
times newly data sources are encountered and tneréie Environment Model has to be
updated whenever a new data sources is encountégpelting the Environment Model means
updating the cache, the Source Index Model andRslation Model. This section explains in

implementation details what happens when a newceasrencountered.

The SCOUT component that monitors and stores whe(neav) source is nearby (i.e.,

encountered) or no longer nearby is the Relatiomddar. This component can notify other
components like the Environment Manager wheneweetivironment of the entity has changed.
The Observer pattern is used to allow the notificatof various components and allows
determining at runtime which components need tadidied see 7.7 for more details about the
implementation of the pattern.

The Environment Manager thus receives a notificattd the Relation Manager whenever
something has changed in the environment. The &mwient Manager only notifies the
Environment Access when a new source is nearlgypes not notify Environment Access of any
other change (e.g., an entity is no longer nearby).

The Environment Access firstly downloads the RDiBrimation at the URI location given by the
newly encountered source, secondly it constructfRBfr Graph containing the downloaded
information, thirdly it updates the Source Indexdéd via the Source Index Strategy, and finally
it offers the newly encountered source to the C&thategy. All these actions are illustrated as a
sequence diagram in Figure 13.

-71-



RelationM anager: relMan EnvironmertManager. enviian EnviranmentAccess: envAcc RdfGraph: graph SourcelndexStrategy:sourceStrat | CacheStrateqy: cacheStrat

T I T
| | |
| 1: update) | |

|

2 newSource(String URI)

3 downloadURI{String URI)

4 newl) }

5 setGueryString (String grySting)
T

I
: B: add ToSourcelndexdlodel(String URI | RdfGraph graph) .
| g
7: newSburce(String URI, RdfGraph gréph)

ef

I
|
|

I
T [

} | [add RDF infarmation of URI H
| i

Figure 13: Sequence diagram, encountering a new sour ce

7.2 Environment Manager

Mobile applications developers will be able to deped mobile applications that are aware of
their environment en the objects in it by using 8@OUT framework, which uses a model to
capture the entire context and environment of tlobila user, called the Environment Model.
This model is composed of the Relation -, Entityddband the encountered data sources. The
Environment Manager is responsible for providingess to this Environment Model by
resolving queries over this model. The Environmdanager itself is not responsible for actually
maintaining the Environment Model; therefore it siige Relation Manager, Entity Manager and
Environment Access. This section describes theemphtation of this specific component (see
Figure 11 for a detailed class diagram).

The state of the Environment Manager consistsrekthariables:

» SetMan (SettingsManager): instance which contdirth@specific settings.

* Instance (Environment Manager): the unique instaricke Environment Manager, since
only one Environment Model exists, the Single Paffeis used to ensure that only one
instance of the Environment Manager exists. Foremoformation on the used design
pattern see section 7.7 .

» EnvAccess (EnvironmentAccess): instance of the ilBnwent Access component which
is responsible for providing access and maintaitiregencountered data sources.

The Environment Manager has three methods:

» getlnstance: returns the unique instance of ther&mwent Manager

28 http://www.dofactory.com/Patterns/PatternSingleaspx

72



query: executes the specific query on the EnvirortnModel and returns the query
results. Therefore the Environment Manager asks Re&ation Manager, the Entity
Manager and the Environment Access for their intion, combines their information,
executes the query on it and returns the querytgesu

Update: via this method, the Environment Managemithat something its environment
has changed, a new entity is encountered, a estibo longer nearby ... When the
change in the environment is “encountered a nevty&nhe will notify the Environment
Access, which keeps the model about the encountiiedsources up to date.

7.3 Environment Access

The Environment Model, which captures the entine{jpus and current) environment of the

mobile user, is accessed via the Environment Mamageis component uses three other
components, i.e., Entity Manager, Relation Managel Environment Access, to maintain each a
part of the environment. The Entity Manager corgatl information, meta data, of the mobile

user himself, the Relation Manager maintains theeotl and past relations with other entities
while the Environment Access contains all the dewanprised from the other encountered

entities. This section explains the implementatetuils of the latter (see Figure 11 for a detailed

class diagram.

The Environment Access has two fields:

sourcelndexStrategy (SourcelndexStrategy): a glyateat is used to provide an accurate
view on what information (e.g., what predicatesyised in the encountered data sources.
This strategy can determine the relevant sourcesafparticular query by using this
accurate view.

CacheStrategy (CacheStrategy): a strategy resperfsibdeciding what information of
the encountered data sources is kept locally angrfwviding access to the encountered
sources. The Environment Access thus delegategatiie of providing access to the
encountered sources to the Cache Strategy component

The Environment has two methods:

NewSource: dictates the logic that is executed wdherew data source is encountered.
This means providing the URI of the encountereda dadurce and the actual source
content to the SourcelndexStrategy and CacheSyrateghat they can up data their view
on the encountered sources.

GetData: is responsible for constructing a combiffaF Graph of all encountered
relevant data sources. This happens by delegaskiggacache strategy for the relevant
information.



7.4 Source Index Model

A first step to optimize the access to the EnvirentrModel is to maintain a Source Index Model
that contains summary information telling us whatdkof information is used in a specific
source. This Model can be used to determine whidcheencountered data sources are relevant
for solving a given query. This allows us to nodenconsider all the encountered sources when
a query is posed to the Environment Model but ¢idyrelevant sources. Chapter 4 explained the
design details and the two developed strategiestc8ndexStrategyl, which contains for each
source the used predicates and their actual donamidsSourcelndexStrategy2, which contains
for each source the used predicates. This sectiplaias the implementation details of both the

strategies.

A SourcelndexStrategy is a strategy that maintaiBsurce Index Model. An interface is used to
represent the SourcelndexStrategy, to abstract what kind of information is actually stored in
the Source Index Model. Figure 14 shows the clésgram of SourcelndexStrategy and two of
its concrete implementations: SourcelndexStrategd SourcelndexStrategy?2.

The SourcelndexStrategy interface has two methods:

» GetSources: returns all the relevant sources fajivan query. This method firstly
analyses the query, extracts the relevant infoomadind constructs a SourcelndexQuery.
Secondly this SourcelndexQuery is posed to the cgobmdex Model, the results of this
query are all the relevant sources for the givesrgiu-or more details about the followed
workflow see sections 5.4, 5.5 and 7.4.3.

* AddToSourcelndexModel: is responsible for extragtihe source index information out
of the source and adding it to the Source Index @li¢gke section 5.3).

<<Interfac e>>
S rateqy
+getSource s{query © Query) : List
+addTo SourcelndexModefURI : String, model: RdfGrap...

2a

S a1 S ay2
-sourcelndexModel : MutableR dfG raph -sourcelndexModel : MutableR dfGraph
-addedSources : List -addedSources : List
+S ourcelnd exStrate gyl () +5 ourcelnd exStrate gy2()
+getSources{query : Gluery) : List +getSources{gquery : Gluery) : List
+addToSourcel ndexM odel(URI : String, model : RdfGrap...| |[+addTo SourcelndexM odel(URI : String, model : RdfGrap...

-generateld(String unigueString)

Figure 14: Class diagram Sour cel ndexStrategy

7.4.1 Source Index Strategy 1

The first concrete implementation is Sourcelndeat®tyyl, as explained in Chapter 5 this first
strategy maintains a Source Index Model that castaiformation about the used predicates and

74



their corresponding actual domain. This section larp the implementation details of
SourcelndexStrategyl.

The state of SourcelndexStrategyl consists owofields:

» SourcelndexModel (MutableRdfGraph): the RDF repneston of the
SourcelndexModel.

» addedSources (List): a list containing all the searcaptured by the Source Index Model,
this list allows us to avoid indexing the same seuwice.

Next to the two methods inherited of the Sourcek&imtegy, it provides one extra method:

» GeneratelD: this method generates a unique idtidements describing the predicate-
domain occurrence in a source. For more informatibg this identifier is necessary see
6.1.2.

7.4.2 Source Index Strategy 2

This section describes the implementation detdilSaurcelndexStrategy2, which contains a
Source Index Model containing information about tised predicates. For more details about the
design see sections 5.3.2 and 5.4.2.

The state of SourcelndexStrategy?2 consists owofields:

» SourcelndexModel (MutableRdfGraph): contains therSe Index Model represented as
an RDF Graph.

» addedSources (List): a list containing all the searof the Source Index Model, this
allows us to avoid indexing the same source twice.

7.4.3 Query Analysis

Workflow 1 showed the conceptual process of whaipkas when a Source Index Query is
constructed. This section describes the same wdmédsin terms of the implementation. Figure
15 show the sequence diagram of the first and skscstep of the workflow, i.e., constructing the
Abstract Syntax Tree and the SourcelndexQuerywéde Figure 16 represents the third step,
constructing the SourcelndexQuery from the SoudmtQueryTree.

The implementation of the first step, constructing Abstract Syntax Tree, is done by using the
SPARQLParser class of SPARQL Engine for J&véactions 1 to 3 on Figure 15).

29 http://sparqgl.sourceforge.net/



SourcelndexQueryTreeComposer is the componentishegsponsible for the control flow of
constructing the source index query.

In the second step, the AST formed by the SPARQisgrain step one is translated into a
SourcelndexQueryTree, an Abstract Syntax Tree septation of the corresponding Source
Index Query. The query is constructed in two stgbg® where clause is formed by the
QueryComposerVisitor, and the select clause bySiwercelndexQueryTreeComposer (action 9
in Figure 8). The reason for this two-phase corsisn process is the fact that the select
variables are not determined by the (original) gueself. In our case the purpose of the Source
index Query is selecting the relevant sources,ibother causes it could be something else. To
construct the where clause of the Source IndexQtiee Visitor pattern offered by the SPARQL
Engine API is used; QueryComposerVisitor implemetits interface SPARQLVisitor and
iterates over the AST (actions 5 to 8).

SourcelndexQueryTreeC om poser: treeComp SP ARQLParser Qluery: parsedCuery QueryComposer\isistor: gComplis SourcelndexQueryTree:
tree

I I I
| | |
J_ 1: parse(guery) I l

3: parsedGuery

o jAccept(yComphis)

.y ]

& vist(parssdQuery)

7: getRoot()

8 roct

é__ —

9: congtruct szlectVariables
10: newlroot, select'ariables)

|

Figure 15: Sequence diagram, constructing Sour cel ndexQueryTree

The final step constructs the actual source indeetyg(string) from the SourcelndexQueryTree.
This is done using a Visitor on the Sourcelndex@Ueze. Figure 16 shows the sequence
diagram of this process.



Client SourcelndexGuery: Sourcelndex@QueryTree\Visitor: Sourcelndex@QueryTree:

sCjUery tree\is sTree
T I T T
| 1 getQueryString() L | |
L | |
2: new() | i
P[J |
|
3 ac:ﬁpmreevisj |
| g
4: get QueryString() | [
|
. " |
I gueryString
6 gqueryString "-’E ___________ I
—————————— |
| |
| |
| |
| |
| |
| |
i i

Figure 16: Sequence diagram, constructing Sour cel ndexQuery

Although several concrete implementation choicesetzeen made, we do want to point out the
flexibility of our design. In the following paragshs, we shortly elaborate on this flexibility,
which allows to easily switch to an alternative ca@te implementations for most components.

A first observation to make is the fact that evitligerthe actual source index query is dependent
of the exact format of Source Index Model. We ttluk consideration into account by providing
an abstraction for source index query construct@urrently the source index model is stored as
an RDF Graph, but if we decide to store it as arL $@Qtabase at a later point in time, our
implementation should allow seamlessly “plug int@mponent that construct a source index
guery over this new Source Index model. Therefaee utilized the visitor pattern, materialized
as a SourcelndexQueryTreeVisistor: an interface ciwhican have different concrete
implementations. Depending on how the Source Indexel is built and accessed, a different
concrete implementation of the SourcelndexQuerWisestor interface allows to construct
appropriate source index query strings. In linehwiitis design choice, the Source Index Query is
an abstract class to allow different types of ege(e.g., SPARQL Query, SQL Query, ...). There
is a one-to-one mapping between the concrete ingi&tions of SourcelndexQueryTreeVisitors
and the subclasses of SourcelndexQuery. The SodeeDuery component is responsible for
initializing the appropriate SourcelndexQueryTresddr. In our particular setting, were the
Source Index Model is stored as an RDF Graph, tlource Index Query is a
SPARQLSourcelndexQuery and the SourcelndexQueryisestor is a
SPARQLSourcelndexQueryTreeVisistor.

The second level of abstraction is based on theretan content of the Source Index Model (i.e.,
the type of information). Depending on which informationstored in the Source Index Model,
different information needs to be extracted frone thuery (e.g., domain and predicate

-77-



information for SourcelndexStrategyl, only predecaafo for SourcelndexStrategy?2), and thus a
different source index query will be constructed.allow these variations in Source Indices, we
foresaw a SourcelndexQueryTreeComposer interfacath wcurrently two concrete
implementations: one for SourcelndexStrategyl am# dor SourcelndexStrategy2. The
SourcelndexQueryTreeComposer uses a QueryCompdsitor to go over the Abstract Syntax
Tree of the given query and extracts the relevanr& Index information. Depending on the
type of information that is stored in the Sourcdex Model, this component needs to extract
other kind of information. Therefore the QueryCommgyisitor is an interface with for each
SourcelndexStrategy a concrete implementation. Thencrete implementation of
SourcelndexStrategyl extracts the used predicates their domain, while the one of
SourcelndexStrategy2 only extracts the used presgicalhe Composer is responsible for
instantiating the appropriate Visitor.

7.5 Cache

This section covers the implementation of the cacbenponent, a component which is
responsible for storing the cache elements andiohecivhich of them it stores locally by a using

a specific eviction strategy. Firstly the abstr@eche interface is discussed; secondly the chosen
implementation is describe in a separate subsection

Cache is implemented as an interface, with culyelméls three implementations: CacheNone,
CacheAll and CacheLRU. CacheNone caches no infasmand is implemented to simulate the
behavior of an Environment Manager which does motesanything of the encountered data
sources locally; it will thus download all inforn@at every time it is needed. This may be
necessary for mobile devices with very limited atgr capacity. CacheAll makes it possible to
cache all of the discovered information, this cashienplemented for evaluation reason, as it is
unrealistic in a real world setting where storagpacity is limited and there is simply not enough
space to cache all the encountered data sourcasheCRU is a cache implementation with as
eviction strategy Least Recently Used as explainegction 6.2.

Figure 17 shows the class diagram of Cache anceteeant components. A cache stores certain
elements, called cache elements which are an abstqaresentation of the elements that can be
stored in the cache. In section 6.1 we discusdeat wind of information we will cache: the
entire encountered source, stored as an RDF Grapthe triples using a specific predicate,
stored as a list structure. Therefore we have tariete implementations of cache elements:
CacheElementRdfGrpah, which contains an RDF Graghis used in to cache entire sources
and CacheElementPredicate, which contains thestisicture containing the triples using a
specific predicate and is used to cache triplesaokpecific predicate. Every concrete
implementation of cache element provides access t@lue and its size (calculated in bytes).

-78



The Cache interface provides access to its caeimeegits via four operations:

Contains: indicates whether or not the cache costaicache element with the specific
key.

Get: returns the value for the particular key, ase of CacheElementRdfGraph the value
will be an RdfGraph while in case of CacheElemesdiRrate, the value will be a list of
TripleElements. A triple element is an abstractrespntation which contains information
about a triple using the predicate: it containsdhiject, subject type, object, object type
and source in which the triple occurs. See se@&itr? for more information.

Add: adds a cache element to the cache.

Update: changes the cache element of a particalatckthe new cache element.



cacheE lements

1 1
1 1
! 1 1 1 1
! 1 1 1 1

Figure 17: Cache Classdiagram

-80-



7.5.1 Least Recently Used

The previous paragraphs explained the implememtatietails of the Cache interface; the
following paragraphs discuss the implementatiorailetf CacheLRU, a cache implementation
with as eviction strategy Least Recently Used gdagxed in section 6.2. The cache elements
that are stored in CacheLRU are maintained in achea structure called LinkedMap, which is a
LinkedList and a Map at the same time. It has asefiethat it allows determining the first and
last element, and moving the elements of positio@(1) while the elements are key-value pairs.

CachelLRU has six fields:

cache (LinkedMap): a data structure to store tiohealements.

maxCacheSize (long): variable indicating what tfexiimum cache size is.
maxSizeCacheElement (long): variable indicatingrtfaximum size of a cache, which is
computed by dividing the maxCacheSize by the mimmmwmber of elements that should
be stored in the cache.

currentSize (long): the current size of the cache.

timeLastUsed (Map): a map containing a timestampliche cached elements indicating
when it was last requested, to allow us to detegmihat elements are unused for too long
and thus may be evicted from the cache.

maxAge (long): the maximum time in millisecondsttl@acache element may remain
unused in the cache.

CacheLRU has the following methods:

RemoveAgedElement: removes all the cache elembatsare unused for too long, in
other words, evicts all the elements that have edkee the maxAge. The cost of this
operation is O(n) since for all the elements in¢hehe, it needs to be checked whether or
not the element exceeded the maxAge. Optimizing #hgorithm is considered to be
future work.

RemovelastElement: removes the least recently caglte element, with as cost O(1).
Size: calculates the size of a cache element bgidering the size of the key (IRI) and
the cache element.

Add: adds a cache element to the cache, while demgt adss a timestamp for the
element to the map timelLastUsed as well. For matild about the algorithm see
section 6.2.3.

Update: is responsible for updating the cache efemFor more details about the
algorithm see section 6.2.2.

-81-



» Get: returns the corresponding cache element, metals about the algorithm can be
found in section 6.2.1.

7.6 Cache Strategy

This section covers the implementation details leé tache strategy component, which is
responsible for providing all the relevant inforioatfor a specific query, for maintaining a cache
to store the encountered information and for degdivhat type of information (i.e., entire
encountered source or triples using a specificipage)) is stored in the cache. Figure 18 shows a
class diagram of cache strategy and all the retes@nponents.

Cache Strategy is implemented as a Java interfgbecwrently two concrete implementations:
CacheStrategySource, which represents the cacheeganism where entire encountered sources
are cached, and CacheStrategyPredicate, whichsepsethe caching mechanism where triples
using a specific predicates are cached. Dependintpe used cache strategy, different types of
cache elements are stored in the cache, Cachefy®aigrce stores CacheElementRdfGraph
objects while CacheStrategyPredicate stores CaeheftitPredicate objects.

The interface, called CacheStrategy, has two ojpesat

» GetData: returns all relevant encountered RDF métdion (i.e., RDF triples) for a
particular query combined into one RdfGraph.

* NewSource: deals with newly encountered data seuf@ees information of the new
source needs to be added to the cache or not?

-82-



cache

<<USER>
contains

<<use>
cache contains

<<USE:>
cache contains

Figure 18: Class diagram CacheStrategy

-83-



7.6.1 Caching entire sources

The previous paragraphs explained the concreteeimmghtation details of the CacheStrategy
interface, the following paragraphs explain the lengentation details of CacheStrategySource a
concrete implementation of CacheStrategy. It maistaa cache where the cache elements
contain the full RDF graph of one particular souice, the cache granularity is an (encountered)
source. The RDF information of one specific sousamaintained in a CacheElementRdfGraph, a
concrete implementation of Cache Element that wssidsed in section 7.5.

The CacheStrategySource has two fields:

e Cache (Cache): a cache to store (some of) theeswurc
» SourcelndexStrategy (SourcelndexStrategy): a soundex strategy to determine the
relevant sources for a specific query (for moraiietsee section 7.3).

Notice that the cache strategy itself is not resgme for maintaining the source index strategy; it
only uses it to delegate the task of determinimgrétevant sources for a particular query.

Cache Strategy Source provides an implementatiotht two methods of the Cache Strategy
interface:

» GetData: retrieves all the information that is dgim be relevant to solve the particular
guery. For the details about the followed algorithee section 6.1.1.

* NewSource: performs the necessary actions wheewew source is encountered. In this
particular case, this method does not perform atigras as explained in section 6.1.1.

7.6.2 Caching triples using a specific predicate

The previous paragraphs explained the implememtadietails of CacheStrategySource. This
particular cache strategy stored the encounteracces entirely in the cache. As explained in
section 6.1.2, the second cache strategy stopdesnising a specific predicate in the cache. First
of all the global idea was given, followed by tlemplicating factors and finally the final variant.
This section only discusses the implementationilded& the final variant, since only this correct
variant is implemented.

This implementation consists of a cache where #uhe elements contain all the triples using a
specific predicate. It therefore used CacheElemedtfate, a subclass of the CacheElement,
which implements the generic CacheElement inter(aee section 7.5 for more details about the
cache element).

The CacheStrategyPredicate has two fields:



Cache (Cache): a cache to store (some of) theesurc
SourcelndexStrategy (SourcelndexStrategy): a soundex strategy to determine the
relevant sources for a specific query (for moraitkesee section 7.3).

Notice that the Cache Strategy itself is not resfima for maintaining the source index strategy;
it only uses it to delegate the task of determirihgrelevant sources for a particular query.

Cache Strategy Predicate provides an implementé&tiotne two methods of the Cache Strategy
interface:

GetData: retrieves all the information that is agimh be relevant to solve the particular
qguery. For details about the algorithm to determwiech information is relevant see
section 6.1.2.

NewSource: performs the necessary actions whemewew source is encountered. In this
particular case, this method updates the cachetlcptes with the triples of the newly
encountered source which use the specific predic&er more information see section
6.1.2.

Apart from these two methods, Cache Strategy Paezlibas nine other private methods each
responsible for a specific part of the workflow (kibow 4) shown in section 6.1.2:

ConstructDownloadAndCachelist: constructs two ligiee containing the cached and
another containing the uncached predicates releloarnthe query. (The last paragraph
provides some more information on this topic).

GetRelevantSources: retrieves the sources relef@mnthe uncached predicates by
consulting the Source Index Strategy. Firstly ingtoucts a query using each one of the
predicates. By constructing this query, we canthskSourcelndexStrategy to determine
the relevant sources in a similar as when detengitine relevant sources for a query
posed to the Environment Model.

ConstructGraphFromCachedPredicates: constructs BR Braph containing all the
cached triples, the triples using a blank node fanme of the relevant sources are not
included in this graph.

ConstructCacheElementPredicates: constructs an@Bph for each of the predicates by
downloading the relevant sources and extractingtribées that use one of the specific
predicates.

ConstructRdfGraph: construct an RDF Graph out @azheElementPredicate and the
corresponding predicate. The CacheElementPredalgéet contains information about
all the triples using the specific predicate. Thethmd constructs an RDF Graph that
contains all triples using the specific predicaiaf the CacheElementPredicate objects.

-85



ConstructTripleQuery: constructs a query that ¢eladl the triples using a non-cached
predicate or a cached predicates using a blank. riddelatter is necessary to be able to
ensure that the blank node has the appropriaté¢ifidéenSee 6.1.2 for more details.
GenerateldBlankNode: generates a unique id foblgek node.
RemoveBlanksFromSource: extracts all the triplethefCacheElementPredicate that do
not use a blank node from a relevant source. Thigthod returns a
CacheElementPredicate.

ConstructRdfGraphWithoutBlanksRelevantSource: érfethod that constructs an RDF
Graph for the CacheElementPredicate that excludéseariples using a blank node from
a relevant source. The difference with the previmeshod is that this method returns an
RDF Graph while the previous one returned a Cadme&htPredicate.

Section 6.1.2 explained the concept of the cachingiples using specific predicates. The first

step in Workflow 4 is to construct a predicate, lesfist of all the predicates that are used in the
guery. The constructing of this predicate list fieied as a remote service since currently the
used APl (SPARQL Engine for Java) is not availadbleJava ME. Figure 19 shows the class
diagram of the involved components; Figure 20 shitthvessequence diagram for constructing the
predicate list of a query. The main component ésRhedicateSetComposer, which interacts with
the client (i.e., the SCOUT framework running omabile devices), and uses SPARQLParser
for building the Abstract Syntax Tree (AST) fron58ARQL query. After composing the AST,

the PredicateQueryVisitor is used to extract tredjmates from the AST and collect them in a

SPARQLParser
+parse(parameter : Reader) | Query

+parse(parameter : InputStream) : Query

<< USEEE
build AST .5

-
-
-

PredicateSetComposer
(scout::env:: cache: strategy)

-guery . Guery
-predicates . Set=String=

+P redicateSetC om poser(guery : Gluery)
+getPredicateSet]) | Set=String=

<<Interfac e>>
SPARGL Parserlfis itor
+vistiparameter: ASTTripkSet) : void

A

Predicate QueryVisitor
(scout:env: cache: strategy)

builel predicate Set

-pre dicates | Set=String=

+P re dicateQueryVisiton)
+getPredicates() | Set<String=

-pre dicateT of xdude(predicate © String): boolean

+visit{node : AST Triple Set) : void

Figure 19: Class diagram PredicateSet Composer




Client PredicateSetComposer: SPARGQLParser Query: parsedQuery PredicateC ueryVisitor:
pSetComp pRlueryvis
I ]

I

I 1. new{Query. query) I I
‘D |

|

2: getPredicateSetg J|_ I

|

|

|

3 parselguery)

5 parseduery

|
|
& new() l
|
|

"
-

.—;'__: __________

1

T

|

|

| |
I I

L 10: predicate Set JI

11: predicate Set e — T T

| |

| |

| |

| |

Figure 20: Sequence diagram Construct predicate set

7.7 Used Design Patterns

This last section of the implementation chapter mamnzes the design patterns that were used to
develop the efficient query mechanism for the Emwnent Model. The design patterns
themselves are not explained (we refer to [26]dketails on the design patterns that were used);
however, the reason for choosing the particulargdegatterns is explained here. We used five
design patterns in our work: singleton, observegtasgy, composite and visitor. The following
paragraphs each explain one design pattern.

The Singleton Pattern is used for the Environmerdndfjer class. As there is only one
Environment Model to manage, there should only e wnique instance and thus the singleton
pattern is a logical choice here to provide onglsimstance (and point of access).

The Observer Pattern is used between the Relatenmaljer class and the Environment Manager
class. The Relation Manager should notify its deleeits whenever its state changes, the Relation
Manager plays the role of Observable and the Enmient Manager the one of Observer. Figure
21: Class diagram Observer Pattern, Relation Managd Environment ManagerFigure 21
shows the class diagram of the involved components.

-87-



Observable
(scout:: utils)

-changed : boolean

|-observers : Vedor
[+Observable()

FaddCbserver(o: Observer) : void
#clearChanged() : void

=2uses>

FoountObservers(): int < 777777 observes | <<Interface>>
[+clelsteObserver(observer : Observer) : voaid Observer

+deleteObservers() :void [T TTTTT7 Py (scout:: utils)

rthasChanged() : boclean notifies  |tupdatefobse ivable | Observable, object | Olyect) : void
lnotifyObservers() : woid

FnotifyObservers{objed : Object): void A

+notifyObservers{objed : Object, setChanged : boolean) : void
#setChanged() : void

i
i
i
i
i
I
! -instance
|

RelationMana ger Envir
(scout::env:relation) #sethan : SettingsManager = SettingsManager getinstan ce()
Hogger: Logger = Logger. getLogger() -instance : EnvironmentManager
-relationMode| | MutableRdiGraph -enviccess : EnvironmentAccess 1
pinstance : Relationfanager +getinstance() : EnvironmentManager
raetinstance() : Relationkanager REnvironm entManager)
|RelstionMapageny | >+quew(qusry. Query) : QueryResult
[+addRelati on{detectEvent : DetectedEntityEvent): void =<usz== " +update(observable | Observable, object . Objed) : void
FHnvali WdetectEvent : D nttyEvent) : void notifies

[+isRelationValid{URL : String): boolean

rouery(query : Query) : QueryResult

[+a et odel AsString(format ; int) : String

rraetGraph() : RdfGraph

L¢l ement{event : D rtityE vert) :
-getisNearbyStatement(URL : String): RdfStatement
-getWashearbyStatement(event | DetectedE rtityEvent) : RefState ment

FgetNearbyFr t(event : D rtityE vent): RdfStatement
-getNearbylUntil event : D rtityE vent)

-instance

Figure 21: Classdiagram Observer Pattern, Relation M anager and Environment M anager

The Strategy Pattern is used two times. A firstetih is used to encapsulate the type of
information that is stored in the cache (the Catla&yy class). Currently, there are two
CacheStrategies, which are easily interchangeal#dalthe use of the Strategy pattern. Another
benefit is that the CacheStrategy can change &tmenThe second use of the Strategy Pattern is
materializes in the context of the Cache. Hers dleéployed to encapsulate the algorithm which
determines what elements can stay in the cachevhiuth cannot, in other words, to encapsulate
the eviction strategy. Again, the benefit is tHa eviction strategy can change at runtime, and
additionally the complex eviction algorithm is rextposed to the clients (CacheStrategy) using it.
Currently there are three concrete Cache implertienta(CacheAll, CacheNone, CacheLRU).
Other eviction strategy can be implemented andyeadded to the system. Figure 18 show the
class diagram of the involved components.

The composite pattern is used to represent theeWhee of a SourcelndexQuery. It composes
the objects into a tree-like structure and allowmponents to have none, one or more children
while still addressing the components in a simiay. By using the composite pattern to form a
tree structure, any operations on this tree stractue easily implemented using the Visitor
Pattern. The class diagram is shown in Figure 22.



<<lnterfac e>>
Q ueryTreel ode ToVisit

<<Interface>>
SourceindexQueryTreeVisitor

+acceplimai\isitor: Sourceindexuery TreeVisitor) ; void

A

|
<<Interface>>
‘Wherell ode

+addChid(node - Where Node) - void
+getChildeng : Set<Where Nodes
+equals(obict - Object) : bookan
+hashCode() ; int

+toStrisg() : String

+visk(tree ; SourcelndexQuery Tree)  void:
+visk(node : Composte WhereNode) : void
+vist{node ; Where Trpie Node) ; void
+visi{node - UnibhNode) : void

3 A children
s 1 %
- H n
! children !
' %
| \

[y

SPARQL: yTreeVisitor

~gueryString ; StringBuffer

+SFAHGLSnmcelnqeruewTrw\}is'rtw()
+getQueryStrina() | String

+visititres | SourcelndexQueryTree) : void
+visitinode | CompositeVWhereMode) : void
+visitinode . WhereT ipleNode) . vaid

[+visitinode | UnionNode): void

+getSubjedi() : String:
+setSubject(subjed : String) ; void
+getPredicate() | Siting.
+setPredicate (predicate | String) . void
+getOhject() | String
+setObject(object : String) . void
+toString() : String

+addChild{node : WhereNode) : void
+getChildren() : Set=WhereMode>
+equals{object : Object) | boolean
+hashCoded) . int

+¥hereTripleNode(subject : Sting, predicate : St_lfing...
+setSubjectPredicateChject(subject : String, predicat...

wher il C
~subject : String |-children : Set<\Wherehlades> -children : S eteWhereNode=
-predicate : String [+Uniontode() [+Com pesiteWheretode()
-object : String [+*UnionNode(child] ; WhereNode, child? : WhereNods) +getChiden() ; Set<iWherehode>
+WhereTripleNode() +acceptim gtVisitor: SourcelndexQueryTreeVisitor) : void +oString() : String

I+to String() : String

+addChildinode : Wherelede) : void
FaetChildreng : Set<WhereNode>
+equals{object ; Object) - boolean

+acoeptim gtVisitor: SourcelndexQueryTreevisitor): .|

+equals{object : Object) : boolzan
+acceptim otVisitor : SourcelndexQueryTreebisit...
FaddChild{node : WhereNode) : void

Figure 22: Class diagram Composite and Visitor s pattern

The final pattern, which is used throughout thelangentation, is the Visitor pattern. It is used to
construct a predicate list of a query with helpgled SPARQL Engine; to construct a whereTree
out of the Abstract Syntax Tree; and finally, tonswuct a query string out of a

SourcelndexQueryTree (shown in Figure 22). In ezade, the Visitor pattern is used to perform

an operation on elements of an object structure.



Chapter 8 Evaluation

Until now, the Environment Model, a Model which gomnses metadata on physical entities
found nearby the user and the user's own profifermation, has been stored as a fully
materialized view; in other words, all of the déta., encountered data sources) is kept locally.

This thesis investigated how the Environment Mockeh be constructed and managed more
efficiently. To fulfill this purpose, we have invegated several ways of storing source index
information on encountered data sources to be tabtietermine which sources contain relevant
information for a given query. Secondly, we havedleped several caching strategies where
some data from encountered sources is kept lo¢allyoid having to download relevant sources
(as identified by one of the strategies mentionledva) every time they are needed to solve a
guery posed to the Environment Model.

This chapter is dedicated to the evaluation andofpaf concept of the two developed
mechanisms. The first section describes the testrcamment, followed by two sections
discussing an evaluating the test results of thesldped source index strategies and cache
strategies, respectively.

8.1 Testing environment

The test environment consists of a client part, tlee SCOUT framework, and a server part,
which is deployed on a pc and responsible for w@sglqueries and forming Source Index
Queries. The client is run on the Sun Java™ Wiselemolkit for CLDC emulator via Netbeans
IDE 6.8 on a HP Compaq 6710b laptop, which hasnéel ® Core™ 2 Duo CPU T9300 2.50
Ghz processor, 4GB RAM and Windows 7 64-bit versi@noperation system. The server is
deployed on a Tomcat v6.0 server on the same lajpdeglly, the client would have run on a
mobile device; however, the measurement of execuiines was much less time consuming
using a simulator.

Every test case is executed 100 times spread evera days. All the results mentioned in this
chapter are the average of those 100 runs. Thsiseages use fifty RDF sources spread over four
servers. The distribution for the source indextstgg is 12 sources on wilma.vub.ac.be, 13 on
clinicadentalnadal.com, 13 on belgischebieren.ed 42 on vwoensel.com. For the cache
strategy it is slightly different 11 sources onma.vub.ac.be, 13 on pvanwoenssel.be, 13 on
clinicadentalnadal.com and 13 on belgischebieren.€be domains vwoensel.com en
pvanwoensel.be are deployed on the same server.



8.2 Source Index Strategy

This section evaluates two strategies (called soumdex strategies) which we have developed to
store summary information on encountered data ssurca so-called Source Index Model. This
evaluation takes into account the following créeriime needed to construct the Source Index
Model; size of the Source Index Model; executionetiof queries on the Source Index Model
(i.e., time needed to determine relevant sourcesjiber of relevant sources found in the Source
Index Model for a given query; and time needed xecate the original query on the found

relevant sources. The first section provides detait the employed test cases, followed by
sections evaluating the strategies with regardshéeocriteria above. The last section provides
conclusions that can be drawn from the evaluatidhestrategies.

In our first strategy, SourcelndexStrategyl, infation on the predicates and their domains
found in encountered data sources is kept in thaircgo Index Model, while in
SourcelndexStrategy2 only information on the praidis is kept. In addition, we consider a
worst-case strategy where no summary informatickef# (i.e., all data sources are considered
relevant) called SourcelndexStrategyNone, and &das® strategy where perfect source index
information is available on each data source (aBly data sources that are actually relevant are
included), called SourcelndexStrategyBest. Theedattvo are thus hypothetical strategies,
employed to compare the two developed strategiestst- and best-case scenarios.

8.2.1 The test cases

In order to evaluate the source index strategmerstest cases are used, numbered from 1 to 7.
The same seven test cases are employed for thea@eal of each of the aforementioned criteria.
Test cases 1 to 4 have a Source Index Model camgasource index information on one data
source, test 5 has a Source Index Model summariziagsimilar data sources (actually, the
sources from test case 1 and 2), test 6 has aimgtaource index information on two similar
sources (again, the sources from test case 1 amaddXwo very different files (actually, the from
test case 3 and 4) and finally test 7 has a Mageihsarizing 50 files, some of which are similar
and some not.

The test cases for the first two evaluation critérie., Source Index Model construction time and
size) involve constructing the Source Index Moé#ek. the first criterion, the time in milliseconds

necessary to form the Source Index Model is medswhile for the second criterion the size of
the constructed model in bytes is measured. Natiethiese criteria are not relevant for the worst-
and best-case strategy mentioned before, as thrasegges do not involve constructing a Source
Index Model.

The tests for the third and fourth test criteri@.(ithe time necessary to determine the relevant
sources, and the number of relevant sources foumblve querying the constructed Source

-91-



Index Models for the relevant sources given a aedqaery, and measuring the query execution
time (in ms) and the number of sources considezvant. Three given queries are considered:
one with a low complexity, one with medium comptgxiand one with high complexity. A low
complexity query is a basic query consisting of twple patterns. A medium complexity query
is composed of five to six triple patterns. A queontaining unions, filter clauses and a total of
ten to twelve triple patterns is considered to degh complexity query. For more information
about the used queries, see section 8.2.1.1. Agate, that for the third criterion, the best- and
worst-case strategy are irrelevant, as in the foroase the relevant sources are determined
manually, and in the latter case no selection lefvent sources takes place.

The test for the sixth and last criterion (i.emei necessary to execute the original query on the
relevant sources) executes the given queries (asedeabove) over the relevant sources obtained
from the previous tests, and measures the queugga time.

8.2.1.1 Test queries

This subsection describes the “given” queries #natused in the test cases for the last three test
criteria. As mentioned above, the complexity of theeries varies from low to high; this allows
us to see how much influence the query complexay dn the time necessary to determine the
relevant sources. For each query the goal, contglarid numbers of tests in which the query is
used is mentioned.

This first query has a low complexity, and selehestitle of a music record. It is used in tests 1,
2,5 and 6.

PREFIX mo: <http://purl.org/ontology/mo/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT 2title
WHERE
{
?r a mo:Record .
?r dc:title ?title .

}

SPARQL query 12: L ow complexity for tests 1, 2, 5and 6

The following query is used for tests 1, 5 and 6 has a medium complexity. It lists the titles of
the records and tracks of the group ‘Absynthe Mihde

PREFIX mo: <http://purl.org/ontology/mo/>
PREFIX foaf: <http://xmins.com/foaf/spec/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?record ?track
WHERE
{

?g a mo:MusicGroup .

?g foaf:name 'Absynthe Minded' .

-92-



?r a mo:Record .

?r dc:creator ?g .
?r dc:title ?record .
?r mo:has_track ?t.
?tamo:Track .

?t dc:title ?track .

}

SPARQL query 13: Medium complexity query for tests 1, 5and 6

The next query is a variation of the previous ahés time the records and tracks of the group
‘Florence And The Machine’ are listed. This quesy used for test 2 and has a medium
complexity.

PREFIX mo: <http://purl.org/ontology/mo/>
PREFIX foaf: <http://xmins.com/foaf/spec/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?record ?track
WHERE
{
?g a mo:MusicGroup .

?g foaf:name 'Florence And The Machine'.

?r a mo:Record .

?r dc:creator ?g .

?r dc:title ?record .

?r mo:has_track ?t.

?tamo:Track .

?t dc:title ?track .

}

SPARQL query 14: Medium complexity query for test 2

This query lists the names of the music groupsistawith ‘a’ or ‘b’ ('a’ and ‘b’ are case
insensitive), along with their record and trackesit The listing is ordered ascending first by
name, then by record title and finally by tracletitit is used for tests 1, 2, 5 and 6 and hagh hi
complexity.

PREFIX mo: <http://purl.org/ontology/mo/>
PREFIX foaf: <http://xmIns.com/foaf/spec/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?name ?record ?track

WHERE

{
{

?g a mo:MusicGroup .
?g foaf:name ?name .
?r a mo:Record .
?r dc:creator ?g .
?r dc:title ?record .
?r mo:has_track ?t.
?tamo:Track .
?t dc:title ?track .
FILTER(regex(str(?name) ,"a’, 'i"))




UNION

{
?g a mo:MusicGroup .
?g foaf:name ?name .
?r a mo:Record .
?r dc:creator ?g .
?r dc:title ?record .
?r mo:has_track ?t.
?tamo:Track .
?t dc:title ?track .
FILTER(regex(str(?name) ,"b', 'i"))

}
}

ORDER BY ?name ?record ?track

SPARQL query 15: High complexity query for tests1, 2, 5and 6

The next query is a low complexity query used &stt3 that lists all the University labs along

with the employees and their function.

PREFIX region: <http://wise.vub.ac.be/region/>
SELECT ?I ?w ?function
WHERE
{
?l a region:University-Lab .
?w region:works-in-unit ?I .
?w a ?function .

}

SPARQL query 16: L ow complexity query for test 3

In the medium complexity query below, the departtsealong with their labs, the labs
employees and their function are listed. As anaegtmdition, the employee must be a PhD. This

query is used for test 3.

PREFIX region: <http://wise.vub.ac.be/region/>
SELECT ?d ?I ?w ?function
WHERE
{
?d a region:University-Department .
?d region:has-academic-unit ?I .
?l a region:University-Lab .
?w region:works-in-unit ?I .
?w a ?function .
?w region:has-academic-degree <http://www.aktors .org/ontology/portal#PhD> .

}

SPARQL query 17: Medium complexity query for test 3

This high complexity query is a query that liste #hD employees along with their function, but
only those that work for the lab ‘http://wise.vuhlze’ and ‘http://soft.vub.ac.be’ are shown. This

guery is used for test 3.

| PREFIX region: <http://wise.vub.ac.be/region/>




SELECT ?I ?w ?function
WHERE
{
{
?d a region:University-Department .
?d region:has-academic-unit ?I .
?l a region:University-Lab .
?w region:works-in-unit ?I .
?w a ?function .
?w region:has-academic-degree <http://www.aktors. org/ontology/portal#PhD> .
FILTER(str(?l) = 'http://wise.vub.ac.be/")

}
UNION
{
?d a region:University-Department .
?d region:has-academic-unit ?I .
?1 a region:University-Lab .
?w region:works-in-unit ?! .
?w a ?function .
?w region:has-academic-degree <http://www.aktors. org/ontology/portal#PhD> .
FILTER(str(?l) = 'http://soft.vub.ac.be/")
}
}

SPARQL query 18: High complexity query for test 3

Query number 8 selects all the names and birthdegsa low complexity and it is used for tests
4 and 7.

PREFIX foaf: <http://xmIns.com/foaf/spec/>
PREFIX  dc: <http://purl.org/dc/terms/>
SELECT ?name ?day
WHERE
{

?a dc:title ?name .

?a foaf:birthday ?day .

}

SPARQL query 19: Low complexity query for tests4 and 7

Next to the name and birthday, the following quaigo selects the interests of the person. As an
extra condition, the person must have as gendee’mehis medium complexity query is used
for tests 4 and 7.

PREFIX foaf: <http://xmins.com/foaf/spec/>
PREFIX dc: <http://purl.org/dc/terms/>
SELECT ?name ?day ?interest

WHERE
{
?p1 dc:title ?name .
?p1 foaf:birthday ?day .
?p1 foaf:gender 'male’ .

?pl foaf:interest ?bl .
?b1 foaf:topic ?interest .

}




SPARQL query 20: M edium complexity query for tests4 and 7

This last high complexity query selects the namehdeay, gender and interest of the persons
with as gender ‘male’ or ‘female’. The query resudre ordered ascending by name. This query
is used for tests 4 and 7

PREFIX foaf: <http://xmIns.com/foaf/spec/>
PREFIX dc: <http://purl.org/dc/terms/>
SELECT ?name ?day ?gender ?interest
WHERE
{

{

?p1 dc:title ?name .
?p1 foaf:birthday ?day .
?pl foaf:gender ?gender .
?p1 foaf:interest ?bl .
?b1 foaf:topic ?interest .
FILTER
(
str(?gender) = 'male’
)
}
UNION
{
?p1 dc:title ?name .
?p1l foaf:birthday ?day .
?p1 foaf:gender ?gender .
?pl foaf:interest ?bl .
?b1 foaf:topic ?interest .
FILTER
(
str(?gender) = female’
)
}

}
ORDER BY ?name

SPARQL query 21: High complexity query for tests4 and 7

8.2.2 Criterion 1: Construction Time

This section compares SourcelndexStrategyl andc8maexStrategy2, based on the time
needed to extract the source index information ftbensources and construct the Source Index
Model. Chart 1 shows the test results for the segehcases. As mentioned in the introduction,
the Source Index Model contains one file for tdsts two files for test 5, four files for test 6can
fifty files for test 7. These tests were not exedufor the best- and worst case strategies, as thes
do not involve constructing Source Index Modelseiid for the following 2 criteria). The
horizontal axis represents the test number, whigevertical axis represents the time necessary to
construct the Source Index Model in milliseconds.



Constructiontime Source Index
Model

25000

20000

15000

M SourcelndexStrategyl

Time in millisec

10000
M SourcelndexStrategy2

5000

Test number

Chart 1: Construction time Sour ce Index Model

For all seven tests, SourcelndexStrategy2 constrtioe Source Index Model faster than
SourcelndexStrategyl, the difference is in mostsaglite large, for test 7 SourcelndexStrategyl
needs two to three times more time than SourceBategy2. This was expected, since
SourcelndexStrategyl keeps more source index imfitom about the encountered data sources
than SourcelndexStrategy?2; as a result, more irdbom must be extracted from the sources and
stored in the Model.

8.2.3 Criterion 2: Size

This second criterion measures the size of thecedmdex Model for SourcelndexStrategyl and
SourcelndexStrategy2. The size is measured in lfjfiesSource Index Model is stored in N-
Triple format). Chart 2 shows the test result fog seven test cases in the form of a bar diagram.
The horizontal axis shows the test number, whigevirtical axis represents the size in bytes.

-97-



Size Source Index Model

350000

300000

250000

200000

150000 M SourcelndexStrategyl

Size in bytes

100000 B SourcelndexStrategy2
50000 L

1 2 3 4 5 6 7

Test number

Chart 2: Size Source Index M oddl

When comparing SourcelndexStrategyl and Source8tdebegy2, we can conclude that the
Source Index Model of SourcelndexStrategyl is asMayger than the Source Index Model of
SourcelndexStrategy2. This was expected since ShaexStrategyl maintains more source
index information; it also includes the used dommathan SourcelndexStrategy2. The difference
is actually very big, for more explanation why thiference is so large see Chapter 5.

The Source Index Model of test 6 contains the sourdex information on four encountered data
sources, while the Source Index Models of test 14teespectively contain source index
information on one of the four encountered soufoms test 6. Table 1 shows us that the Source
Index Model for the four encountered data sourcetest 6 is smaller than the Source Index
Models of the individual encountered data sourtest (L to 4) combined. This is expected, as
both of the source index strategies try to reusenash source index information as possible
(sections 5.3.1 and 5.3.2). For instance, congiglerfiles using the propertyoatname ” and a
Source Index Model, formed by SourcelndexStrategyfich already contains the source index
information on one of these files. When addingghemary information of the second file to this
Source Index Model, summary information stating tharname ” is a property will not be added
again (of course, the fact that the second filesubes property will still be added). The same
observation can be made for test 5.

We can therefore conclude that an increase in aiityil between the data sources leads to an
increase in reuse of source index information, tnedlefore to a smaller Source Index Model.
This conclusion is valid for SourcelndexStrateggMell as for SourcelndexStrategy?2.



nr SourcelndexStrategyl SourcelndexStrategy2

1 24894 7198
2 23398 6764
3 43492 9292
4 15878 9942
5 32478 11052
6 91556 29994
7 286206 139118

Table 1: Size Source Index M odels

8.2.4 Criterion 3: Time needed to find the relevant sources

This section evaluates the source index stratdgieletermine the amount of time necessary to
find the relevant sources for a query. For eacthefseven test cases, a Source Index Model was
constructed, and the three corresponding aforeoredi queries (see sections 8.2.1.1) were
analyzed to determine the relevant sources. Chsinb@ss the results for the seven test cases: for
each test case, the relevant sources for a lowvg}esedium (test b) and high (test ¢) complexity
query were retrieved. The horizontal axis shows té®t number (together with the query
number), while the vertical axis represents thet{m ms) necessary to find the relevant sources.
Chart 4 shows the same results but only for this #e$o 6.

Time to find the relevant sources

3000

2500 r»‘4
2000

[S]

£ 1500

‘v 1000 I ==>SourcelndexStrategyl

£

F / === SourcelndexStrategy2
500

1 ' L L
8 s e s ! 1 1 ! ! 1 |
T T T T T T T T T T T T T T T T T T T T 1

lalb 1c 2a2b 2c 3a3b 3c 4a4b 4c 5a5b 5¢c 6a6b 6¢ 7a7b 7c

Test number

Chart 3: Time needed to find relevant sour ces



Time to find the relevant sources

1000
900
800 /’/‘5‘
o
2 700 /
% 600 /
c 500 /
o 400 ==®=SourcelndexStrategyl
E 300
= === SourcelndexStrategy2
200 -
100 e : 4 } :
0 t t f t f f t f i

4a 4b 4c 5a 5b 5c 6a 6b 6¢

Test number

Chart 4: Time needed to find relevant sour ces (tests 4-6)

A first conclusion that can be drawn for the ch#stselated to the complexity of the three given
gueries per test case. More specifically, the treeessary to find the relevant sources rises with
the complexity of the given query; the more complbg given query is, the more time the
strategy needs to determine the relevant sourdes.ufderlying reason is that more complex
gueries usually employ more predicates and domtiesefore, the Source Query (i.e., the query
posed to the Source Index Model to determine thevaat sources, see section 5.4) contains
more triple patterns to match these predicatesdanthins to encountered sources, and thus takes
longer to execute. This conclusion is valid for hotSourcelndexStrategyl and
SourcelndexStrategy?2.

A second conclusion concerns the amount of summméymation in the Source Index Model.
We have learned from the previous section that ikgemore summary information leads to a
larger Source Index Model. Clearly, a larger Sountkex Model will take longer to query, and
therefore lead to an increased amount of time sacg$o determine the relevant sources (this is
especially apparent as the number of sources iseyea

Comparing SourcelndexStrategyl and Sourcelndex§yat the chart shows us that the time
necessary to find the relevant sources is higheznwiising SourcelndexStrategyl than using
SourcelndexStrategy2. A first reason is that ther&Index Model of SourcelndexStrategyl is
larger than the Source Index Model of Sourcelndex&gy2, and therefore takes longer to query.
A second reason is that the Source Index Querydpasethe Source Index Model of

SourcelndexStrategyl will contain more triple pat$e since it also considers the domains of the
predicates, while the Source Index Query poseddworcgindexStrategy2 only considers the

-100



predicates themselves (see section 5.4 for monmation). As a result, this more complex
query will take longer to execute.

8.2.5 Criterion 4: Number of relevant sources

This section compares the number of relevant seusedected by the different Source index

strategies. As in the previous section, for eash ¢ase the Source Index Model is constructed
and the relevant sources are determined for tlee thforementioned queries with a low (test a),
medium (test b) and high (test c) complexity. Toseeas a best- and worst-case scenario, two
additional (hypothetical) strategies are taken imtoount: SourcelndexStrategyNone, where all
the sources are considered relevant, and SourceStd¢egyBest, where only the absolutely

relevant sources are considefed

Chart 5 shows the results of all four Source insteategies in a bar chart, Chart 6 only shows the
results of SourcelndexStrategyl, SourcelndexStydtegnd SourcelndexStrategyBest. The
horizontal axis shows the test number and theoadréixis the number of relevant sources. From
these diagrams, we can conclude that Sourcelndde§yl and SourcelndexStrategy2 (and
obviously SourcelndexStrategyBest) can prune dat af irrelevant sources. This is particularly
the case for test case 7.

%0 These relevant sources were determined manually.

-101-



50

Relevantsources

45

40

35

30

B SourcelndexStrategyl

25

20

B SourcelndexStrategy?2

# relevant sources

15

M SourcelndexStrategyNone

10

B SourcelndexStrategyBest

lalb1c2a2b2c3a3b3c4adb4c5a5b5c6abb6¢c7a7b7c

Test number

Chart 5: Number of relevant sources (1)

25

Relevantsources

20

15

10

# relevant sources

la 1b 1c 2a 2b 2c 3a 3b 3c 4a 4b 4c 5a 5b 5¢c 6a 6b 6¢c 7a

testnumber

B SourcelndexStrategyl B SourcelndexStrategy2 [ SourceIndexStrategyBest

7b  7c

Chart 6: Relevant sources (2)

-102-




One could expect that when the complexity of agigeery rises, the number of relevant sources
will decrease since more constraints should bentakéo consideration. However in our
particular scenario (using SourcelndexStrategyl &odrcelndexStrategy2) the number of
relevant sources stays the same or increase wherothplexity of the query rises. As explained
in section 5.4 our source index strategies shaetlgm all sources which might solve the query or
a part of the query, since combining (partial) relevantiree may result in (new) actual query
results. So the more the complexity of the quesggj the more domains and / or predicates that
will be used, the more relevant sources that magi$®vered. Test 7 shows that the number of
relevant sources increases along with the complexit

The charts show that Tests 1-4 do not favor onécpéar strategy: every query that is posed
selects exactly the one source which is summabgeatie Source Index Model. In test 5b and 5c,
only 1 source is actually necessary to solve thesego query (as “detected” by
SourcelndexStrategyBest), while SourcelndexStrdtegiyd SourcelndexStrategy2 return two
relevant sources. The second source, which is markedevant by SourcelndexStrategyBest but
not by SourcelndexStrategyl and SourcelndexStratedges not contain any results for the
guery, however this second source uses some @iréuakcates and / or domains mentioned in the
qguery. SourcelndexStrategyl and SourcelndexStratdgynot know with their little summary
information that these triples used in the sour@endt solve the query, i.e., the values of those
triples do not match the query.

The chart shows that SourcelndexStrategyl and SaexStrategy2 almost always return the
same amount of relevant sources except for test6baand 6c. In these particular cases
SourcelndexStrategyl uses the extra domain infeom#&b exclude an extra source. For example
take the low complexity query for test 6, this queselects the title of the music records.
SourcelndexStrategyl uses the domain and predidatenation to find all the sources that use
the predicate dcite " with as domain morecord ”. There are only two sources that match.
While SourcelndexStrategy2 cannot use the domdiornmation, it will find three sources
relevant for the query, it cannot exclude the tlsiodirce which uses the predicadeitle " but

not with the domain moiRecord ”. SO SourcelndexStrategyl is more selective than
SourcelndexStrategy?2.

Now let’'s consider one extra test to show the s$@iec benefit of SourcelndexStrategyl. We
have executed the low complexity query of testh& time on all the fifty encountered sources.
SourcelndexStrategy2 will be able to reduce théy fdources to only 9 relevant sources
SourcelndexStrategy 1 however reduces to onlye¥aalt sources, SourcelndexStrategyBest also
marked 2 sources as being relevant. This is a nhajoefit for SourcelndexStrategyl.

-103



However, SourcelndexStrategyl can also wrongfuligltele sources that can still yield query
results when they are combined (so-called falsainegs). These false-negatives occur when one
source indicates the type of a certain resourcégvamother source uses the same resource as
subject of a predicate used in the query, bothcesuare falsely considered irrelevant. In that
case, SourcelndexStrategyl will not detect therdatburce as relevant, as it expects the type of a
subject resource (i.e., “actual” domains of pretisasee section 5.4) to be specified in the same
source as they occur as subject of a predicate.eMeny we expect that the amount of false-
negatives is rather small, since the typing of bjextt resource and their use with predicates
usually occur in the same source. Future work (Sleapter 9) will be investigating how often
these false-negatives occur in practice and howdha be avoided.

8.2.6 Criterion 5: Execution time of the original g  uery

This section compares the execution time of thgimai (given) query on the RDF Graph
consisting of the relevant sources. Before this the Source Index Model has been constructed,
the relevant sources for the given query have luktermined, and the relevant sources have
been combined into one RDF Graph. The original yjissexecuted for all seven test cases, each
time with a low (test a), medium (test b) and h{tggst c) complexity query. The test cases are
executed for SourcelndexStrategyl, Sourcelndexégtyat SourcelndexStrategyNone (the worst
case scenario) and SourcelndexStrategyBest (thecass scenario). Chart 7 shows the results
for the four source index strategies with on thezomtal axis the execution time in milliseconds
and on the vertical axis the test number.

Execution time query

3000

2500

2000

== SourcelndexStrategyl

1500

=== SourcelndexStrategy2
1000
SourcelndexStrategyNone
>00 P A 0. O=m® SourcelndexStrategyBest
—— \w 0 o 1 IAVA—?\«,___@,, «0/’

0 - e BRI G B e s e — T T e e |

1la 1b 1c 2a 2b 2c 3a 3b 3c 4a 4b 4c 5a 5b 5¢ 6a 6b 6¢c 7a 7b 7c

Time in millisec

Test number

Chart 7: Execution time of the original query

-104



From the previous section we know that Sourcelnttex&yyNone selects more relevant sources,
thus we expect that execution time of the query el higher than for the other Source index
strategies. This is proven by Chart 7.

Since SourcelndexStrategyBest selects less relesgamtes, it is logical that the execution time
of the query will be lower than those of the otkeurce index strategies as Chart 7 shows. It can
be seen on the graph that, however the executiore tior SourcelndexStrategyl and
SourcelndexStrategy? is lower than the worst casaagio, there is still room for improvement.

It can be observed that the execution time for &ludexStrategyl and SourcelndexStrategy? is
(more or less) the same for most of the test casesheir selectivity (i.e., number of relevant
sources returned) is also equivalent in those Tdsdre is however one test where the execution
time is lower for SourcelndexStrategyl than for i8eltndexStrategy?2, this is test 6, as the
selectivity in that test was also lower for SouncixStrategyl than for SourcelndexStrategy?2.

A final conclusion from Chart 7 is that when thengexity of a query rises, the execution of the
guery rises as well. Reason is that the more coathke query is, the more constraints need to be
considered, the more complicated the query resplpincess is, the more time it takes.

8.2.7 Conclusion

From the first two sections, we have learned thair&IndexStrategy2 performs better than
SourcelndexStrategyl regarding Source Index Maoolestcuction time and size.

Chart 8 shows the total execution time (i.e., theetnecessary to determine the relevant sources
together with the execution time of the originaley) measured for SourcelndexStrategyl,
SourcelndexStrategy2 and SourcelndexStrategyNon&is Tchart does not mention
SourcelndexStrategyBest since the determinatioth@frelevant sources is done manually and
thus the determination time is not known. Tests ihdéicate that using a Source Index Model
leads to lower performance than when no Source xIndklodel is used
(SourcelndexStrategyNone). However, the amountoafces summarized in the Source Index
Model for those tests is very small; it is expedteat the user will encounter many more sources,
as is the case in test 7. The Test 1-6 were thyslogned to make a full comparison of the
strategies, but do not represent realistic usescase

-105



Total execution time

Time in millisec

la 1b 1c 2a 2b 2c 3a 3b 3c 4a 4b 4c 5a 5b 5¢c 6a 6b 6¢c 7a 7b 7c

Test number

B SourcelndexStrategyl B SourcelndexStrategy2 SourcelndexStrategyNone

Chart 8: Total execution time

From the more realistic test 7, we can conclude tBaurcelndexStrategy2 represents a
significant improvement over SourcelndexStrategy®omnd performs much better than
SourcelndexStrategyl since the time to find theevasht data is much lower for
SourcelndexStrategy?2 than for SourcelndexStrategyil SourcelndexStrategyl cannot be more
selective (except for test 6) then Sourcelndex&gsdt. In the section discussing the relevant
sources criterion an extra test is mentioned, anghich SourcelndexStrategyl only selects two
sources as relevant while SourcelndexStrategy2tsetene sources as relevant so the difference
is quite big. The corresponding find time and quime for SourcelndexStrategyl is 2618 and
315 respectively, while for SourcelndexStrategy fihd time and query time are 1117 and 919.
So even in this case SourcelndexStrategyl is muuie selective, the advantage is vanished by
the high find time.

We do also need to consider the amount of timeigthaecessary to construct the Source Index
Model in the case of SourcelndexStrategyl and ®tndexStrategy2 but the more times the
Source Index Model is used, the more this timesigligible.

The final conclusion is that SourcelndexStrategythe best strategy, it is not only the quickest
strategy, it also takes the least space. SourceSicdegyl takes more space and is a slower
strategy despite the fact that it is more seledtiviadicating the relevant sources.

8.3 Cache Strategy

The previous section evaluated the developed sandex strategies, which maintain source
index information on the encountered data sourtkis. section evaluates the second part of this
thesis, where two caching strategies were developbd evaluation takes into account the

-106-



following criteria: time necessary to collect tleevant data; time necessary to execute the query
on the relevant data; time necessary to downloaddlevant sources; time necessary to update
the cache when a new source is encountered andngcessary to update the cache (when the
sources are accessed). The first section provid&sislon the employed test scenario, followed
by sections evaluating the strategies with regéwdbe criteria above. The last section provides
conclusions that can be drawn from the evaluatidhestrategies.

In our first caching mechanism, CacheStrategySowentre data sources are cached, while in
CacheStrategyPredicate only triples using a pdaticpredicate are cached. In addition, we
consider a worst-case scenario called CacheStidtey (i.e., none of the encountered sources
are cached and thus need to be downloaded eveeythey are requested), and a best-case
scenario where all encountered data sources aredaalled CacheStrategyBest. The latter two
are thus two hypothetical caching mechanisms, eysploto compare the two developed
mechanisms to a worst- and best-case scenarios.

8.3.1 Test scenario

One test scenario is used in order to evaluatel¢heloped caching mechanisms. This scenario
consists of three parts (which are all describefl.#11.1), while every part consists of the same
seven queries of which the complexity varies from to high.

The test scenario is executed for each cache gyrafge., CacheStrategyPredicate,
CacheStrategySource, CacheStrategyNone and CaategfyBBest) and criteria. For
CacheStrategyPredicate and CacheStrategySourcsehario is executed three times, each time
with a different cache size. For more informatidro@t the actual cache size and how it is
determined see 8.3.1.2.

Each cache strategy use sSourcelndexStrategy?2 aseStndex Strategy to determine the
relevant sources, since we concluded from the atialu section of source index strategies that it
is the better one of the two.

8.3.1.1 Test scenario composition

The test scenario consists of three parts, whiehegecuted immediately one after another. The
first part has as purpose to build up the cachd,executes seven queries. It is possible that a
guery can benefit from the cache build up by onthefpreviously executed queries (e.g., Query
4 might benefit from Query 3). During this testywndata sources are encountered (in total fifty
sources). This allows us to measure how good theirmg mechanism is while building up the
cache and still encountering new sources. The oofeencountering and executing is as
followed:

-107-



e encounter one new source,

* execute Query 1,

e encounter two new sources,

* execute Query 2,

* encounter eight new sources,
* execute Query 3,

* encounter four new sources,

* execute Query 4,

* encounter seven new sources,
* execute Query 5,

* execute Query 6,

* execute Query 7,

* encounter twenty-eight new sources.

The second part executes the same seven quetties game order as in the first part; however,
this time the cache is already built (via the geeifrom the first part), and no new data sources
are encountered. This part allows us to measuredomd the cache mechanism is with a built
cache. However, not all relevant information wilteady be in the cache, some queries for
example for Query 3 will in the second part havecmmore relevant sources than in the first
because we have encountered much more sourcegfdigesome sources might be available in
the cache and others won't.

The third and last part again executes the sevenaguin the same order as before, while the
cache built in parts | and 1l is retained and nw seurces are encountered. This part allows us to
compare the results of the second part withoutrosiseies interfering (i.e., no newly encountered

sources and no new relevant sources for a partiquiey).

8.3.1.2 Determine the cache sizes

In this thesis two caching mechanism were develo@adheStrategySource, which caches entire
encountered sources, and CacheStrategyPredicaieh whches triples of the encountered
sources using a particular predicate. The chos&nsteenario is be executed on each of them
three times, each time with a different cache size.

The tests were once executed without cache sizeation to determine the 35percentile, 58
percentile, and 75 percentile of the amount of bytes that are relevan the queries, these
percentiles represent the three used cache sizeseTlsizes are not the same for
CacheStrategyPredicate and CacheStrategySource GmcheStrategyPredicate selects a much
smaller set of triples to actually perform the quewn than CacheStrategySource, as

-108



CacheStrategyPredicate only selects triples usifge trelevant predicates, while
CacheStrategySource selects all the triples ofcesucontaining a relevant predicate. Table 2
shows the relevant bytes for each query and cdchiegies.

For CacheStrategySource, thé"3%ercentile is 18753, the B(ercentile is 47836 and the'75
percentile is 90169. For CacheStrategyPredicate?2# percentile is 3205, the B(percentile is
7082 and the #5percentile is 10258. This means that the cacheefsizCacheStrategyPredicate
is five to eight times smaller than for CacheSgg&ource.

CacheStrategySource CacheStrategyPredicate

Part | relevant bytes relevant bytes
Query 1 7.748 138
Query 2 10.164 2.394
Query 3 17.414 2.802
Query 4 31.592 6.070
Query 5 64.080 8.094
Query 6 74.888 9.970
Query 7 74.888 9.844
Partll & llI

Query 1 7.748 138
Query 2 22.934 4.414
Query 3 22.768 4,568
Query 4 95.262 10.354
Query 5 95.262 10.354
Query 6 112.012 12.660
Query 7 112.012 12.588

Table 2: Relevant amount of data

8.3.1.3 The seven queries

As explained previously, the test scenario cons$tthree parts where in each part the same
seven queries are executed in the same orderstlihgection explains the seven used queries (in
the order in which they are executed). For eachygtlee meaning and complexity (low, medium
or high) is mentioned. A low complexity query ibasic query that consists of a select and where
clause with one or two basic triple patterns. A medcomplexity query is composed out of a

-109



select and where clause with five to six whereldérjpatterns. A union query with filters and a
total of ten to twelve where triple patterns is sidered to be a high complexity query.

This first query is a low complexity query whicHesets the nicknames.

PREFIX foaf: <http://xmIns.com/foaf/0.1/>
SELECT ?name

WHERE

{

?p foaf:nick ?name .

}

SPARQL query 22: Query 1

This second low complexity query shows all the ¢sph which people are interested.

PREFIX foaf: <http://xmIns.com/foaf/spec/>
SELECT ?topic
WHERE
{
?p foaf:interest ?interests .
?interests foaf:topic ?topic .

}

SPARQL query 23: Query 2

The third query shows all the given names and soesaThis query has again a low complexity.

PREFIX foaf: <http://xmins.com/foaf/spec/>
SELECT ?givenname ?surname
WHERE
{
?p foaf:givenname ?givenname .
?p foaf:surname ?surname .

}

SPARQL query 24: Query 3

The fourth query is a medium complexity query whstlows the given name, surname, birthday,
biography and a photo of all people.

PREFIX foaf: <http://xmIns.com/foaf/spec/>
PREFIX bio: <http://purl.org/vocab/bio/0.1/>
PREFIX vcard: <http://www.w3.0rg/2006/vcard/ns#>
SELECT ?givenname ?surname ?bday ?bio ?img
WHERE
{

?p foaf:.givenname ?givenname .

?p foaf:surname ?surname .

?p vcard:bday ?bday .

?p bio:olb ?bio .

?p foaf:img ?img .

}

SPARQL query 25: Query 4

-116



This fifth query shows again the given name, sumalirthday, biography and photo, but only
for people of whom the surname starts with ‘a’ lor (case insensitive). This query has a high
complexity.

PREFIX foaf: <http://xmins.com/foaf/spec/>
PREFIX bio: <http://purl.org/vocab/bio/0.1/>
PREFIX vcard: <http://www.w3.0rg/2006/vcard/ns#>
SELECT ?givenname ?surname ?bday ?bio ?img
WHERE
{

{

?p foaf:givenname ?givenname .
?p foaf:surname ?surname .
?p vcard:bday ?bday .
?p bio:olb ?bio .
?p foafiimg ?img .
FILTER(regex(str(?surname) ,"*a’, 'i"))
}
UNION
{
?p foaf:givenname ?givenname .
?p foaf:surname ?surname .
?p vcard:bday ?bday .
?p bio:olb ?bio .
?p foafiimg ?img .
FILTER(regex(str(?surname) ,"*b', 'i'))
}
}

SPARQL query 26: Query 5

The sixth query is a medium complexity query, whetiows the given name, surname, city and
country of birth for all people.

PREFIX foaf: <http://xmIns.com/foaf/spec/>
PREFIX bio: <http://purl.org/vocab/bio/0.1/>
PREFIX it: <http://daml.umbc.edu/ontologies/ittalks laddress#>
SELECT ?givenname ?surname ?city ?country
WHERE
{

?p foaf:givenname ?givenname .

?p foaf:surname ?surname .

?p bio:event ?birth .

?birth a bio:Birth .

?birth bio:place ?place .

?place it:city ?city .

?place it:country ?country .

}

SPARQL query 27: Query 6

This seventh and last query has a high complekitselects the given name, surname, city and
country of birth for all people that are born ie tdSA or Austria.

-111-



PREFIX foaf: <http://xmins.com/foaf/spec/>
PREFIX bio: <http://purl.org/vocab/bio/0.1/>
PREFIX it: <http://daml.umbc.edu/ontologies/ittalks laddress#>
SELECT ?givenname ?surname ?city ?country
WHERE
{
{
?p foaf:givenname ?givenname .
?p foaf:surname ?surname .
?p bio:event ?birth .
?birth a bio:Birth .
?birth bio:place ?place .
?place it:city ?city .
?place it:country ?country .
FILTER(str(?country)="USA")
}
UNION
{
?p foaf:givenname ?givenname .
?p foaf:surname ?surname .
?p bio:event ?birth .
?birth a bio:Birth .
?birth bio:place ?place .
?place it:city ?city .
?place it:country ?country .
FILTER(str(?country)="Austria’)
}
}

SPARQL query 28: Query 7

8.3.2 Criterion 1: Time necessary to collect the re  levant data

This first criterion is used to evaluate the depeld caching mechanisms by measuring the time
that is necessary to collect the relevant datafgiven query. This amount of time includes the
download time, time necessary to update the cdbbejme necessary to retrieve some data out
of the cache and time to construct the RDF Grapttatoing all the relevant data. This criterion
mentions CacheStrategySource, CacheStrategyPredicatCacheStrategyNone and
CacheStrategyAll. The following subsections go imore detail on each of these included times;
we discuss the evaluation of the total times here.

The chart below shows the amount of time necedsaget the relevant data for all the cache
strategies. The horizontal axis shows the partcauedty number while the vertical axis shows the
time necessary to collect the relevant data iniseitonds (CacheStrategy is abbreviated to
“CS”). Note that the bar of CacheStrategyAll isfidiflt to see in most cases, as it often only
needs a few milliseconds to get the sources’ datt@foits cache.

-112-



Time necessary to collect the relevant data
30000
25000
20000
o
2
E
c 15000 |
(]
£
=
10000
5000 ] l
0 -
1 2 3 4 5 6 7 1 2 3 1
part| partll
Testnumber
CSNone M CSSource 25th percentile M CSSource 50th percentile M CSSource 75th percentile
B CSPredicate 25th percentile B CSPredicate 50th percentile M CSPredicate 75th percentile B CSAIl

Chart 9: Time necessary to collect therelevant data

-113-



Chart 9 indicates that the time necessary to doltke relevant data is the highest for

CacheStrategyPredicate; it is even higher thantithe necessary for CacheStrategyNone, the
worst case scenario in which all the relevant datiat be downloaded every time it is requested.
A first explanation for this result is that a lof @verhead is required when using

CacheStrategyPredicate, e.g., the encountered stataces are translated into a special list
structure, when the relevant data for a query gquested the list structure must be translated
again to an RDF Graph, when new relevant sourcegm@rountered the cached blank triples of
that source must be adjusted ... A second explanatidhat the system must download the
sources many times for the different predicates.sgetion 6.1.2 for more details on this issue.

From the previous paragraphs and charts, we leatimaid CacheStrategyPredicate does not
perform well. Although all three cache sizes perfdradly, it is still worth comparing them one
to another. Chart 10 shows the necessary time€dcoheStrategyPredicate with all three sizes.
From the chart we can conclude that th® pércentile cache strategy needs more time tohget t
relevant data than the tQ@ercentile except for part | Query 3, 4, 5; paQuery 5 and part Il
Query 4, 5. A second conclusion is that th& p&rcentile performs the best, although in some
cases the ?5percentile comes close to the performance of Sfepércentile (e.g., part | — query
6 and 7, ...). If we consider speed versus storeal ¢ 28 percentile is the better option.

Time necessary to collect the relevant data
(CacheStrategyPredicate)

Time in millisec

part| part Il partlil

Test number

B CSPredicate 25th percentile B CSPredicate 50th percentile M CSPredicate 75th percentile

Chart 10: Time necessary to collect the relevant data (CacheStrategyPredicate)

Contrary to CacheStrategyPredicate, CacheStrategg&gerforms quite well. The necessary
time to get the relevant data is in most cases nmwhr than for CacheStrategyNone. Contrary
to CacheStrategyPredicate, this cache strategy motesequire much overhead, the sources do

-114



not need to be translated, the blank nodes of aategources do not need to be updated;
furthermore, the system must download the souraBsamce for the different predicates (see ..)

The chart below shows the retrieval times for C&traegySource with the three cache sizes.
The 78" percentile performs the best, which is more os spected since it can store the most
relevant sources; however, in some cases the eiffer with the 50 percentile is rather small
(e.g. part | — Query 1-6; part Il — Query 1, 254, in one case it was even quicker than tHg 75
percentile (part Il Query 5). In this particulaase, the 50 percentile has cached as much
relevant information as the ¥%ercentile however since its cache is smallerfithe necessary
to get the relevant data out of the cache is atsaller. The 25 percentile performs the worst;
the difference with the 3Dpercentile is in most cases quite large especfaiyart 1l and III.
From this we can thus conclude that a larger cacteeresults in higher performance. However,
the performance of the B@ercentile cache size is in many cases compatatitet of the 78
percentile; therefore, it can be considered asoa g@ade-off between performance and cache.

Time necessary to collect the relevant data
(CacheStrategySource)

Time in millisec

partl partll partlil

Test number

B CSSource 25th percentile Hl CSSource 50th percentile B CSSource 75th percentile

Chart 11: Time necessary to collect thereevant data (CacheStrategySour ce)

8.3.3 Criterion 2: Time necessary to download the u  ncached data

This third criterion, time necessary to download tincached relevant data, is used to evaluate
the cache strategies in terms of network performambe chart shown on the next page shows
the results for all cache strategies. The horizaxes mentions the part and query number, while

the vertical axis represents the time necessaiguwmload the non-cached relevant data.

-115



Time necessary to download the uncached relevant data
18000
16000
14000
«» 12000 ——
T
c
8 I
.g 10000
.E I I
£ 8000
(]
= 6000 I 1 I I
4000 I I I I
2000 I I
o -
1 2 3 4 5 6 7 1 2 3 4 5 6 7
part| partll part il
Test number
CSNone B CSSource 25th percentile M CSSource 50th percentile B CSSource 75th percentile
B CSPredicate 25th percentile B CSPredicate 50th percentile M CSPredicate 75th percentile B CSAIl

Chart 12: Time necessary to download the uncached data

-116-




From Chart 9 we concluded that CacheStrategyPredim@eds much more time to collect the

relevant data compared to CacheStrategySource.c@nse was that CacheStrategyPredicate
creates a lot more overhead: sources need to bsfdrened into the list structure, blank node

identifiers must be updated ... (see section 6.1Ir.2n@re information). A second cause is shown
on Chart 12, which indicates that all three Cacte&gyPredicates need a lot more time to
download the uncached relevant data; often, it eveeds as much time is as

SourcelndexStrategyNone, which means that all ¢élevant source are downloaded. Why does
CacheStrategyPredicate need to download so mudch? dilhe executed queries often use
predicates that appear in the same sources caorgaorie of the previously used predicates.
When such a (new) predicate is used, CacheStrategjglite needs to download the same
sources again, in order to extract the triples aioimg the new predicate. On the other hand,
CacheStrategySource caches data on a per-sousiedad thus does not need to download the
same sources again as they were already cachedthdprevious predicate was used.

For instance, consider Query 3, which selects thengnames and surnames of the people, and
Query 4 which selects the given names, surnames, tays, biographies and images of the
people. CacheStrategySource downloads all reles@mtes for the first query, and caches all or
some of them (depending on the size that is u®bden CacheStrategySource is asked to collect
the relevant data for Query 4, many of the cacloedces of Query 3 will still be relevant for the
predicates veard:ibday ”, “bio:ob " and “foatimg " used in Query 4. This means that for Query 4,
not all sources relevant for these three new patelicneed to be downloaded again; only those
that were not cached before must be downloaded.lofoas to CacheStrategySource,
CacheStrategyPredicate also downloads all relevemtirces for foafgivenname ” and
“foaf:sumame 7 iN order to collect the relevant data for QueryHbwever, in this case only the
triples using one of those two predicates are #gtumached. Therefore, when
CacheStrategyPredicate collects the relevant dat®tery 4, it needs to download all relevant
sources for the predicategadrdbday ”, “bioolb 7 and “foatimg " again, also including the relevant
sources which were previously downloaded for QuBeris a result, much more data needs to be
downloaded, and more time is needed to get theaetalata.

The SCOUT framework does not require encounteréitiemto have a query endpoint; they only
need to make the information (e.g., by having s&D& data online) available. Suppose that the
entities would have a query endpoint; in that c&ssheStrategyPredicate could be optimized to
only ask for the RDF triples containing the pretBsa‘card:bday ", “bioolb " and “foafimg ",
which would lead to a lower amount of downloadefdrimation. Moreover, we may expect that
the download time will be much lower than for Ca8trategySource, and it might even be
quicker in retrieving the relevant data altogether.

-117-



The chart below shows the time necessary to downkb& non-cached relevant data for
CacheStrategySource with the three different cactes. The horizontal axis shows the part and
guery number while the vertical axis shows the amofitime that was needed.

What we see on this chart is that th& percentile needs a lot less time to download ehevant
data. This was expected, since more sources caratieed (as it has a larger cache size);
therefore, there is a higher chance to get a chithand thus less data needs to be downloaded.
In most cases, the difference with thd"2fd 58' percentile is significant (especially compared
to the 2%' percentile). However, in some cases the differenite the 50" percentile is rather
small (e.g., part | query 6, part Il query 2).

Time necessary to download the uncached relevant
data (CSSource)

14000

12000

10000

8000

6000

Time in milliseconds

4000

part| partll partlll

Test number

W CSSource 25th percentile M CSSource 50th percentile M CSSource 75th percentile

Chart 13: Time necessary to download the uncached data (CSSour ce)

8.3.4 Criterion 4: Time necessary to update the cac  he

This fourth criterion measures the amount of titmat is spent on updating the cache. Chart 14
shows the measured times for CacheStrategySoutc€acheStrategyPredicate for each of the
three cache sizes. The horizontal axis mentiongaineand query number while the vertical axis
mentions the measured times in milliseconds.

The chart indicates that the update times of CachefgyPredicate are (relatively) much lower
than for CacheStrategySource. Note that the meddimes lie between zero milliseconds and

-118



twenty-seven milliseconds and that the differerscthus very small. A first reason is that a part
of the created overhead of CacheStrategyPredisatetiincluded is the measured time, the time
spent on constructing the relevant predicate graplise downloaded sources, since this is also
part of the construction of the RDF Graph contagrtime relevant information for the query. See
sections 6.1.2 and 7.6.2 for more information. Acosel reason is that the size of the
CacheStrategyPredicate is much smaller, and tlsgsnérmation needs to be maintained.

This chart shows that CacheStrategySource withizagise 5¢' percentile needs the most time to
update the cache. The difference with th& 28n be explained by the fact that th& p&rcentile

has a much smaller cache size; as many relevantesowill not fit in this cache, it needs to
consider fewer elements. The difference with th® g&rcentile can be explained by the fact that
the 79" percentile has more cache hits, in other wordstiteves more elements from the cache.
And thus it won’t need to add new elements to @hehe or update the already cached elements
as much as the other percentile.

Time necessary to update the cache

30

25

20

15

10

Time in milliseconds

part| partll partlll

Test number

B CSSource 25th percentile M CSSource 50th percentile M CSSource 75th percentile

B CSPredicate 25th percentile M CSPredicate 50th percentile M CSPredicate 75th percentile

Chart 14: Time necessary to update the cache

8.3.5 Criterion 4: Time necessary when of a new sou  rce is discovered

This fourth and last criterion measures the amaofinime that is necessary to update the cache
when a new source is encountered. For CacheSt&degge this time is zero since nothing will
be added to the cache, contrary to CacheStratedjgBite where certain triples of the newly
encountered source (which use a predicate praséme icache) need to be extracted and added to
the appropriate cache entry.

-119



The chart below shows the results for CacheStr&egiicate for all three cache sizes. The
horizontal axis shows the discovery number thaticcm the first part of the test scenario, while

the vertical axis shows the measured time in mitiéds. Number 1 is the discovery of one
source when no query has been executed yet; theyé¢fe cache is empty and nothing needs to
be updated (this explains the fact that no timeeisessary). Number 2 is the discovery of two
new sources immediately after Query 1, number ®@emered eight new sources after Query 2,
number 4 is the discovery of four new sources dafteery 3, number 5 is the encountering of

seven new sources after Query 4 and finally nunébisrthe encountering of twenty-eight new

sources after Query 7.

The chart shows that the strategy needs the nmosttt update the cache when it has th® 75
percentile as size. This was expected, since tfie@@Eentile size can cache the most predicates:
as a result, more triples need to be added to #ubec whenever a source is encountered.
However, the difference with the other two perdestis very small and not significant.

Time necessary when of a new
sourceis discovered

1200
1000
)
°
S 800
g CSPredicate 25th
% 600 percentile
£ M CSPredicate 50th
g 400 percentile
£
H CSPredicate 75th
200 ' percentile
) | . i

Discovery number

Chart 15: Time necessary when a new sour ceis discovered

8.3.6 Criterion 5: Time necessary to execute the gi  ven query

This fifth and last evaluation criterion evaluatd® caching mechanisms by measuring the
amount of time that is necessary to execute theryqus the relevant data. Since
CacheStrategyPredicate only selects the tripldsudea predicate from the query and not all the

-120-



triples of a source using such a predicate, it malurn a much smaller set (actually a subset) of
relevant data (as illustrated by Table 2).

Chart 16 shows the amount of time necessary touaeice query. The horizontal axis shows the
three parts of the test scenario with the corredpgnquery numbers while the vertical axis
shows the amount of time necessary to execute tleeypn the relevant data (measured in
milliseconds).

Time to execute the query

700
600
500
400
300
200 ~
100 A

Time in milliseconds

partlil

Testnumber

B CSSource 25th percentile M CSSource 50th percentile B CSSource 75th percentile

W CSPredicate 25th percentile M CSPredicate 50th percentile M CSPredicate 75th percentile

Chart 16: Time necessary to execute the given query

We thus expected that executing the query on retedata returned by CacheStrategyPredicate
would be much quicker than CacheStrategySourcee SiacheStrategyPredicate returns a much
smaller amount of relevant triples (see above)nFiee chart we see that the difference between
CacheStrategyPredicate and CacheStrategySourcardge l(sometimes more than double),
especially for the tests were the amount of relesaarces is quite high.

8.3.7 Conclusion

This section evaluated the cache strategies instefrthe time needed to collect the relevant data
(which includes time needed to query the relevaata,dand time needed to download the
uncached relevant data), time needed to updatesittee when the relevant data of a query must
be retrieved and time needed to update the cacbka winew source is encountered.

We can conclude that the performance of Cache8yRtedicate is poor, mostly due to the

amount of time it needs to download the relevantrses, the overhead caused by the
composition of special list to store the RDF tripléhe updating of the blank nodes ... It cannot
benefit from the fact that some sources have ajrbadn downloaded previously; i.e., any source
containing triples for a new predicate needs tdd&nloaded again, even if that source had been

-121-



previously downloaded in order to extract tripletated to a different predicate. On the other
hand, CacheStrategySource can retrieve previousiynkbaded and relevant sources straight
from the cache. Another issue that should be takem consideration is the amount of time
necessary to update the cache with newly encouhtsrerces. CacheStrategySource needs zero
amount of time, since it does not update the cagitle newly encountered sources, while
CacheStrategyPredicate needs extra time to upuatathe.

However, CacheStrategyPredicate returns a muchlesmsgt of relevant data, which only
contains the triples using a certain predicate usedthe given query; in case of
CacheStrategySource, the entire relevant soureeseturned (see section 6.1.1). Additionally,
CacheStrategyPredicate needs a lot less spac&tueStrategySource; more specifically, five
to eight times as less (see section 6.1.2). Theme actually the reasons this strategy was
developed, as we expected they would lead to iserkaperformance (see Chapter 6).
Unfortunately, these issues do not outweigh theaeamount of time necessary to download
relevant sources. Chart 17, which shows the sutheofime necessary to collect the relevant data
and to query it, proves this; the total collecti@md execution times for the three
CacheStrategyPredicates are much higher than tfo€acheStrategySource. Finally, the free
space gained by CacheStrategyPredicate certaings dwt measure up to the loss in
performance; especially considering the fact timamiany of the cases (certainly with a high
guery complexity), CacheStrategyNone even outpersaCacheStrategyPredicate.

-122-



Collect time and query time

30000

25000 |
4 20000
c
8
2
= B B
£ 15000
£
)
£
i= 10000

0 -
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4
part| partll partlll
Test number
CSNone M CSSource 25th percentile M CSSource 50th percentile M CSSource 75th percentile
M CSPredicate 25th percentile B CSPredicate 50th percentile ® CSPredicate 75th percentile B CSAll

Chart 17: Collect time and query time

-123-



To conclude, all the evaluation criteria have shawsrthat CacheStrategySource performs much
better than CacheStrategyPredicate; Chart 17 itedidhis as well. Chart 18 illustrates in more
detail the collect time and query time for CachategySource (each three of the sizes). It shows
us that 78 percentile has the best performance; howevercdbbe size is #5percentile and is
thus quite large. The BOpercentile also performs well, while having a mushaller size;
actually, in many cases its performance is closthéoperformance of the ?5ercentile (e.g.,
part | query 4 and 5, part Il query 5). Consequertie 58" percentile cache size seems to offer
the best balance between cache size and performance

Collect time and query time (CSSource)

Time in milliseconds

partlil

Test number

B CSSource 25th percentile B CSSource 50th percentile B CSSource 75th percentile

Chart 18: Collect time and query time CacheStrategy Sour ce

It can also be observed that CacheStrategySoupeefermance is still much lower than that of
CacheStrategyAll, the hypothetical best-case scenkirconsidered future work to investigate
how this cache strategy can be optimized to legs=gap with CacheStrategyAll. .

-124



Chapter 9 Future Work

This chapter describes what extensions and imprex&rcan be made to the work done in this
thesis. The first and second sections describeduwtork concerning the Cache and Source index
strategies, respectively. The last section desrihe possibility of a query mechanism, which

allows queries to be resolved both locally and retyo

9.1 Source Index Strategy

We have implemented and analyzed two source inttategies, used to determine the relevant
sources of a particular query. The mechanism netuldd as selective as possible while still
keeping the size of the Source Index Model minirfBaleral other source index strategies can be
designed, they can vary along two dimensions: \kimat of summary information is stored in the
Source Index Model (e.g., range of a predicate,brnof triples that use a predicate), and how
this information is represented by RDF triples.

The first Source Index Strategy, called Sourcel&dietegyl, maintained in the summary model
for each source what predicates and correspondimgaphs it uses. A major benefit for this

approach is that is very selective however in squadicular case, it is too selective. It is

considered future work to investigate the impadhaf flaw and how it can be solved.

The query analyzing component, responsible fortifl@ng the concrete predicates used in the
guery, currently ignores the filter clause of a HHA. query. However, this clause can also link
variables to concrete predicate URIs, using theeJamm() function; as a result, some sources
relevant to the query could (wrongfully) be ignaréhe of the most important issues for the
future is to extend the query analyzing componeatiso take into account the filter clause.

Currently the Source Index Model is stored in mgnard has no size limitations. Consequently,
it would be interesting to develop a kind of cachimechanism for the Source Index Model itself.
Furthermore, the freshness of the data in the $obndex Model is not taken into account; in

other words, it is assumed that a discovered saugger changes once its summary information
has been added. This is obviously an unrealistguraption, and it will be necessary to

sporadically update the source index informatioa particular source.

Finally, alternative formats can be investigated dtwring the summary information present in
the Source Index Model. Currently the Source Ini®odel is being stored as an RDF Graph;
alternatively, an SQL lightweight database could émployed to try and improve the

performance, decrease the space usage and facllipatating the Source Index Model. The
algorithm responsible for creating the Source In@asery, a query which can be posed to the

-125



Source Index Model to determine the relevant saufoea query, is flexible enough to support
other types of queries (e.g., SQL SourcelndexQuerppse to the Source Index Model.

9.2 Cache Strategy

In this section, we investigate extensions and awgments for the chosen eviction strategy and
caching mechanism.

Until now, one cache eviction strategy has beenlampnted, namely Least Recently Used
(LRU). However there exist other eviction stratsgileat can also be employed. An example of
such an eviction strategy is Adaptive Replacemeath€ (ARC). This eviction strategy
maintains two lists, one which contains elemends tiere accessed only once recently; and one
which contains elements that are accessed moreoti@nrecently. The order of the elements in
the lists is determined by recentness, elementswhi@ least recently used are first removed first
from the list. Depending on the size and the leasently used elements of both lists the
algorithm will determine of which list the leastemtly used element should be removed. ARC is
an algorithm which avoids the drawbacks from bofflULand Least Frequently Used (LFU), an
algorithm which evicts the least frequently usednmednt. By treating the elements that are
accessed only once recently separately, it avtidsthe elements that are only accessed once
recently remove elements that are recently accessady times. By also taking into
consideration the recentness, ARC avoids thoseegienthat were accessed many times in the
past stay in the cache. As mentioned before LRBNi®viction strategy which scores best in
situations where recentness plays a major role. ARG performs well in such situations, with as
benefit that it prefers the elements that are asmksnany times recently over the elements that
are only accessed once recently. A drawback of ARkRthat it causes more overhead than the
simpler LRU.

Additionally to implementing a known eviction segy, a variant or a completely new strategy
can be designed to better fit our purposes. Thesotly implemented LRU eviction strategy can
also be optimized, especially the algorithm for o#ng aged elements from the cache. One
possible optimization is to use a tree structurm&ntain the case elements in order to optimize
the remove aged elements algorithm.

In case several eviction strategies are availdbéechoice of which eviction strategy needs to be
used could be left to the designer of the mobilgliegtion. Alternatively, an optimized
implementation of Cache Strategy could dynamicaligose at runtime which eviction strategy
is more suitable for the current situation.

For now, two cache strategies have been implemesteldanalyzed: Cache Strategy source,
which caches entire RDF sources that have beenprsgbusly in resolving a query; and Cache

-126-



Strategy predicate, which caches triples with waigis that were used in previous queries. It can
be noted that both of these strategies cache thEé Ridrmation needed for solving query.
However query results themselves could be cach&dHsthis could lead to a whole new set of
cache strategies that can be designed, implemanttdompared.

Another topic is what type of elements is storethicache. For the first cache strategy an entire
RDF sources is considered as one cache elemetd atated as an RDF Graph in the cache. The
second cache strategy sees all the RDF tripleg asgpecific predicate as one cache element and
stores the RDF triples as a list structure in thehe. An idea is to maintain the RDF information
in another data structure to store it in the cache.

Currently it was assumed that the sources offesethe different entities do not change over

time, off course this assumption is faulty and ¢hehe strategies will need to change in order to
support the update of the sources. This could Ime diy determining a max time period that a

cache element can stay in the cache without upgldim source.

Finally the location of the cache can be considetadently the cache strategies keep the cache
entirely in memory. However it would be interestioginvestigate a cache strategy which stores
the cache partially on the disk. The idea here isave a cache that is stored partially in memory
and partially on disk. When an element is removethfthe cache in memory, it will be added to
the cache on disk.

9.3 Querying on the Mobile device

Until now, a remote query service has been useguy an RDF Graph and to analyze, and
parse SPARQL queries. In the future, it will becopassible to query RDF graphs and analyze
SPARQL queries on the device itself, (i.e., on thent side of the SCOUT framework).
However this does not mean that the remote quamiceeshould vanish; instead this service
offers the opportunity to the client to process 8@A queries either locally or remotely. In
cases where the mobile device is slow (e.g., a pl@eessor), delegating the query resolving to a
remote service can be advantageous; on the othdr lmacase of a slow (and expensive) network
connection, it can be better to handle the quecgllp. Consequently a kind of mechanism that
determines at runtime where a query is solved (telyor locally) in order to provide maximum
flexibility and performance can be developed. Timechanism will have to take into account
factors such as device capabilities, network cotivigg etc.

-127-



Chapter 10 Conclusion

This thesis has shown how a source index modektaoking mechanism can be used to reduce
the amount of sources that need to be downloadesh wbllecting the relevant data for a given
guery, and to speed up the querying process itSgfferiments were conducted to validate these
mechanisms, and to compare several variants to @hehn. This final chapter summarizes the
benefits and drawbacks of the developed mecharf@nmsaintaining the source index model and
caching the encountered sources.

10.1 Source index strategy

The first mechanism, responsible for maintainirg sburce index model, allows us to determine
which sources contain relevant information to sadv@articular query. Two variants of this
mechanism (called source index strategies) werestiyated, which differ in the type (and
amount) of information that is stored in the sourmiex model.

The first one, called Source Index Strategy 1, ta@ms for each source what predicates are used
together with their “actual” domains, i.e., the égpof resources that occur as subjects of the
predicate in the source. The second one, callecc8dndex Strategy 2, has a source index model
that only contains information of the used predisgier source.

As discussed and investigated in the evaluatioptehaSource Index Strategy 2 is much quicker
than Source Index Strategy 1 despite the factSbatce Index Strategy 1 is more selective (i.e.,
find less relevant sources) than Source Indexe&jya. The underlying reason is that the source
index model for Source Index Strategy 1 is mucgdathan for Source Index Strategy 2 since it
contains much more information, and that it needsse complex Source Index Query since the
guery must also consider the domain. Additionalhg first strategy can give rise to false-
negatives; i.e., sources that are wrongfully exetuttom the set of relevant sources (see section
5.4.1).

It can therefore be concluded that Source Indext&ly 2 is the better strategy, as the increase in
selectivity of Source Index Strategy 1 does noweigh its drawbacks related to querying speed
and size.

10.2 Cache Strategy

The second mechanism developed in this thesi€aslaing mechanism for the encountered data
sources. This mechanism decides which data frometioeuntered sources is kept locally, in

order to avoid having to download the relevant sesir(as identified by one of the strategies
mentioned above) every time a query is issueddadctivironment Model.

-128



Two main caching strategies were investigated taidelhe first one is CacheStrategySource,

which caches entire sources, while the second aeh&StrategyPredicate only caches triples
which employ a specific predicate. Since the grartyl of CacheStrategyPredicate is much

smaller, the resulting cache is five to eight timesaller than the one for CacheStrategySource.
This decreased granularity also leads to a smsdieof data on which the given (original) query

needs to be executed, as only specific triplesguaipredicate from the given query are returned,
as opposed to all triples from sources containipgealicate from the given query. Therefore, the
execution time of the given query is minimized.

However, if everything is taken into considerati@e., download time, composition time of the
relevant data and execution of the query on thevegit source), CacheStrategySource is actually
a lot quicker than CacheStrategyPredicate. The riyndg reason is that CacheStrategySource
has a smaller overhead and needs to download tieesoa lot less than CacheStrategyPredicate.
Therefore, CacheStrategySource is able to quiakepose the relevant data on which the query
is being executed, despite the fact that CacheglyRredicate returns a smaller set of relevant
data.

We can therefore conclude that CacheStrategySasitbe better cache strategy, despite the fact
that it needs more space and executes the queaylanger set of relevant data and that it needs
much more memory. It is considered future workuxdHer investigate the cache strategies, how
they can be optimized and to invent and implememt cache strategies.

-129



Bibliography

[1] Sven Casteleyn, Olga De Troyer William Van Woen&dkramework for Decentralized, Cont-
Aware Mobile Applications Using Semanctic Web tedlogy.

[2] Matthew Fisher, Ryan Blace, Andrew PeLopez Joh HebelerSemantic Web Programmi.
Indianapolis, Indiana: Wiley Publishing, 2009.

[3] Beat Signer. (2009, Nov.) Web Information Systefisee Semantic Web.

[4] (2007, Juni) en.wikipedia.org. [Onlinéhttp://en.wikipedia.org/wiki/File:WZ-semanti-wek-
layers.svg

[5] W3C. (2004, FebW3C.org. [Online]. http://www.w3.0rg/TR/2004/RI-owl-feature-
20040210/#s1.3

[6] (2008, Januari) W3C. [Online]. http://mwww.w3.org/F&-sparql-query/
[7] (2009, November) Jena. [Online]. http://jena.soimgee.net/
[8] eHow. (2010, April) Cache. [Online]. http://www.elao.uk/cache/

[9] Caswell D. Debaty P., "Uniform Web Presence Ardtitee for People, Places and Thing
Personal Communicationsol. Issue 4, no. Volume 8, pp. 46-51, 2001.

[10] Barton John Kindberg Time, "A W-based nomadic computing systeiComputer Networl, vol.
vol 35, no. 4, pp. 443-456, 2001.

[11] Kindberg Tom Barton John, "The Cooltown User Expeci," inCHI 2001 WorkshogBuilding the
Ubiquitous Computing User Experienc2001.

[12] Langheinrich M. Roduner C., "Publishing and Disaowg Information and Services for Tagg
Products," inl9th International Conference on Advanced Infororaystems Engineering
Trondheim, Norway: Springer Berlin / HeidelbergDZ0pp. 501-515.

[13] Jones Joel Tummala Harsha, "Developing spa-aware content management systems for dyne
location-sepific information in mobile systems,"3rd ACM international workshop on Wireless
mobile applications and services on WLAN hotspdtsility support and location awareness
Cologne, Germany: ACM, 2005, pp. 14-22.

[14] Vazques J.l., Abaitua J. Log-de-Ipina D., "A Contex-aware Mobile Mas-up Platform Fo
Ubiquitous Web," irBrd IET International Conference on Intelligent Eiowments Ulm, Germany:

-130



ACM, 2007, pp. 116-123.

[15] Rossi Gustavo, Gordillo Silvia, De Cristofolo Vate€hoalliol Cecilia, "Designing ar
Implementing Physical Hypermedia Applications,1@CSA 2006, UWSI 2006ieidelber Berlin:
Springer, 2006, pp. 148-157.

[16] Persson Per, Sandin Anna, Nystrom Hanna, Cacciiterer, Bylund Markus Espinoza Fredi
"GeoNotes: Social and Navigational Aspects of LinceBased Information Systems,"lithicomp
2001: Ubiquitous Computinddeilderberg, Germany: Springer, 2001, pp. 2-17.

[17] Hungkeng Pung, Paulito P. Palmes, Toa Gu Wenwej >&hema matching for cont-aware
computing,” in10th international conference on Ubiquitous compgitSeoul, Korea: ACM, 2008,
pp. 292-301.

[18] Steenkiste Peter Judd Gleen, "Providing Contextidaimation to Pervasive Computil
Applications," inl1st IEEE International Conference on Pervasive Cating and Communications
Fort Worth, Texas, USA: IEEE Computer Society, 2Q6)8 133-142.

[19] Dominic Battre, "Caching of intermediate resultiHT-based RDF storesinternational Journa
of Metadata, Semantics and Ontologieal. Vol 3, no. Issue 1, pp. 84-93, January 2008.

[20] Heiner Stuckenschmidt, "Similar-Based Query Cacng," in Flexible Query Answering Syste.
Amsterdam: Springer Berlin / Heidelberg, 2004, 296-306.

[21] Michael J. Franklin, Bjorn T. Jonsson, Divesh Ssteaa, Michael Tan Shaul Dar, "Semantic C
Caching an Replacement,"Rroceedings of the 22th International Conferenc&/ery Large Data
BasesMaryland, United States: Morgan Kaufmann Publishec. , 1996, pp. 330-341.

[22] Harrick M. Vin, Asit Dan, Dinkar Sitaram Renu Tew:Resourc-based Caching for Web Serv.
Austing, Hawthorne: The University of Texas, T.Jatédbn Research Center, 1998.

[23] David Karger Dennis QuaHow to Make a Semantic Web Brow. Cambridge: T.J Watsc
Research Center, MIT CSAIL, 2004.

[24] UIf Leser Bastian QuilitzQuerying Distributed RDF Data Sources wSPARQ!. Berlin: Humbold-
Universitat, 2008.

[25] Richard Vdovjak, Gee-Jan Houben, Jeen Broekstra Heiner StuckenschrmdieX structures ar
algorithms for querying distributed RDF repositerian International World Wide Web Conference
New York, NY, USA: ACM, 2004, pp. 631-639.

[26] Richard Helm, Ralph Johnson, John M. VlissideslE@G@ammaDesign Patterns: Elements

-131-



Reusable Object-Oriented Softwargddison-Wesley Professional, 1994.

[27] Wikipedia. http://en.wikipedia.org/wiki/Ontology_%information_science%29. [Online
http://en.wikipedia.org/wiki/Ontology_%Z28informatioscience%29

-132-



11.1 http://wilma.vub.ac.be/~eparet/elien_foaf N.rd

Chapter 11 Appendix

f (RDF file)

_:AX2dX622daeb5X3axX126f4fa52ffX3aXX2dX7ffe <http://
_:AX2dX622daeb5X3axX126f4fa52ffX3aXX2dX7ffe <http://
_:AX2dX622daeb5X3axX126f4fa52ffX3aXX2dX7ffe <http://
_:AX2dX622daeb5X3axX126f4fa52ffX3aXX2dX7ffe <http://
_:AX2dX622daeb5X3axX126f4fa52ffX3aXX2dX7ffe <http://
_:AX2dX622daeb5X3axX126f4fab52ffX3aXX2dX7ffc <http:/
_:AX2dX622daeb5X3aX126f4fa52ffX3aXX2dX8000 <http://
_:AX2dX622daeb5X3axX126f4fa52ffX3aXX2dX8000 <http://
_:AX2dX622daeb5X3aX126f4fa52ffX3aXX2dX8000 <http://
_:AX2dX622daeb5X3axX126f4fa52ffX3aXX2dX8000 <http://
_:AX2dX622daeb5X3aX126f4fa52ffX3aXX2dX7fff <http://
_:AX2dX622daeb5X3aX126f4fa52ffX3aXX2dX7fff <http://
_:AX2dX622daeb5X3aX126f4fa52ffX3aXX2dX7fff <http://
_:AX2dX622daeb5X3aX126f4fa52ffX3aXX2dX7fff <http://
_:AX2dX622daeb5X3aX126f4fa52ffX3aXX2dX7ffd <http://
_:AX2dX622daeb5X3aX126f4fa52ffX3aXX2dX7ffd <http://
_:AX2dX622daeb5X3axX126f4fa52ffX3aXX2dX7ffd <http://

<http://www.google.be> <http://webns.net/mvcb/error
<http://www.google.be> <http://webns.net/mvcb/gener
<http://www.google.be> <http://xmins.com/foaf/0.1/p
<http://www.google.be> <http://xmins.com/foaf/0.1/m
<http://www.google.be> <http://www.w3.0rg/1999/02/2

<http://vub.ac.be/elien_paret/#me> <http://xmins.co
<http://vub.ac.be/elien_paret/#me> <http://xmins.co
<http://vub.ac.be/elien_paret/#me> <http://xmins.co
<http://vub.ac.be/elien_paret/#me> <http://xmins.co
<http://vub.ac.be/elien_paret/#me> <http://xmins.co
<http://vub.ac.be/elien_paret/#me> <http://xmins.co

<http://vub.ac.be/elien_paret/#me> <http://xmins.co
<http://vub.ac.be/elien_paret/#me> <http://xmIns.co
<http://vub.ac.be/elien_paret/#me> <http://xmins.co
<http://vub.ac.be/elien_paret/#me> <http://xmins.co
<http://vub.ac.be/elien_paret/#me> <http://xmins.co

www.w3.0rg/2000/01/rdf-schematseeAlso> <http://wise
xmins.com/foaf/0.1/mbox_shalsum> "620f0f01e8095af4b
xmins.com/foaf/0.1/name> "Pieter Callewaert" .
www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://x
xmins.com/foaf/0.1/givenname> "Pieter" .
www.w3.0rg/1999/02/22-rdf-syntax-ns#value> "http://
www.w3.0rg/2000/01/rdf-schemat#seeAlso> <http://wise
xmins.com/foaf/0.1/mbox_shalsum> "72b9db61f552b422e
xmins.com/foaf/0.1/name> "Johny Paret" .
www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://x
www.w3.0rg/2000/01/rdf-schemat#seeAlso> <http://wise
xmins.com/foaf/0.1/mbox_shalsum> "8alf61989d9034574
xmins.com/foaf/0.1/name> "Frieda Van Severen" .
www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://x
www.w3.0rg/2000/01/rdf-schematseeAlso> _:AX2dX622da
xmins.com/foaf/0.1/name> "Sofie Callewaert" .
www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://x

ReportsTo> <mailto:leigh@Ildodds.com> .
atorAgent> <http://www.ldodds.com/foaf/foaf-a-matic
rimaryTopic> <http://vub.ac.be/elien_paret/#me> .
aker> <http://vub.ac.be/elien_paret/#me> .
2-rdf-syntax-ns#type> <http://xmins.com/foaf/0.1/Pe

m/foaf/0.1/mbox_shalsum> "84db5efh9a3ecebeda27be395
m/foaf/0.1/givenname> "Elien" .

m/foaf/0.1/title> "Mr" .

m/foaf/0.1/knows> _:AX2dX622daeb5X3axX126f4fa52ffX3a
m/foaf/0.1/knows> _:AX2dX622daeb5X3axX126f4fa52ffX3a
m/foaf/0.1/nick> "MyNickName" .

m/foaf/0.1/phone> <tel:026293754> .
m/foaf/0.1/homepage> <http://wise.vub.ac.be/members
m/foaf/0.1/workplaceHomepage> <http://wise.vub.ac.b
m/foaf/0.1/knows> _:AX2dX622daeb5X3axX126f4fa52ffX3a
m/foaf/0.1/name> "Elien Paret" .

.vub.ac.be/members/pieter/> .
cfla91e9f7f12cbc6c46b2a” .

mins.com/foaf/0.1/Person> .
www.google.be/ig" .
.vub.ac.be/members/johny> .
8d9bac106e063f8ccfead15" .
mins.com/foaf/0.1/Person> .
.vub.ac.be/members/frieda> .

966e8e9430819624d1abd01" .

mins.com/foaf/0.1/Person> .
eb5X3axX126f4fa52ffX3aXX2dX7ffc .

mins.com/foaf/0.1/Person> .

rsonalProfileDocument> .

7df13c171c4b9e2" .

XX2dX7fff .
XX2dX7ffe .

[Elien/> .
el>.
XX2dX8000 .

-133




<http://vub.ac.be/elien_paret/#me> <http://www.w3.0 rg/1999/02/22-rdf-syntax-ns#type> <http://xmins.com [foaf/0.1/Person> .

<http://vub.ac.be/elien_paret/#me> <http://xmIns.co m/foaf/0.1/schoolHomepage> <http://www.vub.ac.be/> .
<http://vub.ac.be/elien_paret/#me> <http://xmins.co m/foaf/0.1/knows> _:AX2dX622daeb5X3axX126f4fa52ffX3a XX2dX7ffd .
<http://vub.ac.be/elien_paret/#me> <http://xmIns.co m/foaf/0.1/family_name> "Paret" .

-134




